
BAR Gossip

Harry C. Li, Allen Clement, Edmund L. Wong, Jeff Napper, Indrajit Roy,
Lorenzo Alvisi, Michael Dahlin

Laboratory for Advanced Systems Research (LASR),
Dept. of Computer Sciences,

The University of Texas at Austin

We present the first peer-to-peer data stream-
ing application that guarantees predictable
throughput and low latency in the BAR (Byzan-
tine/Altruistic/Rational) model, in which non-
altruistic nodes can behave in ways that are
self-serving (rational) or arbitrarily malicious
(Byzantine). At the core of our solution is a BAR-
tolerant version of gossip, a well-known technique
for scalable and reliable data dissemination. BAR
Gossip relies on verifiable pseudo-random partner
selection to eliminate non-determinism that can
be used to game the system while maintaining the
robustness and rapid convergence of traditional gos-
sip. A novel fair enough exchange primitive entices
cooperation among selfish nodes on short timescales,
avoiding the need for long-term node reputations.
Our initial experience provides evidence for BAR
Gossip’s robustness. Our BAR-tolerant streaming
application provides over 99% convergence for
broadcast updates when all clients are selfish but
not colluding, and over 95% convergence when up
to 40% of clients collude while the rest follow the
protocol. BAR Gossip also performs well when
the client population consists of both selfish and
Byzantine nodes, achieving over 93% convergence
even when 20% of the nodes are Byzantine.

1 Introduction

Streaming media is an increasingly useful application at
several scales of deployment. For example, the 2006
NCAA tournament had peak participation of 150k+ users
for their live streaming services. At smaller scales, such
as academic conferences like OSDI or artistic events
like Austin’s SXSW that draw audiences of dozens to
hundreds of people, there is interest in providing a live
stream, but little existing infrastructure to support it.

At all these scales, a peer-to-peer (p2p) streaming so-
lution appears to be an intriguing alternative to tradi-

tional methods. One advantage of p2p systems is their
potential to be highly robust, scalable, and adaptive.
For example, a p2p architecture could, in principle, ab-
sorb the impact of an unexpected flash crowd. Fur-
thermore, large-scale content providers may adopt p2p-
based solutions to shift costs (like bandwidth) to clients,
and small-scale providers might find it simpler to use a
self-organizing p2p network instead of provisioning and
maintaining a large dedicated server.

Realizing the promises of p2p in streaming services is
non-trivial. First, the service must guarantee highly reli-
able, stable, and timely throughput of messages despite
the presence of faulty, misconfigured, or even malicious
peers. Second, the service must be robust against selfish
users, who try to catch a free ride by receiving streams
without contributing their fair share to other users [12].
The free-rider phenomenon in p2p systems is a symp-
tom of a broader issue: any system deployed across mul-
tiple administrative domains must be designed for the
possibility that nodes will deviate from their specifica-
tion if doing so is advantageous. File-sharing p2p ap-
plications, like BitTorrent [7], have recognized this is-
sue and introduced a set of heuristics to incentivize faith-
ful participation—these heuristics, however, optimize for
bulk file transfer, not for the timely delivery of a series of
small frames required by a streaming service.

This paper presents the first p2p streaming media ap-
plication designed for a system model (BAR [1]) in
which altruistic nodes (who follow the protocol as-
signed to them) coexist with both arbitrarily malicious
(Byzantine) and self-serving (rational) nodes. Our BAR-
tolerant solution, based on gossip protocols [4, 8, 19, 35],
provides a scalable mechanism for information dissemi-
nation that ensures predictable throughput even if all of
the nodes act selfishly and the remainder act maliciously
or malfunction in arbitrary ways.

The defining characteristic of gossip protocols is that
each node exchanges data, or gossips, with randomly se-
lected peers: it is precisely this randomness that gives

gossip protocols their enviable robustness. From the
perspective of designing BAR-tolerant protocols, how-
ever, randomness can be a real headache: in fact, any
source of non-determinism is hard to deal with in the
BAR model because it gives opportunities for rational
users to hide selfish actions in the guise of legitimate,
non-deterministic behavior.

We overcome this difficulty by building a BAR-
tolerant gossip protocol that uses verifiable pseudo-
randomness as the means for peer selection: in particu-
lar, we exploit properties of pseudo-random number gen-
erators and unique signature schemes to build a verifi-
able pseudo-random partner selection algorithm. This
approach eliminates the main source of non-determinism
in traditional gossip—randomness in partner selection—
yet maintains the unpredictability and rapid convergence
of traditional gossip. Our novel peer selection technique,
in combination with a simple fair enough exchange
mechanism based on the notion of credible threats [1, 9],
proves effective in encouraging the fair exchange [17] of
one node’s updates for another’s. We believe that en-
ticing cooperation over short timescales is simpler and
more robust than approaches based on long-term reputa-
tions [16, 23, 36] because doing so limits Brutus attacks,
in which malicious nodes maximize damage by earning
the trust of their victims before striking.

We build a prototype streaming application that uses
our BAR Gossip protocol to provide a stable throughput
multicast. We show that BAR Gossip is robust to Byzan-
tine and selfish behavior, even when 40% of selfish nodes
collude. In an environment in which 20% of clients are
Byzantine and the remaining are rational, we demon-
strate that if the broadcaster can multicast packets to a
constant number of random nodes, then non-Byzantine
clients can reliably deliver the stream in a timely man-
ner.

In this paper, we make two main technical contribu-
tions:

• We design BAR Gossip, the first gossip protocol re-
silient to both Byzantine and selfish behavior.

• We use BAR gossip to build the first p2p streaming ap-
plication to guarantee predictable throughput and low
latency in the BAR model.

More broadly, by showing that it is possible to derive
BAR tolerant versions of a highly non-deterministic pro-
tocol such as gossip, we believe this work strengthens
the case for BAR tolerance as the right model for reason-
ing about the dependability of systems deployed across
multiple administrative domains.

We introduce the paper in Section 1, which ends with
this paragraph outlining the rest of the paper. Section
2 frames our contributions in the context of previous
work. The system model is described in Section 3. Sec-

tion 4 then describes BAR Gossip, followed by Section 5,
which supports our claim that BAR Gossip is a robust
streaming protocol through a combination of simulations
and live experiments.

2 Related Work

BAR Gossip targets streaming of live content among
Byzantine, altruistic, and rational nodes. It draws on a
broad literature of bulk file transfer systems designed to
tolerate node misbehavior as well as a large number of
efforts to use gossip for robust data dissemination.

Bulk file transfer. Several systems have addressed
selfish behavior in p2p content distribution. BitTor-
rent [7] leverages a local reputation scheme for file-
sharing in which nodes give preference to those peers
who have reliably reciprocated in the past.

Scrivener [27] generalizes BitTorrent by supporting a
distributed reputation scheme based on credits that can
be earned and redeemed across multiple files: through
this mechanism, a Scrivener node that has been a good
citizen can enlist the help of its peers even if the file it
wants to acquire is unpopular.

Habib and Chuang [15] study p2p streaming of non-
live media in a selfish environment. They use distributed
reputations in the form of global rankings to deter free-
riders while providing good quality streams to coopera-
tive clients.

FOX [18] guarantees optimal download time to all the
nodes interested in acquiring the same file under the as-
sumption that all nodes are selfish. This guarantee, how-
ever, comes at the expense of robustness: the system’s
incentive structure depends on the fear of mutual assured
destruction, and a single Byzantine node can cause the
entire system to collapse.

Splitstream [6] is a tree-based multicast protocol that
achieves load balancing by dividing content into multiple
stripes, each of which is multicast using a separate tree.
Splitstream is vulnerable to freeloaders. Ngan et al. [30]
observe that if Splitstream’s multicast trees are periodi-
cally rebuilt and nodes maintain local reputations regard-
ing nodes that have misbehaved, then upstream nodes in
a given tree have an incentive to provide good service to
downstream nodes to avoid future retaliation.

