
Lecture #24:  Networks and Distributed systems  
  
********************************* 
Review  -- 1 min 
*********************************   

 
In-kernel data structures 
n open file table 

o book has confusing terminology. They say “2 open file 
tables, a per-process and a global” 

per-process: current position + pointer to global 
global: reference count + file ID + cached header stuff… 

n caching 
o mmap 

 
RAID 
 
FS Scheduling 
 
Rethink the sync (guest lecture) 

• Performance v. durability 
• Example 

o T1 begin 
o W1 
o W2 
o T1 end 
o T2 begin 
o W3 
o W4 
o T2 end 
o T3 begin 
o W5 
o W6 
o T3 end 
o Print/send message “done” 

 
Barriers (write scheduler), block (sync)  
 Better performance 

barrier 

barrier 

barrier 

Barrier + block 

Barrier + block 

Barrier + block 

barrier 

barrier 

barrier 

Block 



 Better reliability (current disks “cheat” because otherwise 
performance is too horrible) 
 
 

*********************************  
Outline - 1 min 
********************************** 
Motivation 
Basic NW communication 
3 problems 

 performance 
 reliability 
 security 

Case study: Distributed file systems 
 
*********************************   
Preview - 1 min 
*********************************   
Today: motivation, basics, file system example, performance 
Monday/Wednesday: Reliability: 
 Network failures: 

 Retransmission, idempotent requests 
Machine failures 
 Careful protocol construction (e.g., ad hoc solutions) 
 2 phase commit 
 Reliable asynchronous messaging 

if time: security 
 
*********************************   
Lecture - 20 min 
*********************************   

Motivation 
Technology trends: 
 
 
 
 



 

Centralized v. Distributed systems 
Distributed system: physically separate computers working together 
 
Why do we need distributed systems? 

 Cheaper to build lots of simple computers 
o Mfg rule of thumb: 2x increase in quantity  10% reduction in cost per 

unit 
 Easier to add power incrementally (v. design whole new machine) 

 

Promise of distributed systems 
 Higher availability – one machine goes down, use another 
 Better reliability – store data in multiple locations 
 More security – easier to make each (small) piece secure; professional 

management of system 
 
If we’re not careful, reality will be disappointing 

 Worse availability – depend on every machine being up 
Lamport: “A distributed system is a system where I can’t get any work done if a 
machine I’ve never heard of crashes.” 



 Worse reliability – can lose data if any machine crashes 
 Worse security – anyone in the world can break into my systems 
 
Key idea: coordination is more difficult b/c can only use network for coordination 
and because of partial failures – part of the system (a connection, a machine) fails 
while the rest keeps running 
 
 
Physical reality v. desired abstractions 
 
Desired abstraction: Programming/using distributed system looks like 
programming/using centralized system 
 
 Location independence 
 Performance 
 consistency 
 Failures, reliability 
 security 

 

Location independence – step 1 – how to assemble 
distributed system… 

Send/Receive 
How do you program a distributed application? 
Need to synchronize multiple threads, but they are on multiple 
machines (no test&set) 
 
Atomic send/receive – doesn’t require shared memory for 
synchronizing cooperating threads 
 
Note that send and receive are atomic 

never get portion of a message (all or nothing) 
two receivers can’t get same message 

 
Mailbox – temporary holding area for messages (ports) 
 
Looks like producer/consumer queue 
 
Receive(buffer, mbox) 



 Wait until mbox has message in it, then copy message into buffer, 
and return 
 
when packet arrives, OS puts message into mbox, wakes up one of the 
writers 
 
Send(buffer, mbox) 
When can Send return? 

• when receive gets message? 
• when message is safely buffered on destination node? 
• Right away, if message is buffered on source node? 

 
 
 

 

Message styles 
1-way – messages flow in one direcction (UNIX pipes, TCP) 
2-way – request-response (remote procedure call) 
 
1-way communication 
 
Producer: 
 int msg1[1000]; 
 while(1){ 
  prepare message; // add coke to mach. 
  Send(msg1, mbox); 
 } 
 
Consumer 
 int msg2[1000]; 
  
 while(1){ 
  receive(msg2, mbox); 
  process message; // drink coke 
 } 
 
no need for producer/consumer to keep track of space in mailbox – 
handled by send/receive 
 



2-way communication 
 
What about 2-way communication? Request/response – e.g. “read a 
file” stored on a remote machine 
 
Also called – client-server 
 Client = requestor 
 server = responder 
 Server provides “service” to client 
 
 
request/response: 
 
 client: 
  char response[1000]; 
 
  send(“read rutabaga”, mbox1); 
  receive(response, mbox2); 
 
 server: 
  char command[1000], answer[1000]; 
 
  receive(command, mbox1); 
  decode command; 
  read file into answer; 
  send(answer, mbox2); 
 
 

Remote procedure call 
Call a procedure on a remote machine 
 
client 
 remoteFileSys->Read(“rutabaga”); 
 
translated into call on server: 
 fileSys->Read(“rutabaga”); 
 
Implementat on top of request-response message passing 
 “stub” provides glue 



 

 
client stub: 
 build message 
 send message 
 wait for response 
 unpack reply 
 return result 
 
server stub: 
Create N threads to wait for work to do 
 loop: 
  wait for command 
  decode and unpack request parameters 
  call procedure 
  build reply message with results 
  send reply 
 

