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Abstract andtopology policiessuch as client-server, hierarchy, or
We present PRACTI, a new approach and architecture fatd-hoc define the paths along which updates flow.
large-scale replication. PRACTI systems can replicate or This paper introduces the PRACTI taxonomy and ar-
cache any subset of data on any node (Partial Replicgues that an ideal replication framework should provide
tion), provide a broad range of consistency and coherencdl three PRACTI properties:

guarantees (Arbitrary Consistency), and permit any node Partial Replication(PR) means that a system can place
to share updates with any other node (Topology Indepen- any subset of data and metadata on any node. In con-
dence). Our PRACTI architecture yields two significant trast, some systems require a node to maintain copies
advantages. First, by providing all three PRACTI proper- of all objects in all volumes they export [29, 45].

ties, it enabledetter trade-offshan existing mechanisms e Arbitrary ConsistencfAC) means that a system pro-
that support at most two of the three desirable properties. vides flexible semantic guarantees, including the abil-
PRACTI thus exposes new points in the design space for ity to selectively enforce bothonsistencyandcoher-
replication systems. Second, our architectufiesibility enceguarantees. In contrast, some systems can only
simplifies the design of replication systems by allowing a enforce coherence guarantees but make no guarantees
single architecture to subsume a broad range of existing about consistency [15, 32].

systems and to reduce development costs for new ones.Topology Independencéll) means that any node
To illustrate both advantages, we use our PRACTI proto- can exchange updates with any other node. In con-
type to emulate existing server replication, client-server, trast, many systems restrict communication to client-
and object replication systems and to implement novel server [18, 21, 28] or hierarchical [4, 43] patterns.
policies that improve performance for mobile users, welpithough many existing systems can each provide two of
edge servers, and grid computing by as much as an ordgte properties, we are aware of no system that provides

of magnitude. all three. As a result, systems give up the ability to ex-
ploit locality, support a broad range of applications, or
1 Introduction dynamically adapt to network topology.

This paper describes PRACTI, a new data replication ap- 1 NS paper presents PRACTI, the first replication ar-
proach and architecture that can reduce replication cosfdlitecture to provide all three properties. It does this by
by an order of magnitude for a range of large-scale SySc_irawmg on key ideas of existing protocol; but recast!ng
tems and also simplify the design, development, and gdhem to remove the deeply-embedded policy assumptions
ployment of new systems. that prevent one or more PRACTI properties. In particu-
Data replication is a building block for many large- lar, our design begins wit_h log exchange mechanisms that
scale distributed systems such as mobile file system§UPPOIt a range of consistency guarantees and topology
web service replication systems, enterprise file system&ldependence but that fundamentally assume full repli-
and grid replication systems. Because there is a furation [29, 45]. To support partial replication, we extend
damental trade-off between performance and considl® mechanismsin two s_mple t_)“t f_undamental ways.
tency [25] as well as between availability and consisl. In order to allow partial replication of data, our de-
tency [12, 35], systems make different trade-offs among signseparates the control path from the data path

these factprs by |mpl_ement|ng different plage_ment pq|l- 1Although the operating systems and distributed systems literature
cies, consistency policies, and topology policies for dif-gfien yse the terms consistency and coherence interchangeably, the ar-
ferent environments. Informallyplacement policies chitecture literature is more precise [16]: consistency semantics con-
such as demand-caching, prefetching, push-caching, éfrain the order that updates across multiple objects become observable

replicate-all define which nodes store local copies ofo readers. Coherence semantics constrain the order that updates to a
single object become observable but do not additionally constrain the

which data,consis_tency _policiesuch as Sequen_tial [24] ordering of updates across different objects. We find this precision use-
or causal [19] define which reads must see which writesul and follow that terminology in this paper.




separating invalidation messages that identify what has
changed from body messages that encode the changes
to the contents of files. Distinct invalidation mes-
sages are widely used in hierarchical caching systems,
but we demonstrate how to use them in topology-
independent systems: we develop explicit synchro-
nization rules to enforce consistency constraints de-
spite multiple streams of information, and we intro-
duce general mechanisms for handling demand read
misses.

2. In order to allow partial replication of update meta-
data, we introducamprecise invalidationswhich al-
low a single invalidation to conservatively summarize
a set of invalidations. Imprecise invalidations allow us
to provide cross-object consistency in a scalable man-
ner in which each node incurs storage and bandwidth
_CO_StS proportlongl tq the sizé O_f the_dat_a setin which Iﬁzig. 1: The PRACTI taxonomy defines a design space for clas-
is interested. Using imprecise invalidations, a nede ;fying families of replication systems.
that is interested in one set of objeetdut not another
set B, can receive precise invalidations for objects infeplication systems and to implement novel policies to
A along with an imprecise invalidation that summa-SUpPort mobile users, web edge servers, and grid scien-
rizes any omitted invalidations to objects i The tific computing.
imprecise invalidation then serves as a placeholder for [N summary, this paper makes four contributions.
the omitted updates so thatit forwards information  First, it defines the PRACTI paradigm and provides a
about the updates td to another node:2 that is in-  taxonomy for replication systems that explains why ex-

terested in botm and B, n2 can know which omitted  isting replication architectures fall short of ideal. Second,
updates ta3 it must fetch from another node. it describes the first replication architecture to simulta-

. ously provide all three PRACTI properties. Third,
We construct and evaluate a prototype using a range o, . . .
- X o it provides a prototype PRACTI replication toolkit that
policies and workloads. Our primary conclusion is that

by simultaneously supporting the three PRACTI prop-Cleanly separat_es mecha_msr_n from po_hcy and thereby al
. S lows nearly arbitrary replication, consistency, and topol-
erties,PRACTI replication enables better trade-offs for - . .
: : ; g ._ogy policies. Fourth, it demonstrates that PRACTI repli-
system designers than possible with existing mechanisms:. . )
cation offers decisive practical advantages compared to

For example, for some workloads in our mobile storage . ..
existing approaches.

and grid computing case studies, our system dominates Section 2 revisits the design of existing systems in

existing approaches by providing more than an order 0fight of the PRACTI taxonomy. Section 3 describes our

BRACTI architecture, and Section 4 experimentally eval-

A.C.' T1 full replication replicated server systems, by PTO" Jates the prototype. Finally, Section 5 surveys related
viding more than an order of magnitude better synchro- : - .
ork, and Section 6 highlights our conclusions.

nization delay compared to PR-AC topology constrained”
hierarchical systems, and by providing consistency guar-
antees not achievable by PR-TI limited consistency per2 Taxonomy and challenges
object replication systems. As illustrated in Figure 1, the PRACTI paradigm defines
More broadly, we argue that the PRACTI architec-a taxonomy for understanding the design space for repli-
ture can simplify the design of replication systems. Atcation systems. Although providing all three PRACTI
present, because mechanisms and policies are entanglpdoperties has obvious potential benefits, we know of no
when a replication system is built for a new environmentexisting system that does so. Most systems fall into cate-
it must often be built from scratch or must modify exist- gories that each provide at most two of the PRACTI prop-
ing mechanisms to accommodate new policy trade-offserties:
In contrast, our system can be viewed as a “replication Server replication systems like Golding’s
microkernel” that defines a common substrate of corégimestamped anti-entropy [13] and Bayou [29] pro-
mechanisms over which a broad range of systems caride log-based peer-to-peer update exchange that allows
be constructed by selecting appropriate policies. For exany node to send updates to any other node (TI) and that
ample, in this study we use our prototype both to emueonsistently orders writes. Lazy Replication [22] and
late existing server replication, client-server, and objecTACT [45] use this approach to provide a wide range
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of tunable consistency guarantees (AC). Unfortunately, l (]
these protocols fundamentally assume full replication:
all nodes store all data from any volume they export and —2

TTewil T

all nodes receive all updates. As a result, these systems writeA” A B B

are unable to exploit workload locality to efficiently use writeB’ A’ B

networks and storage, and they may be unsuitable for A’ B yncB ’ V

devices with limited resources. B'yncB A B'Read B
Client serversystems like Sprite [28] and Coda [21] @A

and hlerarchlcgl Cach_lng systems like hierarchical Fig. 2: Naive addition of PR to an AC-Tl log exchange protocol
AFS [26] permit caching of arbitrary subsets of data.fails to provide consistency.

