
PRACTI Replication (Extended version)

Mike Dahlin, Lei Gao, Amol Nayate, Arun Venkataramani
Praveen Yalagandula, Jiandan Zheng

University of Texas at Austin University of Massachusettes at Amherst

Draft – October 2005
See http://www.cs.utexas.edu/users/dahlin/papers.html for the current version.

Abstract
We present PRACTI, a new approach and architecture for
large-scale replication. PRACTI systems can replicate or
cache any data on any node (Partial Replication), pro-
vide a broad range of consistency and coherence guar-
antees (Arbitrary Consistency), and permit any node to
share updates with any other node (Topology Indepen-
dence). Our PRACTI architecture yields two significant
advantages. First, it providesbetter trade-offsthan ex-
isting mechanisms: our prototype dominates existing ap-
proaches by providing as much as an order of magnitude
better bandwidth and storage efficiency than AC-TI repli-
cated server systems, as much as an order of magnitude
better synchronization delay compared to PR-AC hierar-
chical systems, and consistency guarantees not achiev-
able by PR-TI per-object replication systems. Second,
our architecture’sflexibility simplifies the design of repli-
cation systems by allowing a single framework to sub-
sume a broad range of existing systems and to reduce de-
velopment costs for new ones. For example, we use our
PRACTI prototype both to emulate existing server repli-
cation, client-server, and object replication systems and
to implement novel policies that improve performance
for mobile users, web edge servers, and grid computing.

1 Introduction
This paper describes PRACTI, a new data replication ap-
proach and architecture that can reduce replication costs
by an order of magnitude for a range of large-scale sys-
tems and also simplify the design, development, and de-
ployment of new systems.

Data replication is a building block for many large-
scale distributed systems such as mobile file systems,
web service replication systems, enterprise file systems,
and grid replication systems. Because there is a fun-
damental trade-off between performance and consis-
tency [26] as well as between availability and consis-
tency [7, 36], systems make different trade-offs among
these factors by implementing different placement poli-
cies, consistency policies, and topology policies for dif-
ferent environments. Informally,placement policies
such as demand-caching, prefetching, push-caching, or
replicate-all define which nodes store local copies of

which data,consistency policiessuch as sequential [25]
or causal [19] define which reads must see which writes,
andtopology policiessuch as client-server, hierarchy, or
ad-hoc define the paths along which updates flow.

The goal of the approach is to simultaneously provide
all three PRACTI properties:

• Partial Replicationmeans that a system can place any
subset of data on any node. In contrast, some systems
require a node to maintain copies of all objects in all
volumes they export [30, 47].

• Arbitrary Consistencymeans that a system provides
flexible semantic guarantees, including the ability to
selectively enforce bothconsistencyand coherence
guarantees.1 In contrast, some systems can only en-
force coherence guarantees but make no guarantees
about consistency [16, 34].

• Topology Independencemeans that any node can ex-
change updates with any other node. In contrast, many
systems restrict communication to client-server [18,
21, 29] or hierarchical [6, 45] patterns.

Although many existing systems can each provide two of
the properties, we are aware of no system that provides
all three. As a result, systems give up the ability to ex-
ploit locality, support a broad range of applications, or
dynamically adapt to network topology.

Our PRACTI architecture provides all three properties
by drawing on key ideas of existing protocols but recast-
ing them to remove the deeply-embedded policy assump-
tions that prevent one or more PRACTI properties. In
particular, our design begins with log exchange mecha-
nisms that support a range of consistency guarantees and
topology independence but that fundamentally assume
full replication [30, 47]. It then adapts these mechanisms
to support partial replication using three design princi-
ples.

1Although the operating systems and distributed systems literature
often use the terms consistency and coherence interchangeably, the ar-
chitecture literature is more precise [17]: consistency semantics con-
strain the order that updates across multiple objects become observable
to readers. Coherence semantics constrain the order that updates to a
single object become observable but do not additionally constrain the
ordering of updates across different objects. We find this precision use-
ful and follow that terminology in this paper.
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1. In order to allow partial replication of data, our de-
signseparates the control path from the data pathby
separating invalidation messages that identify what has
changed from body messages that encode the changes
to the contents of files. Distinct invalidation mes-
sages are widely used in hierarchical caching systems,
but we demonstrate how to use them in topology-
independent systems: we develop explicit synchro-
nization rules to enforce consistency constraints de-
spite multiple streams of information, and we intro-
duce general mechanisms for handling demand read
misses.

2. In order to allow partial replication of update meta-
data, we useexplicit conservative encodingvia impre-
cise invalidations, which allow a single invalidation to
summarize a set of invalidations.

3. In order to allow our system to serve as a flexi-
ble toolkit for constructing a broad range of systems,
our implementation cleanlyseparates mechanism from
policy by splitting the system into a core that defines
a node’s mechanisms for maintaining local state and a
controller that embodies a system’s policies for com-
munication among nodes.

We have constructed and evaluated a prototype. Our
primary conclusion is that by disentangling mechanism
from policy and simultaneously supporting the three
PRACTI properties,PRACTI replication enables better
trade-offs for system designers than possible with exist-
ing mechanisms.For example, for some workloads in
our mobile storage and grid computing case studies, our
system dominates existing approaches by providing more
than an order of magnitude better bandwidth and storage
efficiency than AC-TI replicated server systems, by pro-
viding more than an order of magnitude better synchro-
nization delay compared to PR-AC hierarchical systems,
and by providing consistency guarantees not achievable
by PR-TI per-object replication systems.

More broadly, by subsuming a large portion of the de-
sign space, the PRACTI architecture can simplify the de-
sign of replication systems. At present, because mecha-
nisms and policies are entangled, when a replication sys-
tem is built for a new environment, it must often be built
from scratch or must modify existing mechanisms to ac-
commodate new policy trade-offs. In contrast, our sys-
tem can be viewed as a “replication microkernel” that de-
fines a common substrate of core mechanisms over which
a broad range of systems can be constructed by selecting
appropriate policies. For example, in this study we use
our prototype both to emulate existing server replication,
client-server, and object replication systems and to im-
plement novel policies to support mobile users, web edge
servers, and grid scientific computing.

In summary, this paper makes four contributions.
First, it defines the PRACTI paradigm and shows how

existing systems fail to provide all of the desired prop-
erties. Second, it describes the first replication architec-
ture to simultaneously provide all three PRACTI prop-
erties. Third, it provides a prototype PRACTI replica-
tion toolkit that cleanly separates mechanism from policy
and thereby allows nearly arbitrary replication, consis-
tency, and topology policies. Fourth, it demonstrates that
PRACTI replication offers decisive practical advantages
compared to existing approaches.

Section 2 of this paper explores the limitations of ex-
isting approaches, Section 3 describes our PRACTI ar-
chitecture, and Section 4 experimentally evaluates the
prototype. Finally, Section 5 surveys related work and
Section 6 highlights our conclusions.

2 Background
Although providing all three PRACTI properties has ob-
vious potential benefits, we know of no system that does
so. Most existing systems fall into three categories that
each provide at most two of the PRACTI properties:

Server replicationsystems like Bayou [30] provide
log-based peer-to-peer update exchange that allows any
node to send updates to any other node (TI) and that con-
sistently orders writes. TACT [47] uses this approach to
provide a wide range of tunable consistency guarantees
(AC). Unfortunately, these protocols fundamentally as-
sume full replication: all nodes store all data from any
volume they export and all nodes receive all updates. As
a result, these systems are unable to exploit workload lo-
cality to efficiently use networks and storage, and they
may be unsuitable for devices with limited resources.

Client server[18, 29] andhierarchical[6, 27] caching
systems permit caching of arbitrary subsets of data (PR),
and existing cache consistency protocols can provide a
wide range of consistency guarantees (AC). However,
these protocols fundamentally require communication to
flow between a child and its parent. Even when client-
server systems permit limited client-client communica-
tion for cooperative caching [12] they must still serialize
control messages at a central server for consistency [8].
These restricted hierarchical communication patterns (1)
hurt performance when network topologies do not match
the fixed communication patterns or when network costs
change over time (e.g., in environments with mobile
nodes), (2) hurt availability when a network path or node
failure disrupts a fixed communication topology, and (3)
limit the ability to support sharing during disconnected
operation when a set of nodes can communicate with one
another but not with the rest of the system.

Object replicationsystems [16, 34] allow nodes to
choose arbitrary subsets of data to store (PR) and arbi-
trary peers with whom to communicate (TI). But, these
protocols enforce no ordering constraints on updates
across multiple objects, so they can provide coherence
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Fig. 1: Naive addition of PR to an AC-TI log exchange protocol
fails to provide consistency.

but not consistency guarantees. Unfortunately, reasoning
about the corner cases of consistency protocols is com-
plex, so providing weak consistency or coherence guar-
antees can complicate constructing, debugging, and us-
ing applications. Furthermore, in some cases support for
only weak consistency semantics may prevent deploy-
ment of applications with more stringent requirements.

It is surprising that despite the significant costs of
omitting any of the PRACTI properties, no system has
succeeded in providing all three. Our analysis of these
protocols suggests that these limitations are fundamental
to these protocol families: the assumption of full replica-
tion is deeply embedded in the core of Bayou and other
server replication protocols; the assumption of hierarchi-
cal communication is fundamental to client-server con-
sistency protocols; and the lack of consistency is a key
factor in the flexibility of object replication systems.

Example. To understand challenges of providing
PRACTI, consider the naive attempt to add PR to a AC-
TI server replication protocol like Bayou illustrated in
Figure 1. Suppose a user’s desktop node stores all of the
user’s files, including filesA andB, but the user’s palm-
top only stores a small subset that includesB but notA.
Then, the desktop issues a series of writes, including a
write to file A (making itA′) followed by a write to file
B (making it B′). When the desktop and palmtop syn-
chronize, for PR, the desktop sends the write ofB but
not the write ofA. At this point, everything is OK: the
palmtop and desktop have exactly the data they want, and
reads of local data provide a consistent view of the order
that writes occurred. But for TI, we not only have to
worry about local reads but also propagation of data to
other nodes. For instance, suppose that the user’s laptop,
which also stores all of the user’s files including bothA
andB, synchronizes with the palmtop: the palmtop can
send the write ofB but not the write ofA. Unfortunately,
the laptop now can present an inconsistent view of data
to a user or application. In particular, a sequence of reads
at the laptop can return the new version ofB and then re-
turn the old version ofA, which is inconsistent with the
writes that occurred at the desktop under causal [19] or
even the weaker FIFO consistency [26].

As this example illustrates, topology independence
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Fig. 2: High level PRACTI architecture.

makes combining partial replication and arbitrary con-
sistency hard because when a node receives updates, it
must not only consistently order updates to the data it
cares about but also ensure that it has enough informa-
tion to order updatesfor the data of interest to all nodes
with which it might communicate in the future.

