
Hardin and Schmaltz (Eds): ACL2 2011
EPTCS ??, 20??, pp. 1–18, doi:10.4204/EPTCS.??.??

c© M. Dahlin, R. Johnson, R.B. Krug, M. McCoyd, W. Young

Toward the Verification of a Simple Hypervisor

Mike Dahlin, Ryan Johnson, Robert Bellarmine Krug, MichaelMcCoyd, William Young
Department of Computer Sciences

University of Texas at Austin

{dahlin, rjohnson, rkrug, mccoyd, byoung}@cs.utexas.edu

Virtualization promises significant benefits in security, efficiency, dependability, and cost. Achieving
these benefits depends upon the reliability of the underlying virtual machine monitors (hypervisors).
This paper describes an ongoing project to develop and verify MinVisor, a simple but functional
Type-I x86 hypervisor, proving protection properties at the assembly level using ACL2. Originally
based on an existing research hypervisor, MinVisor provides protection of its own memory from a
malicious guest. Our long-term goal is to fully verify MinVisor, providing a vehicle to investigate
the modeling and verification of hypervisors at the implementation level, and also a basis for further
systems research. Functional segments of the MinVisor C code base are translated into Y86 assembly,
and verified with respect to the Y86 model. The inductive assertions (also known as “compositional
cutpoints”) methodology is used to prove the correctness ofthe code. The proof of the code that sets
up the nested page tables is described. We compare this project to related efforts in systems code
verification and outline some useful steps forward.

1 Introduction

Platform virtualization refers to technologies that provide a layer of abstraction between computer sys-
tems and the operating systems that utilize them. It has existed for many years and appeared in various
guises, but has recently emerged as a key technology with vast potential impact on commercial and gov-
ernment computing systems. Platform virtualization promises significant benefits in security, efficiency,
dependability and cost [11]. Achieving these benefits depends upon the reliability of the virtual machine
monitors (hypervisors) that provide them.

We believe that providing high assurance of the properties of a system as complex as a hypervisor
requires a rigorous formal analysis, stretching from the desired security properties at the top, down to
the physical hardware and implementation code at the bottom. This project aims to develop a simple but
useful hypervisor and to provide very high assurance in its properties by using ACL2 [15] to verify the
hypervisor implementation.

For the purposes of this paper, ahypervisor, also called a virtual machine monitor (VMM), is a
software system that virtualizes some system resources of the host computer and makes them available
to one or more guests. Hypervisors provide a range of functionalities [26] and a diversity of guarantees.
We chose to pursue verification of a hypervisor because of theincreasing impact of hypervisors on
commercial and government systems. However, existing commodity hypervisors have a large, complex
and changing code base and seem beyond the reach of current modeling and verification techniques.
Instead, we focused on the verification of a small research hypervisor that we could envision tackling
with the limited resources available to the project, in hopes that the tools and techniques developed might
scale to larger system software verification efforts.

Though our target hypervisor, called MinVisor, runs only one guest, its features provide some of
the minimum requirements of typical hypervisors and provide some of the guarantees of CMU’s SecVi-

http://dx.doi.org/10.4204/EPTCS.??.??

2 Verification of a Simple Hypervisor

sor [25], a simple research hypervisor that we used as our initial jumping off point. Thus, MinVisor
provides a simplified but useful platform on which to carry out our initial verification efforts.

This paper reports on the development of MinVisor and progress in its modeling and verification.
Though early, the project has had some significant success inmoving toward using formal verification to
develop a simple hypervisor with very high assurance.

In Section 2 we describe the overall strategy of the project.Section 3 outlines the hypervisor artifact
we are constructing. Section 4 describes the Y86++ model on which our proofs are constructed. In
Section 5 we outline our proof strategy and describe the proof of specific critical MinVisor functionality.
Section 6 lists some relevant related work. Finally, in Section 7 we outline our plans for extending this
effort. The Appendix contains the C source code and Y86++ assembly level code for specific MinVisor
functions.

2 High Level Strategy

The overall goal of this project is to investigate techniques for modeling and verifying a simple hypervi-
sor. At the end of the day, we hope to demonstrate that:

1. We can carry out the verification of a hypervisor at a very low level of abstraction to provide high
assurance of correctness.

2. The resulting verified artifact is a credible piece of system software displaying useful hypervisor
functionality.

3. The tools and techniques we develop will scale to apply to more realistic and full featured hyper-
visors.

Modeling and verification of a complex artifact might followa top-down approach—taking an ab-
stract model of the domain (hypervisors in this case) and refining it toward a compliant implementation.
Alternatively, it might follow a bottom-up approach—extracting and proving properties of implemen-
tation level modules with the goal of combining these into a coherent verified model of the complete
artifact. A hybrid approach is probably best, to ensure thatthe two “meet in the middle.”

To date, we have worked largely bottom up, concentrating on developing the techniques necessary for
verifying the many lines of machine code that comprise the MinVisor code base. We felt that defining
a reasonable machine model and building the libraries and infrastructure to allow efficiently proving
significant fragments of code was probably our biggest hurdle. Consequently, the description of the
modeling and verification below is focused on the low level. We describe the verification of the code
that sets up MinVisor’s nested page tables. This functionality is critical to allow MinVisor to protect
itself from a malicious guest, and seems representative of the code complexity we will encounter moving
forward. We believe that this or very similar code will be required for any hypervisor.

Our initial code base was extracted from CMU’s SecVisor’s code [25]. However, we made various
simplifications to eliminate functionality orthogonal to our concerns and to simplify our initial proof
target. For example, SecVisor is tightly coupled with its modified Linux guest, making Linux part of the
trusted computing base. By making various modifications we were able to eliminate this dependency,
yielding a simpler code base to verify and a more broadly applicable hypervisor. MinVisor loads the
guest as if by the BIOS and protects the hypervisor state via nested paging.

