
CS 372: Operating Systems Mike Dahlin

 1

Lecture #26: Distributed File System

Review -- 1 min

Distributed file system
��general distributed OS ideas
��file system case study
4 ideas
��RPC
��Caching
��Cache consistency
��If time: two-phase commit
File systems
��RPC – Netware
��RPC + caching -- NFS

Outline - 1 min

File systems:
Cache consistency

2 phase commit

Preview - 1 min

Next week: security, course wrap-up, course review

Lecture - 20 min

1. Cache consistency: problem
Consider updates in NFS (recall: cache files at clients)
Suppose A and B both read object X, then A updates X to X’ . What
will B read?

CS 372: Operating Systems Mike Dahlin

 2

1.1 Sequential ordering constraints
Cache coherence – what should happen? What if one Cpu changes file
and before it’s done, another CPU reads file?

strict consistency – any read on a data item x returns a value
corresponding to the most recent write on x

Seems simple, but in distributed system reads and writes take time:
actual read could occur anytime between when system call is started,
and when system call returns

if read finishes before write starts, then get old copy
if read starts after write finishes, then get new copy

 if reads and writes overlap, get ??? (either old or new)
 if writes overlap, get ??? (either old or new)

T = 0: X’

X’ on
disk

S

A B

X’

X X’

X’

CS 372: Operating Systems Mike Dahlin

 3

��in above diagram, non-deterministic as to which write – C or B –

ends up winning
��once I read B, all later reads must return B or C

1.2 NFS: weak cache consistency

What if multiple clients are sharing same files? Easy if they are both
reading – each gets a copy of the file

What if one writing? How do updates happen?

At writer – NFS has hybrid delayed write/write through policy
• write through within 30 seconds or immediately when file closed

How does other client find out about change (it has cached copy, so
doesn’ t see any reason to talk to the server)

In NFS, client polls server periodically, to check if file has changed.
Poll server if data hasn’ t been checked in last 3-30 seconds (exact
timeout is tunable parameter)

Thus, when file is changed on one client, server is notified, but other
clients use old version of file until timeout. They then check server,
and get new version.

A �--- read A ----�
 �----- read A or B -----�
 ����---------- write B ---------����
 �---------- read A or B or C ----�
 ����----------- write C ------����
 �- -------- read B or C ---�
 � read B or C �

------------------------------------ TIME ---�

CS 372: Operating Systems Mike Dahlin

 4

What if multiple clients write the same file? In NFS, can get either
version (or parts of both). Completely arbitrary!

In NFS, if read starts more than 30 seconds after write finishes, get
new copy. Othewise, who knows? Could get partial update.

1.3 NFS Summary
NFS pros & cons
+ simple
+ highly portable
��sometimes inconsistent
��doesn’ t scale up to large # of clients

Might think NFS is really stupid, but Netscape/WWW does something
similar: cache recently seen pages, and refetch them if they are too old.
Nothing in WWW to help with cache coherence

How to provide consistency across clients?

2. Andrew File System
AFS (CMU late 80’s) � DCE DFS (commercial product)

T = 0: X’

X’ on
disk

X’
T=30; X
still OK?

S

A B

X’

X X’

X’

CS 372: Operating Systems Mike Dahlin

 5

1) files cached on local disk
NFS caches only in memory
� reduce server load

 2) more precise consistency model
1) callbacks

– server records who has copy of file
– send “callback” on each update

2) write-through on close
If file changes, server is updated (on close)
Server then immediately tells those with old copy

3) session semantics – updates visible only on close

In UNIX (single machine) updates visible immediately to
other programs who have file open
In AFS, everyone who has file open sees old version;
anyone who opens file again will see new version

In AFS:
a) on open and cache miss – get file from server; set up callback

b) on write close: send copy to server; tells all clients with
copies to fetch new version on next open

CS 372: Operating Systems Mike Dahlin

 6

Challenge: improved caching + consistency increases failure handling
complexity:
What if server crashes? Lose all callback state
Reconstruct callback information from clients – go ask everyone “who
has which files cached?”

AFS pros & cons
Relative to NFS, less server load:
+ disk as cache � more files can be cached locally
+ callbacks � server not involved if file is read-only
��on fast LANs, local disk much slower than remote memory

Admin - 3 min

T = 0: X’

X’ on
disk

Fetch new version
next time X is
opened

S

A B

X’

X X’

X’

X’ X

CS 372: Operating Systems Mike Dahlin

 7

Lecture - 23 min

3. Reliability
Want to be able to reliable update state on two different machines

e.g., atomically move directory from file server A to file server B
e.g., atomically move $100 from my account to Visa account

Challenge:
��messages can be lost
��machines can crash

3.1 General’s paradox
Can I use messages and retries over an unreliable network to
synchronize two machines so that they are guaranteed to do same op at
same time?

