
Lecture #24: Networks and Distributed systems

Review -- 1 min

In-kernel data structures
n open file table

o book has confusing terminology. They say “2 open file
tables, a per-process and a global”

per-process: current position + pointer to global
global: reference count + file ID + cached header stuff…

n caching
o mmap

RAID

FS Scheduling

Rethink the sync (guest lecture)

• Performance v. durability
• Example

o T1 begin
o W1
o W2
o T1 end
o T2 begin
o W3
o W4
o T2 end
o T3 begin
o W5
o W6
o T3 end
o Print/send message “done”

Barriers (write scheduler), block (sync)
 Better performance

barrier

barrier

barrier

Barrier + block

Barrier + block

Barrier + block

barrier

barrier

barrier

Block

 Better reliability (current disks “cheat” because otherwise
performance is too horrible)

Outline - 1 min

Motivation
Basic NW communication
3 problems

 performance
 reliability
 security

Case study: Distributed file systems

Preview - 1 min

Today: motivation, basics, file system example, performance
Monday/Wednesday: Reliability:
 Network failures:

 Retransmission, idempotent requests
Machine failures
 Careful protocol construction (e.g., ad hoc solutions)
 2 phase commit
 Reliable asynchronous messaging

if time: security

Lecture - 20 min

Motivation
Technology trends:

Centralized v. Distributed systems
Distributed system: physically separate computers working together

Why do we need distributed systems?

 Cheaper to build lots of simple computers
o Mfg rule of thumb: 2x increase in quantity  10% reduction in cost per

unit
 Easier to add power incrementally (v. design whole new machine)

Promise of distributed systems
 Higher availability – one machine goes down, use another
 Better reliability – store data in multiple locations
 More security – easier to make each (small) piece secure; professional

management of system

If we’re not careful, reality will be disappointing

 Worse availability – depend on every machine being up
Lamport: “A distributed system is a system where I can’t get any work done if a
machine I’ve never heard of crashes.”

 Worse reliability – can lose data if any machine crashes
 Worse security – anyone in the world can break into my systems

Key idea: coordination is more difficult b/c can only use network for coordination
and because of partial failures – part of the system (a connection, a machine) fails
while the rest keeps running

Physical reality v. desired abstractions

Desired abstraction: Programming/using distributed system looks like
programming/using centralized system

 Location independence
 Performance
 consistency
 Failures, reliability
 security

Location independence – step 1 – how to assemble
distributed system…

Send/Receive
How do you program a distributed application?
Need to synchronize multiple threads, but they are on multiple
machines (no test&set)

Atomic send/receive – doesn’t require shared memory for
synchronizing cooperating threads

Note that send and receive are atomic

never get portion of a message (all or nothing)
two receivers can’t get same message

Mailbox – temporary holding area for messages (ports)

Looks like producer/consumer queue

Receive(buffer, mbox)

 Wait until mbox has message in it, then copy message into buffer,
and return

when packet arrives, OS puts message into mbox, wakes up one of the
writers

Send(buffer, mbox)
When can Send return?

• when receive gets message?
• when message is safely buffered on destination node?
• Right away, if message is buffered on source node?

Message styles
1-way – messages flow in one direcction (UNIX pipes, TCP)
2-way – request-response (remote procedure call)

1-way communication

Producer:
 int msg1[1000];
 while(1){
 prepare message; // add coke to mach.
 Send(msg1, mbox);
 }

Consumer
 int msg2[1000];

 while(1){
 receive(msg2, mbox);
 process message; // drink coke
 }

no need for producer/consumer to keep track of space in mailbox –
handled by send/receive

2-way communication

What about 2-way communication? Request/response – e.g. “read a
file” stored on a remote machine

Also called – client-server
 Client = requestor
 server = responder
 Server provides “service” to client

request/response:

 client:
 char response[1000];

 send(“read rutabaga”, mbox1);
 receive(response, mbox2);

 server:
 char command[1000], answer[1000];

 receive(command, mbox1);
 decode command;
 read file into answer;
 send(answer, mbox2);

Remote procedure call
Call a procedure on a remote machine

client
 remoteFileSys->Read(“rutabaga”);

translated into call on server:
 fileSys->Read(“rutabaga”);

Implementat on top of request-response message passing
 “stub” provides glue

client stub:
 build message
 send message
 wait for response
 unpack reply
 return result

server stub:
Create N threads to wait for work to do
 loop:
 wait for command
 decode and unpack request parameters
 call procedure
 build reply message with results
 send reply

Comparison between RPC and procedure call
What’s equivalent
 Parameters – request message
 Result – reply message
 Name of procedure – passed in request message
 return address – mbox2

 call send
 Client client Packet
 (caller) stub Handler
 return receive

 network
 transport

 return send
 Server server Packet
 (callee) stub Handler
 call receive

Implementation issues

Stub generator – implements stubs automatically

for this, only need procedure signature – types of arguments,
return value
generate code on client to pack message, send it off, on server
to unpack message, call procedure

How does client know which mbox to send to? Binding
 static – fixed at compile time (e.g. C)
 dynamic – fixed at runtime (e.g. Lisp, RPC)

In most RPC systems, dynamic binding via name service.
Name service provides dynamic translation of service  mbox

Why runtime binding?
 Access control – check who is permitted to access service
 fail-over – if server fails, use another

Problems with RPC

 Problem solved?

