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ABSTRACT
A longstanding vision in distributed systems is to build reliable
systems from unreliable components. An enticing formulation of
this vision is Byzantine fault tolerant (BFT) state machine replica-
tion, in which a group of servers collectively act as a correct server
even if some of the servers misbehave or malfunction in arbitrary
(“Byzantine”) ways. Despite this promise, practitioners hesitate to
deploy BFT systems at least partly because of the perception that
BFT must impose high overheads.

In this article, we present Zyzzyva, a protocol that uses specu-
lation to reduce the cost of BFT replication. In Zyzzyva, replicas
reply to a client’s request without first running an expensive three-
phase commit protocol to agree on the order to process requests.
Instead, they optimistically adopt the order proposed by a primary
server, process the request, and reply immediately to the client. If
the primary is faulty, replicas can become temporarily inconsistent
with one another, but clients detect inconsistencies, help correct
replicas converge on a single total ordering of requests, and only
rely on responses that are consistent with this total order. This
approach allows Zyzzyva to reduce replication overheads to near
their theoretical minima and to achieve throughputs of tens of thou-
sands of requests per second, making BFT replication practical for
a broad range of demanding services.

1. INTRODUCTION
Mounting evidence suggests that real systems must contend not

only with simple crashes but also with more complex failures rang-
ing from hardware data corruption [22] to nondeterministic soft-
ware errors [25] to security breaches. Such failures can cause even
highly-engineered services to become unavailable or to lose data.
For example, a single corrupted bit in a handful of messages re-
cently brought down the Amazon S3 storage service for several
hours [4], and several well-known email service providers have oc-
casionally lost customer data [14].

Byzantine fault tolerant (BFT) state machine replication is a promis-
ing approach to masking many such failures and constructing highly
reliable and available services. In BFT replication,n ≥ 3f + 1
servers collectively act as acorrect server even if up tof servers
misbehave or malfunction in arbitrary (“Byzantine”) ways [15, 16].
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Today, three trends make real-world deployment of BFT increas-
ingly attractive. First, as noted above, there is mounting evidence
of non-fail-stop behaviors in real systems, motivating the use of
new techniques to improve robustness. Second, the growing value
of data and the falling costs of hardware make it advantageous for
service providers to trade increasingly inexpensive hardware for the
peace of mind potentially provided by BFT replication. Third, im-
provements to the state of the art in BFT algorithms [1, 3, 6, 13,
23, 26] have narrowed the gap between BFT replication costs and
the costs already being paid for non-BFT replication by many com-
mercial services. For example, by default, the Google file system
uses 3-way replication of storage [9], which is roughly the cost of
tolerating one Byzantine failure by using 3 full replicas plus one
additional lightweight node to help the replicas coordinate their ac-
tions [26].

Unfortunately, practitioners hesitate to deploy BFT systems at
least partly because of the perception that BFT must impose high
overheads. This concern motivates our work, which seeks to an-
swer a simple question:Can we build a system that tolerates a
broad range of faults while meeting the demands of high perfor-
mance services?

To answer this question, this article presents Zyzzyva1. Zyzzyva
seeks to make BFT replication deployable for the widest range of
practical services by implementing the extremely general abstrac-
tion of a replicated state machine at an extremely low cost.

The basic idea of BFT state machine replication is simple: a
client sends a request to a replicated service and the service’s dis-
tributed agreement protocol ensures that correct servers executethe
same requests in the same order [24]. If the service is deterministic,
each correct replica thus traverses the same series of states and pro-
duces the same reply to each request. The servers send their replies
back to the client, and the client accepts a reply that matches across
a sufficient number of servers.

Zyzzyva builds on this basic approach, but reduces its cost through
speculation. As is common in existing BFT replication protocols,
an electedprimary server proposes an order on client requests to
the other serverreplicas[3]. However, unlike in traditional proto-
cols, Zyzzyva replicas then immediately execute requests specula-
tively, without running an expensive agreement protocol to defini-
tively establish the order. As a result, if the primary is faulty, cor-
rect replicas’ states may diverge, and they may send different re-
sponses to a client. Nonetheless, Zyzzyva preserves correctness
because a correct client detects such divergence and avoids acting
on a reply until the reply and the sequence of preceding requests
arestableand guaranteed to eventually be adopted by all correct

1Zyzzyva (ZIZ-uh-vuh) is the last word in the dictionary.
According to dictionary.com, a zyzzyva is “any of various tropical Ameri-
can weevils of the genus Zyzzyva, often destructive to plants.”



servers. Thus, applications at correct clients observe the traditional
abstraction of a replicated state machine that executes requests in a
linearizable [10] order.

Essentially, Zyzzyva “rethinks the sync” [19] for BFT. Whereas
past BFT systems have pessimistically enforced the condition that
a correct server only emits replies that are stable, Zyzzyva recog-
nizes that this condition is stronger than required. Instead, Zyzzyva
enforces the weaker condition:a correct client only acts on replies
that are stable. This change allows us to move the output commit
from the servers to the client, which in the optimized case allows
servers to avoid expensive all-to-all communication that they would
otherwise require to ensure the stronger condition.

Leveraging the client in this way allows us to minimize server
overheads and maximize throughputs in the optimized, failure-free
case. As a result, Zyzzyva’s peak measured throughput of over 86K
requests/second on 3.0GHz Pentium-IV machines makes it feasible
to utilize BFT replication in a broad range of demanding services.
Despite these aggressive optimization to the fault-free case, Zyz-
zyva retains good performance of over 82K requests/second even
when up tof backup replicas crash. In fact, Zyzzyva’s replica-
tion costs, processing overheads, and communication latencies ap-
proach their theoretical lower bounds.

