CS 372: Operating Systems Mike Dahlin

Lecture #8: Semaphores Shared objects, Monitors,
Condition Variables, and Bounded buffer

3k 3 s sk sfe s s s st ke sie sk sk sk s s sk sk sk sie sk sk s sk s sk sk skeoske sk sk sk sk

Review -- 1 min

s s s st e st e s ke s e s e s st s st ke st ke sk ke sk ke sk sk sk stk ok ok
* Hardware support for synchronization
* Building higher-level synchronization programming
* abstractions on top of hardware support (e.g., Lock)

3k 3 s sk sfe s s s st ke sie sk sk sk s s sk sk sk sie sk sk s sk s sk sk sk sk sk sk sk sk

Outline - 1 min
skosksksksksk

i : |
Example of programming w. semaphore
8 | > : | .
Bmutex(likelock)
- ..)
Simle o] THS 4 E"f)

Two kinds of synchronization
Monitor = lock + c.v. + shared state = shared object
Simple implementation

3k 3 s sk sfe s s s st sk sie sk sk sfe s s sk sk sk s sk sk s s sk sk sk sk sk sk sk sk

Preview - 1 min
skkskskskskskskskokskskskoksksksksksksksksksksksksksksksksksksksk

How to program with shared objects

3k 3 s sk sfe s s s st sk sie sk sk sfe s s sk sk sk sie sk sk s sk sk st sk sk sk sk sk sk

Lecture - 32 min
skkskskskskskskskoksk

1. Motivation

writing concurrent programs hard — coordinate updates to shared
memory

1 02/08/11

CS 372: Operating Systems Mike Dahlin

synchronization — coordinating multiple concurrent activities that are
using shared state

Question: what are the right synchronization abstractions to make it
easy to build concurrent programs?

Answer will necessarily be a compromise :

* between making it easy to modify shared variables any time you
want and controlling when you can modify shared variables.

* between really flexible primitives that can be used in a lot of
different ways and simple primitives that can only be used one way
(but are more difficult to misuse)

Rules will seem a bit strange — why one definition and not another?

* no absolute answer

* history has shown that they are reasonably good — if you follow
these definitions, you will find writing correct code easier.

* for now just take them as a given; use it for a while; then, if you
can come up with something better, be my guest!

2. Shared object abstraction

[[PICTURE -- shared state, methods operating on shared state

-- example -- bounded buffer/producer consumer queue

-- methods: add(), remove()

-- state: linked list (or array or ...), fullCount, ...

-- Accessed by several threads --> must synchronize access]]

3. 2 “types” of synchronization

Convenient to break synchronization into two cases
(1) Mutual exclusion — only allow one thread to access a given set of
shared state at a time

E.g., bounded buffer

How do we do 1t?
Each shared object has lock and shared state variables

2 02/08/11

CS 372: Operating Systems Mike Dahlin

Public methods acquire the lock before reading/writing member
state variables

(2) Scheduling constraints — wait for some other thread to do
something

E.g., bounded buffer....

General problem

e.g., wait for other thread to finish, wait for other thread to produce
work, wait for other thread to consume work, wait for other thread
to accept a connection, wait for other thread to get bytes off disk,

How do we do it?
Need new synchronization primitive "Wait until X"

3 02/08/11

CS 372: Operating Systems Mike Dahlin

3k i o o sfe s s s o ok ok ok ok sfe sk s sk ok ok ok ok o s sk s ok ok sk sk sk sk sk sk

i 3 mi

3k i o o sfe s s s o ok ok ok ok sfe sk s sk ok ok ok ok o s sk s ok ok sk sk sk sk sk sk

4 02/08/11

CS 372: Operating Systems Mike Dahlin

3k i o ok sfe sk s s ok ok ok ok ok sfe sk s s ok ok o ok ofe s sk s ok ok sk sk sk sk sk sk

3k 34 o o s s s s ok ok ok ok ok sfe sk s s ok ok ok ok ofe s sk s ok ok ke sk sk sk sk sk

6-—Producer-consumer-with-bounded-buffer

5 02/08/11

Mike Dahlin

CS 372: Operating Systems

q
N
(
Q (
~ §
u ~
Py o
D H
(]
(
(@)
YH H
-H
q
~. {
S q
N
g
d
N u
~
~

IO 1T - UINT

ITOWITCT 17T -y t/LAL—

7

P S

o

H At
TP Ty
11~ +
o T 0

-; '\-I -I X Z
TiIrrcto Ty

. e

e 2 W

/ /

o L UT O

7
/ /

ma sz

TaT

PERANE I

~

annmanh

lllull_y

TIOWW

[y U UlrcT

Qplllut/lluJ_ A

7
/ /

+h A~ o

1313

roo

CII T 17T AL

LI O o UUL TT O

7

ol QN N~
] O pMpUTT

4

2 F A
1 CITCT 1T

. VAP NP
\\WAN2Z 7 \SZEawawr)