RPC provides location transparency – except

Performance
Failures -- message loss, machine crash
Consistency/replication
Security

o All hard problems.
o Fundamental limits (e.g., you can't atomically update an object replicated

at multiple machines)
o Diffcult trade-offs among goals -- e.g., consistency v. availability CAP

Failures
Different failure modes in distributed system than on single machine

Several kinds of failure
(1) communication interruption

 lost message
 lost reply
 cut wire
 …

Simple solution:
Request/acknowledge protocol
Common case:
1) Sender sends message (msg, msgId) and sets timer
2) Receiver receives message and sends (ack, msgId)
3) Sender receives (ack, msgId) and clears timer

If timer goes off, goto (1)

How does this work? Local procedure call guarantes exactly
once semantics. What does retransmission guarantee?
 What if msg 1 lost?
 What if ack lost?

Guarantees at least once semantics assuming no machines
crash or otherwise discontinue protocol
 Receiver guaranteed to recv message at least once
 Receiver may recv message multiple times. Receiver MAY

use sequence number to filter repeated transmissions so that
each is acted upon just once (but what if receiver crashes
and loses seq number info?)

in general -- request may be executed 0, 1, 2, or more times.

(2) Machine fails
Several variations:

♦ user level bug causes address space to crash
♦ machine failure, kernel bug causes all AS on same machine

to fail
♦ power outage causes all machines to fail

Before, whole system would crash. Now: one machine can crash,
while others stay up.
Now, one machine can crash, while others stay up. If file server goes
down, what do the other machines do?

Example: simple send/ack protocol above -- Difficult to deal with
machine crashes

 If sender crashes (or if sender gives up because it has tried
100 times in a row) what is the post condition?
o Receiver may or may not have received message

 If receiver crashes, filtering repeated messages to act on
them exactly once is tricky  carefully design protocol to
either (a) tolerate at least once semantics or (b) detect/avoid
replication even across sender/receiver failures

Tricky – processing a message can have arbitrary side effects. Want
exactly once semantics or protocol may have strange behaviors

Tomorrow: strategies for dealing with machine failures in distributed
protocols
 Ad-hoc strategies (file systems)
 Two-phase commit
 Persistent message queues

Admin - 3 min

Lecture - 23 min

Distributed file system

Outline
Distributed File Systems
2 Case studies: NFS, AFS
Crosscutting issues
 Performance
 Failures
 Cache coherence/consistency
 Distributed commit

A distributed file system provides transparent access to files stored
on a remote disk

Themes:
failures: what happens when a server crashes, but a client doesn’t? Or
vice versa?

Performance  caching; use caching at both clients and server to
improve performance

cache coherence – how do we make sure each client sees most up-to-
date copy?

Atomic update – how to update state at two or more machines

These issues and strategies we will discuss are much more general
than file system – arise in many distributed systems.

Simple: no caching
use RPC to forward every file system request to remote server (e.g.
Novell Netware)

Example operations: open, seek, read, write, close

Server implements each operation as it would for a local request and
sends back result to client
straightforward utilization of RPC

Advantage: server provides consistent view of file system to both A
and B

issues: Failures, performance
Failures – see NFS (below)

Performance can be lousy:

going over network is slower than going to local memory!
lots of network traffic
server can be a bottleneck – what if lots of clients?

read

data

done write

S

A B

cache

NFS (Sun Network File System)
(I'll talk about "NFS v.3" to illustrate issues in a simple system; NFS v. 4 makes
significant changes, including some of the state-of the art techniques I'll talk about later
this week...)

Idea: use caching to reduce network load

Cache file blocks, file headers, etc at both clients and servers

Advantage: if open/read/write/close can be done locally, no network
traffic

Issues:
(1) no longer have automatic stub generation  lose one advantage of
“RPC” over message passing
(2) helps performance; challenges failures and cache consistency

Issues: part 1: cache consistency

What if multiple clients are sharing same files? Easy if they are both
reading – each gets a copy of the file

read

data

done write

S

A B

cache

cache cache

What if one writing? How do updates happen?