Comparison between RPC and procedure call 
What’s equivalent 
 Parameters – request message 
 Result – reply message 
 Name of procedure – passed in request message 
 return address – mbox2 
 

 
   
                            call                                 send 
      Client                                client                                   Packet 
     (caller)                                stub                                    Handler 
                               return                         receive 
 
                                                                                 network 
                                                                                 transport 
  
                          return                                   send 
      Server                                server                                    Packet 
     (callee)                               stub                                      Handler 
                          call                                       receive 



Implementation issues 
 
Stub generator – implements stubs automatically 

for this, only need procedure signature – types of arguments, 
return value 
generate code on client to pack message, send it off, on server 
to unpack message, call procedure 
 
 

How does client know which mbox to send to? Binding 
 static – fixed at compile time (e.g. C) 
 dynamic – fixed at runtime (e.g. Lisp, RPC) 
 
In most RPC systems, dynamic binding via name service. 
Name service provides dynamic translation of service  mbox 
 
Why runtime binding? 
 Access control – check who is permitted to access service 
 fail-over – if server fails, use another 
 

Problems with RPC 
 
 Problem solved? 
 

RPC provides location transparency – except 
 
Performance 
Failures -- message loss, machine crash 
Consistency/replication  
Security 
 

o All hard problems.  
o Fundamental limits (e.g., you can't atomically update an object replicated 

at multiple machines) 
o Diffcult trade-offs among goals -- e.g., consistency v. availability CAP 

 

Failures 
Different failure modes in distributed system than on single machine 
 



Several kinds of failure 
(1) communication interruption 
 

 lost message 
 lost reply 
 cut wire 
 … 
 
Simple solution: 
Request/acknowledge protocol 
Common case: 
1) Sender sends message (msg, msgId) and sets timer 
2) Receiver receives message and sends (ack, msgId) 
3) Sender receives (ack, msgId) and clears timer 
 
If timer goes off, goto (1) 
 
How does this work? Local procedure call guarantes exactly 
once semantics. What does retransmission guarantee? 
 What if msg 1 lost? 
 What if ack lost? 

 
Guarantees at least once semantics assuming no machines 
crash or otherwise discontinue protocol 
 Receiver guaranteed to recv message at least once 
 Receiver may recv message multiple times. Receiver MAY 

use sequence number to filter repeated transmissions so that 
each is acted upon just once (but what if receiver crashes 
and loses seq number info?) 

 
in general -- request may be executed 0, 1, 2, or more times. 
 

 
(2)  Machine fails 
Several variations: 

♦ user level bug causes address space to crash 
♦ machine failure, kernel bug causes all AS on same machine 

to fail 
♦ power outage causes all machines to fail 



Before, whole system would crash. Now: one machine can crash, 
while others stay up. 
Now, one machine can crash, while others stay up. If file server goes 
down, what do the other machines do? 
 
Example: simple send/ack protocol above -- Difficult to deal with 
machine crashes 

 If sender crashes (or if sender gives up because it has tried 
100 times in a row) what is the post condition? 
o Receiver may or may not have received message 

 If receiver crashes, filtering repeated messages to act on 
them exactly once is tricky  carefully design protocol to 
either (a) tolerate at least once semantics or (b) detect/avoid 
replication even across sender/receiver failures 

 
Tricky – processing a message can have arbitrary side effects. Want 
exactly once semantics or protocol may have strange behaviors 
 
Tomorrow: strategies for dealing with machine failures in distributed 
protocols 
 Ad-hoc strategies (file systems) 
 Two-phase commit 
 Persistent message queues 

 

 

 
 



*********************************   
Admin - 3 min 
*********************************   
 
*********************************   
Lecture - 23 min 
*********************************   

Distributed file system 
 
Outline 
Distributed File Systems 
2 Case studies: NFS, AFS 
Crosscutting issues 
 Performance 
 Failures 
 Cache coherence/consistency 
 Distributed commit 
 

A distributed file system provides transparent access to files stored 
on a remote disk 
 
Themes: 
failures: what happens when a server crashes, but a client doesn’t? Or 
vice versa? 
 
Performance   caching; use caching at both clients and server to 
improve performance 
 
cache coherence – how do we make sure each client sees most up-to-
date copy? 
 
Atomic update – how to update state at two or more machines 
 
These issues and strategies we will discuss are much more general 
than file system – arise in many distributed systems. 

Simple: no caching 
use RPC to forward every file system request to remote server (e.g. 
Novell Netware) 



 
Example operations: open, seek, read, write, close 
 
Server implements each operation as it would for a local request and 
sends back result to client 
straightforward utilization of RPC 
 

 
Advantage: server provides consistent view of file system to both A 
and B 
 
 
issues: Failures, performance 
Failures – see NFS (below) 
 
Performance can be lousy: 

going over network is slower than going to local memory! 
lots of network traffic 
server can be a bottleneck – what if lots of  clients? 
 

 

read 

data 

done write 

S 

A B 

cache 



NFS (Sun Network File System) 
(I'll talk about "NFS v.3" to illustrate issues in a simple system; NFS v. 4 makes 
significant changes, including some of the state-of the art techniques I'll talk about later 
this week...) 