(PR). Although specific systems generally enforce a set _ _ .
consistency policy, a broad range of consistency guararfPplications with more stringent requirements.

tees are provided by variations of the basic architecturq\/hy is PRACTI hard?  Itis surprising that despite the
(AC). However, these protocols fundamentally requiresignificant costs of omitting any of the PRACTI proper-
communication to flow between a child and its parentsjes no system has succeeded in providing all three. Our
Even when client-server systems permit limited client-gna|ysis suggests that these limitations are fundamental
client communication for cooperative caching [10] theytg these protocol families: the assumption of full replica-
must still serialize control messages at a central servg|gp is deeply embedded in the core of Bayou and other
for consistency [5]. These restricted hierarchical comseyer replication protocols; the assumption of hierarchi-
munication patterns (1) hurt performance when networlgg| communication is fundamental to client-server con-
topologies do not match the fixed communication patsjstency protocols; careful assignment of key ranges to
terns or when network costs change over time (e.9., ifodes is central to the properties of DHTS; and the lack
environments with mobile nodes), (2) hurt availability of consistency is a key factor in the flexibility of object
when a network path or node failure disrupts a fixed COMyeplication systems.
munication topology, and (3) limit sharing during discon- 1o understand why it is difficult for existing architec-
nected operation when a set of nodes can communicatgres to provide all three PRACTI properties, consider
with one another but not with the rest of the system.  ne najve attempt to add PR to a AC-TI server replication
DHT-based storage systemsuch as BH [38], protocol like Bayou illustrated in Figure 2. Suppose a
PAST [31], CFS [6], and OceanStore [30] implement ayser’s desktop node stores all of the user’s files, includ-
specific—if sophisticated—topology and replication pol-ing files A and B, but the user’s palmtop only stores a
icy: they can be viewed as generalizations of clientsmall subset that includeB but notA. Then, the desk-
server systems where the server is split across a largep issues a series of writes, including a write to file
number of nodes on a per-object or per-block basis foymaking it A’) followed by a write to fileB (making it
scalability and replicated to multiple nodes for availabil- B’). When the desktop and palmtop synchronize, for PR,
ity and reliability. This division and replication, however, the desktop sends the write 8fbut not the write ofA.
introduces new challenges for providing consistency. Foat this point, everything is OK: the palmtop and desk-
example, the Pond OceanStore prototype assigns eagbp have exactly the data they want, and reads of local
object to a set of primary replicas that receive all up-data provide a consistent view of the order that writes oc-
dates for the object, uses an agreement protocol to ceurred. But for Tl, we not only have to worry about local
ordinate these servers for per-object coherence, and dogsads but also propagation of data to other nodes. For in-
not attempt to provide cross-object consistency guararstance, suppose that the user’s laptop, which also stores
tees [30]. all of the user's files including boti and B, synchro-
Object replicationsystems such as Ficus [15] and nizes with the palmtop: the palmtop can send the write
Pangaea [32] allow nodes to choose arbitrary subsetsf B but not the write ofA. Unfortunately, the laptop
of data to store (PR) and arbitrary peers with whom tanow can present an inconsistent view of data to a user or
communicate (TI). But, these protocols enforce no orapplication. In particular, a sequence of reads at the lap-
dering constraints on updates across multiple objects, dop can return the new version &f and then return the
they can provide coherence but not consistency guaramld version of A, which is inconsistent with the writes
tees. Unfortunately, reasoning about the corner cases tiat occurred at the desktop under causal [19] or even the
consistency protocols is complex, so systems that proveaker FIFO consistency [25].
vide only weak consistency or coherence guarantees can This example illustrates the broader, fundamental
complicate constructing, debugging, and using the appliehallenge: topology independence makes combining par-
cations built over them. Furthermore, support for onlytial replication and arbitrary consistency hard because
weak consistency semantics may prevent deployment afhen a node receives updates, it must not only consis-



Node 2 local state so that nodes can satisfy requests to read local,

Core valid objects without needing to communicate with other
Local API R nodes
(create, read, & / ’ . . .
Node 11,“13 delete) OK\& . To handle read misses and to push new information
Core o> between nodes, PRACTI makes use of two types of com-
% munication as illustrated in the figure—causally ordered

Lo Streams of Invalidationand unordered@ody messages.

The protocol for sending streams of invalidations is sim-
ilar to Bayou’s [29] log exchange protocol, and it en-
sures that each node’s log and checkpoint always reflect
a causally consistent view of the system’s data. But
PRACTI's protocol differs from existing log exchange
protocols two key ways:

1. Separation of invalidations and bodie®RACTI in-
validation streams notify a receiver that writes have
occurred, but separate body messages contain the con-
tents of the writes. This separation supports partial
replication of data—a node only needs to receive and

Fig. 3: High level PRACTI architecture. store bodies of objects that interest it.

v ord d he d : b b I2. Imprecise invalidations. Although the invalidation
tently order updates to the data it cares about but also g o4 mg each logically contain a causally consistent

]t(ansm:]re (;hat |tfhas enough lllnfordmatlophto E_rdﬁr. um?‘tes record of all writes known to the sender but not the
or the data of interest to all nodes with which it might receiver, PRACTI nodes can omit sending groups of

communicate in the future. invalidations by instead sendirigiprecise invalida-

Existing systems res?lve_thls dllemm?flr}lonelpf three tionsthat concisely and conservatively summarize the
ways. AC-TI server replication systems’ full replication o ie invalidations. Imprecise invalidations serve as

ensures that all nodes have enough information to order placeholders in the receiver's log (to prevent the inval-

all update;. PR-AC .cl|er'1t-servehr anr(]j hlerar%hlcal sys- idation streams that it transmits from containing causal
tems restrict communication so that the root of a subtree gaps) and in the receiver's checkpoint (to allow the re-

can track what information is cached by descendents and i er to block reads of objects for which some inval-

can safely omit send_ing invalidations_or updates for data idations may be missing.) Imprecise invalidations al-
that no descendent is currently caching; if a descendent |\, hartia| replication of metadata—a node only needs
later tries to read such data, cache miss bubbles up the hl-to receive traditionaprecise invalidationsand store

erarchy to a node that has sufficient information to supply per-object metadata for objects that interest it.

consistent data to the read. Finally, PR-TI object repIicaN d lect subsets of obiects about which th tt
tion systems simply give up ability to consistently order odes select subsets ot objects about which they want to

writes to different objects and allow inconsistencies suct‘?tore per—opject metadata, and they select subsets of ob-
as the one just described. jects for which they want to prefetch body updates. They
then receive streams of invalidations and body messages

to maintain this local state. A node requests a stream of

Checkpoint

Controller

3 PRACTI repllcat|on invalidations by sending a request that identifies the sub-
Figure 3 shows the high-level architecture of ourset of objects for which the receiver desires to see precise
PRACTI implementation. invalidations. Body messages are initiated in two ways.

