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Abstract systems with a remote server, backup and restore sys-

tems, versioning systems, content distribution networks

We present TAPER, a scalable data replication protocoiCDN), and federated file systems all rely on synchro-
thatsynchronizes large collection of data across multi- pjzing the current data at the source with older versions

can be applied to a broad range of systems, such as sofiapgR.

ware distribution mirrors, content dlstrlbutlon networks, Unfortunately, existing approaches do not suit such
backup and recovery, and federated file systems. TA:

: . . - @nvironments. On one hand, protocols such as delta
PER is designed to be bandwidth efficient, scalable an ompression (e.g., vediff [14]) and snapshot differencing

content-ba_sed, and it does riot require prior kn_owledg?e.g” WAFL [11]) can efficiently update one site from
of the replica state. To achieve these properties, TA'another, but they requira priori knowledge of which

PER provides: i) four pluggable redundancy elimination, o qjong are stored at each site and what changes oc-
phases that balance the trade-off between bandwidth Sa\irred between the versions. But. our environment re-
ings and computation overheads, iinrarchical hash . ,ires aniversaldata synchronization protocol that in-
tree based directory pruning phase that quickly matCheﬁeroperates with multi-vendor NFS implementations on

identical data from the granularity of directory trees to different operating systems without any knowledge of
individual files, iii) a content-based similarity detection their internal state to determine the version of the data
technique usingsloom filtersto identify similar files, o yhe replica. On the other hand, hash-based differential
and iv) a combination of coarse-grained chunk matCth:ompression protocols such as rsync [2] and LBFS [20]
with finer-grained block matches to achieve bandwidthy, ot requirea priori knowledge of replica state, but
efficiency. Through extensive experiments on varioUsey are inefficient. For example, rsync relies on path
datasets, we observe that in comparison with rsync, @, mnes to identify similar files and therefore transfers
widely-used directory synchronization tool, TAPER re- .06 amounts of data when a file or directory is renamed
duces bandwidth by5% to 71%, performs faster match- . ¢qieq and LBFS's single-granularity chunking com-
ing, and scales to a larger number of replicas. promises efficiency (a) by transferring extra metadata
1 ducti when redundancy spanning multiple chunks exists and
htroduction (b) by missing similarity on granularities smaller than the
In this paper we describe TAPER, a redundancy eliminachunk size.
tion protocolfor replica Synchronization. Our motivation The TAPER design focuses on providing four key
for TAPER arose from building a federated file systemproperties in order to provide speed, scalability, band-
using NFSv4 servers, each sharing a common systenyidth efficiency, and computational efficiency:
wide namespace [25]. In this system, data is replicated
from a master server to a collection of servers, updated
at the master, periodically synchronized to the other
servers, and read from any server via NFSv4 clients.
Synchronization in this environment requires a proto-
col that minimizes both network bandwidth consumption
and end-host overheads. Numerous applications have P1is necessary for a scalable solution that can simulta-
similar requirements: they require replicating and syn-neously synchronize multiple targets with a source. Sim-
chronizing a large collection of data across multiple sitesjlarly, P2 is necessary to reduce the matching time and,
possibly over low-bandwidth links. For example, soft- therefore, the total response time for synchronization. To
ware distribution mirror sites, synchronizing personalsupport P2, the matching at the target should be based on

e P1: Low, re-usable computation at the source

e P2: Fast matching at the target

e P3: Find maximal common data between the source
and the target

e P4: Minimize total metadata exchanged



indexing to identify the matching components in O(1) 2 Background
time. The last two, P3 and P4, are both indicators of
bandwidth efficiency as they determine the total amount

of data and the total metadata information (hashes etc.) home
that are transferred. Balancing P3 and P4 is the key re-

. . S lice
quirement in order to minimize the metadata overhead'
for the data transfer savings. Observe that in realizing
P3, the source and target should find common dataacros¢* B ¢ D E F G H A foobar F E G H

allfiles and not just compare file pairs based on name. Figure 1: Directory Tree Synchronization Problem: The

To provide all of these properties, TAPER is a multi- source tree is shown on the left and the target tree with mul-
phase, hierarchical protocol. Each phase operates ovéple updates, additions, and renames, is on the right.

decreasing data granularity, starting with directories and . i
files, then large chunks, then smaller blocks, and fi- In synchronizing a directory tree between a source and

nally bytes. The phases of TAPER balance the bangtarget (Figure 1), any approac_h should. efficiently handle
width efficiency of smaller-size matching with the re- all the common update operations on file systems. These

duced computational overhead of lesser unmatched datfi¢lude: i) adding, deleting, or modifying files and direc-
The first phase of TAPER eliminates all common filestor'es_z_”) moving f||_es or d|re<_:t0r|es_to other_parts O_f Fhe
and quickly prunes directories using a content-bazed tree, iii) renaming files and directories, and iv) archiving
erarchical hash treelata structure. The next phase elim- & large collection of files and directories into a single file
inates all common content-defined chunks (CDC) acros&€-9- tar, lib). o , _

all files. The third phase operates on blocks within the Although numerous tools and utilities exist for di-
remaining unmatched chunks by applying a similarityreth)ry synchromzafuon with no data versioning infor-
detection technique based on Bloom filters. Finally, theMation, the underlying techniques are either based on

matched and unmatched blocks remaining at the sourc®atching: i) block hashes or ii) hashes of content-defined
are further delta encoded to eliminate common bytes. chunks. We find that sliding block hashes (Section 2.1)
are well suited to relatively fine-grained matching be-

Our main contributions in this paper are: i) design of tween similar files, and that CDC matching (Section 2.2)

a new hierarchical hash tree data structure for fast prung syjtable for more coarse-grained, global matching
ing of directory trees, ii) design and analysis of a simi- 3¢ross all files.

larity detection technique using CDC and Bloom filters
that compactly represent the content of a file, iii) design2.1  Fixed and Sliding Blocks

of a Comb'ned cbe gnslhdlng blocktech_nlqu_e f_or bOth. In block-based protocols, a fixed-block approach com-
coarse-grained and fine-grained matching, iv) integratin

; . . . utes the signature (e.g., SHA-MD5, or MD4 hash)
and implementing all the above techniques in TAPER, %f a fixed-size block at both the source and target and

multi-phase, multi-grain protocol, that is engineered a.ssimply indexes the signatures for a quick match. Fixed-

pluggable units. The phases of TAPER are pluggable i lock matching performs poorly because small modi-

_that each phase usesa different mechanism COrreSponlﬁt':ations change all subsequent block boundaries in a
ing to data granularlty,_and a p_hase can be dropped all tq'ile and eliminate any remaining matches. Instead, a
gether to trade bandwidth savings forcompytatlon Cc’Stssliding—block approach is used in protocols like rsync
And, v) a complete prototype implementation and PET¢or a better match. Here, the targét, divides a filef
formance evaluation of our system. Through extensive S " . X

