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Abstract

This paper describes a general approach to constructing coop-
erative services that span multiple administrative domains. In
such environments, protocols must tolerate bothrational be-
haviorswhen nodes arbitrarily deviate from the protocol for
their local benefit andByzantine behaviorswhen a broken,
misconfigured, or malicious node arbitrarily deviates fromthe
protocol for any other reason. The paper examines this prob-
lem in the context of a cooperative backup system and makes
three contributions. First, it introduces the BAR (Byzantine,
Altruistic, Rational) model, which provides the foundation for
reasoning about the properties of this class of services. Sec-
ond, it presents a general three-tier architecture aimed atre-
ducing the complexity of building services developed in the
BAR model. Our realization of this architecture includes an
asynchronous replicated state machine that provides the nor-
mal safety and liveness guarantees as long as at most than
n−2

3
nodes are Byzantine; the rest of the nodes can be ratio-

nal. The paper’s third contribution is to describe an implemen-
tation of PIB, the first cooperative backup service to tolerate
both Byzantine users and an unbounded number of rational
users. We show that, under the BAR model, PIB provides
provable safety and liveness guarantees. We also show that
our approach is practical: our prototype of a BART state ma-
chine executes 20 requests per second and our PIB prototype
can back up a gigabyte of data in 20 minutes.

1 Introduction
This paper describes a general approach to constructing co-
operative services that span multiple administrative domains
(MADs). In a cooperative service, nodes collaborate to pro-
vide some service that benefits each node, but there is no cen-
tral authority that controls the actions of all nodes. Exam-
ples of such services include Internet routing [25, 61], wireless
mesh routing [37], file distribution [18], archival storage [41],
or cooperative backup [9, 20, 35]. As MAD distributed sys-
tems become more commonplace, developing a solid founda-
tion for constructing this class of services becomes increas-
ingly important.

There currently exists no satisfactory way to model MAD
services. In these systems, the classical dichotomy between

correct and faulty nodes becomes inadequate. Nodes in MAD
systems may depart from protocols for two distinct reasons.
First, as in traditional systems, nodes may either break—
through component failure, misconfiguration, or corruption—
or be genuinely malicious. Second, nodes may be selfish
and alter the protocol in order to increase their utility [3, 31].
Byzantine Fault Tolerance (BFT) [15, 34, 39] handles the first
class of deviations well. However, the Byzantine model classi-
fies all deviations as faults and requires a bound on the number
of faults in the system; these bounds are not tenable in MAD
systems where all nodes may exhibit selfish behavior. Models
that only account for selfish behavior [61] handle the second
class of deviations, but the presence of a single node whose be-
havior deviates from the expected model may cause arbitrary
disruptions.

Given the potential for nodes to develop arbitrarily subtle
tactics, it is not sufficient to verify experimentally that apro-
tocol tolerates a collection of attacks identified by the proto-
col’s creator. Instead, just as for authentication systems[13] or
Byzantine-tolerant protocols [34], it is necessary to design sys-
tems thatprovablymeet their goals, no matter what strategies
nodes may concoct within the scope of the adversary model.

To allow construction of such protocols, we define a
system model that captures the essential aspects of MADs.
The Byzantine-Altruistic-Rational (BAR) model accommo-
dates three classes of nodes.Rational [61] nodes participate
in the system to gain some net benefit and can depart from a
proposed program in order to increase their net benefit.Byzan-
tine [15, 34, 39] nodes can depart arbitrarily from a proposed
program whether it benefits them or not. Finally, BAR accom-
modates the presence ofaltruistic [48] nodes that execute a
proposed program even if the rational choice is to deviate. A
protocol is BAR Tolerant (BART) if it provably provides to its
non-Byzantine participants a set of desired safety and liveness
properties. In this paper, we focus on BART protocols that do
not depend on the existence of altruistic nodes in the system:
we assume that at mostn−2

3
of the nodes in the system are

Byzantine and that every non-Byzantine node is rational.
A key question is whether useful systems can be built un-

der the BAR model. To answer this question, we develop
a general three-tier architecture for building BART services.
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The bottom layer implements a small set of key BART ab-
stractions (e.g., state machine replication and terminating re-
liable broadcast) that simplify implementing and reasoning
about BART distributed services. The middle layer partitions
and assigns work to either single nodes or state machines. Fi-
nally, the top layer implements the application-specific aspects
of BART services (e.g., verifying that responses to requests
conform to application semantics.)

We use this architecture to construct PIB, a BART co-
operative backup service. PIB is targeted at environments–
such as a group of students in a dorm, home machines for re-
searchers in a group, or machines donated to non-profit orga-
nizations [36]—that, by supporting a notion of an identity that
is “expensive” to obtain, avoid the Sybil attack [22]. We do
not target open membership peer-to-peer systems.

We find that our architecture significantly simplifies and
improves the design of PIB. Compared to previous peer to peer
backup architectures [19, 20, 35], PIB has several advantages:
it is unique in tolerating both rational and Byzantine peers; it
provides deterministic retrieval guarantees; and it does not re-
quire peers to exchange storage symmetrically. Perhaps most
importantly, we find that using a layered architecture signifi-
cantly simplifies proving concrete safety and liveness proper-
ties.

We also show that our approach is practical: our prototype
of a BART state machine executes 20 requests per second and
our PIB prototype can back up a gigabyte of data to 21 nodes
in 20 minutes, so that the data can be recovered despite the
failure of 7 nodes.

In this paper we make three main contributions. First, we
formalize a model for reasoning about systems in the presence
of both Byzantine and rational behavior. Second, we introduce
a general architecture and identify a set of design principles
which, together, make it possible to build and reason about
BART systems. Third, we describe the implementation of PIB,
a cooperative backup system that provides provable safety and
liveness properties within the BAR model. A key component
of our system is a BART protocol for state machine replication
that relies on synchrony assumptions only for liveness.

The rest of this paper is organized as follows. In Sections
2 and3 we formally present the BAR model and our system
model. In Section4, we describe our overall 3-level architec-
ture, and the next three sections present our implementation of
each of the layers: our asynchronous BART Paxos protocol,
our techniques for work assignment, and our PIB application.
Section8 evaluates the prototype and Section9 discusses re-
lated work.

2 BAR Model
To model a MAD environment we must account for three im-
portant factors: (a) no node is guaranteed to follow the sug-
gested protocol, (b) the actions of most nodes are guided by

self interest [3, 31], and (c) some nodes may be fundamentally
broken [34, 15, 39].

The Byzantine Altruistic Rational (BAR) model addresses
these requirements by classifying nodes into three categories.

Altruistic nodes follow the suggested protocol exactly. Al-
truistic nodes may reflect the existence of Good Samaritans
and “seed nodes” in real systems. Intuitively, altruistic nodes
correspond tocorrect nodesin the fault-tolerance literature.

Rational nodes are self interested and seek to maximize
their benefit according to a specified utility function. Ratio-
nal nodes will deviate from the suggested protocol if and only
if doing so increases their net utility from participating in the
system. The utility function must account for the relevant costs
(e.g., computation cycles, storage, network bandwidth, over-
head associated with sending and receiving messages, power
consumption, or threat of financial sanctions [35]) and ben-
efits (e.g., access to remote storage [41, 9, 20, 35], network
capacity [37], or computational cycles [59]) to a node for par-
ticipating in a system.

Byzantine nodes may deviate arbitrarily from the sug-
gested protocol for any reason. In some cases a node deviates
because it is broken (e.g., misconfigured, compromised, mal-
functioning, or misprogrammed). In other cases, the node is
functioning properly from the point of view of an owner, but
the owner’s utility function significantly differs from theutil-
ity function specified for rational nodes. Such a utility function
may simply model costs in an unexpected manner or it may as-
sociate great value to inflicting harm on the system or its users
for personal satisfaction or commercial considerations [50].

Useful protocols specify guarantees to their participants.
Under BAR, the goal is to provide safety guarantees similar to
those from Byzantine fault tolerance to “all rational and altru-
istic nodes” (as opposed to “all correct nodes”). We identify
two classes of protocols that meet these goals.

• Incentive-Compatible Byzantine Fault Tolerant (IC-BFT)
protocols. A protocol is IC-BFT if it guarantees the ap-
propriate set of safety and liveness properties and it is in
the best interest of all rational nodes to follow the protocol
exactly.

• Byzantine Altruistic Rational Tolerant (BART) protocols:
A protocol is BART if it guarantees the appropriate set of
safety and liveness properties in the presence of rational de-
viations from the protocol.

An IC-BFT protocol thus must define the optimal strategy
for a rational node. In a BART protocol a rational node may
gain by deviating without violating the global safety guaran-
tees.

3 System Model
Although we seek to develop a general framework for con-
structing a range of cooperative services, our approach is
guided by a specific problem in a specific set of environments.
In particular, we are building a cooperative backup system
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for three user communities: 30 co-workers who cooperatively
back up their personal home machines, 500 students in a dor-
mitory who cooperatively back up their personal machines,
and 50 nonprofit organizations that receive free or low-cost
refurbished PCs [36].