At writer – NFS has hybrid delayed write/write through policy

• write through within 30 seconds or immediately when file
closed

How does other client find out about change (it has cached copy, so
doesn’t see any reason to talk to the server)

NFS protocol, part 1: weak consistency

In NFS, client polls server periodically, to check if file has changed.
Poll server if data hasn’t been checked in last 3-30 seconds (exact
timeout is tunable parameter)

Thus, when file is changed on one client, server is notified, but other
clients use old version of file until timeout. They then check server,
and get new version.

What if multiple clients write the same file? In NFS, can get either
version (or parts of both). Completely arbitrary!

T = 0:
X’

X’ on
disk

X’ T=30; X
still OK?

S

A B

X’

X X’

X’

HTTP uses essentially same protocol

If rule #1 in CS is "any problem can be solved with an additional level
of indirection", Dahlin's rule #2 is "I can make it go as fast as you
want, as long as you don't need the right answer"

We'll talk about better ways to enforce consistency next week.

Issues, part 2: Failures
What if server crashes? Can client wait until server comes back up,
and continue as before?

1) any data in server memory but not yet on disk can be lost

2) shared state across RPCs. Ex: open, seek, read. What if server

crashes after seek? Then when client does “read”, it will fail.

3) Message retries: suppose server crashes after it does UNIX “rm

foo”, but before acknowledgement?
Message system will retry – send it again. How does it know
not to delete it again? (Could solve this with two-phase commit
protocol, but NFS takes a more ad hoc approach – sound
familiar?)

What if client crashes?
1) Might lose modified data in client cache

NFS: Solve problems in protocol (ad hoc?)

NFS Protocol (part 2): solutions
Key idea: Server is stateless. Client not allowed to rely on any server
state

1) write through caching – when a file is closed, all modified blocks

are sent immediately to server disk. To the client “close” doesn’t
return until all bytes are stored on server disk.

Client caches dirty data until close. Client failure --> data loss.
Network write (to server) -- block until data safely on disk.

2) Stateless protocol – server keeps no state about client (except as
hints to help improve performance; e.g. a cache)

• each read request gives enough information to do entire
operation – ReadAt(inumber, position) not Read(openFile)

• when server crashes and restarts, can start processing
requests immediately, as if nothing happened

3) Timeout and repeat requests to mask lost messages

Standard RPC technique.
Simple solution:

Request/acknowledge protocol
Common case:
1) Sender sends message (msg, msgId) and sets timer
2) Receiver receives message and sends (ack, msgId)
3) Sender receives (ack, msgId) and clears timer

If timer goes off, goto (1)

How does this work? Local procedure call guarantes exactly
once semantics. What does retransmission guarantee?
 What if msg 1 lost?
 What if ack lost?

Guarantees at least once semantics assuming no machines
crash or otherwise discontinue protocol
 Receiver guaranteed to recv message at least once

3)
4) Operations are “idempotent”: all requests are OK to repeat (all

requests are done at least once). So, if server crashes between disk
I/O and message send, client can resend message, server just does
operation all over again

• read and write file block are easy – just re-read or re-write

file block; no side effects
• What about “remove”? NFS just ignores this problem – does

the remove twice; second time returns an error if file not
found

 5) Failures are transparent to client system

Is this a good idea? What should happen if server crashes? Suppose
you are an application, in middle of reading a file, and server crashes?

Options;
a) hang until server comes back up (next week)?
b) return an error? Problem is: most applications don’t know they are

talking over the network – we’re transparent, right?
Many UNIX apps simply ignore errors! Crash if there is a problem.
(Network  many more errors than before)

NFS does both options – can select which one. Usually, hang and only
return error if really must – if see “NFS stale file handle” that’s why

NFS Summary
NFS pros & cons
+ simple
+ highly portable
 sometimes inconsistent
 doesn’t scale up to large # of clients

Might think NFS is really stupid, but Netscape/WWW does something
similar: cache recently seen pages, and refetch them if they are too
old. Nothing in WWW to help with cache coherence

Notice: what happened to “RPC  transparent distributed system”?
 performance  add caching
 failures  change all public methods to (mostly) idempotent
 performance v. failures  write through cache
 performance v. failures  weak consistency
Basically ended up rearchitecting and rewriting everything!

Next 2 weeks -- address fundamental problems in distributed systems.
You see them in NFS
-- performance
-- consistency
-- distributed commit
-- security

After we talk about (some of) these, we'll revisit in context of a
scalable cluster file system: The Google File System

Performance
Cost of a procedure call << same machine RPC << network RPC

means programmer must be aware that RPC is cheap, but not free

Caching can help, but
 generally gets rid of “transparent stub generation” advantage of

RPC
 makes failure handling more complex, raises consistency issues
 Not work for all worlkloads, all cases. (E.g., web caching -- data

changes, zipf distribution --> client caches have 20-50% hit rate --
> network performance dominates (amdhal's law)

--> Caching alone can't fully mask slow network.