2. SYSTEM MODEL
To maximize fault tolerance, BFT replication assumes what is

essentially an adversarial failure model. Under this model, faulty
nodes (servers or clients) may deviate from their intended behavior
in arbitrary ways, representing problems such as hardware faults,
software faults, node misconfigurations, or even malicious attacks.
This model further assumes a strong adversary that can coordinate
faulty nodes to compromise the replicated service. Note, however,
that our model assumes the adversary cannot break cryptographic
techniques like collision-resistant hashes, encryption, and signa-
tures; we denote a messagem signed by principalq’s public key
as〈m〉σq . Zyzzyva ensures its safety and liveness properties if at
mostf replicas are faulty, and it assumes a finite client population,
any number of which may be faulty.

It makes little sense to build a system that can tolerate Byzantine
replicas/servers2 and clients but that can be corrupted by an unex-
pectedly slow node or network link, hence we design Zyzzyva so
that its safety properties hold in any asynchronous distributed sys-
tem where nodes operate at arbitrary speeds and are connected by
a network that may fail to deliver messages, corrupt them, delay
them, or deliver them out of order.

Unfortunately, ensuring both safety and liveness for consensus
in an asynchronous distributed system is impossible if any server
can crash [8], let alone if servers can be Byzantine. Zyzzyva’s live-
ness, therefore, is ensured only during intervals in which messages
sent to correct nodes are processed within some arbitrarily large
fixed (but potentially unknown) worst case delay from when they
are sent. This assumption appears easy to meet in practice if broken
links are eventually repaired.

Zyzzyva implements a BFT service using state machine repli-
cation [16, 24]. Traditional state machine replication techniques
can be applied only to deterministic services. Zyzzyva copes with
the non-determinism present in many real-world applications such
as file systems and databases using standard techniques to abstract
the observable application state at the replicas and to resolve non-
deterministic choices via the agreement stage [23].

If a client of a service issues an erroneous or malicious request,
Zyzzyva’s job is to ensure the request is processed consistently at

2We use the termsreplicaandserverinterchangeably.
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Figure 1: Protocol communication pattern for agreement
within a view for (a) the fast case and (b) the two-phase faulty
replica case. The numbers refer to the main steps of the proto-
col in the text.

all correct replicas; the replicated service, itself, is responsible for
protecting its application state from such erroneous requests. Ser-
vices typically limit the damage by authenticating clients and en-
forcing access control. For example, in a replicated file system, if
a client tries to write a file without appropriate credentials, correct
replicas could all process the request by returning an error code.

3. AGREEMENT PROTOCOL
Zyzzyva is a state machine replication protocol executed by3f+

1 replicas and based on three sub-protocols: (1) agreement, (2)
view change, and (3) checkpoint. Theagreementsub-protocol or-
ders requests for execution by the replicas. Agreement operates
within a sequence ofviews, and in each view a single replica, des-
ignated theprimary, is responsible for leading the agreement sub-
protocol. Theview changesub-protocol coordinates the election of
a new primary when the current primary is faulty or the system is
running slowly. Thecheckpointsub-protocol limits the state that
must be stored by replicas and reduces the cost of performing view
changes.

For simplicity, this article focuses on the agreement sub-protocol.
The view change and execution sub-protocols are similar to those
used previously [3, 26]. Interested readers may refer to Kotla et
al. [11] for the full protocol.

Figure 1 shows the communication pattern for a single instance
of Zyzzyva’s agreement sub-protocol. In the fast, no-fault case
(Figure 1-a), a client simply sends a request to the primary, the pri-
mary forwards the request to the replicas, and the replicas execute
the request and send their responses to the client.

A requestcompletesat a client when the client has a sufficient
number of matching responses to ensure that all correct replicas
will eventually execute the request and all preceding requests in the
same order, thus guaranteeing that all correct replicas process the
request in the same way, issue the same reply, and transition to the
same subsequent system state. To allow a client to determine when
a requestcompletes, a client receives from replicasresponsesthat
include both an application-levelreplyand thehistoryon which the
reply depends. Thehistory is the sequence of all requests executed



Label Meaning
c Client ID

CC Commit certificate
d Digest (cryptographic 1-way hash) of client re-

quest message:d = H(m)
i, j Server IDs
hn History through sequence numbern encoded as

cryptographic 1-way hash:hn = H(hn−1, d)
m Message containing client request

maxn Max sequence number accepted by replica
n Sequence number

ND Selection of nondeterministic values needed to ex-
ecute a request

o Operation requested by client
OR Order Request message

POM Proof Of Misbehavior
r Application reply to a client operation
t Timestamp assigned to an operation by a client
v View number

Table 1: Labels given to fields in messages.

by a replica prior to and including this request.
As Figure 1 illustrates, a requestcompletesat a client in one of

two ways. First, if the client receives3f + 1 matching responses
(Figure 1-a), then the client considers the requestcompleteand acts
on it. Second, if the client receives between2f + 1 and3f match-
ing responses (Figure 1-b), then the client gathers2f + 1 match-
ing responses and distributes thiscommit certificateto the repli-
cas. A commit certificate includes cryptographic proof that2f + 1
servers agree on a linearizable order for the request and all preced-
ing requests, and successfully storing a commit certificate to2f +1
servers (and thus at leastf +1 correct servers) ensures that no other
ordering can muster a quorum of2f + 1 servers to contradict this
order. Therefore, once2f + 1 replicas acknowledge receiving a
commit certificate, the client considers the requestcompleteand
acts on the corresponding reply.