We assume that a trusted authority controls which nodes
may enter the system, that each such member has a unique
identity corresponding to a cryptographic public key, and that
each member can determine whether a public key belongs to
a specific member. These are reasonable assumptions for our
target environments: a volunteer distributes a list of keysto
coworkers, a university’s electronic ID system maps identities
to dormitory residents, and the refurbisher installs the relevant
information in the non-profit scenario. The strong and limited
identity assumption facilitates three important factors.First,
it allows for a reasonable bound on the number of Byzantine
nodes [22]. Second, it provides rational nodes with an incen-
tive to consider the long-term consequences of their actions.
Third, it allows us to tie identities to real world entities.This
last point allows us to apply both internal sanctions (e.g. denial
of service, data deletion) and external sanctions (e.g. monetary
fines, suspension, social shunning) to nodes which misbehave.
Support for external sanctions increases the flexibility ofour
protocols, but is not required for deployment.

We have different timing assumptions for PIB and for the
underlying BART state machine replication. PIB is a syn-
chronous protocol and relies on synchrony to guarantee both
its liveness and safety properties—e.g. data trusted to PIB is
guaranteed to be retrievable only until the lease associated with
it expires.

The underlying BART state machine replication protocol
instead relies on synchrony only for liveness. The protocol
ensures safety despite message omission, message reordering,
and message alterations that do not subvert the cryptographic
assumptions associated with public key signatures [54] and se-
cure hashing [49]. We guarantee liveness during periods of
synchrony, as long as rational nodes consider the benefit of
participating in the protocol to outweigh the costs. In periods
of synchrony there is a known bound∆ on message delivery
time.

In a system where costs may outweigh benefits, to en-
sure that rational nodes continue to participate in the proto-
col it is necessary to bound the cost that nodes will pay. This
further requirement translates for us into a stronger liveness
guarantee—we assume that if nodesa andb are non-Byzantine
anda sendsb a request at timet, b’s response will reacha
by time t + max response. This strengthening allows us to
bound the state maintained by non-Byzantine in order to an-
swer late requests; further, it allows us to improve the avail-
ability of our state machine by reducing the size of the quorum
of responsive nodes required by our protocol (fromn−f−1 to
⌈(n + f + 1)/2⌉, wheref is the number of Byzantine nodes).
In order to complete our model, we must also make specific
assumptions on the rational and Byzantine nodes in the sys-

tem.

Rational nodes We make three technical assumptions about
rational nodes. First, we assume that rational nodes receive a
long-term benefit from participating in the protocol. Second,
we assume that rational nodes are pessimistic when comput-
ing the impact of Byzantine nodes may have on their utility.
Finally, we assume that Nash Equilibria are an appropriate so-
lution target.

Rational nodes will only participate in a cooperative sys-
tem if they receive a long term net benefit from participation.
In practice, this requires that the long-term benefit (e.g. re-
liable backup) of participation is sufficient to offset the costs
(e.g. storage, bandwidth, computation) of participating in the
system. We consequently model our protocols as infinite hori-
zon repeated games [7, 8].

Rational nodes want to reduce their work, if possible, with-
out renouncing the benefits that come from participating in the
protocol. We assume a fairly simple model, in which nodes’
utilities are affected by the work that must be done do but not
by the order in which work is performed, or who requests the
work. These two variants can be handled by hiding the rele-
vant factors (contents of the request or identity of the sender,
respectively) until after nodes commit to executing the request.
We assume that rational nodes deviate from the protocol only
if they receive a net benefit from doing so—in a tie, they con-
tinue to follow the protocol. This appears reasonable, given
that deviating from the protocol requires some effort. Further-
more, we assume that rational nodes abide by the promptness
principle: if they gain no benefit from delaying the sending of
a message, they send the message as soon as they have idle cy-
cles available. This assumption recognizes that idle cycles are
a perishable resource that may not be available at a later time.

Rational nodes are conservative when estimating the po-
tential impact of Byzantine nodes on their utility. In particular,
when computing the expected outcome of their actions, a ra-
tional node assumes that Byzantine nodes will act in the way
that minimizes its utility. Additionally, since rational nodes
are interested in continuing to benefit from the system, they
conservatively assume that the maximum number of Byzan-
tine nodes are in fact present in the system.

We focus on developing a protocol that achieves a Nash
equilibrium [43]) in which no rational node has a unilateral
incentive to deviate from the given protocol.1 We assume that
a rational node, if given a protocol that is a Nash equilibrium,
will follow it. [ 38].

We assume that rational nodes do not have the computa-
tional power to subvert the standard cryptographic assump-
tions associated with public key signatures [54] and secure

1Because our “given protocol” can be regarded as coming from anexternal
authority, Papadimitriou prefers to regard such an equilibrium as acorrelated
equilibrium [6], which is a generalization of Nash equilibrium. This view
would not change our analysis.
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hashing [49]. Additionally, we assume that rational nodes do
not collude.

Byzantine nodes. We assume a Byzantine fault model for
Byzantine nodes [15, 34, 39] and a strong adversary. Byzan-
tine nodes can exhibit arbitrary behavior. For example, they
can crash, lose data, alter data, and send incorrect protocol
messages. Furthermore, we assume an adversary who can
coordinate Byzantine nodes in arbitrary ways. However, we
assume that Byzantine nodes do not have the computational
power to subvert the standard cryptographic assumptions asso-
ciated with public key signatures [54] and secure hashing [49].
We assume that at mostn−2

3
of the nodes in the system are

Byzantine.

4 System Architecture
We propose a three-layer architecture to support the develop-
ment of BAR services. Thebasic primitivesbottom layer pro-
vides IC-BFT versions of key abstractions (e.g. Terminating
Reliable Broadcast (TRB) [34] and Replicated State Machine
(RSM) [15, 33, 58]) for constructing reliable distributed ser-
vices. Building on these abstractions, the middlework as-
signmentlayer implements mechanisms that address, in the
BAR model, a basic design issue of many distributed services:
how to partition work among the system’s components. Fi-
nally, the topapplication layer performs application-specific
actions, e.g. defining application-level requirements andguar-
antees, verifying that each component faithfully performsthe
work assigned to it, and taking appropriate action when one
does not.

In our backup application, we use the bottom two
application-independent layers to take a requestr intended for
nodei and bind it to either (a) a well-formed response tor,
signed byi (b) a provably ill-formed response (or set of re-
sponses) signed byi, or (c) a “no evidence” response, after
f + 1 nodes unilaterally decide that an application-specific
timeout has been exceeded forr. Given a response-request
binding, the application layer is responsible for (a) judging
whether a syntactically “well formed” response to a request
constitutes a “legal” response to the request based on applica-
tion semantics and (b) taking appropriate action in response to
any proof of misbehavior against a node.

Accountability lies at the core of this approach to con-
structing BAR services: if nodes are accountable for their be-
havior, then rational peers have an incentive to behave cor-
rectly. Strong identities and restricted membership make it
possible to enforce meaningful internal and external disincen-
tives. But that is only part of the solution. How should a sys-
tem detect and react to incorrect behavior?

One case occurs when a set of messages constitute a self-
contained cryptographic Proof Of Misbehavior (POM) by a
node. For example, if a node first signs a promise to store a
file with a particular cryptographic hash and then responds to a

request to read the file with a signed message that contains the
wrong data, the two messages amount to a signed confession
by the node that it is faulty and should be punished. This “ag-
gressively Byzantine” behavior is actually the simplest kind of
misbehavior to detect and punish, and a number of systems
have done so [16, 44].

Two other “passive-aggressive” cases are more difficult.
First, a node may decline to send a message that it should send.
The receiver is in a position to accuse the node of wrongdoing,
but it becomes a case of “he said/she said”—it is difficult for
any third party to decide whether an accusation of inaction is
legitimate or has been unjustly leveled by a self-interested or
faulty node. Second, a node may exploit nondeterminism to
provide incomplete information or make undesirable decisions
that interfere with operation but are difficult to conclusively
prove wrong. For example in an asynchronous replicated state
machine [15], a node normally transmits a signed copy of the
request, but for liveness it is permitted to unilaterally time out
and transmit a signed timeout message instead. In such a sys-
tem, it may be preferable for a self-interested node to send a
timeout rather than transmit the request. This choice wouldin-
hibit progress, but it would be hard for another node to prove
that a timeout message was inappropriate.

Our architecture addresses these passive-aggressive behav-
iors in two steps. First, at the lower, application-independent
layers, we explicitly design the protocols and the incentive
structure to ensure that it is not in the interest of a rational
node (i) to be silent when the protocol calls for it to send a
message, (ii) to send messages that are notwell-formed(e.g.,
a well formed response message would have to be signed and
include a hash of the corresponding request), or (iii) to substi-
tute an undesired message for a desired one when it is free to
make a nondeterministic choice. Conversely, the higher level
protocols deal with these behaviors by (i) relying on lower lev-
els to “force” applications to provide well-formed responses to
requests and (ii) using application-level state and semantics to
restrict what replies may legally be made to a request.

The purpose of this layered architecture is to simplify the
design and analysis of BAR services. Abstractions with prov-
able properties and layered architectures are powerful tools for
managing the complexity involved in building and reasoning
about fault-tolerant distributed services [10, 15, 39, 58]. We
believe it is crucial to leverage these tools as we consider the
added difficulties that a BAR model introduces – protocols that
attempt to handle these challenges with monolithic, end-to-
end solutions run the risk of being too prohibitively complex
to reason about. On the other hand, a layered IC-BFT solu-
tion introduces its own set of challenges, as it needs to ensure
a seamless binding between the incentive structure used in the
lower layers and the overall end-to-end incentive structure of
the application.

Our architecture essentially defines a contract between the
application layer and two two lower, application-independent
layers. The lower, application-independent layers provide im-
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portant abstractions to the upper one, but they require from
the application an incentive to drive nodes to participate in the
lower-level work: the overall benefit of being in the service
must exceed the cost for every rational node in the system.