BAR Gossip differs from these systems in four key
ways. First, these systems work to optimize average
download bandwidth over long periods of time and do
not attempt to maintain stable throughput over shorter in-
tervals. In contrast, our protocol is designed to dissemi-
nate live streams and therefore values the highly reliable,
stable, and timely throughput that comes with gossip-
style data dissemination. Second, several of these sys-
tems are designed to be robust to Byzantine [6] or ratio-

nal [15, 18, 27] players but not both. Third, all of these
systems transfer a large collection of file blocks. In con-
trast, BAR Gossip distributes live streams and must cope
with having a relatively small window of “useful” data
in flight at any given time; ensuring timely delivery of
a small set of data is one of the key challenges in our
protocol. Fourth, most of these systems make use of lo-
cal [7, 30] or distributed [15, 27] node reputations in their
incentive structure. But given our desire to provide stable
throughput over short periods of time, relying on a node’s
long-term reputation to predict its short-term behavior is
problematic. Furthermore, because gossip partners are
likely to change in every round, in our protocol it is vir-
tually impossible for a node to build enough good will
with specific partners to support a purely local reputation
scheme à la BitTorrent. Additionally, it appears challeng-
ing to implement a strategy-proof reputation system in an
environment with both rational and Byzantine players.

Gossip. Gossip algorithms were first introduced by
Demers et al. [8] to manage replica consistency in the
Xerox Clearinghouse Service [31]. Following Birman et
al.’s highly influential paper on Bimodal Multicast [4],
gossip algorithms have established themselves as one of
the leading approaches to achieve reliable and scalable
application-level multicast [5, 11, 14, 19, 25, 40]. Gossip
protocols are also at the core of a new generation of
scalable distributed protocols for failure detection [35],
group communication [13, 39], and the monitoring and
management of large distributed systems [38].

Experience with the CoolStream implementation of
the DONet p2p overlay network [42] makes a strong case
for the scalability of gossip-based dissemination of live
streams and for its potential to deliver high quality end-
to-end user experience in the presence of altruistic nodes.

Secure gossiping aims to prevent Byzantine nodes
from spreading false updates. While digital signatures
are not necessary to accomplish this goal [20–22, 26],
they considerably simplify protocol design and are as-
sumed in most practical gossip-based systems [5, 38, 39],
including BAR Gossip.

DRUM [2] assumes secure gossip and focuses on
fighting denial of service (DoS) attacks through two main
techniques: bounding the resources allocated to each
gossip operation and directing these operations to ran-
dom ports.

BAR replication. Aiyer et al. [1] define a replicated
state machine protocol under the BAR model. Although
the replication overheads of that approach are too high
for live streaming media, we draw on many of the
same design principles: predictable communication pat-
terns manifest in our partner selection algorithm (Sec-
tion 4.2.1), cost balancing manifests in our optimistic

push algorithm (4.2.5), credible threats manifest in our
key exchange (4.2.4), and ensuring long term benefit
manifests in our delayed gratification protocol structure
(4.1).

3 Model

We consider the problem of streaming a live event across
the Internet where the audience members, which we call
clients, help disseminate stream packets.

Clients can be Byzantine, altruistic, or rational. Each
rational client follows a strategy that maximizes its util-
ity. Rational clients share a utility function that describes
costs and benefits; in this paper, the benefit consists in the
ability to play the live stream and the costs are incurred
by sending and receiving packets. A rational client de-
viates from the specification if and only if doing so in-
creases that client’s expected utility. We assume that a
rational client’s benefit from timely acquisition of each
stream packet significantly exceeds the communication
costs incurred in doing so.

We assume rational clients ignore messages outside of
the protocol. We root this assumption in the existing
game theory literature, which considers extra-protocol
messages to be outside the strategy space. Excluding
these messages is reasonable because convincing clients
to act on messages outside the protocol specified by the
broadcaster requires i) convincing clients to install the
new protocol in addition to BAR Gossip and ii) ensuring
that rational clients expect the protocol to provide cur-
rent and future updates in a BAR environment without
support from the live event’s source. If this assumption
is violated – e.g. alternative, cheaper, better source of the
update appears – then liveness guarantees may be eroded.
With this assumption, we can demonstrate that, absent
other avenues for receiving the desired updates, rational
clients benefit from running our protocol.

Altruistic clients follow the protocol as given regard-
less of costs, similar to correct clients in the traditional
fault-tolerance literature. Byzantine clients behave arbi-
trarily or according to some unspecified utility function.

Non-Byzantine clients maintain clocks synchronized
within δ seconds of each other and communicate over
point-to-point, synchronous, and unreliable links using
both TCP and UDP. When messages are exchanged using
UDP, a node that does not receive an expected message
assumes that the link dropped it.

We assume that clients subscribe to the live broadcast
prior to its start and that non-Byzantine clients remain
in the system for the duration of the broadcast. Future
work is needed to extend the protocol to accommodate
dynamic membership. Given our protocol’s reliance on
short-term incentives rather than long-term reputations,
we are optimistic that such extensions will be feasible.

We also assume that each participant is limited to one
identity. To mitigate the threat of Sybil attacks [10], it
must be hard for participants to collect multiple iden-
tities. There exist sophisticated techniques to combat
Sybil attacks [37, 41]. In our prototype, we take the sim-
ple approach of limiting each IP address to one identity.

We make the standard assumption that cryptographic
primitives, like digital signatures, symmetric key encryp-
tion, and one-way functions, cannot be subverted. Our
protocol also requires that each private key generates
unique signatures: for a given m, there must exist ex-
actly one valid signature of m by i. Although a number
of standard signature algorithms fail to provide this prop-
erty [29], there exist algorithms that do [3]. We denote a
message m signed by i as 〈m〉i.

We hold clients accountable for the messages they
sign. We define a proof of misbehavior (POM) to be a
sequence of signed messages that proves a client sent a
message inconsistent with the protocol specification. A
POM against a client is sufficient evidence to evict that
client from the population. Assuming that rational clients
gain benefit from being members of the population, we
model the system as an infinite game or one with an un-
predictable end time so that rational clients are cautious
and do not risk eviction by sending POMs. Additional
work is needed to determine if there are significant end-
game effects for known duration events.

4 BAR Gossip Design

The BAR Gossip protocol describes a method for an al-
truistic broadcaster to stream a live event to a pool of
clients. Streaming a live event requires that BAR Gossip
guarantee two properties: i) non-Byzantine clients do not
deliver unauthentic stream packets (i.e., packets not gen-
erated by the broadcaster) and ii) every altruistic client
receives a large fraction of all stream packets in a timely
manner. As we later show, although we can provide the
first property in all situations, the second property is elu-
sive, and we can only provide it under good network con-
ditions and with a limited number of Byzantine clients.

Before the start time, each client generates a session
key pair consisting of a public and private key. Clients
sign up for the event by divulging both keys to the broad-
caster. The broadcaster then verifies the keys, closes the
sign up service, and posts a list that contains each client’s
identity, address, and public key. Clients sign protocol
messages using their private keys to provide authentica-
tion, integrity, and non-repudiation of message contents.

During the live event, the broadcaster divides the
stream into discrete fixed-size chunks that we call up-
dates. We structure BAR Gossip as a sequence of rounds
of duration T + δ where updates are sent by the broad-
caster and exchanged among clients. T is a time interval
sufficient to complete the per-round message exchanges

required by our protocol. Round zero begins when
the live stream starts. Each update expires deadline
rounds after it was sent by the broadcaster. When an up-
date expires, all clients that possess that update deliver it
to their media players. We consider an update delivered
by its deadline to be timely.

In each round r, the broadcaster multicasts
ups per round updates to subsets of clients.
Specifically, for each update, the broadcaster selects
nSeeds random clients to receive the update, signs the
update, and multicasts it to the selected clients. We re-
quire nSeeds to be large enough to guarantee that with
high probability at least one receiver is non-Byzantine.

