
C for Java Programmers

Advanced Programming

dahlin
Text Box
From Henning Schulzrinne
http://www1.cs.columbia.edu/~hgs/teaching/ap/slides/CforJavaProgrammers.ppt

Jan-11-10 Advanced Programming
Spring 2002

2

Credits

  Software Construction (J. Shepherd)
  Operating Systems at Cornell (Indranil Gupta)

Jan-11-10 Advanced Programming
Spring 2002

3

Overview

  Why learn C after Java?
  A brief background on C
  C preprocessor
  Modular C programs

Jan-11-10 Advanced Programming
Spring 2002

4

Why learn C (after Java)?

  Both high-level and low-level language
  OS: user interface to kernel to device driver

  Better control of low-level mechanisms
  memory allocation, specific memory locations

  Performance sometimes better than Java (Unix, NT!)
  usually more predictable (also: C vs. C++)

  Java hides many details needed for writing OS code
 But,….

  Memory management responsibility
  Explicit initialization and error detection
  generally, more lines for same functionality
  More room for mistakes

Jan-11-10 Advanced Programming
Spring 2002

5

Why learn C, cont’d.

  Most older code is written in C (or C++)
  Linux, *BSD
  Windows
  Most Java implementations
  Most embedded systems

  Philosophical considerations:
  Being multi-lingual is good!
  Should be able to trace program from UI to

assembly (EEs: to electrons)

Jan-11-10 Advanced Programming
Spring 2002

6

C pre-history

  1960s: slew of new languages
  COBOL for commercial programming (databases)
  FORTRAN for numerical and scientific programs
  PL/I as second-generation unified language
  LISP, Simula for CS research, early AI
  Assembler for operating systems and timing-

critical code

  Operating systems:
  OS/360
  MIT/GE/Bell Labs Multics (PL/I)

Jan-11-10 Advanced Programming
Spring 2002

7

C pre-history

  Bell Labs (research arm of Bell System ->
AT&T -> Lucent) needed own OS

  BCPL as Multics language
  Ken Thompson: B
  Unix = Multics – bits
  Dennis Ritchie: new language = B + types
  Development on DEC PDP-7 with 8K 16-bit

words

Jan-11-10 Advanced Programming
Spring 2002

8

C history
  C

  Dennis Ritchie in late 1960s and early 1970s
  systems programming language

  make OS portable across hardware platforms
  not necessarily for real applications – could be written in

Fortran or PL/I

  C++
  Bjarne Stroustrup (Bell Labs), 1980s
  object-oriented features

  Java
  James Gosling in 1990s, originally for embedded systems
  object-oriented, like C++
  ideas and some syntax from C

Jan-11-10 Advanced Programming
Spring 2002

9

C for Java programmers

  Java is mid-90s high-level OO language
  C is early-70s procedural language
  C advantages:

  Direct access to OS primitives (system calls)
  Fewer library issues – just execute

  (More) C disadvantages:
  language is portable, APIs are not
  memory and “handle” leaks
  preprocessor can lead to obscure errors

Jan-11-10 Advanced Programming
Spring 2002

10

C vs. C++

  We’ll cover both, but C++ should be largely
familiar

  Very common in Windows
  Possible to do OO-style programming in C
  C++ can be rather opaque: encourages

“clever” programming

Jan-11-10 Advanced Programming
Spring 2002

11

Aside: “generations” and
abstraction levels

  Binary, assembly
  Fortran, Cobol
  PL/I, APL, Lisp, …
  C, Pascal, Ada
  C++, Java, Modula3
  Scripting: Perl, Tcl, Python, Ruby, …
  XML-based languages: CPL, VoiceXML

Jan-11-10 Advanced Programming
Spring 2002

12

C vs. Java
Java C
object-oriented function-oriented
strongly-typed can be overridden

polymorphism (+, ==) very limited (integer/float)

classes for name space (mostly) single name space, file-
oriented

macros are external, rarely
used

macros common
(preprocessor)

layered I/O model byte-stream I/O

Jan-11-10 Advanced Programming
Spring 2002

13

C vs. Java
Java C

automatic memory
management

function calls (C++ has
some support)

no pointers pointers (memory addresses)
common

by-reference, by-value by-value parameters

exceptions, exception
handling

if (f() < 0) {error}
OS signals

concurrency (threads) library functions

Jan-11-10 Advanced Programming
Spring 2002

14

C vs. Java
Java C

length of array on your own

string as type just bytes (char []),
with 0 end

dozens of common
libraries

OS-defined

Jan-11-10 Advanced Programming
Spring 2002

15

C vs. Java

  Java program
  collection of classes
  class containing main method is starting class
  running java StartClass invokes
StartClass.main method

  JVM loads other classes as required

Jan-11-10 Advanced Programming
Spring 2002

16

C program

  collection of functions
  one function – main() – is starting function
  running executable (default name a.out)

starts main function
  typically, single program with all user code

linked in – but can be dynamic libraries
(.dll, .so)

Jan-11-10 Advanced Programming
Spring 2002

17

C vs. Java
public class hello

{
 public static void main

(String args []) {

 System.out.println
 (“Hello world”);
 }
}

#include <stdio.h>

int main(int argc, char
*argv[])

{
 puts(“Hello, World”);
 return 0;
}

Jan-11-10 Advanced Programming
Spring 2002

18

What does this C program do ?
#include <stdio.h>
struct list{int data; struct list *next};
struct list *start, *end;
void add(struct list *head, struct list *list, int data};
int delete(struct list *head, struct list *tail);

void main(void){
 start=end=NULL;
 add(start, end, 2); add(start, end, 3);
 printf(“First element: %d”, delete(start, end));
}

void add(struct list *head, struct list *tail, int data}{
 if(tail==NULL){
 head=tail=malloc(sizeof(struct list));
 head->data=data; head->next=NULL;
 }
 else{
 tail->next= malloc(sizeof(struct list));
 tail=tail->next; tail->data=data; tail->next=NULL;
 }
}

Terrified ? Come
back to this at the
end of the slide
set and work
through it.