5 Level 0: BART state machine
At the core of fault-tolerant distributed services are a fewfun-
damental primitives. For instance, state machine replication
is essential to most highly available replicated services [12],
and quorum-based replication is the basis for fault-tolerant dis-
tributed storage systems such as Phalanx [40]. The purpose
of the bottom layer of our architecture is to implement funda-
mental primitives so that they provide their familiar guarantees
within the BAR model. In this section, we present a BART
asynchronous replicated state machine (RSM). Our protocol
is based on PBFT [15], with modifications motivated by the
BAR model. These modifications are based on three high-level
ideas.

The benefit principle states that nodes must gain long
term utility for participating in the system. This long-term in-
centive is necessary to motivate self-interested nodes to partic-
ipate faithfully. Our RSM rotates the leadership role to guar-
antee that every node has the opportunity to submit proposals
to the system.

Predictable communication patternsencourage nodes to
participate at every step of the protocol instead of just at the
steps that bring them a direct benefit. Our protocol requires
nodes to have participated in all past steps in order for themto
be able to submit a proposal.

Limiting non-determinism ensures that the predictable
communication patterns contain useful work. Non-
determinism offers nodes the choice of multiple acceptable
behaviors, each of which are “correct” in different circum-
stances. Given a specific state of the protocol, one of the
behaviors is preferred by the protocol, and nodes must be
given proper incentive to choose the preferred behavior. In
our implementation of IC-BFT primitives we carefully limit
the choices available to a node. For example, we base our
state machine on TRB rather than consensus, because the for-
mer protocol, by allowing fewer valid outcomes, gives rational
nodes fewer options to choose from when deciding which be-
havior maximizes their benefit.

When non-determinism is unavoidable, two low level tech-
niques are often useful.Cost balancingis employed when a
node has a choice between multiple actions. The costs of the
actions involved are engineered so that the protocol-preferred
choice is no more expensive than any other potentially legal
choice. For instance, instead of sending a list of nodes that
are up-to-date, an IC-BFT protocol would sendn bits with
an entries set to “1” for up-to-date nodes so that the sender
saves no network bandwidth by sending incomplete informa-
tion. Asynchrony is particularly challenging due to its inher-
ent non-determinism; unfortunately, timeouts are required to

ensure progress.Encouraging timelinessallows nodes to uni-
laterally judge whether other nodes’ responses are “on time”
and to inflict sanctions for untimely messages. Our techniques
ensure that (a) nodes have incentives neither to mete out un-
warranted sanctions nor to forbear deserved punishing and that
(b) the costs imposed by Byzantine nodes through spurious
sanctions are limited.

5.1 Protocol description

Instance 1 of TRB Instance 2

Sender
agree write show−quorum

Figure 1: TRB

Our BAR replicated state machine protocol is based on
PBFT [15]. When a node wants the state machine to execute a
request, the node proposes the request in a TRB instance. In-
stances proceed in sequence, with instancei deciding theith
operation to be executed by the state machine. We differ from
PBFT protocol in several key points.
1. We use TRB instead of consensus. This choice is a specific

application of the principle oflimiting non-determinism: as
opposed to consensus, in TRB only thesendermay propose
a value during a particular instance. We initially attempted
to use a consensus protocol as the engine of our state ma-
chine, but found the restriction on who can propose in each
instance necessary in accounting for the behavior of rational
nodes. Without this restriction, a new leader elected to ter-
minate instancei after sufficiently many nodes have timed
out on the sender may prevent progress by selfishly trying
to make the state machine adopt its value, rather than the
sender’s (see AppendixC.4).

2. We enforce a round-robin leader election policy. This rota-
tion gives every node a fair chance to propose commands to
the RSM, and enforces a predictable exchange of the lead-
ership position.

3. We require at least3f + 2 nodes (rather than3f + 1) to
toleratef Byzantine nodes. The reason is subtle and, once
again, has to do with the need to account for rational nodes;
in particular, in instancei liveness can be compromised if
the senders is slow, and, after a new leader has been elected
to completei, s is able to influence whether the new elected
leader proposess’s original value, or a default value (see
AppendixC.4).

By using an extra node, we can prevent the slow sender from
participating in the steps required to complete the instance
without jeopardizing safety or liveness.
Our TRB protocol provides four guarantees in an even-

tually synchronous BAR environment.Termination: every
non-Byzantine process eventually delivers exactly one mes-
sage.Agreement: if a non-Byzantine process delivers a mes-
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sagem, then all non-Byzantine processes eventually deliver
m. Integrity: if a non-Byzantine process deliversm, then the
sender sentm. Non-triviality: In periods of synchrony where
the benefit principle holds, if the sender is non-Byzantine and
sends a messagem, then the sender eventually deliversm.

The protocol provides safety under an asynchronous
model, but is live only during periods of synchrony [28]. We
assume that, during these periods, there exists a known bound
∆ on message delivery time. Note, however, that practical
implementations of our protocol are likely to further require
a known but large (e.g., 1-week) bound on the time between
when a request is made and a response is returned by a ra-
tional node. We use this stronger assumption to bound state,
we discuss this issue in Section5.1.5. Relaxing this tim-
ing assumption requires the inclusion of incentive-compatible
garbage collection and checkpoint recovery; this does not ap-
pear to introduce additional fundamental difficulties and is the
focus of ongoing work.

Figure1 illustrates an execution of TRB occurring in a pe-
riod of synchrony when no failures are present. Each TRB
instanceis organized in a series ofturns. In each turn, some
process is designated theleader. The pre-specifiedsenderfor
instancei is the first leader for instancei. In the first turn,
thesenderattempts a three-phase-commit on a proposed value
(the phases are labeled agree, write, and show-quorum). If the
other nodes receive the messages on time then they accept the
value and the broadcast is successful. If, on the other hand,
nodes decide the message is late, they send a “set-turn” mes-
sage to indicate that a new turn should start. Nodes other than
the sender are selected round-robin for the leader role.

First, the newly selected leader performs a read: it queries
all nodes for their current observed value and waits for a quo-
rum of responses. If any node reports seeing thesender’s pro-
posal, then the new leader attempts to broadcast that value.
Otherwise, the new leader broadcasts⊥, indicating that the
senderis suspected of having failed. Once a value is deliv-
ered, thei + 1th instance starts with the nextsenderin the
sequence.

AppendixB includes detailed pseudo-code for the algo-
rithm. Due to space constraints, we limit our discussion to
the key differences between our protocol and traditional BFT
implementations.

5.1.1 Message queue

Message queues are the low-level mechanism we use to en-
force predictable communication patterns. All communica-
tion takes place through the message queue infrastructure.

Message queues implement a simple “you don’t talk to me,
I won’t talk to you” policy: if nodex next expects a message
from nodey, x will ignore any communication from and delay
any communication toy until it receives the expected message.
The message queue used byx to regulate its communication
with y contains entries for the messages thatx intends to send
to y, interleaved with “bubbles” corresponding to messages

thatx expects fromy. A bubble must be filled with an appro-
priate message fromy beforex can proceed to send the mes-
sages in the queue beyond the bubble. To ensure thaty sends
the appropriate message, and not just any message, a predi-
cate is associated with each bubble: a message fromy is al-
lowed to fill some bubble only if it satisfies the corresponding
predicate—otherwise, it is discarded. The message queue ex-
ports three operations :send andexpect(predicate) insert
in the queue, respectively, a message and a bubble;deliver
removes the bubble closest to the head of the queue and letsx
read the corresponding message.

Message queues, combined with quorums of sizen − f −
1, provide the incentive for rational nodes to send messages
expected in the protocol. If a given rational noder chooses
not to send a message to some nodes that follows the protocol,
thens will ignore r in the future. In the worst case forr, the
f Byzantine nodes in the system will not communicate with
r, preventing it from gathering a quorum during its next turn
assender. This will preventr from gathering the quorum of
responses required in a later step of the protocol, stoppingr
from making progress and effectively excluding it from the
state machine.

5.1.2 Rotating leadership

Traditional replicated state machines require the client to send
a command to a sender, who proposes the command to the
state machine. The client is missing from Figure1 because we
rotate the role ofsenderamong the nodes in the system. This
provides nodes with a periodic opportunity to propose values
to the state machine, partially satisfying thebenefit principle.
Due to the self-interested nature of rational nodes, a node can
only be certain that a specific request is proposed to the state
machine if that nodes proposes the request itself.

5.1.3 Balanced messages

To apply the principle ofcost balancingto the consensus pro-
tocol, we make sure that all messages have the same cost. This
influences for example the behavior in the first phase of the
protocol (“giveOldValue”), in which a newly elected leader
asks nodes for the latest command they have seen. We require
the answer to always be of the length of the largest possible
command—even if in fact the node has received no command
yet—so that lying would not allow a node to send a shorter
message.

5.1.4 Penance

In the Byzantine model, correct nodes send all relevant proto-
col messages without fail. In the BAR model, rational nodes
may skip messages that decrease their net utility. When com-
munication patterns are predictable and a rational node knows
that a specific message will be sent eventually, that message
is sent immediately by the promptness principle. Thecost
balancingmechanism described in Section5.1.3provides in-
centives to send the protocol preferred message when a node

6



must choose between two or more possibilities. Encouraging
good behavior among rational nodes is more challenging when
waiting may allow a node to avoid sending a specific mes-
sage entirely. In our protocol this is especially relevant for the
”set-turn” message required as part of the new leader election
phase.