Existing systems resolve this dilemma in one of three
ways. AC-TI server replication systems’ full replication
ensures that all nodes have enough information to order
all updates. PR-AC client-server and hierarchical sys-
tems restrict communication so that the root of a subtree
can track what information is cached by descendents and
can safely omit sending invalidations or updates for data
that no descendent is currently caching; if a descendent
later tries to read such data, cache miss bubbles up the hi-
erarchy to a node that has sufficient information to supply
consistent data to the read. Finally, PR-TI object replica-
tion systems simply give up ability to consistently order
writes to different objects and allow inconsistencies such
as the one just described.

3 PRACTI replication
Figure 2 shows the high-level architecture of our
PRACTI architecture. Each node exports aLocal API
for reading and writing data, and each node stores an ar-
bitrary subset of data using aLogof updates and aCheck-
point for random access. Furthermore, any node can ex-
change information with any other node at any time.

The architecture is based on three key ideas described
in more detail in the following subsections:

1. Separation of invalidations and bodies.As Figure 2
illustrates, nodes exchange two types of updates: or-
dered streams of invalidations and unordered body
messages. This separation supports partial replication
of bodies.

2. Partial replication of invalidation metadata.Although
the invalidation streams of Figure 2 each logically con-
tain a causally consistent record of all writes in the sys-
tem, the implementation can omit sending groups of
invalidations by sendingimprecise invalidationsum-
maries instead. Imprecise invalidations allow partial
replication of metadata and flexible consistency.
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3. Separation of mechanism and policy.As Figure 2 il-
lustrates, our implementation of each node comprises
a core and acontroller. The core instantiates the ba-
sic PRACTImechanismsby processing incoming mes-
sages and maintaining a local view of the system’s
state. Thecontroller embodies a system’spoliciesby
initiating communication among nodes. Different de-
ployments use different controllers to implement dif-
ferent replication, topology, and consistency policies.

The rest of this section details these three aspects of
the design. It then discusses the crosscutting issue of how
to provide flexible consistency that (a) supports strong
consistency semantics for those applications that require
them and (b) does not introduce unnecessary overhead
for applications that do not. After that, Section 3.5 de-
scribes several novel features that enable our prototype
to support the broadest range of policies.

3.1 Separation of invalidations and bodies
As Figure 2 illustrates, nodes exchange two types of up-
dates: ordered streams of invalidations and unordered
body messages.Invalidationsare metadata that describe
writes; each contains an object ID2 and logical time of
a write. A write’s logical time is assigned at the local
interface that first receives the write, and it contains the
current value of the node’s Lamport clock [24] and the
node’s ID. Like invalidations,body messagescontain the
write’s object ID and logical time, but they also contain
the actual contents of the write.

The protocol for exchanging updates is simple.

• As illustrated by node 1 in Figure 2, each node main-
tains alog of the invalidations it has received sorted by
logical time. And, for random access, each node stores
bodies in itscheckpointindexed by object ID.

• Invalidations from a log are sent via a causally-ordered
stream that logically contains all invalidations known
to the sender but not to the receiver. As in Bayou,
nodes use version vectors to summarize the contents
of their logs in order to efficiently identify which up-
dates in a sender’s log are needed by a receiver [30].

• A receiver of an invalidation inserts the invalidation
into its sorted log and updates its checkpoint. Check-
point update of the entry for object ID entails marking
the entryINVALID and recording the logical time of
the invalidation. Note that checkpoint update for an
incoming invalidation is skipped if the checkpoint en-
try already stores a logical time that is at least as high
as the incoming invalidation’s.

• A node can send any body from its checkpoint to any
other node at any time. When a node receives a body, it
updates its checkpoint entry by first checking to see if

2For simplicity, we describe the protocol in terms of full-object
writes. For efficiency, our implementation actually tracks checkpoint
state, invalidations, and bodies on arbitrary byte ranges.

the entry’s logical time matches the body’s logical time
and, if so, storing the body in the entry and marking the
entryVALID.

Rationale. Separating invalidations from bodies pro-
vides topology-independent protocol that supports both
arbitrary consistency and partial replication.

Supporting arbitrary consistency requires a node to be
able to consistently order all writes. Log-based invalida-
tion exchange meets this need by ensuring three crucial
properties [30]. First theprefix propertyensures that a
node’s state always reflects a prefix of the sequence of
invalidations by each node in the system. I.e., if a node’s
state reflects theith invalidation by some noden in the
system, then the node’s state reflects all earlier invalida-
tions byn. Second, each node’s local state always re-
flects causally consistent[19] view of all invalidations
that have occurred. This property follows from the prefix
property and from the use of Lamport clocks to ensure
that once a node has observed the invalidation for write
w, all of its subsequent writes’ logical timestamps will
exceedw’s. Third, the system ensureseventual consis-
tency: all connected nodes eventually agree on the same
total order of all invalidations. This combination of prop-
erties provides the basis for a broad range of tunable con-
sistency semantics using standard techniques [47].

At the same time, this design supports partial replica-
tion by allowing bodies to be sent to or stored on any
node at any time. It supports arbitrary body replica-
tion policies including demand caching, push-caching,
prefetching, pre-positioning bodies according to a global
placement policy, or push-all.

Design issues. The basic protocol adapts well-
understood log exchange mechanisms [30]. But, the
separation of invalidations and bodies raises two new
issues: (1) coordinating disjoint streams of invalidations
and bodies and (2) handling reads of invalid data.

The first issue is how to coordinate the separate body
messages and invalidation streams to ensure that the ar-
rival of out-of-order bodies does not break the consis-
tency invariants established by the carefully ordered in-
validation log exchange protocol. The solution is simple:
when a node receives a body message, it does not ap-
ply that message to its checkpoint until the corresponding
invalidation has been applied. A node therefore buffers
body messages that arrive “early.” As a result, the check-
point is always consistent with the log, and the flexible
consistency properties of the log [47] extend naturally to
the checkpoint despite its partial replication.

The second issue is how to handle demand reads at
nodes that replicate only a subset of the system’s data.
The core mechanism supports a wide range of policies:
by default, the system blocks a local read request until
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Imprecise Invalidation

<objId=/foo/b, time=<11,node1>>
<objId=/foo/a, time=<12,node1>>
<objId=/foo/a, time=<15,node2>>
<objId=/foo/a, time=<16,node1>>
<objId=/foo/b, time=<16,node2>>
<objId=/foo/c, time=<17,node2>>

<10,node1>
<15,node2>

<16,node1>
<17,node2>

<targetSet=/foo/*, start=                       , end=                      >

Precise Invalidations

<objId=/foo/a, time=<10,node1>> 

Fig. 3: Example imprecise invalidation.

the requested object’s status isVALID3. Of course, to en-
sure liveness, when anINVALID object is read, an imple-
mentation should arrange for someone to send the body.
As we describe in more detail in Section 3.3, when a lo-
cal read blocks, the core notifies the controller. The con-
troller can then implement any policy for locating and re-
trieving the missing data such as sending the request up a
static hierarchy (i.e., ask your parent or a central server),
querying a separate centralized [13] or DHT-based [39]
directory, using a hint-based search strategy [35], or re-
lying on a push-all strategy [30] (i.e., “just wait and the
data will come.”)

3.2 Partial replication of invalidations
Although separation of invalidations from bodies sup-
ports partial replication of bodies, for true partial repli-
cation that supports a broad range of policies, workloads,
and devices the system must not require all nodes to see
all invalidations or to store metadata for each object. For
example, consider palmtops caching data from an enter-
prise file system with 10,000 users and 10,000 files per
user: if each palmtop were required to store 100 bytes of
per-object metadata, then 10GB of storage would be con-
sumed on each device; and if the palmtops were required
to receive every invalidation during log exchange and if
an average user issued just 100 updates per day, then in-
validations would consume 100MB/day of bandwidth to
each device. Exploiting locality is fundamental to repli-
cation in large-scale systems, and requiring full replica-
tion of metadata would prevent deployment of a replica-
tion system for a wide range of environments, workloads,
and devices.

To support true partial replication, invalidation
streamslogically contain all invalidations as described in
Section 3.1, but inreality they omit some invalidations
by replacing them withimprecise invalidations.

As Figure 3 illustrates, an imprecise invalidation is a
conservative summary of several standard orprecise in-
validations. Each imprecise invalidation has atargetSet
of objects,start logical time, and anendlogical time, and
it means “one or more objects intargetSetwere updated
betweenstart andend.” An imprecise invalidation must
beconservative: each precise invalidation that it replaces
must have itsobjId included intargetSetand must have
its logical time included betweenstart andend, but for

3The read interface also provides a flag that indicates that a read of
an INVALID object should throw an exception rather than block.

efficient encodingtargetSetmay include additional ob-
jects. In our prototype, thetargetSetis encoded as a list
of subdirectories and thestart andend times are partial
version vectors with an entry for each node whose writes
are summarized by the imprecise invalidation.

Imprecise invalidations act as “placeholders” in the
log to ensure that nodes that try to access data updated by
omitted writes can detect and correct the missing infor-
mation. When a node receives a new imprecise invalida-
tion, it logically marks all covered objects “INVALID.”
For efficiency, however, rather than iterating through
all covered objects, the implementation uses some addi-
tional bookkeeping to efficiently track local state.

Design issues. Tracking the effects of imprecise inval-
idations actually encompasses four related problems:

1. We cannot require a node to store per-object state for
all objects. As the example above illustrates, doing
so would significantly restrict the range of replication
policies and workloads that can be accommodated.

2. We need to efficiently apply imprecise invalidations
covering many objects. In particular, an implemen-
tation should not have to iterate across all objects in
targetSetto apply an imprecise invalidation.

3. We need to be able to determine when objects whose
state was “made IMPRECISE” by one or more impre-
cise invalidation have been “made PRECISE” by later
seeing all of the missing precise invalidations for those
objects.

4. We need to handle demand reads to objects whose state
is currently IMPRECISE.

Our solution is to maintain simple bookkeeping infor-
mation about groups of objects. In particular, each node
independently partitions the object ID space into one or
moreinterest setsand decides whether to store per-object
state on a per-interest set basis. A node tracks whether
each interest set is PRECISE (has observed all invalida-
tions) or IMPRECISE (has overlapped some imprecise
invalidations and may have missed some precise invali-
dations) by maintaining two pieces of state.

• Each node maintains a global variablecurrentVV,
which is a version vector encompassing the highest
timestamp of any invalidation (precise or imprecise)
applied to any interest set.

• Each node maintains for each interest setIS the vari-
able IS.lastPreciseV V , which is the latest version
vector for whichIS is known to be PRECISE.

If IS.lastPreciseV V = currentV V , then interest set
IS has not missed any invalidations and it is PRECISE.