Zyzzyva then ensures the following safety condition:

SAF If a request with sequence numbern and historyhn com-
pletes, then any request that completes with a higher sequence
numbern′ ≥ n has a historyhn′ that includeshn as a prefix.

If fewer than2f +1 responses match, then to ensure liveness the
client retransmits the request to all replicas at increasing intervals,
and replicas demand that the primary order retransmitted requests.
If the primary orders requests too slowly or orders requests incon-
sistently, a replica will suspect that the primary is faulty. If a suf-
ficient number of replicas suspect that the primary is faulty, then a
view change occurs and a new primary is elected.

Zyzzyva thereby ensures the following liveness condition assum-
ing eventual synchrony3 [7]:

LIV Any request issued by a correct client eventually completes.

In the rest of this section, we detail Zyzzyva’s agreement sub-
protocol by considering three cases: (1) thefast casewhen all
nodes act correctly and no timeouts occur, (2) thetwo-phase case
that can occur when a non-primary replica is faulty or some time-
outs occur, and (3) theview changecase that can occur when the
primary is faulty or more serious timeouts occur. Table 1 sum-
marizes the labels we give fields in messages. Most readers will be
happier if on their first reading they skip the text marked Additional
Pedantic Details.
3In practice eventual synchrony can be achieved by using exponentially
increasing timeouts [3].

3.1 Fast case
Figure 1-(a) illustrates the basic flow of messages in the fast case.

We trace these messages through the system to explain the proto-
col, with the numbers in the figure corresponding to the numbers
of major steps in the text. As the figure illustrates, the fast case
proceeds in four major steps:

1. Client sends request to the primary.

2. Primary receives request, assigns sequence
number, and forwards ordered request to replicas.

3. Replica receives ordered request, speculatively
executes it, and responds to the client.

4a. Client receives 3f + 1 matching responses and
completes the request.

To ensure correctness, the messages are carefully constructed to
carry sufficient information to link these steps with one another
and with past system actions. We now detail the contents of each
message and describe the steps each node takes to process each
message.

3.1.1 Message processing details

1. Client sends request to the primary.

A client c requests an operationo be performed by the replicated
service by sending a message〈REQUEST, o, t, c〉σc to the replica
it believes to be the primary (i.e., the primary for the last response
the client received).

Additional Pedantic Details:If the client guesses the wrong pri-
mary, the retransmission mechanisms discussed in step4c below
forwards the request to the current primary. The client’s timestamp
t is included to ensure exactly-once semantics of execution of re-
quests [3].

2. Primary receives request, assigns sequence
number, and forwards ordered request to replicas.

A view’s primary has the authority to propose the order in which
the system should execute requests. It does so by producingORDER-
REQ messages in response to clientREQUESTmessages.

In particular, when the primaryp receives messagem =〈REQUEST,

o, t, c〉σc from client c, the primary assigns to the request a se-
quence numbern in the current viewv and relays a message〈〈ORDER-REQ,

v, n, hn, d, ND〉σp , m〉 to the backup replicas wheren andv

indicate the proposed sequence number and view number form,
digestd = H(m) is the cryptographic one-way hash ofm, hn =
H(hn−1, d) is a cryptographic hash summarizing the history, and
ND is a set of values for non-deterministic application variables
(time in file systems, locks in databases, etc.) required for execut-
ing the request.

Additional Pedantic Details:The primary only takes the above
actions ift > tc wheretc is the highest timestamp previously re-
ceived fromc.

3. Replica receives ordered request, speculatively
executes it, and responds to the client.

When a replica receives anORDER-REQ message, it optimisti-
cally assumes that the primary is correct and that other correct repli-



cas will receive the same request with the same proposed order. It
therefore speculatively executes requests in the order proposed by
the primary and produces aSPEC-RESPONSEmessage that it sends
to the client.

In particular, upon receipt of a message〈〈ORDER-REQ, v, n, hn,

d, ND〉σp , m〉 from the primaryp, replicai accepts the ordered
request ifm is a well-formedREQUEST message,d is a correct
cryptographic hash ofm, v is the current view,n = maxn + 1
wheremaxn is the largest sequence number ini’s history, and
hn = H(hn−1, d). Upon accepting the message,i appends the
ordered request to its history, executes the request using the cur-
rent application state to produce a replyr, and sends toc a mes-
sage〈〈SPEC-RESPONSE, v, n, hn, H(r), c, t〉σi

, i, r, OR〉 where
OR =〈ORDER-REQ, v, n, hn, d, ND〉σp .

Additional Pedantic Details:A replica may only accept and spec-
ulatively execute requests in sequence-number order, but message
loss or a faulty primary can introduce holes in the sequence number
space. Replicai discards theORDER-REQ message ifn ≤ maxn.
If n > maxn + 1, theni discards the message, sends a message
〈FILL -HOLE, v, maxn+1, n, i〉σi

to the primary, and starts a timer.
Upon receipt of a message〈FILL -HOLE, v, k, n, i〉σi

from replica
i, the primaryp sends a〈〈ORDER-REQ, v, n′, hn′ , d, ND〉σp , m′〉
to i for each requestm′ that p ordered ink ≤ n′ ≤ n during
the current view; the primary ignores fill-hole requests from other
views. If i receives the validORDER-REQ messages needed to fill
the holes, it cancels the timer. Otherwise the replica broadcasts the
FILL -HOLE message to all other replicas and initiates a view change
when the timer fires. Any replicaj that receives aFILL -HOLE mes-
sage fromi sends the correspondingORDER-REQmessage, if it has
received one. If, in the process of filling in holes in the replica se-
quence, replicai receives conflictingORDER-REQ messages, then
the conflicting messages form a proof of misbehavior as described
in protocol step4d.

