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Abstract
We present PRACTI, a new approach and architecture for
large-scale replication. PRACTI systems can replicate or
cache any subset of data on any node (Partial Replica-
tion), provide a broad range of consistency and coherence
guarantees (Arbitrary Consistency), and permit any node
to share updates with any other node (Topology Indepen-
dence). Our PRACTI architecture yields two significant
advantages. First, by providing all three PRACTI proper-
ties, it enablesbetter trade-offsthan existing mechanisms
that support at most two of the three desirable properties.
PRACTI thus exposes new points in the design space for
replication systems. Second, our architecture’sflexibility
simplifies the design of replication systems by allowing a
single architecture to subsume a broad range of existing
systems and to reduce development costs for new ones.
To illustrate both advantages, we use our PRACTI proto-
type to emulate existing server replication, client-server,
and object replication systems and to implement novel
policies that improve performance for mobile users, web
edge servers, and grid computing by as much as an order
of magnitude.

1 Introduction
This paper describes PRACTI, a new data replication ap-
proach and architecture that can reduce replication costs
by an order of magnitude for a range of large-scale sys-
tems and also simplify the design, development, and de-
ployment of new systems.

Data replication is a building block for many large-
scale distributed systems such as mobile file systems,
web service replication systems, enterprise file systems,
and grid replication systems. Because there is a fun-
damental trade-off between performance and consis-
tency [25] as well as between availability and consis-
tency [12, 35], systems make different trade-offs among
these factors by implementing different placement poli-
cies, consistency policies, and topology policies for dif-
ferent environments. Informally,placement policies
such as demand-caching, prefetching, push-caching, or
replicate-all define which nodes store local copies of
which data,consistency policiessuch as sequential [24]
or causal [19] define which reads must see which writes,

andtopology policiessuch as client-server, hierarchy, or
ad-hoc define the paths along which updates flow.

This paper introduces the PRACTI taxonomy and ar-
gues that an ideal replication framework should provide
all three PRACTI properties:

• Partial Replication(PR) means that a system can place
any subset of data and metadata on any node. In con-
trast, some systems require a node to maintain copies
of all objects in all volumes they export [29, 45].

• Arbitrary Consistency(AC) means that a system pro-
vides flexible semantic guarantees, including the abil-
ity to selectively enforce bothconsistencyandcoher-
enceguarantees.1 In contrast, some systems can only
enforce coherence guarantees but make no guarantees
about consistency [15, 32].

• Topology Independence(TI) means that any node
can exchange updates with any other node. In con-
trast, many systems restrict communication to client-
server [18, 21, 28] or hierarchical [4, 43] patterns.

Although many existing systems can each provide two of
the properties, we are aware of no system that provides
all three. As a result, systems give up the ability to ex-
ploit locality, support a broad range of applications, or
dynamically adapt to network topology.

This paper presents PRACTI, the first replication ar-
chitecture to provide all three properties. It does this by
drawing on key ideas of existing protocols but recasting
them to remove the deeply-embedded policy assumptions
that prevent one or more PRACTI properties. In particu-
lar, our design begins with log exchange mechanisms that
support a range of consistency guarantees and topology
independence but that fundamentally assume full repli-
cation [29, 45]. To support partial replication, we extend
the mechanisms in two simple but fundamental ways.

1. In order to allow partial replication of data, our de-
signseparates the control path from the data pathby

1Although the operating systems and distributed systems literature
often use the terms consistency and coherence interchangeably, the ar-
chitecture literature is more precise [16]: consistency semantics con-
strain the order that updates across multiple objects become observable
to readers. Coherence semantics constrain the order that updates to a
single object become observable but do not additionally constrain the
ordering of updates across different objects. We find this precision use-
ful and follow that terminology in this paper.
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separating invalidation messages that identify what has
changed from body messages that encode the changes
to the contents of files. Distinct invalidation mes-
sages are widely used in hierarchical caching systems,
but we demonstrate how to use them in topology-
independent systems: we develop explicit synchro-
nization rules to enforce consistency constraints de-
spite multiple streams of information, and we intro-
duce general mechanisms for handling demand read
misses.

2. In order to allow partial replication of update meta-
data, we introduceimprecise invalidations, which al-
low a single invalidation to conservatively summarize
a set of invalidations. Imprecise invalidations allow us
to provide cross-object consistency in a scalable man-
ner in which each node incurs storage and bandwidth
costs proportional to the size of the data set in which it
is interested. Using imprecise invalidations, a noden1
that is interested in one set of objectsA but not another
setB, can receive precise invalidations for objects in
A along with an imprecise invalidation that summa-
rizes any omitted invalidations to objects inB. The
imprecise invalidation then serves as a placeholder for
the omitted updates so that ifn1 forwards information
about the updates toA to another noden2 that is in-
terested in bothA andB, n2 can know which omitted
updates toB it must fetch from another node.

We construct and evaluate a prototype using a range of
policies and workloads. Our primary conclusion is that
by simultaneously supporting the three PRACTI prop-
erties,PRACTI replication enables better trade-offs for
system designers than possible with existing mechanisms.
For example, for some workloads in our mobile storage
and grid computing case studies, our system dominates
existing approaches by providing more than an order of
magnitude better bandwidth and storage efficiency than
AC-TI full replication replicated server systems, by pro-
viding more than an order of magnitude better synchro-
nization delay compared to PR-AC topology constrained
hierarchical systems, and by providing consistency guar-
antees not achievable by PR-TI limited consistency per-
object replication systems.

More broadly, we argue that the PRACTI architec-
ture can simplify the design of replication systems. At
present, because mechanisms and policies are entangled,
when a replication system is built for a new environment,
it must often be built from scratch or must modify exist-
ing mechanisms to accommodate new policy trade-offs.
In contrast, our system can be viewed as a “replication
microkernel” that defines a common substrate of core
mechanisms over which a broad range of systems can
be constructed by selecting appropriate policies. For ex-
ample, in this study we use our prototype both to emu-
late existing server replication, client-server, and object
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Fig. 1: The PRACTI taxonomy defines a design space for clas-
sifying families of replication systems.

replication systems and to implement novel policies to
support mobile users, web edge servers, and grid scien-
tific computing.

In summary, this paper makes four contributions.
First, it defines the PRACTI paradigm and provides a
taxonomy for replication systems that explains why ex-
isting replication architectures fall short of ideal. Second,
it describes the first replication architecture to simulta-
neously provide all three PRACTI properties. Third,
it provides a prototype PRACTI replication toolkit that
cleanly separates mechanism from policy and thereby al-
lows nearly arbitrary replication, consistency, and topol-
ogy policies. Fourth, it demonstrates that PRACTI repli-
cation offers decisive practical advantages compared to
existing approaches.

Section 2 revisits the design of existing systems in
light of the PRACTI taxonomy. Section 3 describes our
PRACTI architecture, and Section 4 experimentally eval-
uates the prototype. Finally, Section 5 surveys related
work, and Section 6 highlights our conclusions.

