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Abstract— We present SMART, a self-tuning, bandwidth-aware
monitoring system that maximizes result precision of continuous
aggregate queries over dynamic data streams. While prior
approaches minimize bandwidth cost under fixed precision con-
straints, they may still overload a monitoring system during
traffic bursts. To facilitate practical deployment of monitoring
systems, SMART therefore bounds the worst-case bandwidth cost
for overload resilience. The primary challenge for SMART is
how to dynamically select updates at each node to maximize
query precision while keeping per-node monitoring bandwidth
below a specified budget. To address this challenge, SMART’s
hierarchical algorithm (1) allocates bandwidth budgets in a
near-optimal manner to maximize global precision and (2) self-
tunes bandwidth settings to improve precision under dynamic
workloads. Our prototype implementation of SMART provides
key solutions to (a) prioritize pending updates for multi-attribute
queries, (b) build bounded fan-in, load-aware aggregation trees
to improve accuracy, and (c) combine temporal batching with
arithmetic filtering to reduce load and to quantify result staleness.
Our evaluation using simulations and a network monitoring
application shows that SMART incurs low overheads, improves
accuracy by up to an order of magnitude compared to uniform
bandwidth allocation, and performs close to the optimal algo-
rithm under modest bandwidth budgets.

I. INTRODUCTION

Distributed stream processing systems [1]–[3] must provide
high performance and high fidelity for query processing as
they grow in scale and complexity. In these systems, data
streams are often bursty where input rates may unexpectedly
increase [4]–[6]. Examples include network traffic monitoring,
identifying distributed denial-of-service (DDoS) attacks on
the Internet, financial stocks monitoring, web click stream
analysis, and event-driven monitoring in sensor networks.
Therefore, it is desirable for these systems to bound the moni-
toring load while still providing useful accuracy guarantees
on the query results. Existing techniques [7]–[12] aim to
address this problem by minimizing the monitoring cost while
promising an a priori error bound (e.g., ± 10%) on query
precision.

Unfortunately, although these techniques effectively reduce
load, they are unsuitable in dynamic, high-volume data stream
environments for three reasons.

(1) Setting precision a priori requires workload knowl-
edge: Choosing error bounds a priori is unintuitive when
workloads are not known in advance or may change
unpredictably over time e.g., should the error be 10% or
30%? Conversely, it may be easier to set the monitoring

budget e.g., a system administrator is willing to pay 0.1%
of network bandwidth for monitoring.

(2) Bad precision setting hurts performance: A bad choice
of the error bound may significantly degrade the quality
of a query result when the error bound is too large [13]
or incur a high communication and processing cost when
the error bound is too small.

(3) Bursty traffic imposes unacceptable overheads: Even
with reasonable error bounds, monitoring systems may
still risk overload under bursty and often unpredictable
traffic conditions as we illustrate with an example below.

To address these challenges, we propose that for many mon-
itoring systems, the right approach is to fix the bandwidth cost
while optimizing query precision. By bounding the worst case
bandwidth cost, monitoring systems achieve three key benefits.
First, they avoid need for a priori workload knowledge or
keeping up with workload changes to optimally set precision
bounds. Second, they can maximize precision during periods
of low workload and provide a graceful degradation under high
workloads. Third, they avoid risk of overload during traffic
bursts and still be able to deliver results with useful accuracy.
We motivate these benefits using an example.

Motivating Example: We present a simple example to il-
lustrate the challenges for scalable monitoring under bursty
workloads. We simulate a set of 10 data sources connected
to a centralized monitor with an incoming bandwidth limit
of 5 messages per second. The input workload distribution is
modeled based on the standard exponential distribution with
a parameter λ, and upon each arrival, the value of attribute
ai at data source i is updated according to random walk
model in which the value either increases or decreases by an
amount sampled uniformally from [0.5, 1.5]. Figure 1 shows
the load-error tradeoff for a single data source. As expected,
on increasing the error budget, arithmetic filtering [9], [10]
quickly decreases the load as a majority updates get filtered.

To quantify the monitoring cost, we use λ=10 and compute
a SUM aggregate under a baseline error budget of 2 and
its corresponding expected load of 0.5 (Figure 1), effectively
setting the total expected cost for monitoring 10 data sources
at 5 messages per second. Figure 2 shows the induced message
load at the central monitor under a fixed error budget of
2. We observe that under peak data arrivals, the system
sometimes incurs message costs 4x higher than the expected
cost of 5 messages per second. This deviation is due to bursty
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Fig. 1. Expected outgoing message load vs. error
budget for a single attribute at a data source under
a random walk workload.
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Fig. 2. Monitoring system induces overload
under bursty workloads to bound result error. The
system overload is up to 4x over expected load.
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Fig. 3. Monitoring system causes high inaccu-
racy under bursty workloads to bound load. The
error is up to 5x higher over expected divergence.

poisson arrivals—the probability of 2x, 4x, and 8x overload
is 0.18, 0.015, and 9e-6, respectively, and worse for many
other distributions. Conversely, Figure 3 shows the divergence
between data source attributes and their cached values at the
central monitor under a fixed load of 5. In this case, the
system may provide highly inaccurate results having up to
5x more error than the expected error of 2. As a result,
existing monitoring techniques are ineffective under bursty
workloads—they risk overload, loss of accuracy, or both.

Our Contributions: Our goal is to bound the bandwidth cost
while still delivering query results with useful accuracy. To
achieve this goal, SMART provides three key techniques:

(1) Maximize precision under fixed bandwidth bud-
get: SMART formulates a bandwidth-aware optimization
problem whose goal is to maximize the result precision
of an aggregate query in a hierarchical aggregation tree
subject to given bandwidth constraints. This model pro-
vides a closed-form, near-optimal solution to self-tune
bandwidth settings for achieving high accuracy using only
local and aggregated information at each node in the
tree. Further, SMART provides a “graceful degradation”
in query precision as the available bandwidth decreases.
Our experimental results show that self-tuning bandwidth
settings improves accuracy by an order of magnitude over
uniform bandwidth allocation and performs close to the
optimal algorithm under modest bandwidth budgets.

(2) Scalability via multiple aggregation trees: SMART
builds on recent work that uses distributed hash tables
(DHTs) to construct scalable, load-balanced forests of
self-organizing aggregation trees [14]–[16]. Scalability to
tens of thousands of nodes and millions of attributes
is achieved by mapping different attributes to different
trees. For each tree in this forest of aggregation trees,
SMART’s self-tuning algorithm adjusts bandwidth set-
tings to achieve high precision under dynamic workloads
where the estimate of bandwidth vs. precision trade-offs,
and hence the optimal distribution, can change over time.

