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Brandon Hall, M.A.
The University of Texas at Austin, 2005

Supervisor: Michael D. Dahlin

This thesis presents slot scheduling, a approach to general-purpose CPU
scheduling for multiprocessor systems. The chief virtues of slot scheduling are ver-
satility (the ability to support a broad range of classes of schedulers) and intelligi-
bility (allowing system designers to easily reason about interactions among different
kinds of schedulers). In particular, slot scheduling is well-suited for meeting the
needs of both real-time and gang-scheduled applications. These characteristics dis-
tinguish slot scheduling from existing scheduler proposals which tend to suffer from
overspecialization and complexity. Slot scheduling achieves its goals by employing
an explicit “bulletin board” representation of CPU allocation that decentralizes the
task of scheduling from the kernel and permits scheduling logic to be carried out by

applications themselves. We show that this approach is both feasible and efficient.
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Chapter 1

Introduction

This thesis presents slot scheduling, an approach to task scheduling for multiproces-
sor systems. Slot scheduling provides a simple but powerful framework for building a
wide range of schedulers, including gang schedulers [12] and various types of real-time
schedulers. In addition, it allows system designers to easily reason about how these
different classes of schedulers will interact when they coexist in the same system.
Both of these qualities—versatility and intelligibility—distinguish slot scheduling
from existing scheduler design approaches, which tend to suffer from overspecializa-
tion and complexity. Thus, we speculate that slot scheduling should be applicable to
a much larger set of computing workloads and platforms than previous approaches
have been.

The ability to support a diverse mix of scheduling needs has become more
and more important over the past decade. Individual systems are increasingly being
asked to run applications with varying scheduling requirements, and run these appli-
cations at the same time. A typical example is the modern desktop computer, which
may be used to play a video stream over the Internet while simultaneously burning
a CD and compiling a program. This scenario requires balancing the needs of real-
time, I/O and CPU-intensive processes. More sophisticated examples include the
multiprocessor embedded systems found in medical, avionic, networking and other
industrial environments. These systems may be asked to perform parallel scientific
computations and provide timeliness guarantees to certain tasks, while factoring in
the effects of temporary power-saving measures such as voltage or frequency scaling

on particular processors. The challenges of combining such diverse application ser-



vices within a single system’s framework are immense, and not surprisingly, today’s
operating systems provide very limited scheduling support for such combinations of
applications.

Lacking a general solution to all of these diverse scheduling needs, the systems
industry has responded the demand with a proliferation of OS variants specialized for
particular types of workloads. Notable examples are “real-time operating systems”
such as QNX, VxWorks and RTLinux. We believe that this proliferation, while it
satisfies the short-term needs of some classes of applications, is ultimately costly. The
most obvious cost is the multiplication of development efforts that goes into creating
and maintaining the numerous operating systems. However, a more significant cost
is that which is borne by users of these systems. The absence of a single design point
resulting from the multiplicity of systems limits the ability of software developers
and system architects to reuse libraries and applications. At worst, solutions already
developed on one platform cannot be translated to other platforms because the effort
required is considered infeasible, or perhaps equally bad, the paths of development
branch to reflect the zoo of system interfaces facing programmers.

To overcome these problems, we propose a significantly different paradigm—
slot scheduling—that departs from the traditional design approaches in a few key
respects. Perhaps the most important difference is that we eliminate the usual
convention of a global, heavyweight scheduling algorithm that tries to coordinate
the needs of all processes in the system. Instead, slot scheduling provides a thin
kernel mechanism that allows the bulk of the scheduling logic to be distributed to
library-level or application-level code. This mechanism consists of a globally-visible
reservation system for CPU resources, in which processor time is discretized into
fixed-length timeslices (slots). User-level code is given the responsibility of deciding
which available slots would satisfy an application’s particular scheduling needs and
asking the kernel to run the application during those slots. With this framework,
constructing a broad range of classes of schedulers becomes quite simple.

The rest of this thesis is devoted to explaining the slot scheduling approach
in greater detail and defending its practicality as a solution to the scheduling chal-
lenges we have just mentioned. In Chapter 2, we walk through the main features of
the slot scheduling architecture, showing how slot scheduling works and providing
the rationale behind the various design decisions we made. Chapter 3 reports on

our experiences with implementing slot scheduling for an actual operating system,



K42. In Chapter 4 we analyze the feasibility and performance of the slot scheduling
approach through a number of experiments. Chapter 5 situates our research contri-
butions with respect to other recent work on scheduling in the systems community.
We conclude our presentation in Chapter 6 and outline directions for future work and
improvements. Our hope is that this thesis will clearly demonstrate slot scheduling’s
promise for tackling the challenges of the next generation of computing systems and

for making these systems more widely accessible and usable than they are today.



Chapter 2

How 1t works

As we argued in the introduction, the general-purpose demands of emerging mul-
tiprocessor systems pose severe (we believe insuperable) challenges for traditional

approaches to CPU scheduler design. The two main challenges of these systems are

(1) wersatility: being able to support a large variety of schedulers (particularly

gang and real-time), and

(2) intelligibility: enabling system builders to easily reason about interactions
among different schedulers, decide how tradeoffs ought to be made (policy
decisions), accurately predict “who will win” in the midst of competition for
CPU time, etc.

Slot scheduling is motivated by the desire to address both of these challenges,
and its architecture consequently reflects the design goals of versatility and intelligi-
bility.

In order to achieve versatility, we do two things in slot scheduling. First,
we break with the tradition of keeping all scheduling logic under tight wraps inside
the kernel. Locking functionality away behind a kernel barrier is a hindrance to the
flexibility and adaptability required by the systems we have described. Instead, we
follow a design path laid out in recent work on extensible operating systems [2], [4],
[6]: responsibility for process scheduling is shared between privileged kernel code
and unprivileged user-space code, with the goal of empowering user code as much
as possible and keeping kernel mechanism to a minimum. This strategy enables

schedulers to be implemented as libraries which applications can pick and choose



from at either compile time or runtime, and it avoids the need for patching the
kernel in order to introduce novel types of schedulers.

The second thing we do to achieve versatility is create a primitive, “lowest
common denominator” abstraction upon which we can build many different kinds
of schedulers. The abstraction is this: we explicitly instantiate a schedule of CPU
timeslices that precisely specifies when and where (on which processors) programs
will be running in the future. Schedulers, operating as user-level code, scan the slot
schedule and look for available timeslices that satisfy their scheduling requirements,
and the kernel functions as a simple arbiter among the different user-level schedulers
which are jockeying for CPU time. This approach differs markedly from those taken
in existing scheduler architectures, architectures which rely on higher-order abstrac-
tions such as priorities, tickets [15], virtual time [8], [5], trees [7]| or scheduling graphs
[9]. These latter models have obvious benefits that have led to their repeated usage
in system design: they present compact and algorithmically efficient ways of en-
coding future processor schedules, and they are typically good at achieving certain
goals such as fairness. However, each of them in their own ways tends to restrict
the range of possible scheduling behaviors and can be a clumsy fit for certain classes
of schedulers. By mapping CPU schedules onto the most explicit representation
possible—an actual schedule of which timeslices are going to whom—we can attain
a greater degree of arbitrariness in how CPU time is distributed among running
programs and consequently support a wider variety of schedulers.

The slot schedule representation also helps us achieve our other goal, intel-
ligibility. The slot schedule functions as a globally visible “bulletin board” where
applications can make their CPU time requirements known in an interpretable,
easy-to-understand fashion. As other application schedulers enter the fray, they
can clearly see what constraints they are operating under in terms of the CPU needs
of the existing set of applications and can work around those needs as necessary, or if
need be, force less privileged or overly greedy! applications to adjust their timeslice
reservations in order to make room for the new application. These local schedul-
ing algorithms make it easy to reason about what is happening in the system, and

they lead to sensible interactions among different classes of schedulers. By contrast,

'Tn Section 2.4 we present some higher-level policy tools that can be used to define the CPU
rights of various applications. These mechanisms allow administrators to define more precisely
what it might mean for a process to be “more privileged” than another process or to be considered
€« b3
greedy”.



abstractions such as priorities or virtual time constitute relatively poor vehicles for
reasoning about the runtime interactions of various schedulers. Precisely analyzing
how the introduction of a real-time task would affect other deadline-based tasks in
a system based on priorities, for example, is an extremely complicated undertaking,
as attested to by the large body of real-time systems literature. In proposing the
slot scheduling paradigm, we seek to eliminate this kind of inscrutability.