Protection of the core system and software is crucial to any system making security claims, and is
the primary initial goal of this project. However, in order to be useful, hypervisors must also provide a
reasonable operating environment to the guest. Our currentwork does not perform any sort of corrective

M. Dahlin, R. Johnson, R.B. Krug, M. McCoyd, W. Young 3

emulation, nor any paravirtualization to provide alternate resource access. The unmodified guest runs
freely as long as it performs only “safe” actions. Dangerousoperations are intercepted and prevented, but
MinVisor’s operations when doing so may be detectable by theguest. Providing a reasonably transparent
and accurate simulation of a physical machine is future work.

3 MinVisor

MinVisor was developed to examine the proof of the protection of a hypervisor and machine from a
malicious guest and as a base for further systems work. It is aminimal Type-I/bare-metal hypervisor for
the x86 utilizing AMD’s hardware assisted AMD-V nested pagetable virtualization. The hardware BIOS
loads MinVisor from the network using the standard BIOS PreBoot Execution Environment (PXE) [8].
MinVisor loads the first hard drive sector, as if by the BIOS, as the guest. On the QEMU x86 emulator
it runs a real and protected mode guest that tries to probe memory in each 2MiB machine page. It has
not been tested on real hardware. MinVisor is written in a mixof assembly and C, limited to 32 bit
instructions, and draws from code in SecVisor, JOS [14], andXen [3].

MinVisor was designed as a real hardware, tiny, hypervisor that does the essential tasks of any AMD-
V nested paging hypervisor as simply as possible. These essential tasks are:

• Create host save area and VMCB,

• Create IO and MSR permission bit maps,

• Set guest actions to intercept,

• Populate nested page tables,

• Set starting guest state in VMCB,

• Load guest code,

• Populate and activate host page tables,

• Start the guest, and

• Handle intercepts (for nested page faults).

Except for status messages and memory read values (below) MinVisor currently does only these things.
Though MinVisor started from SecVisor, we have made many simplifications and the code is now

closer to KVM [17] in organization. We have focused on providing absolute protection of the host and
hardware from an arbitrary and potentially malicious guest. Secondarily, we provide some transparency
to the guest by booting over PXE which leaves no hard drive evidence of our existence. Our initial phase
aims to protect MinVisor’s memory. If MinVisor’s memory is not protected, no guarantees can be made
about its operation.

MinVisor is the first code to run after the BIOS, whose PXE tftpcode downloads MinVisor to phys-
ical address 0x7C00. Control is transferred to MinVisor in real mode, and MinVisor makes no further
use of the BIOS PXE tftp capabilities. After relocating itself to the highest available 2MiB aligned mem-
ory chunk and establishing protections, MinVisor emulatesthe behavior of the BIOS had PXE not been
called, and copies the first sector from the hard disk to 0x7C00, acting as a real mode boot loader. We
assume a static root of trust of the boot path. The guest is currently limited to 4GiB of RAM.

MinVisor emulates a normal system startup with its real modestart of the hard drive’s boot sector
as the guest. This minimizes interdependencies between MinVisor and the guest. MinVisor need not
receive any information from the guest, and the guest need not be aware that MinVisor is running. It

4 Verification of a Simple Hypervisor

should allow any hard drive bootable guest to be run, and it allows MinVisor to run on any machine
with PXE, which is widespread in both consumer and enterprise hardware. Booting MinVisor with PXE
allows providing the entire hard drive to the guest, avoiding the need to virtualize it.

Most control over the guest is exercised through proper configuration of the virtual machine control
block (VMCB), a per-guest memory region maintained by the hypervisor and virtualization hardware
that contains settings and information necessary to launcha guest through AMD-V mechanisms. The
VMCB points to the nested page table that provides protection from direct access to MinVisor’s own
memory.

Normally, process effective addresses are translated to physical addresses through segmentation or
segmentation with paging. First, the addresses are combined with the appropriate segment register to
create a linear address. If page tables are used, this linear(or virtual) address then serves as the index
into the page tables and a physical address is obtained. It isthis physical address that is used by the
hardware.

However, a third translation is involved for guest addresses if hardware virtualization is usingnested
paging. The guest physical address obtained by the first lookup is used to index into the nested page
tables, and a true system physical address is obtained. These nested page tables are used by MinVisor to
protect its memory regions, and are more fully described in Sec. 4.1.

Except for a few regions, MinVisor’s nested page tables establish an identity map from guest “phys-
ical” to system physical memory; most addresses in the guestwill resolve to the same location as they
would if the guest were running on the bare machine. The identity map was chosen for simplicity, though
a more complex mapping would have been only marginally more difficult to implement and verify. The
exception to the mapping is that addresses in the top 2MiB of physical memory have an empty “not
present” mapping from the guest. Thus, no guest address willbe translated to the physical memory
where MinVisor is located.

Should the guest, through ignorance or malice, try to accessan address marked “not present” in the
nested page tables, the AMD-V hardware will generate an intercept and return to host mode with infor-
mation about the guest action. In such cases, the MinVisor intercept handler causes writes to protected
regions to be no-ops, and reads return bytes from within the 16 byte string “Th Eyes of Texas”. Use of
the hardware architecture’s nested page tables greatly simplifies MinVisor and its proof, and allows the
guest to run uninterrupted most of the time. To help the guestuse reliable memory, we virtualize the
BIOS memory map to report the top of physical memory as 2MiB lower than it actually is.

Interception of guest access to hardware I/O is restricted via a table referenced in the VMCB. We
currently do not intercept any hardware ports, but plan to default to intercepting all of them. This in-
terception requires some emulation of functionality in theintercept routines in order to provide required
I/O services to the guest.