(3) High performance by combining arithmetic filtering
and temporal batching: SMART integrates temporal
batching with arithmetic filtering to reduce the monitoring

load and to quantify staleness of query results. For high-
volume workloads, it is advantageous for nodes to batch
multiple updates that arrive close in time and send a
single combined update. In an aggregation tree, this
temporal batching allows leaf sensors to condense a series
of updates into a periodic report and allows internal
nodes to combine updates from different subtrees before
transmitting them further. Further, it bounds the delay
(e.g., up to 30 seconds) from when an update occurs at
a leaf until it is reported at the root.

We have implemented a prototype of SMART on
PRISM [17], a scalable aggregation system built on top of
FreePastry [18]. Our prototype provides two key optimiza-
tions. First, it constructs bounded fan-in, bandwidth-aware
aggregation trees to improve accuracy and to quickly detect
anomalies in heterogeneous environments. Recent studies [7],
[10], [19]–[21] suggest that only a few attributes (e.g., network
flows) generate a significant fraction of the total traffic in many
monitoring applications. Thus, for fast anomaly detection, an
aggregation tree should be able to quickly route important
updates towards the root such that no internal node becomes
a bottleneck due to either high in-degree or low bandwidth.
Second, for multi-attribute queries, SMART provides a refresh
schedule that selects and prioritizes attributes for refreshing in
order to minimize the error in query results.

We evaluate SMART through extensive simulations and a
real network monitoring application of detecting distributed
heavy hitters. Experience with this application illustrates the
improved precision and scalability benefits: for a given moni-
toring budget, SMART’s adaptivity can significantly improve
the query precision while monitoring a large number of at-
tributes. Compared to uniform bandwidth allocation, SMART
improves accuracy by up to an order of magnitude and
provides accuracy within 27% of the optimal algorithm under
modest bandwidth budgets.

Example Queries: For concreteness, we list several real-world
application queries to illustrate the types of queries SMART
was designed to support.
Q1 Identify the heavy hitter network flows that send the

highest traffic in aggregate across all network endpoints.



Q2 Find the top-k ports across all nodes that have been
heavily scanned in the recent past, possibly indicating
worm activity.

Q3 Monitor anomaly conditions e.g., SUM(nodes sensing
fire) ≥ threshold, MAX(chemical concentration) in a
physical sensor network.

Q4 Monitor the top-k popular web objects in a wide-area
content distribution network such as Akamai.

All these aggregate queries require processing a large number
of rapid update streams in limited bandwidth/battery-life envi-
ronments, and all can benefit from SMART. In Section VI, we
show results for Q1 using a network monitoring application
we have implemented.

In summary, this paper makes the following contributions.
• We identify the key limitations of previous “fix error,

minimize load” techniques, and we address them by
bounding the worst-case load while still providing query
results with useful accuracy.

• We describe a practical, self-tuning, bandwidth-aware
monitoring system that adapts bandwidth budgets to max-
imize precision of continuous aggregate queries under
high-volume, dynamic workloads.

• Our implementation provides key optimizations to im-
prove accuracy and to quickly detect anomalies in het-
erogeneous environments.

• Our evaluation demonstrates that SMART provides a
key substrate for scalable monitoring: it provides high
accuracy in dynamic environments and performs close to
the optimal algorithm under modest bandwidth budgets.

The rest of this paper is organized as follows. Section II
discusses related work. Section III describes PRISM [17],
a scalable DHT-based aggregation system, and precision-
performance tradeoffs that underlie SMART. Section IV de-
scribes the SMART adaptive algorithm that self-tunes band-
width settings to improve result accuracy. Section V and VI
present the implementation and experimental evaluation of
SMART. Finally, Section VII highlights our conclusions.

II. RELATED WORK

SMART builds upon prior “fix error, minimize load” tech-
niques [7]–[12], but it departs in three significant ways driven
by our focus on achieving overload resilience for practical,
scalable monitoring. First, SMART reformulates the key op-
timization problem, which we believe is an important con-
tribution. While prior approaches minimize cost under fixed
precision constraints, bursty, high-volume workloads may still
overload a monitoring system as discussed in Section I. In fact,
it is precisely during these abnormal events that a monitoring
system needs to avoid overload but still deliver results with
useful accuracy in real-time. SMART therefore bounds the
worst-case system cost to provide overload resilience. Sec-
ond, the technical advances to solve this new problem are
significant. While SMART uses Chebyshev inequality [10] to
capture the load vs. error trade-off, it faces new constraints
of limited bandwidth budgets both at a parent and each of

its children in a hierarchical aggregation tree. Given these
constraints, SMART self-tunes bandwidth settings in a near-
optimal manner to achieve high accuracy under dynamic work-
loads. Third, SMART’s prototype provides key solutions to
prioritize updates, build bandwidth-aware trees, and combine
temporal batching with arithmetic filtering.

Recently, load shedding techniques [5], [22] have been
proposed to handle overload conditions. The key idea is to
carefully drop some tuples to reduce processing load but at the
expense of reducing query result accuracy. These approaches
handle load spikes assuming either the CPU [5], [22] or main
memory [23] to be the key resource bottleneck. In comparison,
bandwidth is the primary resource constraint in SMART.

Best-effort cache synchronization techniques [24], [25] aim
to minimize the divergence between source data objects and
cached copies in a one-level tree. In these techniques, each
object is refreshed individually. In comparison, SMART per-
forms hierarchical query processing for scalability and co-
relates updates to the same attribute at different data sources
to maximize the accuracy of an aggregate query result. To
our knowledge, there has not been prior work on maximizing
precision of aggregate queries in hierarchical trees under
limited bandwidth.

Babcock and Olston [26] focus on efficiently computing
top-k aggregate values given fixed error in a one-level tree but
do not consider how to maximize precision of top-k results
under fixed bandwidth in hierarchical trees. Silberstein et al.
propose a sampling-based approach at randomly chosen time
steps for computing top-k queries in sensor networks [27].
Their approach focuses on returning the k nodes with the
highest sensor readings. In comparison, SMART focuses on
large-scale aggregate queries such as distributed heavy hitters
which require computing a global aggregate value for each of
the tens of thousands to millions of attribute across all the
nodes in the network.

Sketches are small-space data structures that provide ap-
proximate answers to aggregate queries [28]. These tech-
niques, however, require error bounds to be set a priori to
provide the approximation guarantees.

