
CS 372: Operating Systems Mike Dahlin

 1 02/08/11

Lecture #8: Semaphores Shared objects, Monitors,
Condition Variables, and Bounded buffer

Review -- 1 min

• Hardware support for synchronization
• Building higher-level synchronization programming
• abstractions on top of hardware support (e.g., Lock)

Outline - 1 min

Definition of semaphore
Example of programming w. semaphore
 Semaphore expresses 2 types of synchronization

 mutex (like lock)
 synchronization (wait for some event)

Simple implementation (time permitting)

Two kinds of synchronization
Monitor = lock + c.v. + shared state = shared object
Simple implementation

Preview - 1 min

How to program with shared objects

Lecture - 32 min

1. Motivation
writing concurrent programs hard – coordinate updates to shared
memory

CS 372: Operating Systems Mike Dahlin

 2 02/08/11

synchronization – coordinating multiple concurrent activities that are
using shared state

Question: what are the right synchronization abstractions to make it
easy to build concurrent programs?

Answer will necessarily be a compromise :
• between making it easy to modify shared variables any time you

want and controlling when you can modify shared variables.
• between really flexible primitives that can be used in a lot of

different ways and simple primitives that can only be used one way
(but are more difficult to misuse)

Rules will seem a bit strange – why one definition and not another?
• no absolute answer
• history has shown that they are reasonably good – if you follow

these definitions, you will find writing correct code easier.
• for now just take them as a given; use it for a while; then, if you

can come up with something better, be my guest!

2. Shared object abstraction

[[PICTURE -- shared state, methods operating on shared state

-- example -- bounded buffer/producer consumer queue
-- methods: add(), remove()
-- state: linked list (or array or ...), fullCount, ...
-- Accessed by several threads --> must synchronize access]]

3. 2 “types” of synchronization
Convenient to break synchronization into two cases
(1) Mutual exclusion – only allow one thread to access a given set of

shared state at a time

E.g., bounded buffer

How do we do it?
Each shared object has lock and shared state variables

CS 372: Operating Systems Mike Dahlin

 3 02/08/11

Public methods acquire the lock before reading/writing member
state variables

(2) Scheduling constraints – wait for some other thread to do
something

E.g., bounded buffer....

General problem
e.g., wait for other thread to finish, wait for other thread to produce
work, wait for other thread to consume work, wait for other thread
to accept a connection, wait for other thread to get bytes off disk,
…

How do we do it?
Need new synchronization primitive "Wait until X"

4. Definition of Semaphores
like a generalized lock
first defined by Dijkstra in late 60’s
originally main synchronization primitive in Unix (now others
available)

semaphore – has a non-negative integer value and supports the
following two operations:
semaphore->P() – an atomic operation that waits for the semaphore to
become positive; then decrements it by 1
semaphore->V() – an atomic operation that increments the semaphore
by 1, waking up a waiting P if any

Like integers, except:
1) No negative values
2) Only operations are P() and V() – can’t read or write the value

(except to set it initially)
3) operations must be atomic – two P’s that occur together can’t

decrement the value below zero. Similarly, thread going to sleep in
P won’t miss wakeup from V, even if they both happen at about
the same time

CS 372: Operating Systems Mike Dahlin

 4 02/08/11

binary semaphore – instead of an integer value, has a boolean value.
P waits until value is 1, then sets it to 0
V sets value to 1, waking up a waiting P if any

5. Two uses of semaphores

5.1 mutual exclusion
When semaphores are used for mutual exclusion, the semaphore has
an initial value of 1, and P() is called before the critical section, and
V() is called after the critical section

semaphore = new Semaphore(1);
…
semaphore->P();
// critical section goes here
semaphore->V();

5.2 scheduling constraints

semaphores can be used to describe general scheduling constraints –
e.g. they provide a way to wait for something

usually in this case (but not always) the initial value for the semaphore
is 0

Example: Wait for another thread to get done processing a request

Admin - 3 min

CS 372: Operating Systems Mike Dahlin

 5 02/08/11

Lecture - 30 min

6. Producer-consumer with bounded buffer

6.1 problem definition
producer puts things into a shared buffer
consumer takes them out

need synchronization for coordinating producer and consumer

e.g. cpp | cc1 | cc2 | as
e.g., read/write network/disk (e.g., web server reads from disk, sends
to network while your web client reads from network and draws to
screen)