Jan-11-10 Advanced Programming
Spring 2002

19

What does this C program, do –
cont’d?

void delete (struct list *head, struct list *tail){
 struct list *temp;
 if(head==tail){
 free(head); head=tail=NULL;
 }
 else{
 temp=head->next; free(head); head=temp;
 }
}

Jan-11-10 Advanced Programming
Spring 2002

20

Simple example

#include <stdio.h>

void main(void)
{
 printf(“Hello World. \n \t and you ! \n ”);

 /* print out a message */
 return;
}

$Hello World.
 and you !

$

Jan-11-10 Advanced Programming
Spring 2002

21

Dissecting the example
  #include <stdio.h>

  include header file stdio.h
  # lines processed by pre-processor
  No semicolon at end
  Lower-case letters only – C is case-sensitive

  void main(void){ … } is the only code executed
  printf(“ /* message you want printed */ ”);
  \n = newline, \t = tab
  \ in front of other special characters within printf.

  printf(“Have you heard of \”The Rock\” ? \n”);

Jan-11-10 Advanced Programming
Spring 2002

22

Executing the C program
int main(int argc, char argv[])

  argc is the argument count
  argv is the argument vector

  array of strings with command-line arguments

  the int value is the return value
  convention: 0 means success, > 0 some error
  can also declare as void (no return value)

Jan-11-10 Advanced Programming
Spring 2002

23

Executing a C program

  Name of executable + space-separated
arguments

  $ a.out 1 23 ‘third arg’

4

a.out 1 23 “third arg”

argc argv

Jan-11-10 Advanced Programming
Spring 2002

24

Executing a C program

  If no arguments, simplify:
int main() {
 puts(“Hello World”);

 exit(0);

}

  Uses exit() instead of return – same thing.

Jan-11-10 Advanced Programming
Spring 2002

25

Executing C programs
  Scripting languages are usually interpreted

  perl (python, Tcl) reads script, and executes it
  sometimes, just-in-time compilation – invisible to

user

  Java programs semi-interpreted:
  javac converts foo.java into foo.class
  not machine-specific
  byte codes are then interpreted by JVM

  C programs are normally compiled and linked:
  gcc converts foo.c into a.out
  a.out is executed by OS and hardware

Jan-11-10 Advanced Programming
Spring 2002

26

Executing C programs

perl

javac

gcc,
g++

java

a.out

x.pl

x.java

x.c,
x.cc

data

args

results

Jan-11-10 Advanced Programming
Spring 2002

27

The C compiler gcc

  gcc invokes C compiler
  gcc translates C program into executable for

some target
  default file name a.out
  also “cross-compilation”
$ gcc hello.c
$ a.out
Hello, World!

Jan-11-10 Advanced Programming
Spring 2002

28

gcc

  Behavior controlled by command-line
switches:

-o file output file for object or executable

-Wall all warnings – use always!

-c compile single module (non-main)

-g insert debugging code (gdb)

-p insert profiling code

-l library

-E preprocessor output only

Jan-11-10 Advanced Programming
Spring 2002

29

Using gcc

  Two-stage compilation
  pre-process & compile: gcc –c hello.c
  link: gcc –o hello hello.o

  Linking several modules:
gcc –c a.c  a.o
gcc –c b.c  b.o
gcc –o hello a.o b.o

  Using math library
  gcc –o calc calc.c -lm

Jan-11-10 Advanced Programming
Spring 2002

30

Error reporting in gcc

  Multiple sources
  preprocessor: missing include files
  parser: syntax errors
  assembler: rare
  linker: missing libraries

Jan-11-10 Advanced Programming
Spring 2002

31

Error reporting in gcc

  If gcc gets confused, hundreds of messages
  fix first, and then retry – ignore the rest

  gcc will produce an executable with warnings
  don’t ignore warnings – compiler choice is often

not what you had in mind

  Does not flag common mindos
  if (x = 0) vs. if (x == 0)

Jan-11-10 Advanced Programming
Spring 2002

32

gcc errors

  Produces object code for each module
  Assumes references to external names will be

resolved later
  Undefined names will be reported when

linking:
 undefined symbol first referenced in file
 _print program.o

 ld fatal: Symbol referencing errors
 No output written to file.

Jan-11-10 Advanced Programming
Spring 2002

33

C preprocessor

  The C preprocessor (cpp) is a macro-
processor which
  manages a collection of macro definitions
  reads a C program and transforms it
  Example:
#define MAXVALUE 100
#define check(x) ((x) < MAXVALUE)
if (check(i) { …}

becomes
if ((i) < 100) {…}

Jan-11-10 Advanced Programming
Spring 2002

34

C preprocessor

  Preprocessor directives start with # at
beginning of line:
  define new macros
  input files with C code (typically, definitions)
  conditionally compile parts of file

  gcc –E shows output of preprocessor
  Can be used independently of compiler

Jan-11-10 Advanced Programming
Spring 2002

35

C preprocessor
#define name const-expression
#define name (param1,param2,…) expression
#undef symbol
  replaces name with constant or expression
  textual substitution
  symbolic names for global constants
  in-line functions (avoid function call

overhead)
  mostly unnecessary for modern compilers

  type-independent code

Jan-11-10 Advanced Programming
Spring 2002

36

C preprocessor

  Example: #define MAXLEN 255
  Lots of system .h files define macros
  invisible in debugger
  getchar(), putchar() in stdio library
 Caution: don’t treat macros like function calls
#define valid(x) ((x) > 0 && (x) < 20)

if (valid(x++)) {…}
valid(x++) -> ((x++) > 0 && (x++) < 20)