We implement a “penance” mechanism to encourage time-
liness in the state machine. Individual nodes maintain anun-
timelyvector that tracks their perception of other nodes time-
liness: a node is considered untimely if the node sends ”set-
turn” messages earlier or later than they are expected by an-
other node. Values proposed by asenderinclude thesender’s
untimely vector. When a value is delivered, all nodes ex-
cept thesenderexpect a penance message from each untimely
node. The untimely nodes must send the penance message to
all non-sendernodes in order to continue using the system.
There are three important considerations to the penance mes-
sage: (1) the size and form of the penance message must be
chosen so that the expected benefit of sending late is less than
the expected penance cost, (2) thesenderis excluded from re-
ceiving penance messages to prevent thesenderfrom incurring
additional costs through truthfully reporting a penance, and (3)
the spurious work introduced by Byzantine nodes through the
penance mechanism is bounded byfn penance messages per
node.

5.1.5 Timeouts and garbage collection

In specifying apredictable communication pattern, we require
all nodes to send all protocol messages. In particular, if nodea
remains silent for an extended period of time it can force non-
Byzantine nodeb to cache an arbitrarily large set of messages
reflecting the history of the protocol. These messages must be
cached so the two nodes can fulfill their message queue obliga-
tions oncea becomes active again. In the absence of incentive-
compatible checkpointing (to allow garbage collection [15]),
the cost of participating in the system can grow without bound.
Rational nodes will withdraw from the system when the costs
become too large, eliminating liveness even in periods of syn-
chrony.

We bound this state in two ways. First, we introduce an
additional weak synchrony assumption: non-Byzantine nodes
are guaranteed to respond to a request bymax response (e.g.
1 week) after the request is issued. Our state machine lever-
ages this assumption to bound state through the per node main-
tenance of abadlist. Nodea considers nodeb to bebad if b has
not sent an expected message for longer thanmax response.
Nodes publish theirbadlists when submitting proposals to the
state machine; any node listed inf + 1 lists is considered to
be Byzantine. Nodes which consider another node Byzan-
tine are able to unilaterally discard all messages correspond-
ing to the presumed Byzantine node. In addition to helping
to bound state, this mechanism enables the use of quorums of
size⌈n+f

2
⌉ rather thann−f −1, improving availability of the

state machine.

In addition to bounding the time that a node is required to
store intermediate data to a coarse grained time out, we also
limit the amount of data any node can insert in each timeout
interval. The middle and upper layers implement a request-
response communication pattern and it is appropriate to assign
to a requestor the overheads imposed by both a request and
the resulting response. We consequently address the details of
limiting the rate of requests to the state machine as part of our
work allocation primitive in Section6.4.

5.2 Proving IC-BFT
To prove that a protocol is IC-BFT for a given model of ratio-
nal nodes’ utility and beliefs, one must first prove that the pro-
tocol provides the desired safety and liveness properties under
the assumption that all non-Byzantine nodes follow the proto-
col. Second, one must prove that it is in the best interest of all
rational nodes to follow the protocol.

Our rationality model is described in Section3. We assume
that rational nodes will follow the protocol if they observethat
it is a Nash equilibrium, so we must show that no node has a
unilateral incentive to deviate. We show this by enumerating
all possible deviations.

The simplest deviations are those that do not modify the
messages that a node sends. In our state machine protocol,
no such deviation increases the utility. We must then examine
every message that the node sends and show that there is no
incentive to either (i) not send the message, (ii) send the mes-
sage with different contents, or (iii) send the message earlier
or later than required. Also, we must show that nodes have no
incentive to (iv) send any additional message.

Using these techniques, we arrive at the following (Ap-
pendixB).

Theorem 1. The TRB protocol satisfies Termination, Agree-
ment, Integrity and Non-Triviality.

Theorem 2. No node has a unilateral incentive to deviate from
the protocol. (Incentive compatibility)

To illustrate the methodology, we show some of the lem-
mas involved in verifying the incentive-compatibility of the
sending of the “set-turn” timeout message. The incentive for
sending the message at all and not sending it twice are dis-
cussed in more general lemmas, not shown here.

Lemma 1. No rational noder benefits from delaying sending
the “set-turn” message.

Lemma 2. No rational noder benefits from sending the “set-
turn” message early.

The proof sketch for the first lemma relies on the penance
protocol described in the previous section. The second lemma
deals with early time-outs. By construction,⊥ is at least as
large as the sender’s command. Nodes other than the sender
have no stake in which command is decided because they can-
not prevent the sender’s command from executing but at most
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delay it. The sender itself could have an interest in manipu-
lating the outcome by sending “set-turn” early or late, which
is why in our protocol the sender is not allowed to send these
messages.

Lemma 3. No rational noder benefits from sending a mal-
formed “set-turn” message.

The set-turn message contains no information other than
the turn number, so a malformed message reduces to either a
nonsensical message, a resend or an early send.

6 Level 1: Partitioning Work

State machine replication requires each replica to processeach
command and maintain a full copy of the state required to do
so. This can be impractical for many applications in coopera-
tive services with 10’s, 100’s or more nodes. For example, a
cooperative backup application that requires 100 GB of actual
storage in order to provide the abstraction of 1 GB of stable
storage is unacceptable. The purpose of the middle layer of
our architecture is to support flexible and efficient strategies
for partitioning work among the nodes in the system.

In particular, we support two general approaches. The first
is to organize the nodes into multiple state machines [4, 53].
Intuitively, each replicated state machine can be thought of as
providing the abstraction of a single, correct node. In the BAR
model, this translates into saying that, if the incentives are in
place for individual rational nodes to follow the assigned pro-
tocol, the replicated state machine provides the abstraction of
a known, altruistic node. The work can then be partitioned
among the replicated state machines, which can also be re-
lied upon to route the work where appropriate. Using this ap-
proach, the replication of work and state grows with the size
of the individual replicated state machines, rather than the size
of the system.

A second, more aggressive approach is to assign work to
specific nodes in the system. Of course, unlike replicated state
machines, individual nodes may be faulty, but some classes of
applications can cope with such failures. For example, in the
context of backup, arithmetic coding [55] can be used to store
different data on different nodes and thus tolerate faults while
reducing the storage overhead.

Our middle layer supports a combination of these two ap-
proaches: as shown in Figure2, we let an individual node as-
sign work to the state machine to which it belongs (e.g.,a to
A); state machines can assign work to each other, and correctly
route these work assignments (e.g.,A to B to C); and finally,
a state machine can assign work to any one of its nodes (e.g.,
B to b).

The implementation of work partitioning layer leverages
three principles:

• State machines can function as unimpeachable witnesses of
the interactions that lead to work assignments.

a in A
b in B

A B

C

Figure 2: Partitioning work in the system

• The state machine “testimony”, in the form of a Proof of
Misbehavior (POM) can be used by higher levels of the pro-
tocol to hold rational nodes accountable for their (in)actions.
In addition, the state machine can “take justice in its own
hands” by refusing service to non-responsive nodes.

• Credible threats [21] can be used to reduce the load on the
state machine. The credible threat of asking the state ma-
chine to witness a work assignment is enough, in the com-
mon case, to motivate rational nodes to honor work assigned
directly to them by other nodes.

6.1 Assigning work to nodes
When nodes wants to assign workw to nodea, it submits to
the state machine the commandassign(request), whererequest
is a tuple of the form(w, a). The state machine replies with an
ack forrequest. Whens receives the ack, it inserts anexpect
bubble in its message queues to each of the nodes in the state
machine. The corresponding predicates indicate thats expects
from each nodei a well-formed response:i’s response should
either include a message signed bya with the result of execut-
ing w; or it should indicate thati received no evidence thata
executedw. To avoid being shunned bys, each non-Byzantine
nodei has an incentive to send a well-formed response tos;
furthermore, since by design the cost of sending the “no evi-
dence” response is higher than the expected cost of forwarding
a message froma, i has an incentive to try to respond with the
latter. Hence, each non Byzantinei inserts in turn anexpect
bubble in its message queue toa, with a predicate that requires
a to send it a well-formed message that includes the result of
executingw.

Nodes files to the application layer a POM againsta if it
either receivesf + 1 “no evidence” responses, or it receives
two or more different responses signed bya. In our extended
technical report [1] we prove the following lemma:

Lemma 4. If the state machine executes the command
assign(w, a) anda is rational, thena will executew.

6.2 Assigning work to state machines
The primary difficulty in providing communication between
state machines is in motivating state machineB to process re-
quests which originated from another state machineA. We

8



address this difficulty by overlapping membership of state ma-
chines. Figure3 illustrates the architecture for a simple di-
rected ring topology. Requests assigned to an adjoining state
machineB are conceptually assigned to thef +1 nodes in the
intersection. This intersection is guaranteed to contain at least
1 non-Byzantine node and all rational nodes in the intersec-
tion assume that the otherf nodes are faulty and consequently
submit the request toB at their next opportunity.

In our extended technical report [1] we prove the following
lemma concerning state machinesA andB which overlap in
f + 1 nodes:

Lemma 5. If A executes the commandassign(w,B), thenB
will executew.

A

B C

D

EF

Figure 3: Linking state machines

In a system composed of state machines linked as we de-
scribe, the safety of the whole system relies on the assumption
that there are no more thanf Byzantine faults in any replicated
state machines. As the number of state machines increases, it
may be wise to be more conservative in one’s choice off .