X . to non-overlapping, contiguous, fixed-size blocks and
experiments on various datasets, we observe that TAPE'—I2I bping 9

. . sends its signatures, 4-byte MCalong with a 2-byte
0, 0, -
;(:Lxgj(lzzréiw'dth by 15% to 71% over rsync for differ rolling checksum (rsync’s implementation uses full 16

byte MD4 and 4 byte rolling checksums per-block for
The rest of the paper is organized as follows. Secdarge files), to the sourcg. If an existing file atS, say
tion 2 provides an overview of the working of sliding f’, has the same name fiseach block signature ¢f is
block and CDC. These operations form the basis of botttompared with a sliding-block signature of every over-
the second and third phases that lie at the core of TAlapping fixed-size block irf’. There are several variants
PER. The overall TAPER protocol is described in detailof the basic sliding-block approach, which we discuss
in Section 3. Similarity detection using CDC and Bloom in Section 6, but all of them compute a separate multi-
filters is described and analyzed in Section 4. Section Hyte checksum for each byte of data to be transferred.
evaluates and compares TAPER for different workloadsBecause this checksum information is large compared to
Finally, Section 6 covers related work and we concludethe data being stored, it would be too costly to store all
with Section 7. checksums for all offsets of all files in a system, so these
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Effect of Sprinkled Changes: Matched data in CDC Effect of Sprinkled Changes: Matched data in Rsync
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Figure 2:Effect of Sprinkled Changes in CDC. The x-axis Figure 3: Effect of Sprinkled Changes in Rsync. The x-
is the expected chunk size. The left y-axis, used for the bar  axis is the fixed block size. The left y-axis, used for the bar
graphs, shows the number of matching chunks. The right  graphs, shows the number of matching blocks. The right
y-axis, for the line plot, shows the total data transferred y-axis, for the line plot, shows the total data transferred.

systems must do matching on a finer (e.g., per-file) granVenti [21] and other systems that we discuss in Sec-
ularity. As aresult, these systems have three fundamentaibn 6. A chunk is a variable-sized block whose bound-
problems. First, matching requires knowing which file  aries are determined by its Rabin fingerprint matching
at the source should be matched with the filat the tar- a pre-determined marker value [22]. The number of
get. Rsync simply relies on file names being the samebits in the Rabin fingerprint that are used to match the
This approach makes rsync vulnerable to name changesarker determine the expected chunk size. For exam-
(i.e., a rename or a move of a directory tree will resultple, given a markefx78 and an expected chunk size
in no matches, violating property P3). Second, scalaof 2¥, a rolling (overlapping sequence) 48-byte finger-
bility with the number of replicas is limited because the print is computed. If the lowek bits of the fingerprint
source machine recomputes the sliding block match foequal 0x78, a new chunk boundary is set. Since the
every file and for every target machine and cannot re-usehunk boundaries are content-based, a file modification
any hash computation (property P1). Finally, the matchshould affect only neighboring chunks and not the en-
ing time is high as there is no indexing support for thetire file. For matching, the SHA-1 hash of the chunk is
hashes: to determine if a block matches takes time of thesed. Matching a chunk using CDC is a simple hash ta-
order of number of bytes in a file as the rolling hash hasble lookup.
to be computed over the entire file until a match occurs Clearly, the expected chunk size is critical to the per-
(property P2). Observe that rsync [2] thus violates propformance of CDC and depends on the degree of file sim-
erties P1, P2, and P3. Although rsync is a widely usedlarity and the locations of the file modifications. The
protocol for synchronizing a single client and server, itischunk size is a trade-off between the degree of match-
not designed for large scale replica synchronization.  ing and the size of the metadata (hash values). Larger
To highlight the problem of nhame-based matching inchunks reduce the size of metadata but also reduce the
rsync, consider, for example, the source directory ofnumber of matches. Thus, for any given chunk size, the
GNU Emacs-20.7 consisting of 2086 files with total size CDC approach violates properties P3, P4, or both. Fur-
of 54.67 MB. Suppose we rename only the top level subthermore, as minor modifications can affect neighboring
directories in Emacs-20.7 (or move them to another parthunks, changes sprinkled across a file can result in few
of the parent tree). Although no data has changed, rsynmatching chunks. The expected chunk size is manually
would have sent the entifel.67 MB of data with an ad-  set in LBFS (8 KB default). Similarly, the fixed block
ditional 41.04 KB of hash metadata (using the default size is manually selected in rsync (700 byte default).
block size of 700 bytes), across the network. In con- To illustrate the effect of small changes randomly dis-
trast, as we describe in Section 3.1.1, TAPER alleviatesributed in a file, consider, for example, a file (say ‘bar’)
this problem by performing content-based pruning usingwith 100 KB of data that is updated with 100 changes

a hierarchical hash tree. of 10 bytes each (i.e., &% change). Figures 2 and
. 3 show the variations due to sprinkled changes in the
2.2 Content-defined Chunks matched data for CDC and rsync, respectively. Observe

Content-defined chunking balances the fast-matching othat while rsync finds more matching data than CDC for
a fixed-block approach with the finer data matching abil-small block sizes, CDC performs better for large chunk
ity of sliding-blocks. CDC has been used in LBFS [20], sizes. For a block and expected chunk size of 768 bytes,



rsync matched 51 blocks, transmitting a total of 62 KB, would be expensive. Instead, these phaseslosa
while CDC matched 31 chunks, transmitting a total of matching in which they identify similar files or blocks
86 KB. For a larger block size of 2 KB, however, rsync and compute antemporarily store summary metadata
found no matches, while CDC matched 12 chunks andibout the specific files or blocks currently being exam-
transmitted 91 KB. In designing TAPER, we use this ob-ined. A key building block for these phases is efficient
servation to apply CDC in the earlier phase with rela-similarity detectionwhich we assume as a primitive in
tively larger chunk sizes. this section and discuss in detail in Section 4.

3 TAPER Algorithm

In this section, we first present the overall architecture of Bytes
the TAPER protocol and then describe each of the four ( Chunk Smilarity ) «
TAPER phases in detail. Sliding Block > |3

Blocks %‘ on Holes B B
3.1 TAPER Protocol Overview g ( Filesmiaity ) |E | E
TAPER is a directory tree synchronization protocol be- Chunks
tween a source and a target node that aims at minimizing
the transmission of any common data that already exists _Files

Directory Hash Tree

at the target. The TAPER protocol does not assume any Tres
knowledge of the state or the version of the data at the
target. It, therefore, builds on hash-based techniques for Figure 4:The building blocks of TAPER
data synchronization.