The VMCB also contains a bit map allowing selective interception of various operations. We cur-
rently intercept all operations related to interrupts, control registers, and virtualization and convert them
to no-ops. In order to provide a reasonable operating environment to a non-trivial guest, we will need to
emulate or forward basic interrupt handling and some systemcontrol events.

Initially we are implementing paranoid protection from DMAenabled devices. Rather than intel-
ligently map and cordon devices, all devices are prevented from writing to the location of MinVisor
or to memory mapped I/O regions. This satisfies our initial protection and code simplicity goals, with
performance and functionality issues to be addressed later.

Though MinVisor is sparsely featured by combination of design and its early stage of development,
we feel it is still a reasonable hypervisor target for a proofof implementation. The core memory pro-
tection mechanisms it provides by way of hardware initialization and software routines are necessary

M. Dahlin, R. Johnson, R.B. Krug, M. McCoyd, W. Young 5

Page Directory

PDE

PDPTE

PDPT

Physical Address

2−MByte Page

Virtual Address

31 30 29 21 20

Directory Offset

0

11

20

2

9
21

CR3

Figure 1: Linear Address Translation to a 2-MiByte Page

functionality for any hypervisor. Additional features andfunctions will build on top of the initial code
and proof, rather than supplant it.

4 The Y86++ Model

The goal of this project is a simple hypervisor verified at theimplementation level. This requires a formal
model of the implementation language, and the machine it runs on. Several related efforts [16, 27] choose
to formalize subsets of C/C++. We opted instead to conduct our proofs at the machine code level. This
choice eliminates relying on any formal model of C/C++ and capitalizes on strengths of ACL2. But
ideally, it means verifying code against a formalization inACL2 of the x86 instruction set architecture.
Though colleagues are working on such a model, it has not reached a stable and usable state.

To allow progress on this project, we began our proofs instead on a modified version of Bryant and
O’Hallaron’s Y86 model [6]. The Y86, designed for pedagogical purposes, is a much simplified version
of the x86 instruction set architecture. The Y86 was originally formalized in ACL2 by Sandip Ray [23]
for his dissertation work. Another formalization in ACL2 was developed by Warren Hunt for use in his
computer architecture classes at the University of Texas atAustin.

Over the course of this project, we have modified Hunt’s Y86 model by adding several components to
the processor state, several new instructions, a guest/supervisor mode flag, and nested page tables. In this
paper, we refer to our extension of the Y86 model as the Y86++,to prevent confusion with either Bryant
and O’Hallaron’s Y86 or Hunt’s implementation of it in ACL2.Because of the similarity of the Y86++
to the x86, we believe that the verification work we have done to date will translate rather directly to an
x86 model when one becomes available. The proof techniques and invariants are generally independent
of the details of the Y86++.

6 Verification of a Simple Hypervisor

4.1 Changes from Y86

The Y86 is an instruction set architecture in the style of thex86. We refer the interested reader to [6] for
details. We have made the following additions to Bryant and O’Hallaron’s Y86:

• Two new registersIMME1, VALU1: used as “scratch registers” to more closely emulate specific
complex x86 instructions as a series of Y86++ instructions.Examples of their use will be given in
Section 4.2.

• A registerCR3: points to the base of the page table hierarchy.

• A carry flag: used in several of the new instructions.

• A 1-bit Guest/Supervisor Mode flag, and four 32-bit registers: these allow mode switching and
preservation ofESP andEIP when switching modes.

In addition, we have added the following instructions:

• adcl (add with carry),

• cmpl (compare),

• sall (arithmetic shift left),

• shrl (shift right),

• jb (jump if below),

• jbe (jump if below or equal).

Memory in the Y86++, as in Hunt’s implementation of the Y86, is modeled as an association list
from 32-bit addresses to 8-bit values. We have implemented anested page table mechanism on top of
that. Paging is enabled only when the Y86++ is in Guest Mode.

The Y86++ paging mode is modeled on Intel’s PAE paging, whichis what is used by SecVisor and
MinVisor for the nested page tables. With PAE paging (see Figure 1), the first paging structure comprises
only 4 entries and is pointed to by theCR3 register. Translation uses bits 31 : 30 from a 32-bit virtual
linear address to index the appropriate entry. This entry points to the appropriate second level paging
structure, comprising 512= 29 entries. Bits 29 : 21 identify the appropriate entry pointing to a 2MiB
page frame. Both entries also contain certain bits identifying the status of the page frame. The only
status bit we concern ourselves with at the moment is thepage present bit. If this bit is 0 (as is the
case for all pages that MinVisor protects), a page fault is thrown if the page is accessed. At the moment,
the Y86++ does not properly handle page faults. This is not relevant to the theorems we have proved, but
will be relevant in subsequent work.

We have implemented an assembler in ACL2 to convert Y86++ assembly language programs into
their binary format, based on Hunt’s Y86 assembler. This is merely a convenience. Our proof is at the
level of the binary; its validity does not depend on the assembler.

4.2 Comparison to the x86

The Y86++ assembly is similar to a restricted subset of the x86. Other than the limited number of
instructions modeled, the main restriction is in the handling of immediate values — the only instruction
that handles these is theirmovl (immediate to register move) instruction.

The following is a fragment of Y86++ assembly generated by hand from the corresponding x86
instructions (in the comment column). The x86 assembly was generated by the gcc compiler from a
portion of the MinVisor implementation.