The remainder of this chapter is devoted to discussing the major features of
the slot scheduling architecture and the rationale behind the various aspects of its
design. We first describe the characteristics of the slot schedule itself, then explain
how scheduling labor is divided between kernel and user-level code. Following that,
we explore what happens when diverse schedulers compete with one another for CPU
time in the slot scheduling framework and discuss some mechanisms for managing
this competition. Next we turn to the issue of supporting best effort and event-driven
types of jobs with an auxiliary scheduler, and finally we walk through an example

demonstrating how all the pieces fit together.

2.1 The slot schedule

At the center of our scheduling architecture is a global data structure which we
call the slot schedule. The purpose of the slot schedule is to record and publicize
decisions made in advance about which processes should be run on which processors
at various times. The actual data structure we use to represent the schedule is a
two-dimensional array, with rows corresponding to physical processors in the system
and columns corresponding to consecutive timeslices.? Figure 2.1 illustrates part of
a sample schedule for a four-way multiprocessor system.

As shown in Figure 2.2, each slot in the matrix records several pieces of
information. The most important of these is the schedulee field, which names the
process that should be run during that timeslice on the corresponding processor.
The other fields will be discussed throughout the remainder of this chapter.

In our proposed framework, the timeslices represented by slots are all of equal,
fixed duration. Choosing this slot length is somewhat of an engineering decision
that involves trading off schedule granularity and flexibility against the overhead of

frequent context switching. Reasonable values for today’s systems would probably

*Readers familiar with [12] will recognize this as the transpose of the Ousterhout matrix.



Slot#33 Slot#34 Slot#35 Slot#36  Slot#37  Slot #38
CPU #1 PID293 | PID293 | PID293 | PID293 | PID 293
CPU #2 PID 18

|

CPU #3
CPU #4 PID 26

Figure 2.1: Partial view of CPU schedule

struct Slot

{

pid t owner;

pid t schedulee;

// gets charged for this CPU resource
// designated by owner, gets CPU time
// what owner spent for this slot

// how long this reservation is valid

int token _ priority;
int expiration_timestamp;
void (*revocation _callback)(int row, int col);

// notify on preemption?

Figure 2.2: Data structure representing an individual slot.

range from ones to tens of milliseconds. A conceivable alternative to discretizing
processor time in this manner might be to use per-processor free list structures
that allow CPU time to be divided up into arbitrary, variable-length blocks, similar
to the way that memory allocation is handled in many systems. We have instead
chosen the discrete slot approach because it provides a simpler programming interface
for library-level schedulers. It also leads to a slot schedule data structure that is

of constant and predictable size, which can be helpful for the memory-mapping

techniques we suggest for sharing the schedule among multiple processes.



2.2 Kernel scheduler

Actually switching from one task to the next in a system that uses slot scheduling
is the responsibility of a low-level kernel scheduler. The algorithm for this low-level
scheduler is very simple. On each processor, a timer goes off at every slot boundary
and wakes up a per-processor kernel scheduler. This kernel scheduler inspects its
row of the schedule and examines the upcoming slot: if the designated new process
is the same as the process that was running prior to interruption, the kernel simply
resumes it where it left off; otherwise, the kernel saves the state of the interrupted
process and loads the context of the new process onto the machine. In either case, the
entire procedure only involves a single lookup into the slot schedule and its running
time should therefore be bounded by a constant. For most implementations, this
code path will be very efficient and nearly optimal in terms of the overhead that any
scheduling algorithm would have to incur in order to perform a task switch.
Because system resources are finite and preclude laying out the CPU schedules
indefinitely far into the future, we let the kernel scheduler walk through the slot
schedule arrays in round-robin fashion, going back to the first slot after the last slot
has been scheduled. In addition, the kernel interprets the slot schedule as being
periodic: slot reservations made by processes persist through repeated cyclings of
the schedule. For example, in a CPU array that is 100 timeslices long, a process
claiming Slot #42 will be scheduled by the kernel at timeslices 42, 142, 242, etc.
The alternative to periodicity would be to have slot reservations expire im-
mediately after their use, thereby making the slots available again to other processes
that want to be considered during the kernel’s next pass over the schedule. While
this nonperiodic approach would appear to have the advantage of offering greater
adaptability to changing or unstable workloads, we have rejected it because it re-
quires ongoing recomputation of the schedule even when the system is in a steady
state. Instead, we offer processes the option of tagging their reservations with an ex-
piration timestamp: the kernel scheduler looks at this timestamp in order to decide
whether a reservation is currently valid or not. Our slot scheduling design is hence
well-suited for workloads consisting of highly periodic tasks (like are found in certain
real-time scenarios) and/or aperiodic tasks (such as event-driven types of jobs).
Although here we have described schedulees as processes, the actual unit of

scheduling may vary from one scheduling architecture to the next. In particular,



many operating systems may wish to single out individual threads or thread sched-
ulers as the entities that are named in individual slots. As we describe in Chapter 3,
the slot scheduler we implemented for the K42 operating system specifies schedulees
in terms of resource domains, a K42-specific scheduling primitive. A slot scheduler
implementation for Linux would probably deal in terms of Linux’s LWPs (lightweight

processes).

2.3 Library-level schedulers

Up to now we have discussed the slot scheduling framework mainly in terms of
the low-level mechanisms required for its functioning: the slot schedule itself and
the supporting kernel infrastructure. These mechanisms are fairly basic and by
themselves do not provide any interesting scheduling behavior for applications. It
is the role of user-level code to deliver higher-level guarantees, such as timeliness,
fairness or coscheduling, to applications using these kernel services.

All user-level schedulers will follow the same general algorithm, which pro-
ceeds as follows. First, the scheduler has to examine the slot schedule to determine
which timeslices are currently available for it to take. Then it must decide which of
the available slots it actually wants to take in order to satisfy its particular scheduling
requirements. Finally, it must ask the kernel to reserve these slots for the applica-
tion. If each of these stages completes successfully, the user-level scheduler’s work is
done and it can idle until the application’s requirements change. Otherwise, it may
have to revisit the slot schedule to see if there is another way to satisfy the demands,
and if not, possibly inform the application of the inability to meet its scheduling
requirements.

Because user-level schedulers will need a quick and efficient means of read-
ing the schedule, we recommend that slot scheduling implementations use shared
memory techniques to map the schedule into a read-only segment of each process’s
address space. An implementation for Linux could simply create a new entry in the
/proc filesystem, for example.

The API for allowing user-level code to modify the state of the schedule
is shown in Figure 2.3. It consists of two system calls, one for requesting slots
from the kernel (claim_slots) and another for releasing slots that are no longer

needed (free slots). Each individual slot request specifies several things: who is



to be scheduled (schedulee), what level of token the caller wishes to spend for this
CPU resource (token _priority), whether lifetime of the CPU claim should be limited
(expiration _timestamp), and an optional handler for notifying the caller in case the

claim is revoked due to external events (revocation _callback).

err_t claim_slots(SlotRequest *request vector, int *len);

Stakes claims on CPU timeslices or changes parameters for existing
claims. Caller passes in list of slot requests; kernel returns list of re-
quests that were successful and adjusts length parameter appropriately.

void free slots(SlotRequest *request vector, int len);
Releases already claimed CPU timeslices.

struct SlotRequest

{
int row; // which processor
int column; // which timeslice
pid t schedulee;
int token _ priority;
int expiration _timestamp;
void  (*revocation callback)(int row, int col);

Data structure for specifying parameters of claims. All of the fields are
significant for the claim _slots() system call; for the free slots() call, the
kernel cares only about the row and column fields.

Figure 2.3: Scheduling system calls

Note that we make a distinction between the process which owns a slot
(the owner field) and the process which is designated to receive the CPU time (the
schedulee field). The process calling claim _slots() or free slots() is implicitly identi-
fied as the owner and can name any process it likes as a schedulee. The purpose of
this distinction is to facilitate collaborative types of scheduling among multiple pro-

cesses: for instance, a group of processes that wish to gang schedule their execution.
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Typically such processes will centralize the logic in a designated coordinating process,
who takes responsibility for assigning timeslices to all the participants. Since we do
not place any restrictions on who owners may nominate for CPU time, as a necessary
security measure, the system charges owners, not schedulees, for the use of slots. If
it were not for this, a malicious or buggy process could unfairly deplete the token
resources of other processes by designating them as schedulees against their will.
(Tokens and resource accounting are discussed more fully in Section 2.4.1.) Another
interesting use for the owner / schedulee distinction is in solving problems of priority
inversion: a high-priority client waiting on a contended resource can temporarily slot
schedule the server in order to hasten processing.