2 Taxonomy and challenges
As illustrated in Figure 1, the PRACTI paradigm defines
a taxonomy for understanding the design space for repli-
cation systems. Although providing all three PRACTI
properties has obvious potential benefits, we know of no
existing system that does so. Most systems fall into cate-
gories that each provide at most two of the PRACTI prop-
erties:

Server replication systems like Golding’s
timestamped anti-entropy [13] and Bayou [29] pro-
vide log-based peer-to-peer update exchange that allows
any node to send updates to any other node (TI) and that
consistently orders writes. Lazy Replication [22] and
TACT [45] use this approach to provide a wide range
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of tunable consistency guarantees (AC). Unfortunately,
these protocols fundamentally assume full replication:
all nodes store all data from any volume they export and
all nodes receive all updates. As a result, these systems
are unable to exploit workload locality to efficiently use
networks and storage, and they may be unsuitable for
devices with limited resources.

Client serversystems like Sprite [28] and Coda [21]
and hierarchical caching systems like hierarchical
AFS [26] permit caching of arbitrary subsets of data
(PR). Although specific systems generally enforce a set
consistency policy, a broad range of consistency guaran-
tees are provided by variations of the basic architecture
(AC). However, these protocols fundamentally require
communication to flow between a child and its parent.
Even when client-server systems permit limited client-
client communication for cooperative caching [10] they
must still serialize control messages at a central server
for consistency [5]. These restricted hierarchical com-
munication patterns (1) hurt performance when network
topologies do not match the fixed communication pat-
terns or when network costs change over time (e.g., in
environments with mobile nodes), (2) hurt availability
when a network path or node failure disrupts a fixed com-
munication topology, and (3) limit sharing during discon-
nected operation when a set of nodes can communicate
with one another but not with the rest of the system.

DHT-based storage systemssuch as BH [38],
PAST [31], CFS [6], and OceanStore [30] implement a
specific—if sophisticated—topology and replication pol-
icy: they can be viewed as generalizations of client-
server systems where the server is split across a large
number of nodes on a per-object or per-block basis for
scalability and replicated to multiple nodes for availabil-
ity and reliability. This division and replication, however,
introduces new challenges for providing consistency. For
example, the Pond OceanStore prototype assigns each
object to a set of primary replicas that receive all up-
dates for the object, uses an agreement protocol to co-
ordinate these servers for per-object coherence, and does
not attempt to provide cross-object consistency guaran-
tees [30].

Object replicationsystems such as Ficus [15] and
Pangaea [32] allow nodes to choose arbitrary subsets
of data to store (PR) and arbitrary peers with whom to
communicate (TI). But, these protocols enforce no or-
dering constraints on updates across multiple objects, so
they can provide coherence but not consistency guaran-
tees. Unfortunately, reasoning about the corner cases of
consistency protocols is complex, so systems that pro-
vide only weak consistency or coherence guarantees can
complicate constructing, debugging, and using the appli-
cations built over them. Furthermore, support for only
weak consistency semantics may prevent deployment of
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Fig. 2: Naive addition of PR to an AC-TI log exchange protocol
fails to provide consistency.

applications with more stringent requirements.

Why is PRACTI hard? It is surprising that despite the
significant costs of omitting any of the PRACTI proper-
ties, no system has succeeded in providing all three. Our
analysis suggests that these limitations are fundamental
to these protocol families: the assumption of full replica-
tion is deeply embedded in the core of Bayou and other
server replication protocols; the assumption of hierarchi-
cal communication is fundamental to client-server con-
sistency protocols; careful assignment of key ranges to
nodes is central to the properties of DHTs; and the lack
of consistency is a key factor in the flexibility of object
replication systems.

To understand why it is difficult for existing architec-
tures to provide all three PRACTI properties, consider
the naive attempt to add PR to a AC-TI server replication
protocol like Bayou illustrated in Figure 2. Suppose a
user’s desktop node stores all of the user’s files, includ-
ing files A andB, but the user’s palmtop only stores a
small subset that includesB but notA. Then, the desk-
top issues a series of writes, including a write to fileA
(making it A′) followed by a write to fileB (making it
B′). When the desktop and palmtop synchronize, for PR,
the desktop sends the write ofB but not the write ofA.
At this point, everything is OK: the palmtop and desk-
top have exactly the data they want, and reads of local
data provide a consistent view of the order that writes oc-
curred. But for TI, we not only have to worry about local
reads but also propagation of data to other nodes. For in-
stance, suppose that the user’s laptop, which also stores
all of the user’s files including bothA andB, synchro-
nizes with the palmtop: the palmtop can send the write
of B but not the write ofA. Unfortunately, the laptop
now can present an inconsistent view of data to a user or
application. In particular, a sequence of reads at the lap-
top can return the new version ofB and then return the
old version ofA, which is inconsistent with the writes
that occurred at the desktop under causal [19] or even the
weaker FIFO consistency [25].

This example illustrates the broader, fundamental
challenge: topology independence makes combining par-
tial replication and arbitrary consistency hard because
when a node receives updates, it must not only consis-
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Fig. 3: High level PRACTI architecture.

tently order updates to the data it cares about but also
ensure that it has enough information to order updates
for the data of interest to all nodes with which it might
communicate in the future.

Existing systems resolve this dilemma in one of three
ways. AC-TI server replication systems’ full replication
ensures that all nodes have enough information to order
all updates. PR-AC client-server and hierarchical sys-
tems restrict communication so that the root of a subtree
can track what information is cached by descendents and
can safely omit sending invalidations or updates for data
that no descendent is currently caching; if a descendent
later tries to read such data, cache miss bubbles up the hi-
erarchy to a node that has sufficient information to supply
consistent data to the read. Finally, PR-TI object replica-
tion systems simply give up ability to consistently order
writes to different objects and allow inconsistencies such
as the one just described.

3 PRACTI replication
Figure 3 shows the high-level architecture of our
PRACTI implementation.

Node 1 in the figure illustrates the main local data
structures of each PRACTI node. Applications access
data stored in PRACTI via the per-nodeLocal API for
creating, reading, writing, and deleting objects. These
functions operate on local state stored in each node’s
Log of updates and random-accessCheckpoint: modi-
fications are appended to the log and then update the
checkpoint, and reads access the checkpoint. To support
partial replication policies, the PRACTI mechanisms al-
low each node to select an arbitrary subset of the sys-
tem’s objects to replicate, and nodes are free to change
this subset at any time. The PRACTI mechanisms track

local state so that nodes can satisfy requests to read local,
valid objects without needing to communicate with other
nodes.

To handle read misses and to push new information
between nodes, PRACTI makes use of two types of com-
munication as illustrated in the figure—causally ordered
Streams of Invalidationsand unorderedBodymessages.
The protocol for sending streams of invalidations is sim-
ilar to Bayou’s [29] log exchange protocol, and it en-
sures that each node’s log and checkpoint always reflect
a causally consistent view of the system’s data. But
PRACTI’s protocol differs from existing log exchange
protocols two key ways:

1. Separation of invalidations and bodies.PRACTI in-
validation streams notify a receiver that writes have
occurred, but separate body messages contain the con-
tents of the writes. This separation supports partial
replication of data—a node only needs to receive and
store bodies of objects that interest it.

