CS 372: Operating Systems Professor Mike Dahlin

Lecture #21: File system naming + location — putting it all
together

stesfe sfe st sie sfe st s sfe sfe sfeske s sfesiese s sfestesieostotesk skototokoskoiokskolor

Review -- 1 min
siefesteste sttt skoksfooftstestolofstolol ksl okl sk ok
fs data layout — how to find blocks of a file given its header
¢ trees, linked lists, etc
¢ how to get good sequential layout

Transactions —
ACID
Logging (redo, undo, commit, rollback)

stesfe sk stesie sfe stk st s stk sk steotesioskototoskolokokokoiokskoskokokskokor

Outline - 1 min

siesfesste sttt ittt etttk ol ksl sk stk
Kernel data structures

Open/close/read/write v. mmap

project overview
Scheduling

stefesteste sttt toktskotskotok setskoslolokskskokskolok ok

Preview - 1 min

stefesfe st skt feskotofskesktosiokotokek ok skl kel sokesk ok
M — midterm
Then, memory systems, protection

stesfeste sfeste sfesie sfeste sfestesteskosteskeosteskeotekotekoloskokskokokokekokeskok sk

Lecture - 20 min
sfeske sk sk sk sheoske sk s shesteske sk skt stk ket skokok sfeolokokoskeskoskok sk

1. Disk scheduling

Disk can only do 1 request at a time; what order do you choose to do
the requests

CS 372: Operating Systems Professor Mike Dahlin

if 0 or 1 request queued, easy
>1 — try to arrange requests in some order that reduces seek time

1.1 FIFO

QUESTION: how will this work?
Fair among requestors, but order of arrivals may be random - long
seeks

1.2 SSTF - shortest seek time first

pick the request that is closest on disk (although called SSTF, today
include rotational delay b/c rotation can be as long as seek)

QUESTION: how will this work

good at reducing seeks
can cause starvation

Is it optimal?

1.3 SCAN

SCAN implements elevator algorithm — take the closest request in the
direction of travel
No starvation, but retains flavor of SSTF

1.4 CSCAN

2. Kernel data structures for file system

2.1 Read/write interface

Kernel maintains per-process open file table --
each entry -- pointer OpenFile object stored in kernel memory

system call (user) | kernel action
open("path") - put a pointer to right file in FD table;
return index



CS 372: Operating Systems Professor Mike Dahlin

close(fd) -> drop entry from fd table

read(fd, buffer, length) = user refers to open files with index
write(fd, buffer, length) of file descriptor table

What needs to be in OpenFile object to support read/write?
B Inumber (or, if caching, pointer to in-memory FileHeader object)
B per-open-file data (e.g., file position, ...)

Why have a separate fd table

B why not just give user pointer to FileHeader object in kernel?
o how does kernel know when it can free object?
o convenience: per-open-file data (file position, ...)

B why not just use path for all operations (e.g., read(path, offset, ...))
o efficiency — string operations, protection checks

2.2 Caching
Read and write end up calling disk block read/disk block writes

We’ve stated several times that we need good caching for file systems
to work well. How does this work?

Simple answer: block cache

Replace all uses of
ReadDisk(blockNum, buffer)
With
ReadDiskCache(blockNum, buffer){
ptr = cache.get(blockNum); // just a hash table
if(ptr){
copy BLKSIZE bytes from ptr to buffer
}
else{
newBuf = malloc(BLKSIZE);
ReadDisk(blockNum, newBuf);
cache.insert(blockNum, newBuf);
copy(blockNum, buffer, BLKSIZE);

CS 372: Operating Systems Professor Mike Dahlin

}

Advantage: simple — write all FS code as if always reading from disk
and insert the cache at the lowest level

Issues: replacement policy --> in a few weeks when we talk about
memory systems

Disadvantage: copy overhead — each read copies block into a new
buffer

For in-kernel use, we could return a pointer to cached version
B More complex: need to deal with reference counting, etc., but we
could make it work...

What about avoiding copies to user space?