D ()

o

amntszDa £ £
blllt}b]ou_J_bJ_b_) e L

i Zal Vel ‘I’/\
ot C—COoOKC

m

~
1

/ /

1

/ / haalhm

alan

nao
1IN A\ B - Lo

Tl i n

lr

D ()

mitt AN~z
o cCxX=T(77

ITTTLIN T [g S

7
/ /

2 Wa

h
915 4 € N N7 R R i A) W)

LT W e e i 2 W L o 2 e W |

\.Ab_)_Lll\j

7

02/08/11

Mike Dahlin

CS 372: Operating Systems

+h A~y
O TITIT 1O

N £

/ /

AWAVAR

mitt AN~z

11
o

[y

[S N

LY

v\T77

T T T 2N e

ral
]

Norimara +h Ao

o

.
’

AWAVAA
\

£ 1 1D F L~
S S U R N S D J U R S SN PR SN R

CITCT 1T

CUOUIToUIntT o

T

\7

cnlen 20 oAb g A
o COKC—I 1t

—

n

/ /

IO I T LTI

1TIOVW

7

Vanl],/\
o COoOKC

2 fFf +hrh Al o
J N

/ /
7

D ()

£l 1D F L~

o~~~
I ITT O

[=J

7 CIICT T O

rorroogrrCcto. L (/7

alan

nao
1IN A S - Lo

Q11 ¥ n
o LT

/ / mal-a

D ()

mitt AN~z
o cCxX=T(77

ITTTLOIN T

7

a2 WaY

ma~h

L e e B 2 W 4

/
7

/

+hh A~
CIIT

IO I T LTI T

LA»_)_LJ.l\j

13

o lr

= + e~

Ve]’f\
COoC

CTLINT (&8 - UINT \AY m

nAaset o~~~ T + 170
T2 T t/bJ_b_)ull

/ /

AWAVAR

mitt AN~z

o
[=J

C UL IT

7

v\T77

T T T 2N e

m hal¥at
1§ 5\

r
[S N

oAz
=Ty

/ /
7

an 1’/\.
oK

roati11vrn

[S PR Uy U R S A

02/08/11

CS 372: Operating Systems Mike Dahlin

8 02/08/11

CS 372: Operating Systems Mike Dahlin

v
v

3 Probl " I Motivation £ .

9 02/08/11

CS 372: Operating Systems Mike Dahlin

10 02/08/11

CS 372: Operating Systems Mike Dahlin

9. Monitor definition

monitor — a lock and zero or more condition variables for managing
concurrent access to shared data

monitor = shared object -- I'll use these terms interchangeably

NOTE: Historically monitors were first a programming language
construct, where the monitor lock is automatically acquired on calling
any procedure in a C++ class. (Java does something like this — you
can specify that certain routines are synchronized) Book tends to
describe it this way.

But you don’t need this — monitors are also a set of programming
conventions that you should follow when doing thread programming
in C or C++ or Javacript or ... (or Modula c.f. Birrell): explicit calls to
locks and condition variables

I will teach the “manual” version of monitors (and require that you do
things manually on the projects) because I want to make sure it is
clear what is going on and why.

9.1 Lock
The lock provides mutual exclusion to the shared data

Lock::Acquire() -- wait until lock is free, then grab it
Lock::Release() — unlock; wake up anyone waiting in Acquire

Rules for using a lock

* Always acquire before accessing shared data structure
* Always release after finishing with shared data

* Lock is initially free

11 02/08/11

CS 372: Operating Systems Mike Dahlin

Simple example: a synchronized list

class Queue{
public:
add(Item *item);
Item *remove();
private:
Lock mutex;
List list;

b

Queue::add(Item *item){
mutex.Acquire(); //'lock before using shared data
list.add(item); // ok to access shared data
mutex.Release() // unlock after done w. shared data

b

Item *Queue::remove(){
Item *ret;

lock.Acquire(); //'lock before using shared data
if (list.notEmpty()) { // something on queue remove it
ret = list.remove();
b
else{
ret = NULL;
j
lock.Release(); //'unlock after done
return ret;

QUESTION: Why "ret"?

Aside:
If you have exceptions (as in Java), another variation is:
Foo(){

try{
lock.lock();

12 02/08/11

CS 372: Operating Systems Mike Dahlin

return item;

j

finally {
lock.unlock();

b

9.2 2.2 Condition variables

How do we change Queue::remove() to wait until something is on the
queue? How do we change Queue::add() to bound number of items in
queue (e.g., wait until there is room?)