2. Imprecise invalidations. Although the invalidation
streams each logically contain a causally consistent
record of all writes known to the sender but not the
receiver, PRACTI nodes can omit sending groups of
invalidations by instead sendingimprecise invalida-
tions that concisely and conservatively summarize the
omitted invalidations. Imprecise invalidations serve as
placeholders in the receiver’s log (to prevent the inval-
idation streams that it transmits from containing causal
gaps) and in the receiver’s checkpoint (to allow the re-
ceiver to block reads of objects for which some inval-
idations may be missing.) Imprecise invalidations al-
low partial replication of metadata—a node only needs
to receive traditionalprecise invalidationsand store
per-object metadata for objects that interest it.

Nodes select subsets of objects about which they want to
store per-object metadata, and they select subsets of ob-
jects for which they want to prefetch body updates. They
then receive streams of invalidations and body messages
to maintain this local state. A node requests a stream of
invalidations by sending a request that identifies the sub-
set of objects for which the receiver desires to see precise
invalidations. Body messages are initiated in two ways.
First, if a local read blocks because an object is invalid,
a node sends a demand-read request for that object to an-
other node. Second, a node can set up a prefetch sub-
scription with any other node in order to automatically
receive body update messages for a specified subset of
the system’s objects.

The mechanisms just outlined, embodied in a node’s
Core, allow a node to store data for any subsets of ob-
jects, to store per-object metadata for any subset of ob-
jects, to receive precise invalidations for any subset of
objects from any node, and to receive body messages
for any subset of objects from any node. Given these
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mechanisms, a PRACTIController embodies a system’s
replication and topology policies by directing communi-
cation among nodes. A node’s controller implements a
replication and consistency policy by (1) selecting which
nodes should send it invalidations and, for each invalida-
tion subscription, specifying subsets of objects for which
invalidations should be full precise invalidations, (2) se-
lecting which nodes to prefetch bodies from and which
bodies to prefetch, and (3) selecting which node should
service each demand read miss.

The rest of this section describes the design in more
detail. It first explains how PRACTI’s log exchange pro-
tocol separates invalidation and body messages. It then
describes how imprecise invalidations allow the log ex-
change protocol to partially replicate invalidations. Next,
it discusses the crosscutting issue of how to provide flex-
ible consistency that (a) supports strong consistency se-
mantics for those applications that require them and (b)
does not introduce unnecessary overhead for applications
that do not. After that, it describes several novel features
of our prototype that enable it to support the broadest
range of policies.

3.1 Separation of invalidations and bodies
As Figure 3 illustrates, nodes exchange two types of up-
dates: ordered streams of invalidations and unordered
body messages.Invalidationsare metadata that describe
writes; each contains an object ID2 and logical time of
a write. A write’s logical time is assigned at the local
interface that first receives the write, and it contains the
current value of the node’s Lamport clock [23] and the
node’s ID. Like invalidations,body messagescontain the
write’s object ID and logical time, but they also contain
the actual contents of the write.

The protocol for exchanging updates is simple.

• As illustrated by node 1 in Figure 3, each node main-
tains alog of the invalidations it has received sorted by
logical time. And, for random access, each node stores
bodies in itscheckpointindexed by object ID.

• Invalidations from a log are sent via a causally-ordered
stream that logically contains all invalidations known
to the sender but not to the receiver. As in Bayou,
nodes use version vectors to summarize the contents
of their logs in order to efficiently identify which up-
dates in a sender’s log are needed by a receiver [29].

• A receiver of an invalidation inserts the invalidation
into its sorted log and updates its checkpoint. Check-
point update of the entry for object ID entails marking
the entryINVALID and recording the logical time of
the invalidation. Note that checkpoint update for an

2For simplicity, we describe the protocol in terms of full-object
writes. For efficiency, our implementation actually tracks checkpoint
state, invalidations, and bodies on arbitrary byte ranges.

incoming invalidation is skipped if the checkpoint en-
try already stores a logical time that is at least as high
as the incoming invalidation’s.

• A node can send any body from its checkpoint to any
other node at any time. When a node receives a body, it
updates its checkpoint entry by first checking to see if
the entry’s logical time matches the body’s logical time
and, if so, storing the body in the entry and marking the
entryVALID.

Rationale. Separating invalidations from bodies pro-
vides topology-independent protocol that supports both
arbitrary consistency and partial replication.

Supporting arbitrary consistency requires a node to be
able to consistently order all writes. Log-based invalida-
tion exchange meets this need by ensuring three crucial
properties [29]. First theprefix propertyensures that a
node’s state always reflects a prefix of the sequence of
invalidations by each node in the system. I.e., if a node’s
state reflects theith invalidation by some noden in the
system, then the node’s state reflects all earlier invalida-
tions byn. Second, each node’s local state always re-
flects acausally consistent[19] view of all invalidations
that have occurred. This property follows from the prefix
property and from the use of Lamport clocks to ensure
that once a node has observed the invalidation for write
w, all of its subsequent writes’ logical timestamps will
exceedw’s. Third, the system ensureseventual consis-
tency: all connected nodes eventually agree on the same
total order of all invalidations. This combination of prop-
erties provides the basis for a broad range of tunable con-
sistency semantics using standard techniques [45].

At the same time, this design supports partial replica-
tion by allowing bodies to be sent to or stored on any
node at any time. It supports arbitrary body replica-
tion policies including demand caching, push-caching,
prefetching, pre-positioning bodies according to a global
placement policy, or push-all.

Design issues. The basic protocol adapts well-
understood log exchange mechanisms [29]. But, the
separation of invalidations and bodies raises two new
issues: (1) coordinating disjoint streams of invalidations
and bodies and (2) handling reads of invalid data.

The first issue is how to coordinate the separate body
messages and invalidation streams to ensure that the ar-
rival of out-of-order bodies does not break the consis-
tency invariants established by the carefully ordered in-
validation log exchange protocol. The solution is simple:
when a node receives a body message, it does not ap-
ply that message to its checkpoint until the corresponding
invalidation has been applied. A node therefore buffers
body messages that arrive “early.” As a result, the check-
point is always consistent with the log, and the flexible
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Imprecise Invalidation

<objId=/foo/b, time=<11,node1>>
<objId=/foo/a, time=<12,node1>>
<objId=/foo/a, time=<15,node2>>
<objId=/foo/a, time=<16,node1>>
<objId=/foo/b, time=<16,node2>>
<objId=/foo/c, time=<17,node2>>

<10,node1>
<15,node2>

<16,node1>
<17,node2>

<targetSet=/foo/*, start=                       , end=                      >

Precise Invalidations

<objId=/foo/a, time=<10,node1>> 

Fig. 4: Example imprecise invalidation.

consistency properties of the log [45] extend naturally to
the checkpoint despite its partial replication.

The second issue is how to handle demand reads at
nodes that replicate only a subset of the system’s data.
The core mechanism supports a wide range of policies:
by default, the system blocks a local read request until
the requested object’s status isVALID3. Of course, to en-
sure liveness, when anINVALID object is read, an imple-
mentation should arrange for someone to send the body.
Therefore, when a local read blocks, the core notifies the
controller. The controller can then implement any policy
for locating and retrieving the missing data such as send-
ing the request up a static hierarchy (i.e., ask your parent
or a central server), querying a separate centralized [11]
or DHT-based [38] directory, using a hint-based search
strategy [33], or relying on a push-all strategy [29] (i.e.,
“just wait and the data will come.”)