6.3 Optimizing work assignment
In a backup service like PIB, requirings to submit large
backup requests through the state machine could incur large
overhead when the system is under heavy load. To enable more
efficient work assignment in these circumstances, we leverage
the game-theoretic notion of credible threats [21]. In the game
of chicken [2], a credible threat against rational players would
be to visibly rip off the steering wheel and throw it out the
window. In our case, a credible threat takes a somewhat less
spectacular form.

In PIB, a nodes issues a credible threat by submitting
to the state machine the commandvow(a, t). Through it s
promises, by timet (i) to ask some work ofa and (ii) to sub-
mit to the state machine the response it receives froma. When
a state machine replicai executesvow(a, t), it inserts in its
message queue tos anexpect bubble. This makes the threat
credible, as long ast is sufficiently far in the future, becausea
knows thats would be shunned by all replicas after timet if it
were to break its vow. To fill the bubble,s either sends a re-
ceipt for the work performed bya, or a more expensive default
message mandated by the protocol.

Intuitively, the presence of a credible threat gives an in-
centive to rationala to respond directly to the work assign-
mentw that it receives froms without waiting fors to sub-

mit assign(w, a) through the state machine—by Lemma4, a
would in that case have to performw anyway, and would fur-
thermore have to send more messages, incurring higher cost.
Counting ona’s reasoning,s, having submitted a credible
threat, would in turn have an incentive to contacta directly
before issuingassign.

For technical reasons [1], the incentive compatibility of
this approach is only guaranteed whena is the concurrent tar-
get off + 1 opencredible threats, i.e. credible threats where
a’s action may determine whether the threat will come to pass.

6.4 Regulating work volume
As discussed in Section5.1.5we must regulate the volume of
work submitted to the state machine. Since our fundamental
communication pattern is that of request-response, it makes
sense to attribute the work imposed by both the request and its
subsequent response to the requester. We regulate the volume
of work submitted to the state machine by granting each node
a consumption quota that is reset after an appropriate time pe-
riod, for our application this time period is on the order of one
week. The size of every request the node issues through the
state machine as well as the size of every resulting response
counts against the node’s quota. If the node exceeds its con-
sumption quota, then the state machine treats the node as faulty
as discussed in Section5.1.5. It is the responsibility of the ap-
plication layer to set the consumption quota to a reasonable
value.

7 Level 2: The Application
In our architecture, BAR applications must discharge each of
the following four responsibilities in order to take advantage
of lower-level abstractions.

1. Provide rational nodes with a long-term benefit for partici-
pating in the system.

2. Assign work to nodes in a fault tolerant manner.
3. Determine if the contents of a request or response consti-

tute a Proof of Misbehavior (POM) under the application
semantics.

4. Sanction nodes that have provably misbehaved.

It is much simpler to design an application under these require-
ments than under the lower-level principles discussed in Sec-
tions 5 and6. Because lower-level primitives handle reliable
work assignment, the application focuses on defining the le-
gal requests and responses over the system’s data. As a result,
the reader will notice that the following discussion is consid-
erably simpler than that in earlier sections: it focuses on struc-
turing the messages so that incorrect responses are also proofs
of misbehavior and not on encouraging nodes to respond or on
balancing costs.

To illustrate how an application addresses these issues, this
section examines PIB, a MAD cooperative backup system.
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7.1 PIB overview
PIB is a cooperative backup system in which nodes commit to
contributing an amount of storage to the system (and to partic-
ipate in the system’s state machine) in exchange for an equal
amount of space on other nodes. In normal operation, PIB
consists of three fundamental operations: store, retrieve, and
audit. When a group of files are marked for storage, the owner
splits them into smaller pieces (chunks) which are sent to dif-
ferent nodes (storers) for storage on the system. The storers
respond with signed receipts. The owner keeps the receipts
and the storers keep the StoreInfos (part of the store request) as
their “record of participation” in the system. When the owner
needs to retrieve a file, it sends a retrieve request to each node
holding a relevant chunk. Any node that refuses to return the
chunk without valid reason (e.g. it holds a more recent Stor-
eInfo that overwrote the chunk) is guilty of misbehaving and
can be punished. Nodes periodically audit each other’s records
in order to verify that nodes are not using more space in the
system than their quota allows. PIB relies on the work alloca-
tion primitive described in Section6 to reliably distribute work
in the system. The work allocation rate limit is set to prevent
a node from triggering requests and responses totaling more
than double the node’s storage quota per coarse timeout inter-
val; violation of this limit may lead to the formation of a POM
against the offending node.

7.1.1 Arithmetic coding

We employ arithmetic coding for (a) fault tolerance and (b)
reducing the cost of running the PIB system. Nodes erasure
code [55] files with anx − f out of x encoding and store the
resulting chunks on different peers in order to toleratef faults
with less storage than required by full replication. For exam-
ple, in a 10-node system withf = 2, a node must contribute
1.3GB of local storage to back up 1GB of data. Keeping this
ratio reasonable is crucial to motivate self-interested node to
participate faithfully.

7.1.2 Request-response pattern

The core of a BAR application in our system is carefully struc-
turing messages so that an incorrect response to a request con-
stitutes a POM against the sender of the response. The work
assignment primitive in Section6 provably binds responses to
requests or to⊥ if the target fails to respond. Every message
in the PIB protocol is stamped with a unique sequence number
and signed by the sender.

Store. A PIB store request consists of two components. The
first is a tuple(name, owner, storer, hash, size)called theStor-
eInfo. The second is the chunk being stored. Thehashand
sizefields of theStoreInfocorrespond to the hash and size, re-
spectively, of the chunk being stored. TheStoreInfotuple is
stamped and signed by the owner. There are three possible
responses to a store request: (a) aReceiptcontaining theStor-
eInfoand stamped and signed by the storer, (b) aStoreReject

containing theStoreInfoand aProof that is stamped and signed
by the storer, and (c) anything else. If a receipt is receivedthen
the receipt is added to the owner’s record of consumption on
the system, known as theOwnList. A StoreRejectcan validly
contain proof that the storer is full: a list ofStoreInforecords,
each signed and stamped by their respective senders, where
leases from their stamps have not expired and whose total size
plus the request’sStoreInfosize exceed the node’s quota. Any
other response constitutes a POM against the storer–either(a)
the response itself is a POM generated by the work allocation
layer (e.g.,⊥) or (b) the response is inappropriate for the re-
quest and thus a signed confession.

Retrieve. A PIB retrieve request consists of theReceiptfor
the chunk to be returned. The three possible responses to a
retrieve request are: (a) aRetrieveConfirmcontaining theRe-
ceiptand the corresponding chunk stamped and signed by the
storer, (b) aRetrieveDenycontaining theReceiptand aProof
stamped and signed by the storer, and (c) anything else. If
the response is aRetrieveDeny, then the theProof must show
either (a)Receipthas expired (b) theReceipthas been super-
seded by a more recentStoreRequestfrom the sameowner to
the samename, or (c) the storer is in the process of recov-
ering its data (see below). Any other response constitutes a
POM against the storer– either the response itself is a POM
generated by the work allocation layer or the response is inap-
propriate for the request and thus a signed confession.

Audit. The audit mechanism takes place in three phases.
First the auditing node selects a node to audit. The auditing
node then requests both theOwnList and StoreListfrom the
auditee. After retrieving the two lists, the auditing node re-
quests theOwnListfor every node the auditee claims to store
files for and theStoreListfor every node the auditee claims to
own files on. The collection of lists are cross-checked for in-
consistencies; any inconsistencies result in a POM againstthe
offending node. AnOwnListandStoreListare inconsistent if
a Receiptindicated on one should be present but is not on the
other. Audits are potentially very expensive operations, and
nodes will avoid performing them if possible. We avoid this
problem by requiring each node to submit the results from a
recent audit – either a POM or a complete set ofOwnLists and
StoreLists to the state machine every 1000 proposals.

7.1.3 Time constraints

The primary purpose of a backup system is to provide con-
venient retrieval following a catastrophic disk or user failure.
The utility of a backup program is greatly reduced if the re-
trieval guarantee is “eventual recovery” rather than “recovery
within time t.” In order to guarantee a concrete recovery win-
dow, PIB assumes that all non-Byzantine nodes will respond
to a request withinmax response. Any node that fails to do
so is considered faulty, a POM against such a node can be ac-
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quired by issuing a request through the work allocation primi-
tive.

We utilize leases to bound the duration of store requests on
the system. When messages are signed, the sequence number
is actually a time stamp reflecting the local clock of the partic-
ipating machine. In PIB, everyStoreInfoexpires 30 days after
the request is signed by the owner. If the owner needs to keep
the chunk in the system for more than 30 days, the owner must
renew the chunk by sending a secondStoreRequestbefore the
original lease expires.

In order to support leases and allow nodes to consistently
interpret the time stamps applied by other nodes, we assume
that the clocks for all non-Byzantine nodes are synchronized
to within one day of each other. Iff + 1 nodes certify that a
node’s clock is outside this synchronization window, they are
collectively capable of issuing a POM against the node.

The introduction of these timing assumptions and lease du-
rations allows PIB to (a) provide stronger guarantees with re-
spect to recovery time and (b) limit the amount of “dead” stor-
age in the system. These two factors aid in increasing the over-
all utility of the system, making it more attractive for rational
nodes.