 
Idea: use caching to reduce network load 
 
Cache file blocks, file headers, etc at both clients and servers 
 

 
Advantage: if open/read/write/close can be done locally, no network 
traffic 
 
Issues:  
(1) no longer have automatic stub generation  lose one advantage of 
“RPC” over message passing 
(2) helps performance; challenges failures and cache consistency 
 

Issues: part 1: cache consistency 
 
What if multiple clients are sharing same files? Easy if they are both 
reading – each gets a copy of the file 
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What if one writing? How do updates happen? 
 
At writer – NFS has hybrid delayed write/write through policy 

• write through within 30 seconds or immediately when file 
closed 

 
How does other client find out about change (it has cached copy, so 
doesn’t see any reason to talk to the server) 
 

NFS protocol, part 1: weak consistency 
 
In NFS, client polls server periodically, to check if file has changed. 
Poll server if data hasn’t been checked in last 3-30 seconds (exact 
timeout is tunable parameter) 
 
Thus, when file is changed on one client, server is notified, but other 
clients use old version of file until timeout. They then check server, 
and get new version. 
 

 
What if multiple clients write the same file? In NFS, can get either 
version (or parts of both). Completely arbitrary! 
 

 

T = 0: 
X’ 

X’ on 
disk 

X’ T=30; X 
still OK? 
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HTTP uses essentially same protocol 
 
If rule #1 in CS is "any problem can be solved with an additional level 
of indirection", Dahlin's rule #2 is "I can make it go as fast as you 
want, as long as you don't need the right answer" 
 
We'll talk about better ways to enforce consistency next week. 

Issues, part 2: Failures 
What if server crashes? Can client wait until server comes back up, 
and continue as before? 
 
1)  any data in server memory but not yet on disk can be lost 
 
2)  shared state across RPCs. Ex: open, seek, read. What if server 

crashes after seek? Then when client does “read”, it will fail. 
 
3)  Message retries: suppose server crashes after it does UNIX “rm 

foo”, but before acknowledgement? 
Message system will retry – send it again. How does it know 
not to delete it again? (Could solve this with two-phase commit 
protocol, but NFS takes a more ad hoc approach – sound 
familiar?) 
 

What if client crashes? 
1)  Might lose modified data in client cache 
 
 
NFS: Solve problems in protocol (ad hoc?) 

NFS Protocol (part 2): solutions 
Key idea: Server is stateless. Client not allowed to rely on any server 
state 
 
1)  write through caching – when a file is closed, all modified blocks 

are sent immediately to server disk. To the client “close” doesn’t 
return until all bytes are stored on server disk. 
 
Client caches dirty data until close. Client failure --> data loss. 
Network write (to server) -- block until data safely on disk. 



2)  Stateless protocol – server keeps no state about client (except as 
hints to help improve performance; e.g. a cache) 

• each read request gives enough information to do entire 
operation – ReadAt(inumber, position) not Read(openFile) 

• when server crashes and restarts, can start processing 
requests immediately, as if nothing happened 

 
3) Timeout and repeat requests to mask lost messages 
 
Standard RPC technique. 
Simple solution: 

Request/acknowledge protocol 
Common case: 
1) Sender sends message (msg, msgId) and sets timer 
2) Receiver receives message and sends (ack, msgId) 
3) Sender receives (ack, msgId) and clears timer 
 
If timer goes off, goto (1) 
 
How does this work? Local procedure call guarantes exactly 
once semantics. What does retransmission guarantee? 
 What if msg 1 lost? 
 What if ack lost? 

 
Guarantees at least once semantics assuming no machines 
crash or otherwise discontinue protocol 
 Receiver guaranteed to recv message at least once 

3)   
4)  Operations are “idempotent”: all requests are OK to repeat (all 

requests are done at least once). So, if server crashes between disk 
I/O and message send, client can resend message, server just does 
operation all over again 

 
• read and write file block are easy – just re-read or re-write 

file block; no side effects 
• What about “remove”? NFS just ignores this problem – does 

the remove twice; second time returns an error if file not 
found 
 

    5) Failures are transparent to client system 



Is this a good idea? What should happen if server crashes? Suppose 
you are an application, in middle of reading a file, and server crashes? 
 
Options; 
a)  hang until server comes back up (next week)? 
b)  return an error? Problem is: most applications don’t know they are 

talking over the network – we’re transparent, right? 
Many UNIX apps simply ignore errors! Crash if there is a problem. 
(Network  many more errors than before) 
 
NFS does both options – can select which one. Usually, hang and only 
return error if really must – if see “NFS stale file handle” that’s why 
 

NFS Summary 
NFS pros & cons 
+ simple 
+ highly portable 
 sometimes inconsistent 
 doesn’t scale up to large # of clients 
 
Might think NFS is really stupid, but Netscape/WWW does something 
similar: cache recently seen pages, and refetch them if they are too 
old. Nothing in WWW to help with cache coherence 
 
 
 
Notice: what happened to “RPC  transparent distributed system”? 
 performance  add caching 
 failures  change all public methods to (mostly) idempotent 
 performance v. failures  write through cache 
 performance v. failures  weak consistency 
Basically ended up rearchitecting and rewriting everything! 
 
Next 2 weeks -- address fundamental problems in distributed systems. 
You see them in NFS 
-- performance 
-- consistency 
-- distributed commit 
-- security 



After we talk about (some of) these, we'll revisit in context of a 
scalable cluster file system: The Google File System 
 
 
*********************************************** 
*********************************************** 
*********************************************** 
 

Performance 
Cost of a procedure call << same machine RPC << network RPC 
 
means programmer must be aware that RPC is cheap, but not free 
 
Caching can help, but  
 generally gets rid of “transparent stub generation” advantage of 

RPC 
 makes failure handling more complex, raises consistency issues 
 Not work for all worlkloads, all cases. (E.g., web caching -- data 

changes, zipf distribution --> client caches have 20-50% hit rate --
> network performance dominates (amdhal's law) 

 
--> Caching alone can't fully mask slow network. 