A client is unlikely to receive all updates directly from
the broadcaster and relies on two protocols to garner
the remaining: Balanced Exchange and Optimistic Push.
The Balanced Exchange Protocol allows clients to trade
updates one-for-one. That is, if client S has ten up-
dates to offer client R and R has only five to offer in
return, then S and R trade five updates in each direction.
Each balanced exchange is incentive-compatible [33]—
rational clients are motivated to follow its steps faithfully
because no unilateral deviation from the specified proto-
col can increase a client’s expected utility.

Using the Balanced Exchange Protocol alone, how-
ever, is insufficient if a client falls behind in obtaining
updates (through bad luck or transient network failures)
because that client has little to offer in exchanges. Once
behind, a client may continue to fall farther behind. The
Optimistic Push Protocol provides a safety net. We call
this protocol optimistic because an initiator S is willing
to forward useful updates to R in the hope, rather than
the certainty, that R will return the favor. In this case, an
unequal number of updates may be exchanged—if R has
fallen behind, S helps R even if R cannot fully recipro-
cate.

Although Optimistic Push is not an incentive-
compatible protocol, we structure it to encourage ratio-
nal clients’ participation, and our experimental evidence
suggests that a rational client will often benefit from ac-
tive participation in Optimistic Push. In the next sub-
sections, we detail both protocols, prove Balanced Ex-
change’s incentive-compatibility and discuss rational de-
viations within Optimistic Push. For reference, Figure 1
illustrates both Balanced Exchange and Optimistic Push.

4.1 Balanced Exchange

Balanced Exchange provides an incentive-compatible
mechanism for rational clients to exchange updates. In
balanced exchanges, each party determines the largest
number of new updates it can exchange while keep-
ing the trade equal. A client concurrently executes two
tasks: i) initiating an exchange with another client and
ii) responding to Balanced Exchange requests from other

<BAL, S, R, seed, #(HS), Evict>S

<BAL_RESP, R, S, seed, HR, #MS>R

<DIVULGE, S, R, seed, HS, #MR>S

Hi
st

or
y

Ex
ch

an
ge

Up
da

te
Ex

ch
an

ge
Ke

y
Ex

ch
an

ge

seed = <round, BAL>S

check: #(HS) = hash(HS)

check: seed is valid
 R = PRNG(seed)

check: {u1...uk}KRS
(PUSH) check: ui not junk

Buf = Buf U {u1...uk}
HS = HS U {u1...uk}

Sender (S) Receiver (R)

k = min(| HS - HR |, | HR - HS |)

Balanced Exchange Protocol
(BAL)

<PUSH, S, R, seed, young, old, Evict>S

<PUSH_RESP, R, S, seed, want>R

UDP

TCP

seed = <round, PUSH>S

check: R = PRNG(seed)

check: {u'1...u'k}KSR
Buf = Buf U {u'1...u'k}
HR = HR U {u'1...u'k}

Sender (S) Receiver (R)

k = min(/ want /, pushsize)

Optimistic Push Protocol
(PUSH)

want = young - HR

<KEY_RQST, R, S, seed>R

<KEY_RQST, S, R, seed>S

<KEY_RESP, S, R, seed, KSR>S

<KEY_RESP, R, S, seed, KRS>R

<BRIEF, S, R, seed, (upd_list), {u1...uk}KSR
,

#MR>S

<BRIEF, R, S, seed, (upd_list), {u'1...u'k}KRS
,

#MS>R

KRS = #(, seed)K
priv
RKSR = #(, seed)K

priv
S

HS = History of S
#(M) = hash(M)
{M}K = encrypt(M) with key K
<M>A = sign(M) by A
#MR = hash(prev. msg. from R)

(BAL) check: upd_list valid

(S) (R)

Figure 1: Balanced Exchange and Optimistic Push Protocols for node A contacting node B. During the update exchange, the
upd list is sent in the Balanced Exchange protocol, but omitted for Optimistic Push.

clients. As Figure 1 details, an exchange consists of
four phases. In the first, partner selection, a client se-
lects another client with whom to trade. In the second,
history exchange, the two parties learn about the unex-
pired updates the other party holds and determines the
largest number k of updates that can be exchanged on a
one-for-one basis. In the third phase, update exchange,
each party deterministically generates an encryption key
based upon its private key and a per-exchange seed value.
Each party then encrypts its k most recent exchangeable
updates and copies the encrypted updates into a briefcase
that is sent to the other party. In the fourth phase, key ex-
change, the parties swap keys and decrypt the contents
of received briefcases. A client ends an exchange early
in the history exchange phase if that client realizes the
exchange will ultimately trade no updates. An exchange
completes if both clients execute all four phases or if one
of them ends the exchange early as allowed by the pro-
tocol. Clients communicate using TCP in the first three
phases, and switch to UDP in the fourth: we discuss the
reason for this choice in Section 4.2.4, where we consider
the incentives that motivate rational clients to exchange
keys.

Proofs of misbehavior (POMs) play an important role
in BAR Gossip by ensuring that clients who send inter-
nally inconsistent messages risk eviction. Each message
in our history and update exchanges includes a crypto-
graphic hash of the previous message sent in that bal-
anced exchange: if a client sends a briefcase whose con-
tents differ from the agreed upon updates of the history

exchange, then the history exchange messages plus the
briefcase constitutes a POM.

We introduce a trusted agent of the broadcaster to audit
possible POMs. In every round, this auditor polices the
system by ordering a constant fraction of random clients
to supply suspected POMs against other clients. Note
that the auditor can decrypt the contents of well-formed
briefcase messages because the broadcaster supplies the
auditor with every client’s private key. If a queried client
does not have a POM against a peer, then the client must
reply with a dummy message. We specify all audit re-
sponses to be of equal size, thereby removing a rational
client’s incentive to cover up POMs. The auditor treats
clients that ignore audit requests as it would clients that
have provably misbehaved. To reduce false positives be-
cause of transient network failures, the auditor allows
sufficient time for a client to respond to audit requests.
The auditor evicts a misbehaving client by sending a
signed eviction notice to the broadcaster, who embeds
all eviction notices in every update and stops sending up-
dates to evicted clients. We discuss in Section 4.4 how to
bound the overhead of eviction notices.

Our approach to making Balanced Exchange robust
to rational deviations follows two principles: restricted
choice and delayed gratification. Restricted choice pro-
vides Balanced Exchange’s safety property: if a ratio-
nal client decides to participate in an exchange, then that
client sends only messages as prescribed by the proto-
col. Delayed gratification provides Balanced Exchange’s
liveness property: if links do not drop messages, then

two non-Byzantine clients participating in an exchange
will complete that exchange. We delay gratification by
postponing a rational client’s receipt of useful updates
until the last phase, key exchange. In the next section,
we prove these properties hold under a reasonable set of
assumptions.

4.2 Balanced Exchange Properties

We discuss Balanced Exchange’s robustness against ra-
tional behavior within the framework of Nash equilib-
ria [28]. In a Nash equilibrium, each client has a strategy
and no client benefits from changing its strategy while
the other clients keep their strategies unchanged. A lim-
itation of Nash equilibria is that they do not consider ra-
tional clients that collude to increase collective utility.
We empirically explore the impact of colluding rational
clients in Section 5.4, but future work is needed to de-
sign gossip protocols with provable guarantees against
such collusions.

In our analysis, we assume rational clients only con-
sider strategies that maximize the utility of each ex-
change independent of concurrent or future exchanges.
Our experiments demonstrate that this greedy strategy
performs well in a streaming environment where there
is a limited time to obtain useful updates. It is possible
that more sophisticated strategies optimizing over multi-
ple exchanges are superior to this myopic strategy; an-
alyzing these strategies remains future work. The Bal-
anced Exchange Protocol guarantees the following prop-
erty:

Theorem 1. If two rational clients participating in a bal-
anced exchange with each other seek to maximize the
utility of that exchange independent of concurrent or fu-
ture exchanges, then following the Balanced Exchange
Protocol is a Nash equilibrium.

In the following sections, we show that each phase of a
balanced exchange is a Nash equilibrium, implying that
a balanced exchange is also a Nash equilibrium.

