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Lecture #6: Too much milk 
  
********************************* 
Review  -- 1 min 
*********************************   

Independent v. cooperating threads 
 

(1) must work with all possible interleavings 
(2) not feasible to reason about all interleavings 

a. mentally compile code down to assembly 
b. think about every possible interleaving 
c. [intuition is a poor guide…] 

 
Atomic operations – a start 

 but 3-line program still takes 200 work-minutes to analyze 
 mentally disassemble code, compute all interleavings, … 
 

 
*********************************  
Outline - 1 min 
********************************** 
Issue: thread dilemma – want independence and cooperation 
Basic correctness properties -- safety and liveness 
Sample problem: too much milk 
3 possible solutions 
 
*********************************   
Preview - 1 min 
*********************************   
today – ad-hoc solutions to illustrate issues 
next week – more satisfactory abstractions 
 
*********************************   
Lecture - 20 min 
*********************************   

1. Motivation 
 Person 1    Person 2 
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3:00 Look in fridge; out of milk. 
3:05 Leave for store   
3:10 Arrive at store   Look in fridge; out of milk 
3:15 Buy milk    Leave for store 
3:20 Arrive home; put milk away. Arrive at store 
3:25      Buy milk 
3:30      Arrive home; put milk away. 
      Oh no! 
 

1.1 Critical section problem 
Shared state – state read or written by more than one thread 

 
Synchronization: using atomic operations to ensure cooperation 
among threads accessing shared state 
 
Lesson from last time – using “load” and “store” as our atomic 
operation is not tractable 
 critical section problem 
 
Consider a collection of shared state and all code that reads or writes 
that shared state 
 
Critical section – a set of code that accesses shared state 
Critical section problem – ensure that all critical sections on a 
collection of shared state appear to execute atomically 

i.e., thread A can never observe a state where thread B has 
partially executed a critical section 

 
Rather than reasoning about atomic load/stores, reason about atomic 
critical sections 
 fewer, coarser-grained interleavings 
 high-level invariants 
 
Solution to critical section problem must satisfy 3 rules: 
1) Mutual Exclusion:  

roughly:"don't let more than one in at a time" 
precisely: never more than one thread is executing in a critical 
section. One thread in CS excludes others. 
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2) Progress:  
roughly: "let someone in" (avoid trivial solution of let no one in) 
precisely: if no threads are executing in a critical section, and a 
thread wishes to enter a critical section, a thread must eventually 
be guaranteed to enter the critical section 

3) Bounded waiting:  
roughly: "be fair" (fairness; avoid trivial solution of "let thread 1 
in") 
precisely: if thread T wishes to enter a critical section, then there 
exists a bound on the number of other threads that may enter the 
critical section before T enters 

 
Assumption: all threads are operating at non-zero speed (over infinite 
time, each ready thread is scheduled an infinite number of times), but 
you cannot make any assumption about the relative speed of the 
threads 
 
 
The rules sound a bit strange. Basic idea is simple ("roughly" above). 
Specific wording of precise version is to couple the progress and 
bounded waiting in a way that works without making assumptions 
about thread behaviors, clocks, schedulers, etc. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Power tool: 
 

safety -- the program never does anything bad 
liveness -- the program eventually does something good 
 
QUESTION: which properties above are safety and which are 
liveness? 
 
Safety and liveness are key properties for reasoning about 
programs. Any definition of a correct program can be composed 
of a set of safety properties and a set of liveness properties. 
 
Use in proofs: first prove safety, then liveness 
Use in protocol design: design simple core protocol to be 
“safe” (regardless of scheduling, message order, etc.) Then, add 
constraints to ensure “liveness”. (Related to “separation of 
mechanism from policy”) 
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1.2 Basic idea 
Programming model is restricted -- each shared variable is only 
accessed within a specified critical section  only one thread can 
read/write a shared variable at a time 
 
1)  Entry section “Lock” before entering critical section, before 

accessing shared data 
wait if locked 
Key idea – all synchronization involves waiting. 