M. Dahlin, R. Johnson, R.B. Krug, M. McCoyd, W. Young 7

:init_pdts ; init_pdts:

(pushl :ebp) ; pushl %ebp

(rrmovl :esp :ebp) ; movl %esp, %ebp

(pushl :esi) ; pushl %esi

(pushl :ebx) ; pushl %ebx

(irmovl 48 :imme1) ; subl $48, %esp

(subl :imme1 :esp)

(irmovl 231 :imme1) ; movl $231, -24(%ebp)

(rmmovl :imme1 -24 (:ebp))

(irmovl 1 :imme1) ; addl $1, -28(%ebp)

(mrmovl -28 (:ebp) :valu1)

(addl :imme1 :valu1)

(rmmovl :valu1 -28 (:ebp))

Note that many of the statements translate directly. The more complex translations involve instruction
modes (using immediate values) not present in the Y86 or Y86++ models. For example, subtracting an
immediate value from a memory location (e.g.,sub1 $48, %esp) requires moving the immediate value
into a register first, since only immediate to register operations are modeled.

In each case, the translation has been crafted to match the semantics of the corresponding x86 in-
struction. The addition of the:imme1 and:valu1 registers makes this translation both simple and direct.
We believe that the resulting state of the Y86++ memory and the state of all registers and flags that corre-
spond to x86 structures are identical to what follows the execution of the original x86 instructions. That
claim has not been formally established, however, and cannot be until we have an x86 model in hand.
When we do, we plan to switch our proof effort to the x86 model,and this question will become moot.

5 Implementation Level Proofs

MinVisor code is verified following the “cutpoints” approach described elsewhere [19, 22]. Given an
operational semantics for a machine language and an annotated program, this allows the mechanized
generation of verification conditions adequate to establish the partial (or total) correctness of the code.
ACL2 is then used to dispatch the verification conditions.

The method is compositional, in that the correctness of a subroutine needs to be proved once, rather
than at each call site. The method has been used to verify several machine-level programs prior to the
current project using the ACL2 theorem prover.

To date, we have completed proofs of selected portions of MinVisor codebase. In particular, we
describe below a proof of the functions that set up the MinVisor nested page tables. Those pages that
MinVisor wishes to protect—its own memory image and the nested page table structures—are marked
asnot present. Address translation for the rest of memory is the identity map. The process of setting
up the page tables is described in the following subsection.Then in Section 5.2 we give a description of
the ACL2 modeling and proof.

5.1 Correctness of the Page Table Code

In our Y86++ model, the function(va-to-pa addr s) is responsible for the translation from a vir-
tual addressaddr to a physical address via a page table lookup in the states. If paging is turned off,
va-to-pa reduces to the identity map onaddr. If paging is turned on, address translation is done via the

8 Verification of a Simple Hypervisor

page tables as indicated in Figure 1. Normally, this will result in va-to-pa returning an address. But, if
during this lookup the entries used contains apage present bit set to 0, a page fault is raised.

The C functioncreate nested pt (actually the corresponding Y86++ binary) is responsible for
setting up the nested page tables to be used by MinVisor. The appendix contains the C source code
and a sample of the corresponding Y86++ assembly level code.create nested pt calls three sub-
sidiary functions:init pdpt sets up the top level Page Directory Pointer Table;init pdts sets up the
four second level Page Directory Tables;sec not present zeros out those entries, thereby marking
those pages as not present. The memory region to be protectedis indicated via parameters passed to
create nested pt giving the start of the memory region to be protected and its size.

Let S0 be the initial state beforecreate nested pt is run. LetS1 be the state after it has run to
termination, theCR3 register point to the top of the nested page tables, and assume paging has been
turned on. Our final top-level theorems state that the nestedpage tables set up by MinVisor are indeed
the desired page tables.

More specifically, we prove the following two facts:

• If the precondition holds forS0 andaddr is disjoint from the memory region to be protected, then
(va-to-pa addr S1) returnsaddr.

• If the precondition holds forS0 andaddr is not disjoint from the memory region to be protected,
then(va-to-pa addr S1) signals a page fault.

The precondition states that:

1. The initial Y86++ state is well formed;

2. The code is loaded at a specified location in memory;

3. The machine is poised to executecreate nested pt

4. Paging is turned off on the machine;

5. The code, stack, and the tables being created are located at disjoint memory locations;

6. The tables are aligned on 4K page boundaries

7. The start of the memory region to be protected is aligned ona 2MiB page boundary;

8. The size of the memory region to be protected is a non-zero multiple of 2MiB;

9. The stack does not wrap around memory;

10. All memory addresses used fit into a 32-bit register.

5.2 The ACL2 Model

In this section, we describe the modeling in ACL2 of the theorems proved aboutinit pdts. This
function initializes the four page directory tables, and our theorem specifies its effects. It is formalized
using the cutpoints method described above.

The C code for the proved functionality is listed in AppendixA. This is compiled using thegcc
compiler into x86 assembler, which is hand translated into Y86++ code. The resulting Y86++ code
for theinit pdts function is listed in Appendix B. This hand translation could be automated, but we
have not done so because we hope to evolve our verification process to handle real x86 code. However,
as illustrated in section 4.2 above, the translation is straightforward, so does not introduce significant
uncertainty into the overall process. The Y86++ code is thenassembled into a Y86++ binary, and it is
the binary that is the target of verification.

M. Dahlin, R. Johnson, R.B. Krug, M. McCoyd, W. Young 9

The pre-condition of the execution (the 10 conditions listed in the previous section) is modeled by an
ACL2 predicateINIT PDTS-PRE on the initial state. The results of the symbolic execution are modeled
by the ACL2 functionINIT PDTS-MODIFY specifying the resulting state as a series of modifications to
the initial state. This specifies all changes to registers, flags, memory and other system components.

This result function is tedious to construct and error-prone. At some point we hope to use “wormhole
abstraction” [10] to elide state changes that are not of interest. We believe this will simplify these
theorems considerably.