III. POINT OF DEPARTURE

SMART extends PRISM [17] which embodies two key
abstractions for scalable monitoring: aggregation and DHT-
based aggregation. SMART then introduces controlled trade-
offs between precision bounds and monitoring bandwidth.

A. DHT-based Hierarchical Aggregation

Aggregation is a fundamental abstraction for scalable mon-
itoring [12], [14]–[16], [20] because it allows applications
to access summary views of global information and detailed
views of rare events and nearby information.

SMART’s aggregation abstraction defines a tree spanning
all nodes in the system. As Figure 4 illustrates, in PRISM
each physical node is a leaf, and each subtree represents a
logical group of nodes. An internal non-leaf node, which we
call a virtual node, is simulated by a physical leaf node of



000 111010 101
Physical Nodes (Leaf Sensors)

Virtual Nodes (Internal Aggregation Points)          

L0

L1

L2

L3

3 4 2 9 6 1 9 3

7 11 7 12

18 19

37

100 110 001 011

Fig. 4. The aggregation tree for key 000 in an eight node system. Also
shown are the aggregate values for a simple SUM() aggregation function.

the subtree rooted at the virtual node. Figure 4 illustrates the
computation of a simple SUM aggregate.

SMART leverages DHTs [16], [29], [30] to construct a
forest of aggregation trees and maps different attributes to
different trees for scalability. DHT systems assign a long
(e.g., 160 bits), random ID to each node and define a routing
algorithm to send a request for ID i to a node rooti such
that the union of paths from all nodes forms a tree DHTtreei

rooted at the node rooti. By aggregating an attribute with ID
i = hash(attribute) along the aggregation tree corresponding
to DHTtreei, different attributes are load balanced across
different trees. This approach can provide aggregation that
scales to a large number of nodes and attributes [14], [15].

B. Query Result Approximation

SMART quantifies the precision of query results in terms of
numeric error between the reported result and the actual value.
We define the numeric approximation of a query result using
Arithmetic Imprecision [9]–[11], [31]. Arithmetic imprecision
(AI) deterministically bounds the numeric difference between
a reported value of an attribute and its true value. For example,
an AI of 10% ensures that the reported value either underes-
timates or overestimates the true value by at most 10%.

When applications do not need exact answers [9]–[12],
arithmetic imprecision reduces load by filtering updates that
lie within the AI error range of the last reported value. Next,
we describe how SMART uses the AI mechanism to enforce
the numeric error bounds while reducing bandwidth load.

Mechanism: We first describe the basic mechanism for en-
forcing AI for each aggregation subtree in the system.

To enforce AI, each aggregation subtree T for an attribute
has an error budget δT that defines the maximum inaccuracy
of any result the subtree will report to its parent for that
attribute. The root of each subtree divides this error budget
among itself δself and its children δc (with δT ≥ δself +∑

c∈children δc), and the children recursively do the same.
Note that δc determines the child’s error filter to cull as many
updates as possible before sending them to the parent, and
δself is useful for applying additional filtering after combining
all updates received from the children. Here we present the
AI mechanism for the SUM aggregate since it is likely to
be common in network monitoring [9], [10] and financial
applications [32]; other standard aggregation functions (e.g.,
MAX, MIN, AVG, etc.) are similar and defined precisely in a
technical report [17].

This arrangement reduces system load by filtering small
updates that fall within the range of values cached by a
subtree’s parent. In particular, after a node A with error budget
δT reports a range [Vmin, Vmax] for an attribute value to its
parent (where Vmax ≤ Vmin + δT ), if the node A receives an
update from a child c, the node A can skip updating its parent
as long as it can ensure that the true value of the attribute for
the subtree lies between Vmin and Vmax, i.e., if

Vmin ≤ ∑
c∈children V c

min

Vmax ≥ ∑
c∈children V c

max
(1)

where [V c
min, V c

max] denote the latest update received from c.
SMART maintains per-attribute δT values so that different

attributes with different error requirements and different update
patterns can use different δ budgets in different subtrees.

C. Case-study Application

To guide the system development of SMART and to
drive our performance evaluation, we have built a case-
study application using the PRISM aggregation framework:
a distributed heavy hitter detection service. Distributed Heavy
Hitters (DHH) detection is important for both detecting net-
work traffic anomalies such as DDoS attacks, botnet attacks,
and flash crowds as well as for accounting and bandwidth
provisioning [19].

We define heavy hitters as entities that account for a
significant proportion of the total activity measured in terms
of number of packets, bytes, connections, etc. [19] in a
distributed system—for example, the 100 IPs that account
for the most incoming traffic in the last 10 minutes [19]. To
answer this distributed query, the key challenge is scalability
for aggregating per-flow statistics for tens of thousands to
millions of concurrent flows across all the network endpoints
in real-time. For example, a subset of the Abilene [33] traces
used in our experiments includes 80 thousand flows that send
about 25 million updates per hour.

To scalably compute the global heavy hitters list, we chain
two aggregations where the results from the first feed into
the second. First, PRISM calculates the total incoming traffic
for each destination address from all nodes in the system
using SUM as the aggregation function and hash(HH-Step1,
destIP) as the key. For example, tuple (H = hash(HH-Step1,
72.179.58.7), 900 KB) at the root of the aggregation tree TH

indicates that a total of 900 KB of data was received for
72.179.58.7 across all vantage points in the network during the
last time window. In the second step, we feed these aggregated
total bandwidths for each destination IP into a SELECT-
TOP-100 aggregation with key hash(HH-Step2, TOP-100) to
identify the TOP-100 heavy hitters among all flows.

In Section VI we show how SMART’s self-tuning algo-
rithm adapts bandwidth settings to monitor a large number
of attributes and provides high result accuracy by filtering
majority of mice flows [19] (attributes with low frequency)
while prioritizing updates for the heavy-hitter flows; we expect
typical monitoring applications to have a large number of mice
flows but only a few heavy hitters [7], [10], [19]–[21].



IV. SMART DESIGN

In this section we present the SMART design and describe
our self-tuning algorithm that adapts bandwidth settings at
each node to maximize query precision.

A. System Model

We focus on distributed stream processing environments
with a large number of data sources that perform in-network
aggregation to compute continuous aggregate queries over
incoming data streams. The bandwidth resources for query
processing may be limited at a number of points in the
network. In particular, a node j’s outgoing bandwidth may
be constrained (BO

j ), a node j’s incoming bandwidth may
be constrained (BI

j ), or both. Note that constraining the
incoming bandwidth bounds (a) the control traffic overhead
for monitoring and (b) the CPU processing load for computing
the aggregation function across incoming data inputs. Finally,
these bandwidth capacities may vary among nodes in hetero-
geneous environments and with time if bandwidth is shared
with other applications.