Jan-11-10 Advanced Programming
Spring 2002

37

C preprocessor –file inclusion
#include “filename.h”
#include <filename.h>

  inserts contents of filename into file to be compiled
  “filename” relative to current directory
  <filename> relative to /usr/include
  gcc –I flag to re-define default
  import function prototypes (cf. Java import)
  Examples:

#include <stdio.h>
#include “mydefs.h”
#include “/home/alice/program/defs.h”

Jan-11-10 Advanced Programming
Spring 2002

38

C preprocessor – conditional
compilation

#if expression
code segment 1
#else
code segment 2
#endif
  preprocessor checks value of expression
  if true, outputs code segment 1, otherwise code segment 2
  machine or OS-dependent code
  can be used to comment out chunks of code – bad!

#define OS linux
…
#if OS == linux
 puts(“Linux!”);
#else
 puts(“Something else”);
#endif

Jan-11-10 Advanced Programming
Spring 2002

39

C preprocessor - ifdef

  For boolean flags, easier:
#ifdef name
code segment 1
#else
code segment 2
#endif

  preprocessor checks if name has been
defined
  #define USEDB

  if so, use code segment 1, otherwise 2

Jan-11-10 Advanced Programming
Spring 2002

40

Advice on preprocessor
  Limit use as much as possible

  subtle errors
  not visible in debugging
  code hard to read

  much of it is historical baggage
  there are better alternatives for almost everything:

  #define INT16 -> type definitions
  #define MAXLEN -> const
  #define max(a,b) -> regular functions
  comment out code -> CVS, functions

  limit to .h files, to isolate OS & machine-specific code

Jan-11-10 Advanced Programming
Spring 2002

41

Comments

  /* any text until */
  // C++-style comments – careful!
  no /** */, but doc++ has similar

conventions
  Convention for longer comments:

/*
 * AverageGrade()
 * Given an array of grades, compute the average.
 */

  Avoid **** boxes – hard to edit, usually look
ragged.

Jan-11-10 Advanced Programming
Spring 2002

42

Numeric data types
type bytes

(typ.)
range

char 1 -128 … 127

short 2 -65536…65535

int, long 4 -2,147,483,648 to 
2,147,483,647 

long long 8 264 

float 4 3.4E+/-38 (7 digits) 

double 8 1.7E+/-308 (15 digits) 

Jan-11-10 Advanced Programming
Spring 2002

43

Remarks on data types

  Range differs – int is “native” size, e.g., 64
bits on 64-bit machines, but sometimes int
= 32 bits, long = 64 bits

  Also, unsigned versions of integer types
  same bits, different interpretation

  char = 1 “character”, but only true for ASCII
and other Western char sets

Jan-11-10 Advanced Programming
Spring 2002

44

#include <stdio.h>

void main(void)
{
 int nstudents = 0; /* Initialization, required */

 printf(“How many students does Columbia
have ?:”);
 scanf (“%d”, &nstudents); /* Read input */
 printf(“Columbia has %d students.\n”, nstudents);

 return ;
}

$ How many students does Columbia have ?: 20000 (enter)
Columbia has 20000 students.

Example

Jan-11-10 Advanced Programming
Spring 2002

45

#include <stdio.h>
void main(void)
{
 int i,j = 12; /* i not initialized, only j */
 float f1,f2 = 1.2;

 i = (int) f2; /* explicit: i <- 1, 0.2 lost */
 f1 = i; /* implicit: f1 <- 1.0 */

 f1 = f2 + (int) j; /* explicit: f1 <- 1.2 + 12.0 */
 f1 = f2 + j; /* implicit: f1 <- 1.2 + 12.0 */
}

Type conversion

Jan-11-10 Advanced Programming
Spring 2002

46

Explicit and implicit conversions

  Implicit: e.g., s = a (int) + b (char)
  Promotion: char -> short -> int -> …
  If one operand is double, the other is made
double

  If either is float, the other is made float,
etc.

  Explicit: type casting – (type)
  Almost any conversion does something – but

not necessarily what you intended

Jan-11-10 Advanced Programming
Spring 2002

47

Type conversion
int x = 100000;
short s;

s = x;
printf(“%d %d\n”, x, s);

100000 -31072

Jan-11-10 Advanced Programming
Spring 2002

48

C – no booleans

  C doesn’t have booleans
  Emulate as int or char, with values 0 (false)

and 1 or non-zero (true)
  Allowed by flow control statements:

if (n = 0) {
 printf(“something wrong”);
}

  Assignment returns zero -> false

Jan-11-10 Advanced Programming
Spring 2002

49

User-defined types
  typedef gives names to types:

typedef short int smallNumber;
typedef unsigned char byte;
typedef char String[100];

smallNumber x;
byte b;
String name;

Jan-11-10 Advanced Programming
Spring 2002

50

Defining your own boolean
typedef char boolean;
#define FALSE 0

#define TRUE 1

  Generally works, but beware:
check = x > 0;
if (check == TRUE) {…}

  If x is positive, check will be non-zero, but
may not be 1.