 
2)  Exit section “unlock” when leaving, after done accessing shared 

data 

1.3 Example: Object oriented programming model 
PICTURE 
 methods that access shared state are critical sections 
 associate a lock with each shared object 
 acquire/release the lock when entering/exiting a method that is a 

critical section 
Warning: Many of the “classic” synchronization problems were 
formulated before OO programming. Many of the textbooks still 
present the “classic” (non-OO) answers. Much better to think of 
answers in OO format. 
 
 
******************** 
ADMIN 
******************** 
project -- challenging project; aggressive schedule 
(1) "parse" is just "homework/exercise" to get ready for "thread 
create"; *not part of library* 
(2) switch/yield (don't need (1) -- just getcontext(), setcontext() 
(3) thread create (now need (1), allocate stack, stub...) 
(4) thread destroy (now need zombie) 
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******************** 
 

1.4 Too Much Milk: Solution #1 
Suppose I write a program to model the too much milk problem. 
People act in parallel, so model each person as a thread. Model "look 
in fridge" and "put away milk" as reading/writing a variable in 
memory. 
 
What are the correctness properties for the too much milk problem? 
QUESTION: what is the safety property? What is the liveness 
property? 
♦ never more than one person buys 
♦ someone buys if needed 
 
Restriction: only use atomic load and store operations as building 
blocks. 
 
Basic idea of solution #1 
1)  Leave a note (kind of like “lock”)  

{store "1" to location NOTE} 
2)  Remove node (kind of like “unlock”) 

{store "0" to location NOTE} 
3)  Don’t buy if note (wait) 

{load from NOTE, BEQ…} 
 
Solution #1 

if (milk == 0){ 
  if(note == 0){ 
    note = 1; // leave note 
    milk++;   // buy milk 
    note = 0; // remove note; 
  } 
} 

 
Is this protocol safe? 
Why doesn’t this work? Thread can get context switched after 
checking note but before leaving note. 
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Our “solution” makes problem worse – fails only occasionally. 
Makes it really hard to debug. Remember, constraint has to be 
satisfied, independent of what the dispatcher does – timer can go off 
and context switch can happen at any time. 
 

*********************************   
Admin - 3 min 
*********************************   

 
*********************************   
Lecture - 23 min 
*********************************   
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1.5 Too much milk solution #2 
How about labeled notes? That way, we can leave the note before 
checking the milk or note. 
 
Solution #2 
Thread A     Thread B 
noteA = 1;                noteB = 1; 
if (noteB == 0){ // Y  if(noteA==0){  // Z1 
  if(milk == 0){     if(milk==0){ // Z2 
    milk++;   //X    milk++;  // Z3 
  }        }            // Z4 
}      }              // Z5 
noteA = 0;          noteB = 0; 
 
Is this protocol safe? Proof sketch: 
Lemma M: “Milk == true” is a stable property – once true, remains 
true forever 

(Useful trick for reasoning about asynchronous protocols – 
reason about stable properties) 

Part 1: A buys   B doesn’t buy  
Assume A reaches X 
then there is no case in which B buys 
 
when thread A was at Y consider state of “(noteB, milk)”  
case 1: “(1,X)” – contradiction with assumption A reaches X (so this 
is not a case where B also buys) 
case 1: “(0, 1)”  contradiction with assumption (by lemma M) (so 
this is not a case where B also buys) 
case 2: “(0, 0)”  B is not in “Z” when A was at Y 
       if B below Z  B will not buy  safe 
       if B above Z  

• assume B buys,  
• then B read “noteA == 0”  

 “remove A” happens before Z1 
• then B read “milk == 0”  

 Z2 happens before X 
• .: we have removeA happens before Z1 happens before Z2 

happens before X  removeA happens before X 
• Contradiction  B will not buy  safe 
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• so this is not a case where B also buys 
•  

Part 2: B buys   A doesn’t buy is similar 
 
Is it live? 
Possible for neither thread to buy milk; context switch at wrong time 
can lead to each thinking the other is going to buy 

• Illustrates starvation: thread waits forever 
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Too much milk solution #3 
Solution #3: 
Thread A     Thread B 
noteA = 1;    noteB = 1; 
while(noteB) { // X1  if(noteA==0){  // Y1 
  do nothing;  // X2    if(milk==0){ // Y2 
}     // X3   milk = 1;  // Y3 
if(milk == 0){ // X4    }            // Y4 
  milk = 1;   // X5  }              // Y5 
}     // X6  noteB = 0; 
noteA = 0; 
 
QUESTION: does this work? 
 