Don’t want producer and consumer to operate in lock-step, so put a
fixed sized buffer between them.
Synchronization – producer must wait if buffer is full; consumer must
wait if buffer is empty

e.g. coke machine
producer is delivery person
consumer is students and faculty

Notice: shared object (coke machine) separate from threads (delivery
person, students, faculty). Shared object coordinates activity of
threads.
Common confusion on project – try to do the synchronization within
the threads’ code. No, the synchronization happens within the shared
objects. “Let the shared objects do the work.”

Solution uses semaphores for both mutex and scheduling

6.2 Correctness constraints for solution
Synchronization problems have semaphores represent 2 types of
constraint

CS 372: Operating Systems Mike Dahlin

 6 02/08/11

 mutual exclusions
 wait for some event

When you start working on a synchronization problem, first define
the mutual exclusion constraints, then ask “when does a thread
wait”, and create a separate synchronization variable representing
each constraint

QUESTION: what are the constraints for bounded buffer?
1) only one thread can manipulate buffer queue at a time
mutual exclusion
2) consumer must wait for producer to fill buffers if none full
scheduling constraint
3) producer must wait for consumer to empty buffers if all full
scheduling constraint

Use a separate semaphore for each constraint

Semaphore mutex;
Semaphore fullBuffers; // consumer’s constr
 // if 0 no coke
Semaphore emptyBuffers; // producer’s constr.
 // if 0, nowhere to put more coke

6.3 Solution
Class CokeMachine{

Semaphore new mutex(1);// no one using machine
Semaphore new fullBuffers(0); // initally no coke!
Semaphore new emptyBuffers(numBuffers);
 // initially # empty slots
 // semaphore used to count how many
 // resources there are

Produce(Coke *coke){
 emptyBuffers.P(); // check if there is space
 // for more coke
 mutex.P(); // make sure no one else
 // using machine

CS 372: Operating Systems Mike Dahlin

 7 02/08/11

 put 1 coke in machine

 mutex.V(); // OK for others to use

// machine
 fullBuffers.V(); // tell consumers there is
 // now a coke in machine
}

Coke *Consume(){
 fullBuffers.P(); // check if there’s a coke
 mutex.P(); // make sure no one else
 // using the machine
 coke = take a coke out
 mutex.V(); // next person’s turn
 emptyBuffers.V(); // tell producer we’re
 // ready for more
 return coke;
}
}

6.4 Questions
Why does producer P and V different semaphores than consumer?

Is order of Ps important?

Is order of V’s important?

What if we have 2 producers or 2 consumers? Do we need to change
anything?

CS 372: Operating Systems Mike Dahlin

 8 02/08/11

7. implementing semaphores
last time: implement locks by turning off interrupts (or test&set)

Question: how would you implement semaphores? (let's solve
problem with the “turning off interrupts” technique:

Here was lock code:
member variables:
 int value
 queue *queue;

Lock::Lock()
 value = FREE;
 queue = new Queue();

Lock::Acquire()
 disable interrupts
 if (value == BUSY)

put thread’s TCB on queue of threads
waiting for lock
switch

else
 value = BUSY
enable interrupts

Lock::Release()

disable interrupts
if anyone on wait queue{
 take a waiting thread’s TCB off queue
 put it on ready queue
else
 value = FREE;
enable interrupts

CS 372: Operating Systems Mike Dahlin

 9 02/08/11

Fill in the semaphore code:
Member variables:

Semaphore::Semaphore() // constructor

Semaphore::P()
//
// Thread that calls P() should wait for the
// semaphore to become positive and then
// decrement it by 1
//

Semaphore::V()
//
// A thread that calls V() should increment
// the semaphore by 1, waking up a thread
// waiting in P() if any
//

8. Problems with semaphores/Motivation for monitors

CS 372: Operating Systems Mike Dahlin

 10 02/08/11

Semaphores a huge step up – just think of trying to do bounded buffer
problem with just loads and stores
 (busy waiting?)