When a process asks for slots via the claim _slots() call, it is possible that
some of its requests may be denied, perhaps because of insufficient resource rights or
other unknown constraints. In this case, the kernel will follow a best-effort approach
and attempt to claim as many of the requested slots as it can for the caller; the
kernel then returns an error code and sends the caller a list of only the successful
claims, via the same buffer that the caller used to send the initial request list. By
doing things in this way, we make it easy for the scheduling client to free slots en
masse: the client can simply send back the same list in free slots() that the kernel
had returned from the earlier call to claim_slots().

Having spelled out this framework, we can now easily describe library-level

implementations for some common classes of schedulers:

Periodic real-time Following the original model of Liu and Layland [11], these are
tasks with requirements like “give me m milliseconds of CPU time out of every
n milliseconds”. The library scheduler for these tasks simply scans the schedule
looking for at least m milliseconds worth of slots in each n-millisecond window.
Other variants might allow some degree of jitter, job execution requirements

permitting.

Event-driven/aperiodic real-time These are tasks that wait for an event to oc-
cur (like the arrival of I/O or the emptying of a buffer) and then require a
certain amount of computation before a deadline, after which they can rest
until the next event occurrence. The library-level scheduler for these tasks
looks for the requisite number of slots between the current time and the dead-

line and tags them with the appropriate expiration timestamp. (We will say

11



more about how event-driven tasks get the opportunity to schedule themselves
in Section 2.5.1.)

Gang scheduled These are jobs involving k processes or threads that must run
simultaneously in order to make forward progress. Their user-level scheduler

simply looks for columns containing k available slots.

Cache-sensitive The scheduler looks for long contiguous blocks of slots on the same
processor in order to minimize the number of context switches and maximize

efficient cache usage.

Best-effort These tasks do not have any special scheduling requirements; their
scheduler tries to obtain whatever slots it can get its hands on, working around

the claims made by other, more demanding types of schedulers.

In most cases, processes will probably prefer their slots to all be on the same
rows (processors), but it is important to note that the low-level slot scheduling in-
frastructure does not enforce this in any way. How to trade off concerns of utilization
versus CPU affinity is a decision that is completely left up to library-level scheduler
implementations. These implementations can elect to use either simple but cheap
heuristics or deploy more complex but more expensive analytical algorithms.

One common task profile that we have omitted from this list of schedulers is
that of an interactive task, i.e. a task that is I/O-bound, unpredictable and seeks low
response time. The most obvious approach for slot scheduling such a task would be
to look for slots which are as equidistantly-spaced as possible. However, workloads
for desktop and server environments can consist of a large number of interactive
tasks, and applying this kind of scheduling algorithm for each of them could be
very uneconomical with regard to total slot usage. What we propose instead for
interactive tasks is not to use slot scheduling at all but rather to address their
scheduling needs with a secondary, fallback scheduler: this topic is covered more
fully in Section 2.5.

We expect that production operating systems will generally want to supply
a variety of stock library schedulers which provide higher-level scheduling behaviors
and interfaces to programs, so that a process can request, say, certain types of real-
time guarantees using a real-time API and not even be aware that slot scheduling

was “under the hood”. Nevertheless, applications are always free to reach beyond

12



any such APIs and directly carry out their own specialized scheduling algorithms

using the slot scheduling system calls, if they so desire.

2.4 Interactions among competing schedulers

Understanding how the library-level scheduling algorithms we have just presented
operate in isolation is fairly straightforward. However, the simultaneous and com-
peting interaction of several such schedulers can be much more complex and harder
to grasp, especially if the schedulers are of diverse types. In this section, we present a
number of improvements to the basic slot scheduling architecture that enable reason-
ing about these interactions at a higher, easier-to-understand level. The goal of these
enhancements is to provide designers and administrators with an effective means of
managing the competition among different schedulers; essentially, a comprehensible

way of articulating CPU sharing policy.

2.4.1 Tokens

A pure free-for-all, first-come-first-served approach for handing out slots to processes
would present obvious problems: individual processes could monopolize the schedule
and unfairly starve other processes, could make it impossible for other processes to
meet real-time demands, etc. So, in order to restrict processes’ access to the CPU and
resolve competing claims for slot time, we introduce a token system. Tokens are the
primary means of metering CPU resource rights for slot-scheduled applications and
provide a way to constrain processes’ CPU usage without diminishing the flexibility
offered by the slot scheduling approach.

Tokens are an integral part of the scheduling procedure for applications and fit
into the slot scheduling framework as follows. Each process, in order to obtain slots,
must spend tokens that have been granted to it by the system. The system charges
processes one token per slot for the privilege of ownership. The kernel acts a banker
and keeps track of how many tokens every process currently possesses: whenever
a process attempts to claim new slots via the claim_slots() system call, the kernel
verifies that the process has sufficient token funds before granting the request and
then decrements the process’s funds accordingly. A process that has spent all of its

tokens is unable to purchase any further CPU time in the slot schedule. Processes

13



get their tokens back either when they release their slot claims voluntarily or when
the system forcibly revokes the claims.

Thus, tokens provide one immediate way for administrators to define CPU
sharing policy: by granting different amounts of tokens to different applications,
based on their relative merit for CPU cycles. A process that has been given twice
as many tokens as another process, for example, will be able to purchase twice as
much processor time in the slot schedule and consequently get to run twice as much.
Similarly, if the system wants to grant real-time privileges to a certain job but does
not want it to acquire any CPU time beyond the minimum required to satisfy its
timeliness demands, it can provide the job with just enough tokens to meet those
needs and no more.

Following are some enhancements and further comments on the basic token

scheme we have just described.

Priorities

In general, the system “sells” slots to processes on a first-come, first-served basis: an
empty slot can be claimed by any process possessing at least one token, and once
claimed will belong to that process until it chooses to give it up or until it is revoked.
This simple system by itself, however, is not really adequate for balancing the needs
of schedulers with CPU demands that vary in their stringency. A hard real-time
job, for example, may desperately need certain slots that it cannot get because other
applications with less exacting CPU requirements “got there first”.

To fix this problem, we introduce the notion of priorities for tokens. Each
token in the system has a fixed and unchangeable numeric priority attached to it.
Processes can have tokens belonging to several different priority levels, and when
a process purchases slots, it must name the priorities of the tokens it is choosing
to spend (specified via token priority). The key idea of priority is this: a process
that spends a higher-priority token for a given slot will get to preempt any previous
lower-priority claim made on that slot. The problem previously described can now
be fixed by giving the hard real-time job higher-priority tokens than the other jobs
in the system.

This priority enhancement thus provides us with a simple, high-level way to

distinguish among applications with more or less strict scheduling needs. A likely

14



usage scenario for priorities would be to define a few different priority levels and
supply them to applications according to the following ranking: system critical,
hard real-time, various classes of soft real-time, gang scheduled, best effort and

background. Other usages or rankings are possible as well.

Weights

Although proportional sharing or fairness among applications can be achieved by
carefully calibrating the number of tokens dispensed to them, such an approach is
generally undesirable for a couple of reasons. First, it requires constantly monitoring
the token levels of all processes in the system, raising or lowering these levels as
processes join or leave. For example, if there are four equal jobs each in possession
of 25% of the total available tokens, when a fifth job enters the system, the token
funds of the first four jobs must be scaled down to 20% to maintain equity. This sort
of constant monitoring of token funds may be burdensome when there are a lot of
processes and the system is in a state of flux. Another problem with this approach
is that it may unnecessarily constrain slot schedule utilization. In the foregoing
example, if only one of the four jobs is currently using the slot schedule, that job
will be limited to 25% of the slots and the remaining 75% will be unavailable to it,
even though no other process might be using them.

To improve this situation, we allow a proportional-sharing weight to be spec-
ified for each token priority level of a process. This weight defines what a “fair share”
of the number of slots is for that process, relative to other processes at the same pri-
ority level. With this parameter in place, a process P is able to preempt the claim of
another process () with an equal-priority token if Q) currently has more than its fair
share of slots relative to P. The previous dilemma can now be resolved by issuing a
large number of tokens of equal weight to every job—even as many tokens as there
are slots in the schedule. The first such job entering the schedule can claim as many
slots for itself as it likes, so long as no other jobs have claimed them. When a second
job wishes to enter the schedule, it will have the power to preempt up to half of the
claims made by the first job and effectively split up CPU bandwidth 50-50 between
the two processes. A third job entering the schedule can scale all the jobs down to
33% of the slots, and so forth. Most systems will probably want to apply this kind
of token policy to their best-effort and background jobs (give them lots of tokens of
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equal weight) and supply lesser amounts of higher-priority, equal-weight tokens to
the more critical classes of applications that we mentioned earlier (real-time, gang,
etc.).?

