PRACTI Replication (Extended version)

Mike Dahlin, Lei Gao, Amol Nayate, Arun Venkataramani
Praveen Yalagandula, Jiandan Zheng
University of Texas at Austin University of Massachusettes at Amherst

Draft — October 2005
See http://www.cs.utexas.edu/users/dahlin/papers.html for the current version.

Abstract which data,consistency policiesuch as sequential [25]

We present PRACTI, a new approach and architecture fd?" causal [19] define which reads must see which writes,
large-scale replication. PRACTI systems can replicate orndtopology policiessuch as client-server, hierarchy, or
cache any data on any node (Partial Replication), prodd-hoc define the paths along which updates flow.

vide a broad range of consistency and coherence guar- The goal of the approach is to simultaneously provide
antees (Arbitrary Consistency), and permit any node t@ll three PRACTI properties:

share updates with any other node (Topology Indepery partjal Replicationmeans that a system can place any
dence). Our PRACTI architecture yields two significant g pset of data on any node. In contrast, some systems

advantages. First, it providézetter trade-offshan ex- require a node to maintain copies of all objects in all
isting mechanisms: our prototype dominates existing ap- yolumes they export [30, 47].

proaches by providing as much as an order of magnitudg
better bandwidth and storage efficiency than AC-Tl repli-

Eaited servehr Sy.Ste{nS’ SSImUCh as an dotrngO;rgign'tUdeseIectiver enforce botttonsistencyand coherence
etier synchronization delay compared to Fi- erar- guarantee$. In contrast, some systems can only en-

chical systems, and consistency guarantees not achiev—force coherence guarantees but make no guarantees
able by PR-TI per-object replication systems. Second, about consistency [16, 34]

our architecture'dlexibility simplifies the design of repli- « Topology Independendaeans that any node can ex-

cation systems by allowing a single framework to sub- :
o change updates with any other node. In contrast, many
sume a broad range of existing systems and to reduce de- : L :
systems restrict communication to client-server [18,

velopment costs for new ones. For example, we use our ;)

PRACTI prototype both to emulate existing server repli- 21, 29] or hierarchical [6, 45] patterns.

cation, client-server, and object replication systems ané<hough many existing systems can each provide two of

to implement novel policies that improve performancethe properties, we are aware of no system that provides

for mobile users, web edge servers, and grid computingall three. As a result, systems give up the ability to ex-
ploit locality, support a broad range of applications, or

1 Introduction dynamically adapt tq network topplogy. .
This paper describes PRACTI, a new data replication ap- Our PRACTI architecture provides all three properties
' RPQ/ drawing on key ideas of existing protocols but recast-

proach and architecture that can reduce replication cos .
by an order of magnitude for a range of large-scale sys'—hg them to remove the deeply-embedded policy assump-

tems and also simplify the design, development, and det|_ons that prevent one or more PRACTI properties. In

ployment of new systems particular, our design begins with log exchange mecha-
Data replication is a building block for many large- nisms that support a range of consistency guarantees and

scale distributed systems such as mobile file system Sﬁ?IeO?i{: a';gﬁp?e)gdjg Ceit ?#;;g%tafﬂgfﬁgeenrfe"zhgﬁ;;n:
web service replication systems, enterprise file system P [30, 47]. P

and grid replication systems. Because there is a fun-o support partial replication using three design princi-

damental trade-off between performance and consid' €S

tency [26] as well as between_ ava"ablllty and consis- 1Although the operating systems and distributed systems literature
tency [7, 36], systems make different trade-offs amongyep, yse the terms consistency and coherence interchangeably, the ar-
these factors by implementing different placement polichitecture literature is more precise [17]: consistency semantics con-
cies, consistency policies, and topology policies for dif-strain the order that updates across multiple objects become observable

; i to readers. Coherence semantics constrain the order that updates to a
ferent environments. Informallyplacement policies single object become observable but do not additionally constrain the

SUCh as deman_d-cachi_ng, prefetching, pUSh'CaChingv BFdering of updates across different objects. We find this precision use-
replicate-all define which nodes store local copies oful and follow that terminology in this paper.

Arbitrary Consistencymeans that a system provides
flexible semantic guarantees, including the ability to

1. In order to allow partial replication of data, our de- existing systems fail to provide all of the desired prop-
sign separates the control path from the data path erties. Second, it describes the first replication architec-
separating invalidation messages that identify what hasire to simultaneously provide all three PRACTI prop-
changed from body messages that encode the changedies. Third, it provides a prototype PRACTI replica-
to the contents of files. Distinct invalidation mes- tion toolkit that cleanly separates mechanism from policy
sages are widely used in hierarchical caching systemsnd thereby allows nearly arbitrary replication, consis-
but we demonstrate how to use them in topologytency, and topology policies. Fourth, it demonstrates that
independent systems: we develop explicit synchroPRACTI replication offers decisive practical advantages
nization rules to enforce consistency constraints deeompared to existing approaches.
spite multiple streams of information, and we intro- Section 2 of this paper explores the limitations of ex-
duce general mechanisms for handling demand readting approaches, Section 3 describes our PRACTI ar-
misses. chitecture, and Section 4 experimentally evaluates the

2. In order to allow partial replication of update meta-prototype. Finally, Section 5 surveys related work and
data, we usexplicit conservative encodinga impre- Section 6 highlights our conclusions.
cise invalidationswhich allow a single invalidation to

summarize a set of invalidations. 2 Backg round

3. In order to allow our system to serve as a flexi-pjiough providing all three PRACTI properties has ob-
ble toolkit for constructing a broad range of systems, ;s potential benefits, we know of no system that does
our implementation cleanlyeparates mechanism from g, - vost existing systems fall into three categories that
policy by splitting the system into a core that def'”eseach provide at most two of the PRACTI properties:
anode’s mechanisms.for maintaini’ng Ioggl state and a Server replicationsystems like Bayou [30] provide
controllgr that embodies a system’s policies for COM154-hased peer-to-peer update exchange that allows any
munication among nodes. node to send updates to any other node (T1) and that con-
We have constructed and evaluated a prototype. Owistently orders writes. TACT [47] uses this approach to

primary conclusion is that by disentangling mechanisnprovide a wide range of tunable consistency guarantees

from policy and simultaneously supporting the three(AC). Unfortunately, these protocols fundamentally as-

PRACTI propertiesPRACTI replication enables better sume full replication: all nodes store all data from any

trade-offs for system designers than possible with exisivolume they export and all nodes receive all updates. As

ing mechanisms.For example, for some workloads in a result, these systems are unable to exploit workload lo-
our mobile storage and grid computing case studies, owality to efficiently use networks and storage, and they
system dominates existing approaches by providing morgay be unsuitable for devices with limited resources.
than an order of magnitude better bandwidth and storage Client servef18, 29] anchierarchical[6, 27] caching
efficiency than AC-TI replicated server systems, by prosystems permit caching of arbitrary subsets of data (PR),

viding more than an order of magnitude better synchroand existing cache consistency protocols can provide a

nization delay compared to PR-AC hierarchical systemsyide range of consistency guarantees (AC). However,

and by providing consistency guarantees not achievablgese protocols fundamentally require communication to

by PR-TI per-object replication systems. flow between a child and its parent. Even when client-
More broadly, by subsuming a large portion of the de-server systems permit limited client-client communica-

sign space, the PRACTI architecture can simplify the detion for cooperative caching [12] they must still serialize

sign of replication systems. At present, because mecha&ontrol messages at a central server for consistency [8].

nisms and policies are entangled, when a replication syShese restricted hierarchical communication patterns (1)

tem is built for a new environment, it must often be built hurt performance when network topologies do not match

from scratch or must modify existing mechanisms to acthe fixed communication patterns or when network costs
commodate new policy trade-offs. In contrast, our syschange over time (e.g., in environments with mobile
tem can be viewed as a “replication microkernel” that denodes), (2) hurt availability when a network path or node

fines a common substrate of core mechanisms over whidhilure disrupts a fixed communication topology, and (3)

a broad range of systems can be constructed by selectitignit the ability to support sharing during disconnected

appropriate policies. For example, in this study we us@peration when a set of nodes can communicate with one

our prototype both to emulate existing server replicationanother but not with the rest of the system.

client-server, and object replication systems and to im- Object replicationsystems [16, 34] allow nodes to

plement novel policies to support mobile users, web edgehoose arbitrary subsets of data to store (PR) and arbi-

servers, and grid scientific computing. trary peers with whom to communicate (TI). But, these
In summary, this paper makes four contributions.protocols enforce no ordering constraints on updates

First, it defines the PRACTI paradigm and shows howacross multiple objects, so they can provide coherence

Node 2
Core

St of Node 4
Local API &&’ IV G Core
oces | (S 75
&
5 Comai)

I

oy}

> M
v9)

awiL

Core Body
writeA’ A B '3;\&“ 3 @
writeB’ A’ B - % P
A’ B’ YyncB’ v Eé &)
Ao ' SyNc B’ Checkpoint Boy] \& éf
B A B'ReadB . e
Core
Read®
Fig. 1: Naive addition of PR to an AC-TI log exchange protocol
[Caniraller]

fails to provide consistency.
) . Fig. 2: High level PRACTI architecture.
but not consistency guarantees. Unfortunately, reasoning

about the corner cases of consistency protocols is conit@kes combining partial replication and arbitrary con-
plex, so providing weak consistency or coherence gua,sistency hard because when a node receives updates, it
antees can complicate constructing, debugging, and uglust not only consistently order updates to the data it
ing applications. Furthermore, in some cases support fdiares about but also ensure that it has enough informa-
only weak consistency semantics may prevent deploytion to order updatefor the data of interest to all nodes
ment of applications with more stringent requirements. With which it might communicate in the future.

It is surprising that despite the significant costs of EXisting systems resolve this dilemma in one of three
omitting any of the PRACTI properties, no system hasvays. AC-TI server replication systems’ full replication
succeeded in providing all three. Our analysis of thes€nsures that all nodes have enough information to order
protocols suggests that these limitations are fundamental! updates. PR-AC client-server and hierarchical sys-
to these protocol families: the assumption of full replica-tems restrict communication so that the root of a subtree
tion is deeply embedded in the core of Bayou and othefan track what information is cached by descendents and
server replication protocols; the assumption of hierarchican safely omit sending invalidations or updates for data
cal communication is fundamental to client-server conihat no descendent is currently caching; if a descendent
sistency protocols; and the lack of consistency is a kei,ater tries to read such data, cache miss bubbles up the hi-

factor in the flexibility of object replication systems. ~ €rarchy to anode that has sufficient information to supply

.. consistent data to the read. Finally, PR-TI object replica-
Example. To understand challenges of providing o systems simply give up ability to consistently order
PRACTI, consider the naive attempt to add PR to a ACyyites 1o different objects and allow inconsistencies such
TI server replication protocol like Bayou illustrated in 4q the one just described.

Figure 1. Suppose a user’s desktop node stores all of the

user’s files, including filest and B, but the user’s palm- . .

top only stores a smgall subset that includesut ngtA. 3 PRACTI repllcatlon

Then, the desktop issues a series of writes, including Eigure 2 shows the high-level architecture of our

write to file A (making it A’) followed by a write to file PRACTI architecture. Each node exportd@cal API

B (making it B’). When the desktop and palmtop syn- for reading and writing data, and each node stores an ar-

chronize, for PR, the desktop sends the writeBobut bitrary subset of data using-ag of updates and &heck-

not the write ofA. At this point, everything is OK: the pointfor random access. Furthermore, any node can ex-

palmtop and desktop have exactly the data they want, arghange information with any other node at any time.

reads of local data provide a consistent view of the order The architecture is based on three key ideas described

that writes occurred. But for TI, we not only have to in more detail in the following subsections:

worry about local reads but also propagation of data tb. Separation of invalidations and bodieé\s Figure 2

other nodes. For instance, suppose that the user’s laptop,illustrates, nodes exchange two types of updates: or-

which also stores all of the user’s files including bath dered streams of invalidations and unordered body

and B, synchronizes with the palmtop: the palmtop can messages. This separation supports partial replication

send the write oB but not the write ofA. Unfortunately, of bodies.

the laptop now can present an inconsistent view of dat Partial replication of invalidation metadatalthough

to a user or application. In particular, a sequence of reads the invalidation streams of Figure 2 each logically con-

at the laptop can return the new version®and then re- tain a causally consistent record of all writes in the sys-

turn the old version ofd, which is inconsistent with the tem, the implementation can omit sending groups of

writes that occurred at the desktop under causal [19] or invalidations by sendingmprecise invalidatiorsum-

even the weaker FIFO consistency [26]. matries instead. Imprecise invalidations allow partial
As this example illustrates, topology independence replication of metadata and flexible consistency.