Alternatively, with some modifications to the macros used togenerate the theorems, we could specify
a series of “read over write” theorems as follows. LetS0 be the initial state before the code being analyzed
is run andS1 the state after the code is run to termination. We can construct:

1. A frame condition, specifying that reading inS1 those portions of state not changed by the code,
can be simplified to an equivalent read inS0.

2. Theorems specifying, for those portions of state that arechanged, how a read inS1 would be
reduced to reads inS0.

This could be used to replace the effects function.
The theorem we currently prove shows that running the machine on a suitable initial state yields a

resulting state identical to the initial state except for specific concrete changes.
As with all ACL2 cutpoint proofs, the user supplies: the definition of the language interpreter (in this

case the Y86++ model), the pre-conditions of the code’s execution, and the expected modification to the
state. Code involving loops also requires that appropriateloop invariants be given. A series of theorems
are generated that, if proven, are adequate to show that a terminating execution of code from an initial
state satisfying the precondition will produce the indicated result. Matthews, et al. [19] developed ACL2
macros that provide a convenient syntactic framework for supplying the components and generating the
requisite theorems. See [19] for a thorough description of the methodology.

The following is the macro call that generates the forms submitted to ACL2 in the proof of the
function.

(defsimulate+

y86-step

:run y86

:inmain in-init_pdts

:cutpoint init_pdts-cutpoint-p

:assertion-params (s0 s1)

:precondition init_pdts-pre

:assertion init_pdts-assertion

:modify init_pdts-modify

:exitsteps init_pdts-exitsteps

:exists-next-exitpoint

init_pdts-exists-next-exitpoint

:next-exitpoint init_pdts-next-exitpoint

:correctness-theorem init_pdts-correct)

Executing this form generates a complex ACL2encapsulate that culminates in the following theorem:

(DEFTHM INIT_PDTS-CORRECT

(IMPLIES

(AND (INIT_PDTS-PRE S1)

10 Verification of a Simple Hypervisor

(INIT_PDTS-EXISTS-NEXT-EXITPOINT S1))

(AND (LET ((S1 (INIT_PDTS-NEXT-EXITPOINT S1)))

(NOT (IN-INIT_PDTS S1)))

(EQUAL (INIT_PDTS-NEXT-EXITPOINT S1)

(INIT_PDTS-MODIFY S1)))))

This theorem is proved mechanically by ACL2. Developing theproof, however, did require the develop-
ment of many subsidiary lemmas and enhancements to the underlying libraries about our Y86++ model.
Specifically, we developed a library for specifying and reasoning about disjoint memory regions. We
expect that this effort can be amortized over many such proofs on the MinVisor project.

We have not yet considered termination in this proof, but believe that that can be trivially added for
the fixed finite structures we are dealing with.

The cutpoints methodology has been used previously [19] in the verification of a JVM implemen-
tation of an encryption/decryption system. The MinVisor proofs may be the first sizable application
stressing this technology; we anticipate the need to verifythousands of lines of binary code.

6 Related Work

Hypervisors were first introduced in the 1960s as a way to multiplex scarce and expensive computing
resources. The advent of inexpensive hardware and multitasking operating systems eroded their value
in the 1980s and 1990s. Over the last few years, however, hypervisors have regained popularity as a
versatile technology for enhancing security and reliability. One effect is that processor manufacturers are
removing obstacles that made it difficult to virtualize somesystem resources on earlier processor designs
without significant emulation performance penalties. BothIntel and AMD have developed virtualization
extensions to the x86 architecture [1, 13].

Xenon[20, 21] is a high assurance hypervisor based on re-engineering Xen. The designers have
specified a formal security policy based on the notion ofindependence[24]. Though related to our work,
the Xenon hypervisor is much larger (around 70,000 lines of code) and the effort is focused on gaining
assurance through a policy-to-code development methodology. In another large effort, Microsoft has
developed and used VCC [7], A Verifier for Concurrent C, to verify components of their 60,000 line
Hyper-V hypervisor.

Several research efforts have demonstrated that it is possible to construct small, robust and useful
hypervisors. The SecVisor project [25] implemented two hypervisors (1739 and 1112 lines of code,
respectively) supporting Linux kernel version 2.6.20. Their systems provide strong integrity guarantees.
However, a subsequent formal analysis [9] using the Murφ model checker found two significant and
exploitable design flaws.

Various projects have tied together hardware and software verification. The CLI Stack [4] was a
collection of verified components including a simple high-level language compiler, a linking loader,
and a microprocessor model. The European Verisoft project [28] has taken a similar approach with the
goal of “pervasive formal verification” of an entire computer system including hardware (processor and
devices), a real-time operating system, and applications.This effort has since evolved into the Verisoft
XT project and consortium.

The Fiasco project developed a microkernel running on x86 PCs and intended to be compatible with
the L4 microkernel. The related VFiasco effort attempted toprove security properties from the Fiasco
source code including a small hypervisor developed in C++. A“semantics compiler” translates the C++

M. Dahlin, R. Johnson, R.B. Krug, M. McCoyd, W. Young 11

code into logical formulas that are analyzed using PVS. Theyalso use a formal but incomplete x86
model. [12]

One component of the Robin Project [27] from Radboud University Nijmegen in the Netherlands
aims to verify the Nova hypervisor, a micro-hypervisor targeted at the x86 architecture, using a very
similar approach to the VFiasco work.

A collaboration between NICTA, UNSW, Open Kernel Labs, and ANU resulted in the creation and
verification of seL4 [16], a third-generation L4 family microkernel. Their proof is done using the Is-
abelle/HOL theorem prover, and involves proof of refinementacross three layers—an abstract specifica-
tion, a functional prototype in subset of Haskell, and an implementation in a subset of C.