NFS Example:
File close needs to write back all dirty sectors from client cache to server disk.

Network performance

"How fast is your network?"

Bandwidth isn't whole story. Bandwidth is the MIPS of I/O
In architecture, MIPS is one of three factors (cycles per instruction, instruction count, instructions per
second) -- only looking at one is misleading
Similar issues for IO

Example

Suppose I have a 100Mbps and 1000Mbps network. Is second
network 10x faster?
Not if I use it to do a “remote read” (50 byte request, 50 byte
response)

Graph: (lab) 510us (100Mbps), 501us (1000 Mbps)

(Graph: fixed portion + variable portion…)
 Cross-country: 50.5ms (10Mbps), 50.5ms (100Mbps)
What’s going on?

Example
e.g., Suppose I replace load/store from local memory with load/store from remote
machine via network.
Bandwidth not *that* different -- maybe 10-100 GB/s v. 10 Gbit/s (2011) --> 10-100x
But slowdown would probably be many times that (1000x-100,000x)

Other factors
-- Latency. Speed of light to get across building (~us)/campus(100us)/country(10's of ms)
(v. 100ns to memory)
-- Overhead. Thousands of instructions to send/receive a packet (100us to send/recv a
packet)

Result: Even if network bandwidth is 10Gbit/s, if I only access one remote word at a
time, I'll probably see an effective bandwidth of 1 word per 100us or 1ms (100-1000x
slower)

So, if bandwidth alone can get you off by a factor of 1000x, how do you reason about
performance?

LogP model.

--> If you want good network performance, need to pipeline requests
[picture]

Pipeline more complex than for CPU because (a) not fixed number of stages, (b) not
balanced stages... essentially, CPU designed around pipeline --> simpler to think about
it's pipline. In distributed systems, need a more complete model.

Latency – Elapsed wallclock time from X to Y.
note: "latency" alone is ambiguous; need to say latency from what to
what; "latency from x to y". E.g., 1-way latency v. round-trip latency
v. ...

e.g., how long from when one byte packet sent to when it is received

NOTE: can hide latency with pipelining; latency does not imply
resource is busy. Latency tells you how deep pipeline needs to be.

Overhead – Time for first pipeline stage.

Bottleneck time to initiate operations. (Can't be overlapped.)
e.g., Cpu time to put packet on wire.

Throughput, bandwidth – (1/gap) -- time for bottleneck stage.
Maximum steady state rate.
Time consumed by slowest pipeline stage.
e.g., maximum bytes per second

How does overhead differ from latency?

Overhead: resource usage
Latency: real-time end-to-end delay

How would you measure latency of a network request?

How does overhead differ from bandwidth?
How would you measure overhead of sending a packet?
How would you measure bandwidth of a network?

Examples:
Latency – significant fraction of the speed of light (1 foot/ns)  <1us
anywhere in building

Overhead (network send/receive)-- 10's-100's us to send/receive
TCP/IP packet; 1-10us for streamlined protocols

Bandwidth -- 1Mbit/s 3G phone, 1-10 Mbit/s home internet
connection, 10-50Mbit/s WiFi, 100-1000Mbit/s desktop, 1Gbit/s-
10Gbit/s data center network

 Throughput Overhead 100 byte 4KB Remote

4kB read
TCP/IP
Wireless

10 Mbit/s 0.5-1ms .5ms +
.08ms

.5ms +
3ms

4ms

TCP/IP
Ethernet

100 Mbit/s 0.5-1ms .5ms +
.008ms

.5ms +

.3ms
1.3ms

TCP/IP 1000 0.5-1ms .5ms + .5ms + 1.03ms

Gigabit
Ethernet

Mbit/s .0008ms .03ms

AM/
Myrinet

1200Mbit/s .007ms .007ms +
.001ms

.007ms +

.03ms
.04ms

Example
Create 1MB file using NFSv3. Close --> client needs to write back
1MB to server.
How long?

Assume client sends one 4KB block at a time, waits for server to get
block safely to disk.

100Mbit/s network
each block:

100us (o_send) + 4KB/100Mbit/s + 1us (latency from last byte
off NIC to last byte arrives) + 100us (o_recv) + 10ms (disk) +
100us (o_send) + .5KB/100Mbit/s + 1us + 100us (o_recv)

= 100us + 300us + 1us + 100us + 10000us + 100us + 35us +
1us + 100us = 10702us

1MB/4KB = 256 blocks
 256 * 10702us = 2.75s

1 Gbit/s network
each block:

100us + 4KB/1Gbit/s + 1us + 100us + 10ms + 100us +
.5KB/1Gbit/s + 1us + 100us
= 100us + 30us + 1us + 100us + 10000us + 100us + 3.5us + 1us
+ 100us = 10436us

256 * 10436 = 2.74s

MORAL: fast network doesn't buy you much if you haven't paid
attention to latency and overhead.