3. Separation of mechanism and policks Figure 2 il- the entry’s logical time matches the body’s logical time

lustrates, our implementation of each node comprises and, if so, storing the body in the entry and marking the

a core and acontroller. The core instantiates the ba- entryVALID.

sic PRACTImechanismby processing incoming mes-

sages and maintaining a local view of the system’®Rationale. Separating invalidations from bodies pro-

state. Thecontroller embodies a systemfsoliciesby vides topology-independent protocol that supports both

initiating communication among nodes. Different de-arbitrary consistency and partial replication.

ployments use different controllers to implement dif- Supporting arbitrary consistency requires a node to be

ferent replication, topology, and consistency policies. able to consistently order all writes. Log-based invalida-

The rest of this section details these three aspects &Pn exchange meets this need by ensuring three crucial
the design. It then discusses the crosscutting issue of hopyoperties [30]. First therefix propertyensures that a
to provide flexible consistency that (a) supports strongiode’s state always reflects a prefix of the sequence of
consistency semantics for those applications that requir@validations by each node in the system. l.e., if a node’s
them and (b) does not introduce unnecessary overhe&tate reflects théth invalidation by some node in the
for applications that do not. After that, Section 3.5 de-system, then the node’s state reflects all earlier invalida-
scribes several novel features that enable our prototygéns byn. Second, each node’s local state always re-
to support the broadest range of policies. flects causally consistenft19] view of all invalidations

)) o) that have occurred. This property follows from the prefix

3.1 Separation of invalidations and bodies property and from the use of Lamport clocks to ensure
As Figure 2 illustrates, nodes exchange two types of upthat once a node has observed the invalidation for write
dates: ordered streams of invalidations and unordered, all of its subsequent writes’ logical timestamps will
body messagesnvalidationsare metadata that describe exceedw’s. Third, the system ensuresentual consis-
writes; each contains an objectd@nd logical time of tency all connected nodes eventually agree on the same
a write. A write’s logical time is assigned at the local total order of all invalidations. This combination of prop-
interface that first receives the write, and it contains theerties provides the basis for a broad range of tunable con-
current value of the node’s Lamport clock [24] and thesistency semantics using standard techniques [47].

node’s ID. Like invalidationshody messagentain the At the same time, this design supports partial replica-
write’s object ID and logical time, but they also containtion by allowing bodies to be sent to or stored on any
the actual contents of the write. node at any time. It supports arbitrary body replica-

The protocol for exchanging updates is simple. tion policies including demand caching, push-caching,

e As illustrated by node 1 in Figure 2, each node main{refetching, pre-positioning bodies according to a global
tains alog of the invalidations it has received sorted by placement policy, or push-all.
logical time. And, for random access, each node stores
bodies in itscheckpoinindexed by object ID. Design issues. The basic protocol adapts well-

e Invalidations from a log are sent via a causally-orderedinderstood log exchange mechanisms [30]. But, the
stream that logically contains all invalidations known separation of invalidations and bodies raises two new
to the sender but not to the receiver. As in Bayou/jssues: (1) coordinating disjoint streams of invalidations
nodes use version vectors to summarize the contengd bodies and (2) handling reads of invalid data.
of their logs in order to efficiently identify which up- The first issue is how to coordinate the separate body
dates in a sender’s log are needed by a receiver [30]. messages and invalidation streams to ensure that the ar-

e A receiver of an invalidation inserts the invalidation rival of out-of-order bodies does not break the consis-
into its sorted log and updates its checkpoint. Checktency invariants established by the carefully ordered in-
point update of the entry for object ID entails marking validation log exchange protocol. The solution is simple:
the entryINVALID and recording the logical time of when a node receives a body message, it does not ap-
the invalidation. Note that checkpoint update for anply that message to its checkpoint until the corresponding
incoming invalidation is skipped if the checkpoint en- invalidation has been applied. A node therefore buffers
try already stores a logical time that is at least as higlbody messages that arrive “early.” As a result, the check-
as the incoming invalidation’s. point is always consistent with the log, and the flexible

¢ A node can send any body from its checkpoint to anyconsistency properties of the log [47] extend naturally to
other node at any time. When a node receives a body, the checkpoint despite its partial replication.
updates its checkpoint entry by first checking to see if The second issue is how to handle demand reads at
2For simplicity, we describe the protocol in terms of full-object nodes that replicate only a subset of the system's data.

writes. For efficiency, our implementation actually tracks checkpointThe core mechanism supports a wide range of pO|ICIeS_Z
state, invalidations, and bodies on arbitrary byte ranges. by default, the system blocks a local read request until

ol o<1t modetos efficient encodingargetSetmay include additional ob-
:ogj:g:maEme::g,noggi aSefoor qare <10MO0eL> <16 nodet> jects. In our prototype, th&argetSets encoded as a list
objld= a, time= ,NO 9<arg = *, = , end= >

<objld=/foo/a, time=<16,node1>> <15node2> <irnede2>” of subdirectories and thetart andendtimes are partial

<objld=/foolb, time=<16,node2>>

~obiliftoofo. time<17 otk version vectors with an entry for each node whose writes

are summarized by the imprecise invalidation.

Imprecise invalidations act as “placeholders” in the
log to ensure that nodes that try to access data updated by
the requested object’s statusA8LID3. Of course, to en- Omitted writes can detect and correct the missing infor-
sure liveness, when dNVALID object is read, an imple- mation. When a node receives a new imprecise invalida-
mentation should arrange for someone to send the bod{jon, it logically marks all covered objects “INVALID.”

As we describe in more detail in Section 3.3, when a loFor efficiency, however, rather than iterating through
cal read blocks, the core notifies the controller. The conall covered objects, the implementation uses some addi-
troller can then implement any policy for locating and re-tional bookkeeping to efficiently track local state.

trieving the missing data such as sending the request lJp[§‘esign issues. Tracking the effects of imprecise inval-

static hierarchy (i.e., ask your parent or a central server),, _ .. .
querying a separate centralized [13] or DHT-based [39 tlations actually encompasses four related problems:

directory, using a hint-based search strategy [35], or ré= e cannot require a node to store per-object state for
lying on a push-all strategy [30] (i.e., “just wait and the all objects. As the example above illustrates, doing

Precise Invalidations Imprecise Invalidation
Fig. 3: Example imprecise invalidation.

data will come.”) so would significantly restrict the range of replication
policies and workloads that can be accommodated.
3.2 Partial replication of invalidations 2. We need to efficiently apply imprecise invalidations

Although separation of invalidations from bodies sup- Ccovering many objects. In particular, an implemen-
ports partial replication of bodies, for true partial repli- tation should not have to iterate across all objects in
cation that supports a broad range of policies, workloads, targetSeto apply an imprecise invalidation.
and devices the system must not require all nodes to sde e need to be able to determine when objects whose
all invalidations or to store metadata for each object. For State was “made IMPRECISE” by one or more impre-
example, consider palmtops caching data from an enter- €iS€ invalidation have been “made PRECISE” by later
prise file system with 10,000 users and 10,000 files per S€€ing all of the missing precise invalidations for those
user: if each palmtop were required to store 100 bytes of Objects. _
per-object metadata, then 10GB of storage would be coft: We need to handle demand reads to objects whose state
sumed on each device; and if the palmtops were required 'S currently IMPRECISE.
to receive every invalidation during log exchange and if Our solution is to maintain simple bookkeeping infor-
an average user issued just 100 updates per day, then imation about groups of objects. In particular, each node
validations would consume 100MB/day of bandwidth toindependently partitions the object ID space into one or
each device. Exploiting locality is fundamental to repli- moreinterest setsind decides whether to store per-object
cation in large-scale systems, and requiring full replicastate on a per-interest set basis. A node tracks whether
tion of metadata would prevent deployment of a replica€ach interest set is PRECISE (has observed all invalida-
tion system for a wide range of environments, workloadstions) or IMPRECISE (has overlapped some imprecise
and devices. invalidations and may have missed some precise invali-
To support true partial replication, invalidation dations) by maintaining two pieces of state.
streamdogically contain all invalidations as described in ¢ Each node maintains a global variabterrentVy,
Section 3.1, but ireality they omit some invalidations which is a version vector encompassing the highest

by replacing them witlimprecise invalidations.

timestamp of any invalidation (precise or imprecise)

As Figure 3 illustrates, an imprecise invalidation is a applied to any interest set.

conservative summary of several standargmcise in-
validations. Each imprecise invalidation hastargetSet
of objects startlogical time, and aendlogical time, and
it means “one or more objects fargetSewere updated

e Each node maintains for each interest 5gtthe vari-
able IS.last PreciseV'V, which is the latest version
vector for whichZS is known to be PRECISE.

If 1S.lastPreciseVV = currentV'V, then interest set

betweerstartandend” An imprecise invalidation must 1g has not missed any invalidations and it is PRECISE.

beconservativeeach precise invalidation that it replaces

must have itobjld included intargetSetand must have
its logical time included betweerstart andend but for

In this arrangement, applying an imprecise invalida-
tion I to an interest sekS merely involves updating two
variables—the globaturrentV'V and the interest set's

3The read interface also provides a flag that indicates that a read df-last PreciseVV. In particular, a node that receives

an INVALID object should throw an exception rather than block.

imprecise invalidatiol always advancesurrentV'V to

currentVV[nodel] = 100 IS.|astPreciseV'V[nodel] = 100 (PRECISE) P . .
@ Checkpeint: A VALID seinodel Example. Suppose that initially as label (1) in Fig. 4

B VALID 99/nodel illustrates, A, B, and C were last written at nodel'’s logi-
C VALID 100/nodel .
cal times98/nodel, 99/nodel, and100/nodel, that all

©) i':(targe‘:{A'B'C}'S‘a”:m”“"del' end=108/nodet) are currently VALID, and that interest s&f containing
currentvV[node1] = 103 ISlastPreciseV'V/[noded] = 100 (IMPRECISE) A, B, and C is PRECISE withS.lastPreciseVV[nodel]
® Checkpoint: A VALID 98/nodel = currentVV[nodel] =100
B VALID 99/nodel
C VALID 100/nodet Then, (2) an imprecise invalidatidrwith a targetSet
@ ¢P|1=<A, 101/node1), PI2=(B, 103/node1) that includes A, B, and C, starttime of 101/nodeland
, anendtime of 103/nodelarrives. The system must con-
currentVV[nodel] = 103 IS.|astPreciseVV[nodel] = 103 (PRECISE)
® Checkpoint: A INVALID 101/nodel servatively assume A, B, and C are all invalid up to time
B INVALID 103 nodel 103/nodel so (3) it setscurrentVV[nodel] = 103but

Fig. 4. Example of applying an imprecise invalidation | leaveslS.lastPreciseVV[nodel] = 1Q0making IS IM-
and then applying precise invalidatio#d/1 and P12. For ~PRECISE.
clarity, we only show nodel's elements ofirrentVV and But now (4) suppose precise invalidatioRklL = (A,
IS.lastPreciseVV. 101/nodelpndPI2 = (B, 103/nodelprrive on a single
include I's end logical time because after applying invalidation channel from another node. (5) The first in-
the system’s state may reflect events ug tod. Con- validation advancekS.lastPreciseVV[nodelp 101 and
versely, the node only advancé$.lastPreciseVV to leavescurrentVVunchanged. The second advantes
the latest time for whicliS has missed no invalidations. lastPreciseVV[nodeljo 103 and the final state itS.-
This per-interest state addresses the four probleml@StPreciseVV[nodel] = currentVV[nodel] = 108 is
listed above. (1) Storage is limited: each node only need8RECISEA andB are INVALID, andC is VALID.
to store per-object state for data currently of interest to Notice that although we never saw a precise invalida-
that node, and the total metadata state at a node is pron with time 102/node] the fact that a single stream
portional to the number of objects of interest plus thecontains invalidations at time9)1/nodeland103/nodel

number of interest sets. Note that our implementatiorfl/lows us to infer by the prefix property that no invalida-
allows a node to dynamically repartition its data acrosdion at time102/nodeloccurred and therefore we were
interest sets as its locality patterns change. (2) Imprecis@ble to advancs. lastPreciseV¥o makel S PRECISE.
invalidations are efficient to apply, requiring work that A technical report [11] provides pseudo-code and de-
is proportional to the number of interest sets rather thafils how our implementation copes with (a) applying in-
the number of summarized invalidations. (3) Recovenyalidations in causal order despite the multiple start and
to precise is guaranteed under the following conditions€nd times in imprecise invalidations and despite concur-
if an interest sef S is initially PRECISE at a node, the rency across streams and (b) maximizing the information
node then sees an imprecise invalidatidnthat make extracted and stored from each invalidation in a stream to
an interest sef S IMPRECISE, and later the node seesminimize the amount of IMPRECISE data in the system.
the a sequence of precise invalidations that includes ag . . .
invalidations in that target any object idS, then the -3 Separation of mechanism and policy
interest set/ S is made PRECISE up to at least the endOur goal is to construct a toolkit that not only subsumes
time of I. (4) A local read request includes a flag thatserver replication, client/server, and object replication
indicates whether the read requires consistency guarasystems, but one that also makes it easy to construct new
tees. If not, then the read does not consult the per intesystems that explore new replication, topology, and con-
est set status and it may return as soon as the object $éstency policies. Our system therefore seeks to serve
VALID. Conversely, if the read does require consistencyas a “replication microkernel” that provides basic low
then the read blocks until the interest set in which thdevel mechanisms over which higher-level services can
object lies is PRECISE. This blocking ensures that “pree built. As Figure 2 illustrates, we achieve this goal by
cise reads” only observe the checkpoint state they wouldplitting each node into eoreand acontroller.

have observed if all invalidations were precise, and there- The core’s mechanisms enforce their safety proper-
fore allows them to enforce the same consistency as praies regardless of what incoming messages they see.
tocols without imprecise invalidations. As with regular Our cores use an asynchronous style of communica-
read misses, for liveness the core signals the controllgion in which incoming messages or streams are self-
when a read of an IMPRECISE interest set blocks, andescribing—the rules for processing each incoming mes-
the controller is responsible for arranging for the missingsage are completely defined, and interpreting a message

precise invalidations to be sent. does not require knowledge of what request triggered its
The following example illustrates the maintenance oftransmission. Any machine can therefore send any legal
the interest set status state in more detail. protocol message to any other machine at any time.