Remarkably, no. Even if all messages end up getting through

General’s paradox: two generals on separate mountains. Can only
communicate via messengers; the messengers can get lost or be
captured

Need to coordinate the attack; if they attack at different times, then
they all die. If they attack at same time, they win.

CS 372: Operating Systems Mike Dahlin

 8

Even if all messages are delivered, can’ t coordinate (B/c a chance that
the last message doesn’ t get through). Can’ t simultaneously get two
machines to aggre to do something at same time

No solution to this – one of the few things in CS that is just
impossible.
Proof: by induction

4. 2-phase commit
Since I cannot solve General’s Paradox, let me solve a related problem

Abstraction – distributed transaction – two machines agree to do
something or not do it, atomically
 (but not necessarily at exactly the same time)

example: my account is at NationsBank, yours is at Wells Fargo. How
to transfer $100 from you to me? (Need to guarantee that both banks
agree on what happened).
Example: file system – move a file from directory A on server a to
directory B on server b

A B

 11AM OK?

 OK. 11’s good for me

 so, 11 it is?

 Yeah, but what if
 you dont get this
 ack

CS 372: Operating Systems Mike Dahlin

 9

Two-phase commit protocol does this. Use log on each machine to
keep track of whether commit happened

Phase 1: coordinator requests
1. coordinator sends REQUEST to all participants

e.g. C�S1 “ delete foo from /” , C�S2 “ add foo to /”

2. participants recv request, execute transaction locally, write
VOTE_COMMIT or VOTE_ABORT to local log, and send
VOTE_COMMIT or VOTE_ABORT to coordinator

Failure case Success case
S1 decides OK, writes “ rm /foo;
VOTE_COMMIT” to log, and
sends VOTE_COMMIT
S2 decides no space on device
and writes and sends
VOTE_ABORT

S1 and S2 decide OK and write
updates and VOTE_COMMIT
to log, send VOTE_COMMIT

Phase 2: coordinator decides
3. case 1: coordinator recv VOTE_ABORT or timeout

� coordinator write GLOBAL_ABORT to log, and send
GLOBAL_ABORT to participants

case 2: coordinator recvs VOTE_COMMIT from all participants
� coordinator write GLOBAL_COMMIT to log, and send
GLOBAL_COMMIT to participants

4. participant receives decision; write GLOBAL_COMMIT or
GLOBAL_ABORT to log

What if
• Participant crashes at 2? Wakes up, does nothing. Coordinator will

timeout, abort transaction, retry
• Coordinator crashes at 3? Wakes up,

• Case 1: no GLOBAL_* in log � Send message to participants
“abort”

CS 372: Operating Systems Mike Dahlin

 10

• Case 2: GLOBAL_ABORT in log � send message to
participants “abort”

• Case 3: GLOBAL_COMMIT in log � send message to
participants “commit”

• Participant crashes at 4? On recovery, ask coordinator what
happened and commit or abort

This is another example of the idea of a basic atomic operation. In this
case – commit needs to “happen” at one place

Limitation of 2PC – what if coordinator crashes during 3 and doesn’ t
wake up? All nodes block forever
What if participants times out waiting in step 4 for coordinator to say
what happened. It can make some progress by asking other participants

1. if any participant has heard “GLOBAL_COMMIT/ABORT”, we
can safely commit/abort

2. if any participant has said “VOTE_ABORT” or has made no vote,
we can safely abort

3. if all participants have said “VOTE_COMMIT” but none have
heard “GLOBAL_*”, can we commit? A: no – coordinator might
have written “GLOBAL_ABORT” to its disk (e.g., local error or
timeout)
Turns out – 2PC always has risk of indefinite blocking
Solve with 3 phase commit (look it up if you ever need it…)

In practice 2PC usually good enough – but be aware of the limits

If you come to a place where you need to do something across multiple
machines, don’ t hack
��use 2PC (or 3PC)
��if 2PC, identify circumstances under which indefinite blocking can

occur (and decide if acceptable engineering risk)

