
CS 372: Operating Systems Mike Dahlin

 1 02/01/11

Lecture #6: Too much milk

Review -- 1 min

Independent v. cooperating threads

(1) must work with all possible interleavings
(2) not feasible to reason about all interleavings

a. mentally compile code down to assembly
b. think about every possible interleaving
c. [intuition is a poor guide…]

Atomic operations – a start

 but 3-line program still takes 200 work-minutes to analyze
 mentally disassemble code, compute all interleavings, …

Outline - 1 min

Issue: thread dilemma – want independence and cooperation
Basic correctness properties -- safety and liveness
Sample problem: too much milk
3 possible solutions

Preview - 1 min

today – ad-hoc solutions to illustrate issues
next week – more satisfactory abstractions

Lecture - 20 min

1. Motivation
 Person 1 Person 2

CS 372: Operating Systems Mike Dahlin

 2 02/01/11

3:00 Look in fridge; out of milk.
3:05 Leave for store
3:10 Arrive at store Look in fridge; out of milk
3:15 Buy milk Leave for store
3:20 Arrive home; put milk away. Arrive at store
3:25 Buy milk
3:30 Arrive home; put milk away.
 Oh no!

1.1 Critical section problem
Shared state – state read or written by more than one thread

Synchronization: using atomic operations to ensure cooperation
among threads accessing shared state

Lesson from last time – using “load” and “store” as our atomic
operation is not tractable
 critical section problem

Consider a collection of shared state and all code that reads or writes
that shared state

Critical section – a set of code that accesses shared state
Critical section problem – ensure that all critical sections on a
collection of shared state appear to execute atomically

i.e., thread A can never observe a state where thread B has
partially executed a critical section

Rather than reasoning about atomic load/stores, reason about atomic
critical sections
 fewer, coarser-grained interleavings
 high-level invariants

Solution to critical section problem must satisfy 3 rules:
1) Mutual Exclusion:

roughly:"don't let more than one in at a time"
precisely: never more than one thread is executing in a critical
section. One thread in CS excludes others.

CS 372: Operating Systems Mike Dahlin

 3 02/01/11

2) Progress:
roughly: "let someone in" (avoid trivial solution of let no one in)
precisely: if no threads are executing in a critical section, and a
thread wishes to enter a critical section, a thread must eventually
be guaranteed to enter the critical section

3) Bounded waiting:
roughly: "be fair" (fairness; avoid trivial solution of "let thread 1
in")
precisely: if thread T wishes to enter a critical section, then there
exists a bound on the number of other threads that may enter the
critical section before T enters

Assumption: all threads are operating at non-zero speed (over infinite
time, each ready thread is scheduled an infinite number of times), but
you cannot make any assumption about the relative speed of the
threads

The rules sound a bit strange. Basic idea is simple ("roughly" above).
Specific wording of precise version is to couple the progress and
bounded waiting in a way that works without making assumptions
about thread behaviors, clocks, schedulers, etc.

Power tool:

safety -- the program never does anything bad
liveness -- the program eventually does something good

QUESTION: which properties above are safety and which are
liveness?

Safety and liveness are key properties for reasoning about
programs. Any definition of a correct program can be composed
of a set of safety properties and a set of liveness properties.

Use in proofs: first prove safety, then liveness
Use in protocol design: design simple core protocol to be
“safe” (regardless of scheduling, message order, etc.) Then, add
constraints to ensure “liveness”. (Related to “separation of
mechanism from policy”)

CS 372: Operating Systems Mike Dahlin

 4 02/01/11

1.2 Basic idea
Programming model is restricted -- each shared variable is only
accessed within a specified critical section  only one thread can
read/write a shared variable at a time

1) Entry section “Lock” before entering critical section, before

accessing shared data
wait if locked
Key idea – all synchronization involves waiting.

2) Exit section “unlock” when leaving, after done accessing shared

data

1.3 Example: Object oriented programming model
PICTURE
 methods that access shared state are critical sections
 associate a lock with each shared object
 acquire/release the lock when entering/exiting a method that is a

critical section
Warning: Many of the “classic” synchronization problems were
formulated before OO programming. Many of the textbooks still
present the “classic” (non-OO) answers. Much better to think of
answers in OO format.

ADMIN

project -- challenging project; aggressive schedule
(1) "parse" is just "homework/exercise" to get ready for "thread
create"; *not part of library*
(2) switch/yield (don't need (1) -- just getcontext(), setcontext()
(3) thread create (now need (1), allocate stack, stub...)
(4) thread destroy (now need zombie)

CS 372: Operating Systems Mike Dahlin

 5 02/01/11

1.4 Too Much Milk: Solution #1
Suppose I write a program to model the too much milk problem.
People act in parallel, so model each person as a thread. Model "look
in fridge" and "put away milk" as reading/writing a variable in
memory.

What are the correctness properties for the too much milk problem?
QUESTION: what is the safety property? What is the liveness
property?
♦ never more than one person buys
♦ someone buys if needed

Restriction: only use atomic load and store operations as building
blocks.

Basic idea of solution #1
1) Leave a note (kind of like “lock”)

{store "1" to location NOTE}
2) Remove node (kind of like “unlock”)

{store "0" to location NOTE}
3) Don’t buy if note (wait)

{load from NOTE, BEQ…}

Solution #1

if (milk == 0){
 if(note == 0){
 note = 1; // leave note
 milk++; // buy milk
 note = 0; // remove note;
 }
}

Is this protocol safe?
Why doesn’t this work? Thread can get context switched after
checking note but before leaving note.

CS 372: Operating Systems Mike Dahlin

 6 02/01/11

Our “solution” makes problem worse – fails only occasionally.
Makes it really hard to debug. Remember, constraint has to be
satisfied, independent of what the dispatcher does – timer can go off
and context switch can happen at any time.