At any time, each attribute’s numeric value is bounded by
an AI error δ. If δ is small, then updates may frequently drive
an attribute’s value out of its last reported range [Vmin, Vmax],
forcing the system to send messages to update the range. A
system can, however, reduce its bandwidth requirements by
increasing δ. Thus, if a hierarchical aggregation system has
bandwidth constraints, it should determine a δ value at each
aggregation point that meets the bandwidth constraints into
and out of that point, and it should select these δ values so as
to minimize the total AI for the attribute. In particular, rather
than splitting each node’s incoming bandwidth evenly among
its children, the system should attempt to assign bandwidth
to where it will do the most good by reducing the resulting
imprecision.

In the rest of this section, we describe the SMART algo-
rithm for minimizing imprecision while meeting bandwidth
constraints in four steps.

First, we describe a simplified algorithm for a one-level
aggregation tree and static workloads. For each leaf node i in
the system, this algorithm calculates an ideal error setting δi

and corresponding expected bandwidth consumption bi such
that (1) each leaf node’s outbound bandwidth (i.e., rate of
updates sent to the root) is at most its outgoing bandwidth
budget, (2) the root node’s incoming bandwidth (i.e., sum of
update rates inbound from children) is at most its incoming
bandwidth budget, and (3) the sum of the δi’s is minimized
given the first two constraints.

Second, we describe how to handle dynamic workloads
where the estimate of AI error δ vs. bandwidth trade-offs,
and hence the optimal distribution, can change over time.
A key challenge here is throttling the rate at which the
system redistributes bandwidth budgets across nodes since
such redistribution also incurs bandwidth costs.

Third, we generalize the algorithm to handle multi-level
aggregation trees.

Symbol Meaning
BO

i outgoing bandwidth constraint for node i
BI

i incoming bandwidth constraint for node i
ui input update rate at node i
σi standard deviation of node i’s input workload

child(i) all children of node i
δi node i’s AI error setting
bi node i’s outgoing bandwidth load

δopt
i node i’s optimal AI error setting

bopt
i node i’s optimal outgoing bandwidth load

TABLE I
SUMMARY OF KEY NOTATIONS.

Finally, we discuss how our implementation copes with
variability. In particular, SMART sets the per-node δs so that
the average bandwidth meets a target. However, spikes of
update load for an attribute or coincident updates for multiple
attributes could cause instantaneous bandwidth to exceed
the target. To avoid such instantaneous overload, SMART
therefore prioritizes pending updates based on the impact they
will have on their aggregate values and drains them to the
network at the target rate, similar to broadcast scheduling [34].

B. One-Level Tree

Quantify Bandwidth vs. AI Precision Tradeoff: To estimate
the optimal distribution of load budgets among different nodes,
we use a simple load vs. error tradeoff model based on Cheby-
shev inequality [10]. This model quantifies query precision that
can be achieved under a given bandwidth budget.

Let X be a random variable with finite expectation µ and
variance σ2. Chebyshev’s inequality states that for any k ≥ 0,

Pr(|X − µ| ≥ kσ) ≤ 1
k2

(2)

For AI filtering, the term kσ represents the error budget δi

for node i. Substituting for k in Equation 2 gives:

Pr(|X − µ| ≥ δi) ≤ σ2
i

δ2
i

(3)

This equation implies that if the error budget is smaller than
the standard deviation (i.e., δi ≤ σi and k ≤ 1), then δi is
unlikely to filter many data updates. In this case, Equation 3
provides only a weak bound on the message cost: the probabil-
ity that each incoming update will trigger an outgoing message
is bounded by 1. However, if δi ≥ kσi for any k ≥ 1, the
fraction of unfiltered updates is probabilistically bounded by
σ2

i

δ2
i

. In general, given the input update rate ui for node i with
error budget δi, the expected message cost for node i per unit
time is:

Mi = MIN
{

ui,
σ2

i

δ2
i

∗ ui

}
(4)

We use the expected message cost Mi to estimate node i’s
optimal outgoing bandwidth bopt

i .

Estimate Optimal Bandwidth Settings under Fixed Load:
To estimate the optimal load distribution and settings of AI
error δs at each node in a one-level tree rooted at node r,
we formulate an optimization problem of minimizing the total



error for a SUM aggregate at root r under given bandwidth
budgets BI

r (at the root) and BO
i (at child i):

MIN
∑

i∈child(r)

δopt
i

s.t.
∑

i∈child(r)

σ2
i ∗ui

(δopt
i )2

≤ BI
r

∀i ∈ child(r), bopt
i = σ2

i ∗ui

(δopt
i )2

≤ min{BO
i , ui}

(5)

where bopt
i denotes the estimated optimal setting of outgoing

bandwidth of node i to meet the global objective of minimizing
the total error

∑
i∈child(r)

δopt
i subject to two constraints: (1) node

i’s outgoing bandwidth budget
(
bopt
i ≤ min{BO

i , ui}
)

and (2)

incoming bandwidth budget at root r

( ∑
i∈child(r)

bopt
i ≤ BI

r

)
.

Enforcing Incoming Bandwidth Constraint: To solve Equa-
tion (5), we first relax the outgoing bandwidth constraints (i.e.,
∀i, bopt

i ≤ min{BO
i , ui}) but enforce the incoming bandwidth

constraint. Later, we provide a solution when the outgoing
bandwidth constraints are also enforced. Using Lagrangian
Multipliers, the above formulation yields a closed-form and
computationally inexpensive solution [17]:

δopt
i =

√√√√√
∑

c∈child(r)

3
√

σ2
c ∗ uc

BI
r

∗ 3

√
σ2

i ∗ ui (6)

which provides a closed-form formula for setting bopt
i :

bopt
i =

σ2
i ∗ ui

(δopt
i )2

= BI
r ∗

3
√

σ2
i ∗ ui∑

c∈child(r)

3
√

σ2
c ∗ uc

(7)

As a simple example, if ui = σi = 1, then each node sets
the same δi for the attribute as δi =

√
N
BI

r
, and the bandwidth

budget for node i will be 1
δ2

i
= BI

r

N i.e., given a total bandwidth
budget and uniform workload distribution across nodes, each
node gets a uniform share of the bandwidth to update each
attribute.