5. NETWORK OUTTAKES:

CS 372: Operating Systems Mike Dahlin

 11

Not covered in class this year

In both AFS and NFS
Central server is a bottleneck
Performance bottleneck:
��all data written through to server
��all cache misses go to server
Availability bottleneck:
��server is single point of failure
Cost bottleneck
��server machiines high cost relative to workstation

6. xFS: serverless network file service

key idea – file system as parallel program; exploit opportunities
provided by fast LANs

Four key ideas:
• cooperative caching
• software RAID
• distributed control

6.1 cooperative caching
use remote memory to avoid going to disk (manage client memory as
global shared resource)

a) on cache miss, get file from someone else’s cache instead of disk
b) on replacment, if last copy of file, send to idle client instead of

discarding

+ better hit rate for read-shared data
+ active clients get to use memory of idle clients

CS 372: Operating Systems Mike Dahlin

 12

6.2 software RAID

distribute data across all machines’ disks � better bandwidth

but: we’ve made availability story a whole lot worse; now pieces of
the file system are spread all over. If any machine fails, part of file
system unavailable

xFS solution: stripe data redundanty over multiple disks, using SW
RAID. Each client writes modifications to a log stored on redundant
stripe of disks

<PICTURE>

On failure, others can reconstruct data from other disks in order to
figure out missing data; logging makes reconstruction easy

A detail: need to be able to find things on disk; done as in LFS via an
inode/ifile header map, containing locations of every inode on disk.
This map is spread over all machines, kept by the last writer

Inode map is checkpointed to disk periodically. ON failure, read
checkpoint from disk, then update from logs written after checkpoint

6.3 Distributed control
We’ve decentralized the cache, the disk, writes and reads, but there is
still a central server to record who has which copies of data

xFS solution: spread manager over all machines; if anyone fails, poll
clients to know who has what, and then shift its responsibilities to a
new client

6.4 summary
xFS: build large ysstem out of large numbers of small unreliable
components

CS 372: Operating Systems Mike Dahlin

 13

Key: everything dynamic – data, metadata, control can all live
anywhere on any machine, in any memory, on any location on disk.
Also, this means easy to migrate to tape: anything can be located
anywhere

Started w promise v. reality of distributed sytsems

xFS is example of how distributed systems will look in the future:
higher performance, higher availability than any centralized system.
Improves performance as you add more machines: more CPUs, more
DRAM, more disks, ought to mean better performance and
availability, not worse!

Also: automatic reconfiguration – machine goes down, everything
continues to work. Machine gets added, start using its disk and CPU
(in hardware called “hot swap” – key to high availability)

still some challenges – how do you upgrade software to new OS, new
version of xFS, new version of disk, CPU, etc. while system continues
to operate? Can we build systems that operate continuously for a
decade?

Rest of lecture – abstractions for structuring distributed application

7. Cross-domain communication
How do address spaces communicate with one another
• file system
• shared memory
• pipes (1-way communication)
• LRPC “Local Remote Procedure Call” (2-way communication)

RPCs can be used to communicate between address spaces on
different machines or between address spaces on the same machine

CS 372: Operating Systems Mike Dahlin

 14

7.1 Microkernel operating systems
Example: split kernel into application-level servers. File systems look
like it is remote, even though on same machine

Why split OS into separate domains?
• fault isolation – bugs are more isolated
• enforces modularity - allows incremental upgrades f pieces
• location transparant – service can be local or remote

Example - X window system

8. Network performance
overhead – CPU time to put packet on wire
latency – how long to send 1 byte packet
throughput – maximum bytes per second

 monolithic structure microkernel structure
 (nachos, unix)

App App

File system

 windowing
VM
 networking

 threads

 OS kernel

App File
sys

window
s

RPC
 addr
 threads space

 OS kernel

CS 372: Operating Systems Mike Dahlin

 15

Latency – significant fraction of speed of light (1foot/ns) � <1us
anywhere in taylor

 throughput overhead 100 byte 4 KB remote 4K
read

TCP/IP
Ethernet

10 Mbit/s 0.5-1ms .5ms + .08ms .5ms + 3ms 4 ms

TCP/IP ATM 155 Mbit/s 0.5-1ms .5ms +
.005ms

.5ms + .2ms 1.2ms

AM/Myrinet 1200 Mbit/s .007ms .007ms +
.001ms

.007 + .03ms .04ms

What is latency if go cross-country?
 3000 miles * 5000 ft/mile � 15ms
 now 4KB read dominated by latency for all networks

Key to good performance
 in LAN – minimize overhead
 in WAN – keep pipeline full

Summary - 1 min