In this arrangement, applying an imprecise invalida-
tion I to an interest setIS merely involves updating two
variables—the globalcurrentV V and the interest set’s
IS.lastPreciseV V . In particular, a node that receives
imprecise invalidationI always advancescurrentV V to
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IS.lastPreciseVV[node1] = 100 (IMPRECISE)

C VALID 100/node1

A VALID 98/node1Checkpoint:

B VALID 99/node1
C VALID 100/node1

A VALID 98/node1Checkpoint:

I=(target={A,B,C}, start=101/node1, end=103/node1)

PI1=(A, 101/node1), PI2=(B, 103/node1)

B INVALID 103/node1
C VALID 100/node1

A INVALID 101/node1Checkpoint:

currentVV[node1] = 103 IS.lastPreciseVV[node1] = 103 (PRECISE)

1

2

3

4

5

currentVV[node1] = 100

currentVV[node1] = 103

IS.lastPreciseVV[node1] = 100 (PRECISE)

B VALID 99/node1

Fig. 4: Example of applying an imprecise invalidation I
and then applying precise invalidationsPI1 and PI2. For
clarity, we only show node1’s elements ofcurrentV V and
IS.lastPreciseV V .

include I ’s end logical time because after applyingI,
the system’s state may reflect events up toI.end. Con-
versely, the node only advancesIS.lastPreciseV V to
the latest time for whichIS has missed no invalidations.

This per-interest state addresses the four problems
listed above. (1) Storage is limited: each node only needs
to store per-object state for data currently of interest to
that node, and the total metadata state at a node is pro-
portional to the number of objects of interest plus the
number of interest sets. Note that our implementation
allows a node to dynamically repartition its data across
interest sets as its locality patterns change. (2) Imprecise
invalidations are efficient to apply, requiring work that
is proportional to the number of interest sets rather than
the number of summarized invalidations. (3) Recovery
to precise is guaranteed under the following conditions:
if an interest setIS is initially PRECISE at a node, the
node then sees an imprecise invalidationsI that make
an interest setIS IMPRECISE, and later the node sees
the a sequence of precise invalidations that includes all
invalidations inI that target any object inIS, then the
interest setIS is made PRECISE up to at least the end
time of I. (4) A local read request includes a flag that
indicates whether the read requires consistency guaran-
tees. If not, then the read does not consult the per inter-
est set status and it may return as soon as the object is
VALID. Conversely, if the read does require consistency,
then the read blocks until the interest set in which the
object lies is PRECISE. This blocking ensures that “pre-
cise reads” only observe the checkpoint state they would
have observed if all invalidations were precise, and there-
fore allows them to enforce the same consistency as pro-
tocols without imprecise invalidations. As with regular
read misses, for liveness the core signals the controller
when a read of an IMPRECISE interest set blocks, and
the controller is responsible for arranging for the missing
precise invalidations to be sent.

The following example illustrates the maintenance of
the interest set status state in more detail.

Example. Suppose that initially as label (1) in Fig. 4
illustrates, A, B, and C were last written at node1’s logi-
cal times98/node1, 99/node1, and100/node1, that all
are currently VALID, and that interest setIS containing
A, B, and C is PRECISE withIS.lastPreciseVV[node1]
= currentVV[node1] = 100.

Then, (2) an imprecise invalidationI with a targetSet
that includes A, B, and C, astart time of 101/node1, and
anendtime of 103/node1arrives. The system must con-
servatively assume A, B, and C are all invalid up to time
103/node1, so (3) it setscurrentVV[node1] = 103but
leavesIS.lastPreciseVV[node1] = 100, making IS IM-
PRECISE.

But now (4) suppose precise invalidationsPI1 = (A,
101/node1)andPI2 = (B, 103/node1)arrive on a single
invalidation channel from another node. (5) The first in-
validation advancesIS.lastPreciseVV[node1]to 101and
leavescurrentVVunchanged. The second advancesIS.-
lastPreciseVV[node1]to 103, and the final state isIS.-
lastPreciseVV[node1] = currentVV[node1] = 103, IS is
PRECISE,A andB are INVALID, andC is VALID.

Notice that although we never saw a precise invalida-
tion with time 102/node1, the fact that a single stream
contains invalidations at times101/node1and103/node1
allows us to infer by the prefix property that no invalida-
tion at time102/node1occurred and therefore we were
able to advanceIS.lastPreciseVVto makeIS PRECISE.

A technical report [11] provides pseudo-code and de-
tails how our implementation copes with (a) applying in-
validations in causal order despite the multiple start and
end times in imprecise invalidations and despite concur-
rency across streams and (b) maximizing the information
extracted and stored from each invalidation in a stream to
minimize the amount of IMPRECISE data in the system.

3.3 Separation of mechanism and policy
Our goal is to construct a toolkit that not only subsumes
server replication, client/server, and object replication
systems, but one that also makes it easy to construct new
systems that explore new replication, topology, and con-
sistency policies. Our system therefore seeks to serve
as a “replication microkernel” that provides basic low
level mechanisms over which higher-level services can
be built. As Figure 2 illustrates, we achieve this goal by
splitting each node into acoreand acontroller.

The core’s mechanisms enforce their safety proper-
ties regardless of what incoming messages they see.
Our cores use an asynchronous style of communica-
tion in which incoming messages or streams are self-
describing—the rules for processing each incoming mes-
sage are completely defined, and interpreting a message
does not require knowledge of what request triggered its
transmission. Any machine can therefore send any legal
protocol message to any other machine at any time.
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The controller implements policies that focus on live-
ness (e.g., performance and availability.) The controller’s
basic job is to ensure that the right cores send useful data
at the right times in order to do such things as satisfy a
read miss, prefetch data to improve performance, or pro-
vision a node’s local storage for disconnected operation.
Controllers accomplish this work by sending requests to
trigger communication between cores.

The controller is defined by its interface. Within
this interface, different implementations provide differ-
ent policies. Controllers use three sets of interfaces to ac-
complish their work: a core calls a controller’sinform in-
terface to inform the controller of important local events
like message arrival or read miss, a controller calls a re-
mote core’sremote requestinterface to trigger sends of
invalidation streams or bodies, and a controller calls its
core’smanagementinterface for maintenance functions
like log garbage collection and interest set split/join.

Enumerating the full API is outside the scope of this
paper. To provide a high-level understanding of the
workings of the system, the remainder of this subsection
describes the typical control flow for two examples: a
read miss and a subscription for an invalidation stream.
Additionally, Section 4 briefly describes several example
controllers we have built.

Read miss example. A local read blocks in the
core until the specified object is VALID. If it is IN-
VALID, the core callsController.informDemandRead-
Miss(objId). The controller then typically selects a
peer from which to fetch the data, transmits a de-
mand read request to that peer’s core, and sets a retry
timer. When the body arrives, the local core applies
it to the the checkpoint, unblocks the waiting read,
and callsController.informDemandReply(objId), and the
controller cancels the retry timer.

Subscribe invalidations example. A controller
chooses one or more peers from which to receive
invalidations according to some policy. For each remote
peer, the controller transmits asubscribeInvalrequest,
specifying for each thepreciseSetof the object ID space
for which it would prefer to receive precise invalidations
from that peer and thestartVV logical time at which
the invalidation stream should begin. Typically,startVV
is one of two things: (1) the local node’scurrentVV
version vector of the highest invalidations seen or (2)
the IS.lastPreciseVVversion vector of some currently-
IMPRECISE interest setIS that the local node is trying
to make PRECISE. The controller also sets an internal
retry timer for each such subscription request.

Upon receiving a connection from the remote
peer, the local core callsController.informInvalStream-
Initiated(senderNode, preciseSet, startVV)and the con-
troller cancels its retry timeout. Also, as each in-

validation arrives on such a stream, the core calls
Controller.informReceiveInval(. . . ), which some con-
trollers use to track which objects are VALID/INVALID
in the local checkpoint.

3.4 Consistency: Costs and approach
Enforcing cache consistency entails fundamental trade-
offs. For example Siegel [36] proves what has come to
be known as the CAP dilemma [7]: a replication system
that provides sequentialConsistency cannot simultane-
ously provide 100%Availability in an environment that
can bePartitioned. Similarly, Lipton and Sandberg de-
scribe fundamental performance limitations for distrib-
uted systems that provide sequential consistency [26].

A system that seeks to support arbitrary consistency
must therefore do two things. First, it must allow a range
of consistency guarantees to be enforced. Second, it must
ensure that workloads only pay for the consistency guar-
antees they actually need.

Our system addresses these goals by distinguishing
the availability and response time costs paid by read and
write requests from the bandwidth overhead paid by in-
validation propagation.

The read interface allows each read request to specify
its consistency requirements. Therefore, a read does not
block unlessthat readrequires the local node to gather
more recent invalidations and updates than it already has.
Similarly, most writes complete locally, and a write only
blocks to synchronize with other nodes ifthat write re-
quires it. Therefore, the performance/availability versus
consistency dilemmas are resolved on a per-read, per-
write basis [47].

Conversely, all invalidations that propagate through
the system must carry with them sufficient information
that a later read can get whatever consistency level it re-
quests. Therefore, the system may pay an extra cost:
if a deployment never needs strong consistency, then
our protocol will propagate some information that is
never needed. We believe this cost is acceptable for
two reasons: (1) other features of the PRACTI design—
separation of invalidations from bodies and imprecise
invalidations—minimize the amount of extra data trans-
ferred; and (2) we believe the bandwidth costs of con-
sistency are less important than the availability and re-
sponse time costs. Our experimental evaluation in Sec-
tion 4 quantifies these bandwidth costs, and we argue that
they are insignificant.

Implementation. Because our design uses a variation
of peer-to-peer log exchange [30], adapting flexible con-
sistency techniques from the literature is straightforward.
We provide the TACT flexible consistency interface to
bound order error and temporal error [47]; we have not
yet implemented TACT numerical error, but we see no
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fundamental barriers. Additionally, we include the op-
tion of a two phase write that first distributes invalida-
tions and later distributes bodies [23, 47]; using this op-
tional interface, one can ensure that once a write returns,
no subsequent read can return the data’s old value and
that once a read returns the new value no read will return
the old value. Additionally, as described above, animpre-
cise readskips consistency checks and provides causal
coherence (ordering of updates for a single item) rather
than causal consistency. Finally, we provide a general in-
terface for detecting and resolving write-write conflicts
according to application-specific semantics [21, 30].

3.5 Additional features
Three novel aspects of our implementation further our
goal of constructing a flexible framework that can ac-
commodate the broadest range of policies. First, our im-
plementation allows systems to use any desired policy
for limiting the size of their logs and to fall back on an
efficient incremental checkpoint transferto transmit up-
dates that have been garbage collected from the log. This
feature both limits storage overheads and improves sup-
port for synchronizing intermittently connected devices.
Second, our implementation usesself-tuning body prop-
agation to enable prefetching policies that are simulta-
neously aggressive and safe. Third, our implementation
providesincremental log exchangeto allow systems to
minimize the window for conflicting updates. Due to
space constraints, we will only briefly outline these as-
pects of the implementation.

Garbage collection and incremental checkpoint trans-
fer. Imprecise invalidations yield an unexpected bene-
fit: incremental checkpoint transfer.