Note that to set bopt
i (Equation (7)), each node needs to

know
∑

c∈child(r)

3
√

σ2
c ∗ uc and root r’s incoming bandwidth

budget BI
r ; SMART computes a simple SUM aggregate across

children inputs to obtain this information. As a simple opti-
mization, these messages are piggy-backed on data updates.

Enforcing Outgoing Bandwidth Constraints: Note that the
above load assignment assumes that the outgoing bandwidth
constraint bopt

c ≤ min{BO
c , uc} holds for every child c.

If for a node i, the above solution doesn’t satisfy bopt
i ≤

min{BO
i , ui}, then we need to set bopt

i = min{BO
i , ui} to

satisfy its bandwidth constraint. This situation may arise in
heterogeneous environments where a subset of nodes may
experience higher input loads (e.g., DDoS attacks) or may
become severely resource-constrained (e.g., sensor networks
with low power devices).

Setting bopt
i = min{BO

i , ui} can free up part of r’s incom-
ing capacity BI

r , which can be reassigned to other children to
increase their bandwidth budget thereby improving the overall
accuracy. SMART therefore applies an iterative algorithm that
in each iteration determines all saturated children Csat at each
step, fixes their load budgets and error settings, and recomputes
Equations (6), (7) for all the remaining children (assuming
child set Csat is absent). A child j is labeled saturated if
bopt
j ≥ BO

j i.e., its available outgoing bandwidth is at most
the estimated optimal setting of its outgoing bandwidth. Note
that for our DHT-based aggregation trees, the fan-in for a node
is typically 16 (i.e., a 4-bit correction per hop) so the iterative
algorithm runs in constant time (at most 16 times).

C. Self-Tuning Bandwidth Settings

The above solution is derived assuming that σi and ui are
given and remain constant. In practice, σi and ui may change
over time depending on the workload characteristics. SMART
therefore self-tunes bandwidth settings to improve accuracy.

Cost-Benefit Throttling: We apply cost-benefit throttling to
dynamically adapt the bandwidth settings. Specifically, after
computing the new bandwidth budgets, a node computes
a charge metric for each attribute a which estimates the
reduction in error gained by refreshing a:

chargea = (Tcurr − T a
lastSent) ∗Da (8)

where Tcurr is the current time, T a
lastSent is the last time an

attribute a’s update was sent, and Da denotes the deviation
between a’s current value at that node and its last reported
range [Vmin, Vmax] to the parent. For example, if a’s AI error
range cached at the parent is [1, 2] and a new update with value
11 arrives at a child node, we expand the range to [1,11] at
the child to include the new value setting Da =10.

Notice that an attribute’s charge will be large if (i) there is a
large error imbalance (i.e., Da is large), or (ii) there is a long-
lasting imbalance (e.g., Tcurr − T a

lastSent is large). Further,
only using Da may hurt precision if the attribute has a repeated
behavior of quickly diverging after the last refresh. Therefore,
the temporal term (Tcurr−T a

lastSent) prioritizes attributes who
are likely to again diverge slowly after being refreshed thereby
giving a long-term precision benefit.

Since redistribution also consumes bandwidth budgets, we
only send messages to readjust the bandwidth settings when
doing so is likely to reduce the time-averaged error for those
attributes by at least a threshold τ (i.e., if chargea > τ ).
Further, to ensure the invariant that a node does not exceed its
bandwidth while sending updates for multiple attributes, we
present a simple prioritization technique in Section IV-E.

D. Multi-Level Trees

To scale to a large number of nodes, we extend our basic
algorithm for a one-level tree to a distributed algorithm for
a multi-level aggregation hierarchy. Note that in a multi-level
tree, leaf nodes use AI error δ to filter sensor updates and
internal nodes retain a local AI error, δself , to help prevent



updates received from their children from being propagated
further up the tree [10], [35].

In an aggregation tree, each internal node applies the self-
tuning algorithm similar to the one-level tree case: the internal
node is a local root for each of its immediate children, and the
bandwidth targets BI

p for parent p and BO
c for each child c

are input as constraints in Equation (5). The key difference is
that for children who are internal nodes, we use their AI error
δself in this optimization framework. To estimate the optimal
bandwidth and AI error settings for each child, the parent node
p tracks its incoming update rate i.e., the aggregate number
of messages sent by all its children per time unit (up) and the
standard deviation (σp) of updates received from its children.
Note that uc, σc reports are accumulated by child c until they
can be piggy-backed on an update message sent to its parent.

Given this information, a parent estimates for each child
c, the optimal outgoing bandwidth bopt

c and the AI error
δopt
c(self) that improves the total precision in the aggregate value

computed across the children given bandwidth constraints1.

E. Prioritizing Pending Updates

Finally, we describe how our implementation addresses
the challenge posed by variability in bandwidth targets. In
particular, we want to avoid situations where a node meets
its average bandwidth target but may temporarily exceed
instantaneous bandwidth target due to spikes of update load
for an attribute, coincident updates for multiple attributes, or
a sudden increase in available bandwidth.

Each node needs to send messages to the root to minimize
the query error. Therefore, we need to prioritize sending those
messages that benefit precision the most. A naive refreshing
algorithm that updates attributes in a round-robin fashion could
easily spend network messages that do not reduce error while
consuming valuable bandwidth resource. Limiting sending of
non-useful updates is a particular concern for applications like
DHH that monitor a large number of attributes, only a few of
which are active enough to be worth optimizing.

To address this problem, our SMART implementation pro-
vides a priority heap of all pending updates that need to be sent
ordered by their priority. Using this heap, SMART prioritizes
pending updates based on the impact they will have on their
aggregate values and drains them to the network at a target
rate. Specifically, at each time step, a node keeps removing
the maximum priority attribute from the heap and sending it to
the corresponding parent until the node’s instantaneous target
bandwidth is reached. Note that to compare priorities across
different attributes that have different value ranges across
different queries, we normalize an attribute a’s refresh priority
(Equation (8)) by dividing the deviation Da by the standard
deviation σa of that attribute.

1Note that finding a globally optimal solution is too expensive in this
environment as it requires perfect knowledge of (possibly varying) (1) per
node bandwidth settings, (2) network topology, and (3) update rate and
variance of input workload at all times. Therefore, SMART adapts bandwidth
in a best-effort, self-tuning manner to achieve high precision in hierarchical
trees and our experiments show that this approach works well in practice.
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V. SMART IMPLEMENTATION

In this section, we describe the prototype implementation of
SMART. First, we present a key performance optimization of
temporal batching of updates to reduce load and to quantify
staleness of query results. Second, we describe how to build
bandwidth-aware aggregation trees to improve accuracy in
heterogeneous network environments. Then, we describe how
SMART handles failures and reconfigurations. Finally, we
discuss how to improve precision for different aggregates.