NFS Example:  
File close needs to write back all dirty sectors from client cache to server disk. 

Network performance 
 
"How fast is your network?" 
 
Bandwidth isn't whole story. Bandwidth is the MIPS of I/O 
In architecture, MIPS is one of three factors (cycles per instruction, instruction count, instructions per 
second) -- only looking at one is misleading 
Similar issues for IO 
 
Example 

Suppose I have a 100Mbps and 1000Mbps network. Is second 
network 10x faster? 
Not if I use it to do a “remote read” (50 byte request, 50 byte 
response) 

Graph: (lab) 510us (100Mbps), 501us (1000 Mbps) 



(Graph: fixed portion  + variable portion…) 
 Cross-country: 50.5ms (10Mbps), 50.5ms (100Mbps) 
What’s going on? 

 
Example 
e.g., Suppose I replace load/store from local memory with load/store from remote 
machine via network. 
Bandwidth not *that* different -- maybe 10-100 GB/s v. 10 Gbit/s (2011) --> 10-100x 
But slowdown would probably be many times that (1000x-100,000x) 
 
Other factors 
-- Latency. Speed of light to get across building (~us)/campus(100us)/country(10's of ms) 
(v. 100ns to memory) 
-- Overhead. Thousands of instructions to send/receive a packet (100us to send/recv a 
packet) 
 
Result: Even if network bandwidth is 10Gbit/s, if I only access one remote word at a 
time, I'll probably see an effective bandwidth of  1 word per 100us or 1ms (100-1000x 
slower) 
 
So, if bandwidth alone can get you off by a factor of 1000x, how do you reason about 
performance? 
 

LogP model. 
 
--> If you want good network performance, need to pipeline requests 
[picture] 
 
Pipeline more complex than for CPU because (a) not fixed number of stages, (b) not 
balanced stages... essentially, CPU designed around pipeline --> simpler to think about 
it's pipline. In distributed systems, need a more complete model. 
 

Latency – Elapsed wallclock time from X to Y. 
note: "latency" alone is ambiguous; need to say latency from what to 
what;  "latency from x to y". E.g., 1-way latency v. round-trip latency 
v. ... 
 
e.g., how long from when one byte packet sent to when it is received 
 
NOTE: can hide latency with pipelining; latency does not imply 
resource is busy. Latency tells you how deep pipeline needs to be. 
 
Overhead – Time for first pipeline stage.  



Bottleneck time to initiate operations. (Can't be overlapped.) 
e.g., Cpu time to put packet on wire.  
 
Throughput, bandwidth – (1/gap) -- time for bottleneck stage. 
Maximum steady state rate. 
Time consumed by slowest pipeline stage. 
e.g.,  maximum bytes per second 
 
 
 
How does overhead differ from latency? 

Overhead: resource usage 
Latency: real-time end-to-end delay 

How would you measure latency of a network request? 
 
How does overhead differ from bandwidth? 
How would you measure overhead of sending a packet? 
How would you measure bandwidth of a network? 
 
 
 
 
Examples: 
Latency – significant fraction of the speed of light (1 foot/ns)  <1us 
anywhere in building 
 
Overhead (network send/receive)-- 10's-100's us to send/receive 
TCP/IP packet; 1-10us for streamlined protocols 
 
Bandwidth -- 1Mbit/s 3G phone,  1-10 Mbit/s home internet 
connection, 10-50Mbit/s WiFi, 100-1000Mbit/s desktop, 1Gbit/s-
10Gbit/s data center network 
 
 Throughput Overhead 100 byte 4KB Remote 

4kB read 
TCP/IP 
Wireless 

10 Mbit/s 0.5-1ms .5ms + 
.08ms 

.5ms + 
3ms 

4ms 

TCP/IP 
Ethernet 

100 Mbit/s 0.5-1ms .5ms + 
.008ms 

.5ms + 

.3ms 
1.3ms 

TCP/IP 1000 0.5-1ms .5ms + .5ms + 1.03ms 



Gigabit 
Ethernet 

Mbit/s .0008ms .03ms 

AM/ 
Myrinet 

1200Mbit/s .007ms .007ms + 
.001ms 

.007ms + 

.03ms 
.04ms 

 
 
Example 
Create 1MB file using NFSv3. Close --> client needs to write back 
1MB to server. 
How long? 
 
Assume client sends one 4KB block at a time, waits for server to get 
block safely to disk. 
 
100Mbit/s network 
each block:  

100us (o_send) + 4KB/100Mbit/s + 1us (latency from last byte 
off NIC to last byte arrives) + 100us (o_recv) + 10ms (disk) + 
100us (o_send) + .5KB/100Mbit/s + 1us + 100us (o_recv)  

 
= 100us + 300us + 1us + 100us + 10000us + 100us + 35us + 
1us + 100us = 10702us 

 
1MB/4KB = 256 blocks 
 256 * 10702us = 2.75s 
 
 
1 Gbit/s network 
each block: 

100us + 4KB/1Gbit/s + 1us + 100us + 10ms + 100us + 
.5KB/1Gbit/s + 1us + 100us 
= 100us + 30us + 1us + 100us + 10000us + 100us + 3.5us + 1us 
+ 100us = 10436us 
 
256 * 10436 = 2.74s 
 

MORAL: fast network doesn't buy you much if you haven't paid 
attention to latency and overhead. 
  