Other projects have attempted to apply formal methods to establish certain separation properties.
Leslie, et al. [18] have developed a small microkernel/hypervisor in Haskell and specified a combina-
tion of noninterference and information flow properties. This, they claim, provides a first step towards a
formally verified separation kernel, and reduces the gap between information flow theory and operating
system practice. Alkassar and Paul [2] report some initial work toward the verification of a “baby” hy-
pervisor for the DLX RISC architecture. A related effort is the VeriOS project of the Saarland University
(Germany). Its goal is the verification of an L4 kernel running on their own verified microprocessor
VAMP [5]. The processor is modelled down to the gate level using NuSMV in conjunction with Is-
abelle/HOL.

7 Conclusions and Future Work

This project is a collaboration between the Systems and ACL2groups at the University of Texas at
Austin. As a result, our efforts have been focused in two tracks:

1. Constructing the MinVisor hypervisor;

2. Developing the modeling and proof infrastructure to permit the formal verification of MinVisor.

We have found this to be a highly useful collaboration in thatsystems expertise was necessary to ensure
that the artifact we built is credible from a systems standpoint. Our expertise in using ACL2 gave us
hope that we could manage this complex verification effort.

Our goal has been to construct a simple but realistic hypervisor with the goal of proving its cor-
rectness at the implementation level. Though the effort is far from complete, we can report significant
progress, including:

• Building a simple, running hypervisor called MinVisor thatprotects itself from the guest;

• Enhancing the formal Y86 instruction set model to be able to encode critical MinVisor functional-
ity;

• Developing proof techniques adequate to prove the correctness of that functionality.

A project concern was to find a balance of a useful hypervisor and one we could verify. It is too early
in the project to have definitive evidence that our hypervisor is both credible and verifiable. By running
on real hardware, we aimed to make the artifact interesting from the systems perspective. But our first
cut is quite simple compared to commercial hypervisors and even compared to SecVisor. However,
our goal is to augment MinVisor with additional functionality once we have developed sufficient proof
infrastructure and facility doing the proofs to convince ourselves that the project will succeed.

On the systems side we hope to:

12 Verification of a Simple Hypervisor

• Virtualize a small critical set of devices (e.g. console, timer, network) and block access to other
devices.

• Evolve MinVisor to support multiple guests.

• Enhance CPU virtualization to multiplex among guests.

• Enhance the fidelity with which the guest thinks it has real hardware.

On the verification track, we hope to do the following:

• Move from the Y86++ model we are currently using to an x86 model as one becomes available.

• Prove rigorously the entire MinVisor code base.

• Make use of new ACL2 proof techniques to reason more efficiently about assembly code.

As we noted in Section 2, we hope to demonstrate that:

1. We can carry out the verification of a hypervisor at a very low level of abstraction to provide high
assurance of correctness.

2. The resulting verified artifact is a credible piece of system software displaying useful hypervisor
functionality.

3. The tools and techniques we develop will scale to apply to more realistic and full featured hyper-
visors.

Our progress to date makes us hopeful that we can achieve these goals. However, it is too early to claim
success on any of them.

Acknowledgements

We thank our colleagues at the University of Texas, particularly Sandip Ray, Warren Hunt, and J Moore
for their work on the Y86, and Matt Kaufmann for help with ACL2. We’d particularly like to thank
Sandip Ray for helpful discussions throughout the project and comments on the draft of this paper. The
comments from the anonymous reviewers were also very helpful. This material is based upon work
supported by the National Science Foundation under Grant No. CNS-0917162, and by Raytheon under
contract 200901296.

Appendix

A C Source Code

We here give the C source for that part of MinVisor that sets upthe nested page tables. We analyzed the
corresponding Y86++ binary code.

typedef unsigned int u32;

typedef unsigned long long u64;

// pointer to the page-directory-pointer table

typedef u64 *pdpt_t;

// pointer to a page-directory table

M. Dahlin, R. Johnson, R.B. Krug, M. McCoyd, W. Young 13

typedef u64 *pdt_t;

void sec_not_present(pdpt_t pdptp,

u32 *visor_start,

u32 visor_size)

{

u64 pdpt_entry;

u64 tmp;

u32 tmp32;

pdt_t pdt;

u32 start, end;

u32 i, j;

u64 mask;

mask = ~((1 << 12) - 1);

// The top two bits are the index into the

// 4 entry page-directory-pointer table

j = (u32)visor_start >> 30;

pdpt_entry = pdptp[j];

// mask off the lower 12 bits of pdpt_entry.

tmp = pdpt_entry & mask;

tmp32 = (u32)tmp;

pdt = (pdt_t)tmp32;

// Bits 29-21 form the index into the 512 entry

// page-directory table.

start = ((u32)visor_start & 0x3fe00000) >> 21;

end = (((u32)visor_start + visor_size)

& 0x3fe00000) >> 21;

// mark not present from start to end

for(i = start; i < end; i ++){

pdt[i] = 0;

}

}

void init_pdts(pdt_t pdt_array[4])

{

u64 addr;

pdt_t pdt;

u32 i, j;

u64 flags;

14 Verification of a Simple Hypervisor

u64 page_size_2m;

// present, rw, user, accessed, dirty,

// pse --- 2MiB page

flags = 1 | 2 | 4 | 32 | 64 | 128;

page_size_2m = 1 << 21;

addr = 0;

// 4 tables

for(i = 0; i < 4; i ++){

pdt = pdt_array[i];

// 512 entries per table

for(j = 0; j < 512; j ++)

{

// Make page directory entry for a 2MiB page.

pdt[j] = addr | flags;

addr += page_size_2m;

}

}

}

void init_pdpt(pdpt_t pdptp, pdt_t pdt_array[4])

{

u32 i;

u64 page_present;

page_present = 1;

for(i = 0; i < 4; i++){

pdptp[i] = (u64)((u32)pdt_array[i]

| page_present);

}

}

pdpt_t create_nested_pt(pdpt_t pdptp,

pdt_t pdt_array[4],

u32 *visor_start,

u32 visor_size)

{

init_pdpt(pdptp, pdt_array);

init_pdts(pdt_array);

sec_not_present(pdptp, visor_start, visor_size);

M. Dahlin, R. Johnson, R.B. Krug, M. McCoyd, W. Young 15

return pdptp;

}

B Y86++ Source Code for init pdts

We here give the Y86++ assembly corresponding to one of the above functions.init pdts.