Node lin the figure illustrates the main local data First, if a local read blocks because an object is invalid,
structures of each PRACTI node. Applications access node sends a demand-read request for that object to an-
data stored in PRACTI via the per-notlecal APIfor  other node. Second, a node can set up a prefetch sub-
creating, reading, writing, and deleting objects. Thesescription with any other node in order to automatically
functions operate on local state stored in each node®eceive body update messages for a specified subset of
Log of updates and random-acceSkeckpoint modi-  the system’s objects.
fications are appended to the log and then update the The mechanisms just outlined, embodied in a node’s
checkpoint, and reads access the checkpoint. To suppdzore, allow a node to store data for any subsets of ob-
partial replication policies, the PRACTI mechanisms al-jects, to store per-object metadata for any subset of ob-
low each node to select an arbitrary subset of the sygects, to receive precise invalidations for any subset of
tem’s objects to replicate, and nodes are free to changabjects from any node, and to receive body messages
this subset at any time. The PRACTI mechanisms trackor any subset of objects from any node. Given these

4



mechanisms, a PRACTontrollerembodies a system’s  incoming invalidation is skipped if the checkpoint en-
replication and topology policies by directing communi- try already stores a logical time that is at least as high
cation among nodes. A node’s controller implements a as the incoming invalidation’s.

replication and consistency policy by (1) selecting whiche A node can send any body from its checkpoint to any
nodes should send it invalidations and, for each invalida- other node at any time. When a node receives a body, it
tion subscription, specifying subsets of objects for which updates its checkpoint entry by first checking to see if
invalidations should be full precise invalidations, (2) se- the entry’s logical time matches the body’s logical time
lecting which nodes to prefetch bodies from and which and, if so, storing the body in the entry and marking the
bodies to prefetch, and (3) selecting which node should entryVALID.

service each demand read miss.

The rest of this section describes the design in mor®ationale. Separating invalidations from bodies pro-
detail. It first explains how PRACTI’s log exchange pro- vides topology-independent protocol that supports both
tocol separates invalidation and body messages. It thearbitrary consistency and partial replication.
describes how imprecise invalidations allow the log ex-  Supporting arbitrary consistency requires a node to be
change protocol to partially replicate invalidations. Next,able to consistently order all writes. Log-based invalida-
it discusses the crosscutting issue of how to provide flextion exchange meets this need by ensuring three crucial
ible consistency that (a) supports strong consistency s@roperties [29]. First th@refix propertyensures that a
mantics for those applications that require them and (bhode’s state always reflects a prefix of the sequence of
does not introduce unnecessary overhead for applicatiomavalidations by each node in the system. l.e., if a node’s
that do not. After that, it describes several novel featurestate reflects théh invalidation by some node in the
of our prototype that enable it to support the broadessystem, then the node’s state reflects all earlier invalida-
range of policies. tions byn. Second, each node’s local state always re-

flects acausally consistertl9] view of all invalidations
3.1 Separation of invalidations and bodies  that have occurred. This property follows from the prefix

As Figure 3 illustrates, nodes exchange two types of upProperty and from the use of Lamport clocks to ensure
dates: ordered streams of invalidations and unordereffat once a node has observed the invalidation for write
body messagesnvalidationsare metadata that describe - all 0f its subsequent writes' logical timestamps will
writes; each contains an object3@nd logical time of ~€xcéedw's. Third, the system ensureventual consis-

a write. A write’s logical time is assigned at the local tency all connected nodes eventually agree on the same
interface that first receives the write, and it contains thdotal order of all invalidations. This combination of prop-
current value of the node’s Lamport clock [23] and the€rties provides the basis for a broad range of tunable con-
node’s ID. Like invalidationshody messagesontain the ~ Sistency semantics using standard techniques [45].
write’s object ID and logical time, but they also contain At the same time, this design supports partial replica-
the actual contents of the write. tion by allowing bodies to be sent to or stored on any

The protocol for exchanging updates is simple. node at any time. It supports arbitrary body replica-

. - ._tion policies including demand caching, push-caching,
e As illustrated by node 1 in Figure 3, each node main- ; i . :
tains alog of the invalidations it has received sorted by prefetching, pre-positioning bodies according to a global

logical time. And, for random access, each node Storeglacement policy, or push-all.
bodies in itscheckpoinindexed by object ID. Design issues. The basic protocol adapts well-

e Invalidations from a log are sent via a causally-ordereq, ,qarstood log exchange mechanisms [29]. But, the
stream that logically contains all invalidations known go.,4ation of invalidations and bodies raises two new
to the sender but not to the receiver. As in BayOUjsg es: (1) coordinating disjoint streams of invalidations
nodes use version vectors to summarize the conten}:ﬁ]d bodies and (2) handling reads of invalid data.
ggzzgl:nk;gssel: dzrrfjselgtoae‘;g'z'sgggéd; ngf?/e\g:il\(/::r L[sz é] The first issue is how to coordinate the separate body

) ; g_ L y . . 7 "messages and invalidation streams to ensure that the ar-

* A receiver of an invalidation inserts the invalidation ;- ¢ out-of-order bodies does not break the consis-
Into its sgrted :co% e up;jatets).ns clgeckpo_llnt. Crlkafency invariants established by the carefully ordered in-
point update of the entry for ot ject entlal S Marking yajidation log exchange protocol. The solution is simple:
the gntrle\(ALlD and recording the' logical time of when a node receives a body message, it does not ap-
the invalidation. Note that checkpoint update for aMbly that message to its checkpoint until the corresponding
2For simplicity, we describe the protocol in terms of full-object invalidation has been a.pplll(‘-}d. A,,nOde therefore buffers

writes. For efficiency, our implementation actually tracks checkpointbo_dy messages that arnve e_arly. As aresult, the Ch_eCk'

state, invalidations, and bodies on arbitrary byte ranges. point is always consistent with the log, and the flexible




ol o<1t modetos of objects startlogical time, and aendlogical time, and

:ogj:g:ﬁga Eme::g,nogézz aSefoor qare <10MO0eL> <16 nodet> it means “one or more objects fargetSetvere updated
objld= ‘a, time=<15,nof 9<arg =| *, = , end= > ” . . . . .
<objld=/foola, time=<16 nodel>> <15node2> <lznode2>" hetweerstart andend” An imprecise invalidation must

<objld=/foolb, time=<16,node2>>

~obiliftoofo. time<17 otk beconservativeeach precise invalidation that it replaces

must have itobjld included intargetSetand must have

Prec'selnva“da_t'ons _ Impre?'se_mval_'da[fon its logical time included betweestart andend but for
Fig. 4: Example imprecise invalidation. efficient encodingargetSetmay include additional ob-
consistency properties of the log [45] extend naturally tdects. In our prototype, theargetSeis encoded as a list
the checkpoint despite its partial replication. of subdirectories and th&tart andendtimes are partial