Banking system calls

Figure 2.4 lists the basic system calls for token management. There is a method
that enables ordinary processes to find out how many tokens they currently possess
(knowledge which would be necessary for most kinds of scheduling algorithms); a
privileged, administrative method for setting a process’s current token levels; and a
token donation method that allows processes to transfer tokens out of their own funds
into the funds of other processes. This latter method can be useful for facilitating
cooperative types of scheduling arrangements such the previously mentioned example
of gang scheduling a group of processes. In that example, each of the participants
in the group would donate the requisite number of tokens to the leader process,

empowering it to buy slots on behalf of all the participants.

Final comments on tokens

There are two implementation alternatives for systems to consider with regard to
token accounting: a system can issue tokens either on a per-process or a per-user
basis. In the latter case, all the processes belonging to a given user will draw from
a common pool of tokens when they make requests for slots, free slots, etc. While
per-process token accounting yields a finer degree of control over CPU usage rights,
it may be overly cumbersome for systems that mostly wish to enforce access control
at the granularity of users. For these reasons, we opted for per-user token accounting
in our K42 implementation described in Chapter 3.

We have made several allusions in this section to the “system supplying pro-
cesses with tokens” but we have not been very specific about how this actually
happens. Most systems will probably want some sort of minimal policy built into
the kernel that automatically bestows a certain number of best-effort tokens upon

newly-forked processes or newly-logged-in users. Specialized scheduling services,

3Hard real-time jobs may not be able to tolerate any slot preemptions at all, lest they miss
critical deadlines. As a special case, it may be necessary to set aside a top-level token priority for
these tasks that does not permit weighted sharing. Claims made with these tokens would then be
nonpreemptable.
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like real-time services or gang services, are probably best brokered by a privileged
admission control server running in user-space that has permission to invoke the
set tokens operation and provide applications with the appropriate amounts and

types of tokens, per whatever policy system architects decide is reasonable.

2.4.2 Revocations

Another dimension to interactions among schedulers in slot scheduling is the notion
of revocations. Revocations of slot claims are a necessary evil that allow the system
to adapt appropriately to changes in the types of CPU demands imposed on it. We
have already noted a couple of ways in which a process’s slot claims can be revoked:
being preempted by a process with higher-priority tokens and exceeding one’s fair
share of slots for a given priority level. (A third revocation event—being evicted in
order to reserve spaces for latency-sensitive tasks—is discussed in Section 2.5.1.)
We give library-level schedulers in slot scheduling a chance to respond to
revocations by allowing them to specify callback handlers in the owner’s address
space (the revocation callback field in a SlotRequest). These callbacks allow sched-
ulers to repair any damage caused by the activity of their competitors. When a slot
claim is revoked, the kernel will invoke this callback asynchronously and notify the
owner which of its slots was taken away via the row and col arguments. Precisely
how a scheduler chooses to respond to a revocation event (if it chooses to respond
at all) will be scheduler-dependent. A gang scheduler, for instance, will want to find
another slot in the same column to make up for the slot it lost, and if such a slot
cannot be found, cancel the remainder of its slots in that column, possibly trying to
reschedule itself in a new column. A real-time scheduler will want to find a makeup
slot somewhere else within the same horizontal window of time; if some degree of
jitter is allowed, it may also have the option of making up the lost CPU time in
a location farther away. Best-effort and background applications might not care to
respond immediately to revocation events and might instead opt to reévaluate their

scheduling status at some later juncture.

2.5 Fallback scheduling

Slot scheduling is a powerful tool for reconciling the complex and interlocking de-

mands of different classes of schedulers. However, slot scheduling alone cannot suffice
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to meet scheduling needs of most real systems. In particular, there are two common
situations arising in slot scheduling which the slot scheduler is not able to handle
directly. The first situation concerns what scheduling decision is to be made when
an empty slot comes up in the schedule, that is, a slot which has not been claimed by
any process. The second situation is similar to the first and occurs when a nonempty
slot comes up in the schedule but its designated schedulee currently happens to be
unrunnable, perhaps because it is blocked on I/O, waiting for an alarm, etc. In both
of these situations, since the slot schedule itself does not furnish a valid candidate
for CPU time, we propose resorting to an auxiliary fallback scheduling algorithm
that will select among the existing runnable processes in the system. The presence
of the fallback scheduler ensures that CPU does not idle unnecessarily when there
are processes waiting for CPU time.

From the slot scheduler’s point of view, the concrete choice of which kind of
scheduler to use for the fallback scheduler is not too critical; the best-effort or pro-
portional sharing schedulers commonly deployed in existing operating systems would
be suitable choices. However, from the point of view of overall system performance,
choosing a scheduler that is good at balancing the needs of compute-bound versus
I/O-bound processes (as many widely-used proportional sharing schedulers are) can
be very beneficial. This is because, as we pointed out in Section 2.3, slot scheduling
is not well-suited for dealing with large numbers of interactive tasks. The scheduling
needs of these tasks are probably better addressed within the auxiliary framework of
a fallback scheduler. In addition, best-effort or batch jobs may wish to avoid using
the slot schedule altogether and rely instead on the fallback scheduler for their CPU
time needs: this relieves them from the minor burden of locating and reserving slots
for themselves, a task which would otherwise eat up their own CPU cycles as part
of a library-level scheduling algorithm.

The necessary existence of a supporting fallback scheduler also eases the
migration path over to slot scheduling for legacy systems: these systems’ legacy
schedulers can simply serve as the fallback schedulers in the newer slot scheduling
framework. Existing applications need not even be aware of the slot scheduler’s
existence and can continue to run without changes and without relinking or recom-
pilation. The cost of any desired per-program upgrades to slot scheduling can safely
be deferred to a later date when it is reckoned to be economical.

Finally, we note a minor optimization to the kernel scheduling algorithm
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permitted by the addition of the fallback scheduler. Rather than wake up on every
slot boundary, the kernel slot scheduler can set its timing interrupt to go off only
at the beginning of the next nonempty slot, effectively sleeping for the intervening
period of slot schedule nonactivity—the fallback scheduler will shepherd the existing
runnable processes during this time. Implementations of slot schedulers must, of
course, take care to reset the kernel timers appropriately if new jobs are inserted
into the schedule during these empty blocks. With this enhancement in place, the
slot scheduler can lay completely dormant when it is unneeded and thus becomes a
cost-free addition to existing operating systems, with zero performance impact on

non-slot-scheduled processes.

2.5.1 Reservations for latency-sensitive tasks

In systems based on precomputed allocation of processor time, as slot scheduling is,
event-driven real-time jobs (and event-driven jobs more generally) face a predica-
ment. These are tasks that require short-term QoS guarantees when certain events
occur (arrival of I/O, buffer ready to fill, etc.). The problem for these jobs is that
typically the event occurrences are unpredictable and preclude laying out a CPU
schedule in advance. These jobs therefore must depend on the fallback scheduler
to run them when the events occur; once they get a hold of the CPU, they can
execute their library-level schedulers and temporarily book the upcoming slots they
need. However, this strategy is prone to a serious risk: if the event occurs during
a window of time in which the slot schedule is solidly booked by other processes,
the newly-ready-to-run delay-sensitive job may not get the chance to carry out its
scheduling logic until it is too late and subsequently fail to meet a computational
deadline.

One solution to this problem would be for these latency-sensitive jobs to
claim slots for themselves at small, regular intervals in the schedule. This kind of
safety net would ensure that these jobs never have to wait too long before getting
the opportunity to run their schedulers, i.e. provide a guaranteed lower bound on
their latency. Unfortunately, this approach is undesirable because it rapidly depletes
useful space in the slot schedule. Each such event-driven task would require its own
exclusive scattering of slots throughout the schedule, slots which would likely go

unused most of the time, causing poor utilization or schedulability.
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What we advocate instead is a variation on this approach. Rather than each
latency-sensitive task claiming its own separate set of slots, we propose that the
system set aside a fraction of empty slots at regular intervals. Process scheduling
during these slots will then be handled by the fallback scheduler. Assuming the
fallback scheduler has a way of privileging or distinguishing certain processes, we can
assign the latency-sensitive jobs high priority within the legacy scheduling framework
and they thus will get to run first during the set-aside slots. This should provide
these jobs with sufficient time to begin running their real-time schedulers, or at the
very least run a quick-and-dirty algorithm that buys them some initial CPU time
which they can use to execute a more complex scheduler. In effect, what we are doing
with this solution is to make all the delay-sensitive jobs share the slots that they
need in order to run their schedulers. While this solution may not be perfect for all
situations, it should be a good compromise for many workloads consisting of delay-
sensitive tasks, so long as the distribution of events over time is relatively smooth
(not too many events piling up at once that would be competing for a handful of
empty slots) and the schedule is not completely saturated.