In each phase, we show that if a rational client assumes
it peers are altruistic, then following Balanced Exchange
is in that client’s best interest. Note that the assumption
that remaining clients are altruistic is an artifact of the
Nash equilibria proof technique and is not a requirement
of our protocol.

We simplify the presentation of the subsequent lem-
mas and proofs by treating any client that has issued
a POM against itself as evicted. We use the following
property regarding eviction in later proofs and include it
here for reference.

Lemma 1. A rational client S i) never issues a POM
against itself and ii) expects no benefit from communi-
cating with evicted clients.

Proof Sketch: i) Because rational clients are cautious by
nature, S does not issue a POM against itself for fear of
being evicted.

ii) Suppose for contradiction that there exists an
evicted client R for whom S expects positive benefit.
Since S assumes all other clients are following the proto-
col correctly and a client can only be evicted by deviating
from the protocol, R must be an altruistic client that de-
viates from the protocol, which is a contradiction. �

4.2.1 Partner Selection

Problem: What if a rational client selects more partners
per round than prescribed or biases its selections instead
of choosing partners uniformly at random?

Partner selection highlights a fundamental difference
between traditional gossip and gossip in the BAR set-
ting. In a traditional gossip protocol, each client period-
ically selects a partner using a pseudo-random number
generator (PRNG) and contacts that partner to request
an exchange. Each client also accepts every request it
receives. Random partner selection provides robustness
against crashed clients, link failures, and targeted attacks.
Yet, in a BAR model, the freedom to choose partners
allows rational clients to select multiple partners not at
random, thereby dissolving gossip’s guarantees. In BAR
Gossip, a client generates an unpredictable, determinis-
tic seed for the PRNG to select a random partner, who
can then verify and accept the selection using the same
PRNG or reject it otherwise.

In BAR Gossip, a client S selects a partner for round r
by seeding a PRNG with the signature 〈r, BAL〉S . S then
deterministically maps numbers generated by the PRNG
to client ids until it finds the first partner R for which
it does not have an eviction notice. This partner selec-
tion is deterministic, but unpredictable because no client
other than S can generate S′s signature for a seed value.
As Figure 1 illustrates, to initiate a gossip request to R,
S includes the seed and all eviction notices for clients
that S could have selected before R. R then determines
whether the seed is valid by verifying that i) the seed is
a valid signature, ii) r is the current round, iii) all in-
cluded eviction notices are valid, iv) the seeded PRNG
generates R as the first non-evicted client, and v) this is
the first time that S has presented this seed value to R.
If all five tests pass, then R accepts the gossip request
from S; otherwise, the seed is considered invalid and R
aborts the exchange. This selection algorithm provides
the following guarantee:

Lemma 2. Rational clients only send gossip requests to
and accept gossip requests from clients as prescribed by
valid seeds.

Proof Sketch: A rational client S may communicate with
(a) the uniquely defined target sanctioned by the pro-
tocol, (b) an evicted node generated by the PRNG be-
fore any non-evicted node, or (c) some other node. By
Lemma 1, (b) is not an option. Similarly, (c) is not an
option either because S will not be wrongly contacted by
an altruistic client nor would expect an altruistic client to
engage in an exchange not sanctioned by the protocol.
This leaves option (a) as the only feasible choice for a
rational node. �

We note that the argument against clients participat-
ing in unsanctioned exchanges is buttressed by the spe-
cific tangible concern that such exchanges would be done
without the recourse of sending a POM to the auditor
if either client in an exchange (quite rationally) were to
cheat its partner by sending a different briefcase than the
one agreed upon.

4.2.2 History Exchanges

Problem: What if a rational client lies about having (or
not having) an update?

After a client S selects a partner R, they exchange
histories—a history defines a set of update ids—using
three messages. As Figure 1 illustrates, S provides in the
first message a hash of its history HS and the PRNG seed
value (as discussed earlier) to R; the hash is a verifiable
promise to send a given history. After verifying that S
is entitled to communicate with R, R returns its current
history HR. In the final message, S divulges its actual
history, HS , to R who checks that the previously sent
hash is consistent with the divulged history. Note that
each client sends a history before learning its partner’s
history: S does so by sending a unique hash first and
R by sending its actual history while possessing only an
irreversible hash. This design promotes equal sharing,
as neither client can tailor a history to its partner’s. In
particular, this design makes it difficult for a Byzantine
client to maximize network traffic during the update ex-
change by sending a history that is the exact complement
of its partner’s.

Lemma 3. A rational client S does not divulge a history
that does not match the original hash. Similarly, S ter-
minates any exchange in which the divulged history does
not match the original hash.

Proof Sketch: If S were to sign messages indicating dif-
ferent histories for the same exchange, then these mes-
sages constitute a POM and lead to eviction. By Lemma
1, S, being rational, would not do so.

Lemma 1 also ensures that S will not communicate
with a client that divulges a history not matching the
original hash because such actions would result in a
POM. �

Because update ids are public knowledge, a rational
client S may still consider reporting a history H ′

S 6= HS

to increase the expected utility in an exchange. Applying
the principle of balanced cost [1], we define all histories
to be of fixed size, thereby removing any incentive S may
have to save a few bytes by sending smaller histories.
Therefore, the only way for S to obtain greater utility is
by increasing the number of useful updates S receives
in each exchange. We show that rational clients cannot
increase expected utility by lying about histories.

Lemma 4. Consider a rational client S and an unex-
pired update U /∈ HS . If S participates in an exchange,
then S reports a history H ′

S such that U /∈ H ′
S .

Proof Sketch: Assume S deviates from the protocol by
falsely claiming U ∈ H ′

S . S does so if and only if it
expects greater utility without risking eviction. In order
to obtain this greater utility by falsely claiming U ∈ H ′

s,
S must send a briefcase message that claims to contain
U . Since U /∈ HS , such a briefcase message is a POM.
So according to Lemma 1, S does not send it. �

Lemma 5. Consider a rational client S and an unex-
pired update U ∈ HS . If S participates in an exchange,
then S reports a history H ′

S such that U ∈ H ′
S .

Proof Sketch: Claiming U /∈ H ′
S decreases the expected

number of useful updates to be exchanged. Since a ra-
tional client deviates if and only if doing so increases
expected utility, S would not claim U /∈ H ′

S . �

4.2.3 Update Exchange

Problem: What if a rational client places fake or
garbage data in briefcase messages?

After the history exchange commits S and R to send-
ing the k most recent updates each possesses but the
other lacks, S and R send the corresponding updates con-
tained in signed briefcases. Each briefcase message con-
tains i) the seed identifying this exchange, ii) a plaintext
description of k update ids, and iii) the corresponding
k updates encrypted with the hash of both the sender’s
private key and the exchange’s seed value. The sender
signs the briefcase, promising that the encrypted contents
match the description. If either the received briefcase’s
seed value does not match the seed identifying this ex-
change or the briefcase’s update list does not match the k
expected updates, the receiver aborts the exchange with-
out sending its decryption key.

Lemma 6. If a rational client S sends a briefcase mes-
sage, then S includes the appropriate seed value and
plaintext description for that exchange.

Proof Sketch: By Lemma 1, S will not include an in-
appropriate plaintext description, because the resulting
briefcase message and history exchange messages con-
stitute a POM. S will also include the appropriate seed
value and signature because its partner R is unwilling to
accept a briefcase message for which S does not fear be-
ing audited. �

S and R exchange decryption keys in the next phase.
If a client receives a briefcase but not the corresponding
decryption key, then the client includes the briefcase as a
suspected POM for a future audit response.

Lemma 7. If a rational client S sends a briefcase mes-
sage, then the encrypted contents correspond to the brief-
case’s plaintext description.

Proof Sketch: A briefcase whose contents differ from
the plaintext description is a POM, which according to
Lemma 1, S would never send. �

4.2.4 Key Exchange

Problem: What if a rational node chooses not to send
the key or sends an invalid key?

A client who is satisfied with its partner’s briefcase
enters the key exchange phase. In this phase, the client
sends via UDP a key request containing the exchange
seed and responds to key requests (also via UDP) with a
signed response that contains i) the seed value and ii) the
decryption key corresponding to the briefcase sent in the
previous phase.