Example (cont) 



---> Instead of sending one block at time, send all blocks. Then wait 
for server to send "Ack" saying all on disk 
100Mbit/s network: 
-- bottleneck is o_send and o_recv 
-- picture 
-- Time: 256*100us (now last packet starting to go on wire) 
 + 4KB/100Mbit/s (now last packet entirely on wire) 
 + 1us (now last byte of last packet arriving at receiver) 
 + 100us (now last packet received at receiver) 
 + 4KB/100MB/s (now last packet on disk; assuming end of 
streaming, sequential write) 
 + 100us (now ack is on wire) 
 + 256B/100Mbit/s (now ack on wire) 
 + 1us (now last byte of ack is at receiver) 
 + 100us (now ack received at receiver) 
 
 =  25600us 
 + 300us 
 + 1us 
 + 100us 
 + 40us 
 + 100us 
 + 15us 
 + 1us 
 + 100us 
 = 26250us 
 = 26ms 
 
MORAL: Need to pipeline to get good performance from IO systems 
 
Notes on example 
-- NFS v3 kind of works like first example (except 5-10 outstanding 
requests at a time instead of 1); NFS v4 adds support for something 
like second approach 
 
-- Send/receiver overheads in example are clearly too high. Any 
modern machine can keep a 100Mbit/s or even 1Gbit/s network "full" 
of 4KB messages. 
(What does o_send need to be?) 
 



 
 
 
What is latency if go cross-country? 
3000 miles * 5000 ft/mile  15ms 
now 4KB read dominated by latency for all networks 
 
Key to good performance:  

 (1) in LAN – minimize overhead 
 (2) in WAN – keep pipeline full 

 
 
 
 
Example 
 
E.g., suppose you open a TCP connection and start sending 1KB 
messages to another node on a 10Mbit/s Ethernet 

 
 
 
1) What is "bottleneck rate"? (for overhead, BW) 
The only tricky thing about this is that you have complex pipelining 
models (e.g., a disk request "occupies" CPU, bus, scsi controller, scsi 
bus, disk arm) 
Which one is the bottleneck depends on configuration (how many 
disks? How many SCSI busses? How fast CPU?) 
 
Which one is the bottleneck depends on how question is asked: 
E.g., "For a Seagate Barracuda 5100 disk, what is the average 
overhead per 1-sector disk request?" v. "For a Dell Dimension 5100, 

 

Overhead – initially 
100us to enqueue 
each packet 

Latency from send to ack 

… 
Gap ~1ms: At some point, the 
local buffer fills. Now, we can 
only send one packet per 
acknowledgement we recv. 

… 



what is the overhead per 1-sector disk request?" The first is asking 
how long a disk seek and rotation take; the second is asking how long 
the CPU is busy to set up a request.  
Need to consider: What bottleneck is the question asking about? 
For throughput, steady state bottleneck is the same in both cases. 
For overhead, first stage overhead differs. 
 
 
 
2) Batching 
General rule of thumb: OS provides abstraction of byte transfers, but 
batch into block I/O for efficiency (pro-rates overhead and latency 
over larger unit) 
 
 
 
Example 

• Suppose CPU takes 100us of processing to issue one 512 byte 
write request 

• Each request is to a random sector on disk 
• Disk has parameters as above (4ms avg seek, 3ms ½ rot, 

transfer .02ms) 
• 32KB write buffer on disk (producer/consumer bounded buffer) 
• Writes are issued asynchronously (CPU can issue k+1 as soon 

as k is in write buffer) 
 
 
 
 
 
 
 
 
 
 
(1) Suppose CPU issues k back-to-back requests, when does CPU 

complete? 
 
 
 

cpu disk 

32 KB 
buffer 

o: 100us               |     0              |         
7ms 
l  100us           | 0-64*7=448ms |        
7ms 



 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

(2) When does first write to disk complete at the disk? 
 
(e.g., latency from when first write starts at CPU until done at disk?) 
 
7.1ms 
 
 
(3) Suppose there are 500 writes in a burst, when does the last write 

complete at the disk? 
 
100us + 500 * 7ms 
 
 
 
*********************************************** 
*********************************************** 
*********************************************** 
 

Cache consistency 
Today: cache consistency – callbacks, leases 
Wednesday: reliability 

 

100us 
k 

7ms 

Time 
per 
request 



Recall -- NFS caching sometimes gives wrong answer 
 
-- client caching data checks with server to see if still valid if it has been more than 30s 
since last check 
--> Window of vulnerability 
--> My compiles occasionally fail and I tear my hair out 
 
"I can make any system run fast as long as you don't insist on the right answer." 
 
 

 

Sequential ordering constraints 
Cache coherence – what should happen? What if one Cpu changes file 
and before it’s done, another CPU reads file? 
 

“right answer” turns out to be more subtle than one might hope… 
• Essentially same problem as reasoning about synchronization of 

multi-threaded programs – we have several programs running on 
(potentially) multiple processors (at arbitrary speeds), what can they 
see as they read and write memory (or files)? 