(:init_pdts

(pushl :ebp)

(rrmovl :esp :ebp)

(pushl :esi)

(pushl :ebx)

(irmovl 48 :imme1)

(subl :imme1 :esp)

(irmovl 231 :imme1)

(rmmovl :imme1 -24 (:ebp))

(irmovl 0 :imme1)

(rmmovl :imme1 -20 (:ebp))

(irmovl 2097152 :imme1)

(rmmovl :imme1 -16 (:ebp))

(irmovl 0 :imme1)

(rmmovl :imme1 -12 (:ebp))

(irmovl 0 :imme1)

(rmmovl :imme1 -48 (:ebp))

(irmovl 0 :imme1)

(rmmovl :imme1 -44 (:ebp))

(irmovl 0 :imme1)

(rmmovl :imme1 -32 (:ebp))

(jmp :L7)

:L8

(mrmovl -32 (:ebp) :eax)

(irmovl 2 :imme1)

(sall :imme1 :eax)

(mrmovl 8 (:ebp) :valu1)

(addl :valu1 :eax)

(mrmovl 0 (:eax) :eax)

(rmmovl :eax -36 (:ebp))

(irmovl 0 :imme1)

(rmmovl :imme1 -28 (:ebp))

(jmp :L9)

:L10

(mrmovl -28 (:ebp) :eax)

(irmovl 3 :imme1)

(sall :imme1 :eax)

(rrmovl :eax :esi)

16 Verification of a Simple Hypervisor

(mrmovl -36 (:ebp) :valu1)

(addl :valu1 :esi)

(mrmovl -24 (:ebp) :ecx)

(mrmovl -20 (:ebp) :ebx)

(mrmovl -48 (:ebp) :eax)

(orl :ecx :eax)

(mrmovl -44 (:ebp) :edx)

(orl :ebx :edx)

(rmmovl :eax 0 (:esi))

(rmmovl :edx 4 (:esi))

(mrmovl -16 (:ebp) :eax)

(mrmovl -12 (:ebp) :edx)

(mrmovl -48 (:ebp) :valu1)

(addl :eax :valu1)

(rmmovl :valu1 -48 (:ebp))

(mrmovl -44 (:ebp) :valu1)

(adcl :edx :valu1)

(rmmovl :valu1 -44 (:ebp))

(irmovl 1 :imme1)

(mrmovl -28 (:ebp) :valu1)

(addl :imme1 :valu1)

(rmmovl :valu1 -28 (:ebp))

:L9

(irmovl 511 :imme1)

(mrmovl -28 (:ebp) :valu1)

(cmpl :imme1 :valu1)

(jbe :L10)

(irmovl 1 :imme1)

(mrmovl -32 (:ebp) :valu1)

(addl :imme1 :valu1)

(rmmovl :valu1 -32 (:ebp))

:L7

(irmovl 3 :imme1)

(mrmovl -32 (:ebp) :valu1)

(cmpl :imme1 :valu1)

(jbe :L8)

(irmovl 48 :valu1)

(addl :valu1 :esp)

(popl :ebx)

(popl :esi)

(popl :ebp)

(ret)))

M. Dahlin, R. Johnson, R.B. Krug, M. McCoyd, W. Young 17

References

[1] Advanced Micro Devices (2005):AMD64 virtualization: Secure virtual machine architecture reference man-
ual. AMD Publication no. 33047 rev. 3.01.

[2] E. Alkassar & W. Paul (2008):On the verification of a ”baby” hypervisor for a RISC machine;draft 0.
available online.

[3] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf Neugebauer, Ian Pratt
& Andrew Warfield (2003):Xen and the art of virtualization. In: SOSP ’03: Proceedings of the Nineteenth
ACM Symposium on Operating Systems Principles, ACM, New York, NY, USA, pp. 164–177, doi:http://
doi.acm.org/10.1145/945445.945462.

[4] William R. Bevier, Warren A. Hunt, Jr., J S. Moore & William D. Young (1989):An Approach to System
Verification. Journal of Automated Reasoning5(4), pp. 411–428.

[5] Sven Beyer, Christian Jacobi, Daniel Kroning, Dirk Leinenbach & Wolfgang J. Paul (2006):Putting it all
together: Formal verification of the VAMP. International Journal on Software Tools Technology Transfer
8(4), pp. 411–430, doi:10.1007/s10009-006-0204-6.

[6] Randal E. Bryant & David O’Hallaron (2003):Computer Systems: A Programmer’s Perspective. Prentice-
Hall, Upper Saddle River, N.J.

[7] Ernie Cohen, Markus Dahlweid, Mark Hillebrand, Dirk Leinenbach, Michal Moskal, Thomas Santen, Wol-
fram Schulte & Stephan Tobies (2009):VCC: A Practical System for Verifying Concurrent C. In: Proceedings
of the 22nd International Conference on Theorem Proving in Higher Order Logics, TPHOLs ’09, Springer-
Verlag, Berlin, Heidelberg, pp. 23–42.

[8] Intel Corporation (1999):Preboot Execution Environment, Verion 2.1. Technical Report, Intel Corporation.