Jan-11-10 Advanced Programming
Spring 2002

51

Enumerated types
  Define new integer-like types as enumerated types:

typedef enum {
 Red, Orange, Yellow, Green, Blue, Violet
} Color;
enum weather {rain, snow=2, sun=4};

  look like C identifiers (names)
  are listed (enumerated) in definition
  treated like integers

  can add, subtract – even color + weather
  can’t print as symbol (unlike Pascal)
  but debugger generally will

Jan-11-10 Advanced Programming
Spring 2002

52

Enumerated types

  Just syntactic sugar for ordered collection of
integer constants:
typedef enum {
 Red, Orange, Yellow
} Color;

is like
#define Red 0
#define Orange 1
#define Yellow 2

  typedef enum {False, True} boolean;

Jan-11-10 Advanced Programming
Spring 2002

53

Objects (or lack thereof)
  C does not have objects (C++ does)
  Variables for C’s primitive types are defined very

similarly:
short int x;

char ch;

float pi = 3.1415;

float f, g;

  Variables defined in {} block are active only in block
  Variables defined outside a block are global (persist

during program execution), but may not be globally
visible (static)

Jan-11-10 Advanced Programming
Spring 2002

54

Data objects

  Variable = container that can hold a value
  in C, pretty much a CPU word or similar

  default value is (mostly) undefined – treat as
random
  compiler may warn you about uninitialized

variables
  ch = ‘a’; x = x + 4;
  Always pass by value, but can pass address

to function:
scanf(“%d%f”, &x, &f);

Jan-11-10 Advanced Programming
Spring 2002

55

Data objects
  Every data object in C has

  a name and data type (specified in definition)
  an address (its relative location in memory)
  a size (number of bytes of memory it occupies)
  visibility (which parts of program can refer to it)
  lifetime (period during which it exists)

  Warning:
int *foo(char x) {

 return &x;

}

pt = foo(x);

*pt = 17;

Jan-11-10 Advanced Programming
Spring 2002

56

Data objects

  Unlike scripting languages and Java, all C
data objects have a fixed size over their
lifetime
  except dynamically created objects

  size of object is determined when object is
created:
  global data objects at compile time (data)
  local data objects at run-time (stack)
  dynamic data objects by programmer (heap)

Jan-11-10 Advanced Programming
Spring 2002

57

Data object creation
int x;
int arr[20];

int main(int argc, char *argv[]) {

 int i = 20;
 {into x; x = i + 7;}

}

int f(int n)

{

 int a, *p;
 a = 1;

 p = (int *)malloc(sizeof int);

}

Jan-11-10 Advanced Programming
Spring 2002

58

Data object creation
  malloc() allocates a block of memory
  Lifetime until memory is freed, with free().
  Memory leakage – memory allocated is never

freed:
char *combine(char *s, char *t) {
 u = (char *)malloc(strlen(s) + strlen(t) + 1);
 if (s != t) {
 strcpy(u, s); strcat(u, t);
 return u;
 } else {
 return 0;
 }
}

Jan-11-10 Advanced Programming
Spring 2002

59

Memory allocation

  Note: malloc() does not initialize data
  void *calloc(size_t n, size_t elsize)

does initialize (to zero)
  Can also change size of allocated memory

blocks:
void *realloc(void *ptr, size_t size)

ptr points to existing block, size is new size

  New pointer may be different from old, but
content is copied.

Jan-11-10 Advanced Programming
Spring 2002

60

Memory layout of programs
Header info

Code

Data - Heap

 0

 100

 400

 560

1010

1200

Dynamic memory

Local memory
+ function call
stack

all normal vars

all malloc()s

Data - stack

Jan-11-10 Advanced Programming
Spring 2002

61

Data objects and pointers
  The memory address of a data object, e.g., int x

  can be obtained via &x
  has a data type int * (in general, type *)
  has a value which is a large (4/8 byte) unsigned integer
  can have pointers to pointers: int **

  The size of a data object, e.g., int x
  can be obtained via sizeof x or sizeof(x)
  has data type size_t, but is often assigned to int (bad!)
  has a value which is a small(ish) integer
  is measured in bytes

Jan-11-10 Advanced Programming
Spring 2002

62

Data objects and pointers

  Every data type T in C/C++ has an
associated pointer type T *

  A value of type * is the address of an object
of type T

  If an object int *xp has value &x, the
expression *xp dereferences the pointer and
refers to x, thus has type int

&x 42

xp x

int * int

Jan-11-10 Advanced Programming
Spring 2002

63

Data objects and pointers

  If p contains the address of a data object,
then *p allows you to use that object

  *p is treated just like normal data object
int a, b, *c, *d;
d = 17; / BAD idea */

a = 2; b = 3; c = &a; d = &b;

if (*c == *d) puts(“Same value”);

*c = 3;

if (*c == *d) puts(“Now same value”);
c = d;

if (c == d) puts (“Now same address”);

Jan-11-10 Advanced Programming
Spring 2002

64

void pointers

  Generic pointer
  Unlike other pointers, can be assigned to any

other pointer type:
void *v;

char *s = v;

  Acts like char * otherwise:
v++, sizeof(*v) = 1;

Jan-11-10 Advanced Programming
Spring 2002

65

Control structures

  Same as Java
  sequencing: ;
  grouping: {...}
  selection: if, switch
  iteration: for, while

Jan-11-10 Advanced Programming
Spring 2002

66

Sequencing and grouping

  statement1 ; statement2; statement n;
  executes each of the statements in turn
  a semicolon after every statement
  not required after a {...} block