A. Temporal Imprecision

SMART integrates temporal imprecision with arithmetic
filtering to provide staleness guarantees on query results and
to reduce the monitoring load.

Temporal Imprecision (TI) bounds the delay from when an
event/update occurs until it is reported [8], [9], [11], [36]. A
temporal imprecision of TI (e.g., TI = 30 seconds) guarantees
that every event that occurred TI or more seconds ago is
reflected in the reported result; events younger than TI may
or may not be reflected. In SMART, each attribute has a TI
interval during which its updates are batched into a combined
message, checked if the combined update drives the aggregate
value out of the last reported AI range, and then pushed into
the priority queue to be sent to the parent.

Temporal imprecision benefits monitoring applications in
two ways. First, it accounts for inherent network and pro-
cessing delays in the system; given a worst-case per-hop
cost hopmax even immediate propagation provides a temporal
guarantee no better than ` ∗ hopmax where ` is the maximum
number of hops from any leaf to the root of an aggregation
tree. Second, explicitly exposing TI allows SMART to reduce
load by using temporal batching: a set of updates at a leaf
sensor are condensed into a periodic report or a set of updates
that arrive at an internal node over a time interval are combined
into a single message before being sent further up the tree [17].
This temporal batching improves scalability by reducing pro-
cessing and network load as we show using experiments on a
network monitoring application in Section VI.



SMART implements TI using a simple mechanism of
having each node send updates to its parent once per TI/`
seconds similar to TAG [8] as shown in Figure 5(b). Further,
to maximize the possibility of batching updates, when clocks
are synchronized2, SMART pipelines delays across tree levels
so that each node sends once every (TI−∆) seconds with each
level’s sending time staggered so that the updates from level i
arrive just before level i + 1 can send (Figure 5(a)). The term
∆ accounts for the worst-case per hop delays and maximum
clock skew; details are in the extended technical report [17].

B. Bandwidth-Aware Tree Construction

As described in Section III, SMART leverages DHTs [16],
[29], [30], [38] to construct a forest of aggregation trees and
maps different attributes to different trees [14]–[16], [39] for
scalability and load balancing. SMART then uses these trees
to perform in-network aggregation.

SMART constructs bounded fan-in, bandwidth-aware ag-
gregation trees to improve result accuracy and quickly detect
anomalies in heterogeneous environments. Recent studies [7],
[10], [19]–[21] suggest that only a few attributes (e.g., elephant
flows [19]) generate a significant fraction of the total traffic in
many monitoring applications. Thus, to provide fast anomaly
detection, an aggregation tree should quickly route the updates
of elephant flows towards the root such that no internal node
becomes a processing/communication bottleneck due to either
high in-degree or low bandwidth.

DHTs provide different degrees of flexibility in choos-
ing neighbors and next-hop paths in building aggregation
trees [40]. Many DHT implementations [18], [30] use prox-
imity (usually round-trip latency) in the underlying network
topology to select neighbors in the DHT overlay. This neighbor
selection in turn determines the parent-child relationships in
the aggregation tree. However, in a heterogeneous environment
where different nodes have different bandwidth budgets, an
aggregation tree formed solely based on RTTs may degrade
the quality precision of the query result for two reasons. First,
a node may not have sufficient outgoing bandwidth to send
updates up in the tree even though its underlying tree may
be sufficiently well-provisioned. In such an environment, this
node becomes a bottleneck as the updates sent by the underly-
ing subtree go wasted. Second, a resource-limited parent may
not be able to process the aggregate outgoing update rate of
all its children. Thus, a practical technique for building trees
would be to bound the number of children at each internal node
and use both latencies and bandwidth constraints to select the
best parent at each tree level.

To improve accuracy and to quickly identify anomalies,
SMART builds DHT-based aggregation trees as follows:
• Bound the fan-in (i.e., number of children) at each parent

node. In our implementation, a child node selects its
parent such that the fan-in at the parent is at most 16
i.e., each parent has maximum up to 16 children.

2Algorithms in the literature can achieve clock synchronization among
nodes to within one millisecond [37].

• Use both network latency and available bandwidth ca-
pacity as the proximity metric for selecting parent nodes.
SMART orders DHT neighbors of a node such that they
have the highest incoming bandwidth capacity and have
network latency below a specified threshold. Thus, nodes
close in proximity and having high bandwidth capacities
are highly likely to be selected as parent nodes.

Finally, note that in some environments, it might be useful
to select nodes with low bandwidth as parents e.g., if the
input workload at the leaf nodes comes from an independent
uniform distribution, then a node closer to the root is expected
to receive very few updates since an aggregate (e.g., SUM)
is likely to become more “stable” going towards the root.
However, in practice, real workloads (1) are often non-uniform
with few attributes generating a significant fraction of the total
traffic [19] and (2) exhibit both temporal and spatial skewness
with input rates unexpectedly increasing over time and across
nodes. We quantify the effectiveness of constructing bounded
fan-in, bandwidth-aware aggregation trees in Section VI.

C. Robustness

Failures and reconfigurations are common in distributed
systems. As a result, a query might return a stale answer when
nodes whose inputs are needed to compute the aggregate result
become unreachable. Furthermore, in a large-scale monitoring
system, such failures can interact badly with our techniques
for providing scalability—hierarchy, arithmetic filtering, and
temporal batching. E.g., if a subtree is silent over an interval,
it is difficult to distinguish between two cases: (a) the subtree
has sent no updates because the inputs have not significantly
changed or (b) the inputs have significantly changed but the
subtree is unable to transmit its report. As a result, reported
results can deviate arbitrarily from the truth.

Addressing this problem of node failures and network
disruptions in large-scale monitoring systems is beyond the
scope of this paper. In a separate paper [41], we describe how
a new consistency metric called Network Imprecision (NI)
safeguards the accuracy of query results in the face of failures,
network disruptions, and system reconfigurations.