Admin - 3 min

Lecture - 23 min

CS 372: Operating Systems Mike Dahlin

 7 02/01/11

1.5 Too much milk solution #2
How about labeled notes? That way, we can leave the note before
checking the milk or note.

Solution #2
Thread A Thread B
noteA = 1; noteB = 1;
if (noteB == 0){ // Y if(noteA==0){ // Z1
 if(milk == 0){ if(milk==0){ // Z2
 milk++; //X milk++; // Z3
 } } // Z4
} } // Z5
noteA = 0; noteB = 0;

Is this protocol safe? Proof sketch:
Lemma M: “Milk == true” is a stable property – once true, remains
true forever

(Useful trick for reasoning about asynchronous protocols –
reason about stable properties)

Part 1: A buys  B doesn’t buy
Assume A reaches X
then there is no case in which B buys

when thread A was at Y consider state of “(noteB, milk)”
case 1: “(1,X)” – contradiction with assumption A reaches X (so this
is not a case where B also buys)
case 1: “(0, 1)”  contradiction with assumption (by lemma M) (so
this is not a case where B also buys)
case 2: “(0, 0)”  B is not in “Z” when A was at Y
 if B below Z  B will not buy  safe
 if B above Z

• assume B buys,
• then B read “noteA == 0”

 “remove A” happens before Z1
• then B read “milk == 0”

 Z2 happens before X
• .: we have removeA happens before Z1 happens before Z2

happens before X  removeA happens before X
• Contradiction  B will not buy  safe

CS 372: Operating Systems Mike Dahlin

 8 02/01/11

• so this is not a case where B also buys
•

Part 2: B buys  A doesn’t buy is similar

Is it live?
Possible for neither thread to buy milk; context switch at wrong time
can lead to each thinking the other is going to buy

• Illustrates starvation: thread waits forever

CS 372: Operating Systems Mike Dahlin

 9 02/01/11

Too much milk solution #3
Solution #3:
Thread A Thread B
noteA = 1; noteB = 1;
while(noteB) { // X1 if(noteA==0){ // Y1
 do nothing; // X2 if(milk==0){ // Y2
} // X3 milk = 1; // Y3
if(milk == 0){ // X4 } // Y4
 milk = 1; // X5 } // Y5
} // X6 noteB = 0;
noteA = 0;

QUESTION: does this work?

Yes. Can guarantee at X and Y that either
i) safe for me to buy
ii) other will buy; ok to quit

Is it safe?
Lemma M: (milk == true) is a stable property
Claim I. B buys  A doesn’t buy
Suppose that B buys milk (reaches Y3), consider the instant that the
load at Y1 completes,
consider states (noteA, milk) at that instant
case 1: (1,X)  contradiction (we assume B reaches Y3)
case 2: (0,1)  contradiction (lemma M; we assume B reaches Y3)
case 3: (0,0)  A is not in region X
 if below  A will not buy  safe
 otherwise, A must be above region X at that instant

assume A buys
 remove B happens before X3 (exit while loop)
 X4 HB Y3 (A’s check milk HB B’s buy milk)
Also, we know X3 HB X4 (program order)
.: remove B HB X3 HB X4 HB Y3
 Y3 HB remove B
 contradiction (program order)  A cannot buy  safe

Claim II. A buys  B doesn’t buy
Suppose that A buys milk (reaches X5), consider instant that the load
at X1 completes and sees “0”

CS 372: Operating Systems Mike Dahlin

 10 02/01/11

Consider state of (noteB, milk) at that instant
(1, X)  contradiction (assumed load at X1 sees “0”)
(0, 1)  contradiction (lemma M; assume X5 reached)
(0, 0)  B is not in region Y

if B below region Y  B will not buy  safe
otherwise B above region Y
assume B buys (reaches Y3)
 remove A HB Y1
 Y2 HB X5
We also know Y1 HB Y2
 removeA HB Y1 HB Y2 HB X5
 remove A HB X5  contradiction (program order)

is it live?
A must eventually reach “if(noMilk)”
Case 1: milk == 1  milk bought  Live
Case 2: milk == 0  A will buy  live

1.6 Too much milk summary
Solution #3 works, but it is really unsatisfactory:
1) Really complicated – even for this simple example, hard to

convince yourself that it really works
Every year when I teach this, I end up revising the proofs
History is littered with published proofs of these types of
algorithms followed 5 years later with published errors!

2) A’s code different than B’s – what if lots of threads. Code would
have to be slightly different for each thread.

3) While A is waiting, it is consuming CPU time (busy-waiting)
4) doesn't work on modern hardware/compilers

Modern HW and compilers reorder instructions. Loads/stores still
atomic, but may not be executed in program order. (Can fix with
"barrier" instructions, but even more complexity...)

There is a better way:
1) Have hardware provide better (higher-level) primitives than atomic

load and store. Explain next lecture

CS 372: Operating Systems Mike Dahlin

 11 02/01/11

2) Build even higher-level programming abstractions on this new
hardware support. For example, why not use locks as an atomic
building block (how we will do this in the next lecture)

Lock::Acquire() – wait until lock is free, then grab it
Lock::Release() – unlock, waking up a waiter, if any

These must be atomic operations – if two threads are waiting for the
lock, and both see it is free, only one grabs it!

With locks, the too much milk problem is really easy!

Too much milk solution #4

Lock->Acquire();
if(milk == 0){
 milk++;
}
Lock->Release();

Summary - 1 min

Atomicity is key building block
Synchronization solutions will involve using low-level atomicity
(load/store and others) to bootstrap higher-level atomicity
(lock/unlock and others)

Use safety and liveness and stable properties to reason about
programs