In general, for any hash-based synchronization proto3.1.1  Directory Matching
col, the smaller the matching granularity the better the , . . - . .
match and lower the numbergo% bytes trgnsfered. How-The.f'rSt phase, _d|rectory matching, ehmmates_ identical
ever, fine-grained matching increases the metadata trangg (r;u;?rs é)tf t:]ee (z)lr?crf;y t;zeéhg'tﬁirrzr?towe;?ﬁ:smt;:gtntg(::]
fer (hash values per block) and the computation over-th uctu d(tﬁ i yt \\//V dl finei hi )Ih \;]V
head. While systems with low bandwidth networks will '€ SOUrce and the target. We defineiérarchical has

optimize on the total data transferred, those with slowertrei(ﬁ.HT) fot:tthls purpose tp qu&ckly ffmd altlhth? exac;tt
servers will optimize the computation overhead. matching subtrees progressing down trom the largest to

The intuition behind TAPER is to work in phases (Fig- the smallest directory match and finally matching identi-

=~ cal individual files.
ure 4) where each phase moves from a larger to a finef

matching granularity. The protocol works in four phases: Directory Tree D (Root dir)
starting from a directory tree, moving on to large chunks,
then to smaller blocks, and finally to bytes. Each phase
in TAPER uses the best matching technique for that size,
does the necessary transformations, and determines the
set of data over which the matches occur.

Specifically, the first two phases perform coarse
grained matching at the level of directory trees and large Figure 5:Phase I: Hierarchical Hash Tree
CDC chunks (4 KB expected chunk size). Since the
initial matching is performed at a high granularity, the  The HHT representation encodes the directory struc-
corresponding hash information constitutes only a smalture and contents of a directory tree as a list of hash val-
fraction of the total data. The SHAhashes computed ues for every node in the tree. The nodes consist of the
in the first two phases can therefore be pre-computedioot of the directory tree, all the internal sub-directories,
once and stored in global and persistentdatabase at leaf directories, and finally all the files. The HHT struc-

by allowing any directory, file, or chunk that the source value of a file nodef; is obtained using a standard cryp-

: . : tographic hash algorithm (SHA} of the contents of the
wants to transmit to be matched against any dlrectoryﬁlg pSecond forga leaf (girect%)ryi)L the hash value

file, or chunk that the target stores. ‘.\'?d thersistent ._h(Dyp,) is the hash of all thé constituent file hashes, i.e.,
database enhances computational efficiency by aIIowmgL(DL) — h(h(f)h(f2)...h(fx)). Note that the order of
the source to re-use hash computations across multiplgoncatenating hashes of files within the same directory
targets. Conversely, the last two phases perform matchs based on the hash values and not on the file names.
ing at the level of smaller blocks (e.g., 700 bytes), soThird, for a non-leaf sub-directory, the hash value cap-
precomputing and storing all hashes of all small blockstures not only the content as in Merkle trees but also

1 fpo fy
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Figure 6: Emacs-20.7 CDC Distribution (Mean = 2 KB, Figure 7: Emacs-20.7 CDC Distribution (Mean = 2KB,

Max = 64 KB). The left y-axis (log scale) corresponds to Max = 4 KB). The left y-axis (log scale) corresponds to the
the histogram of chunk sizes, and the right y-axis shows the  histogram of chunk sizes, and the right y-axis shows the
cumulative distribution. cumulative distribution.

the structure of the tree. As illustrated in Figure 5, thecontrast, the HHT phase of TAPER sent 291 KB of the
hash of a sub-directory)s is computed by an in-order HHT metadata and determined, after a single hash match
traversal of all its immediate children. For example, if of the root node, that the entire data was identical.
Ds = {Ds1,Ds2} then The main advantages of using HHT for directory prun-
h(Ds) = h(h(DN)h(Ds1)h(UPYh(DN)h(Ds2)h(U P)) ing are that it can:"i) quickly (in O(1) time) find the maxi—_
mal exact match, ii) handle exact matches from the entire
where “UP” and “DN"” are two literals representing the tree to individual files, iii) match both structure and con-
traversal of the up and down links in the tree respectent, and iv) handle file or directory renames and moves.
tively. Finally, the hash of the root nodé)g, of the .
directory tree is computed similar to that of a subtree de—?"l'2 Matching Chunks
fined above. The HHT algorithm, thus, outputs a list of Once all the common files and directories have been
the hash values of all the nodes, in the directory tree i.e.eliminated, we are left with a set of unmatched files at
WDg),M(Da),(Dsg),..., h(Dr),..., h(f1)... . the source and the target. In Phase Il, to capture the
Note that our HHT technique provides a hierarchical en-data commonality acrosal files and further reduce the
coding of both the file content and the directory struc-unmatched data, we rely on content-defined chunking
ture. This proves beneficial in eliminating directory trees(which we discussed in Section 2). During this phase,
identical in content and structure at the highest level.  the target sends the SHAhash values of the unique
The target, in turn, computes the HHT hash values ofto remove local redundancy) CDCs of all the remain-
its directory tree and stores each element in a hash tablég files to the source. Since CDC hashes can be indexed
Each element of the HHT sent by the source—starting ator fast matching, the source can quickly eliminate all the
the root node of the directory tree and if necessary prosmatching chunks across all the files between the source
gressing downward to the file nodes—is used to indexand target. The source stores the CDC hashes locally for
into the target’s hash table to see if the node matches ang-use when synchronizing with multiple targets.
node at the target. Thus, HHT finds the maximal com- When using CDCs, two parameters— the expected
mon directory match and enables fast directory pruningchunk size and the maximum chunk size— have to be
since a match at any node implies that all the descendarselected for a given workload. LBFS [20] used an ex-
nodes match as well. For example, if the root hash valpected chunk size of 8 KB with a maximum of 64 KB.
ues match, then no further matching is done as the treeghe chunk sizes, however, could have a large variance
are identical in both content and structure. At the end ofaround the mean. Figure 6 shows the frequency and cu-
this phase, all exactly matching directory trees and filesnulative distribution of chunk sizes for the Emacs-20.7
would have been pruned. source tree using an expected chunk size value of 2 KB
To illustrate the advantage of HHT, consider, for ex- with no limitation on the chunk size except for the abso-
ample, a rename update of the root directory of Linuxlute maximum of 64 KB. As can be seen from the figure,
Kernel 2.4.26 source tree. Even though no content wathe chunk sizes have a large variance, ranging from 256
changed, rsync found no matching data and sent the efpytes to 12 KB with a relatively long tail.
tire tree of size 161.7 MB with an additional 1.03 MB of = The maximum chunk size limits this variance by forc-
metadata (using the default block-size of 700 bytes). Ining a chunk to be created if the size exceeds the maxi-



mum value. However, a forced split at fixed size valueschunks, blocks and files that matched in the first three

makes the algorithm behave more like fixed-size blockphases. To further reduce the bytes to be sent, the blocks

matching with poor resilience to updates. Figure 7 showsn the unmatched set adelta encodedvith respect to

the distribution of chunk sizes for the same workloada similar block in the matched set. The target can then

and expected chunk size value of 2 KB with a maximumreconstruct the block by applying the delta-bytes to the

value now set to 4 KB. Approximately 17% of the chunks matched block. Observe that unlike redundancy elimi-

were created due to this limitation. nation techniques for storage, the source does not have
Moreover, as an update affects the neighboringthe data at the target. To determine which matched and

chunks, CDCs are not suited for fine-grained matchesinmatched blocks are similar, we apply the similarity de-

when there are small-sized updates sprinkled throughouection technique at the source.