4a. Client receives 3f + 1 matching responses and
completes the request.

In the absence of faults and timeouts, the client receives match-
ing SPEC-RESPONSEmessages from all3f +1 replicas. The client
can then consider the request and its history to becompleteand
delivers the replyr to the application.

3f + 1 identical replies with identical histories suffice to ensure
that a client can rely on a response. In particular,3f + 1 match-
ing responses means all correct servers have executed the request
and all preceding requests in the same order, so correct servers can
always form a majority to vote to keep this response, even across
view changes [11]. In particular, the view change sub-protocol ex-
ecutes across2f + 1 responsive servers, but any group of2f + 1
servers must include at leastf + 1 correct servers and at mostf

faulty servers. Thus, the correct servers are always able to vote
to keep this response, including both the application reply and the
history of previous actions.

Therefore, upon receiving3f+1 distinct messages〈〈SPEC-RESPONSE,

v, n, hn, H(r), c, t〉σi
, i, r, OR〉, wherei identifies the replica

issuing the response, a client determines if they match.SPEC-
RESPONSEmessages from distinct replicasmatchif they have iden-
tical v, n, hn, H(r), c, t, OR, andr fields.

3.2 Two-phase case
If the network, primary, or some replicas are slow or faulty, the

client c may not receive matching responses from all3f + 1 repli-
cas. The two-phase case applies when the client receives between
2f + 1 and3f matching responses. As Figure 1-(b) illustrates,
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Figure 2: Example of a problem that could occur if a client were
to rely on just 2f + 1 matching responses without depositing a
commit certificate with the servers.

steps 1-3 occur as described above, but step4 is different:

4b. Client receives between 2f + 1 and 3f match-
ing responses, assembles a commit certificate, and
transmits the commit certificate to the replicas.

The commit certificate is cryptographic proof that a majority of
correct servers agree on the ordering of requests up to and including
the client’s request. Protocol steps5 and6 complete the second
phase of agreement by ensuring that enough servers have this proof.

5. Replica receives a COMMIT message from a
client containing a commit certificate and acknowl-
edges with a LOCAL-COMMIT message.

6. Client receives a LOCAL-COMMIT messages from
2f + 1 replicas and completes the request.

Again, the details of message construction and processing are
designed to allow clients and replicas to link the system’s actions
together into a single linearizable history.

3.2.1 Message processing details

4b. Client receives between 2f + 1 and 3f match-
ing responses, assembles a commit certificate, and
transmits the commit certificate to the replicas.

A client c sets a timer when it first issues a request. When
this timer expires, ifc has received matching speculative responses
from between2f + 1 and3f replicas, thenc has a proof that a
majority of correct replicas agree on the order in which the request
should be processed. Unfortunately, the replicas, themselves, are
unaware of this quorum of matching responses—they only know
of their local decision, which may not be enough to guarantee that
the request completes in this order.

Figure 2 illustrates the problem. A client receives2f +1 match-
ing speculative responses indicating that a requestreq was exe-
cuted as thenth operation in viewv. Let these responses come
from f +1 correct serversC andf faulty serversF and assume the
remainingf correct serversC′ received anORDER-REQ message
from a faulty primary proposing to execute a different requestreq′

at sequence numbern in view v. Suppose a view change occurs
at this time. The view change sub-protocol must determine what
requests were executed with what sequence numbers in viewv so
that the state in viewv + 1 is consistent with the state in viewv.
Furthermore, since up tof replicas may be faulty, the view change
sub-protocol must be able to complete using information from only



2f + 1 replicas. Suppose now that the2f + 1 replicas contributing
state to a view change operation are one correct server fromC, f

faulty servers fromF , andf correct but misled servers fromC′. In
this case, only one of the replicas initializing the new view is guar-
anteed to vote to executereq as operationn in the new view, while
as many as2f replicas may vote to executereq′ in that position.
Thus, the system cannot ensure that viewv + 1’s state reflects the
execution ofreq as the operation with sequence numbern.

Before clientc can rely on this response, it must take additional
steps to ensure the stability of this response. The client therefore
sends a message〈COMMIT, c, CC〉σc whereCC is a commit cer-
tificate consisting of a list of2f + 1 replicas, the replica-signed
portions of the2f + 1 matchingSPEC-RESPONSEmessages from
those replicas, and the corresponding2f + 1 replica signatures.

Additional Pedantic Details:CC contains2f + 1 signatures on
theSPEC-RESPONSEmessage and a list of2f +1 nodes, but, since
all the responses received byc from replicas are identical,c only
needs to includeonereplica-signed portion of theSPEC-RESPONSE

message. Also note that, for efficiency,CC does not include the
bodyr of the reply but only the hashH(r).

5. Replica receives a COMMIT message from a
client containing a commit certificate and acknowl-
edges with a LOCAL-COMMIT message.