7.1.4 Sanctions

Various components of the PIB system, from the primitives
in Sections5 and 6 to the mechanisms described earlier in
this section, generate POMs against specific nodes. These
POMs convict a node of misbehavior and require that the node
be punished appropriately; without appropriate punishment
nodes have no incentive not to misbehave.

For simplicity PIB handles all POMs in the same fashion:
whenever a POM is submitted to the state machine, the POM
is distributed to all nodes and each node evicts the guilty party.
Note that the POM provides a basis for more sophisticated
strategies including suspending a node’s store and retrieve
rights pending administrative intervention, increasing the stor-
age a node must contribute (without increasing its quota) or
emitting the POM “up a level” to an administrative entity for
external disciplinary action.

7.2 Recovery
Since we are dealing with a backup system, nodes that lose
their local state must still be able to make use of the system.
Our approach (1) allows such a node to assume a new iden-
tity to access its old state and (2) restricts this ability topre-
vent rational nodes from shirking work and to limit damage by
Byzantine nodes.

Initially we give each node a fixed series oflinked identi-
ties, i0 . . . imax. A node using identityij−1 can begin using
ij at any time. Any node that receives a message from iden-
tity ij (1) assigns all message queue bubble obligations of any
preceding linked identity (ik(k < j)) to ij , (2) grants Retrieve
rights toij for any data with a valid lease byik, (3) initiates a
fixed grace period during whichRECOVERINGis considered

a valid response byij to any retrieve request, and (4) evicts
ik from the system.ij uses the grace period to first issue RE-
COVER requests to all nodes; nodes must reply with each non-
expired chunk on theirStoreListstored byik (they may have
to Retrieve other chunks to construct this information, butthe
work assignment operation ensures that they perform this ex-
pensive action.) Then,ij may retrieve its own data from the
backup system. Identityik is technically removed from the
system (and no longer counts against our limit off simulta-
neous failures) at the moment thatij finishes recovering other
nodes’ stored data.

Three factors prevent a rational node from deliberately ex-
ploiting linked identities to avoid punishment. First, each node
has a small number of identities (e.g., 3 initially plus 1 every
two years) and cannot recover its data after all have been used;
using a linked identity thus reduces the future utility of the
system. Second, a new linked identity is responsible for the
messages of previous identities, so nodes cannot avoid work.
Third, linked identityij must contribute1.1j times the storage
of identity i0 but receives no corresponding increase in quota;
this ensures that a node cannot reduce its total disk storage
costs by failing to store data and then switching to a new linked
identity to hide this fact. Note that the first factor also limits
the damage that can be done by a series of linked entities under
a “persistently Byzantine” node’s control.

7.3 Guarantees
The PIB system provides the following guarantees under PIB’s
coarse synchrony assumptions. (i) Data stored on PIB can be
retrieved within the lease period. (ii) No POM can be gathered
against a node that does not deviate from the protocol. (iii)
No node can store more than its quota on PIB without risking
being caught. (iv) If a node with at least one unused linked-
identity crashes and loses its disk, it is guaranteed a window
of time during which it can rejoin the system and recover all
data it has stored.

8 Evaluation
In this section we evaluate our replicated state machine and
PIB prototype. Our microbenchmarks show that our RSM
prototype can perform about 15 operations a second for small
groups of users, an adequate level of performance for our ap-
plication’s requirements. We then evaluate the performance
of the PIB application by storing and retrieving large amounts
of data. We find that our non-optimized PIB prototype can
backup in 20 minutes a gigabyte of data to 21 nodes, which en-
sures that the data is recoverable despite the failure of 7 nodes.

8.1 Experimental setup
We ran all experiments on Pentium-IV machines with 2.4Ghz
processors, 1 GB of memory, and Debian Linux 3.0. These are
public machines, connected through 100Mbps ethernet.
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Our prototypes are implemented using Java 1.4. We set
the initial TRB network timeout to 10 seconds. The maximum
response time and lease duration are set to a week and a month
respectively, but our experiments did not rely on these values.
The experiments assume no failures. We use the BouncyCastle
cryptographic library and Onion Networks’ FEC library for
erasure coding.

8.2 Micro-benchmarks
We use micro-benchmarks to evaluate our replicated state ma-
chine prototype. The main questions we try to answer are (a)
whether our RSM is practical, (b) whether our RSM scales to a
reasonable number of peers, and (c) whether our RSM handles
intentionally slow nodes well.
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Figure 4: RSM performance as peers are added
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Figure 5: Time a node spends catching up for its absence

Figure4 shows the average speed of consensus operations
for systems of 4 to 20 nodes. Each trial measures the average
duration over 50 consensus operations. We run each configu-
ration 10 times and show the median value as well as the10th

and90th percentiles. The chart shows consensus completes
in less than 50ms for 4 peers or 100ms for 20 peers, a level
of performance that is appropriate for our application. It also
shows that performance scales almost linearly with the number
of peers, hinting that performance would remain appropriate
even with larger groups. Eventually, however a large coop-
erative service should be split into multiple state machines as
described in Section6.
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Figure 6: Impact of rotating leadership

Our performance is inferior to protocols that are not de-
signed for the BAR model. PBFT [15] requires only 15 ms
per consensus on less powerful hardware than ours. Part of the
difference is explained by our language choice, but the main
factor is the fact that our IC-BFT RSM requires the proper-
ties of digital signatures, so we cannot rely on the faster MAC
primitives.

Figure 5 shows the effect of a single node (out of four)
that is unreachable for an hour. Our protocol, for incentive
compatibility reasons, does not allow that node to skip directly
to later instances of TRB when it returns: a concern then is that
it may take too long for nodes to catch up. The experiment
shows that the unreachable node (solid line) was able to catch
up in less than two minutes, so the impact of long periods of
unreachability is minor.

Figure 6 shows the relative impact of two leader elec-
tion policies in the presence of failures. Our protocol rotates
the role of sender between each instance of TRB. A PBFT-
like protocol instead rotates the sender only when the current
sender is determined to be faulty or untimely. When the sender
is timely and non-Byzantine, the state machine proceeds at
full speed for either protocol, without timing out (cf. “Fixed,
lucky”). However, a Byzantine sender can proceed slowly—
just fast enough to avoid triggering a time-out (cf. “Fixed,
unlucky”). Our sender rotation (cf. “Round-Robin”) limitsthe
worst case damage imposed by a slow node and achieves a
performance closer to the best case.

8.3 PIB
PIB performs adequately when storing and retrieving data.
Figure 7 shows the time taken to store and retrieve 100MB
of data using different encoding parameters. The experiment
shows that (i) the use of error correcting codes instead of pure
replication increases the performance in terms of both the stor-
age time and overhead, and that (ii) PIB is able to transfer ata
rate of 1-2 MBps, which is sufficient for a backup system. At
this rate, it would take our non-optimized PIB prototype about
20 minutes to back up a gigabyte of data to 21 nodes so that the
data can be recovered despite the failure of 7 nodes. The per-
formance difference between the store and retrieve operations
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Figure 7: Access time for 100 MB with different encodings

comes from an inefficiency in the store code in our prototype:
the data being stored is unnecessarily written to disk several
times before being sent on the network. We intend to correct
this problem in a later version.

9 Related Work
Our work brings together Byzantine fault-tolerance and game
theory.

Byzantine agreement [34] and Byzantine fault tolerant
state machine replication have been studied in both theoretical
and practical settings [11, 14, 30, 52, 58]. Our work is clearly
indebted to recent research [4, 15, 39, 56, 64] that has shown
how BFT can be practical in distributed systems that fall under
a single administrative domain—indeed, Castro and Liskov’s
BFT state machine [15] is the starting point for our IC-BFT
state machine. Our work addresses the new challenges that
arise in MAD distributed systems, where the BFT safety re-
quirement that fewer than one third of the nodes deviate from
the assigned protocol can be easily violated.

Game theory [29] has a long history in the economics lit-
erature [6, 43, 32] and has recently become of general inter-
est in computer science [5, 26, 27, 24, 47, 51, 63]. Proto-
col and system designers have used game theoretic concepts
to model behaviors in a variety of settings including rout-
ing [25, 61, 60], multicast [45], and wireless network [63].
Common across these works is the assumption thatall nodes
behave rationally—the presence of a single Byzantine node
may lead to a violation of the guarantees that these system in-
tend to provide.

Shneidman et al. [61, 62] recognize the need for a model
that includes both Byzantine and rational nodes, but their pro-
tocols address only the latter. Nielson et al [46] identify differ-
ent rational attacks and discuss high-level strategies that can
be used to address them.

To our knowledge, Eliaz’s notion ofk Fault-Tolerant Nash
Equilibrium (k-FTNE) [23] is the only previous attempt to
formally model games that include both rational and Byzan-
tine agents. Eliaz’s model is more general than the one we
assume—for our Nash equilibrium, a rational node that is con-
sidering deviating from the protocol assumes that Byzantine
nodes will perform the actions that are most damaging to it; to
achieve equilibrium, Eliaz requires that rational playershave
no incentive to deviateregardlessof the actions of the Byzan-
tine players. Eliaz’s problem domain differs from ours: it tar-
gets auctions with human participants and provides no exam-
ple of howk-FTNE may be used to build cooperative computer
services with Byzantine and rational nodes.