The controller implements policies that focus on live-validation arrives on such a stream, the core calls
ness (e.g., performance and availability.) The controller'sController.informReceivelnval(. .,) which some con-
basic job is to ensure that the right cores send useful dateollers use to track which objects are VALID/INVALID
at the right times in order to do such things as satisfy an the local checkpoint.
read miss, prefetch data to improve performance, or pro-
vision a node’s local storage for disconnected operatiori3.4 Consistency: Costs and approach

Controllers accomplish this work by sending requests t¢nforcing cache consistency entails fundamental trade-
trigger communication between cores. ~ offs. For example Siegel [36] proves what has come to
‘The controller is defined by its interface. Within pe known as the CAP dilemma [7]: a replication system
this mtgrface, different implementations prowde differ- that provides sequentigonsistency cannot simultane-
ent policies. Controllers use three sets of interfaces to aGusly provide 100%Availability in an environment that
complish their work: a core calls a controllergormin- ¢an pepartitioned. Similarly, Lipton and Sandberg de-
t_erface to inform .the controller_of important local eventsgripe fundamental performance limitations for distrib-
like message arrival or rea_td miss, a coptroller calls a regieqg systems that provide sequential consistency [26].
mote core’semote requesinterface to trigger sends of A gystem that seeks to support arbitrary consistency
invalidation streams or bodies, and a controller calls it$,, st therefore do two things. First, it must allow a range
core’smanagemeninterface for maintenance functions ot consistency guarantees to be enforced. Second, it must
like log garbage collection and interest set split/join. onsure that workloads only pay for the consistency guar-
Enumerating the full API is outside the scope of thisgptees they actually need.
Paper. To provide a hlgh-level_understar_ldlng of t_he Our system addresses these goals by distinguishing
workings of the system, the remainder of this subsectior,, availability and response time costs paid by read and

describes the typical control flow for two examples: ayite requests from the bandwidth overhead paid by in-
read miss and a subscription for an invalidation stream 4 igation propagation

Additionally, Section 4 briefly describes several example

. The read interface allows each read request to specify
controllers we have built.

its consistency requirements. Therefore, a read does not
Read miss example. A local read blocks in the block unlesghat readrequires the local node to gather
core until the specified object is VALID. If it is IN- more recent invalidations and updates than it already has.

VALID, the core callsControllerinformDemandRead- Similarly, most writes complete locally, and a write only
Miss(objld) The controller then typically selects a blocks to synchronize with other nodestlifat write re-
peer from which to fetch the data, transmits a deQuires it. Therefore, the performance/availability versus
mand read request to that peer’s core, and sets a retppnsistency dilemmas are resolved on a per-read, per-
timer. When the body arrives, the local core appliesWrite basis [47].

it to the the checkpoint, unblocks the waiting read, Conversely, all invalidations that propagate through

and callsController.informDemandReply(objldand the the system must carry with them sufficient information
controller cancels the retry timer. that a later read can get whatever consistency level it re-

quests. Therefore, the system may pay an extra cost:
Subscribe invalidations example. A controller it 53 deployment never needs strong consistency, then
chooses one or more peers from which to receivgur protocol will propagate some information that is
invalidations according to some policy. For each remotgever needed. We believe this cost is acceptable for
peer, the controller transmits subscribelnvalrequest, two reasons: (1) other features of the PRACT! design—
specifying for each thereciseSeof the object ID space separation of invalidations from bodies and imprecise
for which it would prefel’ to receive precise invalidations inva”dations_minimize the amount Of extra data trans-
from that peer and thetartVV logical time at which ferred; and (2) we believe the bandwidth costs of con-
the invalidation stream should begin. TypicaliyartVV sjstency are less important than the availability and re-
is one of two things: (1) the local node&urrentVV gponse time costs. Our experimental evaluation in Sec-

version vector of the highest invalidations seen or (2}ion 4 quantifies these bandwidth costs, and we argue that
the IS lastPreciseVWersion vector of some currently- they are insignificant.

IMPRECISE interest setS that the local node is trying

to make PRECISE. The controller also sets an interndimplementation. Because our design uses a variation

retry timer for each such subscription request. of peer-to-peer log exchange [30], adapting flexible con-
Upon receiving a connection from the remotesistency techniques from the literature is straightforward.

peer, the local core call§ontrollerinforminvalStream- We provide the TACT flexible consistency interface to

Initiated(senderNode, preciseSet, start\&id the con- bound order error and temporal error [47]; we have not

troller cancels its retry timeout. Also, as each in-yet implemented TACT numerical error, but we see no

fundamental barriers. Additionally, we include the op-
tion of a two phase write that first distributes invalida- ey @0 oy o
tions and later distributes bodies [23, 47]; using this op4, ',,mﬂ YV 1000 IpVV 1000}
tional interface, one can ensure that once a write returns,

no subsequent read can return the data’s old value and

that once a read returns the new value no read will return .,

the old value. Additionally, as described abovejrapre- T P ———
cise readskips consistency checks and provides caus%

mitVV 100,0

0,0 end=100,0 targets*>

VV=100,0

= Precise Interest Set

coherence (ordering of updates for a single item) rath
than causal consistency. Finally, we provide a general in- _)
terface for detecting and resolving write-write conflicts Fig. 5: Incremental checkpoints froni to n2.

according to application-specific semantics [21, 30]. includes (1) an imprecise invalidation that covers all ob-

. jects from the receiver'surrentVVup to the sender’s
3.5 Additional features currentV\, (2) interest set state for interest $8t(IS.-
Three novel aspects of our implementation further outastPreciseVY, and (3) per-object logical timestamps for
goal of constructing a flexible framework that can ac-all objects in interest sdS that were invalidated later
commodate the broadest range of policies. First, our imthan the receiver'sS.lastPreciseVVThe receiver'sur-
plementation allows systems to use any desired policgentVV, IS.lastPreciseVyand per-object state are thus
for limiting the size of their logs and to fall back on an brought up to include the updates known to the sender.
efficientincremental checkpoint transfép transmit up- Overall, this approach makes checkpoint transfer a
dates that have been garbage collected from the log. Thisuch smoother process under PRACTI than under ex-
feature both limits storage overheads and improves supsting protocols: the receiver can receive an incremental
port for synchronizing intermittently connected devices checkpoint for a small portion of its ID space and then
Second, our implementation usssif-tuning body prop- either background fetch checkpoints of other interest sets
agationto enable prefetching policies that are simulta-or fault them in “on demand” as Figure 5 illustrates.
neously aggressive and safe. Third, our implementatio
providesincremental log exchang® allow systems to
minimize the window for conflicting updates. Due to
space constraints, we will only briefly outline these as-
pects of the implementation.

= Imprecise Interest Set

gelf-tuning body propagation. In addition to support-
ing demand-fetch of particular objects, our prototype
provides a novel self-tuning prefetching mechanism. A
noden1 subscribes to updates from a nodeby sending

a list L of directories of interest along with gartVV
version vector.n2 will then sendnl any bodies it sees
that are inL and that are newer thanartV'V'. To do this,

n2 maintains a priority queue of pending sends: when a
new eligible body arrives;2 deletes any pending sends

which allows each node to bound the amount local stor® of older versions of the same object and then inserts a ref-

age used for the log to any desired fraction of its totatprenlce_ to tre up(_jat_fd obtject.kTh|s pn;)_rltytﬂuteue drains
disk space. But, if a nodel garbage collects log en- 0nlviaa low-priority network connection that ensures

tries older tham1.omitvVand another node2 requests that prefetch traffic does npt consume network resources
a log exchange beginning befarg.omitVV thennlcan- that re“gular TCP co_nne”c_tlons ?OUId use [40]. Whe_n a
not send a stream of invalidations. Instead,sends a IOt.Of spare bandwidth IS available, the gueue drains
checkpoint of its per-object state to bring’s state up to qwckly and nearly aII_ boc‘i‘les are sentas s?qn as t_hey are
nl.currentvV inserted. But, when little “spare bandwidth” is available,

In existing server replication protocols [30], in orderthe buffer sends only high priority updates and absorbs

{0 ensure consistenc h a check elpeated writes to the same object.
y, such a checkpoint exchange mus

atomically update:2’s state for all objects in the system. Incremental log propagation. The PRACTI prototype
Checkpoint exchange, therefore, may block interactivémplements a novel variation on existing batch log ex-
requests for a long period of time while the checkpointchange protocols. In particular, in the batch log exchange
is atomically assembled atl or applied ain2 and may used in Bayou, a node first receives a batch of updates
waste system resources if a checkpoint transfer is startemprising a start timetartV'V and a series of writes,
but fails to complete. it then rolls back its checkpoint to befosgartV'V us-

Rather than transferring information about all objectsjng an undo log, and finally it rolls forward, merging the
our incremental checkpoints can update arbitrary interestewly received batch of writes with its existing redo log
sets. As Figure 5 illustrates, each incremental checkpoirdgnd applying updates to the checkpoint. In contrast, our

Garbage collection and incremental checkpoint trans-
fer. Imprecise invalidations yield an unexpected bene-
fit: incremental checkpoint transfer.

Nodes can garbage collect any prefix of their logs,

incremental log exchange applies each incoming write to our flexible architecture can subsume these existing
the current checkpoint state without requiring roll-back approaches.
and roll-forward of existing writes [11]. 2. What are the costs of PRACT!’s generality?partic-

The advantages of the incremental approach are ef- ular, is it significantly more expensive to implement
ficiency (each write is only applied to the checkpoint a given system using PRACTI than to implement it
once), concurrency (a node can process information from using narrowly-focused specialized mechanisms? We
multiple continuous streams), and consistency (con- find that the primary “extra” cost of PRACTI's gen-
nected nodes can stay continuously synchronized which erality is that our system might transmit more consis-
reduces the window for conflicting writes.) The disad- tency information than a customized system might re-
vantage is that it only supports simple conflict detec- quire. But, our implementation reduces this cost com-
tion logic: for our incremental algorithm, a node detects pared to past systems via separating invalidations and
a write/write conflict when an invalidationjsrevAccept bodies and via imprecise invalidations, so these costs
logical time (set by the original writer to equal the log- appear to be minor.
ical time of the overwritten value) differs from the logi- To provide a framework for exploring these issues, we
cal time the invalidation overwrites in the node’s check-first focus on partial replication in 4.1. We then examine
point. Conversely, batch log exchange supports morgypology independence in 4.2. Finally, we examine the

flexible conflict detection: Bayou writes containd@- costs and benefits of flexible consistency in 4.3.
pendencycheckprocedure that can read any object to

determine if a conflict has occurred [38]; this works in4.1 Partial replication
a batch system because rollback takes all of the SYSIeMg this section, we focus on partial replication. We find

state to a specified momentin time_: at w_hic_h th_ese check$ ot PRACTI's support for partial replication dramati-
can be re-executed. Note that this variation is orthogoéa”y improves performance compared to full replication

nal to the PRACTI approach: a full replication system ;015 from which our system descends for three rea-
such as Bayou could be modified to use our mcrementﬁons.

log propagation mechanism, and a PRACTI system cou

use batch log exchange with roll-back and roll-forward. - Locality of Referencepartial replication of bodies and

invalidations careachreduce storage and bandwidth
costs by an order of magnitude for nodes that care
4 Evaluation about only a subset of the system’s data.