the data. As we observed in Figures 2 and 3 in Section 2, Finally, the remaining unmatched blocks and the delta-

CDC performed better than sliding-block for larger sizedpytes are further compressed using standard compression

chunks, while rsync was better for finer-grained matchesalgorithms (e.g., gzip) and sent to the target. The data at

We, therefore, use a relatively large expected chunk sizéhe target is validated in the end by sending an additional

(4 KB) in this phase to do fast, coarse-grained matchingchecksum per file to avoid any inconsistencies.

of data across all the remaining files. At the end of the

chunk matching phase, the source has a set of fileseagh 1.5 Discussion

with a sequence of matched and unmatched regions. In

the next phase, doing finer-grained block matches, we tryn essence, TAPER combines the faster matching of

to reduce the size of these unmatched regions. content-defined chunks and the finer matching of the
_ sliding block approach. CDC helps in finding common
3.1.3 Matching Blocks data across all files, while sliding-block can find small

After the completion of the second phase, each file at thé@ndom changes between a pair of files. Some of the is-
source would be in the form of a series of matched andU€s in implementing TAPER require further discussion:

unmatched regions. The contiguous unmatched chunksphased refinement: The multiple phases of TAPER
lying in-between two matched chunks of the same file  result in better differential compression. By using a
are merged together and are calledles To reduce the coarse granularity for a larger dataset we reduce the
size of the holes, in this phase, we perform finer-grained  metadata overhead. Since the dataset size reduces in
block matChing. The Sliding-blOCk matCh, however, can each phase, it balances the Computation and meta-
be applied only to gair of files. We, therefore, need to data overhead of finer granularity matching. The
determine the constituent files to match a pair of holes, TAPER phases are not just recursive app"cation of
i.e., we need to determine which pair of files at the source  the same algorithm to smaller block sizes. Instead,
and target are similar. The technique we use for simi-  they use the best approach for a particular size.
larity detection is needed in multiple phases, hence, we Re-using Hash computation:Unlike rsync where the
discuss it in detail in Section 4. Once we |dent|fy the source does the S|iding_b|ock match, TAPER stores

pair of similar files to compare, block matching is ap-  the hash values at the source both in the directory
plled to the holes of the file at the source. We Spllt the matching and the chunk matching phase_ These val-
unmatched holes ofafilé, at the source using reIativer ues need not be recomputed for different targets,
smaller fixed-size blocks (700 bytes) and send the block  thereby, increasing the scalability of TAPER. The

signatures (Rabin fingerprint for weak rolling checksum;  hash values are computed either when the source

SHA-1 for strong checksum) to the target. Atthetarget,a  file system is quiesced or over a consistent copy of
sliding-block match is used to compare against the holes  the file system, and are stored in a local database.
in the corresponding file. The target then requests the setpjyggable: The TAPER phases are pluggable in that
of unmatched blocks from the source. some can be dropped if the desired level of data re-

To enable a finer-grained match, in this phase, the  duction has been achieved. For example, Phase
matching size of 700 bytes is selected to be a fraction  can be directly combined with Phase Il and simi-
of the expected chunk size of 4 KB. The extra cost of larity detection giving us an rsync++. Another pos-
smaller blocks is offset by the fact that we have much sibility is just dropping phases Il and IV.
less data (holes instead of files) to work with. Round-trip latency: Each phase of TAPER requires a

. metadata exchange between the server and the tar

3.1.4 Matching Bytes get corresponding to one logical round-trip. This
This final phase further reduces the bytes to be sent. Af-  additional round-trip latency per phase is balanced
ter the third phase, the source has a set of unmatched Dby the fact that amount of data and metadata trans-
blocks remaining. The source also has the set of matched ferred is sufficiently reduced.



Hash collisions: In any hash-based differential com- that probability that a given bit is set in the Bloom filter,
pression technique there is the extremely low butis £ = 7% In 2.

non-zero probability of a hash collision [10]. In sys- . . )
tems that use hash-based techniques to compress I§-2 Bloom Filters for Similarity Testing

cal data, a collision may corrupt the source file sys-Observe that we can view each file to be a set in Bloom
tem. TAPER is used for replica synchronization andfilter parlance whose elements are the CDCs that it is
hence only affects the target data. Secondly, data igomposed of. Files with the same set of CDCs have
validated by a second cryptographic checksum ovethe same Bloom filter representation. Correspondingly,
the entire file. The probability of two hash colli- fijles that are similar have a large number of 1s common
sions over the same data is quadratically lower anthmong their Bloom filters. For multisets, we make each
we ignore that possibility. CDC unique before Bloom filter generation to differenti-

The recent attack on the SHA-hash func-  ate multiple copies of the same CDC. This is achieved by
tion [26] raises the challenge of an attacker delib-attaching an index value of each CDC chunk to its SHA-
erately creating two files with the same content [1]. 1 hash. The index ranges from 1ltor, wherer is the
This attack can be addressed by prepending a secrefultiplicity of the given chunk in the file.
known only to the root at the source and target, to  For finding similar files, we compare the Bloom fil-
each chunk before computing the hash value. ter of a given file at the source with that of all the files
L . at the replica. The file sharing the highest number of
4 Similarity Detection 1's (bit-wise AND) with the source file and above a cer-
As we discussed in Section 3, the last two phases of théain threshold (say 70%) is marked as the matching file.
TAPER protocol rely on a mechanism for similarity de- In this case, the bit wise AND can also be perceived as
tection. For block and byte matching, TAPER needs tothe dot product of the two bit vectors. If the 1 bits in
determine which two files or chunks are similar. Simi- the Bloom filter of a file are a complete subset of that
larity detection for files has been extensively studied inof another filter then it is highly probable that the file is
the WWW domain and relies on shingling [22] and superincluded in the other.
fingerprints discussed later in Section 4.3. Bloom filter when applied to similarity detection have

In TAPER, we explore the application of Bloom filters several advantages. First, the compactness of Bloom
for file similarity detection. Bloom filters compactly rep- filters is very attractive for remote replication (storage
resent a set of elements using a finite number of bits andnd transmission) systems where we want to minimize
are used to answer approximate set membership queriethe metadata overheads. Second, Bloom filters enable
Given that Bloom filters compactly represent a set, theyfast comparison as matching is a bitwise-AND operation.
can also be used to approximately match two sets. BloonThird, since Bloom filters are a complete representation
filters, however, cannot be used for exact matching asf a set rather than a deterministic sample (e.g., shin-
they have a finite false-match probability, but they aregling), they can determine inclusions effectively e.g., tar
naturally suited for similarity matching. We first give a files and libraries. Finally, as they have a low metadata
brief overview of Bloom filters, and later present and an-overhead they could be combined further with either slid-
alyze the similarity detection technique. ing block or CDC for narrowing the match space.