3 problems with semaphores
Problem 1 – semaphores are dual purpose – mutex, scheduling
constraints
 hard to read code
 hard to get code right (initial values; order of P() for different
semaphores, …)

Problem 2 -- Semaphores have “hidden” internal state
Problem 3 – careful interleaving of “synchronization” and “mutex”
semaphores

 waiting for a condition is independent of mutex locks (to examine
shared variables)
 either cleverly define condition to map exactly to semaphore
semantics (e.g., “12 buffers so initialize semaphore to 12” what if you
don’t know ahead of time how many buffers?) OR clever code
(interleaving mutex V() with check condition P()) OR both

idea of monitor – separate these concerns: use locks for mutex and
condition variables for scheduling constraints

philosophy – think about Join() example with producer/consumer. Just
one line of code to make it work with semaphores, but need to think a
bit to convince self it really works – relying on semaphore to do both
mutex (via atomicity) and condition. What happens when you change
the code later to, say, give different priorities to different consumers?

CS 372: Operating Systems Mike Dahlin

 11 02/08/11

9. Monitor definition
monitor – a lock and zero or more condition variables for managing
concurrent access to shared data

monitor = shared object -- I'll use these terms interchangeably

NOTE: Historically monitors were first a programming language
construct, where the monitor lock is automatically acquired on calling
any procedure in a C++ class. (Java does something like this – you
can specify that certain routines are synchronized) Book tends to
describe it this way.

But you don’t need this – monitors are also a set of programming
conventions that you should follow when doing thread programming
in C or C++ or Javacript or … (or Modula c.f. Birrell): explicit calls to
locks and condition variables

I will teach the “manual” version of monitors (and require that you do
things manually on the projects) because I want to make sure it is
clear what is going on and why.

9.1 Lock
The lock provides mutual exclusion to the shared data

Lock::Acquire() -- wait until lock is free, then grab it
Lock::Release() – unlock; wake up anyone waiting in Acquire

Rules for using a lock
• Always acquire before accessing shared data structure
• Always release after finishing with shared data
• Lock is initially free

CS 372: Operating Systems Mike Dahlin

 12 02/08/11

Simple example: a synchronized list

class Queue{
 public:
 add(Item *item);
 Item *remove();
private:
 Lock mutex;
 List list;
}

Queue::add(Item *item){
 mutex.Acquire(); // lock before using shared data
 list.add(item); // ok to access shared data
 mutex.Release() // unlock after done w. shared data
}

Item *Queue::remove(){
 Item *ret;

 lock.Acquire(); // lock before using shared data
 if (list.notEmpty()) { // something on queue remove it
 ret = list.remove();
 }
 else{
 ret = NULL;
 }
 lock.Release(); // unlock after done
 return ret;
}

QUESTION: Why "ret"?

Aside:
If you have exceptions (as in Java), another variation is:
Foo(){
 try{
 lock.lock();

CS 372: Operating Systems Mike Dahlin

 13 02/08/11

 …
 return item;
 }
 finally{
 lock.unlock();
 }

9.2 2.2 Condition variables
How do we change Queue::remove() to wait until something is on the
queue? How do we change Queue::add() to bound number of items in
queue (e.g., wait until there is room?)

Logically, want to transition to waiting state inside of critical section,
but if hold lock when transition to waiting, other threads won’t be able
to get in to add things to queue, to reenable the waiting thread

(Recall that for semaphores, we had essentially this problem and we
solved it by cleverly doing our "accounting" for synchronization
before we grabbed the lock for mutex. This type of subtle reasoning in
programs worries me.)

Key idea with condition variables: make it possible to transition to
waiting inside critical section, by atomically releasing lock at same
time we transition to waiting

Condition variable: a queue of threads waiting for something inside
a critical section

3 operations
Wait() – release lock; transition to waiting; reaquire lock

♦ releasing lock and transition to waiting are atomic
Signal() – wake up a waiter, if any
Broadcast() – wake up all waiters

RULE: must hold lock when doing condition variable operations

CS 372: Operating Systems Mike Dahlin

 14 02/08/11

In lecture, I’ll follow convention: require lock as parameter to
condition variable operations. Get in the habit; other systems don’t
always require this

Some will tell you you can do signal outside of lock. IGNORE
THEM. This is only a (small) performance optimization, and it is
likely to lead you to write incorrect code.