The deterministic fair exchange of decryption keys is
impossible to solve without a trusted third party [32]. We
show that in the setting of BAR Gossip, altruistic and ra-
tional clients can exchange keys fairly enough without a
trusted third party. The linchpin in providing this is to use
a credible threat. A client repeatedly sends key requests,
up to some constant number of times, until it obtains a
key response from its partner. Note that it is possible
to tune the size of key requests to offset any asymmetry
between download and upload capacity.

Lemma 8. If a rational client S responds to a key re-
quest, then S′s response contains the appropriate sym-
metric key.

Proof Sketch: A key response whose contained key does
not match the hash of the seed and sender’s private key
is a POM, which by Lemma 1, S does not send. �

Lemma 9. If a rational client S is satisfied with a client
R′s briefcase, then S responds to R′s key requests.

Proof Sketch: Assume S ignores R′s key requests. S
deviates because it expects greater utility from doing
so. However, since R is following the protocol, then R
quickly erodes S′s increase in utility by making S re-
ceive multiple key requests. �

Lemma 10. If a rational client S does not receive a key
response from a client R, S will resend its key request.

Proof Sketch: If R is following the protocol, S reasons
that the unreliability of UDP is responsible for the delay.
S therefore resends the key request because deviating by
keeping silent decreases S′s expected utility. �

4.2.5 Optimistic Push

The Optimistic Push Protocol provides a safety net for
clients who have fallen behind by allowing clients to ob-
tain missing updates without giving back a set of up-
dates of equivalent value. Optimistic pushes follow the
same structure as balanced exchanges. Partner selection
is nearly identical. In round r, client S uses 〈r, OPT〉S to
seed the PRNG and ultimately selects a partner R in the
same way as in the Balanced Exchange protocol.

The main difference between Balanced Exchange and
Optimistic Push lies in what the parties disclose to each
other during the history exchange and in how they de-
termine the content of their respective briefcases during
the update exchange. In particular, for the history ex-
change S forwards to R two lists: a young list, which
contains the identifiers of some of the most recent up-
dates S knows, and an old list, which contains the iden-
tifiers of updates that S is missing and that are about to
expire. If R has nothing to offer from the old list, R ter-
minates the exchange. Otherwise, R replies with a want
list, which contains the identifiers of c updates from the
young list that R is actually missing. S and R then ex-
change briefcases. S′s briefcase contains the c updates
from the want list with an appropriate plaintext descrip-
tion of the update ids. R′s briefcase also contains c up-
dates, but the plaintext description does not identify the
particular updates, only that c items are inside each of
which can be either from the old list or junk, and at least
one of those updates is from the old list. R places up to
c updates from S′s old list inside. If R has b ≤ c up-
dates from S′s old list, then it includes those b updates
and c − b junk updates. It is this flexibility to exchange
deterministically generated junk data for good data that
allows a receiver that has fallen behind to catch up.

We emphasize that junk updates are crafted to be larger
than real updates. If junk updates were smaller, the Op-
timistic Push Protocol would encourage rational clients
to deviate from the Balanced Exchange Protocol because
updates might be had for cheaper in Optimistic Push. If

junk updates were the same size as real updates, a ratio-
nal client may prefer to send junk to maintain the scarcity
of updates in that client’s possession.

We regulate Optimistic Push with two parameters,
push age and push size: the young list consists
only of updates that have been broadcast within the last
push age rounds and push size is an upper limit
on the number of updates that the Receiver can place
in its want list. Larger values of push size help lag-
ging clients catch up faster; however, they also increase
the likelihood that such clients will waste bandwidth by
sending junk.

The Optimistic Push Protocol follows nearly the same
steps as the Balanced Exchange Protocol. As a result,
the above lemmas (except Lemma 5) apply; a rational
client may disingenuously claim to not have an update
to reduce the expected number of received junk updates.
Although restricted choice still limits the messages that a
rational client will send in the Optimistic Push Protocol,
the extra flexibility makes faithful participation less cer-
tain. For example, rational clients may choose to deviate
from the Optimistic Push Protocol by simply not partic-
ipating, never initiating pushes but responding to them,
or sending junk updates in lieu of useful updates.

Although we cannot prove that a rational client would
faithfully follow the Optimistic Push Protocol, our exper-
imental evidence, in Section 5, suggests that a rational
client obtains greater utility from following the protocol
than from deviating.

4.3 Designing for Byzantine behavior

Byzantine behavior is a reality of distributed systems.
While enticing rational clients to behave correctly in the
presence of Byzantine behavior, we must also limit the
negative impact of such behavior on good users of the
system. In this paper we limit our attention to Byzantine
nodes that exploit the messages and behaviors defined by
our protocol.

In BAR Gossip, Byzantine nodes cannot subvert the
system’s safety properties. Because the broadcaster signs
each update, a Byzantine node cannot tamper with the
contents of any delivered update. With respect to the
liveness property stated in Section 4.1, Byzantine nodes
can impair progress by sending two types of messages:
non-protocol messages and protocol messages. We re-
gard generic DoS attacks based on non-protocol mes-
sages (e.g. bandwidth or connection flooding) as outside
the scope of this protocol.

BAR Gossip is designed to be robust against protocol-
based attacks on liveness even if initiated by a significant
number of Byzantine clients. First, BAR Gossip’s peer
selection protocol limits the number of nodes that one
can contact in a round—unlike traditional gossip, where
a Byzantine node could potentially contact an unlimited

number of nodes and involve them in useless exchanges.
Second, Byzantine clients can inflict limited damage in
the exchanges in which they participate. A Byzantine
client can remain silent during an exchange to slow the
spread of updates, but fortunately, gossip protocols are
naturally resilient to crash failures. One remaining con-
cern is that a Byzantine client could impact liveness by
luring its partners into expensive message exchanges that
do not eventually result in the dissemination of useful
updates. We explore this kind of attack in Section 5.5,
where we show that altruistic clients still deliver over
93% of updates in a timely manner even when 20% of
the clients are Byzantine.

4.4 Optimizations

To increase the practicality of BAR Gossip, we incorpo-
rate four optimizations. First, to prevent a client from
being overwhelmed by valid gossip requests in a round,
we use the standard heuristic that each client accepts
requests up to some per round maximum and ignores
further requests that round [4, 8]. Second, to prevent
spikes in used bandwidth, each client in a balanced ex-
change limits the number of updates that are actually
swapped, similar to the Round Retransmission Limit op-
timization of [4], by including this limit in history ex-
changes. Third, the broadcaster embeds each eviction
notice into a constant number of updates, thereby bound-
ing the overhead of each eviction. With high probabil-
ity, every client learns of an eviction within deadline
rounds. Fourth, clients elide eviction notices that are
older than deadline rounds from gossip requests.

5 Evaluation

In this section, we show that BAR Gossip is a ro-
bust p2p streaming protocol capable of providing sta-
ble and reliable throughput. We evaluate BAR Gossip
through experiments and simulations—we denote figures
derived from simulation data with “[sim].” Our evalua-
tion demonstrates that BAR Gossip:

1. Outperforms traditional gossip in the presence of ra-
tional clients

2. Prevents unilateral rational deviation
3. Is stable in the presence of significant collusion
4. Tolerates up to 20% of the clients being Byzantine

5.1 Methodology

Several parameters regulate the Balanced Exchange and
Optimistic Push Protocols. The broadcaster multicasts
ups per round updates per round and sends each up-
date to nSeeds random clients. Each update expires
deadline rounds after it was multicast. In optimistic
pushes, push age denotes the maximum age of updates
sent in the young list, while push size is the maxi-
mum length of the want list. The ratio of junk update

Protocol Parameter Simulation Prototype
ups per round(updates) 10 98-101
nSeeds(clients) 25 3
deadline(rounds) 10 10
push size(updates) 2 20
push age(updates) 3 3
junk cost 2 1.39

clients 250 45

Table 1: Parameter settings used in simulations and prototype
experiments.

size to real update size is junk cost> 1. Table 1 pro-
vides the values for these parameters for our simulation
and prototype experiments. We use lower parameter set-
tings for the simulation, so that our simulator would ter-
minate in a reasonable amount of time. Note that we
maintain approximately the same ratio of push size
to ups per round in both settings.