2. Bytes Die Young:partial replication of bodies can
We have constructed a prototype PRACTI system wri significantly reduce bandwidth costs when “bytes die

ten in Java and using BerkeleyDB [37] for per-node lo- young” [4].

cal storage. ' The prototype is fully functional but not3 Self-tuning Replicationself-tuning replication mini-
performance tuned. All features described in this papér ~ 9 Replic . g repix
mizes response time for a given bandwidth budget.

are implemented including local read/write/delete, flex- .) . - : o
Ia|s not a surprise that partial replication can yield signif-

ible consistency, incremental log exchange, remote rea t perf dvant isti i
and prefetch, garbage collection of the log, incrementaf-ant Periormance advantages over existing server repli-

checkpoint transfer between nodes, and crash recover_%t'on systems. What is significant is that (1) these exper-

We have also constructed several example controllers i t_ents provide ewd_enc_e that despite the the good prop-
erties of server replication systems (e.g., support for dis-

order to emulate existing server replication, client-server;
and object replication systems and to implement an&onnected operation, flexible consistency, and dynamic

evaluate novel policies to support mobile users, web edg'%etwOrk tqpologles;) theze Zyst:]emsdmay bet'rqpr?ﬁt'f?rll for
servers, and grid scientific computing. many environments and (2) they demonstrate that these
: X . trade-offs are not fundamental—a PRACTI system can
In this section we evaluate the properties of our proto- . . .
. support PR while retaining the good AC-TI properties of
type to answer two questions.

server replication systems.

1. Does a PRACTI architecture offer significant advan-
tages over existing replication protocol§¥e find that Locality of reference. Different devices in a distrib-
our PRACTI system can dominate existing approachested system often access different subsets of the system’s
by providing more than an order of magnitude bet-data because of locality and different hardware capabili-
ter bandwidth and storage efficiency than replicatedies. In such environments, some nodes may access 10%,
server systems, as much as an order of magnitud&%, or less of the system’s data, and partial replication
better synchronization delay compared to hierarchicamay yield significant improvements in both bandwidth
systems, and consistency guarantees not achievable tiydistribute updates and space to store data.
per-object replication systems. Furthermore, even in Figure 6 examines the impact of locality on replication
environments for which these existing policies suffice cost for three systems implemented on our PRACTI core

1000

Full Replication‘

Demand Fetch

_ Separate Invalidations/Data

Self Tuning

100000 |- Pl

Bytes Transferred
Mean response time (ms)

X

~Imprecise Invalidations
10000 L
01

1 10 100
Files of Interest (%) :

Replicate All — e
) |

.
0 1 2 3
Bandwidth Factor

Fig. 6: Impact of locality on replication cost. Fig. 7: Read response time available bandwidth varies for full
replication, demand reads, and self-tuning replication.

using different controllers: a full replication system simi- _ _

lar to Bayou, a partial-body replication system that sends | | Storage | Diry Data | Wireless | _Internet |
_y o p) yrep Y Office server 1000GB 100MB 10Mb/s 100Mb/s

all precise invalidations to all nodes but that only sends —Home deskiop| 0GB 10MB 10Mb/s | IMb/s

some bodies to a node, and a partial-replication system| Laptop 10GB loms 110'\'/\|ﬂb*7/35 Hg?efk())/r?Iy
that sends some bodies and some precise invalidations t0—pamop 100MB | 100KB TMB/S /A

a node but that summarizes other invalidations using im-
precise invalidations. In this benchmark, we overwrite a
collection of 1000 files of 10KB each. A node SUbSCfibeﬁs p|entifu| and rep"cate less aggressive|y when network
to invalidations and body updates for the subset of thgapacity is scarce.

files that are “of interest” to that node. The x axis shows
the fraction of files that belong to a node’s subset, an%v
the y axis shows the total bandwidth required to transmi

these updates to the node as measured on the promtypalssemination service[28] this system hosts, all up-
The results show that partial replication of both bOCI'esdates occur at the origin server and all client reads are

and invalidations is crucial when nodes exhibit Iocality.processed at edge servers, which serve both static and
P_artial replication of bodigs yields uptq an order Ofmag'dynamic content. We compare the read response time
nitude improvement, but it is then limited by full repli- jh,soreq by the edge server when accessing the database
cation 9f metadata. Our true PRACT_I system, hovyevgrto service client requests for three replication policies:
can gain over a”O‘heT order.of magmtuqe as locality inpgmang Fetchimplemented as a client-server system,
creases via its use of imprecise |nval|glat|ons. . replicates precise invalidations to all nodes but sends new
Note that Figure 6 shows bandwidth costs. Partial,qgies only in response to demand requdatslicate Al
repl|cat|on provides 5|mllar improvements for space rezq|iows a Bayou-like approach and replicates both pre-
quirements (graph omitted for space.) cise invalidations and all bodies to all nodes, &Belf
Bytes die young. Bytes are often overwritten or deleted Tuning exploits PRACTI to replicate precise invalida—
dJions to all nodes and to have all nodes subscribe for all

soon after creation [4]. Full replication systems sen new bodies via the self-tuning mechanism. We use a syn
all writes to all servers, even if some of the writes are 9) y

quickly made obsolete. In contrast, PRACTI replicationtheu;_ vz?jr_klto%d twgere the fr_lead:xvqti ratl(zjls 1t1 reads
can send invalidations separately from bodies: if a file i re Zipt distributed across files (= 1.1), and writes are

written multiple times on one node before being read or’fm'foigﬂy d|sF|r|lE)L|Jted ?croisgnez. \./gfhu: € D%n;?);ne; t(())
another, overwritten bodies need never be sent. vary the avaiable network banawl rom ©.7510°5.

. :) . __times the system’s average write throughput.

To examine this effect, we randomly write a set of files) o)
on one node and randomly read the same files on another AS Figure 7 shows, when spare bandwidth is avail-
node. Due to space constraints, we defer the graph to tible, self-tuning replication improves response time by
extended report [11]. To summarize: when the write to!P to & factor of 20 compared tDemand-Fetch A
read ratio is 2, PRACTI uses 55% of the bandwidth of<€Yy challenge, however, is preventing prefetching from

full replication, and when the ratio is 5, PRACTI usesOverloading the system. Whereas our self-tuning ap-
24%. proach adapts bandwidth consumption to available re-

sources,Replicate Allsends all updates regardless of
Self-tuning replication. Separation of invalidations workload or environment. This makéeplicate Alla
from bodies enables a novel self-tuning data prefetchingpoor neighbor’—it consumes bandwidth corresponding
mechanism described in Section 3. As a result, systemnts the current write rate for prefetching even if other ap-
can replicate bodies aggressively when network capacitplications could make better use of the network.

Fig. 8: Configuration for mobile storage experiments.

Figure 7 illustrates the benefits of this approach by
aluating three systems that replicate a web service from
single origin server to multiple edge servers. In the

10

100 T T T T 2000 T T T T 15909 200 T T T T hooe

1690 169
81 610610610 61061
80 B 1600 | &S P

150 |

60 - 1 1200 -

Time(s)
Time(s)

9 90
40

PRACTI
Client-Server
PRACTI
Client-Server
Bayou
PRACTI
Client-Server

20

66 8L 5.1
L7 Al NA NA NA NA NA NA NA NA NA | 35 35 17

=
Palm<->Lap Palm<->Home Lap->Home Office->All Palm<->Lap Palm<->Home Lap->Home Office->All Palm<->Lap Palm<->Home Lap->Home Office->All

(a) Plane (b) Hotel (c) Home

Fig. 9: Synchronization time among devices for different network topologies and protocols.

4.2 Topology independence

In this section we examine topology independence by ex*
amining two environments, a mobile data access system)
that is distributed across multiple devices and a wide-
area-network file system designed to make it easy for
PlanetLab and Grid researchers to run experiments that
rely on distributed state. In both cases, PRACTI's com- ,

bined partial replication and topology independence al- (a) 50 distributed nodes + remote server (b) 50 cluister nodes + remote server
lows our design to dominate topology-restricted hierar-Fig. 10: Execution time for the WAN-Experiment benchmark.
chical approaches by doing two things:

1. Adapt to changing topologies PRACTI system can

is on a plane with no Internet connection, fdtel: the
user’s laptop has a 50Kb/s modem connection to the In-

make use of the best paths among nodes. , ;
2. Adapt to changing workloadsa PRACTI system can ternet, and (cﬁome the users home machine has a
1Mb/s connection to the Internet. The user carries her

optimize communication paths to, for example, use di'laptop and palmtop to each of these locations and co-
rect node-to-node transfers for some objects and di

o ﬁbcated machines communicate via wireless network at
tribution trees for others.

_ speeds indicated in Figure 8. For each location, we mea-
For completeness, our graphs also compare aga|n§gre time for machines to exchange updates: ()P

Fopplogy-independent_, full replication _systems; Fhe dat.a}he palmtop and laptop exchange updates, (2LP
indicate that topology independence without partial replihe palmtop and home machine exchange updates, (3)

cation is not an attractive alternative. Due to space limits, _, 4. the |aptop sends updates to the home machine, (4)
we do not comment further on this subset of the results.q_, 5| the office server sends updates to all nodes.
Mobile storage. We evaluate PRACTI in the context In comparing the PRACTI system to a client-server
of a mobile storage system that distributes data acrossystem, topology independence has significant gains
palmtop, laptop, home desktop, and office server mawhen the machines that need to synchronize are near one
chines. We compare PRACTI to a client-server Codaanother but far from the server: in the isolatdnelo-
like system that supports partial replication but that dis-cation, the palmtop and laptop can not synchronize at
tributes updates via a central server [21] and to a fullall in a client-server system; in thdotel location, direct
replication Bayou-like system that can distribute updatesynchronization between these two co-located devices is
directly between interested nodes but that requires fukin order of magnitude faster than synchronizing via the
replication [30]. All three systems are realized by imple-server (1.7s v. 66s); and in the home location directly
menting different controller policies. synchronizing co-located devices is between 3 and 20
As summarized in Figure 8 our workload models atimes faster than client-server synchronization.
department file system that supports mobility: an office
server stores data for 100 users, a user's home machiM@AN-FS for Researchers. Figure 10 evaluates a
and laptop each store one user’s data, and a user’s palmwide-area-network file system called PLFS designed for
top stores 1% of a user’'s data. Note that due to resourdelanetLab and Grid researchers. The controller for PLFS
limitations, we store only the “dirty data” on our test ma- is simple: for invalidations, PLFS forms a multicast tree
chines, and we use desktop-class machines for all nodes; distribute all precise invalidations to all nodes. And,
we control the network bandwidth of each scenario usingvhen anINVALID file is read, PLFS uses a DHT-based
a library that throttles transmission. system [43] to find the nearest copy of the file; not only
Figure 9 shows the time to synchronize dirty datadoes this approach minimize transfer latency, it effec-
among machines in three scenarios: Régne the user tively forms a multicast tree when multiple concurrent

11

reads of a file occur [2, 39]. Like Shark [2], PLFS is de-use an average network path unavailability of 0.1% with
signed to be convenient for allowing a user to export dat@areto distributed repair time R(t)i=— 15¢t=°-% [10].
from her local file system to a collection of remotely run- |n Figure 11-a we measure the best order error that
ning nodes. However, unlike the read-only Shark systenzan be maintained for a given bandwidth budget. Order
PLFS supports read/write data. error constrains the number of outstanding uncommit-
We examine a 3-phase benchmark that represents ruted writes [47]. We compare tHBACT Aggressiveol-
ning an experiment: in phaselisseminatgeach node icy [46] to a PRACTI Prefetcipolicy that aggressively
fetches 10MB of new executables and input data frongistributes invalidations as in TACT’s policy but that dis-
the user's home node; in phaseP2ocess each node tributes bodies using the self-tuning approach. This tech-
writes 10 files each of 100KB and then reads 10 filesique reduces the bandwidth needed to maintain reason-
from randomly selected peers; in phaséP8st-process able consistency by a factor of 3 comparedACT Ag-
each node writes a 1MB output file and the home nodgressiveand improves the consistency bounds attainable
reads all of these output files. We compare PLFS to threfyr some bandwidth budgets by orders of magnitude.
systems: a client-server system, client-server with coop- Figure 11-b plots system unavailability for an order
erative caching of read-only data (e.g., a Shark-like syserror of 100 as bandwidth varies. Following Yu and Vah-
tem [2]), and server-replication (e.g., a Bayou-like sysat's methodology [46], we say the systensigilable
tem [30]). All 4 systems are implemented over PRACTl.to a read or write request if the request can issue with-
Figure 10 shows performance for an experiment runpyt blocking and the system imavailableif the request
ning on (a) 50 distributed nodes each with a 5.6Mb/s conmyst block to meet the consistency target. When band-
nection to the Internet (we emulate this case by throttlingyidth is limited, PRACTI dramatically improves system

bandwidth) and (b) 50 “cluster” nodes at the University ayailability under consistency constraints compared to
of Texas with a switched 100Mbit/s network among themyy| replication.

and a shared path via Internet2 to the origin server at the

University of Utah. Consistency overheads. As Section 3.4 describes,
The speedups range from 1.5 t0 9.2, demonstrating theRACT| ensures that individual requests pay only the la-
significant advantages enabled by the PRACTI architecncy and availability costs of consistency that they re-
ture. Compared to client/server, it is faster in both thequire. But, distributing sufficient bookkeeping informa-
Dissemination and Process phases due to its multicaggp to support a wide range of per-request semantics
dissemination and direct peer-to-peer data transfer. Conggeg impose a modest bandwidth cost. In particular, ob-
pared to full replication, it is faster in the Process a”%ct replication systems [16, 34] do not provide cross-
Post-process phases because it only sends the requirggiect consistency guarantees. In the context of our sys-
data. And compared to cooperative caching of read onlyem if all applications in a system only care about coher-

data, itis faster in the Process phase because data is tragce guarantees, the system could completely omit im-
ferred directly between nodes. precise invalidations.