A synchronized queue with condition variables
class Queue{
 ...
 static const int MAX;
 private:
 Lock mutex;
 Cond moreStuff;
 Cond moreRoom;
 List list;
}

Queue::add(Item *item){
 mutex.Acquire();
 while(list.count == Queue::MAX){
 moreRoom.wait(&mutex);
 }
 list.insert(item);
 assert(list.count <= Queue::MAX);
 moreStuff.signal(&mutex);
 mutex.Release();
}

Queue::remove(){
 mutex.Acquire();
 while (list.count == 0){
 moreStuff.wait(&lock); // release lock; go to sleep; require
 }
 ret = list.remove();
 assert(ret != NULL);
 moreRoom.signal(&mutex);
 mutex.Release();
 return ret;

CS 372: Operating Systems Mike Dahlin

 15 02/08/11

}

9.3 Mesa/Hansen v. Hoare monitors
Need to be careful about precise defn of signal and wait

Mesa/Hansen-style: (most real operating systems)
 Signaler keeps lock, processor
 Waiter simply put on ready queue, with no special priority.
 (In other words, waiter may have to wait to re-acquire lock)

Hoare-style: (most textbooks)
 Signaler gives up lock and CPU to waiter; waiter runs immediately
 Waiter gives up lock, processor back to signaler, when it exits
critical section or if it waits again

Code above for synchronized queuing happens to work with either
style, but for many programs it matters which you are using.

With Hoare-style, can change “while” in RemoveFromQueue to “if”
because the waiter only gets woken up if item on the list.
With Mesa-style, waiter may need to wait again after being woken up
b/c some other thread may have acquired the lock and removed the
item before the original waiting thread gets to the front of the ready
queue.

This means that as a general principle, you always need to check the
condition after the wait, with mesa-style monitors (e.g., use a “while”
instead of an “if”)

Answer: Hansen
Why (simple): That's what systems have
Why (deeper): That's what is better/right (IMHO)
(1) That's what systems have
(2) more modular -- safety property is local
(3) more flexible

CS 372: Operating Systems Mike Dahlin

 16 02/08/11

 code written to work under Hansen works under Hoare, but not
vice versa
(4) spurious wakeups
 real implementations (e.g.,, Java, Posix) say that "cond::wait()"
can return if (a) cond::signal() is called, (b) cond::broadcast() is
called, or (c) other, implementation-specific situations

Always use while(...){cv.wait(*lock);}

Admin – 3 min

Project

CS 372: Operating Systems Mike Dahlin

 17 02/08/11

10. Implementing CV

Simple uniprocessor implementation:

class Cond{
private:
 Queue waiting;

public:
void Cond::Wait(Lock *lock){
 disable interrupts;
 readyList->remove(current TCB);
 waiting.add(current TCB);
 lock->release();
 switch();
 enable interrupts;
 lock->Acquire();
}

void Cond::Signal(Lock *lock){
 disable interrupts;
 if(waiting.notEmpty()){
 TCB enabled = waiting.remove();
 readyList->add(enabled);
 }
 enable interrupts;
}

void Cond::broadcast(Lock *lock){
 disable interrupts;
 while(waiting.notEmpty()){
 TCB enabled = waiting.remove();
 readyList->add(enabled);
 }
 enable interrupts;
}

Summary - 1 min

2 types of synchronization

CS 372: Operating Systems Mike Dahlin

 18 02/08/11

 mutual exclusion
 sheduling/waiting
semaphore can be used for both (is this good?)

Semaphore operations
 P()
 V()
 Note: you can’t ask the value of a semaphore – only can do P()
and V()

Semaphore built on same hardware primitives as lock using
essentially same techniques

Monitor = shared object = lock + [CV]* + state