  { statements} {declarations statements}
  treat the sequence of statements as a single

operation (block)
  data objects may be defined at beginning of block

Jan-11-10 Advanced Programming
Spring 2002

67

The if statement

  Same as Java
if (condition1) {statements1}
else if (condition 2) {statements2}

else if (condition n-1) {statements n-1}|

else {statementsn}

  evaluates statements until find one with non-
zero result

  executes corresponding statements

Jan-11-10 Advanced Programming
Spring 2002

68

The if statement

  Can omit {}, but careful
if (x > 0)
 printf(“x > 0!”);

 if (y > 0)

 printf(“x and y > 0!”);

Jan-11-10 Advanced Programming
Spring 2002

69

The switch statement

  Allows choice based on a single value
switch(expression) {
 case const1: statements1; break;

 case const2: statements2; break;

 default: statementsn;

}

  Effect: evaluates integer expression
  looks for case with matching value
  executes corresponding statements (or

defaults)

Jan-11-10 Advanced Programming
Spring 2002

70

The switch statement
Weather w;
switch(w) {
 case rain:
 printf(“bring umbrella’’);
 case snow:
 printf(“wear jacket”);
 break;
 case sun:
 printf(“wear sunscreen”);
 break;
 default:
 printf(“strange weather”);
}

Jan-11-10 Advanced Programming
Spring 2002

71

Repetition

  C has several control structures for repetition

Statement repeats an action...
while(c) {} zero or more times,

while condition is ≠ 0

do {...} while(c) one or more times,
while condition is ≠ 0

for (start; cond; upd) zero or more times,
with initialization and
update

Jan-11-10 Advanced Programming
Spring 2002

72

The break statement

  break allows early exit from one loop level
for (init; condition; next) {
 statements1;

 if (condition2) break;

 statements2;

}

Jan-11-10 Advanced Programming
Spring 2002

73

The continue statement

  continue skips to next iteration, ignoring
rest of loop body

  does execute next statement
for (init; condition1; next) {
 statement2;

 if (condition2) continue;

 statement2;

}

  often better written as if with block

Jan-11-10 Advanced Programming
Spring 2002

74

Structured data objects

  Structured data objects are available as

object property
array [] enumerated,

numbered from 0

struct names and types of
fields

union occupy same space
(one of)

Jan-11-10 Advanced Programming
Spring 2002

75

Arrays

  Arrays are defined by specifying an element
type and number of elements
  int vec[100];
  char str[30];
  float m[10][10];

  For array containing N elements, indexes are
0..N-1

  Stored as linear arrangement of elements
  Often similar to pointers

Jan-11-10 Advanced Programming
Spring 2002

76

Arrays
  C does not remember how large arrays are (i.e., no

length attribute)
  int x[10]; x[10] = 5; may work (for a while)
  In the block where array A is defined:

  sizeof A gives the number of bytes in array
  can compute length via sizeof A /sizeof A[0]

  When an array is passed as a parameter to a function
  the size information is not available inside the function
  array size is typically passed as an additional parameter

  PrintArray(A, VECSIZE);
  or as part of a struct (best, object-like)
  or globally

  #define VECSIZE 10

Jan-11-10 Advanced Programming
Spring 2002

77

Arrays
  Array elements are accessed using the same syntax

as in Java: array[index]
  Example (iteration over array):

int i, sum = 0;
...
for (i = 0; i < VECSIZE; i++)
 sum += vec[i];

  C does not check whether array index values are
sensible (i.e., no bounds checking)
  vec[-1] or vec[10000] will not generate a compiler

warning!
  if you’re lucky, the program crashes with

Segmentation fault (core dumped)

Jan-11-10 Advanced Programming
Spring 2002

78

Arrays

  C references arrays by the address of their
first element

  array is equivalent to &array[0]
  can iterate through arrays using pointers as

well as indexes:
int *v, *last;

int sum = 0;

last = &vec[VECSIZE-1];

for (v = vec; v <= last; v++)

 sum += *v;

Jan-11-10 Advanced Programming
Spring 2002

79

2-D arrays

  2-dimensional array
int weekends[52][2];

weekends

  weekends[2][1] is same as *(weekends+2*2+1)
  NOT *weekends+2*2+1 :this is an int !

 [0][0] [0][1] [1][0] [1][1] [2][0] [2][1] [3][0]

Jan-11-10 Advanced Programming
Spring 2002

80

Arrays - example
#include <stdio.h>
void main(void) {
 int number[12]; /* 12 cells, one cell per student */
 int index, sum = 0;

 /* Always initialize array before use */
 for (index = 0; index < 12; index++) {

 number[index] = index;
 }
 /* now, number[index]=index; will cause error:why ?*/

 for (index = 0; index < 12; index = index + 1) {
 sum += number[index]; /* sum array elements */

 }
 return;
}

Jan-11-10 Advanced Programming
Spring 2002

81

Aside: void, void *
  Function that doesn’t return anything

declared as void
  No argument declared as void
  Special pointer *void can point to anything

#include <stdio.h>

extern void *f(void);

void *f(void) {

 printf("the big void\n");

 return NULL;

}

int main(void) {

 f();

}

Jan-11-10 Advanced Programming
Spring 2002

82

Overriding functions – function
pointers

  overriding: changing the implementation,
leave prototype

  in C, can use function pointers
returnType (*ptrName)(arg1, arg2, ...);
  for example, int (*fp)(double x); is a pointer

to a function that return an integer
  double * (*gp)(int) is a pointer to a function

that returns a pointer to a double

Jan-11-10 Advanced Programming
Spring 2002

83

structs

  Similar to fields in Java object/class
definitions

  components can be any type (but not
recursive)

  accessed using the same syntax struct.field
  Example:

struct {int x; char y; float z;} rec;
...
r.x = 3; r.y = ‘a’; r.z= 3.1415;