4.3 Arbitrary consistency Figure 11-c quantifies the cost to distribute both pre-

This subsection first examines the benefits and then ex.-- and imprecise invalidations (in order to support con-

amines the costs of suoporting flexible consistenc sistency) versus the cost to distribute only precise inval-
PP 9 Y- idations for the subset of data of interest and omitting

Improved consistency trade-offs. Gray [15] and Yu the imprecise invalidations (and thus only supporting co-
and Vahdat [46] show a trade-off: aggressive propagaherence.) Note that the cost of imprecise invalidations
tion of updates dramatically improves consistency andlepends on the workload: if there is no locality and writ-
availability but can also increase system load. PRACTErs tend to quickly alternate between writing objects of
has three features that improve these trade-offs: (1) sepanterest and objects not of interest, then the imprecise in-
ration of invalidations from bodies allows invalidations validations “between” the precise invalidations will cover
to propagate aggressively, (2) streaming log exchangeelatively few updates and save relatively little overhead,
(rather than batch) allows nodes to continuously updatbut if writes to different interest sets arrive in bursts, then
one another when they are connected, and (3) self-tunintfpe system will generally be able to accumulate large
body propagation maximizes the amoun®M#LID data numbers of updates into imprecise invalidations. We vary
at a node for a given consistency requirement and bandke fraction of data “of interest” to a node on the x axis
width budget [28]. and show the invalidation bytes received per write on the
We examine a range of consistency requirements angl axis. All objects are equally likely to be written by a
network failure scenarios via simulation (all other exper-set of remote nodes, but the locality of writes varies: the
iments in this paper are prototype measurements.) W&o Locality” line shows the worst case scenario, with
use the read/write workload described for Figure 7. Weno locality across writes, and the “burst=10" line shows

12

Periodic (500: .
_ All precise
S Periodic (500s 50 _
i] 2 | © // o
g % ‘ g w0t Prec+imp (no Iocalitxy/ Prectim (bursf=/]/.q),
o] | E | E / L =
2 | TACT-Aggressive g | TACT-Aggressive @ / _—_~Coherence only
© | =} | 2 / -
& g & p -
S o ‘ g’ / e
< | g | 2 s
g 200 PgACTI-DenPanR < — = o~
@ //PRACTI-Prefetc PRACTI-Demand v
\ (O oo PRACTI-Prefetch g
Av;ﬁable Bandwid{h/Write Bandv:/iﬁdth ’ ’ Ava:irahle Bandwid{h/Write Band\;v?dth ’ ’ ” Ime?est Set Frauchtion
(a) Best consistency (order error) achievalfld Best unavailability achievable whiléc) Bandwidth cost of distributing consis-
for a given bandwidth cost. meeting a required order error of 100. tency information.

Fig. 11: Consistency trade-offs (a-b) and costs (c).

the case when a write is ten times more likely to hit thesystems. Deceit, however, focuses on replication across a
same interest set as the previous write than to hit a neWwandful of well-connected servers, and it therefore makes
interest set. very different design decisions than PRACTI. For exam-

When there is significant locality for writes, the costple, each Deceit server maintains a list of all files and
of distributing imprecise invalidations is small: imprecise of all nodes replicating each file, communication among
invalidations to support consistency never add more thagervers is via an Isis [5] group for each distinct subset of
20% to the bandwidth cost of supporting only coherenceservers, and all nodes replicating a file receive all bodies
When there is no locality, the cost is higher, but in thefor all writes to the file.
worst case imprecise invalidations add under 50 bytes per Microsoft has announced that a new replication sys-
precise invalidation received. Overall, the difference intem, WinFS, will appear at some future date [41]. It
invalidation cost is likely to be small relative to the total will reportedly support synchronization across multiple
bandwidth consumed by the system to distribute bodiesnodes, however no detailed technical description of the

protocol has been published. One report [42] suggests
5 Related work that the system transfers sets of updated items “rather
Replication is fundamentally difficult. As noted in Sec- than maintaining and synchronizing a log of each indi-
tion 3.4, the CAP dilemma [7, 36] and performance/-vidual action,” which may indicate that WinFS takes a
consistency dilemma [26] describe fundamental availaPR-TI approach.
bility/performance/consistency trade-offs. As a result, The web edge server system described in Section 4.1
systemsnustmake compromises or optimize for specific is based on the TRIP system [28]. TRIP has been exten-
workloads. Unfortunately, these workload-specific com-sively evaluated via simulation [28], but ours is the first
promises are often reflected in system mechanisms, nonhplementation of the approach.
just their policies. :

In particular, state of the art mechanisms allow a de-6 Conclusion
signer to retain full flexibility along at most two of the In this paper, we introduce the PRACTI paradigm for
three dimensions of replication, consistency, or topologyePplication in large scale systems and we describe the
policy. Section 2 compares PRACTI with existing PR-first system to simultaneously provide all three PRACTI
AC[1,6, 12, 18, 21, 29], AC-TI [14, 20, 23, 30, 47], and properties. Evaluation of our prototype suggests tyat
PR-TI [16, 34] approaches. These systems can be seen@igentangling mechanism from policy, PRACTI replica-
special case “projections” of the more general PRACTItion enables significantly better trade-offs for system de-
mechanisms [11]. signers than possible with existing mechanisByssub-

Our PLFS prototype uses a DHT-based system [43] ifUming existing approaches and enabling new ones, we
its control plane to track where objects are stored. OthePeculate that PRACTI may serve as the basis famia
DHT-based systems store the data, itself, in the DHTied replication architecturéhat simplifies the design and
[9, 31, 32, 33]. These systems implement a specific—deployment of large-scale replication systems.
if sophisticated—topology and replication policy: they References
can be viewed as generalizations of client-server sys{1] T. Anderson, M-IDahlin, J. Nkee.fle, D. Patterson, D. Roselli, and
tems where the server is split across a large number of Eﬁt"evragséifn“ﬂgfﬁf;‘g%eg iggfétemgm Trans. on Com
nodes on a per-object or per-block basis for scalability [2] S. Annapureddy, M. Freedman, and D. Mazires. Shark: Scaling
and replicated to multiple nodes for availability and reli- file servers via cooperative caching. firoc NSD| May 2005.
ability. We believe these policies could be implemented [3] m-e Eiik%rh';/aesrts gisthZﬁfoor\rﬁ;y;tnBzirsktgIl;l;teldggille SystefRBD
over PRACTI mechanisms, but doing so is future work. ’ .) ' :

Like PRACTI, the Deceit file system [36] provides [4] M. Baker, S. Asami, E. Deprit, J. Ousterhout, and M. Seltzer.

! ues Non-Volatile Memory for Fast, Reliable File Systems. Rroc.
a flexible substrate that subsumes a range of replication ASPLOSpages 10-22, Sept. 1992.

13

(5]
(6]
(7]
(8]

(9]

[10]

[11]

(12]

[13]
[24]
(18]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

K. Birman and T. Joseph. Exploiting virtual synchrony in distrib-
uted systems. IRroc. SOSPNov. 1987.

M. Blaze and R. Alonso.
Large-Scale Distributed File Systems.I@DCS June 1992.

E. Brewer. Lessons from giant-scale servicd&EE Internet
Computing July/August 2001.

S. Chandra, M. Dahlin, B. Richards, R. Wang, T. Anderson, and
J. Larus. Experience with a Language for Writing Coherence Pro-
tocols. INUSENIX Conf. on Domain-Specific Lan@ct. 1997.

F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and |. Stoica.
Wide-area cooperative storage with CFS.Pimceedings of the

18th ACM Symposium on Operating Systems Principles (SOSP3]

'01), Oct. 2001.

M. Dahlin, B. Chandra, L. Gao, and A. Nayate. End-to-end
WAN service availability. ACM/IEEE Transactions on Network-
ing, 11(2), Apr. 2003.

M. Dahlin, L. Gao, A. Nayate, A. Venkataramani,
P. Yalagandula, and J. Zheng. “PRACTI replication [35]
for large-scale systems (extended technical report)”.

http://www.cs.utexas.edu/users/dahlin/papers/PRACTI-2005-
10-extended.pdf, Oct. 2005.

M. Dahlin, R. Wang, T. Anderson, and D. Patterson. Cooperativeg37]

Caching: Using Remote Client Memory to Improve File System
Performance. IfProc. OSD| pages 267-280, Nov. 1994.

S. Gadde, J. Chase, and M. Rabinovich. A taste of crispy squid.
In Wkshp. on Internet Svr. Perflune 1998.

R. Golding. A weak-consistency architecture for distributed in- [39]

formation servicesComputing System5(4):379-405, 1992.

J. Gray, P.Helland, P. E. O'Neil, and D. Shasha. Dangers of repli{40]

cation and a solution. IRroc. SIGMOD pages 173-182, 1996.

R. Guy, J. Heidemann, W. Mak, T. Page, G. J. Popek, and41]
D. Rothmeier. Implementation of the Ficus Replicated File Sys-[42]

tem. INUSENIX Summer Confpages 63—-71, June 1990.

J. Hennessy and D. Pattersdbomputer Architecture A Quanti-
tative ApproachMorgan Kaufmann Publishers, Inc., 2nd edition,
1996.

J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satyanarayanan,

R. Sidebotham, and M. West. Scale and Performance in a Distrib[45]

uted File SystemACM Trans. on Computer Systerfil):51-81,
Feb. 1988.
P. Hutto and M. Ahamad. Slow memory: Weakening consis-

tency to enhance concurrency in distributed shared memories. |f47]

ICDCS pages 302-311, 1990.

P. Keleher. Decentralized replicated-object protocols?@DC,
pages 143-151, 1999.

J. Kistler and M. Satyanarayanan. Disconnected Operation in th
Coda File SystemACM Trans. on Computer System®(1):3—
25, Feb. 1992.

J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton,
D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon, W. Weime

Dynamic Hierarchical Caching in [30]

(31]

(32]

(34]

(36]

(38]

(43]

[44]

[46]

Network File System.ACM Trans. on Computer Systenégl),
Feb. 1988.

K. Petersen, M. Spreitzer, D. Terry, M. Theimer, and A. Demers.
Flexible Update Propagation for Weakly Consistent Replication.
In Proc. SOSPOct. 1997.

S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B. Zhao, and J. Ku-
biatowicz. Pond: the OceanStore prototype.Phoc. USENIX
FAST, Mar. 2003.

S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy,
S. Shenker, I. Stoica, and H. Yu. OpenDHT: A public DHT ser-
vice and its uses. IRroc SIGCOMM 2005.

A. Rowstron and P. Druschel. Storage management and caching
in PAST, a large-scale, persistent peer-to-peer storage utility. In
Proc. SOSP2001.

Y. Saito, C. Karamanolis, M. Karlsson, and M. Mahalingam.
Taming aggressive replication in the pangaea wide-area file sys-
tem. InProc. OSD]| Dec. 2002.