3.2 Partial replication of invalidations
Although separation of invalidations from bodies sup-
ports partial replication of bodies, for true partial repli-
cation that supports a broad range of policies, workloads,
and devices the system must not require all nodes to see
all invalidations or to store metadata for each object. For
example, consider palmtops caching data from an enter-
prise file system with 10,000 users and 10,000 files per
user: if each palmtop were required to store 100 bytes of
per-object metadata, then 10GB of storage would be con-
sumed on each device; and if the palmtops were required
to receive every invalidation during log exchange and if
an average user issued just 100 updates per day, then in-
validations would consume 100MB/day of bandwidth to
each device. Exploiting locality is fundamental to repli-
cation in large-scale systems, and requiring full replica-
tion of metadata would prevent deployment of a replica-
tion system for a wide range of environments, workloads,
and devices.

To support true partial replication, invalidation
streamslogically contain all invalidations as described in
Section 3.1, but inreality they omit some invalidations
by replacing them withimprecise invalidations.

As Figure 4 illustrates, an imprecise invalidation is a
conservative summary of several standard orprecise in-
validations. Each imprecise invalidation has atargetSet

3To broaden the range of consistency semantics PRACTI can sup-
port, the read interface also provides a flag that indicates that a read of
an INVALID object should return an exception rather than block.

of objects,start logical time, and anendlogical time, and
it means “one or more objects intargetSetwere updated
betweenstart andend.” An imprecise invalidation must
beconservative: each precise invalidation that it replaces
must have itsobjId included intargetSetand must have
its logical time included betweenstart andend, but for
efficient encodingtargetSetmay include additional ob-
jects. In our prototype, thetargetSetis encoded as a list
of subdirectories and thestart andend times are partial
version vectors with an entry for each node whose writes
are summarized by the imprecise invalidation.

Imprecise invalidations act as “placeholders” in the
log to ensure that nodes that try to access data updated by
omitted writes can detect and correct the missing infor-
mation. When a node receives a new imprecise invalida-
tion, it logically marks all covered objects “INVALID.”
For efficiency, however, rather than iterating through
all covered objects, the implementation uses some addi-
tional bookkeeping to efficiently track local state.

Design issues. Tracking the effects of imprecise inval-
idations actually encompasses four related problems:

1. We cannot require a node to store per-object state for
all objects. As the example above illustrates, doing
so would significantly restrict the range of replication
policies and workloads that can be accommodated.

2. We need to efficiently apply imprecise invalidations
covering many objects. In particular, an implemen-
tation should not have to iterate across all objects in
targetSetto apply an imprecise invalidation.

3. We need to be able to determine when objects whose
state was “made IMPRECISE” by one or more impre-
cise invalidation have been “made PRECISE” by later
seeing all of the missing precise invalidations for those
objects.

4. We need to handle demand reads to objects whose state
is currently IMPRECISE.

Our solution is to maintain simple bookkeeping infor-
mation about groups of objects. In particular, each node
independently partitions the object ID space into one or
moreinterest setsand decides whether to store per-object
state on a per-interest set basis. A node tracks whether
each interest set is PRECISE (has observed all invalida-
tions) or IMPRECISE (may have missed some precise
invalidations) by maintaining two pieces of state.

• Each node maintains a global variablecurrentVV,
which is a version vector encompassing the highest
timestamp of any invalidation (precise or imprecise)
applied to any interest set.

• Each node maintains for each interest setIS the vari-
able IS.lastPreciseV V , which is the latest version
vector for whichIS is known to be PRECISE.

If IS.lastPreciseV V = currentV V , then interest set
IS has not missed any invalidations and it is PRECISE.
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In this arrangement, applying an imprecise invalida-
tion I to an interest setIS merely involves updating two
variables—the globalcurrentV V and the interest set’s
IS.lastPreciseV V . In particular, a node that receives
imprecise invalidationI always advancescurrentV V to
include I ’s end logical time because after applyingI,
the system’s state may reflect events up toI.end. Con-
versely, the node only advancesIS.lastPreciseV V to
the latest time for whichIS has missed no invalidations.

This per-interest state addresses the four problems
listed above. (1) Storage is limited: each node only needs
to store per-object state for data currently of interest to
that node, and the total metadata state at a node is pro-
portional to the number of objects of interest plus the
number of interest sets. Note that our implementation
allows a node to dynamically repartition its data across
interest sets as its locality patterns change. (2) Imprecise
invalidations are efficient to apply, requiring work that
is proportional to the number of interest sets rather than
the number of summarized invalidations. (3) Recovery
to precise is guaranteed under the following conditions:
if an interest setIS is initially PRECISE at a node, the
node then sees an imprecise invalidationsI that make
an interest setIS IMPRECISE, and later the node sees
the a sequence of precise invalidations that includes all
invalidations inI that target any object inIS, then the
interest setIS is made PRECISE up to at least the end
time of I. (4) A local read request includes a flag that
indicates whether the read requires consistency guaran-
tees. If not, then the read does not consult the per inter-
est set status and it may return as soon as the object is
VALID. Conversely, if the read does require consistency,
then the read blocks until the interest set in which the
object lies is PRECISE. This blocking ensures that “pre-
cise reads” only observe the checkpoint state they would
have observed if all invalidations were precise, and there-
fore allows them to enforce the same consistency as pro-
tocols without imprecise invalidations. As with regular
read misses, for liveness the core signals the controller
when a read of an IMPRECISE interest set blocks, and
the controller is responsible for arranging for the missing
precise invalidations to be sent.

The following example illustrates the maintenance of
the interest set status state in more detail.

Example. Suppose that initially as label (1) in Fig. 5
illustrates, A, B, and C were last written at node1’s logi-
cal times98/node1, 99/node1, and100/node1, that all
are currently VALID, and that interest setIS containing
A, B, and C is PRECISE withIS.lastPreciseVV[node1]
= currentVV[node1] = 100.

Then, (2) an imprecise invalidationI with a targetSet
that includes A, B, and C, astart time of 101/node1, and
anendtime of 103/node1arrives. The system must con-

IS.lastPreciseVV[node1] = 100 (IMPRECISE)

C VALID 100/node1

A VALID 98/node1Checkpoint:

B VALID 99/node1
C VALID 100/node1

A VALID 98/node1Checkpoint:

I=(target={A,B,C}, start=101/node1, end=103/node1)

PI1=(A, 101/node1), PI2=(B, 103/node1)

B INVALID 103/node1
C VALID 100/node1

A INVALID 101/node1Checkpoint:

currentVV[node1] = 103 IS.lastPreciseVV[node1] = 103 (PRECISE)

1

2

3

4

5

currentVV[node1] = 100

currentVV[node1] = 103

IS.lastPreciseVV[node1] = 100 (PRECISE)

B VALID 99/node1

Fig. 5: Example of applying an imprecise invalidation I
and then applying precise invalidationsPI1 and PI2. For
clarity, we only show node1’s elements ofcurrentV V and
IS.lastPreciseV V .

servatively assume A, B, and C are all invalid up to time
103/node1, so (3) it setscurrentVV[node1] = 103but
leavesIS.lastPreciseVV[node1] = 100, making IS IM-
PRECISE.