When a replicai receives a message〈COMMIT, c, CC〉σc con-
taining a valid commit certificateCC proving that a request should
be executed with a specified sequence number and history in the
current view, the replica first ensures that its local history is con-
sistent with the one certified byCC. If so, replicai (1) storesCC

if CC ’s sequence number exceeds the stored certificate’s sequence
number and (2) sends a message〈LOCAL-COMMIT, v, d, h, i, c〉σi

to c.
Additional Pedantic Details:If the local history simply has holes

encompassed byCC ’s history, theni fills them as described in3.
If, however, the two histories contain different requests for the same
sequence number, theni initiates the view change sub-protocol.
Note that as the view change protocol executes, correct replicas
converge on a single common history, and those replicas whose
local state reflect the “wrong” history (e.g., because they specu-
latively executed the “wrong” requests) restore their state from a
cryptographically signed distributed checkpoint [11].

6. Client receives a LOCAL-COMMIT messages from
2f + 1 replicas and completes the request.

The client resends theCOMMIT message until it receives corre-
spondingLOCAL-COMMIT messages from2f +1 distinct replicas.
The client then considers the request to becompleteand delivers
the replyr to the application.

2f + 1 local commit messages suffice to ensure that a client
can rely on a response. In particular, at leastf + 1 correct servers
store a commit certificate for the response, and since any commit or
view change requires participation by at least2f + 1 of the3f + 1
servers, any subsequent committed request or view change includes
information from at least one correct server that holds this commit
certificate. Since the commit certificate includes2f + 1 signatures
vouching for the response, even a single correct server can use the
commit certificate to convince all correct servers to accept this re-
sponse (including the application reply and the history.)

Additional Pedantic Details:When the client first sends theCOM-
MIT message to the replicas it starts a timer. If this timer expires
before the client receives2f + 1 LOCAL-COMMIT messages then
the client moves on to protocol steps described in the next subsec-

tion.

3.2.2 Client trust
At first glance, it may appear imprudent to rely on clients to

transmit commit certificates to replicas (4b): what if a faulty client
sends an altered commit certificate (threatening safety) or fails to
send a commit certificate (imperiling liveness)?

Safety is ensured even if clients are faulty because commit cer-
tificates are authenticated by2f + 1 replicas. If a client alters a
commit certificate, correct replicas will ignore it.

Liveness is ensuredfor correct clientsbecause commit certifi-
cates are cumulative: successfully storing a commit certificate for
requestn at2f +1 replicas commits those replicas to a linearizable
total order for all requests up to requestn. So, if a faulty client fails
to deposit a commit certificate, that client may not learn when its
requestcompletes, and a replica whose state has diverged from its
peers may not immediately discover this fact. However, if at any
future time a correct client issues a request, that request (and a lin-
earizable history of earlier requests on which it depends) will either
(i) complete via3f + 1 matching responses (4a), (ii) complete via
successfully storing a commit certificate at2f + 1 replicas (4b-6),
or (iii) trigger a view change (4c or 4d below).

3.3 Timeout and view change cases
Cases4a and 4b allow a client c’s request to complete with

2f + 1 to 3f + 1 matching responses. However, if the primary
or network is faulty,c may not receive matchingSPEC-RESPONSE

or LOCAL-COMMIT messages from even2f + 1 replicas. Cases
4c and4d therefore ensure that a client’s request either completes
in the current view or that a new view with a new primary is initi-
ated. In particular, case4c is triggered when a client receives fewer
than2f + 1 matching responses and case4c occurs when a client
receives responses indicating inconsistent ordering by the primary.4

4c. Client receives fewer than 2f+1 matching SPEC-
RESPONSEmessages and resends its request to all
replicas, which forward the request to the primary in
order to ensure the request is assigned a sequence
number and eventually executed.

A client sets a second timer when it first issues a request. If
the second timer expires before the requestcompletes, the client
suspects that the primary may not be ordering requests as intended,
so it resends itsREQUESTmessage through the remaining replicas
so that they can track the request’s progress and, if progress is not
satisfactory, initiate a view change. This case can be understood by
examining the behavior of a non-primary replica and of the primary.

Replica.When non-primary replicai receives a message〈REQUEST,

o, t, c〉σc from clientc, then if the request has a higher timestamp
than the currently cached response for that client,i sends a message
〈CONFIRM-REQ, v, m, i〉σi

wherem = 〈REQUEST, o, t, c〉σc to
the primaryp and starts a timer. If the replica accepts anORDER-
REQ message for this request before the timeout, it processes the
ORDER-REQ message as described above. If the timer fires before
the primary orders the request, the replica initiates a view change.

Primary. Upon receiving the message〈CONFIRM-REQ, v, m, i〉σi

from replicai, the primaryp checks the client’s timestamp for the
request. If the request is new,p sends a newORDER-REQ message
using a new sequence number as described in step2.

Additional Pedantic Details:If replica i does not receive the

4Note that cases4b and4c are not exclusive of4d; a client may
receive messages that are both sufficient to complete a request and
also a proof a misbehavior against the primary.



ORDER-REQmessage from the primary, the replica sends theCONFIRM-
REQmessage to all other replicas. Upon receipt of aCONFIRM-REQ

message from another replicaj, replicai sends the corresponding
ORDER-REQmessage it received from the primary toj; if i did not
receive the request from the client,i acts as if the request came
from the client itself. To ensure eventual progress, a replica dou-
bles its current timeout in each new view and resets it to a default
value if a view succeeds in executing a request.