Nodes can garbage collect any prefix of their logs,
which allows each node to bound the amount local stor-
age used for the log to any desired fraction of its total
disk space. But, if a noden1 garbage collects log en-
tries older thann1.omitVVand another noden2 requests
a log exchange beginning beforen1.omitVV, thenn1can-
not send a stream of invalidations. Instead,n1 sends a
checkpoint of its per-object state to bringn2’s state up to
n1.currentVV.

In existing server replication protocols [30], in order
to ensure consistency, such a checkpoint exchange must
atomically updaten2’s state for all objects in the system.
Checkpoint exchange, therefore, may block interactive
requests for a long period of time while the checkpoint
is atomically assembled atn1 or applied atn2 and may
waste system resources if a checkpoint transfer is started
but fails to complete.

Rather than transferring information about all objects,
our incremental checkpoints can update arbitrary interest
sets. As Figure 5 illustrates, each incremental checkpoint

II = <start=0,0 end=100,0 target=*>
IS= /A/*

Per−obj state

II = <start=0,0 end=100,0 target=*>

lastPreciseVV=100,0
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Fig. 5: Incremental checkpoints fromn1 to n2.

includes (1) an imprecise invalidation that covers all ob-
jects from the receiver’scurrentVV up to the sender’s
currentVV, (2) interest set state for interest setIS (IS.-
lastPreciseVV), and (3) per-object logical timestamps for
all objects in interest setIS that were invalidated later
than the receiver’sIS.lastPreciseVV. The receiver’scur-
rentVV, IS.lastPreciseVV, and per-object state are thus
brought up to include the updates known to the sender.

Overall, this approach makes checkpoint transfer a
much smoother process under PRACTI than under ex-
isting protocols: the receiver can receive an incremental
checkpoint for a small portion of its ID space and then
either background fetch checkpoints of other interest sets
or fault them in “on demand” as Figure 5 illustrates.

Self-tuning body propagation. In addition to support-
ing demand-fetch of particular objects, our prototype
provides a novel self-tuning prefetching mechanism. A
noden1 subscribes to updates from a noden2 by sending
a list L of directories of interest along with astartV V
version vector.n2 will then sendn1 any bodies it sees
that are inL and that are newer thanstartV V . To do this,
n2 maintains a priority queue of pending sends: when a
new eligible body arrives,n2 deletes any pending sends
of older versions of the same object and then inserts a ref-
erence to the updated object. This priority queue drains
to n1 via a low-priority network connection that ensures
that prefetch traffic does not consume network resources
that regular TCP connections could use [40]. When a
lot of “spare bandwidth” is available, the queue drains
quickly and nearly all bodies are sent as soon as they are
inserted. But, when little “spare bandwidth” is available,
the buffer sends only high priority updates and absorbs
repeated writes to the same object.

Incremental log propagation. The PRACTI prototype
implements a novel variation on existing batch log ex-
change protocols. In particular, in the batch log exchange
used in Bayou, a node first receives a batch of updates
comprising a start timestartV V and a series of writes,
it then rolls back its checkpoint to beforestartV V us-
ing an undo log, and finally it rolls forward, merging the
newly received batch of writes with its existing redo log
and applying updates to the checkpoint. In contrast, our
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incremental log exchange applies each incoming write to
the current checkpoint state without requiring roll-back
and roll-forward of existing writes [11].

The advantages of the incremental approach are ef-
ficiency (each write is only applied to the checkpoint
once), concurrency (a node can process information from
multiple continuous streams), and consistency (con-
nected nodes can stay continuously synchronized which
reduces the window for conflicting writes.) The disad-
vantage is that it only supports simple conflict detec-
tion logic: for our incremental algorithm, a node detects
a write/write conflict when an invalidation’sprevAccept
logical time (set by the original writer to equal the log-
ical time of the overwritten value) differs from the logi-
cal time the invalidation overwrites in the node’s check-
point. Conversely, batch log exchange supports more
flexible conflict detection: Bayou writes contain ade-
pendencycheckprocedure that can read any object to
determine if a conflict has occurred [38]; this works in
a batch system because rollback takes all of the system’s
state to a specified moment in time at which these checks
can be re-executed. Note that this variation is orthogo-
nal to the PRACTI approach: a full replication system
such as Bayou could be modified to use our incremental
log propagation mechanism, and a PRACTI system could
use batch log exchange with roll-back and roll-forward.

4 Evaluation
We have constructed a prototype PRACTI system writ-
ten in Java and using BerkeleyDB [37] for per-node lo-
cal storage. The prototype is fully functional but not
performance tuned. All features described in this paper
are implemented including local read/write/delete, flex-
ible consistency, incremental log exchange, remote read
and prefetch, garbage collection of the log, incremental
checkpoint transfer between nodes, and crash recovery.
We have also constructed several example controllers in
order to emulate existing server replication, client-server,
and object replication systems and to implement and
evaluate novel policies to support mobile users, web edge
servers, and grid scientific computing.

In this section we evaluate the properties of our proto-
type to answer two questions.

1. Does a PRACTI architecture offer significant advan-
tages over existing replication protocols?We find that
our PRACTI system can dominate existing approaches
by providing more than an order of magnitude bet-
ter bandwidth and storage efficiency than replicated
server systems, as much as an order of magnitude
better synchronization delay compared to hierarchical
systems, and consistency guarantees not achievable by
per-object replication systems. Furthermore, even in
environments for which these existing policies suffice,

our flexible architecture can subsume these existing
approaches.

2. What are the costs of PRACTI’s generality?In partic-
ular, is it significantly more expensive to implement
a given system using PRACTI than to implement it
using narrowly-focused specialized mechanisms? We
find that the primary “extra” cost of PRACTI’s gen-
erality is that our system might transmit more consis-
tency information than a customized system might re-
quire. But, our implementation reduces this cost com-
pared to past systems via separating invalidations and
bodies and via imprecise invalidations, so these costs
appear to be minor.

To provide a framework for exploring these issues, we
first focus on partial replication in 4.1. We then examine
topology independence in 4.2. Finally, we examine the
costs and benefits of flexible consistency in 4.3.

4.1 Partial replication
In this section, we focus on partial replication. We find
that PRACTI’s support for partial replication dramati-
cally improves performance compared to full replication
protocols from which our system descends for three rea-
sons:
1. Locality of Reference:partial replication of bodies and

invalidations caneachreduce storage and bandwidth
costs by an order of magnitude for nodes that care
about only a subset of the system’s data.

2. Bytes Die Young:partial replication of bodies can
significantly reduce bandwidth costs when “bytes die
young” [4].

3. Self-tuning Replication:self-tuning replication mini-
mizes response time for a given bandwidth budget.

It is not a surprise that partial replication can yield signif-
icant performance advantages over existing server repli-
cation systems. What is significant is that (1) these exper-
iments provide evidence that despite the the good prop-
erties of server replication systems (e.g., support for dis-
connected operation, flexible consistency, and dynamic
network topologies) these systems may be impractical for
many environments and (2) they demonstrate that these
trade-offs are not fundamental—a PRACTI system can
support PR while retaining the good AC-TI properties of
server replication systems.

Locality of reference. Different devices in a distrib-
uted system often access different subsets of the system’s
data because of locality and different hardware capabili-
ties. In such environments, some nodes may access 10%,
1%, or less of the system’s data, and partial replication
may yield significant improvements in both bandwidth
to distribute updates and space to store data.

Figure 6 examines the impact of locality on replication
cost for three systems implemented on our PRACTI core
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Fig. 6: Impact of locality on replication cost.

using different controllers: a full replication system simi-
lar to Bayou, a partial-body replication system that sends
all precise invalidations to all nodes but that only sends
some bodies to a node, and a partial-replication system
that sends some bodies and some precise invalidations to
a node but that summarizes other invalidations using im-
precise invalidations. In this benchmark, we overwrite a
collection of 1000 files of 10KB each. A node subscribes
to invalidations and body updates for the subset of the
files that are “of interest” to that node. The x axis shows
the fraction of files that belong to a node’s subset, and
the y axis shows the total bandwidth required to transmit
these updates to the node as measured on the prototype.

The results show that partial replication of both bodies
and invalidations is crucial when nodes exhibit locality.
Partial replication of bodies yields up to an order of mag-
nitude improvement, but it is then limited by full repli-
cation of metadata. Our true PRACTI system, however,
can gain over another order of magnitude as locality in-
creases via its use of imprecise invalidations.

Note that Figure 6 shows bandwidth costs. Partial
replication provides similar improvements for space re-
quirements (graph omitted for space.)

Bytes die young. Bytes are often overwritten or deleted
soon after creation [4]. Full replication systems send
all writes to all servers, even if some of the writes are
quickly made obsolete. In contrast, PRACTI replication
can send invalidations separately from bodies: if a file is
written multiple times on one node before being read on
another, overwritten bodies need never be sent.

To examine this effect, we randomly write a set of files
on one node and randomly read the same files on another
node. Due to space constraints, we defer the graph to the
extended report [11]. To summarize: when the write to
read ratio is 2, PRACTI uses 55% of the bandwidth of
full replication, and when the ratio is 5, PRACTI uses
24%.

Self-tuning replication. Separation of invalidations
from bodies enables a novel self-tuning data prefetching
mechanism described in Section 3. As a result, systems
can replicate bodies aggressively when network capacity
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Storage Dirty Data Wireless Internet

Office server 1000GB 100MB 10Mb/s 100Mb/s
Home desktop 10GB 10MB 10Mb/s 1Mb/s
Laptop 10GB 10MB 10Mb/s 50Kb/s

1Mb/s Hotel only
Palmtop 100MB 100KB 1Mb/s N/A

Fig. 8: Configuration for mobile storage experiments.

is plentiful and replicate less aggressively when network
capacity is scarce.

Figure 7 illustrates the benefits of this approach by
evaluating three systems that replicate a web service from
a single origin server to multiple edge servers. In the
dissemination services[28] this system hosts, all up-
dates occur at the origin server and all client reads are
processed at edge servers, which serve both static and
dynamic content. We compare the read response time
observed by the edge server when accessing the database
to service client requests for three replication policies:
Demand Fetch, implemented as a client-server system,
replicates precise invalidations to all nodes but sends new
bodies only in response to demand requests,Replicate All
follows a Bayou-like approach and replicates both pre-
cise invalidations and all bodies to all nodes, andSelf
Tuning exploits PRACTI to replicate precise invalida-
tions to all nodes and to have all nodes subscribe for all
new bodies via the self-tuning mechanism. We use a syn-
thetic workload where the read:write ratio is 1:1, reads
are Zipf distributed across files (α = 1.1), and writes are
uniformly distributed across files. We use Dummynet to
vary the available network bandwidth from 0.75 to 5.0
times the system’s average write throughput.

As Figure 7 shows, when spare bandwidth is avail-
able, self-tuning replication improves response time by
up to a factor of 20 compared toDemand-Fetch. A
key challenge, however, is preventing prefetching from
overloading the system. Whereas our self-tuning ap-
proach adapts bandwidth consumption to available re-
sources,Replicate Allsends all updates regardless of
workload or environment. This makesReplicate Alla
“poor neighbor”—it consumes bandwidth corresponding
to the current write rate for prefetching even if other ap-
plications could make better use of the network.
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Fig. 9: Synchronization time among devices for different network topologies and protocols.