The Second issue is hOW to hand|e demand reads H@l‘sion vectors with an entry for each node whose writes
nodes that replicate only a subset of the system’s dat&'e summarized by the imprecise invalidation.
The core mechanism supports a wide range of policies: Imprecise invalidations act as “placeholders” in the
by default, the system blocks a local read request untiPg to ensure that nodes that try to access data updated by
the requested object’s statusfaLID3. Of course, to en- Omitted writes can detect and correct the missing infor-
sure |ivenESS, when dNVALID Object is read, an imp|e_ mation. When a node receives a new imprECise invalida-
mentation should arrange for someone to send the bod{on, it logically marks all covered objects “INVALID.”
Therefore, when a local read blocks, the core notifies thEor efficiency, however, rather than iterating through
controller. The controller can then implement any policyll covered objects, the implementation uses some addi-
for locating and retrieving the missing data such as sendional bookkeeping to efficiently track local state.
ing the request up a static hierarchy (i.e., ask your pare
or a central server), querying a separate centralized [113
or DHT-based [38] directory, using a hint-based search
strategy [33], or relying on a push-all strategy [29] (i.e.;
“just wait and the data will come.”)

esign issues. Tracking the effects of imprecise inval-
ations actually encompasses four related problems:

. We cannot require a node to store per-object state for
all objects. As the example above illustrates, doing
so would significantly restrict the range of replication

3.2 Partial replication of invalidations policies and workloads that can be accommodated.

Although separation of invalidations from bodies sup2- Ve need to efficiently apply imprecise invalidations

ports partial replication of bodies, for true partial repli- COVering many objects. "_1 particular, an |mpllemen.-

cation that supports a broad range of policies, workloads, t&tion should not have to iterate across all objects in
and devices the system must not require all nodes to see 12r9€tSeto apply an imprecise invalidation.

all invalidations or to store metadata for each object. Fo- We need to be able to deternlme when object§ whose

example, consider palmtops caching data from an enter- Stat€ was “made IMPRECISE" by one or more impre-

prise file system with 10,000 users and 10,000 files per cise invalidation hgvg been 'f“ac_'e PREQISE by later
user: if each palmtop were required to store 100 bytes of seeing all of the missing precise invalidations for those

per-object metadata, then 10GB of storage would be con- objects. .

sumed on each device; and if the palmtops were required We need to handle demand reads to objects whose state

to receive every invalidation during log exchange and if is currently IMPRECISE.

an average user issued just 100 updates per day, then in- Our solution is to maintain simple bookkeeping infor-

validations would consume 100MB/day of bandwidth tomation about groups of objects. In particular, each node

each device. Exploiting locality is fundamental to repli-independently partitions the object ID space into one or
cation in large-scale systems, and requiring full repncamoreinterest setand decides whether to store per-object
tion of metadata would prevent dep|0yment of a rep"ca.state on a per-interest set basis. A node tracks whether
tion System for awide range of environments, Work|oads’eaCh interest set is PRECISE (has observed all invalida-
and devices. tions) or IMPRECISE (may have missed some precise
To support true partial replication, invalidation invalidations) by maintaining two pieces of state.
streamdogically contain all invalidations as described in ¢ Each node maintains a global varialderrentVy,
Section 3.1, but imeality they omit some invalidations  which is a version vector encompassing the highest
by replacing them witlimprecise invalidations. timestamp of any invalidation (precise or imprecise)
As Figure 4 illustrates, an imprecise invalidation is a applied to any interest set.

conservative summary of several standargecise in- e Each node maintains for each interest 5g¢tthe vari-

validations. Each imprecise invalidation hastargetSet able 1S.last PreciseV'V, which is the latest version

vector for whichl S is known to be PRECISE.
3To broaden the range of consistency semantics PRACTI can sup-

port, the read interface also provides a flag that indicates that a read o IS.lastPre_ciseVV = cmj“emj‘VV, ther_‘ i_ntereSt set
an INVALID object should return an exception rather than block. 1S has not missed any invalidations and it is PRECISE.




currentVV[nodel] = 100 IS lastPreciseVV[nodel] = 100 (PRECISE)
Checkpoint: A VALID 98/nodel
B VALID 99/nodel
C VALID 100/nodel

In this arrangement, applying an imprecise invalida-
tion I to an interest setS merely involves updating two
variables—the globaturrentV'V and the interest set's
1S.lastPreciseVV. In particular, a node that receives @
imprecise invalidatiod always advancesurrentV'V to
include I's end logical time because after applying

\L |1=(target={ A,B,C}, start=101/nodel, end=103/nodel)

currentV'V[nodel] = 103 ISlastPreciseV'V[nodel] = 100 (IMPRECISE)

@ Checkpoint: A VALID 98/nodel
, B VALID 99/nodel
the system’s state may reflect events ug ted. Con- CVALID 100/nodel
versely, the node only advancés.last PreciseVV to @ \LPIlz(A,lojljnodel), PI2=(B, 103/node1)

the latest time for whicld S has missed no invalidations.
This per-interest state addresses the four problems®

listed above. (1) Storage is limited: each node only needs CVALID T00/modol

to store per-object state for data currently of interest tarig. 5: Example of applying an imprecise invalidation |

that node, and the total metadata state at a node is prand then applying precise invalidatiodd/1 and PI2. For

portional to the number of objects of interest plus theclarity, we only show nodel’s elements efrrentVV and

number of interest sets. Note that our implementatiod S.lastPreciseVV.

allows a node to dynamically repartition its data acros%ervatively assume A, B, and C are all invalid up to time

?ntergst ;ets as its chglity patterns chang(_e. (2) Imprec'sf03/node1 so (3) it setscurrentVV[nodel] = 103but
invalidations are efficient to apply, requiring work that leaveslS lastPreciseVV[node1] = 100making IS IM-

is proportional to the number of interest sets rather thapr - 1gE
the number of summarized invalidations. (3) Recovery

to precise is guaranteed under the following conditions; But now (4) suppose precise invalidatioRkL = (A,
if an interest sef S is initially PRECISE at a node, the L01/nodelpndPI2 = (B, 103/nodelprive on a single

. A invalidation channel from another node. (5) The first in-
node then sees an imprecise invalidatidnthat make S .
an interest sef S IMPRECISE. and later the node Seesvalldatlon advancelS.lastPreciseVV[nodelp 101 and
thela sequence of precise in\;alidations that includes a,?avescurrentVVunchanged. The second advant®s
invalidati?)ns inf thapt target any object iil.S, then the astPreciseVVinodeljo 103 and the final state itS.-
interest set/ S is made PRECISE up to at least the endlastPreuseVV[nodel] = currentvV[nodel] = 1085 is

time of I. (4) A local read request includes a flag thatPRECISEAandB are INVALID, andCis VALID.

indicates whether the read requires consistency guaran- Not.|ce t.hat although we never saw a precise invalida-
fion with time 102/node] the fact that a single stream