But now (4) suppose precise invalidationsPI1 = (A,
101/node1)andPI2 = (B, 103/node1)arrive on a single
invalidation channel from another node. (5) The first in-
validation advancesIS.lastPreciseVV[node1]to 101and
leavescurrentVVunchanged. The second advancesIS.-
lastPreciseVV[node1]to 103, and the final state isIS.-
lastPreciseVV[node1] = currentVV[node1] = 103, IS is
PRECISE,A andB are INVALID, andC is VALID.

Notice that although we never saw a precise invalida-
tion with time 102/node1, the fact that a single stream
contains invalidations at times101/node1and103/node1
allows us to infer by the prefix property that no invalida-
tion at time102/node1occurred and therefore we were
able to advanceIS.lastPreciseVVto makeIS PRECISE.

A technical report [9] provides pseudo-code and de-
tails how our implementation copes with (a) applying in-
validations in causal order despite the multiple start and
end times in imprecise invalidations and despite concur-
rency across streams and (b) maximizing the information
extracted and stored from each invalidation in a stream to
minimize the amount of IMPRECISE data in the system.

3.3 Consistency: Costs and approach
Enforcing cache consistency entails fundamental trade-
offs. For example the CAP dilemma states that a replica-
tion system that provides sequentialConsistency cannot
simultaneously provide 100%Availability in an environ-
ment that can bePartitioned [12, 35]. Similarly, Lipton
and Sandberg describe fundamental performance limita-
tions for distributed systems that provide sequential con-
sistency [25].

A system that seeks to support arbitrary consistency
must therefore do two things. First, it must allow a range
of consistency guarantees to be enforced. Second, it must
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ensure that workloads only pay for the consistency guar-
antees they actually need.

Our system addresses these goals by distinguishing
the availability and response time costs paid by read and
write requests from the bandwidth overhead paid by in-
validation propagation.

The read interface allows each read request to specify
its consistency requirements. Therefore, a read does not
block unlessthat readrequires the local node to gather
more recent invalidations and updates than it already has.
Similarly, most writes complete locally, and a write only
blocks to synchronize with other nodes ifthat write re-
quires it. Therefore, the performance/availability versus
consistency dilemmas are resolved on a per-read, per-
write basis [45].

Conversely, all invalidations that propagate through
the system must carry with them sufficient information
that a later read can get whatever consistency level it re-
quests. Therefore, the system may pay an extra cost:
if a deployment never needs strong consistency, then
our protocol will propagate some information that is
never needed. We believe this cost is acceptable for
two reasons: (1) other features of the PRACTI design—
separation of invalidations from bodies and imprecise
invalidations—minimize the amount of extra data trans-
ferred; and (2) we believe the bandwidth costs of con-
sistency are less important than the availability and re-
sponse time costs. Our experimental evaluation in Sec-
tion 4 quantifies these bandwidth costs, and we argue that
they are insignificant.

Implementation. Because our design uses a variation
of peer-to-peer log exchange [29], adapting flexible con-
sistency techniques from the literature is straightforward.
We provide the TACT flexible consistency interface to
bound order error and temporal error [45]; we have not
yet implemented TACT numerical error, but we see no
fundamental barriers. Additionally, we include the op-
tion of a two phase write that first distributes invalida-
tions and later distributes bodies [22, 45]; using this op-
tional interface, one can ensure that once a write returns,
no subsequent read can return the data’s old value and
that once a read returns the new value no read will return
the old value. Additionally, as described above, animpre-
cise readskips consistency checks and provides causal
coherence (ordering of updates for a single item) rather
than causal consistency. Finally, we provide a general in-
terface for detecting and resolving write-write conflicts
according to application-specific semantics [21, 29].

3.4 Additional features
Three novel aspects of our implementation further our
goal of constructing a flexible framework that can ac-
commodate the broadest range of policies. First, our im-
plementation allows systems to use any desired policy

II = <start=0,0 end=100,0 target=*>
IS= /A/*

Per−obj state

II = <start=0,0 end=100,0 target=*>

lastPreciseVV=100,0

Per−obj state

n2
omitVV 0,0currentVV 0,0

omitVV 100,0currentVV 100,0
/B/*

lpVV 0,0
Per−obj state

/A/* /C/*

lpVV 0,0
Per−obj state

lpVV 100,0
Per−obj state

omitVV 100,0currentVV 100,0

/C/*

Per−obj state
lpVV 0,0

/A/*

lpVV 100,0
Per−obj state

/B/*

lpVV 100,0
Per−obj state

omitVV 100,0currentVV 100,0

/A/*

lpVV 100,0

n1

Per−obj state

/B/*

lpVV 100,0
Per−obj state

/C/*

lpVV 100,0
Per−obj state

= Precise Interest Set

Key

= Incremental Checkpoint

= Imprecise Interest Set

currentVV 100,0 omitVV 100,0

/A/*

lpVV 100,0

/C/*/B/*

lpVV 100,0
Per−obj state

lpVV 100,0
Per−obj state

/A/*

lpVV 0,0
Per−obj state

/C/*/B/*

lpVV 0,0
Per−obj state Per−obj state

lpVV 0,0

IS= /B/*
lastPreciseVV=100,0
Per−obj state

II = <start=0,0 end=100,0 target=*>
IS= /C/*
lastPreciseVV=100,0
Per−obj state

Fig. 6: Incremental checkpoints fromn1 to n2.

for limiting the size of their logs and to fall back on an
efficient incremental checkpoint transferto transmit up-
dates that have been garbage collected from the log. This
feature both limits storage overheads and improves sup-
port for synchronizing intermittently connected devices.
Second, our implementation usesself-tuning body prop-
agation to enable prefetching policies that are simulta-
neously aggressive and safe. Third, our implementation
providesincremental log exchangeto allow systems to
minimize the window for conflicting updates. Due to
space constraints, we will only briefly outline these as-
pects of the implementation.

Garbage collection and incremental checkpoint trans-
fer. Imprecise invalidations yield an unexpected bene-
fit: incremental checkpoint transfer.

Nodes can garbage collect any prefix of their logs,
which allows each node to bound the amount local stor-
age used for the log to any desired fraction of its total
disk space. But, if a noden1 garbage collects log en-
tries older thann1.omitVVand another noden2 requests
a log exchange beginning beforen1.omitVV, thenn1can-
not send a stream of invalidations. Instead,n1 sends a
checkpoint of its per-object state to bringn2’s state up to
n1.currentVV.

In existing server replication protocols [29], in order
to ensure consistency, such a checkpoint exchange must
atomically updaten2’s state for all objects in the system.
Checkpoint exchange, therefore, may block interactive
requests for a long period of time while the checkpoint
is atomically assembled atn1 or applied atn2 and may
waste system resources if a checkpoint transfer is started
but fails to complete.