4.2 Topology independence
In this section we examine topology independence by ex-
amining two environments, a mobile data access system
that is distributed across multiple devices and a wide-
area-network file system designed to make it easy for
PlanetLab and Grid researchers to run experiments that
rely on distributed state. In both cases, PRACTI’s com-
bined partial replication and topology independence al-
lows our design to dominate topology-restricted hierar-
chical approaches by doing two things:
1. Adapt to changing topologies: a PRACTI system can

make use of the best paths among nodes.
2. Adapt to changing workloads: a PRACTI system can

optimize communication paths to, for example, use di-
rect node-to-node transfers for some objects and dis-
tribution trees for others.

For completeness, our graphs also compare against
topology-independent, full replication systems; the data
indicate that topology independence without partial repli-
cation is not an attractive alternative. Due to space limits,
we do not comment further on this subset of the results.

Mobile storage. We evaluate PRACTI in the context
of a mobile storage system that distributes data across
palmtop, laptop, home desktop, and office server ma-
chines. We compare PRACTI to a client-server Coda-
like system that supports partial replication but that dis-
tributes updates via a central server [21] and to a full-
replication Bayou-like system that can distribute updates
directly between interested nodes but that requires full
replication [30]. All three systems are realized by imple-
menting different controller policies.

As summarized in Figure 8 our workload models a
department file system that supports mobility: an office
server stores data for 100 users, a user’s home machine
and laptop each store one user’s data, and a user’s palm-
top stores 1% of a user’s data. Note that due to resource
limitations, we store only the “dirty data” on our test ma-
chines, and we use desktop-class machines for all nodes;
we control the network bandwidth of each scenario using
a library that throttles transmission.

Figure 9 shows the time to synchronize dirty data
among machines in three scenarios: (a)Plane: the user
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Fig. 10: Execution time for the WAN-Experiment benchmark.

is on a plane with no Internet connection, (b)Hotel: the
user’s laptop has a 50Kb/s modem connection to the In-
ternet, and (c)Home: the user’s home machine has a
1Mb/s connection to the Internet. The user carries her
laptop and palmtop to each of these locations and co-
located machines communicate via wireless network at
speeds indicated in Figure 8. For each location, we mea-
sure time for machines to exchange updates: (1) P↔L:
the palmtop and laptop exchange updates, (2) P↔L:
the palmtop and home machine exchange updates, (3)
L→H: the laptop sends updates to the home machine, (4)
O→All: the office server sends updates to all nodes.

In comparing the PRACTI system to a client-server
system, topology independence has significant gains
when the machines that need to synchronize are near one
another but far from the server: in the isolatedPlanelo-
cation, the palmtop and laptop can not synchronize at
all in a client-server system; in theHotel location, direct
synchronization between these two co-located devices is
an order of magnitude faster than synchronizing via the
server (1.7s v. 66s); and in the home location directly
synchronizing co-located devices is between 3 and 20
times faster than client-server synchronization.

WAN-FS for Researchers. Figure 10 evaluates a
wide-area-network file system called PLFS designed for
PlanetLab and Grid researchers. The controller for PLFS
is simple: for invalidations, PLFS forms a multicast tree
to distribute all precise invalidations to all nodes. And,
when anINVALID file is read, PLFS uses a DHT-based
system [43] to find the nearest copy of the file; not only
does this approach minimize transfer latency, it effec-
tively forms a multicast tree when multiple concurrent
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reads of a file occur [2, 39]. Like Shark [2], PLFS is de-
signed to be convenient for allowing a user to export data
from her local file system to a collection of remotely run-
ning nodes. However, unlike the read-only Shark system,
PLFS supports read/write data.

We examine a 3-phase benchmark that represents run-
ning an experiment: in phase 1Disseminate, each node
fetches 10MB of new executables and input data from
the user’s home node; in phase 2Process, each node
writes 10 files each of 100KB and then reads 10 files
from randomly selected peers; in phase 3,Post-process,
each node writes a 1MB output file and the home node
reads all of these output files. We compare PLFS to three
systems: a client-server system, client-server with coop-
erative caching of read-only data (e.g., a Shark-like sys-
tem [2]), and server-replication (e.g., a Bayou-like sys-
tem [30]). All 4 systems are implemented over PRACTI.

Figure 10 shows performance for an experiment run-
ning on (a) 50 distributed nodes each with a 5.6Mb/s con-
nection to the Internet (we emulate this case by throttling
bandwidth) and (b) 50 “cluster” nodes at the University
of Texas with a switched 100Mbit/s network among them
and a shared path via Internet2 to the origin server at the
University of Utah.

The speedups range from 1.5 to 9.2, demonstrating the
significant advantages enabled by the PRACTI architec-
ture. Compared to client/server, it is faster in both the
Dissemination and Process phases due to its multicast
dissemination and direct peer-to-peer data transfer. Com-
pared to full replication, it is faster in the Process and
Post-process phases because it only sends the required
data. And compared to cooperative caching of read only
data, it is faster in the Process phase because data is trans-
ferred directly between nodes.

4.3 Arbitrary consistency
This subsection first examines the benefits and then ex-
amines the costs of supporting flexible consistency.

Improved consistency trade-offs. Gray [15] and Yu
and Vahdat [46] show a trade-off: aggressive propaga-
tion of updates dramatically improves consistency and
availability but can also increase system load. PRACTI
has three features that improve these trade-offs: (1) sepa-
ration of invalidations from bodies allows invalidations
to propagate aggressively, (2) streaming log exchange
(rather than batch) allows nodes to continuously update
one another when they are connected, and (3) self-tuning
body propagation maximizes the amount ofVALID data
at a node for a given consistency requirement and band-
width budget [28].

We examine a range of consistency requirements and
network failure scenarios via simulation (all other exper-
iments in this paper are prototype measurements.) We
use the read/write workload described for Figure 7. We

use an average network path unavailability of 0.1% with
Pareto distributed repair time R(t) =1− 15t−0.8 [10].

In Figure 11-a we measure the best order error that
can be maintained for a given bandwidth budget. Order
error constrains the number of outstanding uncommit-
ted writes [47]. We compare theTACT Aggressivepol-
icy [46] to a PRACTI Prefetchpolicy that aggressively
distributes invalidations as in TACT’s policy but that dis-
tributes bodies using the self-tuning approach. This tech-
nique reduces the bandwidth needed to maintain reason-
able consistency by a factor of 3 compared toTACT Ag-
gressiveand improves the consistency bounds attainable
for some bandwidth budgets by orders of magnitude.

Figure 11-b plots system unavailability for an order
error of 100 as bandwidth varies. Following Yu and Vah-
dat’s methodology [46], we say the system isavailable
to a read or write request if the request can issue with-
out blocking and the system isunavailableif the request
must block to meet the consistency target. When band-
width is limited, PRACTI dramatically improves system
availability under consistency constraints compared to
full replication.

Consistency overheads. As Section 3.4 describes,
PRACTI ensures that individual requests pay only the la-
tency and availability costs of consistency that they re-
quire. But, distributing sufficient bookkeeping informa-
tion to support a wide range of per-request semantics
does impose a modest bandwidth cost. In particular, ob-
ject replication systems [16, 34] do not provide cross-
object consistency guarantees. In the context of our sys-
tem, if all applications in a system only care about coher-
ence guarantees, the system could completely omit im-
precise invalidations.

Figure 11-c quantifies the cost to distribute both pre-
cise and imprecise invalidations (in order to support con-
sistency) versus the cost to distribute only precise inval-
idations for the subset of data of interest and omitting
the imprecise invalidations (and thus only supporting co-
herence.) Note that the cost of imprecise invalidations
depends on the workload: if there is no locality and writ-
ers tend to quickly alternate between writing objects of
interest and objects not of interest, then the imprecise in-
validations “between” the precise invalidations will cover
relatively few updates and save relatively little overhead,
but if writes to different interest sets arrive in bursts, then
the system will generally be able to accumulate large
numbers of updates into imprecise invalidations. We vary
the fraction of data “of interest” to a node on the x axis
and show the invalidation bytes received per write on the
y axis. All objects are equally likely to be written by a
set of remote nodes, but the locality of writes varies: the
“No Locality” line shows the worst case scenario, with
no locality across writes, and the “burst=10” line shows
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Fig. 11: Consistency trade-offs (a-b) and costs (c).

the case when a write is ten times more likely to hit the
same interest set as the previous write than to hit a new
interest set.

When there is significant locality for writes, the cost
of distributing imprecise invalidations is small: imprecise
invalidations to support consistency never add more than
20% to the bandwidth cost of supporting only coherence.
When there is no locality, the cost is higher, but in the
worst case imprecise invalidations add under 50 bytes per
precise invalidation received. Overall, the difference in
invalidation cost is likely to be small relative to the total
bandwidth consumed by the system to distribute bodies.

5 Related work
Replication is fundamentally difficult. As noted in Sec-
tion 3.4, the CAP dilemma [7, 36] and performance/-
consistency dilemma [26] describe fundamental availa-
bility/performance/consistency trade-offs. As a result,
systemsmustmake compromises or optimize for specific
workloads. Unfortunately, these workload-specific com-
promises are often reflected in system mechanisms, not
just their policies.

In particular, state of the art mechanisms allow a de-
signer to retain full flexibility along at most two of the
three dimensions of replication, consistency, or topology
policy. Section 2 compares PRACTI with existing PR-
AC [1, 6, 12, 18, 21, 29], AC-TI [14, 20, 23, 30, 47], and
PR-TI [16, 34] approaches. These systems can be seen as
special case “projections” of the more general PRACTI
mechanisms [11].

Our PLFS prototype uses a DHT-based system [43] in
its control plane to track where objects are stored. Other
DHT-based systems store the data, itself, in the DHT
[9, 31, 32, 33]. These systems implement a specific—
if sophisticated—topology and replication policy: they
can be viewed as generalizations of client-server sys-
tems where the server is split across a large number of
nodes on a per-object or per-block basis for scalability
and replicated to multiple nodes for availability and reli-
ability. We believe these policies could be implemented
over PRACTI mechanisms, but doing so is future work.

Like PRACTI, the Deceit file system [36] provides
a flexible substrate that subsumes a range of replication

systems. Deceit, however, focuses on replication across a
handful of well-connected servers, and it therefore makes
very different design decisions than PRACTI. For exam-
ple, each Deceit server maintains a list of all files and
of all nodes replicating each file, communication among
servers is via an Isis [5] group for each distinct subset of
servers, and all nodes replicating a file receive all bodies
for all writes to the file.

Microsoft has announced that a new replication sys-
tem, WinFS, will appear at some future date [41]. It
will reportedly support synchronization across multiple
nodes, however no detailed technical description of the
protocol has been published. One report [42] suggests
that the system transfers sets of updated items “rather
than maintaining and synchronizing a log of each indi-
vidual action,” which may indicate that WinFS takes a
PR-TI approach.