Rigorous design for incentive compatible systems has
largely been restricted to theoretical work. Practical systems
for tolerating rational behavior [20, 17] commonly rely on
informal reasoning. Bittorrent [17] uses a tit-for-tat strategy
to build a Pareto efficient mechanism for content distribution.
However Shneidman demonstrates that the algorithm is not ac-
tually incentive compatible [62]. Other systems use audits [44]
or witnesses [42] to discourage rational nodes from deviating
from their assigned task, but they do not specify an incentive
compatible or Byzantine tolerant mechanism for implement-
ing audits or witnessing. Using BART state machines to im-
plement a reliable witness from self-interested or Byzantine
nodes is one of the contributions of this paper.

Cooperative storage and backup systems have been stud-
ied extensively in the literature [4, 9, 19, 20, 35, 53, 57]. The
backup systems proposed in [9, 19] rely on the assumption that
all non-faulty nodes behave correctly. Samsara [20] and Lil-
libridge et al. [35] introduce a set of incentives to influence
rational nodes, but they do not bound the damage Byzantine
nodes can inflict to stored data. An additional limitation of
Samsara is its reliance on random spot-checks to verify that
a node is storing data it has promised under which if a node
o fails such a spot check, the system probabilistically deletes
o’s data. This increases the likelihood that a node will be un-
able to retrieve its files precisely when they are needed most.
Conversely, we guarantee that a node can recover its data for
a period of time, even if it suffers a total disk failure. This
property seems useful in a backup system.

10 Conclusions
This paper describes a general approach to constructing coop-
erative services spanning MADs in the context of a cooperative
backup system. The three primary contributions of this paper
are (1) the introduction of the BAR (Byzantine, Altruistic,and
Rational) model, (2) a general architecture for building ser-
vices in the BAR model, and (3) an application of this general
architecture to build PIB, the first cooperative backup service
to tolerate both Byzantine users and an unbounded number of
rational users.
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1 send(message ) :
2 toSend . enqueue (message )
3
4 expect(predicat ) :
5 toSend . enqueue (predicate )
6
7 deliver ( ) :
8 b lock u n t i l received i s no t empty
9 r e t u r n received . dequeue ( )

10
11 run ( ) :
12 wh i l e ( no t badlist[recipient] ) :
13 x : = toSend . t op ( )
14 i f ( x i s a message ) :
15 sending . enqueue (x )
16 toSend . remove (x )
17
18 onReceive(message ) :
19 x : = toSend . t op ( )
20 i f ( x i s no t a p r e d i c a t e ) t hen r e t u r n
21 i f ( no t x(message) ) t hen r e t u r n
22 toSend . remove (x )
23 received . enqueue (message )

Figure 8: The message queue

101 server-run ( ) :
102 wh i le ( no t badlist[recipient] ) :
103 i f sending i s empty then
104 send ” p ing ”
105 e l s e
106 send a l l messages i nsending

107 wa i t f o r send delay

108 send delay : = min (2send delay , 10 min )
109
110 onReceive(msg ) :
111 remove fromsending a l l messages acknowledged bymsg

112 send delay : = 2Γ
113 c a l l h ighe r−l e v e l onRece ive (msg )

Figure 9: Message queue helper functions (server side)

201 onReceive(msg ) :
202 remove fromsending a l l messages acknowledged bymsg

203 send a l l messages i nsending

204 i f msg 6= ” p ing ” t hen c a l l h ighe r−l e v e l onRece ive (msg )

Figure 10: Message queue helper functions (client side)

A Message Queue

A.1 Overview

The message queue implements, in an incentive-compatible
manner, a reliable channel with a simple “you don’t talk to me,
I won’t talk to you” policy. The pseudocode implementing this
policy is shown in Figure8.

The message queue is challenging because it is imple-
mented on unreliable links, so nodes must resend messages—
which is considered a cost. The implementation must make
sure that no node can save cost by unilaterally deviating from
the protocol.

A.2 Strawman protocol

Consider a TCP-like protocol in which messages are resent
periodically until they are acknowledged. This protocol isrea-
sonnable outside the BAR model, but it is not be incentive
compatible: rational nodes can reduce their cost by unilater-
ally deviating from the protocol.

A rational noder may sometimes resend a message unnec-
essarily, because the previous send reached the recipient.To
skip this cost, rational nodes can rely on the fact that theirre-
cipient resends its messages: The recipient’s response will in-
dicate whetherr’s message reached it or not. Sor only sends
its messages when it receives a message, instead of periodi-

cally. Clearly, if both correspondants deviate in this manner
then no messages are exchanged.

The problem, at the root, is that some work is redundant:
a rational node can shirk work because it knows that the other
node’s actions are enough to ensure progress.

A.3 Message queue protocol

Our protocol assigns different roles to the ends of the commu-
nication. Only one end, theserver, is responsible for resend-
ing messages (the server could be the node with the lower I.P.
address, or any other deterministic function). This solvesthe
work shirking problem identified above by making all work
necessary.

We assume that nodes believe that messages sent to non-
Byzantine nodes either reach their destination by timeΓ (e.g.
the TCP timeout), or never do.

This assumption ensures that the server does not gain by
waiting more than required in between sends, in the hope to
receive a delayed answer from the other node.

Figure8 presents the pseudocode for the message queue.
The resending protocol is shown in Figures9 (server) and10
(client). As shown in lines 12 and 102, the message queue
stops sending messages to a nodeb if it believes thatb is
Byzantine. One thing that is not shown explicitely in the pseu-
docode is the connection between sends and expects (lines 111
and 202): filling anexpectbubble accounts as acknowledg-
ing some messages, but not necessarily the last message sent.
The protocol itself must indicate which expects acknowledge
which sends.

The protocol uses abadlist array to indicate nodes that
are believed to be Byzantine: there is nothing to be gained by
sending to these nodes and therefore the message queue should
not send to them (Lemma10). There is no step in the message
queue itself that puts nodes in the badlist, these come from
higher levels of the protocol.

B Terminating Reliable Broadcast

The protocol is described in Section5.1, and the pseudocode
is in Figures11 and12. In terminating reliable broadcast, the
sender goes through a three-phase commit to get all nodes to
decide on its value. If nodes time out waiting for the last mes-
sage for the sender they elect a new leader; the leader then con-
tinues where the sender left off. In our pseudocode the sender
is process 0, although in fact the sender changes between in-
stances of TRB.

The node that is the sender instantiates two threads, one
that runs thesender function and the other that runs the
senderListenfunction. Other nodes instantiaten threads for
n turns. Each of these threads runs theleaderfunction if that
node is leader for that turn, ornonleaderinstead. Turn 0 is
then started, which allows the code to proceed beyond line 47.
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1 / / s e n d e r p r o t o c o l f o r p r o c e s s o r i ( i =0)
2 sender(i ) :
3 u p d a t e B a d l i s t (badlist )
4 s t a r t s e n d e r L i s t e n (i ) i n p a r a l l e l
5 prop : = ( proposal ,badlist ,untimely )
6 nv : = (prop, i)
7 s : = hash (nv )
8 send (agree, t, nv, ⊥) t o a l l o t h e r s
9 e x p e c t 〈agree-ack, t, s〉j i n r e s p o n s e

10 wa i t f o r a quorum~a of answers
11 send (write, 0, nv, ~a) t o a l l o t h e r s
12 e x p e c t bj = 〈write-ack, t, max pol〉j i n r e s p o n s e

13 accumu la te r e s p o n s e s i n t o t h e s e tR u n t i l :

14 t h e r e e x i s t s~b ⊆ R s . t . no t f a i l e d (~b, t ) ,

15 or |R| = n − f − 1 ( t hen p i ck any quorum i nR f o r ~b )

16 send (show-quorum, t,~b) t o a l l o t h e r s

17 i f no t f a i l e d (~b, 0 ) t hen d e c i d e (nv, ~a,~b )
18
19 / / s e n d e r t h r e a d t h a t l i s t e n s t o a l l t u r n s>0
20 senderListen(i ) :

21 e x p e c t (report-decision, t, nv′, ~a′,~b′) from a l l o t h e r s
22 wa i t f o r one

23 d e c i d e (nv′, ~a′,~b′ )
24
25 / / l e a d e r p r o t o c o l f o r p r o c e s s o r i on t u r n t ( t>0, i = l e a d e r F o r T u r n ( t ) )
26 leader(t, i ) :
27 polt : = w a i t U n t i l E l e c t e d (t, i )
28 i f polt = = ” done ” r e t u r n
29 ~r : = readOldVa lue (t, i, polt )
30 nv : = l a t e s t (~r , t )
31 s : = hash (nv )
32 send (agree, t, nv, ~r) t o a l l e x c e p t s e n d e r
33 e x p e c t 〈agree-ack, t, s〉j from a l l j

34 wa i t f o r a quorum~a of answers
35 send (write, t, ~a) t o a l l e x c e p t s e n d e r
36 e x p e c t bj = 〈write-ack, t, max pol〉j from a l l j

37 accumu la te r e s p o n s e s i n t o t h e s e tR u n t i l :

38 t h e r e e x i s t s~b ⊆ R s . t . no t f a i l e d (~b, t ) ,

39 or |R| = n − f − 1 ( t hen p i ck any quorum i nR f o r ~b )

40 send (show-quorum, t,~b) t o a l l e x c e p t s e n d e r

41 i f f a i l e d (~b , t ) t hen s t a r t nex t t u r n

42 e l s e d e c i d e ( nv ,~a,~b )
43
44 / / non−l e a d e r p r o t o c o l f o r p roc . i on t u r n t
45 nonleader(t, i ) :
46 l : = l e a d e r F o r T u r n (t )
47 wa i t u n t i l s t a r t e d
48 s t a r t t i m e r t : i f i t f i r e s , t hen s t a r t t h e nex t t u r n
49 t ime−ou t f o r t i s chooseTimeout (t, i )
50 i f ( t u rn>0) then
51 send 〈set-turn, (t + 1)〉i t o l