Rather than transferring information about all objects,
our incremental checkpoints can update arbitrary interest
sets. As Figure 6 illustrates, each incremental checkpoint
includes (1) an imprecise invalidation that covers all ob-
jects from the receiver’scurrentVV up to the sender’s
currentVV, (2) interest set state for interest setIS (IS.-
lastPreciseVV), and (3) per-object logical timestamps for
all objects in interest setIS that were invalidated later
than the receiver’sIS.lastPreciseVV. The receiver’scur-
rentVV, IS.lastPreciseVV, and per-object state are thus
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brought up to include the updates known to the sender.
Overall, this approach makes checkpoint transfer a

much smoother process under PRACTI than under ex-
isting protocols: the receiver can receive an incremental
checkpoint for a small portion of its ID space and then
either background fetch checkpoints of other interest sets
or fault them in “on demand” as Figure 6 illustrates.

Self-tuning body propagation. In addition to support-
ing demand-fetch of particular objects, our prototype
provides a novel self-tuning prefetching mechanism. A
noden1 subscribes to updates from a noden2 by sending
a list L of directories of interest along with astartV V
version vector.n2 will then sendn1 any bodies it sees
that are inL and that are newer thanstartV V . To do this,
n2 maintains a priority queue of pending sends: when a
new eligible body arrives,n2 deletes any pending sends
of older versions of the same object and then inserts a ref-
erence to the updated object. This priority queue drains
to n1 via a low-priority network connection that ensures
that prefetch traffic does not consume network resources
that regular TCP connections could use [39]. When a
lot of “spare bandwidth” is available, the queue drains
quickly and nearly all bodies are sent as soon as they are
inserted. But, when little “spare bandwidth” is available,
the buffer sends only high priority updates and absorbs
repeated writes to the same object.

Incremental log propagation. The PRACTI prototype
implements a novel variation on existing batch log ex-
change protocols. In particular, in the batch log exchange
used in Bayou, a node first receives a batch of updates
comprising a start timestartV V and a series of writes,
it then rolls back its checkpoint to beforestartV V us-
ing an undo log, and finally it rolls forward, merging the
newly received batch of writes with its existing redo log
and applying updates to the checkpoint. In contrast, our
incremental log exchange applies each incoming write to
the current checkpoint state without requiring roll-back
and roll-forward of existing writes [9].

The advantages of the incremental approach are ef-
ficiency (each write is only applied to the checkpoint
once), concurrency (a node can process information from
multiple continuous streams), and consistency (con-
nected nodes can stay continuously synchronized which
reduces the window for conflicting writes.) The disad-
vantage is that it only supports simple conflict detec-
tion logic: for our incremental algorithm, a node detects
a write/write conflict when an invalidation’sprevAccept
logical time (set by the original writer to equal the log-
ical time of the overwritten value) differs from the logi-
cal time the invalidation overwrites in the node’s check-
point. Conversely, batch log exchange supports more
flexible conflict detection: Bayou writes contain ade-
pendencycheckprocedure that can read any object to

determine if a conflict has occurred [37]; this works in
a batch system because rollback takes all of the system’s
state to a specified moment in time at which these checks
can be re-executed. Note that this variation is orthogo-
nal to the PRACTI approach: a full replication system
such as Bayou could be modified to use our incremental
log propagation mechanism, and a PRACTI system could
use batch log exchange with roll-back and roll-forward.

4 Evaluation
We have constructed a prototype PRACTI system writ-
ten in Java and using BerkeleyDB [36] for per-node lo-
cal storage. The prototype is fully functional but not
performance tuned. All features described in this paper
are implemented including local create/read/write/delete,
flexible consistency, incremental log exchange, remote
read and prefetch, garbage collection of the log, incre-
mental checkpoint transfer between nodes, and crash re-
covery. We have also constructed several example con-
trollers in order to emulate existing server replication,
client-server, and object replication systems and to im-
plement and evaluate novel policies to support mobile
users, web edge servers, and grid scientific computing.

In this section we evaluate the properties of our proto-
type to answer two questions.

1. Does a PRACTI architecture offer significant advan-
tages over existing replication protocols?We find that
our PRACTI system can dominate existing approaches
by providing more than an order of magnitude bet-
ter bandwidth and storage efficiency than replicated
server systems, as much as an order of magnitude
better synchronization delay compared to hierarchical
systems, and consistency guarantees not achievable by
per-object replication systems. Furthermore, even in
environments for which these existing policies suffice,
our flexible architecture can subsume these existing
approaches.

2. What are the costs of PRACTI’s generality?In partic-
ular, is it significantly more expensive to implement
a given system using PRACTI than to implement it
using narrowly-focused specialized mechanisms? We
find that the primary “extra” cost of PRACTI’s gen-
erality is that our system might transmit more consis-
tency information than a customized system might re-
quire. But, our implementation reduces this cost com-
pared to past systems via separating invalidations and
bodies and via imprecise invalidations, so these costs
appear to be minor.

To provide a framework for exploring these issues, we
first focus on partial replication in 4.1. We then examine
topology independence in 4.2. Finally, we examine the
costs and benefits of flexible consistency in 4.3.
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4.1 Partial replication
In this section, we focus on partial replication. We find
that PRACTI’s support for partial replication dramati-
cally improves performance compared to full replication
protocols from which our system descends for three rea-
sons:
1. Locality of Reference:partial replication of bodies and

invalidations caneachreduce storage and bandwidth
costs by an order of magnitude for nodes that care
about only a subset of the system’s data.

2. Bytes Die Young:partial replication of bodies can
significantly reduce bandwidth costs when “bytes die
young” [3].

3. Self-tuning Replication:self-tuning replication mini-
mizes response time for a given bandwidth budget.

It is not a surprise that partial replication can yield signif-
icant performance advantages over existing server repli-
cation systems. What is significant is that (1) these exper-
iments provide evidence that despite the the good prop-
erties of server replication systems (e.g., support for dis-
connected operation, flexible consistency, and dynamic
network topologies) these systems may be impractical for
many environments and (2) they demonstrate that these
trade-offs are not fundamental—a PRACTI system can
support PR while retaining the good AC-TI properties of
server replication systems.

Locality of reference. Different devices in a distrib-
uted system often access different subsets of the system’s
data because of locality and different hardware capabili-
ties. In such environments, some nodes may access 10%,
1%, or less of the system’s data, and partial replication
may yield significant improvements in both bandwidth
to distribute updates and space to store data.

Figure 7 examines the impact of locality on replication
cost for three systems implemented on our PRACTI core
using different controllers: a full replication system simi-
lar to Bayou, a partial-body replication system that sends
all precise invalidations to all nodes but that only sends
some bodies to a node, and a partial-replication system
that sends some bodies and some precise invalidations to
a node but that summarizes other invalidations using im-
precise invalidations. In this benchmark, we overwrite a
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Fig. 8: Read response time available bandwidth varies for full
replication, demand reads, and self-tuning replication.

collection of 1000 files of 10KB each. A node subscribes
to invalidations and body updates for the subset of the
files that are “of interest” to that node. The x axis shows
the fraction of files that belong to a node’s subset, and
the y axis shows the total bandwidth required to transmit
these updates to the node as measured on the prototype.

The results show that partial replication of both bodies
and invalidations is crucial when nodes exhibit locality.
Partial replication of bodies yields up to an order of mag-
nitude improvement, but it is then limited by full repli-
cation of metadata. Our true PRACTI system, however,
can gain over another order of magnitude as locality in-
creases via its use of imprecise invalidations.