For our prototype evaluations, we implement BAR
Gossip in Python to stream an MPEG-4 video [34]. We
recorded a 200 Kbps UDP video stream at 30 frames per
second using Quicktime Broadcaster with one key frame
every 60 frames. Quicktime Broadcaster generates UDP
datagrams for the broadcast with an average size of 179
bytes (σ = 62), resulting in 116–131 datagrams per sec-
ond.

Our broadcaster, auditor, and clients are a mix of 45
600 MHz and 850 MHz Emulab machines sharing a 100
Mbps Ethernet subnet, configured with a 100ms end-
to-end latency and 1% probability of any packet be-
ing dropped. The broadcaster reads the recorded video
from disk, encapsulates on average three UDP datagrams
into an update, pads every update to the same size (640
bytes), and unicasts each update using UDP to a random
five clients. Clients then exchange updates as in Figure 1.
A client delivers an update by extracting the contained
datagrams and sending them to the local Quicktime client
that displays the video content. We use MD5 to compute
cryptographic hashes, RSA with full domain hashing [3]
to create unique signatures and the Mersenne Twister al-
gorithm [24] to generate pseudo-random numbers. Each
client used on average 299 Kbps of upload bandwidth.

In the following sections we measure the reliability
(expressed as the percentage of updates received by the
deadline), jitter (measured as the percentage of rounds
in which any update missed its deadline), and band-
width characteristics of BAR Gossip. Unless otherwise
noted, measurements in simulations are averaged over
1000 rounds and using the prototype are averaged over
180 rounds across 15 trials. Error bars are small in our
data and elided from graphs for clarity.

5.2 Traditional Gossip

We now compare BAR Gossip against a traditional push-
pull gossip protocol [8], where each client following the

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
ro

b
ab

il
it

y
 o

f
re

ce
iv

in
g
 a

n
 u

p
d
at

e

Proportion of rational nodes

Traditional gossip

BAR Gossip, expected

BAR Gossip, worst

Figure 2: [sim] Reliability experienced by an altruistic client
using traditional gossip versus BAR Gossip.

 0

 50

 100

 150

 200

 250

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
v
er

ag
e

u
p
lo

ad
 b

an
d
w

id
th

 (
K

b
p
s)

Proportion of rational nodes

Traditional gossip

BAR Gossip, expected

BAR Gossip, worst

Figure 3: [sim] Send bandwidth used by an altruistic client
using traditional gossip versus BAR Gossip.

protocol randomly selects one partner per round, ex-
changes histories, and then exchanges missing updates.
We demonstrate that this traditional protocol is ill-suited
for a BAR environment even when no client is Byzan-
tine and every rational client initiates only one exchange
per round. The intuition here is that a rational client
maximizes its utility by not sending updates. Altruistic
clients, therefore, do all the work of disseminating infor-
mation in the system.

Figures 2 and 3 plot the reliability seen and bandwidth
used, respectively, by an altruistic client as the proportion
of rational clients in the system increases. While BAR
Gossip’s lines remain relatively constant in both graphs,
traditional gossip’s degrades noticeably.

We include two lines for BAR Gossip because al-
though we can prove a rational client will faithfully par-
ticipate in balanced exchanges, we do not have a simi-
lar proof for optimistic pushes. The “BAR Gossip, ex-
pected” line plots the best reliability an altruistic client
can see using BAR Gossip, corresponding to the case
where rational clients faithfully participate in optimistic
pushes. We label the line “expected” because our empir-
ical data suggests rational clients obtain greatest utility
by actually following the Optimistic Push Protocol. The

Strategy Accepts OP Initiates OP Returns
Proactive/Data Yes Yes Data
Proactive/Junk Yes Yes Junk
Proactive/Decline No Yes None
Passive/Data Yes No Data
Passive/Junk Yes No Junk
Passive/Decline No No None

Table 2: Six strategies a rational client may follow with re-
gards to the Optimistic Push Protocol.

“BAR Gossip, worst” line represents the case where ra-
tional clients never initiate optimistic pushes and send as
much junk in briefcases as the protocol allows. Among
the strategies we consider (see Section 5.3), this second
strategy yields the worst reliability for an altruistic client.

Figure 2 shows that a client following BAR Gossip
receives almost all updates even when all other clients
are rational. In contrast, altruistic clients in traditional
gossip experience significantly lower reliability once the
number of rational clients exceeds 50%. When all clients
but one are rational, traditional gossip provides only the
reliability that the broadcaster can guarantee alone.

Figure 3 illustrates that in BAR Gossip an altruistic
client’s consumed bandwidth is nearly independent of
the proportion of rational clients. Traditional gossip, on
the other hand, requires altruistic clients to shoulder the
entire burden of spreading updates, with bandwidth spik-
ing sharply when rational clients account for 70% of the
system, before tumbling down to almost nothing. This
dramatic fall coincides with the sharp decline in relia-
bility in Figure 2. In these areas of the graphs, rational
clients receive the majority of multicast updates and de-
cline to spread them, reducing both reliability and band-
width devoted to gossiped data.

5.3 Unilateral Rational Deviation

We now examine deviant strategies that a rational client
might pursue. In our experiments, a rational client pur-
sues these strategies while the remaining clients continue
to follow the protocol as specified. Note that this is the
experimental analog to the standard Nash equilibrium
proof technique.

In this analysis, we make two simplifying assump-
tions. First, a rational client’s primary concern is to im-
prove the delivered stream’s quality by maximizing relia-
bility and minimizing jitter; minimizing consumed band-
width is a subordinate goal. Second, a rational client
missing one or more updates always expects positive util-
ity from participating in a balanced exchange. Under
this second assumption, rational clients faithfully exe-
cute the Balanced Exchange Protocol. We now consider
the choices available to a rational client with respect to
Optimistic Push.

Table 2 lists the five strategies we consider that a ra-

Strategy Avg. Jitter Std. Deviation
Proactive/Data 0.48% 1.16%
Proactive/Junk 0.32% 0.78%

Proactive/Decline 11.59% 6.22%
Passive/Data 18.10% 6.08%
Passive/Junk 14.76% 9.44%

Passive/Decline 47.94% 7.52%

Table 3: Rational client’s experienced jitter pursuing different
strategies.

 0.0001

 0.001

 0.01

 0.1

 1

 0 5 10 15 20

P
ro

b
ab

il
it

y
 o

f
m

is
si

n
g
 a

n
 u

p
d
at

e
Time in seconds

Proactive/Data

Proactive/Junk

Passive/Data and
Passive/Junk

Proactive/Decline

Passive/Decline

Figure 4: Probability of a rational client missing an update for
different strategies.

tional client may pursue to deviate from the Optimistic
Push Protocol. Proactive strategies dictate that a ratio-
nal client initiates optimistic pushes as specified by the
Optimistic Push Protocol. In contrast, passive strate-
gies specify to never initiate optimistic pushes. Data,
junk, and decline strategies prescribe that rational clients
responding to an optimistic push send useful updates
(when possible), send as much junk as allowed, or de-
cline the exchange, respectively. Note that following the
Optimistic Push Protocol corresponds to the the Proac-
tive/Data strategy.

Figure 4 shows for each of the six strategies the prob-
ability that the rational client will miss an update, where
lower lines correspond to better reliability. Table 3 pro-
vides the corresponding jitter for each strategy. When
taken together, Figure 4 and Table 3 imply that rational
clients will follow either proactive/data or proactive/junk
strategies. This is perhaps not surprising, given that
proactive strategies perform additional exchanges that
are likely to result in more deliverable updates than pas-
sive strategies.