Example (cont)

---> Instead of sending one block at time, send all blocks. Then wait
for server to send "Ack" saying all on disk
100Mbit/s network:
-- bottleneck is o_send and o_recv
-- picture
-- Time: 256*100us (now last packet starting to go on wire)
 + 4KB/100Mbit/s (now last packet entirely on wire)
 + 1us (now last byte of last packet arriving at receiver)
 + 100us (now last packet received at receiver)
 + 4KB/100MB/s (now last packet on disk; assuming end of
streaming, sequential write)
 + 100us (now ack is on wire)
 + 256B/100Mbit/s (now ack on wire)
 + 1us (now last byte of ack is at receiver)
 + 100us (now ack received at receiver)

 = 25600us
 + 300us
 + 1us
 + 100us
 + 40us
 + 100us
 + 15us
 + 1us
 + 100us
 = 26250us
 = 26ms

MORAL: Need to pipeline to get good performance from IO systems

Notes on example
-- NFS v3 kind of works like first example (except 5-10 outstanding
requests at a time instead of 1); NFS v4 adds support for something
like second approach

-- Send/receiver overheads in example are clearly too high. Any
modern machine can keep a 100Mbit/s or even 1Gbit/s network "full"
of 4KB messages.
(What does o_send need to be?)

What is latency if go cross-country?
3000 miles * 5000 ft/mile  15ms
now 4KB read dominated by latency for all networks

Key to good performance:

 (1) in LAN – minimize overhead
 (2) in WAN – keep pipeline full

Example

E.g., suppose you open a TCP connection and start sending 1KB
messages to another node on a 10Mbit/s Ethernet

1) What is "bottleneck rate"? (for overhead, BW)
The only tricky thing about this is that you have complex pipelining
models (e.g., a disk request "occupies" CPU, bus, scsi controller, scsi
bus, disk arm)
Which one is the bottleneck depends on configuration (how many
disks? How many SCSI busses? How fast CPU?)

Which one is the bottleneck depends on how question is asked:
E.g., "For a Seagate Barracuda 5100 disk, what is the average
overhead per 1-sector disk request?" v. "For a Dell Dimension 5100,

Overhead – initially
100us to enqueue
each packet

Latency from send to ack

…
Gap ~1ms: At some point, the
local buffer fills. Now, we can
only send one packet per
acknowledgement we recv.

…

what is the overhead per 1-sector disk request?" The first is asking
how long a disk seek and rotation take; the second is asking how long
the CPU is busy to set up a request.
Need to consider: What bottleneck is the question asking about?
For throughput, steady state bottleneck is the same in both cases.
For overhead, first stage overhead differs.

2) Batching
General rule of thumb: OS provides abstraction of byte transfers, but
batch into block I/O for efficiency (pro-rates overhead and latency
over larger unit)

Example

• Suppose CPU takes 100us of processing to issue one 512 byte
write request

• Each request is to a random sector on disk
• Disk has parameters as above (4ms avg seek, 3ms ½ rot,

transfer .02ms)
• 32KB write buffer on disk (producer/consumer bounded buffer)
• Writes are issued asynchronously (CPU can issue k+1 as soon

as k is in write buffer)

(1) Suppose CPU issues k back-to-back requests, when does CPU

complete?

cpu disk

32 KB
buffer

o: 100us | 0 |
7ms
l 100us | 0-64*7=448ms |
7ms

(2) When does first write to disk complete at the disk?

(e.g., latency from when first write starts at CPU until done at disk?)

7.1ms

(3) Suppose there are 500 writes in a burst, when does the last write

complete at the disk?

100us + 500 * 7ms

Cache consistency
Today: cache consistency – callbacks, leases
Wednesday: reliability

100us
k

7ms

Time
per
request

Recall -- NFS caching sometimes gives wrong answer

-- client caching data checks with server to see if still valid if it has been more than 30s
since last check
--> Window of vulnerability
--> My compiles occasionally fail and I tear my hair out

"I can make any system run fast as long as you don't insist on the right answer."

Sequential ordering constraints
Cache coherence – what should happen? What if one Cpu changes file
and before it’s done, another CPU reads file?

“right answer” turns out to be more subtle than one might hope…
• Essentially same problem as reasoning about synchronization of

multi-threaded programs – we have several programs running on
(potentially) multiple processors (at arbitrary speeds), what can they
see as they read and write memory (or files)?