Note that Figure 7 shows bandwidth costs. Partial
replication provides similar improvements for space re-
quirements (graph omitted for space.)

Bytes die young. Bytes are often overwritten or deleted
soon after creation [3]. Full replication systems send
all writes to all servers, even if some of the writes are
quickly made obsolete. In contrast, PRACTI replication
can send invalidations separately from bodies: if a file is
written multiple times on one node before being read on
another, overwritten bodies need never be sent.

To examine this effect, we randomly write a set of files
on one node and randomly read the same files on another
node. Due to space constraints, we defer the graph to
the extended report [9]. To summarize: when the write
to read ratio is 2, PRACTI uses 55% of the bandwidth
of full replication, and when the ratio is 5, PRACTI uses
24%.

Self-tuning replication. Separation of invalidations
from bodies enables a novel self-tuning data prefetching
mechanism described in Section 3. As a result, systems
can replicate bodies aggressively when network capacity
is plentiful and replicate less aggressively when network
capacity is scarce.

Figure 8 illustrates the benefits of this approach by
evaluating three systems that replicate a web service from
a single origin server to multiple edge servers. In the
dissemination services[27] this system hosts, all up-
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Storage Dirty Data Wireless Internet

Office server 1000GB 100MB 10Mb/s 100Mb/s
Home desktop 10GB 10MB 10Mb/s 1Mb/s
Laptop 10GB 10MB 10Mb/s 50Kb/s

1Mb/s Hotel only
Palmtop 100MB 100KB 1Mb/s N/A

Fig. 9: Configuration for mobile storage experiments.

dates occur at the origin server and all client reads are
processed at edge servers, which serve both static and
dynamic content. We compare the read response time
observed by the edge server when accessing the database
to service client requests for three replication policies:
Demand Fetch, implemented as a client-server system,
replicates precise invalidations to all nodes but sends new
bodies only in response to demand requests,Replicate All
follows a Bayou-like approach and replicates both pre-
cise invalidations and all bodies to all nodes, andSelf
Tuning exploits PRACTI to replicate precise invalida-
tions to all nodes and to have all nodes subscribe for all
new bodies via the self-tuning mechanism. We use a syn-
thetic workload where the read:write ratio is 1:1, reads
are Zipf distributed across files (α = 1.1), and writes are
uniformly distributed across files. We use Dummynet to
vary the available network bandwidth from 0.75 to 5.0
times the system’s average write throughput.

As Figure 8 shows, when spare bandwidth is avail-
able, self-tuning replication improves response time by
up to a factor of 20 compared toDemand-Fetch. A
key challenge, however, is preventing prefetching from
overloading the system. Whereas our self-tuning ap-
proach adapts bandwidth consumption to available re-
sources,Replicate Allsends all updates regardless of
workload or environment. This makesReplicate Alla
“poor neighbor”—it consumes bandwidth corresponding
to the current write rate for prefetching even if other ap-
plications could make better use of the network.

4.2 Topology independence
In this section we examine topology independence by ex-
amining two environments, a mobile data access system
that is distributed across multiple devices and a wide-
area-network file system designed to make it easy for
PlanetLab and Grid researchers to run experiments that
rely on distributed state. In both cases, PRACTI’s com-
bined partial replication and topology independence al-
lows our design to dominate topology-restricted hierar-
chical approaches by doing two things:

1. Adapt to changing topologies: a PRACTI system can
make use of the best paths among nodes.

2. Adapt to changing workloads: a PRACTI system can
optimize communication paths to, for example, use di-
rect node-to-node transfers for some objects and dis-
tribution trees for others.

For completeness, our graphs also compare against
topology-independent, full replication systems; the data

indicate that topology independence without partial repli-
cation is not an attractive alternative. Due to space limits,
we do not comment further on this subset of the results.

Mobile storage. We evaluate PRACTI in the context
of a mobile storage system that distributes data across
palmtop, laptop, home desktop, and office server ma-
chines. We compare PRACTI to a client-server Coda-
like system that supports partial replication but that dis-
tributes updates via a central server [21] and to a full-
replication Bayou-like system that can distribute updates
directly between interested nodes but that requires full
replication [29]. All three systems are realized by imple-
menting different controller policies.

As summarized in Figure 9 our workload models a
department file system that supports mobility: an office
server stores data for 100 users, a user’s home machine
and laptop each store one user’s data, and a user’s palm-
top stores 1% of a user’s data. Note that due to resource
limitations, we store only the “dirty data” on our test ma-
chines, and we use desktop-class machines for all nodes;
we control the network bandwidth of each scenario using
a library that throttles transmission.

Figure 10 shows the time to synchronize dirty data
among machines in three scenarios: (a)Plane: the user
is on a plane with no Internet connection, (b)Hotel: the
user’s laptop has a 50Kb/s modem connection to the In-
ternet, and (c)Home: the user’s home machine has a
1Mb/s connection to the Internet. The user carries her
laptop and palmtop to each of these locations and co-
located machines communicate via wireless network at
speeds indicated in Figure 9. For each location, we mea-
sure time for machines to exchange updates: (1) P↔L:
the palmtop and laptop exchange updates, (2) P↔L:
the palmtop and home machine exchange updates, (3)
L→H: the laptop sends updates to the home machine, (4)
O→All: the office server sends updates to all nodes.

In comparing the PRACTI system to a client-server
system, topology independence has significant gains
when the machines that need to synchronize are near one
another but far from the server: in the isolatedPlanelo-
cation, the palmtop and laptop can not synchronize at
all in a client-server system; in theHotel location, direct
synchronization between these two co-located devices is
an order of magnitude faster than synchronizing via the
server (1.7s v. 66s); and in the home location directly
synchronizing co-located devices is between 3 and 20
times faster than client-server synchronization.

WAN-FS for Researchers. Figure 11 evaluates a
wide-area-network file system called PLFS designed for
PlanetLab and Grid researchers. The controller for PLFS
is simple: for invalidations, PLFS forms a multicast tree
to distribute all precise invalidations to all nodes. And,
when anINVALID file is read, PLFS uses a DHT-based
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Fig. 10: Synchronization time among devices for different network topologies and protocols.

system [42] to find the nearest copy of the file; not only
does this approach minimize transfer latency, it effec-
tively forms a multicast tree when multiple concurrent
reads of a file occur [2, 38]. Like Shark [2], PLFS is de-
signed to be convenient for allowing a user to export data
from her local file system to a collection of remotely run-
ning nodes. However, unlike the read-only Shark system,
PLFS supports read/write data.

We examine a 3-phase benchmark that represents run-
ning an experiment: in phase 1Disseminate, each node
fetches 10MB of new executables and input data from
the user’s home node; in phase 2Process, each node
writes 10 files each of 100KB and then reads 10 files
from randomly selected peers; in phase 3,Post-process,
each node writes a 1MB output file and the home node
reads all of these output files. We compare PLFS to three
systems: a client-server system, client-server with coop-
erative caching of read-only data (e.g., a Shark-like sys-
tem [2]), and server-replication (e.g., a Bayou-like sys-
tem [29]). All 4 systems are implemented over PRACTI.