. . To demonstrate the effectiveness of Bloom filters

4.1 Bloom Filters Overview for similarity detection, consider, for example, the file
A Bloom filter is a space-efficient representation of a set.ChangelLogn the Emacs-20.7 source distribution which
Given a set, the Bloom filter ofU is implemented as we compare against all the remaining 1967 files in the
an array ofm bits, initialized to 0 [4]. Each element Emacs-20.1 source tree. 119 identical files out of a total
u (v € U) of the set is hashed using independent 2086 files were removed in the HHT phase. The CDCs
hash functiong, .. ., hy. Each hash functioh;(v) for  of the files were computed using an expected and max-
1 < i < k returns a value between 1 andthen when imum chunk size of 1 KB and 2 KB respectively. Fig-
an element is added to the set, it sktbits, each bit ure 8 shows that the correspondi@bangeLodile in the
corresponding to a hash function output, in the BloomEmacs-20.1 tree matched the most with about 90% of the
filter array to 1. If a bit was already set it stays 1. For bits matching.
set membership queries, Bloom filters may yielthlse As another example, consider the filéconfig.ntin
positive where it may appear that an elemens in U Emacs-20.7 (Figure 9) which we compare against the
even though it is not. From the analysis in the survey pafiles of Emacs-20.1. Surprisingly, the file that matched
per by Broder and Mitzenmacher [8], given= |U| and = most wassrc/config.ir—a file with a different name in
the Bloom filter sizen, the optimal value of: that min-  a different directory tree. The CDC expected and max-
imizes the false positive probability?, wherep denotes  imum chunk sizes were 512 bytes and 1 KB respec-



Emacs 20.7/nt/config.nt with Emacs 20.1/*

Emacs 20.7/ChangeLog with Emacs 20.1/*

-

CVS Repository Benchmark
0.9

08
0.7
\|
0 0.5 |
0 400 800 1200 1600 2000 2 3 4 5 6 7 8 9
version:

Files in Emacs 20.1 Source Tree foo versions

0.8 | Emacs-20.1/nt/config.nt
Emacs-20.1/src/config.in

0.8
Emacs-20.1/ChangelLog

0.6 0.6 )
- Emacs-20.1/nt/config.h

0.4 0.4

0.2 0.2

o
Fraction of 1's matched in the AND output

Fraction of 1's matched in the AND output
Fraction of 1's matched in the AND output

10

0

400 800 1200 1600 2000
Files in Emacs 20.1 Source Tree

Figure 8: Bloom filter Comparison of Figure 9: Bloom filter Comparison of Figure 10:Bloom filter Comparison of file
the file ’'Emacs-20.7/ChangeLog’ with filesthe file 'Emacs-20.7/nt/config.nt’ with files‘foo’ with later versions ‘foo.1’, f00.2’,
'Emacs-20.1/* 'Emacs-20.1/* ... f00.10’

tively. Figure 9 shows that while the file with the same For an element to be considered a member of the set,
nament/config.ntmatched in 57% of the bits, the file all the corresponding: bits should be set. Thus, the
src/config.inmatched in 66%. We further verified this probability of a false match, i.e., an outside element is
by computing the correspondiriff output of 1481 and inferred as being in set, is p*. Let C denote the inter-
1172 bytes, respectively. This experiment further em-section of sets and B andc denote its cardinality, i.e.,
phasizes the need for content-based similarity detectionC = AN B and |C| = c.

To further illustrate that Bloom filters can differenti-  For similarity comparison, let us take each element in
ate betweemultiple similar files, we extracted a techni- setB and check if it belongs to the Bloom filter of the
cal documentation file ‘foo’ (say) (of size 175 KB) in- given setd. We should find that the common elements
crementally from a CVS archive, generating 10 differ- will definitely match and a few of the othén — ¢) may
ent versions, with ‘foo’ being the original, ‘foo.1’ be- also match due to the false match probability. By Linear-
ing the first version (with a change of 4154 bytes fromity of Expectation, the expected number of elements of
‘foo’) and ‘f00.10’ being the last. The CDC chunk sizes B inferred to have matched with A is
were chosen as in tiéhangeLodile example above. As
shown in Figure 10, the Bloom filter for 'foo’ matched
the most (98%) with the closest version ‘f0o.1’ and the To minimize the false matches, this expected number

E[# of inferred matchés= (¢) + (n — ¢)p”

least (58%) with the latest version f00.10'. should be as close toas possible. For that — c)p”
) should be close to 0, i.ep* should approach 0. This
4.2.1 Analysis happens to be the same as minimizing the probability

The main consideration when using Bloom filters for Of @ false positive. Expanding p and under asymptotic

n

similarity detection is the false match probability of the @nalysis, it reduces to minimizingl — e~ )k, Us-
above algorithm as a function of similarity between theing the same analysis for minimizing the false positive

source and a candidate file. Extending the analysigate [8], the minima obtained after differentiation is when

for membership testing [4] to similarity detection, we ¥ = 7 In2. Thus, the expected number of inferred

proceed to determine the expected numbeinédrred ~ Matches for this value df becomes

matches between the two sets. LetndB be the two E[# of inferred matchés= ¢ + (n — ¢)(0.6185)%

sets being compared for similarity. Let denote the

number of bits (size) in the Bloom filter. For simplicity, ~ Thus, the expected number of bits set corresponding
assume that both sets have the same number of element8.inferred matches is

Let n denote the number of elements in both sétand _ 1 k(c + (n_c)(oiﬁl%)%)
Bi.e.,|A| = |B| = n. As before; denotes the number E[# of matched bits}= m{l - (1 - *) }
of hash functions. The probability that a bit is set by a mn
hash functiorh; forl1 <i<kis %n A bit can be set by
any of thek hash functions for each of the elements.
Therefore, the probability that a bitis not set by any has
function for any element il — ) )"*. Thus, the proba-
bility, p, that a given bit is set in the Bloom filter of is
given by:

Under the assumption of perfectly random hash func-
tions, the expected number of total bits set in the Bloom
hfilter of the source sed, ismp. The ratio, then, of the ex-
pected number of matched bits corresponding to inferred
matches ind N B to the expected total number of bits set
in the Bloom filter ofA is:

K . o
1 nk o E[# of matched bits] (1 —emm(et (1= 0.0185) ))
p = (1— (I_E) ) ~l—em (1) E[# total bits set] (176—%)
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Figure 11: CDC comparison of the Figure 12: CDC comparison of the Figure 13:CDC Comparison of file ‘foo’
file 'Emacs-20.7/ChangelLog’ with filesfile 'Emacs-20.7/nt/config.nt’ with files with later versions ‘foo.1’, ‘fo0.2’,...
'Emacs-20.1/* 'Emacs-20.1/* ‘f00.10’