D. Discussion

Improving precision for different aggregates: SMART fo-
cuses on the SUM aggregate since it is likely to be common in
network monitoring [9], [10] and financial applications [32];
maximizing precision for the AVG aggregate is similar to
SUM. For MAX, MIN aggregates, if the AI error budget is
fixed, then the best error assignment is to give equal AI error
budget to all the leaf nodes. However, since bandwidth budget
is limited in practice, each node may set its precision differ-
ently to meet its available bandwidth. An intuitive solution to
compute global MAX, MIN values is to simply broadcast them
to each node, and a node sends an update only if it changes the
global aggregate. However, this approach may limit scalability
in large-scale data stream systems that monitor a large number
of dynamic attributes. For the TOP-K aggregate, SMART
achieves high accuracy by prioritizing updates based on the
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Fig. 6. SMART provides higher precision benefits as skewness in a workload increases. The figures show the average error vs. load budget for three different
skewness settings (a) 20:80%, (b) 50:50%, and (c) 90:10%.

highest aggregate values and the result deviation Da. Our
experiments in Section VI show that this approach works
well in practice. We plan to develop mechanisms for other
aggregates such as quantiles in future work.

Bounding Query Result Divergence: SMART aims to deliver
results with useful accuracy under limited bandwidth re-
sources. Some applications, however, may require guaranteed
upper bounds on the divergence of query results e.g., setting a
threshold on the total traffic sent by a distributed experiment in
PlanetLab [42]. To accommodate such cases, SMART allows
an attribute to be tagged as a hard precision limit attribute,
and it uses STAR [10] that adapts given AI error budgets to
minimize bandwidth cost for such attributes.

VI. EXPERIMENTAL EVALUATION

In this section, we present the precision and scalability
results of an experimental study of SMART. First, we use
simulations to evaluate the improvement in query result accu-
racy due to SMART’s adaptive bandwidth settings. Second, we
quantify the scalability and accuracy achieved by SMART for
the DHH application in a network monitoring implementation.
To perform this experiment, we have implemented a prototype
of SMART using the PRISM aggregation system [17] on
top of FreePastry [29]. We use Abilene [33] netflow traces
and perform the evaluation on 120 node instances mapped to
30 machines in the department Condor cluster. Finally, we
investigate the precision benefits of constructing bandwidth-
aware aggregation trees using our prototype.

A. Simulation Experiments

In this section, we quantify the result accuracy achieved by
SMART compared to uniform bandwidth allocation and an
idealized optimal algorithm. First, we assess the effectiveness
of adaptive bandwidth settings in improving result precision
as skewness in a workload increases. Second, we analyze the
effect of fluctuating bandwidth. Finally, we evaluate SMART
for different workloads.

In all experiments, all active sensors are at the leaf nodes
of an aggregation tree. Each sensor generates a data value
every time unit (round) for two sets of synthetic workloads
for 100,000 rounds: (1) a random walk pattern in which the
value either increases or decreases by an amount sampled

uniformally from [0.5, 1.5], and (2) a Gaussian distribution
with standard deviation 1 and mean 0. We simulate m ∈ {100,
1000} data sources each having n ∈ {10, 100} attributes in
one-level and multi-level trees, and under fixed and fluctuating
bandwidth. All attributes have equal weights, messages have
the same size, and each message uses one unit of bandwidth.

Evaluating Update Rate Skewness: First, we evaluate the
precision benefits of SMART as skewness in a workload
increases. We compare it with (1) the optimal algorithm under
the idealized and unrealistic model of perfect global knowl-
edge of each attribute’s divergence at each data source and (2)
a uniform allocation policy where the incoming bandwidth
capacity B at a parent is allocated equally (B

C ) among its
child set C. Although this simple policy is correct (the total
incoming load from the children is guaranteed to never exceed
the incoming load of their parent), it is not generally the best
policy as we show in our experiments.

We first perform a simple experiment for a one-level tree
and later show the results for hierarchical topologies. Figure 6
shows the query precision achieved by SMART for m=100 and
n=10 under the following skewness settings: (a) 20:80%, (b)
50:50%, and (c) 90:10%. For example, the 20:80% skewness
represents that a randomly selected 20% attributes are updated
with probability 0.01 while the remaining ones are updated
consistently every round under the random walk model. In
all subsequent graphs in this section, the x-axis denotes the
bandwidth budget as a fraction of the total cost m.n of
refreshing all the attributes across all nodes; the y-axis shows
the resulting average error.

For 20:80% skewness, since only a small fraction of at-
tributes are stable, SMART can only reclaim up to 20%
load budget from stable attributes sources and distribute it to
dynamic sources to reduce their error. For small bandwidth
budgets, SMART improves accuracy by up to 35% compared
to uniform allocation. The optimal algorithm improves ac-
curacy by 27% over SMART. As the load budget increases,
SMART converges to the optimal solution. SMART improves
error by 40% over uniform allocation under 20% load budget
and by more than an order of magnitude under sufficiently
large budgets. For the 50:50 case, SMART can reclaim 50%
of the total load budget compared to uniform allocation and
give it to unstable sources. In this case, SMART reduces error
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Fig. 7. SMART improves accuracy even under fluctuating bandwidth. The maximum bandwidth variation in the figure is (a) 10%, (b) 20%, and (c) 30%.

by up to 50% over uniform policy at 40% bandwidth and
achieves accuracy close to the optimal solution. Finally, for
90% skewness, SMART achieves the accuracy of the optimal
algorithm even under 20% fraction of the total bandwidth and
improves accuracy by more than an order of magnitude over
uniform allocation. We observed qualitatively similar results
for other m and n settings.

Note that the advantages of SMART depend on the work-
load skewness. We expect that for systems monitoring a
large numbers of attributes (e.g., DHH), some attributes (e.g.,
elephants) will have a high variability in data values and
update rates so they gain only a modest advantage in accuracy
from SMART, while other attributes (e.g., mice) will have
large ratios and hence, a query (e.g., top-k) will gain large
advantages since it only needs to provide high accuracy for
the top-k flows.

Effect of Fluctuating Bandwidth: Next, we evaluate the
effectiveness of SMART under fluctuating bandwidth. We vary
the incoming bandwidth over time following a sine wave
pattern and set the maximum rate of bandwidth change to
10%, 20%, and 30% for m=1000 nodes each having n=100
attributes. We use update rate skewness of 50% as described
above. From Figure 7, we observe that under 10% variation,
SMART provides 50% reduction in error over uniform alloca-
tion at 40% bandwidth fraction. As we increase the bandwidth
fluctuation from 10% to 30%, SMART reduces error by about
70% under 40% bandwidth fraction, and more than an order of
magnitude for larger fractions. In all cases, SMART achieves
accuracy close to the optimal algorithm.

Evaluating Different Workloads: Finally, we evaluate
SMART under different configurations by varying input work-
load, standard deviation (step sizes), and update frequency at
each node. The workload data distribution is generated from
a random walk pattern and Gaussian models. For standard
deviation/step-size, 70% nodes have uniform parameters as
previously described; the remaining 30% nodes have these
parameters set proportional to rank (i.e., with locality) or
randomly assigned (i.e., no locality) from the range [0.5, 150].