Figure 2.5 shows the proposed administrative system call for defining the
fraction of slots to be set-aside, on a per-processor basis. This method would likely
be called by an admission controller or system monitoring daemon. In Section 4.3
we report on some experimental results which show the effectiveness of this system

call as a tool for finely tuning the latency experienced by event-driven tasks.

2.6 Putting it all together

Having presented the full architecture of the slot scheduler, we now consider a brief,
hypothetical computing scenario that demonstrates how the various pieces might fit
together in an actual system. The system we will consider is a 4-way multiprocessor
machine. Snapshots of the machine’s schedule at various stages of execution are
shown in Figure 2.6. The slots in the slot schedule are 10ms in duration, and the
entire schedule is 120ms long. Operating behind the scenes is an admission control
agent that decides what CPU privileges various processes are entitled to and provides
them with tokens commensurate with those privileges.

Following is a history of the system workload corresponding to the different

stages:
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(i) Initially, the only job using the schedule is a gang-scheduled compute job A
with three threads, running on CPUs #2, #3 and #4. A latency-sensitive-task
reservation of one out of six slots is in effect on all processors, limiting process

A to ten of the twelve columns.

(ii) A periodic real-time task B enters the system. This task requires 20 out of
every 60 milliseconds of CPU time on Processor #3. The admission controller
provides it with four high-priority tokens, which it uses to preempt some of

A’s claims.

(iii) Process A’s gang scheduler is notified of the revocations on Processor #3. It
reexamines the schedule and decides to migrate the thread running on CPU
#3 over to CPU #1.

(iv) A latency-sensitive job C' on CPU #1 that had been lying dormant is awakened
by the arrival of an interrupt. It has to wait until an open slot comes up in
the schedule before it has the opportunity to execute its scheduling logic. This
opportunity occurs in the sixth column, at which time C' temporarily reserves
the next 40ms of processor time for itself, preempting process A’s lower-priority

claims.

(v) After job C has completed its processing, its slots expire and become available
again to other processes. In particular, process A’s revocation callbacks would
have been triggered when it lost the slots earlier; a slightly sophisticated gang-
scheduler implementation would probably have noticed that job C’s claims
were temporary and would have set a timer for itself to reclaim the slots after

process C was done with them.

Though this example is admittedly a simple one, it shows how slot scheduling
makes the problem of scheduling diverse tasks in a multiprocessor system quite
tractable. Such ease of intuition is nearly impossible to come by in the other more

conventional approaches to scheduling that we are aware of.
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const int NUM_TOKEN _PRIORITIES;

struct Tokenlnfo

{

// per-priority token parameters
int count;
int  weight;

}

err_t get tokens(pid t process, TokenlInfo tokens[]);

Looks up available token funds at the various priority levels for the named
process.

err_t set tokens(pid t process, int priority, int count,
int weight, bool absolute);

Allows privileged user to tweak funds for an individual process. Flag
absolute specifies whether the passed in count value is absolute or a delta
change to the current count.

err_t donate tokens(pid t recipient, int priority, int count);
Transfers tokens of the specified priority from caller to recipient. If the

caller has insufficient funds, all its tokens at that priority are transferred
and an error is returned to the caller.

Figure 2.4: Banking system calls
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err_t reserve slots(int numerator, int denominator, int processor,
bool immediate);

Set aside numerator slots out of each consecutive window containing
denominator slots on the named processor. If immediate is true, the reser-
vation is enforced immediately, revoking existing claims as necessary; if
immediate is false, the reservation is enforced lazily, waiting for current
owners to free any excess slot claims of their own accord.

Figure 2.5: Reservation system call for delay-sensitive tasks
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Figure 2.6: Various stages of a hypothetical slot scheduling scenario.
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Chapter 3

Case study: K42

To validate our ideas, we implemented slot scheduling for an existing operating
system, K42 [13]. K42 is a next-generation general-purpose OS for multiprocessor
systems with the design goals of customizability and scalability, making it a good
fit for our work. In this chapter, we give an overview of the basic K42 scheduling

architecture |[14] and describe how we modified it to support slot scheduling.

3.1 Scheduling in K42

K42 supports the common abstractions of processes and user-level threads common
to most general-purpose operating systems: threads within a process run on different
stacks but share the same address space, file descriptors, etc. For each process in K42,
the kernel allocates a fixed number of kernel threads on each CPU that the process
is using. Each of these kernel threads is associated with its own user-level thread
scheduler that is responsible for some subset of the process’s threads. In K42 jargon,
these kernel threads, along with the supporting data structures for communicating
with user-level schedulers, are called dispatchers.

Dispatchers in K42 serve a number of purposes. For each user-level thread
scheduler, the system defines a number of entry points, and dispatchers vector various
events to their thread schedulers via these entry points. For example, there are entry
points for the dispatcher to jump to when the process is scheduled for execution, when
a timer that the process has requested goes off, or when an asychronous IPC message

arrives. Dispatchers can also reflect events like page faults or CPU exceptions back
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to the thread scheduler, rather than blocking in the kernel or killing the entire
process. The state of any such trapping thread is passed back to the user-level
scheduler (a la Scheduler Activations [1]), allowing it to take whatever action it
deems appropriate, such as choosing a different thread to run until page fault I/O
completes, etc. Process context switches are also handled cooperatively (similar
to Exokernel [6]) by calling a special entry point that asks the scheduler to backup
running thread states and voluntarily yield.! Figure 3.1 presents a slightly simplified
illustration of the relationship between processes, dispatchers and thread schedulers.
(The actual interactions between dispatchers and user-level schedulers are somewhat
more complex than described here and are discussed in [14]).

Choosing which kernel threads (dispatchers) to run at context switch decision
points is the responsibility of the K42 kernel scheduler. The kernel scheduling algo-
rithm executes independently on each CPU and is hierarchical in nature. K42 groups
dispatchers into containers called resource domains, and kernel scheduling policy is
defined in terms of these resource domains. Fach resource domain possesses a weight
and quantum length, and the kernel uses a proportional sharing algorithm to select a
resource domain to run. Once a resource domain has been selected, the kernel finally
selects among the resource domain’s dispatchers in round-robin fashion. Resource
domains may contain dispatchers belonging to different processes but they may not
contain dispatchers belonging to different users: this allows resource domain weights
to operate as a means of enforcing fair sharing of the CPU among users.

Each resource domain additionally is assigned to one of several system-defined
priority bands. Resource domains in higher priority bands always get chosen to run
over resource domains in lower priority bands, as long as they are runnable. The K42

designers suggest the following semantic associations for the various priority bands:

Level 0: system critical and hard real-time

Level 1: gang-scheduled

Level 2: soft real-time

Level 3: general purpose

Level 4: background

!Misbehaving schedulers that do not follow protocol are forcibly preempted by the kernel and
can eventually be terminated.
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Figure 3.1: Diagram of a single process in K42.
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K42 employs a microkernel approach to farm some privileged functionality
out to user-space servers. One of these servers, the resource manager, is tasked with
providing some of the higher-order scheduling behaviors and APIs for the system.
Among its responsibilities are deciding when best-effort jobs should be migrated
across CPUs to improve utilization, keeping track of the scheduling parameters for
resource domains (weight /band /quantum length), and providing an API and services
that allow administrators to control these parameters.

To summarize the K42 scheduler:

(1) At each scheduling decision point, the kernel chooses a resource domain to run,

according to a proportional-sharing algorithm.

(2) The resource domain then selects one of its dispatchers to run, according to a

round-robin scheme.

(3) The selected dispatcher transfers control to a user-level thread scheduler inside

the process’s address space.

(4) The user-level thread scheduler finally selects a thread for execution and re-

stores its state to the machine.

3.2 Adding slot scheduling

Our strategy for incorporating slot scheduling into K42 was to leave the existing low-
level scheduling machinery untouched and instead build the slot scheduler on top of
the mechanisms already present in the kernel. While this design decision introduces
some overhead as compared to a lower-level implementation, it significantly reduced
the complexity of our code and consequently eased testing and debugging the slot
scheduler. Experimental analysis in Section 4.1 showed that the amount of overhead
was noticeable but still acceptable.

In our slot scheduling implementation, job scheduling is accomplished by
the resource manager. We leverage K42’s priority band structure and insert a new
priority band (Level 1) just below the top-level system priority band (Level 0), as
shown in 3.2. When a job’s slot comes up in the schedule, the resource manager
escalates it into to the Level 1 priority band, where it gets to run to the exclusion

of all non-slot-scheduled jobs below it on that processor. At the end of the slot, the
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resource manager reawakens and restores the job back to its original priority band,
repeating the procedure if necessary for any new job in the next upcoming slot.