• But now even load/store may not be atomic operations 
o Caching, write buffering, multipath routing through network 
o  write by one thread may not immediately be seen by 

another! 
• Consistency/coherence/staleness semantics define how “non-atomic” 

memory can be (and give you a basis for reasoning about distributed 
programs) 

o Essentially ask “can a distributed program tell that memory is 
‘playing tricks on it’ compared to case where all threads run on 
uniprocessor with single memory?”  

o Memory system semantics restrict/define which “new” 
behaviors a memory system (or file  system) can expose to a 
program 

 
 
consistency v. coherence v. staleness 
 
_ Coherence restricts order of reads and writes to one location 
– Can you tell memory system is playing tricks on you by looking at one location? 
– Example 



P1:                            P2: 
for(ii = 0; ii < 100; ii++){    while(1){ 
write(A, ii);                      printf(‘‘%d ‘‘, 
}                                         read(A)); 
                                } 
– Where is incoherence? 
_ 1 2 3 3 3 4 9 10 9 11 12 13 ... 
– Why might a system exhibit incoherence? 
     e.g., 2 nodes, writer sends updates via Internet; updates get 
     reordered en route... 
 
     e.g., cooperative caching -- read cached value from two different 
      peers, could get out-of-order answer 
 
     e.g., client switching between two servers (e.g., on Internet, 
      get redirected to different Akamai node) 
 
 
 
_ Staleness bounds the maximum (real-time) delay between writes and reads to one location. 
– Can you tell memory system is playing tricks on you by looking at clock? 
 
– Example (think stock prices) 
P1:                                P2: 
while(1){                          while(1){ 
sleep(1000ms);                       sleep(1000ms); 
write(A, ‘‘At %t price is %d\n’’);   printf(‘‘%s‘‘, 
}                                         read(A)); 
                                   } 
– Where is staleness (assuming real time OS) 
_ At 1:00:00 price is 10.50 
_ At 1:00:01 price is 10.55 
_ At 1:00:02 price is 10.65 
_ At 1:00:02 price is 10.65 
_ At 1:00:02 price is 10.65 
_ At 1:00:05 price is 13.18 
_ ... 
 
-- Why might a system exhibit staleness? 
 
e.g., NFS polling interval 
e.g., network delay prevents update/invalidation from reaching cache for a while... 
 
 
 

Consistency restricts order of reads and writes across locations 
– Can you tell memory system is playing tricks on you by looking at multiple locations? 
– Example 1 
P1:                                 P2: 
for(ii = 0; ii < 100; ii++){        while(1){ 
write(A, ii);                         printf(‘‘(%d, %d), ‘‘, 
write(B, ii);                              read(A), read(B)); 



}                                   } 
– Where is inconsistency?: 
_ (0,0), (0,1), (1,2), (4,3), (4,8), (8, 9), (9,9), (9,10), (9,10), (10,10), (11,10), (11,11), (12,12), ... 
– Is there also incoherence? 
– Example 2 (a classic) 
P1:                                P2: 
write(A, 0);                       write(B, 0); 
...                                ... 
write(A, 1);                       write(B, 1); 
if(read(B) == 0){                  if(read(A) == 0){ 
printf(‘‘P1.’’);                      printf(‘‘P2.’’); 
}                                  } 
– Which outputs are legal under strict coherence? Under sequential consistency? 
_ “P1.” 
_ “P2.” 
_ “” 
_ “P1.P2.” 
_ “P2.P1.” 
– Why might a system exhibit inconsistency? 
– Notice 
_ In first example, order between writes must be maintained...fairly obvious notion of causality 
_ In second example, order between writes and reads must be maintained. (Less obvious?) 
_ _ Consistency involves ordering both writes and reads. 
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Semantics for non-atomic memory 
 
Above defines 3 axes/dimensions: 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
Now we can start talking about particular design points in this space. 
 
One option: Insist that distributed memory look "just like" local memory 
 
 
 
Definitions (from Tannenbaum Distributed Systems (with slight modifications and additions)) 
 
 
– sequential consistency – The result of any execution is the same as if the (read and write) 
operations by all processes on the data store were executed in some sequential order and the 
operations of each individual process appear in the sequence in the order specified by its program 
 
Sounds pretty strong (and  it is). But it is not “perfect” – e.g., 
 
A                          B 
// Initially A, B are 0 
write(A, 1) 

consistency 

coherence 

staleness 



write(B, 1)         sleep(1 year) 
                          read(A), read(B) 
                          printf(“A=%d B=%d”, A, B) 
 
output “A=0 B=0” is legal under sequential consistency! 
 
 Expect certain staleness guarantees 
 
 
 
 
 
 
 
– delta coherence - the maximum real-time delay between when a write completes and when a 
subsequent read begins such that the read must return a value at least as new as that write 
 
– strict coherence - any read on a data item x returns a value corresponding to the most recent 
write on x 
 
strict coherence = delta coherence, delta = 0 
 
linearizability = sequential consistency + delta coherence + delta = 0 
(formal definition is essentialy -- sequential consistency + the global sequence is consistent with 
real time) 
 
--> linearizability is essentially the origin in the design space -- the strongest consistency we 
typically ask for 
 
 
 
Even this is a bit less tight than you might hope… Simple to see what strict coherence 
means if reads and writes are instantaneous. But they are not! 
 