Ifn hen the r n nsult th r inter- L o :
tees ot, then the read does not consult the per inte ntains invalidations at timeiD1/nodeland103/nodel

est set status and it may return as soon as the object(f% to infer by th p tv that no invalid
VALID. Conversely, if the read does require consistency,a ows us to Infer by the prefix property that no invaiida-

then the read blocks until the interest set in which thet'on at time102/nodeloccurred and therefore we were

object lies is PRECISE. This blocking ensures that “pre—able to ad\{ancts.lastPreC|se\(\tb makel .5 PRECISE.
cise reads” only observe the checkpoint state they would A téchnical report [9] provides pseudo-code and de-
have observed if all invalidations were precise, and therd@ilS how our implementation copes with (a) applying in-

fore allows them to enforce the same consistency as prd@lidations in causal order despite the multiple start and
tocols without imprecise invalidations. As with regular €nd times in imprecise invalidations and despite concur-

read misses, for liveness the core signals the controlldENCY across streams and (b) maximizing the information

when a read of an IMPRECISE interest set blocks, an§Xtracted and stored from each invalidation in a stream to

the controller is responsible for arranging for the missingMinimize the amount of IMPRECISE data in the system.

precise invalidations to be sent. .

The following example illustrates the maintenance of‘?"3 Consistency: Costs and approach

the interest set status state in more detail. Enforcing cache consistency entails fundamental trade-
offs. For example the CAP dilemma states that a replica-

Example. Suppose that initially as label (1) in Fig. 5 tion system that provides sequent@bnsistency cannot

illustrates, A, B, and C were last written at nodel’s logi-simultaneously provide 100%vailability in an environ-

currentVV[nodel] = 103 IS lastPreciseVV[nodel] = 103 (PRECISE)

Checkpoint: A INVALID 101/nodel
B INVALID 103/nodel

cal times98/nodel, 99/nodel, and100/nodel, that all
are currently VALID, and that interest séf containing
A, B, and C is PRECISE withS.lastPreciseVV[nodel]
= currentVV[nodel] = 100

Then, (2) an imprecise invalidatidrwith a targetSet
that includes A, B, and C, starttime of 101/nodeland
anendtime of 103/nodelarrives. The system must con-

ment that can b@artitioned [12, 35]. Similarly, Lipton
and Sandberg describe fundamental performance limita-
tions for distributed systems that provide sequential con-
sistency [25].

A system that seeks to support arbitrary consistency
must therefore do two things. First, it must allow a range
of consistency guarantees to be enforced. Second, it must



ensure that workloads only pay for the consistency guar-

antees they actually need. curentyy 100 .
Our system addresses these goals by distinguishi VY 1000]] IpVV 1000

the availability and response time costs paid by read and

write requests from the bandwidth overhead paid by in-

validation propagation. Key

The read interface allows each read request to specify

its consistency requirements. Therefore, a read does npt—
block unlesghat readrequires the local node to gather
more recent invalidations and updates than it already has:
Similarly, most writes complete locally, and a write only Fig. 6: Incremental checkpoints froni to 72.
blocks to synchronize with other nodestiiat writere-  fo |imiting the size of their logs and to fall back on an
quires it. Ther.efore, the performance/availability versussficientincremental checkpoint transféo transmit up-
consistency dilemmas are resolved on a per-read, Pefates that have been garbage collected from the log. This
write basis [45]. feature both limits storage overheads and improves sup-
Conversely, all invalidations that propagate throughyort for synchronizing intermittently connected devices.
the system must carry with them sufficient mformatlonSecond, our implementation usssif-tuning body prop-
that a later read can get whatever consistency level it ré3gationto enable prefetching policies that are simulta-
quests. Therefore, the system may pay an extra Costequsly aggressive and safe. Third, our implementation
if a deployment never needs strong consistency, theBrovidesincrementaI log exchang® allow systems to
our protocol will propagate some information that is minimize the window for conflicting updates. Due to

never needed. We believe this cost is acceptable fafn,ce constraints, we will only briefly outline these as-
two reasons: (1) other features of the PRACTI des'gn_pects of the implementation.

separation of invalidations from bodies and imprecise

invalidations—minimize the amount of extra data trans-Garbage collection and incremental checkpoint trans-
ferred; and (2) we believe the bandwidth costs of confer. Imprecise invalidations yield an unexpected bene-
sistency are less important than the availability and refit: incremental checkpoint transfer.

sponse time costs. Our experimental evaluation in Sec- Nodes can garbage collect any prefix of their logs,
tion 4 quantifies these bandwidth costs, and we argue th@fhich allows each node to bound the amount local stor-
they are insignificant. age used for the log to any desired fraction of its total

Implementation. Because our design uses a variationdiSk space. But, if a nodel garbage collects log en-
of peer-to-peer log exchange [29], adapting flexible conlr€s older thaml.or_nlt\(Vand another node2 requests
sistency techniques from the literature is straightforward? 109 exchange beginning befaré.omitVV thennlcan-
We provide the TACT flexible consistency interface ton0t sénd a stream of invalidations. Instead,sends a
bound order error and temporal error [45]; we have nofh€ckpoint of its per-object state to bring's state up to
yet implemented TACT numerical error, but we see ng'l-currentvVv
fundamental barriers. Additionally, we include the op- In existing server replication protocols [29], in order
tion of a two phase write that first distributes invalida-to ensure consistency, such a checkpoint exchange must
tions and later distributes bodies [22, 45]; using this opatomically update:2’s state for all objects in the system.
tional interface, one can ensure that once a write return§;heckpoint exchange, therefore, may block interactive
no subsequent read can return the data’s old value arigduests for a long period of time while the checkpoint
that once a read returns the new value no read will returf$ atomically assembled afl or applied at.2 and may
the old value. Additionally, as described abovejrapre- ~ Waste system resources if a checkpoint transfer is started
cise readskips consistency checks and provides causdtut fails to complete.
coherence (ordering of updates for a single item) rather Rather than transferring information about all objects,
than causal consistency. Finally, we provide a general inour incremental checkpoints can update arbitrary interest
terface for detecting and resolving write-write conflictsSets. As Figure 6 illustrates, each incremental checkpoint
according to application-specific semantics [21, 29].  includes (1) an imprecise invalidation that covers all ob-
. jects from the receiver'’surrentVVup to the sender’s
3.4 Additional features currentV\, (2) interest set state for interest $8t(IS.-
Three novel aspects of our implementation further outastPreciseVY, and (3) per-object logical timestamps for
goal of constructing a flexible framework that can ac-all objects in interest sdS that were invalidated later
commodate the broadest range of policies. First, our imthan the receiver'sS.lastPreciseVVThe receiver'sur-
plementation allows systems to use any desired policyentVV, I1S.lastPreciseVVand per-object state are thus

omitVV 100,0

0,0 end=100,0 targets*>

VV=100,0

V0.0

er—obj stajk
! = Incremental Checkpoint
= Precise Interest Set

= Imprecise Interest Set



brought up to include the updates known to the sender. determine if a conflict has occurred [37]; this works in
Overall, this approach makes checkpoint transfer a batch system because rollback takes all of the system’s
much smoother process under PRACTI than under exstate to a specified moment in time at which these checks
isting protocols: the receiver can receive an incrementatan be re-executed. Note that this variation is orthogo-
checkpoint for a small portion of its ID space and thennal to the PRACTI approach: a full replication system
either background fetch checkpoints of other interest setsuch as Bayou could be maodified to use our incremental
or fault them in “on demand” as Figure 6 illustrates. log propagation mechanism, and a PRACTI system could