Because our implementation makes use of the underlying K42 kernel schedul-
ing machinery, slot schedulees are specified as resource domains rather than as pro-
cess id’s, since processes are not a fundamental unit of scheduling for K42. Ap-
plications request for slots to be assigned to particular resource domains and are
responsible for ensuring that the named resource domains contain the dispatchers
that they wish to have scheduled.? Unless an application truly wants to multiplex a
slot among different processes, it has to make sure that the resource domain it has
assigned to the slot contains only one dispatcher: the one it intends to receive CPU
time.

The resource manager also maintains all the slot schedule data structures and
keeps track of the token funds of all processes. It further provides the slot scheduling
API for applications, using K42’s protected procedure call (PPC) mechanism?: all
of the slot scheduling system calls defined above are exported as PPC methods
by the resource manager. Revocation callbacks for application-level schedulers are
implemented as special C++ scheduler object methods, decorated with an __ async
keyword that instructs the K42 stub compiler to set up the underlying IPC machinery
and hooks for the program. An application scheduler that relies on these callbacks
must (as part of its initialization code) explicitly grant permission to the resource
manager process to invoke these methods, since such invocations are a protected
operation that require firing up a new thread in the application’s address space.

Relying on K42’s built-in scheduler to do most of the work, as our implemen-
tation does, is beneficial in a number of ways. The K42 priority band architecture
guarantees that a slot-scheduled job will be running while it is runnable, since no
other processes are assigned to the Level 1 band. Also, if a slot-scheduled job is
running and needs to block temporarily in the middle of its slot, it can do so: the
K42 scheduler will fall back to selecting among the other resource domains in the
system. Should the blocked job become runnable again before the end of the slot,
it will immediately be given back the CPU by virtue of its continued residence in

the Level 1 priority band. Another benefit to our design is that it provides some

2K42 provides applications a means of specifying how their dispatchers should be distributed
among the resource domains available to them.
3PPCs are a form of synchronous interprocess communication that have RPC semantics.
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Slot-scheduled P, .

Dispatcher:

Resource domains

Figure 3.2: Ilustration of how slot scheduling fits into the K42 architecture. When
a resource domain’s slot comes up in the schedule, the resource manager elevates it
to the slot-scheduling priority band (A), where it will get to run to the exclusion of
all the jobs below it. As soon as its slot is finished, the resource manager restores it
back to its original priority band (B).
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fairness for non-slot-scheduled, best-effort kinds of jobs in a natural sort of way:
jobs that receive CPU time via the slot schedule are effectively penalized by the K42
proportional sharing algorithm and will become less likely than best-effort jobs to
be scheduled during empty slots, giving those other jobs their due when the system
has an opportunity to run them.

An important goal for any system scheduler is efficiency. In our K42 im-
plementation, the slot scheduler only performs read-only operations on slots: the
information dictating which resource domain is to be scheduled is confined to a
64-bit field that can be read atomically on the hardware we are using (PowerPC).
This frees the resource manager from having to acquire locks in order to carry out
the precomputed decisions contained in the slot schedule. Locks are still necessary,
of course, for non-scheduling code paths that involve updating multiple fields in a
slot structure, such as the methods for claiming or freeing slots. To achieve maxi-
mum concurrency in these situations, we use fine-grained, per-slot locks, and we also
adjust users’ token funds with atomic arithmetic instructions (FetchAndAdd) pro-
vided by the hardware, avoiding the need for software synchronization during token

operations.
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Chapter 4
Experimental evaluation

We evaluated the feasibility and performance of slot scheduling with a number of
experiments described below. Most of these were online experiments and relied upon
our K42 slot scheduling implementation. The K42 operating system itself was hosted
on a PowerPC hardware simulator, Mambo [3]. Our final experiment was an offline

analysis of the slot scheduling algorithms and did not use our K42 implementation.

4.1 Scheduling overhead

To measure the efficiency of the low-level slot scheduling operation, we calculated
the time it took to switch from one slot-scheduled job to the next and compared this
with the time required by the default K42 scheduler to perform a context switch.
Table 4.1 shows the results, averaged over 100 switches.

The slot scheduling operation takes about three times as long as an ordinary
task switch. The reason for the increase in overhead is primarily due to our design
approach, which builds on top of the preéxisting low-level scheduling machinery.
Switching from one slot-scheduled job to the next actually involves two K42 task
switches: once to switch from the old job to the resource manager process, and a

second time to switch from the resource manager to the new job. The resource

K42 scheduler | 9us
Slot scheduler | 29us

Table 4.1: Scheduling overhead
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manager additionally must invoke some services from a master kernel process in
order to raise and lower the priorities of the resource domains. A non-microkernel
implementation of slot scheduling, more closely integrated with the kernel scheduling
machinery, would no doubt reduce the gap in overhead significantly, at the cost of
programming complexity.

However, we note that the current overhead is still quite small in absolute
terms. When the slots are as small as lms, an application will only sacrifice 2%
of its usable cycles to the slot scheduler, as compared to what it would ordinarily
lose for a context switch, and this percentage drops even further as the slot length
increases. By paying this 2% cost, the application gains a great deal: the ability
to receive a wide variety of scheduling guarantees (real-time, gang, etc.). Hacking
a conventional scheduler to provide all these services would almost certainly drive
up the scheduling overhead as well. Furthermore, only slot-scheduled applications
suffer the extra overhead; ordinary processes are still scheduled by the default K42

scheduler.

4.2 Proportional sharing

To verify that the K42 slot scheduler implementation was working correctly, i.e. pro-
vided applications with a predictable amount of CPU time, we ran a uniprocessor
experiment involving two processes A and B. Both processes looped continuously
incrementing a counter and were granted various quantities of slots (10ms duration)
over a fifteen-second period. Figure 4.1 shows plots of the actual counter values and
their rates of change over the fifteen seconds. At time ¢t = 0, A and B were each
assigned 40% of the total number of slots in the system. At time ¢t = 5, each process
was scaled down to 10% of the total slots. At time ¢t = 10, process A was scaled
back up to 40% of the total slots while process B’s allocation was left at 10%. A
third process consumed all of the remaining slots to prevent A and B from receiving
additional CPU time via the fallback scheduler. The graphs show that the system

behaved as expected.
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Figure 4.1: Proportional sharing demonstration. The first graph plots the per-thread
counter values over time, and the second graph shows their rates of change.
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4.3 Reservations for latency-sensitive tasks

In Section 2.5.1, we proposed the reserve slots method as a way to improve the
responsiveness of latency-sensitive tasks without substantially sacrificing utilization
of the slot schedule. In order to validate this claim, we conducted a uniprocessor
experiment involving a mix of CPU-bound and I/O-bound jobs. The workload on
the K42 host had the following characteristics:

e The slot schedule was saturated with CPU-bound tasks, i.e. the only unfilled
slots were those explicitly set aside by the reserve slots parameters. These
compute-bound tasks never blocked or relinquished the processor during their

slots.

e A number N of single-threaded I/O-bound tasks were also running. These
tasks listened for network messages from clients and replied back with message
checksums. The network clients (off-host) kept the I/O servers flooded with a

constant stream of requests.

e The I/O servers were not explicitly granted any slots in the schedule. However,
they were assigned to a higher K42 priority band than the CPU tasks, enabling
them run immediately whenever the fallback scheduler was invoked, i.e. during

the slots set aside by reserve slots().

The timeslice array was 120 slots in length, and each slot was 10 ms in
duration. We measured the round-trip time of the client requests for varying values
of the CPU reservation parameter, averaged over 50 messages. The reservation values
were selected in increments of 5% and then translated into the corresponding integer
ratios; that is, we set the slot reservation parameter to 1/20, 1/10, 3/20, ..., 19/20,
1/1.

The results for N =1 and N = 2 are displayed in Figure 4.2. To obtain a
somewhat realistic scale for the y-axis, we calculated the plot points using times-
tamps that were generated by the servers running on the PowerPC simulator, rather
than the actual “real-world” timestamps generated by our off-host clients. The latter
were larger by a couple orders of magnitude but did not make a noticeable difference

in the shapes of the resulting curves.
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Figure 4.2: Plot showing the effects of reserve slots() on round-trip time for I/O
services.