Additionally, to retain exactly-once semantics, replicas maintain
a cache that stores the reply to each client’s most recent request. If
a replicai receives a request from a client and the request matches
or has a lower client-supplied timestamp than the currently cached
request for clientc, theni simply resends the cached response to
c. Similarly, if the primaryp receives an old client request from
replicai, p sends toi the cachedORDER-REQmessage for the most
recent request fromc. Furthermore, if replicai has received a com-
mit certificate or stable checkpoint for a subsequent request, then
the replica sends aLOCAL-COMMIT to the client even if the client
has not transmitted a commit certificate for the retransmitted re-
quest.

4d. Client receives responses indicating inconsis-
tent ordering by the primary and sends a proof of
misbehavior to the replicas, which initiate a view
change to oust the faulty primary.

If client c receives a pair ofSPEC-RESPONSEmessages contain-
ing valid messagesOR =〈ORDER-REQ, v, n, hn, d, ND〉σj

for
the same request (d = H(m)) in the same viewv with differing
sequence numbern or historyhn or ND, then the pair ofORDER-
REQmessages constitutes a proof of misbehavior (POM ) [2] against
the primary. Upon receipt of aPOM , c sends a message〈POM, v, POM〉σc

to all replicas. Upon receipt of a validPOM message, a replica ini-
tiates a view change and forwards thePOM message to all other
replicas.

4. EVALUATION
This section examines the performance of Zyzzyva and com-

pares it with existing approaches. We run our experiments on 3.0
GHz Pentium-4 machines with the Linux 2.6 kernel. We use MD5
for hashing and UMAC [3] for message authentication codes (MACs).
MD5 is known to be vulnerable, but we use it to make our results
comparable with those in the literature. Since Zyzzyva uses fewer
MACs per request than any of the competing algorithms, our ad-
vantages over other algorithms would be increased if we were to
use the more secure, but more expensive, SHA-256.

For comparison, we run Castro et al.’s implementation of PBFT [3]
and Cowling et al.’s implementation of HQ [6]; we scale up HQ’s
measured throughput for the small request/response benchmark by
9% to account for their use of SHA-1 rather than MD5. We in-
clude published throughput measurements for Q/U [1]; we scale
Q/U’s reported performance up by 7.5% to account for our use of
3.0 GHz rather than 2.8GHz machines. We also compare against
the measured performance of an unreplicated server.

To stress-test Zyzzyva we use the micro-benchmarks devised by
Castro et al. [3]. In the 0/0 benchmark, clients send null requests
and receive null replies. In the 4/0 benchmark, clients send 4KB
requests and receive a null replies. In the 0/4 benchmark, clients
send null requests and receive 4KB replies. In all experiments, we
configure all BFT systems to toleratef = 1 faults; we examine
performance for other configurations elsewhere [11].

In the preceding sections, we describe a simplified version of the
protocol. In our extended paper [12], we detail a number of op-

timizations, all implemented in the prototype measured here, that
(1) reduce encryption costs by replacing public key signatures with
message authentication codes (MACs) [3], (2) improve through-
put by agreeing on the order of batches of requests [3], (3) reduce
the impact of lost messages by caching out-of-order messages, (4)
improve read performance by optimizing read-only requests [3],
reduce bandwidth by allowing most replicas to send hashes rather
than full replies to clients [3], (5) improve the performance of Zyz-
zyva’s two-phase case by using a commit optimization in which
replicas use client hints to initiate and complete the second phase
to commit the request before they execute the request and send
the response (with the committed history) back to the client, and
(6) reduce overheads by including MACs only for a preferred quo-
rum [6]. In the extended paper we also describe Zyzzyva5, a varia-
tion of the protocol that requires5f +1 agreement replicas but that
improves performance in the presence of faulty replicas by com-
pleting in three one-way message exchanges as in Figure 1(a) even
when up tof non-primary replicas are faulty.

In the following experiments, unless noted otherwise, we use
all of the optimizations other than preferred quorums for Zyzzyva.
PBFT [3] does not implement the preferred quorum optimization,
but HQ does [6]. We do not use the read-only optimization for
Zyzzyva and PBFT unless we state so explicitly.

4.1 Cost model
Our evaluation focuses on three metrics that BFT replication

must optimize to be practical for a broad range of services: replica-
tion cost, throughput, and latency. Before we dive into experimen-
tal evaluation in the following sections, Table 2 puts our results in
perspective by providing a high-level analytic model of of Zyzzyva
and of several other recent BFT protocols. The table also shows
lower bounds on BFT state machine replication overheads for each
of these dimensions.

In the first row of the table body, replicationcost refers to the
number of replicas required to construct a system that toleratesf

Byzantine faults. The importance of minimizing this metric for
practical services is readily apparent. We show two values:repli-
cas with application stateindicates the number of replicas that must
both participate in the coordination protocol and also maintain ap-
plication state for executing application requests. Conversely,total
replicas indicates the total number of machines that must partici-
pate in the protocol including, for some protocols, “witness nodes”
that do not maintain application state or execute application re-
quests. This distinction is important because witness nodes may
be simpler or less expensive than nodes that must also execute re-
quests to run the replicated service.

Zyzzyva and PBFT (with Yin et al.’s optimization for separat-
ing agreement and execution [26]) meet the replication cost lower
bounds of2f + 1 application replicas (so a majority of nodes are
correct) [24] and3f + 1 total replicas (so agreement on request
order can be reached) [21].

In the next row of the table body,throughputis determined by
the processing overhead per request. Our simple model focuses on
CPU-intensive cryptographic operations. All of the systems we ex-
amine use Castro’s MAC authenticator construct [3] to avoid using
expensive asymmetric cryptography operations.