Note that every operation takes time: actual read could occur anytime 
between when system call is started, and when system call returns 
 
 

A --- read A ---- 
                   ----- read A or B ----- 
                                ----------  write B  --------- 
    ----------  read A or B or C ---- 
     -----------   write C ------ 
          - --------  read B or C --- 
                                                                                                               read B or C  
 
 
------------------------------------  TIME  ----------------------------------------------- 



 
Assume what we want is distributed system to behave exactly the 
same as if all processes are running on a single UNIX system 

if read finishes before write starts, then get old copy 
if read starts after write finishes, then get new copy 
 
Otherwise – indeterminant – can get either new or old copy 
 

Similarly, if write starts before another write finishes, may get either 
old or new version. (Hence, in above diagram, non-deterministic as to 
which you end up with!) 
 
In NFS, if read starts more than 30 seconds after write finishes, get 
new copy. Othewise, who knows? Could get partial update. 

 
 
Regular v. atomic semantics 
Regular semantics -- return either the value of the last completed write or that of one of 
the writes which are concurrent with the read. 
 
Atomic semantics -- guarantee that the read and write operations to the variable behave 
exactly as if they happened instantaneously in some point in time which is within the 
actual time where the operation took place. (Usually this is what is assumed for strict 
coherence) 
 
_ Strict coherence = delta coherence with delta = 0 
 
 
 
 
 
 

Limitations of strong consistency 
 
So, we can define "perfect" consistency/coherence/staleness.  
 
Are we done? "Distribibuted systems should implement linearizability"??? 
 
Unfortunately, no. Implementing these semantics has costs. Some of these costs are 
fundamental (and sometimes they are unacceptable.) 
 
– Sequential consistency has fundamental performance cost: fast reads or fast writes but not both  

r + w >=  t (where r is read time, $w is the write  time, and t is the minimal packet 
transfer time between nodes.) [Lipton and Sandberg] 



 
– Sequential consistency has a fundamental CAP dilemma (Brewer): A system can not have 
sequential Consistency and maintain 100% Availability in the presence of Partitions. 
 
 
 
 
  develop weaker models 
 
 
– causal consistency – writes that are potentially causally related must be seen by all processes in 
the same order. Concurrent writes may be seen in a different order on different machines. 
 
Basic idea -- if I see a write that you issued, then I can also see (at least) all writes you could have 
seen when you issued the write 
 

 if $P_1$ reads a write $A$ before issuing a write $B$, then any process that 
sees $B$ cannot subsequently see the  old value of $A$ 

  
 Hard to see why this is useful if you assume a centralized consistency server.  

Think about a world where machines can send writes to one another. If $A$ 
reads a bunch of writes from $B$ and then creates some writes of its own. 
Then $C$ synchronizes with  $A$, $A$ must send $B$'s writes to $C$ 
before sending its own. 

 
 
 
 
 



 
 
 
 
 
 
 
e.g., 
while(1)                 while(1)                                while(1)                      while(1) 
  write(A, I++)          write(B, j++)                       print(A, B)                          print(A, B) 
 
 
      (1,1)   (1,1) 
      (1,2)   (2,1) 
      (1,3)   (3,1) 
      (1,4)   (4,1) 
      (2,5)   (5,3) 
 
This is causally consistent, but not sequentially consistent. 
This would be useful if A and B were on different nodes on internet – I might see the closer 
node’s updates before the more distant nodes, and you might see a different order… 



 
e.g., 
while(1)                 while(1)                                while(1)                    
  write(A, I++)          write(B, readA)                     print(A, B) 
 
 
      (1,1)    
      (1,2)    
      (1,3)    
      (1,4)    
      (2,5)    
 
No longer causally consistent – if I see new value of B, then I need to see new value of A 
 
 
 
Theorem: Causally consistent is the strongest consistency you can provide without giving up 
availability. (Dahlin, Alvisi, Mahajan -- April 2011) 
 
 
There are also weaker options 
 
– FIFO consistency (aka PRAM consistency) – writes done by a single process are seen by all 
other processes in the order in which they were issued, but writes from different processes may be 
seen in different orders by different processes 
 
– Is FIFO stronger or weaker than causal? 
 
(A weaker semantic allows more legal orderings than a stronger semantic. 
Consistency semantic A is stronger than consistency semantic B if any 
sequence of read and write results that are legal in A are also legal in B but 
there is at least one sequence that is legal in B but that is not legal in A.) 
 

Why would you ever want this? Requires no coordination at all. E.g., 
2 web servers.... 
 
 
 
 

How to provide improved consistency across clients?  
 
(1) Poll each read – send every read to central server  get 

centralized semantics (e.g., can get sequential consistency this way 
– see the global order?) 

We can optimize this with getattr(), but still slow… 



 
 



Callbacks (e.g., Sprite, Andrew File System) 
AFS (CMU late 80’s)  DCE DFS (commercial product) 

 
Notify client if data they are caching is no longer valid 
 

Callbacks: 
(1) When a client reads data from server, server remembers that client 

has data 
(2) When client writes data, server notifies all other clients (that are 

caching the data) that they must contact server on next read 
 

Write begins 
Tell server “I want to write foo” 
Server tells all clients “discard current copy of foo” 
All clients acknowledge 
Server tells writer “ok to write foo” 
Write completes 

 
What semantics does this provide? 