Both plots approximately follow a reciprocal (y = %) shape: as the number
of slots set aside for the fallback scheduler is doubled or tripled, the response time
correspondingly falls by a half or two-thirds. This is behavior is good: it shows that
reserve slots() is functioning effectively as a tunable knob for managing latency. Of
course, there is an inherent latency involved in message processing that cannot be
eliminated by setting aside slots. Judging from the rightmost plot points (when the
reservation is 100% and the CPU tasks are not scheduled at all), this irreducible
latency appears to be about 5ms for one task and 10ms for dual tasks. Thus, we
see the curves flatten out more quickly as the average inter-slot gap for the 1/O
tasks approaches this value, indicating that the presence of the CPU-bound tasks is

becoming less of a factor in the round-trip delays.

4.4 Local vs. optimal scheduling algorithms

In contrast to traditional approaches to scheduling, slot scheduling decentralizes

scheduling logic and distributes it among applications. These per-application schedul-
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ing algorithms operate with only local knowledge of their own scheduling require-
ments. It is possible that, for certain sets of tasks, such a localized approach will
fail to completely schedule all tasks even though a globally feasible solution exists.
To the extent that this were to be the case, slot scheduling would become a less at-
tractive alternative for online computing environments where high schedulability or
CPU utilization is demanded. However, our intuition is that incompletely schedu-
lable task sets will be rare in practice and that the decentralized slot scheduling
algorithms will in fact do quite well for the vast majority of cases.

To validate this hypothesis, we conducted an offline simulation of slot schedul-
ing performance on synthetically-generated workloads. Our experiment involved
creating random sets of periodic real-time tasks with varying periods and QoS re-
quirements and subsequently executing first-fit slot scheduling algorithms for the
tasks in some arbitrary order. (First-fit algorithms are the types of local algorithms
we expect real-time scheduling libraries would use in a slot scheduling environment.)
If a task was unable to be scheduled first-fit during this one-by-one procedure of
placing tasks in the schedule, it was omitted completely and the next task in turn
was considered. For a particular set of tasks, carrying out this procedure yields two
values: the optimal utilization that would have been achieved if we had been able to
schedule all the tasks in the set, and the actual utilization that the first-fit strategy
was able achieve in practice.

More precisely, we define the load of a set of periodic real-time tasks as

load =

1 Z worst-case execution time for task 4

# of processors period of task 7

i

For example, if there are two tasks assigned to a uniprocessor system, one
of which needs to run 10ms out of every 40ms and the other 2ms out of every 5ms,
the load of the set is % + % = 0.65. Obviously, a necessary (but not sufficient)
condition for the complete schedulability of a set of tasks is that the load of the set
does not exceed 1.0. By comparing the target loads of the task sets we generate in
our experiment against the loads of the subsequently scheduled sets, we can assess
how well or how poorly slot scheduling handles the schedulability challenge outlined

above.l

'"We also attempted to find optimal solutions for the task sets using an integer programming
solver, to find out if the task sets we were presenting to the first-fit algorithms were indeed feasible
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We ran experiments for simulated slot schedules with varying numbers of
processors (powers of two up to 64). The per-processor slot arrays were chosen to be
120 slots in length in all cases. For each number of processors, we generated 10,000
sets of uniprocessor tasks according to a uniform distribution over the possible target

loads. The tasks were subject to the following constraints:

1. Each task’s period had to evenly divide the length of the schedule.

2. The amount of processor time that a task required was limited to be between
5% and 50% of a single CPU.

3. Each task had to be scheduled on a single processor and could not be migrated

across different processors during execution.

The first two constraints were enforced during the generation phase of the
experiment and the last constraint was placed on the scheduling algorithms them-
selves.

A final dimension of the experiments involved selecting a search heuristic for
the multiprocessor cases, that is, how a task scheduler should decide which processor
to schedule its task on when there are several processors available to it. We tested
three simple strategies: most-utilized (the task scheduler chooses the CPU that has
the highest utilization and still has room for the task), least-utilized (opposite of the
previous strategy) and random (pick any available CPU).

Figures 4.3-4.5 show the average test results for the three different heuristics,
measured in terms of the percentage of the target load that the first-fit algorithm
was able to achieve. The graph plot points were generated by subdividing the z-
axis into 50 intervals and averaging the scatterplotted y-values within those intervals
(approximately 200 points per interval).

From the graphs two trends are immediately apparent. First, the first-fit
algorithms are able to perfectly schedule all tasks at low loads, with performance
dropping off gradually as the target load approaches 1.0. This is not surprising: as

the load increases, the free space in the schedule diminishes, and inserting periodic

ones. For P = 1,2, 4, the solver was able perfectly schedule all tasks presented to it. For P > 4,
the solver could not terminate computation within a reasonable amount of time, but based on the
lower-valued cases we strongly suspect that there exist feasible solutions for nearly all the task sets
we generated in this fashion. This would imply that the target loads in our experiments are in fact
a fairly tight upper bound on the optimal achievable loads.
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Figure 4.3: Performance of first-fit algorithms using the least-utilized CPU heuristic.
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Figure 4.5: Performance of first-fit algorithms using the most-utilized CPU heuristic.

tasks becomes an increasingly tricky enterprise. Suboptimal decisions made early on
by the first-fit algorithms begin to show their effects when the schedule is closer to
saturation.

The second trend is perhaps less predictable: the performance of the first-fit
algorithms improves as the number of processors increases, dramatically so for the
most-utilized CPU heuristic. One might expect that increasing the complexity of
the system, as adding processors ostensibly does, would demand the use of increas-
ingly sophisticated algorithms in order to maintain utilization; however, it turns
out that this is not the case. In fact, the simple first-fit algorithms excelled in our
multiprocessor experiment environments: the most-utilized CPU heuristic achieves
almost-perfect schedulability for a 64-way machine. Intuitively, the reason for this
is that adding more processors enriches the variety of scheduling options available
to the algorithms. For systems with large numbers of processors, even at relatively
high loads, the probability that every processor will be overconstrained and unable
to fit a newly-presented periodic task becomes low.

Among the three search strategies we tested, the best performing was the
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most-utilized CPU heuristic. This strategy derives its success from its economical
approach to fitting tasks into the schedule. As the utilization of an individual CPU
goes up, the probability of being able to insert a random periodic task into that
processor’s schedule falls. By choosing the most utilized CPU it can at each decision
point, the most-utilized CPU heuristic essentially focuses on solving the most difficult
scheduling problems first and reserves the “easier”, less-constrained processors for
later-arriving tasks that might need them.

In summary, the simple first-fit real-time scheduling algorithms perform bet-
ter than might be expected and are demonstrably suitable for general-purpose com-
puting environments. Of course, system designers can still choose to deploy more
sophisticated coordinated schedulers, such as EDF, on top of a slot scheduling frame-
work, but our experiment shows that such choices are justifiable only when the

demands on system schedulability are relatively severe.
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Chapter 5

Related work

Slot scheduling bears similarities to several other scheduler proposals in the litera-
ture. We have particularly exploited insights from previous work regarding coschedul-
ing, extensible operating systems and precomputed CPU schedules. Here we present
a number of comparisons with those works in order to situate our contributions.

In 1982 Ousterhout introduced the notion of gang scheduling [12]| as a means
of supporting the efficient execution of closely-cooperating concurrent programs on
multiprocessor machines. Qusterhout proposed a matrix representation of timeslices
and processors to facilitate running jobs simultaneously. Obviously, slot scheduling is
strongly indebted to this way of framing the problem. In one sense, the contribution
of slot scheduling lies in recognizing that the Ousterhout matrix has relevance beyond
just support for coscheduling and in applying to it principles developed in more recent
work on extensible operating systems.

The surge of interest in extensible OS design during the mid-90’s has certainly
been influential on our work. Exokernel [6], SPIN [2| and Vassal [4] are notable
examples of systems that allowed modifying system schedulers at runtime to support
various policies or types of workloads. Slot scheduling has more in common with the
Exokernel paradigm than it does with the other approaches: the latter systems realize
extensibility via the dynamic creation or importation of custom code into the kernel,
whereas the focus in slot scheduling and Exokernel is on designing abstractions that
permit scheduling decisions to be performed by unprivileged code executing in user
space.

However, slot scheduling still differs significantly from the minimalistic ap-
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proach adopted by the exokernel Aegis described in [6]. Aegis provided a simple,
low-level yield primitive that could be used to construct application-level schedulers.
Implementation of specific scheduling algorithms with Aegis (apparently) required
relying on participating processes to “do the right thing” and cooperatively yield
the remainders of their timeslices to the appropriate neighbors when they were sup-
posed to. This approach, barring further enhancements, has obvious shortcomings
for environments where processes might not be trustworthy. Slot scheduling pro-
vides the same degree of flexibility as Aegis in letting applications manage their own
scheduling, but the token system enables administrators to more easily meter rights
to CPU resources and not depend so heavily on the correct behavior of application-
level schedulers for protecting non-faulty processes. This makes slot scheduling a
more realistic alternative for general system deployment.