Figure 11 shows performance for an experiment run-
ning on (a) 50 distributed nodes each with a 5.6Mb/s con-
nection to the Internet (we emulate this case by throttling
bandwidth) and (b) 50 “cluster” nodes at the University
of Texas with a switched 100Mbit/s network among them
and a shared path via Internet2 to the origin server at the
University of Utah.

The speedups range from 1.5 to 9.2, demonstrating the
significant advantages enabled by the PRACTI architec-
ture. Compared to client/server, it is faster in both the
Dissemination and Process phases due to its multicast
dissemination and direct peer-to-peer data transfer. Com-
pared to full replication, it is faster in the Process and
Post-process phases because it only sends the required
data. And compared to cooperative caching of read only
data, it is faster in the Process phase because data is trans-
ferred directly between nodes.

4.3 Arbitrary consistency

This subsection first examines the benefits and then ex-
amines the costs of supporting flexible consistency.
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Fig. 11: Execution time for the WAN-Experiment benchmark.

Improved consistency trade-offs. Gray [14] and Yu
and Vahdat [44] show a trade-off: aggressive propaga-
tion of updates dramatically improves consistency and
availability but can also increase system load. PRACTI
has three features that improve these trade-offs: (1) sepa-
ration of invalidations from bodies allows invalidations
to propagate aggressively, (2) streaming log exchange
(rather than batch) allows nodes to continuously update
one another when they are connected, and (3) self-tuning
body propagation maximizes the amount ofVALID data
at a node for a given consistency requirement and band-
width budget [27].

We examine a range of consistency requirements and
network failure scenarios via simulation (all other exper-
iments in this paper are prototype measurements.) We
use the read/write workload described for Figure 8. We
use an average network path unavailability of 0.1% with
Pareto distributed repair time R(t) =1− 15t−0.8 [7].

In Figure 12-a we measure the best order error that
can be maintained for a given bandwidth budget. Order
error constrains the number of outstanding uncommit-
ted writes [45]. We compare theTACT Aggressivepol-
icy [44] to a PRACTI Prefetchpolicy that aggressively
distributes invalidations as in TACT’s policy but that dis-
tributes bodies using the self-tuning approach. This tech-
nique reduces the bandwidth needed to maintain reason-
able consistency by a factor of 3 compared toTACT Ag-
gressiveand improves the consistency bounds attainable
for some bandwidth budgets by orders of magnitude.

Figure 12-b plots system unavailability for an order
error of 100 as bandwidth varies. Following Yu and Vah-
dat’s methodology [44], we say the system isavailable
to a read or write request if the request can issue with-
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Fig. 12: Consistency trade-offs (a-b) and costs (c).

out blocking and the system isunavailableif the request
must block to meet the consistency target. When band-
width is limited, PRACTI dramatically improves system
availability under consistency constraints compared to
full replication.

Consistency overheads. As Section 3.3 describes,
PRACTI ensures that individual requests pay only the la-
tency and availability costs of consistency that they re-
quire. But, distributing sufficient bookkeeping informa-
tion to support a wide range of per-request semantics
does impose a modest bandwidth cost. In particular, ob-
ject replication systems [15, 32] do not provide cross-
object consistency guarantees. In the context of our sys-
tem, if all applications in a system only care about coher-
ence guarantees, the system could completely omit im-
precise invalidations.

Figure 12-c quantifies the cost to distribute both pre-
cise and imprecise invalidations (in order to support con-
sistency) versus the cost to distribute only precise inval-
idations for the subset of data of interest and omitting
the imprecise invalidations (and thus only supporting co-
herence.) Note that the cost of imprecise invalidations
depends on the workload: if there is no locality and writ-
ers tend to quickly alternate between writing objects of
interest and objects not of interest, then the imprecise in-
validations “between” the precise invalidations will cover
relatively few updates and save relatively little overhead,
but if writes to different interest sets arrive in bursts, then
the system will generally be able to accumulate large
numbers of updates into imprecise invalidations. We vary
the fraction of data “of interest” to a node on the x axis
and show the invalidation bytes received per write on the
y axis. All objects are equally likely to be written by a
set of remote nodes, but the locality of writes varies: the
“No Locality” line shows the worst case scenario, with
no locality across writes, and the “burst=10” line shows
the case when a write is ten times more likely to hit the
same interest set as the previous write than to hit a new
interest set.

When there is significant locality for writes, the cost
of distributing imprecise invalidations is small: imprecise
invalidations to support consistency never add more than

20% to the bandwidth cost of supporting only coherence.
When there is no locality, the cost is higher, but in the
worst case imprecise invalidations add under 50 bytes per
precise invalidation received. Overall, the difference in
invalidation cost is likely to be small relative to the total
bandwidth consumed by the system to distribute bodies.

5 Related work
Replication is fundamentally difficult. As noted in Sec-
tion 3.3, the CAP dilemma [12, 35] and performance/-
consistency dilemma [25] describe fundamental availa-
bility/performance/consistency trade-offs. As a result,
systemsmustmake compromises or optimize for specific
workloads. Unfortunately, these workload-specific com-
promises are often reflected in system mechanisms, not
just their policies.

In particular, state of the art mechanisms allow a de-
signer to retain full flexibility along at most two of the
three dimensions of replication, consistency, or topology
policy. Section 2 compares PRACTI with existing PR-
AC [1, 4, 10, 18, 21, 28], AC-TI [13, 20, 22, 29, 45], and
PR-TI [15, 32] approaches. These systems can be seen as
special case “projections” of the more general PRACTI
mechanisms [8, 9].

Some recent work has focused on extending AC-
TI server replication systems towards supporting partial
replication. Holliday et al.’s protocol allows nodes to
store subsets of data but still requires all nodes to receive
updates for all objects [17]. Published descriptions of
Shapiro et al.’s consistency constraint framework focus
on algorithms for full replication, but the authors have
sketched an approach for generalizing the algorithms to
support partial replication [34].

Like PRACTI, the Deceit file system [35] provides
a flexible substrate that subsumes a range of replication
systems. Deceit, however, focuses on replication across a
handful of well-connected servers, and it therefore makes
very different design decisions than PRACTI. For exam-
ple, each Deceit server maintains a list of all files and
of all nodes replicating each file, communication among
servers is via group multicast for each distinct subset of
servers, and all nodes replicating a file receive all bodies
for all writes to the file.
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Microsoft has announced that a new replication sys-
tem, WinFS, will appear at some future date [40]. It
will reportedly support synchronization across multiple
nodes, however no detailed technical description of the
protocol has been published. One report [41] suggests
that the system transfers sets of updated items “rather
than maintaining and synchronizing a log of each indi-
vidual action,” which may indicate that WinFS takes a
PR-TI approach.

6 Conclusion
In this paper, we introduce the PRACTI paradigm for
replication in large scale systems and we describe the
first system to simultaneously provide all three PRACTI
properties. Evaluation of our prototype suggests thatby
disentangling mechanism from policy, PRACTI replica-
tion enables significantly better trade-offs for system de-
signers than possible with existing mechanisms.By sub-
suming existing approaches and enabling new ones, we
speculate that PRACTI may serve as the basis for auni-
fied replication architecturethat simplifies the design and
deployment of large-scale replication systems.
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