2.3 Mmap interface
void *mmap(int fd, size length, ...)

map the specified open file into a region of my virtual memory, and
return a pointer to that region

How might we implement this?

How would we update your page table?

How do I read a file?

How do I write a file?

What happens if a page is evicted from the cache?
What happens if a page is brought back into the cache?

steste sk steste sk sttt sk stk sk skoioskokoskokoskokokokokoekokskokokokskokor

Admin - 3 min
seskeske sk sk sheoske sk skeoskeskesk s skt seoskosko kot skoko ok skekok sk skekokok sk

Project out. Start early.



CS 372: Operating Systems Professor Mike Dahlin

steske sk steste sk sk kot skokoskoskokokoskokokokoekokokokokoskokokokokoskokosk

Lecture - 23 min
sfeste sk sk sie sfeosie sk sk sk sieske st skeoste sk steosieste steosteostesiesieostotokoskokokokeskok

3. project 2-3 -
It looks like a lot
It will force you to understand file systems
Once you do, it is simple if you follow a modular design

3.1 atomic disk
xid = adisk->beginTransaction()
error = adisk->writeSector(xid, secNum, data)
error = adisk->writeSector(xid, secNum2, data2)
error = adisk->readSector(xid, secNum, data)
error = adisk->commitTransaction(xid);

‘What should writeSector do?
What should readSector do?
‘What should commitTransaction do?

Concurrency:

Option 1: (recommended) only allow one active transaction at a time.
(What should beginTransaction() do? What should endTransaction()

do?)

Option 2: allow multiple outstanding transactions. (What should
beginTransaction() do? What would endTransaction() do? What
would readSector() do?)

3.2 Tree
Each tree will correspond to a file.

Possible milestones
- design data structures; pseudo-code methods
- format disk; test
- create/delete tree; test
- read/write small trees; test

CS 372: Operating Systems Professor Mike Dahlin

- read/write large trees; test

Xid = ptree->beginTrans();

tnum = ptree->createTree(xid);

Error = ptree->writeData(xid, tnum, 0, data);
Error = ptree->writeData(xid, thum, 1, datal);
Error = ptree->readData(xid, tnum, 0, data2);
Error = ptree->commitTrans(xid);

Slightly different index structure than any we showed in class —
similar to multi-level index, but grow tree dynamically

What is on adisk? tnode array, data array.

Tnode array Internal nodes s

//'E

[wm
-

g

..

Keep track of invariants on nodes in tree and it will stay simple.
Try to write code before you’ve understood invariants, and it will be
very complex.

|
e

pseudo-code for readData (no error checking, ...)

Ptree::readData(xid, tnum, blockld, buffer){
tHdr = getTreeHeader(xid, tnum);
sector = tHdr->getBlkAddr(xid, blockld);
adisk->readSector(xid, sector, buffer);
}

}

What does getTreeHeader do?



CS 372: Operating Systems Professor Mike Dahlin

What does TreeHeader::getBlkAddr(xid, blockld) do?
How would you create/delete a file? (How find a free thdr?)
How would you format the disk?

3.3 flat file system — read and write using inumbers and offsets

not much to add above tree storage...

3.4 directory-based file system
— add names, directories, and open file table
What is pseudo-code for read?
read(fd, start, length, buffer){

xid = flatFS->beginTransaction();
of = fdTable.getOpenFile(fd);
inum = of.getINum();
flatFS->iread(xid, inum, start, length, buffer);
flatFS->endTransaction(xid);

}

What is pseudo-code for open? (Key idea: recursion to find inum
given path name).

3.5 pitfalls

test as you go; get part 1 completely working and bug free before
starting part 2; etc.

casting — array of bytes (from disk) into objects (in memory)
Suggest — constructor that takes a sector number

e.g., InternalNode::InternalNode(Adisk disk, Transld xid, int sector);

partner issues — see handout on suggestions for how to manage
partnership
sttt sttt okttt stttk skl Rk skok

Summary - 1 min
steste sfe stesie sfe st st sie s steske s sfeotesieoshostetesiolokoskoskotoiokoskoeiokskolor