• But now even load/store may not be atomic operations
o Caching, write buffering, multipath routing through network
o  write by one thread may not immediately be seen by

another!
• Consistency/coherence/staleness semantics define how “non-atomic”

memory can be (and give you a basis for reasoning about distributed
programs)

o Essentially ask “can a distributed program tell that memory is
‘playing tricks on it’ compared to case where all threads run on
uniprocessor with single memory?”

o Memory system semantics restrict/define which “new”
behaviors a memory system (or file system) can expose to a
program

consistency v. coherence v. staleness

_ Coherence restricts order of reads and writes to one location
– Can you tell memory system is playing tricks on you by looking at one location?
– Example

P1: P2:
for(ii = 0; ii < 100; ii++){ while(1){
write(A, ii); printf(‘‘%d ‘‘,
} read(A));
 }
– Where is incoherence?
_ 1 2 3 3 3 4 9 10 9 11 12 13 ...
– Why might a system exhibit incoherence?
 e.g., 2 nodes, writer sends updates via Internet; updates get
 reordered en route...

 e.g., cooperative caching -- read cached value from two different
 peers, could get out-of-order answer

 e.g., client switching between two servers (e.g., on Internet,
 get redirected to different Akamai node)

_ Staleness bounds the maximum (real-time) delay between writes and reads to one location.
– Can you tell memory system is playing tricks on you by looking at clock?

– Example (think stock prices)
P1: P2:
while(1){ while(1){
sleep(1000ms); sleep(1000ms);
write(A, ‘‘At %t price is %d\n’’); printf(‘‘%s‘‘,
} read(A));
 }
– Where is staleness (assuming real time OS)
_ At 1:00:00 price is 10.50
_ At 1:00:01 price is 10.55
_ At 1:00:02 price is 10.65
_ At 1:00:02 price is 10.65
_ At 1:00:02 price is 10.65
_ At 1:00:05 price is 13.18
_ ...

-- Why might a system exhibit staleness?

e.g., NFS polling interval
e.g., network delay prevents update/invalidation from reaching cache for a while...

Consistency restricts order of reads and writes across locations
– Can you tell memory system is playing tricks on you by looking at multiple locations?
– Example 1
P1: P2:
for(ii = 0; ii < 100; ii++){ while(1){
write(A, ii); printf(‘‘(%d, %d), ‘‘,
write(B, ii); read(A), read(B));

} }
– Where is inconsistency?:
_ (0,0), (0,1), (1,2), (4,3), (4,8), (8, 9), (9,9), (9,10), (9,10), (10,10), (11,10), (11,11), (12,12), ...
– Is there also incoherence?
– Example 2 (a classic)
P1: P2:
write(A, 0); write(B, 0);
... ...
write(A, 1); write(B, 1);
if(read(B) == 0){ if(read(A) == 0){
printf(‘‘P1.’’); printf(‘‘P2.’’);
} }
– Which outputs are legal under strict coherence? Under sequential consistency?
_ “P1.”
_ “P2.”
_ “”
_ “P1.P2.”
_ “P2.P1.”
– Why might a system exhibit inconsistency?
– Notice
_ In first example, order between writes must be maintained...fairly obvious notion of causality
_ In second example, order between writes and reads must be maintained. (Less obvious?)
_ _ Consistency involves ordering both writes and reads.

A: 0
B: 0 A: 0

B: 0

A: 0
B: 0

1
1

Semantics for non-atomic memory

Above defines 3 axes/dimensions:

Now we can start talking about particular design points in this space.

One option: Insist that distributed memory look "just like" local memory

Definitions (from Tannenbaum Distributed Systems (with slight modifications and additions))

– sequential consistency – The result of any execution is the same as if the (read and write)
operations by all processes on the data store were executed in some sequential order and the
operations of each individual process appear in the sequence in the order specified by its program

Sounds pretty strong (and it is). But it is not “perfect” – e.g.,

A B
// Initially A, B are 0
write(A, 1)

consistency

coherence

staleness

write(B, 1) sleep(1 year)
 read(A), read(B)
 printf(“A=%d B=%d”, A, B)

output “A=0 B=0” is legal under sequential consistency!

 Expect certain staleness guarantees

– delta coherence - the maximum real-time delay between when a write completes and when a
subsequent read begins such that the read must return a value at least as new as that write

– strict coherence - any read on a data item x returns a value corresponding to the most recent
write on x

strict coherence = delta coherence, delta = 0

linearizability = sequential consistency + delta coherence + delta = 0
(formal definition is essentialy -- sequential consistency + the global sequence is consistent with
real time)

--> linearizability is essentially the origin in the design space -- the strongest consistency we
typically ask for

Even this is a bit less tight than you might hope… Simple to see what strict coherence
means if reads and writes are instantaneous. But they are not!