 

T = 0: 
X’ 

X’ on 
disk 

Fetch new 
version next 
time X is 
opened 
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 linearizability if client issues one operation at a time and blocks 
until completion 

 (weaker if I can, say, read from cache while my write is pending) 
 
 

Fault tolerance 1: Recovery of callback state 
AFS approach: protocol level design (e.g., ad-hoc) 
 
 

Challenge: improved caching + consistency increases failure handling 
complexity: 
 
What if server crashes? Lose all callback state 
 
QUESTION: Why is this a problem? 
 
QUESTION: What can you do? 
Reconstruct callback information from clients – go ask everyone 
“who has which files cached?” 
 
QUESTION: What if client crashes? 
 
 

Fault tolerance 2: CAP -- consistency v. availability during 
partitions 
Key idea: Leases 
 
CAP says sequential consistency must give up availability during partitions 
 
How does this manifest in AFS? 
 
 
Write completes when all caching clients have acknowledged  
 QUESTION: why do I have to wait? 
 [answer – you can return early if you are willing to weaken 
semantics… but if you want linearizability, you have to wait] 
 
 



Naïve solution: client blocks indefinitely if any client crashes 
 How does this scale as we increase # clients? 

 
 
Solution: lease --  combine polling and callbacks 
 
Lease: cache has the right to access cached object X for Y seconds; after Y 
seconds, must renew lease before accessing cached object 
 
Server does callbacks for X seconds after lease 
 
New solution:  

(1) Write waits until all caching nodes acknowledge or leases expire 
(sequential coherence) 

(2) Write returns immediately (delta coherence) 
 

Enhancement: Volume lease… 

 

 

Other AFS features 

 
1) files cached on local disk 
NFS caches only in memory 
 reduce server load  
 

 2) more precise consistency model 
1)  callbacks  

o server records who has copy of file 
o send “callback” on each update 
 

2)  write-through on close 
If file changes, server is updated (on close) 
Server then immediately tells those with old copy 

 
3)  session semantics – updates visible only on close 

In UNIX (single machine) updates visible immediately to 
other programs who have file open 



In AFS, everyone who has file open sees old version; 
anyone who opens file again will see new version 

 
In AFS slight variation: session semantics 

a)  on open and cache miss – get file from server; set up 
callback 

b)  on write close: send copy to server; tells all clients with 
copies to fetch new version on next open 

Essentially – think of all reads happening when file opened and all 
writes happening when file closed… 
 

 

 

AFS pros & cons 
Relative to NFS, less server load: 
+ disk as cache  more files can be cached locally 
+ callbacks  server not involved if file is read-only 

 
- more complex recovery 
 
 
 

Fault tolerance 3: Disconnected operation 
 
Leases do a pretty good  engineering job on CAP dilemma. If I can 
talk to server, I can access data. Clients disconnected from server are 
stuck. (Notice -- they are stuck even if they have the data they want to 
read in their cache.) 
 
 
 
AFS stores data on local disk 
Suppose server crashes – can client keep going? 
 almost – except renewing callbacks on open/close; writing though 

on close 
 



Support disconnected operation – allow client to access cached data 
even when it cannot contact server. 
 Improve availability 
 Support mobility 
 
 
Coda (and NTFS) 
(1) Reads -- prefetch "hoard" data into local cache 

Want to make sure you have everything in cache you need. What 
should you do? (Hoard  list) 

(2) Writes -- write updates to local log; send log to server when 
reconnect 
Need to make sure that updates you did when disconnected make 
it back to server. What should you do? (Log writes + 
reconciliation) 

 
CAP dilemma: Cannot provide sequential consistency and 100% 
availability in a system that can be partitioned.  
 

 What consistency does this provide? (causal?) 
 
 
 
Problem: Conflicting writes… 
What happens if two disconnected nodes both write same file? Is this 
OK? 
 
Coda solution: 
(1) Detect 
(2) Regular files: manual selection of “right” version to keep 
(3) Directories: automatically correct most cases (manual for the rest) 
 
 
 

Avoiding central server 
Coda lets me write when disconnected, but all updates go through server 
 
What if you don’t want to have to synchronize through a server 
 
Basic idea 



- Each node’s writes are a  log [picture] 
- Version vector – index of highest known write from each node 
- Log exchange – you send me your VV, I send you all updates you have not yet 

seen 
-  Eventual consistency 
- Lamport clock – my accept stamp = max(VV) + 1  
- Send elements from my log sorted by accept stamp 
-  Causal consistency 
- Still need to deal with conflicting concurrent writes (how can you detect?) 

 

Google file system [see gradOS notes] 
 
 

Consistency in memcached 
 

memcached: reading from a database is slow 
--> have another set of machines act as a cache (distributed hash table) 
[picture] 
 
basic idea: 
read(x) 
       data = memcached->read(x) 
        if(data) return data 
        else 
                  data = db->read(x) 
                  memcached->set(x, data) 
                  return x 
 
 
write(x, data) 
          db->write(x, data) 
          memcached->set(x, data) 
 
 
What incoherence might you observe? 
How long can incoherence last (how much staleness) 
 What if writer crashes after setting DB but before setting 
memcached? 
 
Obvious fix (?) 



write(x, data) 
           memcached->clear(x); 
 db->write(x, data); 
 memcached->set(x, data); 
 
Does this solve the problem? 
 
 
             

*********************************   
Summary - 1 min 
*********************************    
 
Next time: improve consistency, 2 phase commit  atomic distributed 
updates 

 
 