Observe that this ratio equals 1 when all the element¢.3  Comparison with Shingling
match, i.e.¢ = n. If there are no matching elements, i.e., _ S
¢ = 0, the ratio =2(1 — (0.5)(©-6185) ") Form = n, this Previous work on file similarity has mostly been based

evaluates to 0.6973, i.e., 69% of matching bits may bé®" shingling or super fingerprints. Using this method, for
false. For larger Va|l’.163n’ — 9n.4n.8n.10n. 11n. the  €achobject, all thé consecutive words of a file (called

corresponding ratios are 0.4658, 0.1929, 0.0295 O.Ollsk'Shingles) are hashed using Rabin fingerprint [22] to
0.0070 respectively. Thus, fan _ n OI”I an ave,rage Create a set of fingerprints (also called features or pre-
less than 1% of the bits set may match incorrectly. Thémages). Th?_se fmggrprlfntrs] a}[.? th('\a/ln sampl_ed tohcom-
expected ratio of matching bits is highly correlated to thePute & super-fingerprint of the file. Many variants have

expected ratio of matching elements. Thus, if a Iargebeen proposed that use different techniques on how the

fraction of the bits match, then it's highly likely that a shingle fingerprints are sampled (min-hashidgod.n,

large fraction of the elements are comgr]no>:1. ’ M ms’ etc.)_ and matched [5—7]. Whi.IMOd’” selgcts

Although the above analysis was done based on exf—iII fingerprints whose value module is zero; Min.,
. selects the set of fingerprints with the smallest value.

CeThe min-hashing approach further refines the sampling

%o be the min values of say 84 random min-wise inde-

ber of matched bits is highly concentrated aroundethe pend_ent pe_rmutatlons (or has_hes) pf the .SEt of all shin-
gle fingerprints. This results in a fixed size sample of

pectecnumber of matched bits with small variance [18]. 84 fingerprints that is the resulting feature vector. To

Given that the number of bits in the Bloom filter g, her simplify matching, these 84 fingerprints can be
should be larger than the number of elements in the Seérouped as 6 “super-shingles” by concatenating 14 ad-
we need large filters for large files. One approach is t(]acent fingerprints [9]. In REBL [15] these are called
select a new filter size when the file size doubles and onl%uper-fingerprints. A pair of objects are then considered
compare the files represented with the same filter size. TQjmiiar if either all or a large fraction of the values in the
support subset matching, however, the filter size for a"super—fingerprints match.
the files should be identical and therefore all files need to
have a filter size equal to size required for the largest file

port [13] that under th assumption that the differen
betweerp and(1 — e~ ) is very small, theactualnum-

Our Bloom filter based similarity detection differs
from the shingling technique in several ways. It should
4.2.2 Size of the Bloom Filter be noted, how_ever, that the varianf[s_ of shingling dis-

cussed above improve upon the original approach and
As discussed in the analysis, the fraction of bits matchingve provide a comparison of our technique with these
incorrectly depends on the size of the Bloom filter. Forvariants wherever applicable. First, shinglin/¢d,,.,
a 97% accurate match, the number of bits in the BloomM in ;) computes file similarity using the intersection of
filter should be 8x the number of elements (chunks) inthe two feature sets. In our approach, it requires only
the set (file). For a file of size 128 KB, an expected andthe bit-wise AND of the two Bloom filters (e.g., two 128
maximum chunk size of 4 KB and 64 KB, respectively bit vectors). Next, shingling has a higher computational
results in around 32 chunks. The Bloom filter is set to beoverhead as it first segments the file iktavord shin-
8x this value i.e., 256 bits. For small files, we can set thegles ¢ = 5 in [9]) resulting in shingle set size of about
expected chunk size to 256 bytes. Therefore, the Bloont — k& + 1, whereS is the file size. Later, it computes
filter size is set to 8x the expected number of chunks (32he image (value) of each shingle by applying set (say
for 8 KB file) i.e., 256 bits, which is a 0.39% and 0.02% H) of min-wise independent hash functionkl =84 [9])
overhead for file size of 8 KB and 128 KB, respectively. and then for each function, selecting the shingle corre-



sponding to the minimum image. On the other hand, web.1 Methodology

apply a set of independent hash functions (typically less ) )

than 8) to the chunk set of size on averfiéd wherec  We have implemented a prototype of TAPER in C and

is the expected chunk size (e.g=256 bytes for5=8 KB Perl. The chunk matching in Phase Il uses code from the
file). Third, the size of the feature set (number of shin-CDC implementation of LBFS [20] and uses the Sleep-

gles) depends on the sampling technique in shinglingyCat software’s BerkeleyDB database package for pro-
For example, in\/od,,, even some large files might have viding hash based indexing. The delta-compression of

very few features whereas small files might have zerdDh"’_lse IV was implemented using vediff [14]. The ex-
features. Some shingling variants (e fin., Mods:) perimental testbed used two 933 MHz Intel Pentium IlI

aim to select roughly a constant number of features. ouWerkstations with 512 MB of RAM running Linux ker-
CDC based approach only varies the chunk sjze de- nel 2.4.22 connected by full-duplex 100 Mbit Ethernet.

termine the number of chunks as a trade-off between per-
formance and fine-grained matching. We leave the em-

Software Sources (Siz&B)

pirical comparison with shingling as future work. In gen- . Workload No. of Files | Total Size
eral, a compact Bloom filter is easier to attach as afile tag linux-src (2.4.26) 13235 161,973
and is compared simply by matching the bits. AlX-src (5.3) 36007 874,579
emacs (20.7) 2086 54,667
4.4 Direct Chunk Matching for Similarity gce (3.4.1) 22834 172,310
rsync (2.6.2) 250 7,479

The chunk-based matching in the second phase, can be

directly used to simultaneously detect similar files be- Object Binaries (SizeMB

tween the source and target. When matching the chunk |_linux-bin (Fedora) 38387 1,339
hashes belonging to a file, we create a list of candi- AlX-bin (5.3) 61.527 3,704
date files that have a common chunk with the file. The Web Data (SizeMB

file with the maximum number of matching chunks is CNN 13534 247
marked as the similar file. Thus the matching complexity Yahoo 12167 208
of direct chunk matching i®)(Number of Chunks). IBM 9223 248
This direct matching technique can also be used in con- | Google Groups 16284 251

junction with other similarity detection techniques for
validation. While the Bloom filter technique is gen-

eral and can be applied even when a database of all fileor our analysis, we used three different kinds of work-
chunks is not maintained, direct matching is a simple €x1oads: i) software distribution sources, i) operating sys-
tension of the chunk matching phase. tem object binaries, and iii) web content. Table 1 details