) ) . use batch log exchange with roll-back and roll-forward.
Self-tuning body propagation. In addition to support-

ing demand-fetch of particular objects, our prototype
provides a novel self-tuning prefetching mechanism. A4 Evaluation

noden1 subscribes to updates from a nodeby sending h d .
a list L of directories of interest along with gartV'V We have constructed a prototype PRACTI system writ-

version vector.n2 will then sendn1 any bodies it sees ten in Java and using BerkeleyDB [36] for per-node lo-

that are inL and that are newer thaiartV' V. To do this, cal storage. The prototype is fully fu_nctio_nal t_’Ut not
12 maintains a priority queue of pending sends: when é)erformance tuned. All features described in this paper
new eligible body arrives;2 deletes any pending sends are implemented including local create/read/write/delete,
of older versions of the same object and then inserts areﬂ_ex;jble gons?tenhcy, mgrementﬁll Io_g excf:hﬁngle, rgmote
erence to the updated object. This priority queue drainE*@d and pre etp » garbage collection of the log, incre-
ton1 via a low-priority network connection that ensures mental checkpoint transfer between nodes, and crash re-
that prefetch traffic does not consume network resources Ve _We have also construc_te_d several exam_ple_ con-
that regular TCP connections could use [39]. When érollers in order to emulate existing server replication,
lot of “spare bandwidth” is available, the queue drainscllent—server, and object replication systems and to im-

quickly and nearly all bodies are sent as soon as they afiement and evaluate novel poI.|C|es' to support m_ob|le
inserted. But, when little “spare bandwidth” is available, US€'S: Web edge servers, and grid scientific computing.
the buffer sends only high priority updates and absorbs In this section we evaIL_Jate the properties of our proto-
repeated writes to the same object. type to answer two questions.

1. Does a PRACTI architecture offer significant advan-
tages over existing replication protocol¥¥e find that

our PRACTI system can dominate existing approaches
by providing more than an order of magnitude bet-
ter bandwidth and storage efficiency than replicated
server systems, as much as an order of magnitude
better synchronization delay compared to hierarchical
systems, and consistency guarantees not achievable by
per-object replication systems. Furthermore, even in
environments for which these existing policies suffice,

Incremental log propagation. The PRACTI prototype
implements a novel variation on existing batch log ex-
change protocols. In particular, in the batch log exchange
used in Bayou, a node first receives a batch of updates
comprising a start timetartV'V and a series of writes,

it then rolls back its checkpoint to befosgartV'V us-

ing an undo log, and finally it rolls forward, merging the
newly received batch of writes with its existing redo log
and applying updates to the checkpoint. In contrast, our
incremental log exchange applies each incoming write to our flexible architecture can subsume these existing
the current checkpoint state without requiring roll-back approaches

and roll-forward of existing writes [9]. PP j , . .

The advantages of the incremental approach are e%‘: What.ar.e the c_qsts of PRACTI's ger!erahty?partlc-
ficiency (each write is only applied to the checkpoint ularl, IS It S|gn|f|can_tly more expensive tp |mplemen.t
once), concurrency (a node can process information from a given system using PRAC'TI.than to |mp[ement It
multiple continuous streams), and consistency (con- 45'N9 narrowly-_focuse“d spe’,(:lahzed mecham?ms? we
nected nodes can stay continuously synchronized which f'”d_th?‘t the primary extra_ cost of PRACTI s gen-
reduces the window for conflicting writes.) The disad- erallty. 1S that our system might t_ransmlt MOore consis-
vantage is that it only supports simple conflict detec- te"?cy |nformat|9n than acugtomlzed system might re-
tion logic: for our incremental algorithm, a node detects quire. But, our |mplemeqtat|on red_uce; th'§ cqst com-
a write/write conflict when an invalidationjsrevAccept pared to past systems via separating invalidations and

logical time (set by the original writer to equal the log- bodies and via imprecise invalidations, so these costs

ical time of the overwritten value) differs from the logi- appear to be minor.

cal time the invalidation overwrites in the node’s check- To provide a framework for exploring these issues, we
point. Conversely, batch log exchange supports morérst focus on partial replication in 4.1. We then examine
flexible conflict detection: Bayou writes containde- topology independence in 4.2. Finally, we examine the
pendencycheckprocedure that can read any object tocosts and benefits of flexible consistency in 4.3.
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4.1 Partial repllcatlon replication, demand reads, and self-tuning replication.

In this section, we focus on partial replication. We findcollection of 1000 files of 10KB each. A node subscribes
that PRACTI's support for partial replication dramati- to invalidations and body updates for the subset of the
cally improves performance compared to full replicationfiles that are “of interest” to that node. The x axis shows
protocols from which our system descends for three reathe fraction of files that belong to a node’s subset, and
sons: the y axis shows the total bandwidth required to transmit
1. Locality of Referencepartial replication of bodies and these updates to the node as measured on the prototype.
invalidations careachreduce storage and bandwidth  The results show that partial replication of both bodies
costs by an order of magnitude for nodes that car@nd invalidations is crucial when nodes exhibit locality.
about only a subset of the system’s data. Partial replication of bodies yields up to an order of mag-
2. Bytes Die Young:partial replication of bodies can nitude improvement, but it is then limited by full repli-
significantly reduce bandwidth costs when “bytes diecation of metadata. Our true PRACTI system, however,

young” [3]. can gain over another order of magnitude as locality in-
3. Self-tuning Replicationself-tuning replication mini- creases via its use of imprecise invalidations.
mizes response time for a given bandwidth budget. Note that Figure 7 shows bandwidth costs. Partial

It is not a surprise that partial replication can yield signif-replication provides similar improvements for space re-
icant performance advantages over existing server replguirements (graph omitted for space.)
cation systems. What is significant is that (1) these exper-
iments provide evidence that despite the the good prog3Yytes die young. Bytes are often overwritten or deleted
erties of server replication systems (e.qg., support for dissoon after creation [3]. Full replication systems send
connected operation, flexible consistency, and dynamigll Writes to all servers, even if some of the writes are
network topologies) these systems may be impractical fofiuickly made obsolete. In contrast, PRACTI replication
many environments and (2) they demonstrate that the@.n send invalidations Separately from bodies: if a file is
trade-offs are not fundamental—a PRACTI system caVritten multiple times on one node before being read on
support PR while retaining the good AC-TI properties ofanother, overwritten bodies need never be sent.
server replication systems. To examine this effect, we randomly write a set of files