The real-time scheduler for the Rialto operating system, based on CPU reser-
vations [9], bears a great deal of similarity to slot scheduling. Rialto CPU Reser-
vations and slot scheduling both share the fundamental approach of precomputing
a global, periodic CPU schedule, which lends both systems the property that CPU
scheduling overhead is bounded by a constant and does not depend on the number
of tasks. Both designs also rely on legacy fallback schedulers to “take up the slack”
for best-effort types of jobs. However, Rialto’s representation of the schedule as a
directed graph is somewhat less flexible than the matrix representation employed
by slot scheduling. The graph representation is suited for two fairly specific models
of real-time scheduling and requires moderately sophisticated algorithms to handle
the arrival or departure of new tasks. Slot scheduling, on the other hand, is not
limited to any specific paradigms for real-time guarantees and can “get by” with
much simpler scheduling algorithms (although it can certainly make use of more so-
phisticated, coordinated algorithms if desired). Strictly speaking, slot scheduling is
more general than Rialto’s CPU reservations: Rialto in theory could be mimicked by
a privileged admission control server that brokers all real-time scheduling requests,
executes the graph construction algorithm and maps the resulting graph into a series
of slot reservations.!

However, the Rialto scheduler retains at least one advantage over slot schedul-

!Somewhat trivially, going in the other direction, one could map slot scheduling on to the graph
framework by restricting the scheduling graphs to be linked lists; however, this would essentially be
slot scheduling and would no longer directly support use of the Rialto algorithms for inserting or
removing tasks.
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ing: it allows the period of the global schedule to be any arbitrary length, in contrast
to the architecture we have described for slot scheduling which requires the length of
the schedule to be fixed. This limitation can be worked around to some degree in slot
scheduling by doing any of the following: (1) rounding the requirements of periodic
tasks down or up appropriately, so that their periods are harmonic with the global
schedule length; (2) increasing the initial granularity of the schedule to accommodate
a sufficiently large variety of period lengths; and (3) overallocating slots for tasks,
above and beyond their QoS requirements, within the “short” intervals that result
from the uneven division of the schedule by the tasks’ period lengths.

Along somewhat different lines, the work on Hierarchical CPU Scheduling [7]
addressed the challenge of providing scheduling services for systems running appli-
cations with an assortment of scheduling needs, akin to the challenge taken up by
slot scheduling. Hierarchical CPU scheduling tackles the problem by defining a tree
framework for combining different classes of schedulers, where each internal node of
the tree corresponds to a scheduler and each leaf node corresponds to one of the fun-
damental schedulable entities in the system (either individual processes or threads).
The system makes scheduling decisions recursively by starting at the root of the tree
and traversing a path to a leaf node. This scheme is a natural fit for computing
workloads consisting of applications that can be cleanly aggregated into scheduling
classes which require CPU bandwidth to be divvied up proportionally. However, it
can be difficult to reason in this framework about how to meet the deadlines of appli-
cations with more precise timing requirements (like hard real-time applications), and
there does not appear to be any simple way to extend a hierarchical CPU scheduler
to support coscheduling on a multiprocessor system. Slot scheduling solves both of
these problems and would provide an excellent complement to a hierarchical CPU
scheduler, with the latter functioning as the fallback scheduler in the slot scheduling
framework.

Borrowed Virtual Time (BVT) [5] offers another alternative for supporting
real-time applications in a general purpose computing environment. Based on a
simple modification to the well-known “virtual time” abstraction for fair scheduling,
BVT eschews strict deadline-based scheduling in favor of a “warp” mechanism that
can temporarily elevate the priority of latency-sensitive jobs. In spite of not providing
strong guarantees about timeliness, this mechanism in practice appears to satisfy the

needs of a large number of softer real-time applications. It also has the advantage
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over other real-time schedulers (slot scheduling included) of not requiring any changes
to existing applications and not demanding that applications be able to specify their
timeliness requirements in any precise fashion. However, its suitability for dealing
with some of the challenges of multiprocessor scheduling environments is less certain.
Like Hierarchical CPU Scheduling, we view BV'T as a solution that can coexist with

slot scheduling, in the form of an enhancement to the fallback scheduler.
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Chapter 6

Conclusions and future work

In this thesis we have presented slot scheduling, a framework for designing multi-
processor system schedulers. As we have shown, the chief virtues of slot scheduling
are versatility (support for a broad range of scheduling algorithms) and intelligibility
(ease of reasoning about interactions among disparate types of schedulers). These
two properties are largely absent in existing schedulers, and their absence severely
hampers the usability of emerging large-scale multiprocessor systems. In particular,
slot scheduling is well-suited for the meeting the needs of both real-time and parallel
applications, an advantage we believe to be unprecedented in the history of scheduler
design.

In addition to its chief advantages, slot scheduling has a number of other
beneficial characteristics. The runtime overhead of switching between slot-scheduled
tasks is bounded by a constant and is not influenced by the number of processes
in the system or the sophistication of the scheduling services being provided. Slot
scheduling easily supports both online and offline scheduling, and its library-OS
character allows new schedulers to be implemented and tested without having to
patch the kernel or reboot the system. In spite of slot scheduling’s “LibOS” character,
legacy systems can still incorporate slot scheduling into their existing scheduling
architectures without requiring any changes of existing programs or imposing any
extra runtime scheduling overhead, because of the necessary existence of a fallback
scheduler. Slot scheduling thus presents a smooth upgrade path to users of older
platforms and applications.

System builders need a high-level, intuitive way to reason about and man-
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age interactions among competing schedulers. To this end, we have introduced the
abstractions of tokens, priorities and weights. These abstractions enable system ar-
chitects to distinguish among various classes of applications and to define policies for
fair CPU sharing. The phenomenon of slot revocations gives systems the adaptabil-
ity needed for responding to changes in workload and for coping with the complexity
of heterogeneous CPU demands. The result of all these enhancements is sensible
behavior of the multiple schedulers that may be active in a system.

One potential challenge for slot scheduling is supporting jobs with unpre-
dictable execution requirements, such as interactive or other event-driven types of
tasks. Because of these jobs’ unpredictability, their application-level schedulers can-
not precompute a long-term schedule meeting their needs, unlike schedulers for other
types of tasks. Our response to this dilemma is to rely on the assistance of the fall-
back scheduler and to introduce a tunable schedule parameter (reserve slots()) that
can guarantee a desired degree of responsiveness for event-driven applications. The
benchmarks described in Section 4.3 demonstrated the efficacy of this solution.

Another potential disadvantage of slot scheduling is low CPU utilization re-
sulting from the suboptimality of the local/greedy algorithms we expect application
schedulers would typically employ. We investigated the seriousness of this drawback
by generating synthetic workloads of real-time tasks and measuring how well the
localized algorithms fared at scheduling these synthetic task sets. The results, pre-
sented in Section 4.4, showed that the local algorithms were remarkably adept at
fitting tasks into the schedule: bad performance was so rare as to be ignorable for
general scheduling purposes. Admittedly, the synthetic character of our experiment
limits the conclusions that can be drawn from it, but we believe the results are suf-
ficient to dispel any serious apprehensions about the practicality of slot scheduling.

Our work leaves open several interesting avenues for future research. We
did not have the opportunity to deploy slot scheduling on actual hardware or with
real-world, multiprocessor workloads; since these are the computing environments
for which slot scheduling is intended, it would be good to evaluate its performance
in those environments. Also, we have left as future work the exploration of policies
for token distribution: how tokens should be distributed to different classes of ap-
plications, what priorities and weights should be assigned to the tokens, etc. Such
issues would have to be taken up when building admission control servers.

Another aspect of slot scheduling that might merit further attention is our
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model for notifying applications of changes to the schedule. In the framework we
have described, applications receive notifications of slot revocations—when slots are
taken away from them. However, applications might also like to be informed about
the opposite event: when slots that were previously claimed by other jobs become
available. For example, a job that loses a portion of its slots due to the weighted
sharing mechanism might want to claim those slots back if the preempting jobs later
on exit the system. An obvious solution—polling the schedule at regular intervals—is
less than ideal: applications must figure out how frequently to poll and must devote
a portion of their CPU cycles to a cause that may not yield any benefits for them.
A better solution might be to allow applications to register their desire for certain
slots, with the kernel firing off asynchronous notifications when those slots become
available. A slightly more sophisticated solution would be to introduce something

like the wakeup predicates described for Xok in [10].
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