Jan-11-10 Advanced Programming
Spring 2002

84

structs
  Record types can be defined

  using a tag associated with the struct definition
  wrapping the struct definition inside a typedef

  Examples:
struct complex {double real; double imag;};
struct point {double x; double y;} corner;
typedef struct {double real; double imag;} Complex;
struct complex a, b;
Complex c,d;

  a and b have the same size, structure and type
  a and c have the same size and structure, but

different types

Jan-11-10 Advanced Programming
Spring 2002

85

structs

  Overall size is sum of elements, plus padding
for alignment:
struct {

 char x;

 int y;

 char z;
} s1; sizeof(s1) = ?

struct {

 char x, z;

 int y;

} s2; sizeof(s2) = ?

Jan-11-10 Advanced Programming
Spring 2002

86

structs - example
struct person {
 char name[41];
 int age;
 float height;
 struct { /* embedded structure */
 int month;
 int day;
 int year;
 } birth;
};
struct person me;
me.birth.year=1977;
struct person class[60];

 /* array of info about everyone in class */
class[0].name=“Gun”; class[0].birth.year=1971;……

Jan-11-10 Advanced Programming
Spring 2002

87

structs

  Often used to model real memory layout,
e.g.,
typedef struct {

 unsigned int version:2;

 unsigned int p:1;

 unsigned int cc:4;
 unsigned int m:1;

 unsigned int pt:7;

 u_int16 seq;

 u_int32 ts;

} rtp_hdr_t;

Jan-11-10 Advanced Programming
Spring 2002

88

Dereferencing pointers to
struct elements

  Pointers commonly to struct’s
(*sp).element = 42;

y = (*sp).element;

  Note: *sp.element doesn’t work
  Abbreviated alternative:

sp->element = 42;

y = sp->element;

Jan-11-10 Advanced Programming
Spring 2002

89

Bit fields

  On previous slides, labeled integers with size
in bits (e.g., pt:7)

  Allows aligning struct with real memory data,
e.g., in protocols or device drivers

  Order can differ between little/big-endian
systems

  Alignment restrictions on modern processors
– natural alignment

  Sometimes clearer than (x & 0x8000) >> 31

Jan-11-10 Advanced Programming
Spring 2002

90

Unions

  Like structs:
union u_tag {
 int ival;

 float fval;

 char *sval;

} u;

  but occupy same memory space
  can hold different types at different times
  overall size is largest of elements

Jan-11-10 Advanced Programming
Spring 2002

91

int month[12]; /* month is a pointer to base address 430*/

month[3] = 7; /* month address + 3 * int elements
 => int at address (430+3*4) is now 7 */

ptr = month + 2; /* ptr points to month[2],
 => ptr is now (430+2 * int elements)= 438 */

ptr[5] = 12; /* ptr address + 5 int elements
 => int at address (434+5*4) is now 12.

 Thus, month[7] is now 12 */

ptr++; /* ptr <- 438 + 1 * size of int = 442 */
(ptr + 4)[2] = 12; /* accessing ptr[6] i.e., array[9] */

More pointers

  Now , month[6], *(month+6), (month+4)[2],
ptr[3], *(ptr+3) are all the same integer variable.

Jan-11-10 Advanced Programming
Spring 2002

92

Functions - why and how ?
  If a program is too long
  Modularization – easier

to
•  code
•  debug

  Code reuse

  Passing arguments to
functions
  By value
  By reference

  Returning values from
functions
  By value
  By reference

Jan-11-10 Advanced Programming
Spring 2002

93

Functions

  Prototypes and functions (cf. Java interfaces)
  extern int putchar(int c);
  putchar(‘A’);
  int putchar(int c) {
 do something interesting here

 }

  If defined before use in same file, no need for
prototype

  Typically, prototype defined in .h file
  Good idea to include <.h> in actual definition

Jan-11-10 Advanced Programming
Spring 2002

94

Functions

  static functions and variables hide them to
those outside the same file:
static int x;

static int times2(int c) {

 return c*2;

}

  compare protected class members in Java.

Jan-11-10 Advanced Programming
Spring 2002

95

Functions – const arguments

  Indicates that argument won’t be changed.
  Only meaningful for pointer arguments and

declarations:
int c(const char *s, const int x) {

 const int VALUE = 10;

 printf("x = %d\n", VALUE);

 return *s;

}

  Attempts to change *s will yield compiler
warning.

Jan-11-10 Advanced Programming
Spring 2002

96

Functions - extern
#include <stdio.h>

extern char user2line [20]; /* global variable defined
 in another file */

char user1line[30]; /* global for this file */
void dummy(void);

void main(void) {
 char user1line[20]; /* different from earlier

 user1line[30] */
 . . . /* restricted to this func */
}

void dummy(){
 extern char user1line[]; /* the global user1line[30] */
 . . .
}

Jan-11-10 Advanced Programming
Spring 2002

97

Overloading functions – var.
arg. list

  Java:
void product(double x, double y);

void product(vector x, vector y);

  C doesn’t support this, but allows variable
number of arguments:
debug(“%d %f”, x, f);

debug(“%c”, c);

  declared as void debug(char *fmt, ...);
  at least one known argument

Jan-11-10 Advanced Programming
Spring 2002

98

Overloading functions
  must include <stdarg.h>:
#include <stdarg.h>

double product(int number, ...) {

 va_list list;

 double p;

 int i;

 va_start(list, number);

 for (i = 0, p = 1.0; i < number; i++) {

 p *= va_arg(list, double);