The (trivial) lower bound on processing overhead is for each
server to process two MAC operations per client request: one to
verify the client’s request and one to authenticate its reply. Zyz-
zyva and PBFT approach this bound by using abatchingoptimiza-
tion in which the primary accumulates a batch ofb client requests
and leads agreement on that batch rather than on each individual
request. Zyzzyva’s speculative execution allows it to avoid several



State Machine Repl.
PBFT [3] Q/U [1] HQ [6] Zyzzyva Lower Bound

Cost Total replicas 3f+1 5f+1 3f+1 3f+1 3f+1 [21]
Replicas with application state 2f+1 [26] 5f+1 3f+1 2f+1 2f+1 [24]

Throughput MAC ops at bottleneck server 2+(8f+1)/b 2+8f 4+4f 2+3f/b 2†

Latency NW 1-way latencies on critical path 4 2 4 3 2/3‡

Table 2: Properties of state-of-the-art and optimal Byzantine fault tolerant service replication systems toleratingf faults, using
MACs for authentication [3], and using a batch size ofb [3]. Bold entries denote protocols that match known lower boundsor those
with the lowest known cost.†It is not clear that this trivial lower bound is achievable. ‡The distributed systems literature typically
considers 3 one-way latencies to be the lower bound for agreementon client requests [17]; 2 one-way latencies is achievable if no
request contention is assumed.
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Figure 3: Realized throughput for the 0/0 benchmark as the
number of client varies. Q/U throughput is scaled from [1].

rounds of all-to-all communication among servers, so it requires
fewer MAC operations per batch than PBFT.

In the last row of the table body,latencycounts the number of
one-way message delays from when a client issues a request until it
receives a reply. In the general case, agreement requires 3 message
delays [17], and Zyzzyva matches this bound by having requests
go from the client to the primary to the replicas to the client. Q/U
circumvents this bound by optimizing for the case of no request
contention so that requests go directly from the client to the replicas
to the client. We chose to retain the extra hop through the primary
in Zyzzyva because it facilitates batching, which we consider to be
an important throughput optimization.

The models described in this subsection focus on what we regard
as important factors for understanding the performance trade-offs
of different algorithms, but they necessarily omit details present in
implementations. Also, as is customary [1, 3, 6, 23, 26], Table 2
compares the protocols’ performance during the optimized case of
fault-free, timeout-free execution. In the rest of this section we
experimentally examine these protocols’ throughput, latency, and
performance during failures.

4.2 Throughput
Figure 3 shows the throughput measured for the 0/0 benchmark

for Zyzzyva, Zyzzyva5 [11], PBFT, and HQ (scaled as noted above).
For reference, we also show the peak throughput reported for Q/U [1]
in thef = 1 configuration, scaled to our environment as described
above.
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Figure 4: Latency for 0/0, 0/4, and 4/0 benchmarks.

Zyzzyva executes over 50K requests per second without batch-
ing, and this number rises to 86K requests per second when batch-
ing is activated with 10 requests per batch. As the figure illustrates,
Zyzzyva enjoys a significant throughput advantage over the other
protocols.

It is also worth noting that when batching is enabled, Zyzzyva’s
throughput is within 35% of the throughput of an unreplicated server
that simply replies to client requests over an authenticated channel.
Furthermore, this gap would fall if the service being replicated were
more demanding than the null service examined here. Overall, we
speculate that Zyzzyva’s throughput is sufficient to support BFT
replication for a broad range of demanding services.

4.3 Latency
Figure 4 shows the latencies of Zyzzyva, Zyzzyva5, HQ, and

PBFT for the 0/0, 0/4, and 4/0 workloads with a single client issu-
ing one request at a time. We examine both the default read/write
requests that use the full protocol and read-only requests that can
exploit Zyzzyva and PBFT’s read-only optimization [3].

We did not succeed in getting Abd-El-Malek et al.’s implementa-
tion of Q/U running in our environment. However, because Table 2
suggests that Q/U may have a latency advantage over other pro-
tocols, for comparison we implement an idealized model of Q/U
designed to provide an optimistic estimate of Q/U’s latency in our
environment. In our idealized implementation, a client simply gen-
erates and sends4f + 1 MACs with a request, each replica verifies
4f + 1 MACs (1 to authenticate the client and4f + 1 to validate
the reported state), each replica in a preferred quorum [6] generates
and sends4f + 1 MACs (1 to authenticate the reply to the client
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and4f to authenticate the new state) with a reply to the client, and
the client verifies4f + 1 MACs.

For the read/write 0/0 and 4/0 benchmarks, Q/U does have a
modest latency advantage over Zyzzyva as predicted by Table 2.
For the read-only benchmarks, the situation is reversed with Zyz-
zyva exhibiting modestly lower latency than Q/U because Zyz-
zyva’s read-only optimization completes read-only requests in two
message delays (like Q/U ) but uses fewer cryptographic opera-
tions.

Figure 5 shows latency and throughput as we vary offered load
for the 0/0 benchmark. As the figure illustrates, batching in Zyz-
zyva, Zyzzyva5, and PBFT increases latency but also increases
peak throughput. Adaptively setting the batch size in response to
workload characteristics is an avenue for future work.

Overall, all of the BFT protocols do add service latency com-
pared to an unreplicated server, but Zyzzyva is generally competi-
tive with the best protocols by this metric. We speculate that the ad-
ditional 120 to 250 microseconds that Zyzzyva requires compared
to an unreplicated server will be a significant barrier for only the
most demanding services, and we note that the relative gap would
shrink for services that do more than execute the null request.