To evaluate the effectiveness of similarity detectionihe gifferent workload characteristics giving the total un-

using CDC, we perform the same set of experimentgompressed size and the number of files for the newer
as discussed in Section 4.2 for Bloom filters. The re-yersion of the data at the source.

sults, as expected, were identical to the Bloom filter ap-

Table 1:Characteristics of the different Datasets

proach. Figures 11, 12, and 13 show the corresponding Workload linux-src | AlX-src | emacs gcc
plots for matching the files 'ChangeLog’, 'nt/config.nt’ | Versions |2.4.26-2.4.225.3-5.2)20.7-20.1 3.4.1-3.3.1
and ’foo’, respectively. Direct matching is more ex- | SizeKB 161,973 | 874,579| 54,667 | 172,310
act as there is no probability of false matching. The| _Phasel 62,804 | 809,514] 47,954 | 153,649
Emacs-20.1/ChangeLog file matched with the Emacst__Phase ! 24,321 | 302,529 30,718 | 98,428
20.7/ChangeLog file in 112 out of 128 CDCs (88%). EE::E I'U ig‘;g? iégggé ;gfgg Sggg;
Similarly, the Emacs-20.7/nt/config.nt file had a non- Diff Output 10260 | 158.463| 14362 60215

zero match with only three Emacs-20.1/* files with 8
(46%), 9 (53%), 5 (29%) matches out of 17 correspond-Table 2: Evaluation of TAPER Phases. The numbers denote
ing to the files nt/config.nt, src/config.in and nt/config.h, the unmatched data in KB remaining at the end of a phase.
resp. The file 'foo’ matched 'foo.1’ in 99% of the CDCs.

. . Software distributions sources For the software dis-
5 Experimental Evaluation tribution workload, we consider the source trees of the
In this section, we evaluate TAPER using several work-gcc compiler, the emacs editor, rsync, the Linux kernel,
loads, analyze the behavior of the various phases of thand the AIX kernel. The data in the source trees consists
protocol and compare the bandwidth efficiency, compu-of only ASCII text files. Thegcc workload represents
tation overhead, and response times with tar+gzip, rsyndhe source tree for GNU gcc versions 3.3.1 at the targets
and CDC. and version 3.4.1 at the source. Térmacsdataset con-




sists of the source code for GNU Emacs versions 20.1 | Workload || linux-src | AlX-src | emacs| gcc
and 20.7. Similarly, thesyncdataset denotes the source Phase | 291 792 46 502
code for the rsync software versions 2.5.1 and 2.6.2, with | Phase |l 317 3968 | 241 | 762
the addition that 2.6.2 also includes the object code bina- |_Phaselll 297 3,681 | 381 | 1,204

ries of the source..The two kernel Workloaﬁsyx-src Table 3:Uncompressed Metadata overhead in KB of the first
andAlIX-sr¢, comprise the source tree of the Linux ker- three TAPER phases.

nel versions 2.4.22 and 2.4.26 and the source tree for the
AIX operating system versions 5.2 and 5.3, respectively.

Object binaries Another type of data widely upgraded
and replicated is code binaries. Binary files have differ-
ent characteristics compared to ASCI|I files. To capture g
a tree of code binaries, we used the operating system bi=
naries of Linux and AIX. We scanned the entire contents &
of the directory treetusr/bin, /Jusr/X11R@&nd/usr/lib in
RedHat 7.3 and RedHat Fedora Core | distributions, de-
noted bylinux-bin dataset. The majority of data in these
trees comprises of system binaries and software libraries linux-src aix-src emacs gcc rsync linux—bin aix-bin
containing many object files. Th&lX-bin dataset con-
sists of object binaries and libraries/irsr, /etc, /varand
/sbindirectories of AlX versions 5.2 and 5.3.

Data Volume

Normalized Ti

Figure 14: Normalized transmitted data volume (uncom-
pressed) by Rsync, HHT+CDC, TAPER on Software distribu-
tion and Object binaries. The results are normalized against the
Web content Web data is a rich collection of text, im- total size of the dataset.
ages, video, binaries, and various other document for-
mats. To get a representative sample of web content th@figer version to the newer version, e.g., Linux version
can be replicated at mirror sites and CDNs, we used & 4 22 to 2.4.26. For each phase, we measure the total
web crawler to crawl a number of large web servers.sjze of unmatched data that remains for the next phase
For this, we used thevget1.8.2 crawler to retrieve the gnq the total metadata that was exchanged between the
web pages and all the files linked from them, recursivelysgyrce and the target. The parameters used for expected
for an unlimited depth. However, we limited the size of g3nd max chunk size in Phase Il was 4 KB and 64 KB,
the downloaded content to be 250 MB and restricted thgespectively. For Phase II1, the block size parameter was
crawler to remain within the website’s domain. 700 bytes. The data for Phase IV represents the final un-

The four datasets, CNN, Yahoo, IBM matched data that includes the delta-bytes. In practice,
and Google Groups, denote the content Ofthis datawould then be compressed ugjngpand sentto
www.cnn.com,  www.yahoo.com, — www.ibm.com, the target. We do not present the final compressed num-
and groups.google.com websites that was downloadegers here as we want to focus on the contribution of TA-
every day from 15 Sep. to 10 Oct., 2004. CNN is a newspER and not gzip. For comparison, we show the size of
and current affairs site wherein the top-level web pageshe output of “diff -r". Table 2 shows the total unmatched
change significantly over a period of about a day. Yahoodata that remains after the completion of a phase for the
a popular portal on the Internet, represents multipleworkloadslinux-src, AlX-src, emacandgec Addition-
pages which have small changes corresponding to dailyg|ly, Table 3 shows the metadata that was transmitted for
updates. IBM is the company’s corporate homepageach phase for the same workloads. The table shows that
providing information about its products and services.the data reduction in terms of uncompressed bytes trans-
Here, again the top-level pages change with announcenijtted range from 88.8% for the linux-src and 78.3% for
ments of product launches and technology eventsihe AIX-src to 52.2% for emacs and 58% for gcc. On the
while the others relating to technical specifications arepther hand, the overhead (compared to the original data)
unchanged. For the Google Groups data set, most page$ metadata transmission ranged from 0.5% for linux-src
have numerous changes due to new user postings arghd 0.9% for AlX-src to 1.2% for emacs and 1.4% for
updates corresponding to feedback and replies. gcc. Observe that the metadata in Phase Il and 11l is in