The tie breaker between the top two strategies comes
from Figure 5, in which proactive/data uses an average of
300 Kbps of upload bandwidth compared against proac-
tive/junk’s 317 Kbps. This is not an accident: we have
designed BAR Gossip with junk cost> 1 so that ra-
tional clients prefer filling their briefcases with valuable
updates, rather than junk, whenever possible.

The conclusion we draw from this set of experiments

 0

 100

 200

 300

 400

 500

 600

 0 20 40 60 80 100 120 140 160 180

A
v
er

ag
e

u
p
lo

ad
 b

an
d
w

id
th

 (
K

b
p
s)

Time in seconds

Proactive/Junk

Proactive/Data

Figure 5: Rational client’s consumed bandwidth for different
strategies.

is that a rational client, when surrounded by other clients
that follow BAR Gossip, has no obvious incentive for
deviation—in fact, quite the contrary. While our exper-
iments clearly fall short of proving that BAR Gossip as
a whole (Balanced Exchange plus Optimistic Push) con-
stitutes a Nash equilibrium, it does suggest that a Nash
equilibrium is likely to be found at or near the strategy
that corresponds to BAR Gossip. For instance, while we
are unable to prove that there are no beneficial hybrid
strategies that, depending on the environment, switch be-
tween two or more of the the six strategies we have con-
sidered, it appears that the benefit of a proactive strat-
egy derives from consistently participating in more ex-
changes, making it unlikely that switching occasionally
to a passive strategy would provide a net gain. As for
switching among proactive strategies, it yields no change
in benefit while changing bandwidth costs, also provid-
ing little room for improvement.

Overall, we believe that the expected and worst case
lines in Figures 2 and 3 provide a reasonable bound on
the actual behavior of rational clients in BAR Gossip,
and that the likely behavior is near the expected line.

5.4 Rational Collusion

We now explore the effect of multiple rational clients co-
ordinating their actions to maximize their collective util-
ity. We perform a series of simulations to assess the im-
pact such a group may have on clients following the pro-
tocol. A complete analysis that defines optimal collusion
strategies is future work.

We assume that colluding and non-colluding rational
clients share a utility function. We also assume that col-
luding clients run a private protocol to disseminate up-
dates among themselves. This protocol may be an al-
ternative BAR protocol or it may be a non-BAR protocol
bolstered by a high level of trust among colluding clients.
We simulate a perfect collusion scenario in which ev-
ery colluding client immediately broadcasts new updates

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
ro

b
ab

il
it

y
 o

f
re

ce
iv

in
g
 a

n
 u

p
d
at

e

Proportion of colluding nodes

Figure 6: [sim] Effect of collusion on an altruistic client’s reli-
ability when colluding clients are following the passive/decline
strategy.

within the group at no cost. This source of updates re-
duces the incentive to fully participate in the BAR Gos-
sip protocol. In particular, colluding clients only run the
Balanced Exchange protocol.

Figure 6 shows how the size of a perfect collusion
group affects the quality of the stream seen by a client
following BAR Gossip. The intuition for the degraded
performance is i) a non-colluding client trades little when
participating in a balanced exchange with a colluding
client and ii) colluding clients do not participate in op-
timistic pushes. In perfect collusion groups, colluding
clients get most of their updates for free from other col-
luding clients, reducing their contributions to the rest of
the system.

We find that when the collusion group size reaches
50% of the participants, altruistic clients see an average
convergence of 93% for an update, resulting in an un-
usable stream. Although near-perfect collusion among
small groups seems plausible, it is unclear that collusion
on a large scale is a significant threat. As the colluding
group grows, so do the challenges of coordinating and
trusting clients. Ironically, as a colluding group grows,
it might require BAR Gossip to distribute updates inter-
nally as trust begins to break down among members.

5.5 Byzantine Deviation

Rational players behave according to a well-known util-
ity function and represent most of the clients in a p2p
system across multiple administrative domains. A few
clients, however, may possess unknown utility functions
or behave arbitrarily due to ill-will or malfunction, pos-
sibly affecting rational behavior [1]. Note that these
Byzantine clients may be disinterested in stream packets
and may prefer maximizing damage irrespective of con-
sumed bandwidth, allowing strategies like DoS attacks.

To assess BAR Gossip’s robustness to Byzantine par-
ticipation, we explore one malicious goal that a Byzan-

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3

P
ro

b
ab

il
it

y
 o

f
re

ce
iv

in
g
 a

n
 u

p
d
at

e

Proportion of Byzantine nodes

Proactive/Data and
Proactive/Junk

Passive/Data and Passive/Junk

Figure 7: Rational client’s reliability for different strategies.

tine client could possess. We assume that this goal is the
inverse of any rational player’s: to increase the cost and
decrease the benefit of all rational clients. We consider
Byzantine behavior within the limits of the BAR Gos-
sip protocol, which, as discussed in Section 4.3, limits
Byzantine clients to degrading performance only through
their own exchanges.

In the following experiments, a Byzantine client pro-
vides a history during a balanced exchange that is the
complement of its partner’s to induce the other client
to exchange the maximum number of updates. During
an optimistic exchange, a Byzantine client always an-
nounces a complete young list and empty old list if ini-
tiating, and requests the entire young list if receiving. A
Byzantine client never enters the update or key exchange
phases, so as not to generate a POM and risk eviction, but
still inducing its partner to devote significant bandwidth
to the exchange without receiving any benefit. The pres-
ence of Byzantine clients can be viewed as an increase
in the overhead associated with the environment as the
costs associated with Byzantine clients depends upon the
probability of entering an exchange with a Byzantine
client. To show worst case behavior under this attack,
non-Byzantine clients in our experiments ignore previ-
ous unproductive exchanges. We elide proactive/decline
and passive/decline strategies in which rational clients
decline to participate in optimistic pushes.

Figures 7 and 8 show the reliability seen and band-
width used, respectively, by a rational client pursuing
each strategy in the presence of different proportions of
Byzantine clients. The remaining non-Byzantine clients
are altruistic. The choice of strategies is similar to Sec-
tion 5.3 where we considered unilateral deviation with
no Byzantine clients. Passive and proactive strategies de-
liver unwatchable video streams when the proportion of
Byzantine clients reaches 10% and 30%, respectively.

We conclude that among the strategies available, a ra-
tional client should follow the protocol (proactive/data)
regardless of the presence of Byzantine clients. If all

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 0.05 0.1 0.15 0.2 0.25 0.3

A
v
er

ag
e

u
p
lo

ad
 b

an
d
w

id
th

 (
K

b
p
s)

Proportion of Byzantine nodes

Proactive/Data
Proactive/Junk

Passive/Data
Passive/Junk

Figure 8: Rational client’s consumed bandwidth for different
strategies.

non-Byzantine clients are following the protocol, with
a system comprised of 20% Byzantine clients, the band-
width costs remain relatively constant while the conver-
gence suffers by less than 7%.

6 Conclusion

We present the first peer-to-peer data streaming applica-
tion with predictable throughput and low latency in the
presence of correct, selfish, and malicious nodes. At the
core of our application is BAR Gossip, the first gossip
protocol defined under the BAR model. We leverage a
unique signature scheme to generate verifiable pseudo-
random numbers, allowing us to eliminate the opportu-
nity for rational nodes to hide behind nondeterminism
without sacrificing the benefits of the random communi-
cation pattern of gossip. Our experiments and simula-
tions show that our protocol provides good convergence
properties as long as no more than 20% of the nodes are
Byzantine or no more than 40% of the nodes collude.
In both cases, nodes following the protocol receive more
than 95% of the relevant updates in less than 10 seconds.

7 Acknowledgements

The authors would like to thank the anonymous review-
ers and Brad Chen for shepherding our paper. We would
also like to thank Jean-Phillipe Martin, Vitaly Shmatikov
and Peter Stone for helpful discussions about game the-
ory, signature schemes, and fair exchange.

This work was supported in part by NSF award CNS
0509338 and NSF CyberTrust award 0430510.

References

[1] A. S. Aiyer, L. Alvisi, A. Clement, M. Dahlin, J.-P. Martin, and
C. Porth. BAR Fault Tolerance for Cooperative Services. In Proc.
20th SOSP, Brighton, UK, Oct. 2005. ACM Press.