4.4 Performance during failures
Zyzzyva guarantees correct execution with any number of faulty

clients and up tof faulty replicas. However, its performance is
optimized for the case of failure-free operation, and a single faulty
replica can force Zyzzyva to execute the slower two-phase protocol.

One solution is to buttress Zyzzyva’s fast 1-phase path by em-
ploying additional servers. Zyzzyva5 [11] uses a total of5f + 1
servers (2f + 1 full replicas and3f additional witnesses) to allow
the system to complete requests via the fast communication pat-
tern shown in Figure 1-(a) when the client receives4f + 1 (out of
5f + 1) matching replies.

Surprisingly, however, even when running with3f + 1 replicas,
Zyzzyva remains remains competitive with existing protocols even
when it is falls back on two-phase operation. In particular, Zyz-
zyva’s cryptographic overhead at the bottleneck replica increases
from 2 + 3f+1

b
to 3 + 5f+1

b
operations per request if we simply

execute the two-phase algorithm described above. Furthermore,
our implementation also includes acommit optimization[12] that
reduces cryptographic overheads to2 + 5f+1

b
cryptographic oper-
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ations per request by having replicas that suspect a faulty primary
initiate and complete the second phase to commit the request before
they execute the request and send the response (with the committed
history) back to the client.

Figure 6 compares throughputs of Zyzzyva, Zyzzyva5, PBFT,
and HQ in the presence off non-primary-server fail-stop failures.
We do not include a discussion of Q/U in this section as the through-
put numbers of Q/U with failures are not reported [1], but we would
not expect a fail-stop failure by a replica to significantly reduce the
performance shown for Q/U in Figure 3. Also, we do not include a
line for the unreplicated server case as the throughput falls to zero
when the only server suffers a fail-stop failure.

As Figure 6 shows, without the commit optimization, falling
back on two-phase operation reduces Zyzzyva’s maximum through-
put from 86K requests per second (Figure 3) to 52K requests per
second. Despite this extra overhead, Zyzzyva’s “slow case” perfor-
mance remains within 13% of PBFT’s performance, which is less
highly tuned for the failure-free case and which suffers no slow-
down in this scenario. Zyzzyva’s commit optimization repairs most
of the damage caused by a fail-stop replica, maintaining a through-
put of 82K requests/second which is within 5% of the peak through-
put achieved for the failure free case. For systems that can afford
extra witness replicas, Zyzzyva5’s throughput is not significantly
affected by the fail-stop failure of a replica, as expected.

5. RELATED WORK
Zyzzyva stands on the shoulders of recent efforts that have dra-

matically cut the costs and improved the practicality of BFT repli-
cation. Castro and Liskov’s Practical Byzantine Fault Tolerance
(PBFT) protocol [3] devised techniques to eliminate expensive sig-
natures and potentially fragile timing assumptions, and it demon-
strated high throughputs of over ten thousand requests per sec-
ond. This surprising result jump started an arms race in which
researchers reduced replication costs [26], and improved perfor-
mance [1, 6, 13] of BFT service replication. Zyzzyva incorporates
many of the ideas developed in these protocols and folds in the
new idea of speculative execution to construct an optimized fast
path that significantly outperforms existing protocols and that has
replication cost, processing overhead, and latency that approach the
theoretical minima for these metrics.

Numerous BFT agreement protocols [3, 6, 13, 18, 23, 26] have



usedtentative executionto reduce the latency experienced by clients.
This optimization allows replicas to execute a request tentatively as
soon as they have collected the equivalent of a Zyzzyva commit
certificate for that request. This optimization may appear similar
to Zyzzyva’s support forspeculative execution, but there are two
fundamental differences. First, Zyzzyva’s speculative execution al-
lows requests to complete at a client after a single phase, without
the need to compute a commit certificate: this reduction in latency
is not possible with traditional tentative executions. Second, and
more importantly, in traditional BFT systems a replica can execute
a request tentatively only after the replica knows that all previous
requests have been committed. In Zyzzyva, replicas continue to ex-
ecute requests speculatively, without waiting to know that requests
with lower sequence numbers have completed. This difference is
what lets Zyzzyva leverage speculation to achieve not just lower
latency but also higher throughput.

Speculator [20] allows clients to speculatively complete opera-
tions at the application level and perform client level rollback. A
similar approach could be used in conjunction with Zyzzyva to sup-
port clients that want to act on a reply optimistically rather than
waiting on the specified set of responses.

Zyzzyva’s focus is on maximizing the peak performance of BFT
replication. Conversely, Clement et al. [5] argue that BFT systems
should seek not only to ensure safety but also good performance in
the presence of Byzantine faults, and their Aardvark system elim-
inatesfragile optimizationsthat maximize best-case performance
but that can allow a faulty client or server to drive the system down
expensive execution paths.

6. CONCLUSION
By systematically exploiting speculation, Zyzzyva exhibits sig-

nificant performance improvements over existing BFT protocols.
The throughput overheads and latency of Zyzzyva approach the
theoretical lower bounds for any BFT state machine replication pro-
tocol.

Looking forward, although we expect continued progress in im-
proving the performance (for example, by making additional as-
sumptions about the application characteristics) and robustness (in
the presence of broader range of failure scenarios) of BFT repli-
cation, we believe that Zyzzyva demonstrates that BFT overheads
should no longer be regarded as a barrier to using BFT replication
for even many highly demanding services.
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