) ) ) _ ~_onone node and randomly read the same files on another
Locality of reference. D|ff(_arent devices in a distrib- ode. Due to space constraints, we defer the graph to
uted system often access different subsets of the systenjige extended report [9]. To summarize: when the write
data because of locality and different hardware capabilitg read ratio is 2, PRACTI uses 55% of the bandwidth

ties. In such environments, some nodes may access 10%.fy|| replication, and when the ratio is 5, PRACTI uses
1%, or less of the system’s data, and partial replicatioR s,

may yield significant improvements in both bandwidth
to distribute updates and space to store data. Self-tuning replication. Separation of invalidations
Figure 7 examines the impact of locality on replicationfrom bodies enables a novel self-tuning data prefetching
cost for three systems implemented on our PRACTI corenechanism described in Section 3. As a result, systems
using different controllers: a full replication system simi- can replicate bodies aggressively when network capacity
lar to Bayou, a partial-body replication system that sendss plentiful and replicate less aggressively when network
all precise invalidations to all nodes but that only sendsapacity is scarce.
some bodies to a node, and a partial-replication system Figure 8 illustrates the benefits of this approach by
that sends some bodies and some precise invalidations évaluating three systems that replicate a web service from
a node but that summarizes other invalidations using ima single origin server to multiple edge servers. In the
precise invalidations. In this benchmark, we overwrite adissemination serviceR7] this system hosts, all up-
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l | Storage [ Dirly Data [ Wireless [ Internet | indicate that topology independence without partial repli-

Office server 1000GB 100MB 10Mb/s 100Mb/s {i . t tt ti It ti D t limit

Home deskiop| 10GB TOME IO/ IVIBTS cation is not an attractive alternative. Due to space limits,

Laptop 10GB 10MB 10Mb/s | 50Kb/s we do not comment further on this subset of the results.
1Mb/s Hotel only

Palmtop 100MB | 100KB | 1Mb/s N/A Mobile storage. We evaluate PRACTI in the context

Fig. 9: Configuration for mobile storage experiments.  of 3 mobile storage system that distributes data across

dates occur at the origin server and all client reads ar@almtop, laptop, home desktop, and office server ma-
processed at edge servers, which serve both static agfines. We compare PRACTI to a client-server Coda-
dynamic content. We compare the read response timléke System that supports partial replication but that dis-
observed by the edge server when accessing the databddButes updates via a central server [21] and to a full-
to service client requests for three replication policiesfeplication Bayou-like system that can distribute updates
Demand Fetchimplemented as a client-server SyStem,directly between interested nodes but that requires full
replicates precise invalidations to all nodes but sends nefi@plication [29]. All three systems are realized by imple-
bodies only in response to demand requd¢plicate All - menting different controller policies.
follows a Bayou-like approach and replicates both pre- As summarized in Figure 9 our workload models a
cise invalidations and all bodies to all nodes, @elf department file system that supports mobility: an office
Tuning exploits PRACTI to replicate precise invalida- Server stores data for 100 users, a user’s home machine
tions to all nodes and to have all nodes subscribe for aftnd laptop each store one user’s data, and a user’s palm-
new bodies via the self-tuning mechanism. We use a syriOP stores 1% of a user’s data. Note that due to resource
thetic workload where the read:write ratio is 1:1, readdimitations, we store only the “dirty data” on our test ma-
are Zipf distributed across files & 1.1), and writes are chines, and we use desktop-class machines for all nodes;
uniformly distributed across files. We use Dummynet towe control the network bandwidth of each scenario using
vary the available network bandwidth from 0.75 to 5.0@ library that throttles transmission.
times the system’s average write throughput. Figure 10 shows the time to synchronize dirty data
As Figure 8 shows, when spare bandwidth is avail2mong machines in three scenarios: Régne the user
able, self-tuning replication improves response time bys 0n a plane with no Internet connection, tgtel: the
up to a factor of 20 compared tDemand-Fetch A  USers laptop has a 50Kb/s modem connection to the In-
key challenge, however, is preventing prefetching froniernet, and (cHome the user's home machine has a
overloading the system. Whereas our self-tuning aplMb/s connection to the Internet. The user carries her
proach adapts bandwidth consumption to available re2ptop and palmtop to each of these locations and co-
sources,Replicate Allsends all updates regardless oflocated machines communicate via wireless network at
workload or environment. This maké®eplicate Alla  SPeeds indicated in Figure 9. For each location, we mea-
“poor neighbor’—it consumes bandwidth correspondingsure time for machines to exchange updates: (:LP
to the current write rate for prefetching even if other ap-the palmtop and laptop exchange updates, (2)LP

plications could make better use of the network. the palmtop and home machine exchange updates, (3)
L—H: the laptop sends updates to the home machine, (4)
4.2 Topology independence O—All: the office server sends updates to all nodes.

In this section we examine topology independence by ex- [N comparing the PRACTI system to a client-server
amining two environments, a mobile data access systefystem, topology independence has significant gains
that is distributed across multiple devices and a wideWhen the machines that need to synchronize are near one
area-network file system designed to make it easy fornother but far from the server: in the isolatédnelo-
PlanetLab and Grid researchers to run experiments th&gtion, the palmtop and laptop can not synchronize at
rely on distributed state. In both cases, PRACTI's comll in a client-server system; in thdotellocation, direct
bined partia| rep”cation and topo|0gy independence a|SynChr0nizati0n between these two co-located devices is

lows our design to dominate topology-restricted hierar2n order of magnitude faster than synchronizing via the
chical approaches by doing two things: server (1.7s v. 66s); and in the home location directly

synchronizing co-located devices is between 3 and 20

1. Adapt to changing topologies PRACTI system can ) o
b ging fopoleg y times faster than client-server synchronization.

make use of the best paths among nodes.
2. Adapt to changing workloadsa PRACTI system can \WAN-FS for Researchers. Figure 11 evaluates a
optimize communication paths to, for example, use diyjge-area-network file system called PLFS designed for
rect node-to-node transfers for some objects and diss|anetLab and Grid researchers. The controller for PLFS
tribution trees for others. is simple: for invalidations, PLFS forms a multicast tree
For completeness, our graphs also compare againgi distribute all precise invalidations to all nodes. And,
topology-independent, full replication systems; the datavhen anINVALID file is read, PLFS uses a DHT-based
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system [42] to find the nearest copy of the file; not only
does this approach minimize transfer latency, it effec
tively forms a multicast tree when multiple concurrent
reads of a file occur [2, 38]. Like Shark [2], PLFS is der
signed to be convenient for allowing a user to export daté
from her local file system to a collection of remotely run- .,
ning nodes. However, unlike the read-only Shark system,

PLFS supports read/write data. 0(a) 50 distributed nodes + rcérﬁc;te server ELB; 50 cluster nodes cr"r"gﬁ:ote server

We examine a 3-phase benchmark that represents rufdg. 11: Execution time for the WAN-Experiment benchmark.
ning an experiment:; in phaselisseminateeach node

Improved consistency trade-offs. Gray [14] and Yu
"ind Vahdat [44] show a trade-off: aggressive propaga-

thgt usiros f.T ome nﬁdef; igoﬂ]g sePdiotc;]ess eac;lh nl%d?'I tion of updates dramatically improves consistency and
wntes es each o an en reads IeSavailability but can also increase system load. PRACTI
from randomly selected peers; in phasd™8st-process

has three features that improve these trade-offs: (1) sepa-
fation of invalidations from bodies allows invalidations

reads all of these output files. We compare PLFS to thre{a0 propagate aggressively, (2) streaming log exchange

systems: a client-server system, client-server with COC)p('rather than batch) allows nodes to continuously update

erative caching of read—qnly ldata (eg.a Shark—lllke SYSone another when they are connected, and (3) self-tuning
tem [2]), and server-replication (e.g., a Bayou-like sys-,

) body propagation maximizes the amountM#LID data
tem [29]). All 4 systems are implemented over PRACT"at a node for a given consistency requirement and band-

Figure 11 shows performance for an experiment runyigth budget [27].
ning on (a) 50 distributed nodes each with a 5.6Mb/s con- \ye examine a range of consistency requirements and
nection to the Internet (we emulate this case by throttling,onork failure scenarios via simulation (all other exper-
bandwidth} and (b_) 50 “cluster”_nodes at the Universityjments in this paper are prototype measurements.) We
of Texas with a switched 100Mbit/s network among them,se the read/write workload described for Figure 8. We
anq a shared path via Internet2 to the origin server at thgea 4 average network path unavailability of 0.1% with
University of Utah. Pareto distributed repair time R(t)l=— 15¢=9-8 [7].