 }

 va_end(list);

}

  danger: product(2,3,4) won’t work, needs
product(2,3.0,4.0);

Jan-11-10 Advanced Programming
Spring 2002

99

Overloading functions

  Limitations:
  cannot access arguments in middle

  needs to copy to variables or local array

  client and function need to know and adhere to
type

Jan-11-10 Advanced Programming
Spring 2002

100

Program with multiple files

  Library headers
  Standard
  User-defined

void myproc(void);
int mydata;

#include <stdio.h>
#include “mypgm.h”

void myproc(void)
{
 mydata=2;
 . . . /* some code */
}

#include <stdio.h>
#include “mypgm.h”

void main(void)
{
 myproc();
}

hw.c mypgm.c

mypgm.h

Jan-11-10 Advanced Programming
Spring 2002

101

Data hiding in C
  C doesn’t have classes or private members, but this can be

approximated
  Implementation defines real data structure:

#define QUEUE_C

#include “queue.h”

typedef struct queue_t {

 struct queue_t *next;

 int data;

} *queue_t, queuestruct_t;

queue_t NewQueue(void) {

 return q;

}

  Header file defines public data:
#ifndef QUEUE_C

typedef struct queue_t *queue_t;

#endif

queue_t NewQueue(void);

Jan-11-10 Advanced Programming
Spring 2002

102

Pointer to function

int func(); /*function returning integer*/
int *func(); /*function returning pointer to integer*/
int (*func)(); /*pointer to function returning integer*/
int *(*func)(); /*pointer to func returning ptr to int*/

Jan-11-10 Advanced Programming
Spring 2002

103

Function pointers
int (*fp)(void);

double* (*gp)(int);

int f(void)

double *g(int);

fp=f;

gp=g;

int i = fp();

double *g = (*gp)(17); /* alternative */

Jan-11-10 Advanced Programming
Spring 2002

104

#include <stdio.h>

void myproc (int d);
void mycaller(void (* f)(int), int param);

void main(void) {
 myproc(10); /* call myproc with parameter 10*/
 mycaller(myproc, 10); /* and do the same again ! */

}

void mycaller(void (* f)(int), int param){
 (*f)(param); /* call function *f with param */

}

void myproc (int d){
 . . . /* do something with d */
}

Pointer to function - example

Jan-11-10 Advanced Programming
Spring 2002

105

Libraries

  C provides a set of standard libraries for
numerical math
functions

<math.h> -lm

character
strings

<string.h>

character types <ctype.h>

I/O <stdio.h>

Jan-11-10 Advanced Programming
Spring 2002

106

The math library

  #include <math.h>
  careful: sqrt(5) without header file may give

wrong result!

  gcc –o compute main.o f.o –lm
  Uses normal mathematical notation:

Math.sqrt(2) sqrt(2)

Math.pow(x,5) pow(x,5)

4*math.pow(x,3) 4*pow(x,3)

Jan-11-10 Advanced Programming
Spring 2002

107

Characters
  The char type is an 8-bit byte containing ASCII code

values (e.g., ‘A’ = 65, ‘B’ = 66, ...)
  Often, char is treated like (and converted to) int
  <ctype.h> contains character classification

functions:
isalnum(ch) alphanumeric [a-zA-Z0-9]
isalpha (ch) alphabetic [a-zA-Z]
isdigit(ch) digit [0-9]
ispunct(ch) punctuation [~!@#%^&...]
isspace(ch) white space [\t\n]
isupper(ch) upper-case [A-Z]
islower(ch) lower-case [a-z]

Jan-11-10 Advanced Programming
Spring 2002

108

  In Java, strings are regular objects
  In C, strings are just char arrays with a NUL
(‘\0’) terminator

  “a cat” =
  A literal string (“a cat”)

  is automatically allocated memory space to contain it and
the terminating \0

  has a value which is the address of the first character
  can’t be changed by the program (common bug!)

  All other strings must have space allocated to them
by the program

Strings

a c a t \0

Jan-11-10 Advanced Programming
Spring 2002

109

Strings
char *makeBig(char *s) {
 s[0] = toupper(s[0]);

 return s;

}
makeBig(“a cat”);

Jan-11-10 Advanced Programming
Spring 2002

110

Strings
  We normally refer to a string via a pointer to its first

character:
char *str = “my string”;
char *s;
s = &str[0]; s = str;

  C functions only know string ending by \0:
char *str = “my string”;
...
int i;
for (i = 0; str[i] != ‘\0’; i++)
putchar(str[i]);

char *s;
for (s = str; *s; s++) putchar(*s);

Jan-11-10 Advanced Programming
Spring 2002

111

Strings

  Can treat like arrays:
char c;

char line[100];

for (i = 0; i < 100 && line[c]; i++) {

 if (isalpha(line[c]) ...