[9] Jason Franklin, Arvind Seshadri, Ning Qu, Sagar Chaki & Anupam Datta (2008):Attacking, Repairing, and
Verifying SecVisor: A Retrospective on the Security of a Hypervisor. submitted to 8th USENIX Symposium
on Operating Systems Design and Implementation (OSDI’08).

[10] David S. Hardin, Eric W. Smith & William D. Young (2006):A Robust Machine Code Proof Framework for
Highly Secure Applications. In: Proceeding of the 2006 International Workshop on ACL2, ACM.

[11] Kenneth Hess & Amy Newman (2010):Practical Virtualization Solutions. Pearson Education, Boston.

[12] Sarah Hoffmann (2003):Formalising PC Hardware: A Model of the x86 Architecture. Master’s thesis,
Technische Universitat Dresden.

[13] Intel Corporation (2006):LaGrande technology preliminary architecture specification. Intel Publication no.
D52212.

[14] (2006):JOS Operating System. http://pdos.csail.mit.edu/6.828/2006/overview.html.

[15] M. Kaufmann, P. Manolios & J Moore (2000):Computer-Aided Reasoning: An Approach. Kluwer Academic
Press, Boston.

[16] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip Derrin, Dhammika
Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch & Simon Win-
wood (2009):seL4: formal verification of an OS kernel. In: Proceedings of the ACM SIGOPS 22ndsym-
posium on Operating systems principles, SOSP ’09, ACM, New York, pp. 207–220, doi:http://doi.acm.

org/10.1145/1743546.1743574.

[17] KVM (2011): Kernel Based Virtual Machine. www.linux-kvm.org/page/Main_Page.

[18] Rebekah Leslie, Levent Erkök & Flemming Andersen (2007): Formalizing Information Flow in a Haskell
Hypervisor. In: Microkernels and Embedded Systems Workshop, MIKES’07.

[19] J. Matthews, J S. Moore, S. Ray & D. Vroon (2006):Verification Condition Generation Via Theorem Proving.
In M. Hermann & A. Voronkov, editors:Proceedings of the13th International Conference on Logic for
Programming, Artificial Intelligence, and Reasoning (LPAR2006), LNCS 4246, Springer, Phnom Penh,
Cambodia, pp. 362–376, doi:10.1.1.101.503.

http://dx.doi.org/http://doi.acm.org/10.1145/945445.945462
http://dx.doi.org/http://doi.acm.org/10.1145/945445.945462
http://dx.doi.org/10.1007/s10009-006-0204-6
http://pdos.csail.mit.edu/6.828/2006/overview.html
http://dx.doi.org/http://doi.acm.org/10.1145/1743546.1743574
http://dx.doi.org/http://doi.acm.org/10.1145/1743546.1743574
www.linux-kvm.org/page/Main_Page
http://dx.doi.org/10.1.1.101.503

18 Verification of a Simple Hypervisor

[20] J. McDermott, J. Kirby, B. Montrose, T. Johnson & M. Kang(2008): Re-engineering Xen internals for
higher-assurance security. Information Security Technical Report13(1), pp. 17–24, doi:10.1016/j.istr.
2008.01.001.

[21] John McDermott & Leo Freitas (2008):A formal security policy for Xenon. In: FMSE ’08: Proceedings of
the 6th ACM workshop on Formal methods in security engineering, ACM, New York, NY, USA, pp. 43–52,
doi:http://doi.acm.org/10.1145/1456396.1456401.

[22] J S. Moore (2003):Inductive Assertions and Operational Semantics. In: CHARME 2003, Volume 2860 of
LNCS, Springer-Verlag, pp. 289–303, doi:10.1007/s10009-005-0180-2.

[23] Sandip Ray (2005):Using Theorem Proving and Algorithmic Design Procedures for Large-Scale System
Verification. Ph.D. thesis, University of Texas at Austin.

[24] A. Roscoe, J. Woodcock & L. Wulf (1997):Non-interference through nondeterminism. In: Proceedings
ESORICS, pp. 33–52.

[25] Arvind Seshadri, Mark Luk, Ning Qu & Adrian Perrig (2007): SecVisor: A Tiny Hypervisor to Provide
Lifetime Kernel Code Integrity for Commodity OSes. In: SOSP ’07: Proceedings of Twenty-first ACM
SIGOPS Symposium on Operating Systems Principles, ACM, pp. 335–350, doi:http://doi.acm.org/
10.1145/1323293.1294294.

[26] James E. Smith & Ravi Nair (2005):Virtual Machines: Versatile Platforms for Systems and Processes.
Morgan Kaufmann, Boston.

[27] Hendrik Tews, Bart Jacobs, Erik Poll, Marko van Eekelen& Peter van Rossum (2005):Specification and
Verification of the Nova microhypervisor. Project Robin deliverable D.6, Radboud University Nijmegen.

[28] Verisoft (2008):Verisoft Repository. www.verisoft.de/VerisoftRepository.html.

http://dx.doi.org/10.1016/j.istr.2008.01.001
http://dx.doi.org/10.1016/j.istr.2008.01.001
http://dx.doi.org/http://doi.acm.org/10.1145/1456396.1456401
http://dx.doi.org/10.1007/s10009-005-0180-2
http://dx.doi.org/http://doi.acm.org/10.1145/1323293.1294294
http://dx.doi.org/http://doi.acm.org/10.1145/1323293.1294294
www.verisoft.de/VerisoftRepository.html

	Introduction
	High Level Strategy
	MinVisor
	The Y86++ Model
	Changes from Y86
	Comparison to the x86

	Implementation Level Proofs
	Correctness of the Page Table Code
	The ACL2 Model

	Related Work
	Conclusions and Future Work
	C Source Code
	Y86++ Source Code for init_pdts