The web edge server system described in Section 4.1
is based on the TRIP system [28]. TRIP has been exten-
sively evaluated via simulation [28], but ours is the first
implementation of the approach.

6 Conclusion
In this paper, we introduce the PRACTI paradigm for
replication in large scale systems and we describe the
first system to simultaneously provide all three PRACTI
properties. Evaluation of our prototype suggests thatby
disentangling mechanism from policy, PRACTI replica-
tion enables significantly better trade-offs for system de-
signers than possible with existing mechanisms.By sub-
suming existing approaches and enabling new ones, we
speculate that PRACTI may serve as the basis for auni-
fied replication architecturethat simplifies the design and
deployment of large-scale replication systems.
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A Algorithm details
The body of this paper describes the PRACTI proto-

col, but it omits some important low-level details. These
details follow from the high-level PRACTI design pro-
vided in the paper, but our experience developing the
PRACTI prototype was that getting these details pre-
cisely right was one of the most intellectually challenging
parts of our effort.

Figure 12 details the incremental log exchange algo-
rithm for processing a causally-consistent stream of in-
coming generalized invalidationsgi1, gi2, . . . starting
from logical timeprevV V . A generalized invalidationgi
can be either a precise invalidation or an imprecise inval-
idation.prevV V is the logical time of the causal stream
that was currentjust beforethe nextgi in the stream was
applied.

There are three sets of state that are updated: (1) each
incoming invalidation is inserted, sorted by logical time,
into the local log (line 21), (2) precise invalidations up-
date the local per-object state checkpoint (lines 29 to 32,
and (3) imprecise invalidations update the interest set sta-
tus (lines 22 to 24 and lines 37 to 40).

The implementations of the log update and the inter-
est set status update are complicated by two factors. First,
imprecise invalidations span an array of per-node logical
start times to an array of per-node logical end times, and
our system concurrently processes multiple incoming in-
validation streams, yet we must apply invalidations to the
local state in a causally-consistent order. Second, we
wish to maximize the amount of information extracted
from each invalidation so that the amount of IMPRE-
CISE state is minimized. We have found that we must
carefully define the precise low-level rules for updating
interest set status and the log.

Interest set status. As Section 3.2 indicates, each node
groups its objects intointerest setsand applies imprecise
invalidations to interest sets rather than individual objects
to (a) improve performance and (b) ensure liveness. To
accommodate different workloads across nodes, our pro-
totype allows each node to independently group objects
into interest sets and to dynamically split and join inter-
est sets in response to workload changes. To ensure con-
sistency, a node must mark an interest setIMPRECISE
when a new imprecise invalidation intersects with it. To
ensure liveness, when a node has later seen sufficient pre-
cise invalidations, it must mark interest set as PRECISE.

To explain how interest set status is tracked, we now
detail a node’s algorithm for processing an incoming
stream of invalidations. As indicated in Figure 12 line 7,
each incoming invalidation stream consists of a logical
start timestartV V followed by a series of general in-
validationsgi1, gi2, . . . such that any invalidation whose
start time logically occurs afterstartV V and on which

gii causally depends appears beforegii.
At the core of the algorithm is a simple idea: an inter-

est set isPRECISEif it has missed no precise invalida-
tions. Three variables are therefore central to processing
an invalidation stream:

1. Theglobal currentV V version vector holds the high-
est logical time observed by the system across all in-
validations processed from all streams.

2. The per-interest-set last precise version vector
(IS.lpV V ) indicates the highest logical time for which
interest setIS is PRECISE. In particular,IS.lpV V
holds the highest logical time such that all objects in
interest setIS reflect all writes up toIS.lpV V . An
interest setIS is regarded asPRECISEif and only if
IS.lpV V = currentV V . Otherwise, the interest set
may have missed one or more precise invalidations,
and we regard the interest set asIMPRECISE.

3. The per-stream prevV V variable always holds the
logical time justbefore the next invalidation in the
stream is applied. Each invalidationgi is processed in
the context of the logical time at which it was applied
to determine ifgi can advanceIS.lpV V . prevV V is
initialized to the stream’sstartV V and advanced to
includegi.end as eachgi is processed.

The interest set status information is updated in four
places as summarized in Figure 13. The first three up-
dates occur whengi is first encountered in the stream,
i.e., when it is known that there is no event that is causally
afterprevV V and causally beforegi. The fourth occurs
at gi.end, i.e., when it is known that no remaininggii in
the stream contains any event that causally occurs before
gi.end.

When gi is first encountered in the stream, we al-
ways advancecurrentV V to include theend timeof gi
because the system now reflects information ingi (up-
date number 1 in the table, line?? in the pseudo-code).
Further,gi’s presence in the causal invalidation stream
means that any interest set that wasPRECISEbefore
gi is still PRECISEto gi.start. So, if interest setIS
wasPRECISEat timestream.prevV V then we advance
IS.lpV V . We advanceIS.lpV V differently depending
on whethergi is a precise or imprecise invalidation. If
gi is precise, then there have been no imprecise invali-
dations betweenstream.prevV V andgi.start, and we
advanceIS.lpV V to includegi.end (note: gi.start =
gi.end if gi is precise.) That case is update number 2
in the table and line 26 in the pseudo-code. Conversely,
if gi is imprecise, we can only advanceIS.lpV V to just
beforegi.start (i.e.,∀α : IS.lpV Vα = max(IS.lpV Vα,
gi.startα−1)). That case is update number 3 in the table
and line 28 in the pseudo-code.

Two points should be emphasized:
• Notice that when there is a gap in the logical time

sequence for a given node,gi.start may exceed
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1: // Global state:
2: // currentV V – node’s current version vector
3: // IS.lpV V – IS’s last precise version vector
4: // CPobj – per-object checkpoint
5: // log – replay log
6: // Per-stream state:
7: // stream = startV V, gi1, gi2, . . .
8: // gi – next generalized invalidation to apply
9: // prevV V – logical time before next gi applied

10: // pending – set of gi’s whose end time has not passed
11:
12: ProcedureProcessInvalStream(IS, stream)
13: prevV V = stream.readObj()
14: if ! includes(currentV V, prevV V )
15: return; //Reject streams that do not preserve prefix property
16: pending = new Set()
17: gi = stream.readObj()
18: while (gi 6= EOF ) do
19: nextStartV V =advanceToInclude(prevV V, gi.start)
20: if !(∃bufferedInval ∈ pending |includes(nextStartV V,bufferedInval.end))
21: log.insert(gi, prevV V )
22: //Update interest set status
23: currentV V =advanceToInclude(currentV V, gi.end) // update (1)—see text
24: if includes(IS.lpV V, prevV V ) // If no gaps, update lpVV
25: if gi.isPrecise() // Advance to include precise inval
26: IS.lpV V =advanceToInclude(IS.lpV V, gi.start) // update (2)
27: else// Advance to just before imprecise inval
28: IS.lpV V =advanceNoInclude(IS.lpV V, gi.start) // update (3)
29: //Update per-object state
30: if gi.isPrecise()
31: CPgi.objId.valid = INV ALID
32: CPgi.objId.accept = gi.start
33: pending.insert(gi) // Apply to non-overlapping later
34: prevV V = nextStartV V // Update stream logical time
35: gi = stream.readObj()
36: else// Apply non-overlappingbufferedInval frompending at end time
37: if !(bufferedInval.target intersectsIS)
38: if includes(lpV V, prevV Vα)
39: IS.lpV V =advanceToInclude(IS.lpV V,bufferedInval.endV V ) // update (4)
40: pending.remove(bufferedInval)
41:
42: ProcedureadvanceToInclude(V V 1, V V 2)
43: for all nodeId do
44: retV VnodeId = max(V V 1nodeId, V V 2nodeId)
45: returnretV V
46:
47: ProcedureadvanceNoInclude(V V 1, V V 2)
48: for all nodeId do
49: retV VnodeId = max(V V 1nodeId, V V 2nodeId − 1)
50: returnretV V
51:
52: Procedureincludes(V V 1, V V 2) // Does VV1 include VV2?
53: for all nodeId do
54: if V V 2nodeId > V V 1nodeId

55: return false
56: return true

Fig. 12:ProcessInvalStreamfor interest setIS stream = {prevV V , gi1, gi2, . . .}

Update Code IS state gi gi Action
Number Line When PRECISE/IMPRECISE PRECISE/IMPRECISE intersectsIS

(1) 23 gi.start ANY ANY ANY AdvancecV V to includegi.end

(2) 26 gi.start PRECISE PRECISE ANY AdvanceIS.lpV V to includegi.end
(= gi.end) (= gi.start)

(3) 28 gi.start PRECISE IMPRECISE ANY AdvanceIS.lpV V to just beforegi.start

(4) 39 gi.end PRECISE IMPRECISE NO AdvanceIS.lpV V to includegi.end

Fig. 13: Summary of cases for updating interest set PRECISE/IMPRECISE status.
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(b) Log exchange with gap-filling and intersection.

Fig. 14: Example log exchange when nodeη first receives a
log from α, then receives a log fromβ, and then sends the
combined log toδ. Generalized invalidations have three fields:
< start, end, target >. Note that all writes were issued by
nodeγ and, for clarity, we show onlyγ’s component for all
version vectors.

IS.lpV V even though no invalidations were skipped.
This is why we maintainprevV V for each stream
and why line 24 comparesIS.lpV V againstprevV V
rather than againstgi.start when deciding whether it
is safe to advanceIS.lpV V .

• Notice that an imprecise invalidationgi will always
advancecurrentV V to includegi’s endtime but can
at most advanceIS.startV V to just beforegi’s start
time. It is this difference that causes imprecise invali-
dations to make interest setsIMPRECISE.

If we stopped here, an imprecise invalidation would
make both interest sets it overlaps and interest sets it does
not overlapIMPRECISE. The algorithm addresses this
issue by buffering each imprecise invalidation after it is
first applied at its start time and applying a buffered in-
validationbufferedInvalagain oncestream.prevV V in-
cludesbi’s end time (i.e., once allgis whose start times
preceedbufferedInval’s end time have been processed.)
Buffered invalidationbufferedInvaladvancesIS.lpV V
to includebufferedInval.end for any interest setIS that
(a) bufferedInval.target doesnot intersect and that (b) is
PRECISEas of logical timestream.prevV V . This case
is update number 4 in the table and line 39 in the code.
Notice that by waiting untilbi’s end time before advanc-
ing “nonoverlapping” invalidations to the end time, we
avoid erroneously advancingIS.lpV V for an interest set
that becomesIMPRECISEbetweenbufferedInval.start
andbufferedInval.end.

Finally notice that the algorithm above ensures that
if an interest setIS becomesIMPRECISE, it can be
made precise by receiving a stream that contains all pre-
cise invalidations that occurred betweenIS.lpV V and
currentV V and that targetsIS.

Log update. As indicated in line 21, a node stores each
incoming invalidation in its log.