}

Jan-11-10 Advanced Programming
Spring 2002

112

Copying strings

  Copying content vs. copying pointer to
content

  s = t copies pointer – s and t now refer to
the same memory location

  strcpy(s, t); copies content of t to s
char mybuffer[100];

...

mybuffer = “a cat”;

  is incorrect (but appears to work!)
  Use strcpy(mybuffer, “a cat”) instead

Jan-11-10 Advanced Programming
Spring 2002

113

Example string manipulation
#include <stdio.h>
#include <string.h>
int main(void) {
 char line[100];
 char *family, *given, *gap;
 printf(“Enter your name:”); fgets(line,100,stdin);
 given = line;
 for (gap = line; *gap; gap++)
 if (isspace(*gap)) break;
 *gap = ‘\0’;
 family = gap+1;
 printf(“Your name: %s, %s\n”, family, given);
 return 0;
}

Jan-11-10 Advanced Programming
Spring 2002

114

string.h library

  Assumptions:
  #include <string.h>
  strings are NUL-terminated
  all target arrays are large enough

  Operations:
  char *strcpy(char *dest, char *source)

  copies chars from source array into dest array up to NUL
  char *strncpy(char *dest, char *source, int
num)

  copies chars; stops after num chars if no NUL before
that; appends NUL

Jan-11-10 Advanced Programming
Spring 2002

115

string.h library
  int strlen(const char *source)

  returns number of chars, excluding NUL
  char *strchr(const char *source, const
char ch)

  returns pointer to first occurrence of ch in source;
NUL if none

  char *strstr(const char *source, const
char *search)

  return pointer to first occurrence of search in
source

Jan-11-10 Advanced Programming
Spring 2002

116

Formatted strings
  String parsing and formatting (binary from/to text)
  int sscanf(char *string, char *format, ...)

  parse the contents of string according to format
  placed the parsed items into 3rd, 4th, 5th, ... argument
  return the number of successful conversions

  int sprintf(char *buffer, char *format, ...)
  produce a string formatted according to format
  place this string into the buffer
  the 3rd, 4th, 5th, ... arguments are formatted
  return number of successful conversions

Jan-11-10 Advanced Programming
Spring 2002

117

Formatted strings

  The format strings for sscanf and sprintf
contain
  plain text (matched on input or inserted into the

output)
  formatting codes (which must match the

arguments)

  The sprintf format string gives template
for result string

  The sscanf format string describes what
input should look like

Jan-11-10 Advanced Programming
Spring 2002

118

Formatted strings

  Formatting codes for sscanf
Code meaning variable

%c matches a single character char

%d matches an integer in decimal int

%f matches a real number (ddd.dd) float

%s matches a string up to white space char *

%[^c] matches string up to next c char char *

Jan-11-10 Advanced Programming
Spring 2002

119

Formatted strings
  Formatting codes for sprintf
  Values normally right-justified; use negative field width to get

left-justified

Code meaning variable

%nc char in field of n spaces char

%nd integer in field of n spaces int, long

%n.mf real number in width n, m
decimals

float, double

%n.mg real number in width n, m digits of
precision

float, double

%n.ms first m chars from string in width n char *

Jan-11-10 Advanced Programming
Spring 2002

120

Formatted strings - examples
char *msg = “Hello there”;

char *nums = “1 3 5 7 9”;

char s[10], t[10];

int a, b, c, n;

n = sscanf(msg, “%s %s”, s, t);

n = printf(“%10s %-10s”, t, s);

n = sscanf(nums, “%d %d %d”, &a, &b, &c);

printf(“%d flower%s”, n, n > 1 ? “s” : “ “);

printf(“a = %d, answer = %d\n”, a, b+c);

Jan-11-10 Advanced Programming
Spring 2002

121

The stdio library
  Access stdio functions by

  using #include <stdio.h> for prototypes
  compiler links it automatically

  defines FILE * type and functions of that
type

  data objects of type FILE *
  can be connected to file system files for reading

and writing
  represent a buffered stream of chars (bytes) to be

written or read

  always defines stdin, stdout, stderr

Jan-11-10 Advanced Programming
Spring 2002

122

The stdio library: fopen(),
fclose()

  Opening and closing FILE * streams:
FILE *fopen(const char *path, const char
*mode)

  open the file called path in the appropriate mode
  modes: “r” (read), “w” (write), “a” (append), “r+” (read &

write)
  returns a new FILE * if successful, NULL otherwise
int fclose(FILE *stream)

  close the stream FILE *
  return 0 if successful, EOF if not

Jan-11-10 Advanced Programming
Spring 2002

123

stdio – character I/O

int getchar()

  read the next character from stdin; returns EOF
if none

int fgetc(FILE *in)
  read the next character from FILE in; returns EOF

if none

int putchar(int c)
  write the character c onto stdout; returns c or EOF

int fputc(int c, FILE *out)
  write the character c onto out; returns c or EOF

Jan-11-10 Advanced Programming
Spring 2002

124

stdio – line I/O
char *fgets(char *buf, int size, FILE *in)

  read the next line from in into buffer buf
  halts at ‘\n’ or after size-1 characters have been

read
  the ‘\n’ is read, but not included in buf
  returns pointer to strbuf if ok, NULL otherwise
  do not use gets(char *) – buffer overflow

int fputs(const char *str, FILE *out)

  writes the string str to out, stopping at ‘\0’
  returns number of characters written or EOF

Jan-11-10 Advanced Programming
Spring 2002

125

stdio – formatted I/O
int fscanf(FILE *in, const char *format, ...)

  read text from stream according to format
int fprintf(FILE *out, const char *format, ...)

  write the string to output file, according to format
int printf(const char *format, ...)

  equivalent to fprintf(stdout, format, ...)

  Warning: do not use fscanf(...); use
fgets(str, ...); sscanf(str, ...);

Jan-11-10 Advanced Programming
Spring 2002

126

Before you go….
  Always initialize anything before using it (especially

pointers)
  Don’t use pointers after freeing them
  Don’t return a function’s local variables by reference
  No exceptions – so check for errors everywhere

  memory allocation
  system calls
  Murphy’s law, C version: anything that can’t fail, will fail

  An array is also a pointer, but its value is immutable.