P. Sarkar and J. Hartman. Efficient Cooperative Caching using
Hints. InProc. OSD| pages 35-46, Oct. 1996.

A. Siegel.Performance in Flexible Distributed File Syster®hD
thesis, Cornell, 1992.

Sleepycat SoftwareGetting Started with BerkeleyDB for Java
Sept. 2004.

D. Terry, M. Theimer, K. Petersen, A. Demers, M. Spreitzer, and
C. Hauser. Managing Update Conflicts in Bayou, a Weakly Con-
nected Replicated Storage SystemPhc. SOSPDec. 1995.

R. Tewari, M. Dahlin, H. Vin, and J. Kay. Design Considerations
for Distributed Caching on the Internet. IBDCS May 1999.

A. Venkataramani, R. Kokku, and M. Dahlin. TCP-Nice: A
mechanism for background transfers.Aroc. OSD) Dec. 2002.
http://msdn.microsoft.com/data/winfs/, Mar. 2005.
http://longhorn.msdn.microsoft.com/lhsdk/winfs/consynchronizationoverview.asj
Mar. 2005.

P. Yalagandula and M. Dahlin. A scalable distributed information
management system. Rroc SIGCOMM Aug. 2004.

J. Yin, L. Alvisi, M. Dahlin, and A. lyengar. Engineering web
cache consistencACM Trans. on Internet Tech2(3), 2002.

J.Yin, L. Alvisi, M. Dahlin, and C. Lin. Hierarchical Cache Con-
sistency in a WAN. IrProc USITSOct. 1999.

H. Yu and A. Vahdat. The costs and limits of availability for
replicated services. IRroc. SOSP2001.

H. Yu and A. Vahdat. Design and evaluation of a conit-based con-
tinuous consistency model for replicated serviggsM Trans. on
Computer System20(3), Aug. 2002.

Acknowlegements

We thank Haifeng Yu, Emmett Witchell, Lily Qiu, and
~Jean-Phillip Martin for their helpful comments on earlier

C. Wells, and B. Zhao. Oceanstore: An architecture for global-drafts of this paper.

scale persistent storage. Pmoc. ASPLOSNov. 2000.

R. Ladin, B. Liskov, L. Shrira, and S. Ghemawat. Providing high
availability using lazy replicationACM Trans. on Computer Sys-
tems 10(4):360-391, 1992.

L. Lamport. Time, clocks, and the ordering of events in a distrib-
uted systemComm. of the ACM21(7), July 1978.

L. Lamport. How to make a multiprocessor computer that cor-
rectly executes multiprocess programiEEE Transactions on
ComputersC-28(9):690-691, Sept. 1979.

R. Lipton and J. Sandberg. PRAM: A scalable shared memory.
Technical Report CS-TR-180-88, Princeton, 1988.

D. Muntz and P. Honeyman. Multi-level Caching in Distributed
File Systems or Your cache ain’t nuthin’ but trash. USENIX
Winter Conf, pages 305-313, Jan. 1992.

A. Nayate, M. Dahlin, and A. lyengar. Transparent information
dissemination. IProc. Middleware Oct. 2004.

M. Nelson, B. Welch, and J. Ousterhout. Caching in the Sprite

14

A Algorithm details gi; causally depends appears befgig

The body of this paper describes the PRACTI proto- At the core of the algorithm is a simple idea: an inter-
col, but it omits some important low-level details. These€St Set iISPRECISEH it has missed no precise invalida-
details follow from the high-level PRACTI design pro- tions. Three variables are therefore central to processing

vided in the paper, but our experience developing th&n invalidation stream:

PRACTI prototype was that getting these details prel. Theglobal currentV'V version vector holds the high-
cisely right was one of the most intellectually challenging est logical time observed by the system across all in-
parts of our effort. validations processed from all streams.

Figure 12 details the incremental log exchange alg®?- The per-interest-set last precise version vector
rithm for processing a causally-consistent stream of in- (/S.IpV'V) indicates the highest logical time for which
coming generalized invalidationgiy, gis, ... Starting interest set/.S is PRECISE In particular, 1.S.lpV'V’
from logical imeprevV V. A generalized invalidatiop: holds the highest logical time such that all objects in
can be either a precise invalidation or an imprecise inval- interest set’.S reflect all writes up ta/.S.ipV'V. An
idation. prevV'V is the logical time of the causal stream interest set’ S is regarded a®RECISHf and only if
that was currenust beforethe nextgi in the streamwas ~ [S-lpV'V = currentV'V. Otherwise, the interest set
applied. may have missed one or more precise invalidations,

There are three sets of state that are updated: (1) each@nd we regard the interest seti?®RECISE
incoming invalidation is inserted, sorted by logical time3: The per-stream prevV'V variable always holds the
into the local log (line 21), (2) precise invalidations up- l0dical time justbefore the next invalidation in the
date the local per-object state checkpoint (lines 29 to 32, Stréam is applied. Each invalidatignis processed in

and (3) imprecise invalidations update the interest set sta- 1€ context of the logical time at which it was applied
tus (lines 22 to 24 and lines 37 to 40). to determine ifgi can advancéS.lpV' V. prevVV is

The implementations of the log update and the inter- initialized to the stream’startV'V and advanced to

est set status update are complicated by two factors. First, Ncludegi.cnd as eaclyi is processed.
imprecise invalidations span an array of per-node logical The interest set status information is updated in four
start times to an array of per-node logical end times, an@laces as summarized in Figure 13. The first three up-
our system concurrently processes multiple incoming indates occur whepi is first encountered in the stream,
validation streams, yet we must app|y invalidations to thée, when it is known that there is no event that is Causa”y
local state in a causally-consistent order. Second, wafterprevV'V and causally beforg:. The fourth occurs
wish to maximize the amount of information extractedatgi.end, i.e., when it is known that no remaining; in
from each invalidation so that the amount of IMPRE-the stream contains any event that causally occurs before
CISE state is minimized. We have found that we musy?-end.
carefully define the precise low-level rules for updating When g: is first encountered in the stream, we al-
interest set status and the |Og ways advanceurrentV'V to include theend timeof gi
because the system now reflects informatioryir(up-
Interest set status. As Section 3.2 indicates, each nodedate number 1 in the table, lirR? in the pseudo-code).
groups its objects intmterest setand applies imprecise Further, gi's presence in the causal invalidation stream
invalidations to interest sets rather than individual objectsneans that any interest set that WeBRECISEbefore
to (a) improve performance and (b) ensure liveness. Tgi is still PRECISEto g:.start. So, if interest sef S
accommodate different workloads across nodes, our pravasPRECISEat timestream.prevV'V then we advance
totype allows each node to independently group object$S.ipV' V. We advancd S.IpV'V differently depending
into interest sets and to dynamically split and join inter-on whetherg: is a precise or imprecise invalidation. If
est sets in response to workload changes. To ensure cog-is precise, then there have been no imprecise invali-
sistency, a node must mark an interestIS8#RECISE dations betweentream.prevV'V andgi.start, and we
when a new imprecise invalidation intersects with it. Toadvancel S.ipV'V to includegi.end (note: gi.start =
ensure liveness, when a node has later seen sufficient prg-end if gi is precise.) That case is update number 2
cise invalidations, it must mark interest set as PRECISEnN the table and line 26 in the pseudo-code. Conversely,
To explain how interest set status is tracked, we nowf gi is imprecise, we can only advanés.ipV' V' to just
detail a node’s algorithm for processing an incomingbeforegi.start (i.e.,Va : IS.IpV'V, = max(IS.IpV V,,
stream of invalidations. As indicated in Figure 12 line 7,gi.start, —1)). That case is update number 3 in the table
each incoming invalidation stream consists of a logicabnd line 28 in the pseudo-code.
start timestartV'V followed by a series of general in- Two points should be emphasized:
validationsgiy, gis, ... such that any invalidation whose e Notice that when there is a gap in the logical time
start time logically occurs aftettartV'V and on which sequence for a given nodeji.start may exceed

15

©CONOUAWNPE

: I/ Global state:
2/l currentV'V —node’s current version vector
/I 1S.IpV'V —IS’s last precise version vector

Il CP,y; — per-object checkpoint

2/l log —replay log
: /] Per-stream state:
2l stream = startV'V, gi1, gio, ...

1 /I gi—next generalized invalidation to apply

: /I prevV'V —logical time before next gi applied

: Il pending — set of gi's whose end time has not passed

. Procedure ProcessInvalStream(IS, stream)
s prevV'V = stream.readObj()
. if lincludes¢urrentV'V, prevV'V)

return; //Reject streams that do not preserve prefix property

: pending = new Set()
. gt = stream.readObj()
: while (gi # EOF) do

nextStartV'V =advanceTolncludgrevV'V, gi.start)
if !|(3bufferednval € pending |includegnextStartV V,bufferednval.end))

log.insertgi, prevV'V)

/lUpdate interest set status
currentV'V =advanceTolncludeurrentV'V, gi.end) // update (1)—see text
if includegS.lpV'V, prevVV) /I1f no gaps, update IpVV

if gi.isPrecise() I/ Advance to include precise inval
I1S.lpV'V =advanceTolncludd S.ipV'V, gi.start) Il update (2)
else// Advance to just before imprecise inval
I1S.lpV'V =advanceNolncludd S.lpV'V, gi.start) I/ update (3)

//Update per-object state

if gi.isPrecise()

CPy;.objra-valid = INVALID
CPy; objrd-accept = gi.start
pending.inser{g:) // Apply to non-overlapping later

prevV'V = nextStartV'V /] Update stream logical time

gt = stream.readObj()

else// Apply non-overlappinguffered nval from pending at end time
if !(bufferednval.target intersectd S)

if includegipV'V, prevVVy)
1S.lpV'V =advanceTolncludd S.ipV V,buffered nval.endV' V') Il update (4)
pending.removebuffered nval)

: ProcedureadvanceTolnclude(VV1,VV2)
. for all nodeld do

retVViodeld = max(VV]-nodeIda VV2'nodeId)

L returnretV'V

: ProcedureadvanceNolInclude(VV1,VV2)
. for all nodeld do

retVVioderd = max(VV1nodeId7 VV2hodera — 1)

. returnretVV

return false

. return true
Fig. 12: ProcesslnvalStreamfor interest sef S stream = {prevV'V, gi1, gia, ..

: Procedureincludes(VV1,VV2) [l Does VV1 include VV2?
. for all nodeld do
if VVQnodeId > VVlnodeId

3

Update
Number

Code

Line When

1S state
PRECISE/IMPRECISE|

gt
PRECISE/IMPRECISE

gt
intersectd S

Action

@) 23

gi.start

ANY

ANY

ANY

AdvancecV'V to includegi.end

@) 26

gi.start
(= gi.end)

PRECISE

PRECISE

ANY

Advancel S.lpV'V to includegi.end
(= gi.start)

@) 28

gi.start

PRECISE

IMPRECISE

ANY

Advancel S.lpV'V to just beforeyi.start

4 39 gi.end

PRECISE

IMPRECISE

NO

Advancel S.IpV'V to includegi.end

Fig. 13: Summary of cases for updating interest set PRECISE/IMPRECISE status.

16

startVV[{: 0 startVV[§: 0
gi: <ly ‘}(A,B) gi: <l Ey A>
gi: <l & (AB)> 6
gi: < (B,C)>
curVV[y =8 ikl curVV[y = 8
AlIpVV[} =8 | IMPRECISE AlpVV[} =1 | IMPRECISE
/ B.pVV[) = 3 | PRECISE B.pVV[= 3 | IMPRECISE
fartVV[§: 0 | C.IpVVlj=5 | IMPRECISE C.IpVV[jj = 5 | IMPRECISE
g:<y ¥ A> PRECISE PRECISE
gi: <4y & (B,C)>

(a) Naive log exchange.
s(artvva\}: 0

gi: <l ly A>

gi:<4 § B>

gi: <6y 8 (B,C)>

PRECISE
IMPRECISE
IMPRECISE
PRECISE

RS

Bisa,

g <y I A>

curvv[y] =8
AlpVV[§=8
B.IpVV[j = 3

curVV[j =8
AlpWI}=8
B.IpVV[=3
ClpWV[} =5
D.IpVVJ = 8

PRECISE
IMPRECISE
IMPRECISE
PRECISE

(b) Log exchange with gap-filling and intersection.
Fig. 14: Example log exchange when nogldirst receives a
log from «, then receives a log fron3, and then sends the
combined log t@). Generalized invalidations have three fields:
< start,end, target >. Note that all writes were issued by
node~ and, for clarity, we show onlyy’s component for all
version vectors.

1S.lpV'V even though no invalidations were skipped.
This is why we maintainprevVV for each stream
and why line 24 comparekS.ipV'V againstprevVV
rather than againgti.start when deciding whether it
is safe to advancéS.ipV'V.