. the same ball park although the matching granularity is

5.2 Evaluating TAPER Phases reduced by an order of magnitude. This is due to the
As we described earlier, TAPER is a multi-phase proto-unmatched data reduction per phase. The metadata over-
col where each phase operates at a different granularithead of Phase | is relatively high. This is partly due to
In this section, we evaluate the behavior of each phasthe strong 20-byte hash SHAhash that is used. Note
on different workloads. For each dataset, we upgrade ththat the unmatched data at the end of Phase IV is in the
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Figure 15:Rsync, TAPER Comparison on CNN web dataset ~ Figure 16:Rsync, TAPER Comparison on Yahoo web dataset

same ball park as thdiff output between the new and old and 25 days. We examined the bandwidth cost of updat-
data version but that computing the latter requires a nodeng the base set to each of the updated versions without
to have a copy of both versions and so is not a viablecompression. Figures 15, 16, 17, 18 show the total data

solution to our problem. transmitted (without compression) by TAPER and rsync
to update the base version for the web datasets. For the
5.3 Comparing Bandwidth Efficiency CNN workload, the data transmitted by TAPER across

. . . o the different days ranged from 14 MB to 67 MB, while
In this section, we compare the bandwidth efficiencyy,. by rsync ranged from 44 MB to 133 MB. For this
of TAPER (in terms of total data and metadata trans'dataset, TAPER improved over rsync from 54% to 71%

ferr.ed) with ta.r+gzip, rsync, and HHT+CDC.To differ- oyt compression and 21% to 43% with compression.
entiate bandwidth savings due to TAPER from data COMimilarly, for the Yahoo, IBM and Google groups work-

pression (gzip), we first'illustrate. TAPER’s contribution load, TAPER'’s improvement over rsync without com-
to bandwidth savings without gzip for software Sourcespression ranged 44-62%, 26-56%, and 10-32%, respec-

and object binaries workloads. Figure 14 shows the nortively. With compression, the corresponding bandwidth

malized transmitted data volume by TAPER, rsync, andsa,ings by TAPER for these three workloads ranged 31-
HHT+CDC for the given datasets. The transmitted dataso, 23.3894 and 12-19% respectively.

volume is normalized against the total size of the dataset.

For thegcg AlX-src andlinux-bin datasets, rsync trans- 5.4 Comparing Computational Overhead
mitted about 102 MB, 332 MB, and 1.17 GB, respec-|, this section, we evaluate the overall computation
tively. In comparison, TAPER sent about 73 MB, 189 g erhead at the source machine. Micro-benchmark ex-
MB, and 896 MB corresponding to bandwidth savings of yeriments to analyze the performance of the individual

29%, 43% and 24%, respectively for these three datasetﬁhases are given in Section 5.5. Intuitively, a higher com-
Overall, we observe that TAPER'’s improvement over ’

dputational load at the source would limit its scalability.
rsync ranged from 15% to 43% for software sources and o the emacs dataset, the compressed tarball takes
24% to 58% for object binaries workload. '

10.4s of user and 0.64s of system CPU time. The cor-
Using gzip compression, we compare TAPER andresponding CPU times for rsync are 14.32s and 1.51s.
rsync with the baseline technique tfr+gzip. For the  Recall that the first two phases of TAPER need only to be
linux-src andAlX-bin data-sets, the COITlpI'GSSEd tarba||computed once and stored. The total CPU times for the
(tar+gzip) of the directory trees, Linux 2.4.26 and AIX first two phases are 13.66s (user) and 0.88s (system). The
5.3, are about 38 MB and 1.26 GB, respectively. TA-corresponding total times for all four phases are 23.64s
PER (with compression in the last phase) sent about and 4.31s. Thus, the target specific computation only
MB and 542 MB of difference data, i.e., a performancerequires roughly 13.5s which is roughly same as rsync.
gain of 86% and 57% respectively over the compressegue to space constraints, we omit these results for the

tar output. Compared to rsync, TAPER’s improvementother data sets, but the comparisons between rsync and
ranged from 18% to 25% for software sources and 32%TAPER are qualitatively similar for all experiments.

to 39% for object binaries datasets. . )

For web datasets, we marked the data crawled on Seé'5 Analyzing Response Times
15, 2004 as the base set and the six additional versions this section, we analyze the response times for the
corresponding to the data gathered after 1, 5, 10, 15, 20arious phases of TAPER. Since the phases of TAPER
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Figure 17:Rsync, TAPER Comparison on IBM web dataset Figure 18:Rsync, TAPER Comparison on Google Groups web
dataset

Chunk Sizes|| 256 Bytes| 512 Bytes| 2KB | 8 KB are stored in a database and re-used. Since the matching
File Size (ms) (ms) (ms) | (ms) time is much faster for CDC we use it in Phase Il where

100 KB 4 3 3 2 it is used to match all the chunks over all the files.
1 MB 29 27 26 24

10 MB 405 321 267 259 10000 T T T

Table 4: CDC hash computation time for different files and 1000
expected chunk sizes

100
include sliding-block and CDC, the same analysis holds
for rsync and any CDC-based system. The total respons
time includes the time for i) hash-computation, ii) match-
ing, iii) metadata exchange, and iv) final data transmis- 2 1 Y
sion. In the previous discussion on bandwidth eﬁiciency,§
the total metadata exchange and data transmission byte o1t
values are a good indicator of the time spent in these
two components. The other two components of hash-  oo1 LLLLLL LLLL L1
. . File Size = 100 KBytes File Size = 1MBytes  File Size = 10MBytes

computation and matching are what we compare next. File Size

The hash-computation time for a single block, used in_ o o
the sliding-block phase, to compute a 2-byte checksunfigure 19:Matching times for CDC and sliding-block (SLB).
and a 4-byte M2 hash for block sizes of 512 bytes, 2
KB, and 8 KB, are 5.3s, 19.7%:s, and 77.7as, re- © Related Work
spectively. Each value is an average of 1000 runs oDur work is closely related to two previous hash-based
the experiment. For CDC, the hash-computation timetechniques: sliding block used in rsync [2], and CDC in-
includes detecting the chunk boundary, computing theroduced in LBFS [20]. As discussed in Section 2, the
20-byte SHAI signature and populating the database forsliding-block technique works well only under certain
indexing. Table 4 shows the CDC computation times forconditions: small file content updates but no directory
different file sizes of 100 KB, 1 MB, and 10 MB, using structure changes (renames, moves, etc.). Rsync uses
different expected chunk sizes of 256 bytes, 512 bytes, 2liding block only and thus performs poorly in name-
KB, and 8 KB, respectively. The Bloom filter generation resilience, scalability, and matching time. TAPER, how-
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Figure 19 shows the match time for sliding-block andsitive to the chunk size parameter: small size leads to
CDC for the 3 file sizes (10 KB, 1 MB and 10 MB) and fine-grained matching but high metadata whereas large
3 block sizes (512 bytes, 2 KB, 8 KB). Although the chunk size results in lower metadata but fewer matches.
fixed-block hash generation is 2 to 4 times faster tharfSome recent studies have proposed multiresolution par-
CDC chunk hash-computation, the time for CDC match-titioning of data blocks to address the problem of the
ing is 10 to a 100 times faster. The hash-computatioroptimal block-size both in the context of rsync [16] and
time can be amortized over multiple targets as the result€DC [12]. This results in a trade-off between bandwidth
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