The speedups range from 1.5t0 9.2, demonstrating the |n Figure 12-a we measure the best order error that
significant advantages enabled by the PRACTI architeccan be maintained for a given bandwidth budget. Order
ture. CompaFEd to Client/server, it is faster in both th%rror constrains the number of outstanding uncommit-
Dissemination and Process phases due to its multicagtd writes [45]. We compare tHBACT Aggressiveol-
dissemination and direct peer-to-peer data transfer. Coniey [44] to a PRACTI Prefetctpolicy that aggressively
pared to full replication, it is faster in the Process andyjstributes invalidations as in TACT’s policy but that dis-
Post-process phases because it only sends the requifgihutes bodies using the self-tuning approach. This tech-
data. And compared to cooperative caching of read onlyique reduces the bandwidth needed to maintain reason-
data, itis faster in the Process phase because data is traggje consistency by a factor of 3 compared&CT Ag-
ferred directly between nodes. gressiveand improves the consistency bounds attainable
for some bandwidth budgets by orders of magnitude.

Figure 12-b plots system unavailability for an order
error of 100 as bandwidth varies. Following Yu and Vah-
This subsection first examines the benefits and then extat's methodology [44], we say the systenmaigilable
amines the costs of supporting flexible consistency. to a read or write request if the request can issue with-

4.3 Arbitrary consistency
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Fig. 12: Consistency trade-offs (a-b) and costs (c).

out blocking and the system imavailableif the request  20% to the bandwidth cost of supporting only coherence.
must block to meet the consistency target. When band#/hen there is no locality, the cost is higher, but in the
width is limited, PRACTI dramatically improves system worst case imprecise invalidations add under 50 bytes per
availability under consistency constraints compared t@recise invalidation received. Overall, the difference in
full replication. invalidation cost is likely to be small relative to the total

bandwidth consumed by the system to distribute bodies.
Consistency overheads. As Section 3.3 describes,

PRACTI ensures that individual requests pay only the laD Related work

tency and availability costs of consistency that they reReplication is fundamentally difficult. As noted in Sec-
quire. But, distributing sufficient bookkeeping informa- tion 3.3, the CAP dilemma [12, 35] and performance/-
tion to support a wide range of per-request semanticgonsistency dilemma [25] describe fundamental availa-
does impose a modest bandwidth cost. In particular, olbility/performance/consistency trade-offs. As a result,
ject replication systems [15, 32] do not provide crosssystemsnustmake compromises or optimize for specific
object consistency guarantees. In the context of our sysvorkloads. Unfortunately, these workload-specific com-
tem, if all applications in a system only care about coherpromises are often reflected in system mechanisms, not
ence guarantees, the system could completely omit injust their policies.
precise invalidations. In particular, state of the art mechanisms allow a de-
Figure 12-c quantifies the cost to distribute both presigner to retain full flexibility along at most two of the
cise and imprecise invalidations (in order to support conthree dimensions of replication, consistency, or topology
sistency) versus the cost to distribute only precise invalpolicy. Section 2 compares PRACTI with existing PR-
idations for the subset of data of interest and omittingAC [1, 4, 10, 18, 21, 28], AC-TI [13, 20, 22, 29, 45], and
the imprecise invalidations (and thus only supporting coPR-TI [15, 32] approaches. These systems can be seen as
herence.) Note that the cost of imprecise invalidationspecial case “projections” of the more general PRACTI
depends on the workload: if there is no locality and writ-mechanisms [8, 9].
ers tend to quickly alternate between writing objects of Some recent work has focused on extending AC-
interest and objects not of interest, then the imprecise inF| server replication systems towards supporting partial
validations “between” the precise invalidations will cover replication. Holliday et al.’s protocol allows nodes to
relatively few updates and save relatively little overheadstore subsets of data but still requires all nodes to receive
but if writes to different interest sets arrive in bursts, therupdates for all objects [17]. Published descriptions of
the system will generally be able to accumulate largeShapiro et al.’s consistency constraint framework focus
numbers of updates into imprecise invalidations. We varyn algorithms for full replication, but the authors have
the fraction of data “of interest” to a node on the x axissketched an approach for generalizing the algorithms to
and show the invalidation bytes received per write on th&upport partial replication [34].
y axis. All objects are equally likely to be written by a  Like PRACTI, the Deceit file system [35] provides
set of remote nodes, but the locality of writes varies: thea flexible substrate that subsumes a range of replication
“No Locality” line shows the worst case scenario, with systems. Deceit, however, focuses on replication across a
no locality across writes, and the “burst=10" line showshandful of well-connected servers, and it therefore makes
the case when a write is ten times more likely to hit thevery different design decisions than PRACTI. For exam-
same interest set as the previous write than to hit a neypie, each Deceit server maintains a list of all files and
interest set. of all nodes replicating each file, communication among
When there is significant locality for writes, the cost servers is via group multicast for each distinct subset of
of distributing imprecise invalidations is small: imprecise servers, and all nodes replicating a file receive all bodies
invalidations to support consistency never add more thafor all writes to the file.
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tem, WIinFS, will appear at some future date [40].
will reportedly support synchronization across multiple
nodes, however no detailed technical description of the

Microsoft has announced that a new replication sysfi1]

It

[12]

protocol has been published. One report [41] sugges(s3]
that the system transfers sets of updated items “rather

than maintaining and synchronizing a log of each indi-*

S. Gadde, J. Chase, and M. Rabinovich. A taste of crispy squid.
In Wkshp. on Internet Svr. Perflune 1998.

S. Gilbert and N. Lynch. Brewer’s conjecture and the feasibility
of Consistent, Available, Partition-tolerant web servicesAGM
SIGACT News, 33(2yun 2002.

R. Golding. A weak-consistency architecture for distributed in-
formation servicesComputing SystemS(4):379-405, 1992.

4] J. Gray, P.Helland, P. E. O’Neil, and D. Shasha. Dangers of repli-

vidual action,” which may indicate that WinFS takes aj15)
PR-TI approach.

6

In this paper, we introduce the PRACTI paradigm for
replication in large scale systems and we describe the

Conclusion

[17

[16]

]

first system to simultaneously provide all three PRACTI[18]
properties. Evaluation of our prototype suggests byat

dis

entangling mechanism from policy, PRACTI replica-

tion enables significantly better trade-offs for system degg)

sig

ners than possible with existing mechanisByssub-

suming existing approaches and enabling new ones, we

speculate that PRACTI may serve as the basis fania

[20]

fied replication architecturéhat simplifies the design and [21]
deployment of large-scale replication systems.
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