Notice that an imprecise invalidatiopi will always
advancecurrentV'V to includegi’s endtime but can
at most advancésS.startV'V to just beforegi's start
time. It is this difference that causes imprecise invali
dations to make interest selPRECISE

Log update. As indicated inline 21, a node stores each
incoming invalidation in its log.

Imprecise invalidations complicate log updates. For
example, a nodg may receive different subsets of infor-
mation from different peera and . n must ensure that
imprecise invalidations received from do not “mask”
precise invalidations received frofhand vice versa. No-
tice that the algorithm just described updates a node’s lo-
cal state by interpreting eagfi relative to a per-stream
prevV'V, which allows the algorithm to infer that there
are no missing invalidations betweenevV'V and gi.
But, if » were simply to store eadhi in its log, some of
this valuable “no missing invalidations” information that
comes fromyi’s position in a stream could be lost. Then,
as Figure 14-(a) illustrates, if were to send its log to
some other nodé, then even ify receives the sameis
asn, ¢ could end udMPRECISEwheren is PRECISE
(e.g., for objectsA).

In order to ensure that a node can transmit all informa-
tion received including both the generalized invalidations
and the information implicit in the incoming invalidation
stream, we augment our logs in three ways.

First, each node maintains separpta-writer logs
when a node insertgi into its log, it first decomposes
gi into per-writer general invalidations and then inserts
the per-writer pieces into separate logs. Decompoging
into per-writer general invalidationgi,, is simple: for
each serverx in gi.start, generateyi,, with start
gi.start,, end = gi.end,,, andtarget = gi.target.

Second, each per-writer log usgap filling to explic-
itly encode the knowledge that each incoming stream is

If we stopped here, an imprecise invalidation wouldcausally consistent and is therefore FIFO consistent for
make both interest sets it overlaps and interest sets it do@gch writer. When a node inses, into its per-writer

not overlaplMPRECISE The algorithm addresses this

log for o, if gi, is newer than the newest element in the

issue by buffering each imprecise invalidation after it isjog, it fills any gap betweepi,.start and the existing
first applied at its start time and applying a buffered in-element by inserting a new gap-filling invalidation with a

validationbufferedinvabgain oncetream.prevV'V in-

start stamp one larger than the highest existing end stamp,

cludesbi's end time (i.e., once aljis whose start times an end stamp one smaller tha,.start, and an empty
preceecbufferedinvab end time have been processed.)target.

Buffered invalidationbufferedinvaladvances!/ S.ipV' Vv
to includebufferedinvalend for any interest sef S that

Third, each per-writer log usdstersectionto com-

bine information received across multiple streams. In

(@) bufferedinvaliarget doesnotintersect and that (b) is - particular, we maintain the invariant that there is at most
PRECISEas of logical timestream.prevV V. This case gne invalidation that covers any moment in time in a per-
is update number 4 in the table and line 39 in the cod&yyiter log. We intersect two general invalidationandb
Notice that by waiting untibi's end time before advanc- py replacing them with up to three general invalidations:
ing “nonoverlapping” invalidations to the end time, we he first covers the time from the earlier start to the later
avoid erroneously advancin@.ipV'V for an interest set siart and targets the objects targeted by the earlier start;
that becomesMPRECISEbetweenbufferedinvalstart the second covers the time from the later start to the ear-
andbufferedinvalend. lier end and covers targets represented by the intersection

Finally notice that the algorithm above ensures thapf a andb’s targets; and the third covers the time from the
if an interest set/S becomesIMPRECISE it can be earlier end to the later end and covers the targets of the
made precise by receiving a stream that contains all prdater end.

cise invalidations that occurred betweéf.ipV'V and
currentV'V and that target$s.

17

As Figure 14-(b) illustrates, when a node sends a
stream of invalidations to another node, it discards gap-

filling invalidations and it combines per-writer invalida- tions, themy’s four invalidations, and finallys’s fourth
tions into multi-writer invalidations. invalidation. As the figure shows, after processing the
o L first three invalidations fron®, J is precise for{a}, but
Forming imprecise |nvaI|dat|ons._ When a controller imprecise for{b} and{c}. The next four messages (from
asks nodex to send a stream o.f.lnvalldanns fromis ~) maked precise for{c} but imprecise fofa} and{b}.

log to nodes, the controller specifies two parameters thatgjn a1y, the last message (froff) bringsé to the state one
each filter the transmitted informationstartV'V pro- \yqid desire: after seeing all precise invalidations for ob-
V|d_es a filter on logical time, :_;um}re_czserlter prowdes_ jects a and oj is precise for both interest sg} and{c}
afilter on the ID spacex replies with a causally Consis- yaqpite the fact that these precise messages were mixed
tent stream of all invalidations it knows about that 10gi-,\ith some imprecise invalidations for objects a, b, and c.
cally occurred aftestartVV. Invalidations whose tar- Finally, one may verify that because of thie gap 'filling
getintersectgrecise "ilter are sentasis (typically they 54 intersection operationgs log contains sufficient in-

are precise, but some may be imprecise),000mbines ,rmation so that a nodethat receives's log contents
other invalidations into imprecise summaries as just dex

; , o -2 o could get precise updates for objects a 6r@onversely,
scribed. PRACTI forms an imprecise invalidatiorby \qte that if5 were simply to interleave the messages it
combining generalized invalidationsand B. I hasstart

¢ : K received froma and 8 without gap filling and intersec-
andendarrays with entries for every nodgin eitherA jon and then send them to information would be lost
or B's start, andI.start, = min(A.start,, B.start,),

' ande would be left imprecise for interest sefa}, {b},
andI.end, = max(A.end,, B.end,). Finally, I .target and{c}.

encompasses all objects encompassed land B’s tar-

gets This process is incremental and continuous—a% G | f K

new invalidations arrive at, o sends them on t@ once eneral iramewor

all causally prior invalidations have been sent. PRACTI mechanisms represent a general framework for
o)) ~ implementing a broad range of replication systems that

Split-join example. The following example is a bitin- gpecify their own policies for distributing bodies, han-

volved, but we have found that working through it step bygjing read misses, sending invalidations, and enforcing

step sheds considerable light on the purpose of the rulggnsistency. For example, existing 2-of-3 protocols (AC-

for updating the interest set status andgap fillingand 11, pPR-AC, and PR-TI) can be viewed as special cases or

intersectionjust described. projections of the PRACTI protocol with certain features
Figure 15 illustrates these mechanisms in action«gptimized out” of the mechanisms by embedding re-

Node a writes objects a, b, and c; nodecares about strictive policy assumptions. At the same time, the more

object a and receives from precise invalidations about general PRACTI mechanisms allow new trade-offs that
a and imprecise invalidations about b and c. Nedares existing protocols can not accommodate.

about object ¢ and receives fromprecise invalidations o

about ¢ and imprecise invalidations about a and b. FiC-Tl. Server-replication systems such as Bayou [30],
nally, noded cares about a and ¢ and receives frgm TACT [47], and lazy replication [23] allow arbitrary
precise invalidations about a (but imprecise invalidation§ommunication between nodes and can provide flexible
about b and ¢ due t8's imprecision) and fromy precise ~ consistency, but they fully replicate all objects in a vol-
invalidations about ¢ (but imprecise invalidations about ¢/me and send all updates to all nodes that serve the vol-
and b.) Firsta sends a stream of invalidations (preciseUme. In the PRACTI framework, these AC-TI protocols
for a and imprecise for b and c) to As illustrated in the ~ ¢an be viewed as using a replicate-all strategy for both
figure, each invalidation advancets per-invalidation- ~ Precise invalidations and bodies, never sending or receiv-
stream, per-interest-setartV'V value as well ag’s per- ing imprecise invalidations, and not implementing any
interest-set last precise version vectgi(V) and cur- mechanism to handle read misses because objects are al-
rent version vectord) V') for interest se{a}. However, WaySPRECISEandVALID.

because the second invalidatian§, bc) intersects inter- pr_ac. Client-server and hierarchical systems such as
est set{b,c}, that message causes that interest set to berpg [18], Sprite [29], and Coda [21] allow nodes to

come imprecise and subsequent invalidations fail t0 adsache or prefetch arbitrary subsets of data and in prin-
vance that interest setlpV' V. After processing all four ciple could support a range of consistency policies [44]

invalidations in that streamj is precise for interest set (though, in practice, such systems typically implement
{a}, but imprecise for interest séb,c}. ~’s behavior
processing the stream of precise invalidations for ¢ and “And, in this case, b. Our current log maintenence algorithm ac-

imprecise invalidations for a and b is similar. tually extracts a _blt more information from the stream of incoming re-
. quests than our interest set status algorithm; we are not sure if there is
Then, whens and~y send their log contents i we ; ¢lean way to extract this information during interest set maintenance

show the case whergprocesseg’s first three invalida- as well.

18

Node Beta

stream IS={a} IS={bc} Node Delta
T s.prevVV c¢VV IS.cVV ISIpVV stream stream 1S=(a 1S=(b IS=(c
sy | L g g] 5§ SprevVV s prevVV cVV T P 1 O
Node Alpha [| > 2 P Pl \slzaEI:O | 0 0 0 0 0
IS={abc} (46bc) | ‘(,2,a) :) . 5 5 .
CYVISIBVV ggy 6 6 6 2 - 4.6.0¢) |
i - 6 6 6 2 2
write(2,2,a) 5 A ‘(10,12,bc)‘ 8 8 8 2 ;‘(S,S,a) o
write(4,4,b) P 2 12 12 2 [e 8 8 2 2
i 4 4 [| | 8 8 2 4
write(6,6,c) ~ | ﬁ6 6.)
i 6 6 (660
write(8,8,a)) N Node Gamlsn?m - | _A8.10.4b) 6 8 8 2 6
. stream 1S={al 1S={c P2 10 10 8 2 10
, |
EOIIRN s SPEVWV vy ISIpVY IS IpVV -7 g
ite(12.12 start=0 1 0 0 0 0 -1 | 12 12 8 2 12
write(12,12,¢c) \(2,4,ah)‘ _ - ‘(10,12,bc?
212 | 4 4 1 4 P === 12 12 2 2 12
6.6,0) | ~
| 6 6 1 6 - Delta’s final per—writer log for alpha:
| (x’lo’ab)‘ 10 10 1 10 (0.1,-), (2,2,2), (3.3,-), (4.4,b), (5.5,-), (6,6.¢), (7,7.-), (8,8,a), (9.9,-), (10,10,b), (11,11,-), (12,12,¢)
1(12,12,0),
- == 12 12 1 12

Fig. 15: lllustration of imprecise invalidation mechanismsspiit-join scenario. Nodes, 3, v, andé share objects a, b, and c.

At each node, we show the per-interest-set information (last precise version igétiorand current version vectefi’V), the
per-invalidation-stream informatios#artV'V and a series of generalized invalidations), and the per-interest-set per-invalidation-
stream informationdtartV'V as it is updated as each generalized invalidation is applied.) For clarity, we show'sclymponent

for all version vectors and omit the node IB)(in accept stamps.

a specific consistency policy). But these protocols funany given objecb and nodey they either propagate's
damentally assume a topology policy that restricts comupdate bodies t@) or propagate no information at all
munications to hierarchical paths. Even when clientabouto’'s updates te). In the PRACTI framework, these
server systems permit limited client-client communica-PR-TI protocols can be viewed as using a replication pol-
tion for cooperative caching [12] serialization of con- icy that sends invalidations and bodies for a given object
trol messages at the server is vital for reasoning aboub the same policy-specified subset of nodes and also as
consistency [8]. In the PRACTI framework, these PR-omitting all imprecise invalidations and thereby giving
AC protocols can be viewed as using separate invalidadp the ability to consistently order writes across different
tion and body messages, with invalidations sent by parebjects.
ents to children and bodies fetched by children from par-
ents. Their callback protocols can be viewed as speciaPRACTI. In comparing PRACTI to these protocols, a
ized instances of PRACTI's sendinval module that ackey distinction is how consistent ordering of writes is
tively track which objects a child caches and that senéchieved. Server-replication (AC-TI) and client-server
precise invalidations only for those objects. Note that il’(PR_AC) systems order invalidations across objects by
PRACTI, the module would also send imprecise inval-enforcing arinclusion property—any node that receives
idations covering any omitted precise invalidations, butand then transmits updates must see all updates for all ob-
the hierarchical topology allows PR-AC protocols to omitjects about which it may speak. Server-replication mech-
these implicit imprecise invalidations. Interestingly, re-anisms enforce this property by replicating all updates
covery when a server loses callback state [3] or whefio all nodes, and client-server systems meet this obliga-
a topology changes [45] falls back on what are essenion by assuming hierarchical inclusion. Because these
tially explicit imprecise invalidations: the client receives policy assumptions are deeply embedded in these mech-
amessage (i.e., animprecise invalidation covering all obanisms it is difficult to, for example, “tweak” Bayou to
jects) indicating that it should treat all of its consistencysupport partial replication or to “tweak” Coda to support
state as suspect (i.dMPRECISE and the client then arbitrary topologies. Conversely, PRACTI introduces ex-
revalidates all objects with its server (i.e., make the interplicit imprecise invalidations to allow ordering of all up-
est set precise). dates without assuming full replication or hierarchical
communication. Alternatively, object replication systems
PR-TI. Object replication systems such as Ficus [16](PR-TI) dispense with this requirement by not providing
and Pangaea [34] maintain synchronization informatior¢ross-object ordering guarantees.
separately for each object and support arbitrary topol- In addition to subsuming existing mechanisms,
ogy policies and arbitrary placement of objects on nodefPRACTI exposes new regions of the design space and
However, although these systems can provide some potentially offers better trade-offs than existing protocol
herenceguarantees on the order of reads and writes whefamilies. For example, a designer who wants consistency
an individual object is considered, they provide limitedis no longer forced to choose between using a desired
consistencyguarantees regarding the ordering of readdopology but with full replication on one hand versus
and writes across objects. Furthermore, these systerusing a desired replication strategy but with restricted
cleanly separate invalidations and body messages: faopology on the other. Section 4 examines several ex-