Logically, want to transition to waiting state inside of critical section,
but if hold lock when transition to waiting, other threads won’t be able
to get in to add things to queue, to reenable the waiting thread

Key idea with condition variables: make it possible to transition to
waiting inside critical section, by atomically releasing lock at same
time we transition to waiting

Condition variable: a queue of threads waiting for something inside
a critical section

3 operations
Wait() — release lock; transition to waiting; reaquire lock
¢ releasing lock and transition to waiting are atomic
Signal() — wake up a waiter, if any
Broadcast() — wake up all waiters

RULE: must hold lock when doing condition variable operations

13 02/08/11

CS 372: Operating Systems Mike Dahlin

In lecture, I’ll follow convention: require lock as parameter to
condition variable operations. Get in the habit; other systems don’t
always require this

Some will tell you you can do signal outside of lock. IGNORE
THEM. This is only a (small) performance optimization, and it is
likely to lead you to write incorrect code.

A synchronized queue with condition variables
class Queue{

static const int MAX;
private:

Lock mutex;

Cond moreStuff;

Cond moreRoom;

List list;

b

Queue::add(Item *item){
mutex.Acquire();
while(list.count == Queue::MAX){

moreRoom.wait(&mutex);

}
list.insert(item);
assert(list.count <= Queue::MAX);
moreStuff.signal(&mutex);
mutex.Release();

b

Queue::remove(){
mutex.Acquire();
while (list.count == 0){
moreStuff.wait(&lock); // release lock; go to sleep; require

b

ret = list.remove();

assert(ret != NULL);

moreRoom.signal(&mutex);

mutex.Release();

return ret;

14 02/08/11

CS 372: Operating Systems Mike Dahlin

9.3 Mesa/Hansen v. Hoare monitors
Need to be careful about precise defn of signal and wait

Mesa/Hansen-style: (most real operating systems)
Signaler keeps lock, processor
Waiter simply put on ready queue, with no special priority.
(In other words, waiter may have to wait to re-acquire lock)

Hoare-style: (most textbooks)
Signaler gives up lock and CPU to waiter; waiter runs immediately
Waiter gives up lock, processor back to signaler, when it exits
critical section or if it waits again

Code above for synchronized queuing happens to work with either
style, but for many programs it matters which you are using.

With Hoare-style, can change “while” in RemoveFromQueue to “if”
because the waiter only gets woken up if item on the list.

With Mesa-style, waiter may need to wait again after being woken up
b/c some other thread may have acquired the lock and removed the
item before the original waiting thread gets to the front of the ready
queue.

This means that as a general principle, you always need to check the
condition after the wait, with mesa-style monitors (e.g., use a “while”
instead of an “if”)

Answer: Hansen

Why (simple): That's what systems have

Why (deeper): That's what is better/right IMHO)
(1) That's what systems have

(2) more modular -- safety property is local

(3) more flexible

15 02/08/11

CS 372: Operating Systems Mike Dahlin

code written to work under Hansen works under Hoare, but not
vice versa
(4) spurious wakeups

real implementations (e.g.,, Java, Posix) say that "cond::wait()"
can return if (a) cond::signal() is called, (b) cond::broadcast() is
called, or (¢) other, implementation-specific situations

Always use while(...){cv.wait(*lock);}

Admin — 3 min

Project

16 02/08/11

CS 372: Operating Systems Mike Dahlin

10. Implementing CV

Simple uniprocessor implementation:

class Cond{
private:
Queue waiting;

public:

void Cond::Wait(Lock *lock){
disable interrupts;
readyList->remove(current TCB);
waiting.add(current TCB);
lock->release();
switch();
enable interrupts;
lock->Acquire();

}

void Cond::Signal(Lock *lock){
disable interrupts;
if(waiting.notEmpty()){
TCB enabled = waiting.remove();
readyList->add(enabled);
}

enable interrupts;

}

void Cond: :broadcast(Lock *lock){
disable interrupts;
while(waiting.notEmpty()){
TCB enabled = waiting.remove();
readyList->add(enabled);
}

enable interrupts;

}

3k 3 s sk sfe s s s st ke s sk sk sfe s s sk sk s sie sk sk s s s sk sk sk sk sk sk sk sk

Summary - 1 min
sk sk sk s sk sk skeoskeosle sk sk sk st sk s sk sk skeoskeoske st sk sk sk sk skeoso s skeskeoskoskok

2 types of synchronization

17 02/08/11

CS 372: Operating Systems Mike Dahlin

mutual exclusion
sheduling/waiting

Monitor = shared object = lock + [CV]* + state

18 02/08/11