Imprecise invalidations complicate log updates. For
example, a nodeη may receive different subsets of infor-
mation from different peersα andβ. η must ensure that
imprecise invalidations received fromα do not “mask”
precise invalidations received fromβ and vice versa. No-
tice that the algorithm just described updates a node’s lo-
cal state by interpreting eachgi relative to a per-stream
prevV V , which allows the algorithm to infer that there
are no missing invalidations betweenprevV V and gi.
But, if η were simply to store eachgi in its log, some of
this valuable “no missing invalidations” information that
comes fromgi’s position in a stream could be lost. Then,
as Figure 14-(a) illustrates, ifη were to send its log to
some other nodeδ, then even ifδ receives the samegis
asη, δ could end upIMPRECISEwhereη is PRECISE
(e.g., for objectsA).

In order to ensure that a node can transmit all informa-
tion received including both the generalized invalidations
and the information implicit in the incoming invalidation
stream, we augment our logs in three ways.

First, each node maintains separateper-writer logs:
when a node insertsgi into its log, it first decomposes
gi into per-writer general invalidations and then inserts
the per-writer pieces into separate logs. Decomposinggi
into per-writer general invalidationsgiα is simple: for
each serverα in gi.start, generategiα with start =
gi.startα, end = gi.endα, andtarget = gi.target.

Second, each per-writer log usesgap filling to explic-
itly encode the knowledge that each incoming stream is
causally consistent and is therefore FIFO consistent for
each writer. When a node insertsgiα into its per-writer
log for α, if giα is newer than the newest element in the
log, it fills any gap betweengiα.start and the existing
element by inserting a new gap-filling invalidation with a
start stamp one larger than the highest existing end stamp,
an end stamp one smaller thangiα.start, and an empty
target.

Third, each per-writer log usesintersectionto com-
bine information received across multiple streams. In
particular, we maintain the invariant that there is at most
one invalidation that covers any moment in time in a per-
writer log. We intersect two general invalidationsa andb
by replacing them with up to three general invalidations:
the first covers the time from the earlier start to the later
start and targets the objects targeted by the earlier start;
the second covers the time from the later start to the ear-
lier end and covers targets represented by the intersection
of a andb’s targets; and the third covers the time from the
earlier end to the later end and covers the targets of the
later end.

As Figure 14-(b) illustrates, when a node sends a
stream of invalidations to another node, it discards gap-
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filling invalidations and it combines per-writer invalida-
tions into multi-writer invalidations.

Forming imprecise invalidations. When a controller
asks nodeα to send a stream of invalidations fromα’s
log to nodeβ, the controller specifies two parameters that
each filter the transmitted information:startV V pro-
vides a filter on logical time, andpreciseF ilter provides
a filter on the ID space.α replies with a causally consis-
tent stream of all invalidations it knows about that logi-
cally occurred afterstartV V . Invalidations whose tar-
get intersectspreciseF ilter are sent as is (typically they
are precise, but some may be imprecise), butα combines
other invalidations into imprecise summaries as just de-
scribed. PRACTI forms an imprecise invalidationI by
combining generalized invalidationsA andB. I hasstart
andendarrays with entries for every nodeη in eitherA
or B’s start, andI.startη = min(A.startη, B.startη),
andI.endη = max(A.endη, B.endη). Finally,I.target
encompasses all objects encompassed byA andB’s tar-
gets. This process is incremental and continuous—as
new invalidations arrive atα, α sends them on toβ once
all causally prior invalidations have been sent.

Split-join example. The following example is a bit in-
volved, but we have found that working through it step by
step sheds considerable light on the purpose of the rules
for updating the interest set status and loggap fillingand
intersectionjust described.

Figure 15 illustrates these mechanisms in action.
Nodeα writes objects a, b, and c; nodeβ cares about
object a and receives fromα precise invalidations about
a and imprecise invalidations about b and c. Nodeγ cares
about object c and receives fromα precise invalidations
about c and imprecise invalidations about a and b. Fi-
nally, nodeδ cares about a and c and receives fromβ
precise invalidations about a (but imprecise invalidations
about b and c due toβ’s imprecision) and fromγ precise
invalidations about c (but imprecise invalidations about a
and b.) First,α sends a stream of invalidations (precise
for a and imprecise for b and c) toβ. As illustrated in the
figure, each invalidation advancesβ’s per-invalidation-
stream, per-interest-setstartV V value as well asβ’s per-
interest-set last precise version vector (lpV V ) and cur-
rent version vector (cV V ) for interest set{a}. However,
because the second invalidation (4, 6, bc) intersects inter-
est set{b,c}, that message causes that interest set to be-
come imprecise and subsequent invalidations fail to ad-
vance that interest set’slpV V . After processing all four
invalidations in that stream,β is precise for interest set
{a}, but imprecise for interest set{b,c}. γ’s behavior
processing the stream of precise invalidations for c and
imprecise invalidations for a and b is similar.

Then, whenβ andγ send their log contents toδ, we
show the case whereγ processesβ’s first three invalida-

tions, thenγ’s four invalidations, and finallyβ’s fourth
invalidation. As the figure shows, after processing the
first three invalidations fromβ, δ is precise for{a}, but
imprecise for{b} and{c}. The next four messages (from
γ) makeδ precise for{c} but imprecise for{a} and{b}.
Finally, the last message (fromβ) bringsδ to the state one
would desire: after seeing all precise invalidations for ob-
jects a and c,δ is precise for both interest set{a} and{c}
despite the fact that these precise messages were mixed
with some imprecise invalidations for objects a, b, and c.
Finally, one may verify that because of theδ’s gap filling
and intersection operations,δ’s log contains sufficient in-
formation so that a nodeε that receivesδ’s log contents
could get precise updates for objects a or c.4 Conversely,
note that ifδ were simply to interleave the messages it
received fromα andβ without gap filling and intersec-
tion and then send them toε, information would be lost
andε would be left imprecise for interest sets{a}, {b},
and{c}.

B General framework
PRACTI mechanisms represent a general framework for
implementing a broad range of replication systems that
specify their own policies for distributing bodies, han-
dling read misses, sending invalidations, and enforcing
consistency. For example, existing 2-of-3 protocols (AC-
TI, PR-AC, and PR-TI) can be viewed as special cases or
projections of the PRACTI protocol with certain features
“optimized out” of the mechanisms by embedding re-
strictive policy assumptions. At the same time, the more
general PRACTI mechanisms allow new trade-offs that
existing protocols can not accommodate.

AC-TI. Server-replication systems such as Bayou [30],
TACT [47], and lazy replication [23] allow arbitrary
communication between nodes and can provide flexible
consistency, but they fully replicate all objects in a vol-
ume and send all updates to all nodes that serve the vol-
ume. In the PRACTI framework, these AC-TI protocols
can be viewed as using a replicate-all strategy for both
precise invalidations and bodies, never sending or receiv-
ing imprecise invalidations, and not implementing any
mechanism to handle read misses because objects are al-
waysPRECISEandVALID.

PR-AC. Client-server and hierarchical systems such as
AFS [18], Sprite [29], and Coda [21] allow nodes to
cache or prefetch arbitrary subsets of data and in prin-
ciple could support a range of consistency policies [44]
(though, in practice, such systems typically implement

4And, in this case, b. Our current log maintenence algorithm ac-
tually extracts a bit more information from the stream of incoming re-
quests than our interest set status algorithm; we are not sure if there is
a clean way to extract this information during interest set maintenance
as well.
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Fig. 15: Illustration of imprecise invalidation mechanisms insplit-join scenario. Nodesα, β, γ, andδ share objects a, b, and c.
At each node, we show the per-interest-set information (last precise version vectorlpV V and current version vectorcV V ), the
per-invalidation-stream information (startV V and a series of generalized invalidations), and the per-interest-set per-invalidation-
stream information (startV V as it is updated as each generalized invalidation is applied.) For clarity, we show onlyα’s component
for all version vectors and omit the node ID (α) in accept stamps.

a specific consistency policy). But these protocols fun-
damentally assume a topology policy that restricts com-
munications to hierarchical paths. Even when client-
server systems permit limited client-client communica-
tion for cooperative caching [12] serialization of con-
trol messages at the server is vital for reasoning about
consistency [8]. In the PRACTI framework, these PR-
AC protocols can be viewed as using separate invalida-
tion and body messages, with invalidations sent by par-
ents to children and bodies fetched by children from par-
ents. Their callback protocols can be viewed as special-
ized instances of PRACTI’s sendInval module that ac-
tively track which objects a child caches and that send
precise invalidations only for those objects. Note that in
PRACTI, the module would also send imprecise inval-
idations covering any omitted precise invalidations, but
the hierarchical topology allows PR-AC protocols to omit
these implicit imprecise invalidations. Interestingly, re-
covery when a server loses callback state [3] or when
a topology changes [45] falls back on what are essen-
tially explicit imprecise invalidations: the client receives
a message (i.e., an imprecise invalidation covering all ob-
jects) indicating that it should treat all of its consistency
state as suspect (i.e.,IMPRECISE) and the client then
revalidates all objects with its server (i.e., make the inter-
est set precise).

PR-TI. Object replication systems such as Ficus [16]
and Pangaea [34] maintain synchronization information
separately for each object and support arbitrary topol-
ogy policies and arbitrary placement of objects on nodes.
However, although these systems can provide someco-
herenceguarantees on the order of reads and writes when
an individual object is considered, they provide limited
consistencyguarantees regarding the ordering of reads
and writes across objects. Furthermore, these systems
cleanly separate invalidations and body messages: for

any given objecto and nodeη they either propagateo’s
update bodies toη or propagate no information at all
abouto’s updates toη. In the PRACTI framework, these
PR-TI protocols can be viewed as using a replication pol-
icy that sends invalidations and bodies for a given object
to the same policy-specified subset of nodes and also as
omitting all imprecise invalidations and thereby giving
up the ability to consistently order writes across different
objects.

PRACTI. In comparing PRACTI to these protocols, a
key distinction is how consistent ordering of writes is
achieved. Server-replication (AC-TI) and client-server
(PR-AC) systems order invalidations across objects by
enforcing aninclusion property—any node that receives
and then transmits updates must see all updates for all ob-
jects about which it may speak. Server-replication mech-
anisms enforce this property by replicating all updates
to all nodes, and client-server systems meet this obliga-
tion by assuming hierarchical inclusion. Because these
policy assumptions are deeply embedded in these mech-
anisms it is difficult to, for example, “tweak” Bayou to
support partial replication or to “tweak” Coda to support
arbitrary topologies. Conversely, PRACTI introduces ex-
plicit imprecise invalidations to allow ordering of all up-
dates without assuming full replication or hierarchical
communication. Alternatively, object replication systems
(PR-TI) dispense with this requirement by not providing
cross-object ordering guarantees.

In addition to subsuming existing mechanisms,
PRACTI exposes new regions of the design space and
potentially offers better trade-offs than existing protocol
families. For example, a designer who wants consistency
is no longer forced to choose between using a desired
topology but with full replication on one hand versus
using a desired replication strategy but with restricted
topology on the other. Section 4 examines several ex-
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amples in detail and demonstrate that PRACTI can gain
significant advantages compared to the alternatives.