19

amples in detail and demonstrate that PRACTI can gainpdates by all other users; instead it just sees updates

significant advantages compared to the alternatives. relating to projects the user is working on. Topology in-
As one example, consider a personal file system thatependence allows peer-to-peer synchronization of mo-

distributes a user’s data across a dozen information déile devices when a group on a retreat or at a conference

vices (e.g., a desktop machine, laptop machine, palmtopotel is collaborating on a document. And arbitrary con-

machine, home machine, mobile phone, media playegistency could provide strong guarantees for connected

etc.). In such an environment, partial replication seemservers but flexible guarantees and reconciliation for mo-

essential to cope with the dramatically varying capacitie®ile devices.

of different devices and to exploit locality of reference. -

For example, it seems undeslijrable to re):quire a palmtop Additional features

to store all the files available from a desktop. At theDue to space constraints, the main body of Section 3.5

same time, node mobility makes it highly desirable foromits discussion of several additional features of our im-

nodes to be able to optimize communications to changelementation.

ing network conditions. For example, if a user is in A\\rite commitment. As in Bayou [30], PRACTI pro-

hotel room or on a plane, she would like to be able to d"vides eventual consistency: for any write eventually

rectly synchronize updates between her palmtop, phongy ,qes will agree on a total order of all writes pre-

and laptop rather than use a hierarchical file system th%dingw. A node considers a writer committedwvhen
requires her to s_end updates to and.then retrieve updatﬁ,r% node knowsy's final position in the global total or-
from a Server via a slow or expensive modem CONNECHer For simplicity, we use Golding’s algorithm [14]:
tion. Finally, causal and eventual consistency S'mp“fyeach node) maintains aurrentVV version vector, and
reasoning about and resolving the inevitable inconsisteqe-ach entryurrentV'V, stores the highest accept stamp
cies introduced by disconnected operation. For exampl%f any invalidation byx thatr has processed. Then, any
causal consistency and eventual consistency are esseng\:f}lite whose accept stamp is less than the lowest entry in
for ensuring that Bayou and TACT'’s application-specificcurrentvv is committed Supporting other write com-
detection and resolution procedures eventually agree Rlitment protocols such as primary commit [30] or vot-

the same total order on all writes and therefore eventual%g [20] would be straightforward, but we have not im-
converge on the same state: given the power of such COEIemented these variations yet ’

flict resolution mechanisms, even with coherence of eac . T
individual object, any difference in the order that writesBound writes. Separating invalidations from updates
to different objects are observed could cause a “butteﬁnables partial replication but also raises the issue of re-
fly effect” where the states of different nodes arbitrarily liability: in Bayou, for example, all nodes have copies of
diverge. all data, but a PRACTI system must enforce an explicit
As a second example, a global file system for GrigPolicy decision about the minimum acceptable level of
or PlanetLab researchers might also benefit from th&ePlication so that the loss of a node or a local cache re-
PRACTI properties. Requiring full replication appearsP!a@ceément decision does not render some data unavail-
untenable: partial replication allows data to be sent onlj0l€ Or the storage system unreliable. We provide a sim-
where it is needed to, for example, send different subsefd€: 10w-level mechanism that supports a broad range of
of input to different processing nodes. And topology in-high-level .poI|C|es from mamtamlng a fixed pumber of
dependence also seems valuable to send datasets by tH8!d" copies of each object [34] to propagating all data
best available paths; for example, one could send a larg@ @ Well-provisioned central server [18] or replicated
data set from a repository to a distant cluster by sendin§€/Vver “core” [21, 22] to replicating everything to every-
the data once across the WAN to one node in the clusté"® [30]. When an application issues a bound write, it
and then flooding the data to other nodes in the clustéf®ates @ound invalidatiorthat includes the body of the
using the cluster's fast LAN links. Finally, flexible con- Write. Bound invalidations propagate through the system
sistency guarantees allow the replication system to me&fSing l0g exchange and controllers manage this propaga-

the application’s consistency requirements without paylion t0 meet replication requirements. A controller can
ing for stronger guarantees than required. later issue messages to unbind a write, after which the

Finally, consider an enterprise file system spannind]m/"’l“datIon can propagate without the body.

multiple departments in a university and supporting disEmbargoed writes. We provide anembargoed write
connected operation by portable devices. Partial replilow-level interface over which we provide a 2-phase
cation avoids the need for computer science departmemtrite interface that ensures that once a write returns, no
servers to see all updates by faculty in the biology departsubsequent read can return the old value of the data.
ment except for a few subdirectories that contain jointn particular, an embargoed write attachesEMBAR-
projects. Similarly, a user’s laptop does not need to se&OED flag to its invalidation record, and all reads of

20

EMBARGOEDobjects block. A controller can later in- Alternative: Per-write conflict detection and resolu-
sert aRELEASEecord into the log to end the embargo tion code. The PRACTI mechanisms are also compat-
of the record. Of course, the strong consistency of 2ible with Bayou’'s more powerful strategy of associat-
phase commit comes at a price to availability [7], but ouring application-specific conflict detection and resolution
implementation provides this option so that applicationsode with each writev and re-executing this code each
can whatever point in the range of “arbitrary consistency'time the set of writes preceding is changed by a log
they require. exchange operation. An advantage of this more flexible
approach is that it can detect both write-write and read-
Crashrecovery. The checkpoint stores per-object statewrite conflicts. We chose to use the simpler last-writer-
and per-interest set state. The log acts as a replay log wins and compensating transaction approach for two rea-
recover events not yet reflected in the checkpoint. sons.
First, our more restrictive approach allows efficient in-
Conflict detection and resolution. The protocol de- cremental application of interleaved streams of updates
scribed in Section 3 provides incremental log exchangbecause it does not require “roll back” of the current ran-
and last-writer-wins conflict resolution with global even- dom access state to process an arriving write: the deter-
tual consistency in the case of concurrent writes. Howmination of whether a conflict occurred and the decision
ever, it is useful to not only resolve conflicts in a globally about the final state of the object can be made by com-
consistent way but also to flag them and provide informagparing the write’sacceptStampndprevWiritefields with
tion about conflicting writes to a more flexible manual orthe local object'sacceptStam@and prevWritefields. In
programmatic conflict resolution procedure. contrast, Bayou's conflict detection and resolution code
To support more flexible conflict detection and res-logically run at the point in time when the write occurs,
olution, we augment the algorithm described above byo they must be able to read the state of the system at
adding a fieldprevAccepto both invalidation messages that time. As a result, to apply a newly-arriving write,
and to per-object store state. When a node receives an ife system first rolls back its state to the logical time of
validation inv and appliesinv to the local store of an the write; it then applies the write and reapplies all sub-
object obj (with inv.accept # obj.accept), there are sequent writes. This cost is tenable in Bayou because
three cases to consider. First,iffv.prevAccept == Bayou was designed for batch application of updates,
obj.accept, there is no write-write conflict. The second Which amortizes the cost of rolling back and reapplying
case,inv.prevAccept > obj.accept, is impossible by updates across a batch of newly arrived updates.
the prefix property. The third caséyv.prevAccept < Second, our simpler approach allows us to avoid the
obj.accept, represents a write-write conflict, which is re- need for a commit protocol that can establish a final write
solved by updatingb; with eitherinv or obj dependig order that differs from the natural order on accept stamps.
on which has a higher accept stamp and by storing thBayou’s “in line” execution of powerful conflict reso-
losing entry to disk in a local (non-shared) per-objectiution code introduces the possibility of a “butterfly ef-
conflict file bodies that match stored losing writes arefect” in which the introduction of a single, previously
also stored. PRACTI implementations can provide a lounseen, low-timestamped write into a log can cause any
cal interface for reading and deleting these “losing” con-or all newer writes in the log to execute a different con-
flicting writes, which allows higher-level code to resolve flict detection or resolution code path and to therefore
conflicts using application-specific rules by generatingwrite different values to different objects. In principle,
compensating transactions. whenever a previously unseen old write is applied, the
Note that although different nodes can see differentesulting system state can look arbitrarily different from
series of “losing” writes, all nodes that make an interesthe previous system state. Bayou limits this problem
set precise are guaranteed to see the “final” write to eady using a primary commit protocol so that connected
causally—independent series. For example, consider thwdes can establish an order on writes that causes “late-
case of two causal chains of writes to one location byarriving” writes to be sorted after “on-time” writes. Con-
the nodesy, 3, andy: (1) wOo, w13, w26, w3F and (2) versely, a last-writer-wins approach is less vulnerable to
w0, wdy. The protocol guarantees that eventually anylate-arriving writes: either (a) despite the delay the late-
precise node will agree that the final state of the write igrriving write is logically the newest write to the object
the result ofy's write at time 4 and that there was a write- and the object is updated or (b) the late-arriving write is
write conflict thatw3 lost, and but different nodes may logically older than other writes that have been applied
see different subsets ofl 3, w23, w33, which seems ac- and it has no effect other than being logged as a conflict.

ceptable in that neither causal chain regards eithie? Neither of these considerations is fundamental to
or w2 as important values for the final state of the sysPRACTI, and these trade-offs would apply to existing
tem. systems as well. One factor that may be more relevant to

21

war| Full Replicyv

sev0s |]
PRACTI

—

100000
1

Bytes Transferred

100

Write/Ré;d Ratio
Fig. 16: Bandwidth cost of distributing updates for full repli-
cation and for partial replication as the number of successive
writes to a file between reads varies.

PRACTI is that the centralized commit protocol used in
Bayou may limit scalability under PRACTI because it re-
quires the primary node to see all invalidation messages;
this issue does not limit Bayou because Bayou already
requires all nodes to see all updates. An open question
is whether there exists a suitatdealablecommit proto-

col that can avoid the need for any node to see all of the
invalidations. ‘ ‘ ‘ l 2

oL 89 89 89

81 81

D Omitted graphs or

The following graph was omitted from the main body of
Section 4.1 due to space constraints. 60 -

Time(s)

Bytes die young. Bytes are often overwritten or deleted

soon after their creation. For example, Baker et al. ob- 4o

served in a academic environment that between 50% and

70% of written data survive for more than 1 minute,

and between 10% and 60% survive for more than 10

minutes [4]. Full replication systems send all writes to Lo20

all servers, even if some of the writes are quickly made ° Palm<>Lap Palm<>Home Lap->Home Office->Al

obsolete [30, 47]. In contrast, PRACTI replication can

send invalidations separately from bodies, and overwritrig. 17: Synchronization time among devices for “office” net-

ten bodies need never be sent. work topology and various protocols (see Section 4.2.
Figure 16 illustrates this effect. For this experiment,

we use a synthetic workload that randomly writes a set

of files on one node and randomly reads the same set of

files on another node on our prototype. On the x axis, we

vary the ratio of writes to reads. We plot the bandwidth

consumed on the y axis. PRACTI'’s gains are significant

when bytes die young. For example, when the write to

read ratio is 2, PRACTI uses 55% of the bandwidth of

full replication, and when the ratio is 5, PRACTI uses

24%. At ratios exceeding 20, PRACTI's gains exceed an

order of magnitude.

PRACTI
Client-Server

3435

Mobile storage office topology Figure 17 was omitted
from Section 4.2. It shows synchronization time among
different devices when the palmtop and laptop are co-
located with the Office Server.

22