Yes. Can guarantee at X and Y that either 
i)  safe for me to buy 
ii)  other will buy; ok to quit 
 
Is it safe? 
Lemma M: (milk == true) is a stable property 
Claim I. B buys   A doesn’t buy 
Suppose that B buys milk (reaches Y3), consider the instant that the 
load at Y1 completes,  
consider states (noteA, milk) at that instant 
case 1: (1,X)  contradiction (we assume B reaches Y3) 
case 2: (0,1)  contradiction (lemma M; we assume B reaches Y3) 
case 3: (0,0)  A is not in region X 
      if below  A will not buy  safe 
      otherwise,  A must be above region X at that instant 

assume A buys 
 remove B happens before  X3 (exit while loop) 
 X4 HB Y3 (A’s check milk HB B’s buy milk) 
Also, we know X3 HB X4 (program order) 
.: remove B HB X3 HB X4 HB  Y3  
 Y3 HB remove B 
 contradiction (program order)  A cannot buy  safe 

 
Claim II. A buys   B doesn’t buy 
Suppose that A buys milk (reaches X5), consider instant that the load 
at X1 completes and sees “0” 
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Consider state of (noteB, milk) at that instant 
(1, X)  contradiction (assumed load at X1 sees “0”) 
(0, 1)  contradiction  (lemma M; assume X5 reached) 
(0, 0)  B is not in region Y 

if B below region Y  B will not buy  safe 
otherwise B above region Y 
assume B buys (reaches Y3) 
 remove A HB Y1 
 Y2 HB X5  
We also know Y1 HB Y2 
 removeA HB Y1 HB Y2 HB X5 
 remove A HB X5  contradiction (program order) 

 
 
 
is it live? 
A must eventually reach “if(noMilk)” 
Case 1: milk == 1  milk bought  Live 
Case 2: milk == 0  A will buy  live 
 
 

1.6 Too much milk summary 
Solution #3 works, but it is really unsatisfactory: 
1)  Really complicated – even for this simple example, hard to 

convince yourself that it really works 
Every year when I teach this, I end up revising the proofs 
History is littered with published proofs of these types of 
algorithms followed 5 years later with published errors! 

2)  A’s code different than B’s – what if lots of threads. Code would 
have to be slightly different for each thread. 

3)  While A is waiting, it is consuming CPU time (busy-waiting) 
4)  doesn't work on modern hardware/compilers 

Modern HW and compilers reorder instructions. Loads/stores still 
atomic, but may not be executed in program order. (Can fix with 
"barrier" instructions, but even more complexity...) 

 
There is a better way: 
1)  Have hardware provide better (higher-level) primitives than atomic 

load and store. Explain next lecture 
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2)  Build even higher-level programming abstractions on this new 
hardware support. For example, why not use locks as an atomic 
building block (how we will do this in the next lecture) 

 
Lock::Acquire() – wait until lock is free, then grab it 
Lock::Release() – unlock, waking up a waiter, if any 
 

These must be atomic operations – if two threads are waiting for the 
lock, and both see it is free, only one grabs it! 
 
With locks, the too much milk problem is really easy! 
 
Too much milk solution #4 

Lock->Acquire(); 
if(milk == 0){ 
  milk++; 
} 
Lock->Release(); 
 
 

*********************************   
Summary - 1 min 
*********************************    

Atomicity is key building block 
Synchronization solutions will involve using low-level atomicity 
(load/store and others) to bootstrap higher-level atomicity 
(lock/unlock and others) 
 
Use safety and liveness and stable properties to reason about 
programs 