[2] G. Badishi, I. Keidar, and A. Sasson. Exposing and eliminating
vulnerabilities to denial of service attacks in secure gossip-based
multicast. In Proc. DSN-2004, page 223, Washington, DC, USA,
2004. IEEE Computer Society.

[3] M. Bellare and P. Rogaway. Random oracles are practical: a
paradigm for designing efficient protocols. In CCS ’93: Proceed-
ings of the 1st ACM conference on Computer and communica-
tions security, pages 62–73, New York, NY, USA, 1993. ACM
Press.

[4] K. P. Birman, M. Hayden, O. Oskasap, Z. Xiao, M. Budiu, and
Y. Minsky. Bimodal multicast. ACM Trans. Comput. Syst.,
17(2):41–88, May 1999.

[5] K. P. Birman, R. van Renesse, and W. Vogels. Spinglass: Secure
and scalable communications tools for mission-critical comput-
ing. In DARPA DISCEX-2001, 2001.

[6] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Row-
stron, and A. Singh. SplitStream: high-bandwidth multicast in
cooperative environments. In Proc. 19th SOSP, pages 298–313.
ACM Press, 2003.

[7] B. Cohen. Incentives build robustness in BitTorrent. In Proc. 2nd
IPTPS, 2003.

[8] A. Demers, D. Greene, C. Houser, W. Irish, J. Larson, S. Shenker,
H. Sturgis, D. Swinehart, and D. Terry. Epidemic algorithms for
replicated database maintenance. In Proc. 11th SOSP, Aug. 1987.

[9] A. K. Dixit and S. Skeath. Games of Strategy. W. W. Norton &
Company, 1999.

[10] J. R. Douceur. The Sybil attack. In Proc. 1st IPTPS, pages 251–
260. Springer-Verlag, 2002.

[11] P. Eugster, S. Handurukande, R. Guerraoui, A. Kermarrec, and
P. Kouznetsov. Lightweight probabilistic broadcast. In Proc.
DSN-2001, pages 443–452, July 2001.

[12] M. Feldman, C. Papadimitriou, J. Chuang, and I. Stoica. Free-
riding and whitewashing in peer-to-peer systems. In Proc. PINS,
pages 228–236. ACM Press, 2004.

[13] A. J. Ganesh, A.-M. Kermarrec, and L. Massouli. Peer-to-
peer membership management for gossip-based protocols. IEEE
Trans. Comput., 52(2):139–149, 2003.

[14] I. Gupta, K. Birman, and R. van Renesse. Fighting fire with
fire: using randomized gossip to combat stochastic scalability
limits. Journal of Quality and Reliability Engineering Interna-
tional, 18(3):165–184, 2002.

[15] A. Habib and J. Chuang. Incentive mechanism for peer-to-peer
media streaming. In 12th IEEE International Workshop on Qual-
ity of Service., 2004.

[16] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina. The Eigen-
trust algorithm for reputation management in P2P networks. In
WWW03, pages 640–651, New York, NY, USA, 2003. ACM
Press.

[17] S. Kremer, O. Markowitch, and J. Zhou. An intensive sur-
vey of non-repudiation protocols. Computer Communications,
25(17):1606–1621, Nov. 2002.

[18] D. Levin, R. Sherwood, and B. Bhattacharjee. Fair file swarming
with FOX. In Proc. 5th IPTPS, Feb 2006.

[19] M.-J. Lin and K. Marzullo. Directional gossip: Gossip in a wide
area network. In European Dependable Computing Conference,
pages 364–379, 1999.

[20] D. Malkhi, Y. Mansour, and M. K. Reiter. Diffusion without
false rumors: on propagating updates in a byzantine environment.
Theor. Comput. Sci., 299(1-3):289–306, 2003.

[21] D. Malkhi, E. Pavlov, and Y. Sella. Optimal unconditional infor-
mation diffusion. In Proc. 15th DISC, pages 63–77, London, UK,
2001. Springer-Verlag.

[22] D. Malkhi, M. Reiter, O. Rodeh, and Y. Sella. Efficient update

diffusion in Byzantine environments. In Proc. 20th SRDS, 2001.
[23] S. Marti and H. Garcia-Molina. Identity crisis: Anonymity vs.

reputation in p2p systems. page 134. IEEE Computer Society,
2003.

[24] M. Matsumoto and T. Nishimura. Mersenne twister: a 623-
dimensionally equidistributed uniform pseudo-random number
generator. ACM Trans. Model. Comput. Simul., 8(1):3–30, 1998.

[25] R. Melamed and I. Keidar. Araneola: A scalable reliable multi-
cast system for dynamic environments. In Proc. 3rd NCA, pages
5–14, Washington, DC, USA, 2004. IEEE Computer Society.

[26] Y. Minsky and F. Schneider. Private communication.
[27] A. Nandi, T.-W. J. Ngan, A. Singh, P. Druschel, and D. S. Wal-

lach. Scrivener: Providing incentives in cooperative content dis-
tribution systems. In Proc. 6th Middleware, Grenoble, France,
Nov. 2005.

[28] J. Nash. Non-cooperative games. The Annals of Mathematics,
54:286–295, Sept 1951.

[29] National Institute of Standards and Technology. FIPS PUB 186-
2: Digital Signature Standard (DSS). Jan. 2000.

[30] T.-W. Ngan, D. S. Wallach, and P. Druschel. Incentives-
compatible peer-to-peer multicast. In 2nd Workshop on Eco-
nomics of Peer-to-Peer Systems, 2004.

[31] D. C. Oppen and Y. K. Dalal. The clearinghouse: a decentralized
agent for locating named objects in a distributed environment.
ACM Trans. Inf. Syst., 1(3):230–253, 1983.

[32] H. Pagnia and F. C. Gärtner. On the impossibility of fair exchange
without a trusted third party. Technical Report TUD-BS-1999-02,
Darmstadt University of Technology, Department of Computer
Science, Darmstadt, Germany, Mar. 1999.

[33] D. C. Parkes. Iterative Combinatorial Auctions: Achieving Eco-
nomic and Computational Efficiency. PhD thesis, Department of
Computer and Information Science, University of Pennsylvania,
May 2001.

[34] A. Puri and A. Eleftheriadis. MPEG-4: an object-based multime-
dia coding standard supporting mobile applications. Mob. Netw.
Appl., 3(1):5–32, 1998.

[35] R. V. Renesse, Y. Minsky, and M. Hayden. A gossip-style failure
detection service. Technical report, Ithaca, NY, USA, 1998.

[36] P. Resnick, K. Kuwabara, R. Zeckhauser, and E. Friedman. Rep-
utation systems. Commun. ACM, 43(12):45–48, 2000.

[37] A. Rowstron and P. Druschel. Storage management and caching
in past, a large-scale, persistent peer-to-peer storage utility. In
Proc. 18th SOSP, pages 188–201. ACM Press, 2001.

[38] R. van Renesse, K. P. Birman, D. Dumitriu, and W. Vogels. Scal-
able management and data mining using Astrolabe. In Proc. 1st
IPTPS, pages 280–294, London, UK, 2002. Springer-Verlag.

[39] R. van Renesse, H. Johansen, and A. Allavena. Fireflies: Scalable
support for intrusion-tolerant overlay networks. In EuroSys ’06,
2006.

[40] W. Vogels, R. van Renesse, and K. Birman. The power of epi-
demics: robust communication for large-scale distributed sys-
tems. SIGCOMM Comput. Commun. Rev., 33(1):131–135, 2003.

[41] H. Yu, M. Kaminsky, P. B. Gibbons, and A. Flaxman. Sybil-
guard: Defending against sybil attacks via social networks. In
ACM SIGCOMM ’06, Sept.

[42] X. Zhang, J. Liu, B. Li, and T. P. Yum. DONet/CoolStreaming:
A data-driven overlay network for live media streaming. In IEEE
INFOCOM, Mar. 2005.