Note that every operation takes time: actual read could occur anytime
between when system call is started, and when system call returns

A --- read A ----
 ----- read A or B -----
 ---------- write B ---------
 ---------- read A or B or C ----
 ----------- write C ------
 - -------- read B or C ---
  read B or C 

------------------------------------ TIME ---

Assume what we want is distributed system to behave exactly the
same as if all processes are running on a single UNIX system

if read finishes before write starts, then get old copy
if read starts after write finishes, then get new copy

Otherwise – indeterminant – can get either new or old copy

Similarly, if write starts before another write finishes, may get either
old or new version. (Hence, in above diagram, non-deterministic as to
which you end up with!)

In NFS, if read starts more than 30 seconds after write finishes, get
new copy. Othewise, who knows? Could get partial update.

Regular v. atomic semantics
Regular semantics -- return either the value of the last completed write or that of one of
the writes which are concurrent with the read.

Atomic semantics -- guarantee that the read and write operations to the variable behave
exactly as if they happened instantaneously in some point in time which is within the
actual time where the operation took place. (Usually this is what is assumed for strict
coherence)

_ Strict coherence = delta coherence with delta = 0

Limitations of strong consistency

So, we can define "perfect" consistency/coherence/staleness.

Are we done? "Distribibuted systems should implement linearizability"???

Unfortunately, no. Implementing these semantics has costs. Some of these costs are
fundamental (and sometimes they are unacceptable.)

– Sequential consistency has fundamental performance cost: fast reads or fast writes but not both

r + w >= t (where r is read time, $w is the write time, and t is the minimal packet
transfer time between nodes.) [Lipton and Sandberg]

– Sequential consistency has a fundamental CAP dilemma (Brewer): A system can not have
sequential Consistency and maintain 100% Availability in the presence of Partitions.

 develop weaker models

– causal consistency – writes that are potentially causally related must be seen by all processes in
the same order. Concurrent writes may be seen in a different order on different machines.

Basic idea -- if I see a write that you issued, then I can also see (at least) all writes you could have
seen when you issued the write

 if P_1 reads a write A before issuing a write B, then any process that
sees B cannot subsequently see the old value of A


 Hard to see why this is useful if you assume a centralized consistency server.

Think about a world where machines can send writes to one another. If A
reads a bunch of writes from B and then creates some writes of its own.
Then C synchronizes with A, A must send B's writes to C
before sending its own.

e.g.,
while(1) while(1) while(1) while(1)
 write(A, I++) write(B, j++) print(A, B) print(A, B)

 (1,1) (1,1)
 (1,2) (2,1)
 (1,3) (3,1)
 (1,4) (4,1)
 (2,5) (5,3)

This is causally consistent, but not sequentially consistent.
This would be useful if A and B were on different nodes on internet – I might see the closer
node’s updates before the more distant nodes, and you might see a different order…

e.g.,
while(1) while(1) while(1)
 write(A, I++) write(B, readA) print(A, B)

 (1,1)
 (1,2)
 (1,3)
 (1,4)
 (2,5)

No longer causally consistent – if I see new value of B, then I need to see new value of A

Theorem: Causally consistent is the strongest consistency you can provide without giving up
availability. (Dahlin, Alvisi, Mahajan -- April 2011)

There are also weaker options

– FIFO consistency (aka PRAM consistency) – writes done by a single process are seen by all
other processes in the order in which they were issued, but writes from different processes may be
seen in different orders by different processes

– Is FIFO stronger or weaker than causal?

(A weaker semantic allows more legal orderings than a stronger semantic.
Consistency semantic A is stronger than consistency semantic B if any
sequence of read and write results that are legal in A are also legal in B but
there is at least one sequence that is legal in B but that is not legal in A.)

Why would you ever want this? Requires no coordination at all. E.g.,
2 web servers....

How to provide improved consistency across clients?

(1) Poll each read – send every read to central server  get

centralized semantics (e.g., can get sequential consistency this way
– see the global order?)

We can optimize this with getattr(), but still slow…

Callbacks (e.g., Sprite, Andrew File System)
AFS (CMU late 80’s)  DCE DFS (commercial product)

Notify client if data they are caching is no longer valid

Callbacks:
(1) When a client reads data from server, server remembers that client

has data
(2) When client writes data, server notifies all other clients (that are

caching the data) that they must contact server on next read

Write begins
Tell server “I want to write foo”
Server tells all clients “discard current copy of foo”
All clients acknowledge
Server tells writer “ok to write foo”
Write completes

What semantics does this provide?