As one example, consider a personal file system that
distributes a user’s data across a dozen information de-
vices (e.g., a desktop machine, laptop machine, palmtop
machine, home machine, mobile phone, media player,
etc.). In such an environment, partial replication seems
essential to cope with the dramatically varying capacities
of different devices and to exploit locality of reference.
For example, it seems undesirable to require a palmtop
to store all the files available from a desktop. At the
same time, node mobility makes it highly desirable for
nodes to be able to optimize communications to chang-
ing network conditions. For example, if a user is in a
hotel room or on a plane, she would like to be able to di-
rectly synchronize updates between her palmtop, phone,
and laptop rather than use a hierarchical file system that
requires her to send updates to and then retrieve updates
from a server via a slow or expensive modem connec-
tion. Finally, causal and eventual consistency simplify
reasoning about and resolving the inevitable inconsisten-
cies introduced by disconnected operation. For example,
causal consistency and eventual consistency are essential
for ensuring that Bayou and TACT’s application-specific
detection and resolution procedures eventually agree on
the same total order on all writes and therefore eventually
converge on the same state: given the power of such con-
flict resolution mechanisms, even with coherence of each
individual object, any difference in the order that writes
to different objects are observed could cause a “butter-
fly effect” where the states of different nodes arbitrarily
diverge.

As a second example, a global file system for Grid
or PlanetLab researchers might also benefit from the
PRACTI properties. Requiring full replication appears
untenable: partial replication allows data to be sent only
where it is needed to, for example, send different subsets
of input to different processing nodes. And topology in-
dependence also seems valuable to send datasets by the
best available paths; for example, one could send a large
data set from a repository to a distant cluster by sending
the data once across the WAN to one node in the cluster
and then flooding the data to other nodes in the cluster
using the cluster’s fast LAN links. Finally, flexible con-
sistency guarantees allow the replication system to meet
the application’s consistency requirements without pay-
ing for stronger guarantees than required.

Finally, consider an enterprise file system spanning
multiple departments in a university and supporting dis-
connected operation by portable devices. Partial repli-
cation avoids the need for computer science department
servers to see all updates by faculty in the biology depart-
ment except for a few subdirectories that contain joint
projects. Similarly, a user’s laptop does not need to see

updates by all other users; instead it just sees updates
relating to projects the user is working on. Topology in-
dependence allows peer-to-peer synchronization of mo-
bile devices when a group on a retreat or at a conference
hotel is collaborating on a document. And arbitrary con-
sistency could provide strong guarantees for connected
servers but flexible guarantees and reconciliation for mo-
bile devices.

C Additional features
Due to space constraints, the main body of Section 3.5
omits discussion of several additional features of our im-
plementation.

Write commitment. As in Bayou [30], PRACTI pro-
vides eventual consistency: for any writew, eventually
all nodes will agree on a total order of all writes pre-
cedingw. A node considers a writew committedwhen
the node knowsw’s final position in the global total or-
der. For simplicity, we use Golding’s algorithm [14]:
each nodeη maintains acurrentV V version vector, and
each entrycurrentV Vα stores the highest accept stamp
of any invalidation byα thatη has processed. Then, any
write whose accept stamp is less than the lowest entry in
currentV V is committed. Supporting other write com-
mitment protocols such as primary commit [30] or vot-
ing [20] would be straightforward, but we have not im-
plemented these variations yet.

Bound writes. Separating invalidations from updates
enables partial replication but also raises the issue of re-
liability: in Bayou, for example, all nodes have copies of
all data, but a PRACTI system must enforce an explicit
policy decision about the minimum acceptable level of
replication so that the loss of a node or a local cache re-
placement decision does not render some data unavail-
able or the storage system unreliable. We provide a sim-
ple, low-level mechanism that supports a broad range of
high-level policies from maintaining a fixed number of
“gold” copies of each object [34] to propagating all data
to a well-provisioned central server [18] or replicated
server “core” [21, 22] to replicating everything to every-
one [30]. When an application issues a bound write, it
creates abound invalidationthat includes the body of the
write. Bound invalidations propagate through the system
using log exchange and controllers manage this propaga-
tion to meet replication requirements. A controller can
later issue messages to unbind a write, after which the
invalidation can propagate without the body.

Embargoed writes. We provide anembargoed write
low-level interface over which we provide a 2-phase
write interface that ensures that once a write returns, no
subsequent read can return the old value of the data.
In particular, an embargoed write attaches anEMBAR-
GOED flag to its invalidation record, and all reads of
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EMBARGOEDobjects block. A controller can later in-
sert aRELEASErecord into the log to end the embargo
of the record. Of course, the strong consistency of 2-
phase commit comes at a price to availability [7], but our
implementation provides this option so that applications
can whatever point in the range of “arbitrary consistency”
they require.

Crash recovery. The checkpoint stores per-object state
and per-interest set state. The log acts as a replay log to
recover events not yet reflected in the checkpoint.

Conflict detection and resolution. The protocol de-
scribed in Section 3 provides incremental log exchange
and last-writer-wins conflict resolution with global even-
tual consistency in the case of concurrent writes. How-
ever, it is useful to not only resolve conflicts in a globally
consistent way but also to flag them and provide informa-
tion about conflicting writes to a more flexible manual or
programmatic conflict resolution procedure.

To support more flexible conflict detection and res-
olution, we augment the algorithm described above by
adding a field,prevAcceptto both invalidation messages
and to per-object store state. When a node receives an in-
validation inv and appliesinv to the local store of an
object obj (with inv.accept 6= obj.accept), there are
three cases to consider. First, ifinv.prevAccept ==
obj.accept, there is no write-write conflict. The second
case,inv.prevAccept > obj.accept, is impossible by
the prefix property. The third case,inv.prevAccept <
obj.accept, represents a write-write conflict, which is re-
solved by updatingobj with eitherinv or obj dependig
on which has a higher accept stamp and by storing the
losing entry to disk in a local (non-shared) per-object
conflict file; bodies that match stored losing writes are
also stored. PRACTI implementations can provide a lo-
cal interface for reading and deleting these “losing” con-
flicting writes, which allows higher-level code to resolve
conflicts using application-specific rules by generating
compensating transactions.

Note that although different nodes can see different
series of “losing” writes, all nodes that make an interest
set precise are guaranteed to see the “final” write to each
causally–independent series. For example, consider the
case of two causal chains of writes to one location by
the nodesα, β, andγ: (1) w0α, w1β, w2β, w3β and (2)
w0α, w4γ. The protocol guarantees that eventually any
precise node will agree that the final state of the write is
the result ofγ’s write at time 4 and that there was a write-
write conflict thatw3β lost, and but different nodes may
see different subsets ofw1β, w2β, w3β, which seems ac-
ceptable in that neither causal chain regards eitherw1β
or w2β as important values for the final state of the sys-
tem.

Alternative: Per-write conflict detection and resolu-
tion code. The PRACTI mechanisms are also compat-
ible with Bayou’s more powerful strategy of associat-
ing application-specific conflict detection and resolution
code with each writew and re-executing this code each
time the set of writes precedingw is changed by a log
exchange operation. An advantage of this more flexible
approach is that it can detect both write-write and read-
write conflicts. We chose to use the simpler last-writer-
wins and compensating transaction approach for two rea-
sons.

First, our more restrictive approach allows efficient in-
cremental application of interleaved streams of updates
because it does not require “roll back” of the current ran-
dom access state to process an arriving write: the deter-
mination of whether a conflict occurred and the decision
about the final state of the object can be made by com-
paring the write’sacceptStampandprevWritefields with
the local object’sacceptStampandprevWritefields. In
contrast, Bayou’s conflict detection and resolution code
logically run at the point in time when the write occurs,
so they must be able to read the state of the system at
that time. As a result, to apply a newly-arriving write,
the system first rolls back its state to the logical time of
the write; it then applies the write and reapplies all sub-
sequent writes. This cost is tenable in Bayou because
Bayou was designed for batch application of updates,
which amortizes the cost of rolling back and reapplying
updates across a batch of newly arrived updates.

Second, our simpler approach allows us to avoid the
need for a commit protocol that can establish a final write
order that differs from the natural order on accept stamps.
Bayou’s “in line” execution of powerful conflict reso-
lution code introduces the possibility of a “butterfly ef-
fect” in which the introduction of a single, previously
unseen, low-timestamped write into a log can cause any
or all newer writes in the log to execute a different con-
flict detection or resolution code path and to therefore
write different values to different objects. In principle,
whenever a previously unseen old write is applied, the
resulting system state can look arbitrarily different from
the previous system state. Bayou limits this problem
by using a primary commit protocol so that connected
nodes can establish an order on writes that causes “late-
arriving” writes to be sorted after “on-time” writes. Con-
versely, a last-writer-wins approach is less vulnerable to
late-arriving writes: either (a) despite the delay the late-
arriving write is logically the newest write to the object
and the object is updated or (b) the late-arriving write is
logically older than other writes that have been applied
and it has no effect other than being logged as a conflict.

Neither of these considerations is fundamental to
PRACTI, and these trade-offs would apply to existing
systems as well. One factor that may be more relevant to
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Fig. 16: Bandwidth cost of distributing updates for full repli-
cation and for partial replication as the number of successive
writes to a file between reads varies.

PRACTI is that the centralized commit protocol used in
Bayou may limit scalability under PRACTI because it re-
quires the primary node to see all invalidation messages;
this issue does not limit Bayou because Bayou already
requires all nodes to see all updates. An open question
is whether there exists a suitablescalablecommit proto-
col that can avoid the need for any node to see all of the
invalidations.

D Omitted graphs
The following graph was omitted from the main body of
Section 4.1 due to space constraints.

Bytes die young. Bytes are often overwritten or deleted
soon after their creation. For example, Baker et al. ob-
served in a academic environment that between 50% and
70% of written data survive for more than 1 minute,
and between 10% and 60% survive for more than 10
minutes [4]. Full replication systems send all writes to
all servers, even if some of the writes are quickly made
obsolete [30, 47]. In contrast, PRACTI replication can
send invalidations separately from bodies, and overwrit-
ten bodies need never be sent.

Figure 16 illustrates this effect. For this experiment,
we use a synthetic workload that randomly writes a set
of files on one node and randomly reads the same set of
files on another node on our prototype. On the x axis, we
vary the ratio of writes to reads. We plot the bandwidth
consumed on the y axis. PRACTI’s gains are significant
when bytes die young. For example, when the write to
read ratio is 2, PRACTI uses 55% of the bandwidth of
full replication, and when the ratio is 5, PRACTI uses
24%. At ratios exceeding 20, PRACTI’s gains exceed an
order of magnitude.

Mobile storage office topology Figure 17 was omitted
from Section 4.2. It shows synchronization time among
different devices when the palmtop and laptop are co-
located with the Office Server.
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