Figure 8 shows the corresponding results for different
settings of input workload and standard deviation for m=100
and n=100. The update frequency is set to 0.7 skewness as
described previously. We make three key observations. First,
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Fig. 8. Precision benefits of SMART vs. optimal algorithm and uniform allo-
cation for different {workload, step sizes/standard deviation} configurations:
(a) random walk, rank, (b) random walk, random, (c) Gaussian, rank, and (d)
Gaussian, random.

SMART’s error is close to the optimum algorithm under the
rank based assignment as shown in Figure 8(a),(c). Second,
under random assignment, SMART’s accuracy benefits are
reduced since updates generated from within the same subtree
are likely uncorrelated. In both cases, as bandwidth increases,
SMART’s error approaches the optimal. Third, because step-
sizes are based on node rank, SMART prioritizes attributes
having higher step-sizes and update rates, and applies cost-
benefit throttling to ensure that the precision benefits exceed
costs. The uniform policy, however, does not make such
a distinction equally favoring all attributes that need to be
refreshed, thereby ineffective in improving precision. Finally,
under limited bandwidth, refreshing mice attributes with small
step sizes does not significantly reduce the result error for
queries such as top-k heavy hitters but consumes valuable
bandwidth resources. For all these configurations, SMART
improves accuracy by up to an order of magnitude over
uniform allocation. The optimal approach improves accuracy
by 20% over SMART.

Overall, across all configurations in Section VI-A, SMART
reduces inaccuracy by up to an order of magnitude compared
to uniform allocation and is within 27% of the optimal
algorithm under modest bandwidth fraction.
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B. Testbed Experiments

Next, we quantify the improvement in query precision due
to SMART’s self-tuning algorithm for the DHH application.

We use multiple netflow traces obtained from the Abi-
lene [33] backbone network. The traces were collected from
3 Abilene routers for 1 hour; each router logged per-flow data
every 5 minutes, and we split these logs into 120 buckets
based on the hash of source IP. As described in Section III-C,
our DHH application executes a TOP-100 heavy hitter query
on this dataset for tracking the top 100 flows (destination IP
as key) in terms of bytes received over a 30 second moving
window shifted every 10 seconds. We analyze this workload
and observe that the 120 sensors track roughly 80,000 flows
and send around 25 million updates in an hour [17]. Further,
it shows a heavy-tailed Zipf-like distribution: 60% flows send
less than 1 KB of aggregate traffic, 90% flows less than 55 KB,
and 99% of the flows send less than 330 KB during the 1-hour
run; the maximum aggregate flow value is about 179.4 MB.
We observe a similar heavy-tail distribution for the number of
updates per flow (attribute) [17].

For this experiment, we fix the outgoing bandwidth to
between 0.5 and 10 messages per node per second. Since we
bound the fan-in of an internal node in our DHT-based aggre-
gation tree to 16, the maximum incoming load at any node is
thus 160 messages per second which is a reasonable processing
load in our environment. Figure 9 plots the outgoing load per
node on the x-axis and the result precision achieved for the
TOP-100 heavy hitter query on the y-axis. The different lines
in the graph correspond to a temporal batching interval of 10
seconds, 30 seconds, 60 seconds, and five minutes. Each data
point denotes the average result divergence for the TOP-100
heavy hitters set. It is important to note that for this query, the
result sets (TOP-100 heavy hitters) under TI of 10, 30, and
60 seconds were consistent with the true result set. However,
under TI of 5 minutes, the result sets differed in at most three
entries from the true result set.

We observe that under TI = 10s, SMART reduces the
average error from 22% at 0.5 load budget to about 1%
at a load budget of 10. As expected, comparing across TI
values, the average error increases with increase in the TI
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batching interval. In all cases, the 99-percentile CPU and
memory overhead of SMART was less than 8% and 43 MB,
respectively.

Figure 10 shows the query precision achieved by SMART
as the input load increases given fixed bandwidth budgets (BW
= 0.5, 1, 5, and 10) and TI = 10s. As load increases, SMART
degrades accuracy gracefully across all bandwidth settings.
Further, as bandwidth increases, SMART improves accuracy
from 32% (BW = 0.5) to 87% (BW = 10) at a load of about
100 updates per second.

C. Evaluating Bandwidth-aware Tree Formation

Finally, we evaluate the benefits of SMART’s bandwidth-
aware tree construction. As described in Section V, SMART
uses both bandwidth and latency as proximity metrics in
DHT routing compared to only latency in traditional DHT
implementations. For quantitative comparison, we compute a
Tree-BW metric for a tree as the sum of Li ∗ Bi across all
nodes, where Li is the number of leaves in the subtree rooted
at node i and Bi is the bandwidth of node i. This weighted
sum metric is higher for trees that select internal nodes
having higher bandwidth capacities. For this experiment, we
classify nodes belonging to two different classes of bandwidth
budgets: 100Mbps and 1Mbps. A 0.1 skewness in bandwidth
implies that 10% of the nodes have 100Mbps bandwidth and
the remaining have 1Mbps bandwidth. Figure 11 compares
the benefits of SMART’s tree construction using bandwidth-
aware DHT routing against trees constructed using bandwidth-
unaware routing for a 1024-node system; the y-axis shows
the normalized Tree-BW (with respect to the maximum value
observed) metric for various bandwidth skewness settings
(x-axis). Note that SMART’s bandwidth-aware DHT routing
achieves better Tree-BW metric values by up to a factor of
3.7x over a bandwidth-unaware DHT.

In summary, our results show that SMART is an effec-
tive substrate for scalable monitoring: SMART incurs low
overheads, provides high result accuracy while bounding the
monitoring load, continuously adapts to dynamic workloads,
and achieves significant precision benefits for an important
monitoring application of detecting distributed heavy hitters.
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VII. CONCLUSIONS AND FUTURE WORK

We design, implement, and evaluate SMART—a scalable,
adaptive, bandwidth-aware monitoring system that performs
self-tuning of bandwidth budgets to maximize precision of
continuous aggregate queries over dynamic data streams.
Without adapting bandwidth constraints, monitoring systems
may risk overload, loss of accuracy, or both, under bursty
workloads.

In future work, we plan to examine techniques for secure in-
formation aggregation across multiple administrative domains
and build a broad range of monitoring applications that can
benefit from SMART.
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