T = 0:
X’

X’ on
disk

Fetch new
version next
time X is
opened

S

A B

X’

X X’

X’

X’ X

 linearizability if client issues one operation at a time and blocks
until completion

 (weaker if I can, say, read from cache while my write is pending)

Fault tolerance 1: Recovery of callback state
AFS approach: protocol level design (e.g., ad-hoc)

Challenge: improved caching + consistency increases failure handling
complexity:

What if server crashes? Lose all callback state

QUESTION: Why is this a problem?

QUESTION: What can you do?
Reconstruct callback information from clients – go ask everyone
“who has which files cached?”

QUESTION: What if client crashes?

Fault tolerance 2: CAP -- consistency v. availability during
partitions
Key idea: Leases

CAP says sequential consistency must give up availability during partitions

How does this manifest in AFS?

Write completes when all caching clients have acknowledged
 QUESTION: why do I have to wait?
 [answer – you can return early if you are willing to weaken
semantics… but if you want linearizability, you have to wait]

Naïve solution: client blocks indefinitely if any client crashes
 How does this scale as we increase # clients?

Solution: lease -- combine polling and callbacks

Lease: cache has the right to access cached object X for Y seconds; after Y
seconds, must renew lease before accessing cached object

Server does callbacks for X seconds after lease

New solution:

(1) Write waits until all caching nodes acknowledge or leases expire
(sequential coherence)

(2) Write returns immediately (delta coherence)

Enhancement: Volume lease…

Other AFS features

1) files cached on local disk
NFS caches only in memory
 reduce server load

 2) more precise consistency model
1) callbacks

o server records who has copy of file
o send “callback” on each update

2) write-through on close
If file changes, server is updated (on close)
Server then immediately tells those with old copy

3) session semantics – updates visible only on close

In UNIX (single machine) updates visible immediately to
other programs who have file open

In AFS, everyone who has file open sees old version;
anyone who opens file again will see new version

In AFS slight variation: session semantics

a) on open and cache miss – get file from server; set up
callback

b) on write close: send copy to server; tells all clients with
copies to fetch new version on next open

Essentially – think of all reads happening when file opened and all
writes happening when file closed…

AFS pros & cons
Relative to NFS, less server load:
+ disk as cache  more files can be cached locally
+ callbacks  server not involved if file is read-only

- more complex recovery

Fault tolerance 3: Disconnected operation

Leases do a pretty good engineering job on CAP dilemma. If I can
talk to server, I can access data. Clients disconnected from server are
stuck. (Notice -- they are stuck even if they have the data they want to
read in their cache.)

AFS stores data on local disk
Suppose server crashes – can client keep going?
 almost – except renewing callbacks on open/close; writing though

on close

Support disconnected operation – allow client to access cached data
even when it cannot contact server.
 Improve availability
 Support mobility

Coda (and NTFS)
(1) Reads -- prefetch "hoard" data into local cache

Want to make sure you have everything in cache you need. What
should you do? (Hoard list)

(2) Writes -- write updates to local log; send log to server when
reconnect
Need to make sure that updates you did when disconnected make
it back to server. What should you do? (Log writes +
reconciliation)

CAP dilemma: Cannot provide sequential consistency and 100%
availability in a system that can be partitioned.

 What consistency does this provide? (causal?)

Problem: Conflicting writes…
What happens if two disconnected nodes both write same file? Is this
OK?

Coda solution:
(1) Detect
(2) Regular files: manual selection of “right” version to keep
(3) Directories: automatically correct most cases (manual for the rest)

Avoiding central server
Coda lets me write when disconnected, but all updates go through server

What if you don’t want to have to synchronize through a server

Basic idea

- Each node’s writes are a log [picture]
- Version vector – index of highest known write from each node
- Log exchange – you send me your VV, I send you all updates you have not yet

seen
-  Eventual consistency
- Lamport clock – my accept stamp = max(VV) + 1
- Send elements from my log sorted by accept stamp
-  Causal consistency
- Still need to deal with conflicting concurrent writes (how can you detect?)

Google file system [see gradOS notes]

Consistency in memcached

memcached: reading from a database is slow
--> have another set of machines act as a cache (distributed hash table)
[picture]

basic idea:
read(x)
 data = memcached->read(x)
 if(data) return data
 else
 data = db->read(x)
 memcached->set(x, data)
 return x

write(x, data)
 db->write(x, data)
 memcached->set(x, data)

What incoherence might you observe?
How long can incoherence last (how much staleness)
 What if writer crashes after setting DB but before setting
memcached?

Obvious fix (?)

write(x, data)
 memcached->clear(x);
 db->write(x, data);
 memcached->set(x, data);

Does this solve the problem?

Summary - 1 min

Next time: improve consistency, 2 phase commit  atomic distributed
updates