52 x : = g iveOldVa lue (t, i )
53 i f x = = ” done ” then s t o p t i m e rt ; r e t u r n
54 e x p e c t (agree, t, nv, ~r) from l ; wa i t f o r i t
55 send 〈agree-ack, t, hash(nv)〉i t o l
56 e x p e c t (write, t, ~a) from l ; wa i t f o r i t
57 / / ~a i s a v e c t o r o f agree−ack f o r t u r n t w i th t h e same s we go t
58 / / s == hash(nv)
59 / / ~r c o n t a i n s a quorum of read−ack f o r t u r n t
60 / / such t h a t e i t h e r nv i s t h e l a t e s t v a l u e i n~r ,
61 / / o r ~r c o n t a i n s on ly ⊥ v a l u e s
62 i f t > m val t t hen
63 (m val, m val t, ~m a) := (nv, t, ~a)
64 send 〈write-ack, t, max pol〉i t o l

65 e x p e c t (show-quorum, t,~b) from l ; wa i t f o r i t

66 / / ~b c o n t a i n s a quorum of wr i t e−ack f o r t u r n t
67 s t o p t i m e r t

68 i f t i m e r t f i r e d more than avg latency + window ago ,
69 then untimely[l] : = untimely[l] + 1

70 i f f a i l e d (~b, t ) t hen s t a r t nex t t u r n

71 e l s e d e c i d e (m val, ~a,~b )

Figure 11: IC-BFT TRB, high level functions

The send and expect calls in the pseudocode all refer to
sending through a message queue. Each turn has one message
queue per other node. Within one instance of TRB they are
linked together so that if there is a bubble against noder in turn
t, then sends on turnt + 1’s message queue tor are delayed
until the bubble is filled.

Turns are created as needed, to make sure that no message
will be discarded because the turn that would have inserted the
expect for that message is missing. To prevent this situation
it is enough to make sure that whenever some turnt finishes
(because the last instruction of that turn’sleaderor nonleader
method returns), turnst + 1 throught + n are created. Turns
that are created place expects on their message queue, and then

101 waitUntilElected (t, i ) :
102 e x p e c t 〈set-turn, t〉j from a l l o t h e r nodesj

103 wa i t u n t i l s t a r t e d
104 s t a r t t i m e r t : i f i t f i r e s , t hen s t a r t t h e nex t t u r n
105 t ime−ou t f o r t i s chooseTimeout (t, i )
106 tr : = now ( ) + avg latency

107 f o r eve ry nodej from which we do no t r e c e i v e t h e exp ec t ed
108 t ime−ou t message betweentr − window and tr + window :
109 untimely[j] : = untimely[j] + 1
110 wa i t u n t i l :
111 we r e c e i v e a quorumpolt of t h e s e messages :
112 s t o p t i m e r t

113 r e t u r n polt ,

114 or i c a l l s d e c i d e (nv, ~a,~b ) :

115 send (show-decision, t, nv, ~a,~b) t o a l l
116 s t o p t i m e r t

117 r e t u r n ” done ”
118
119 readOldValue(t, i, polt ) :
120 send (read, t, polt) t o a l l e x c e p t t h e s e n d e r
121 e x p e c t rj = 〈read-ack, t, val, val t, ~a〉j

122 from a l l j o t h e r than t h e s e n d e r
123 wa i t f o r a quorum~r of answers
124 r e t u r n ~r

125
126 giveOldValue(t, i ) :

127 e x p e c t (read, t, polt) or (show-decision, t, nv, ~a,~b) from l

128 wa i t t o r e c e i v e i t
129 i f i t ’ s t h e l a t t e r t hen
130 untimely[l] : = untimely[l] + decisionfee

131 d e c i d e (nv, ~a,~b )
132 r e t u r n ” done ”
133 i f i i s t h e s e n d e r then r e t u r n ” s k i p p i n g ”
134 max pol := max(max pol, polt)
135 send 〈read-ack, t, m val, m val t, ~m a〉i t o l
136 r e t u r n ” go on ”
137

138 failed (~b, t ) :

139 r e t u r n t r u e i f ~b c o n t a i n s a t l e a s t one
140 〈write-ack, t, mp〉j wi th mp.t 6= t ,

141 or f a l s e i f a l l q have mp.t == t

142
143 latest(~r, t ) :
144 I f a l l rj ∈ ~r have r j.val t == ⊥ t hen

145 r e t u r n (⊥ ,t )
146 e l s e
147 r e t u r n pad(rj.val) f o r rj ∈ ~r wi th t h e l a r g e s t rj.val t

148
149 updateBadlist(badlist ) :
150 / / t h i s f u n c t i o n i s d i f f e r e n t f o r t h e ” quas i−synchronous ” v e r s i o n
151 i f t h e r e i s some nodej t h a t s e n t us a malformed message then
152 badlist[j] : = t r u e
153
154 leaderForTurn (t ) :
155 i f (t==0) r e t u r n 0
156 r e t u r n (t mod (n−1)) + 1
157
158 computePenance(untimely ) :
159 r e t u r n a b u f f e r o f s i z euntimely ∗ latefee

160
161 chooseTimeout(t, i ) :

162 i f i i s l e a d e r nex t tu rn , t hen r e t u r ntimeout ∗ 2t

163 e l s e p i ck t h e v a l ue t h a t maximizes t h e l i k e l i h o o d t h a t t he
164 t ime−ou t message w i l l r ea c h t h e nex t l e a d e r i n t h e c e n t e r o f i t s

165 window ( i n t h e absence of o t h e r i n f o r m a t i o n , p i cktimeout ∗ 2t ) .
166

167 decide((v, t), ~a,~b ) :
168 myP enance : = computePenance (v.untimely[i] )
169 f o r eve ry nodex 6= 0 :
170 send (myP enance ) t o x

171 penance : = computePenance (v.untimely[x] )
172 e x p e c t (penance ) from x

173 i f node i was s e n d e r then
174 f o r a l l j : untimely[j] : = untimely[j] − v.untimely[j]
175 i f some nodex i s i n f + 1 nodes ’ badlist t hen badlist[x] : = t r u e
176 i f t h i s p r o c e s s i s no t t h e s e n d e r and has no t s e n t r e p o r t−d e c i s i o n

177 t o t h e s e n d e r y e t t hen send(report-decision, t, nv, ~a,~b) t o t h e s e n d e r
178 l e t t h e a p p l i c a t i o n know t h a t we dec ided on v a l u ev

179
180 / / shou ld ” node ” be p r e v e n t e d from p a r t i c i p a t i n g i n t h e nex t i n s t a n c e ?
181 hasBubble(i, node ) :
182 i f d e c i d e ( . . . ) was no t y e t c a l l e d then r e t u r n t r u e

183 i f d e c i d e((v, t), ~a,~b) was c a l l e d then :
184 i f i has an o u t s t a n d i n g e x p e c t f o rnode i n any o f t h e t u r n s 0 th rough
185 t ( i n c l u d e d ) , t hen r e t u r n t r u e
186 i f t h e r e e x i s t s some t u r n i n which
187 i has s e n t a message t onode , and
188 i has an o u t s t a n d i n g e x p e c t fromnode

189 then r e t u r n t r u e
190 e l s e r e t u r n f a l s e

Figure 12: IC-BFT TRB, low level functions

wait to be started: this is done explicitely in the time outs (lines
48 and 104) or when a leader failed to gather a successful quo-
rum for its write (lines 41 and 70). A write is successful in
turn t if it includes a vector~r such thatfailed(~r, t) (line 138)
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returns false.
The asynchronous protocol uses quorums of sizen−f−1,

and quorums cannot include the protocol designated as sender
for this instance of TRB.

C TRB Correctness

C.1 Proof technique

To prove that a protocol is IC-BFT for a given model of ratio-
nal nodes’ utility and beliefs, one must first prove that the pro-
tocol provides the desired safety and liveness properties under
the assumption that all non-Byzantine nodes follow the proto-
col. Second, one must prove that it is in the best interest of all
rational nodes to follow the protocol.

We start by proving correctness assuming that all non-
Byzantine nodes follow the protocol.

C.2 Correctness assuming incentives

Here we assume that all non-Byzantine nodes follow the pro-
tocol.

Definition 1. A valuev is said to beproposedin turn t, if a
leader sends a validagree message in turnt with valuev.

Definition 2. A valuev is said to bechosenin turn t if there is
a quorumQ such that all non-Byzantine nodes inQ answered
thewrite message forv in turn t before receiving theread
message from any later turnt′.

Lemma 6. If two non-Byzantine nodes satisfy the expect for a
write message in turnt with valuesv andv′ respectively, then
v == v′.

Proof. Each write message has the format(write, t, nv,~a, ~r),
where ~a consists of a quorum of answers of format
〈agree-ack, t, s〉j , ands is the hash of the valuev.

Since any two quorums intersect in a non-Byzantine node,
and such a node sends only oneagree-ack message in a par-
ticular turn, it follows that the sameagree-ackmessage is used
in the~a value for the write ofv andv′.

This requires that the hash forv andv′ be the same. Under
the secure hash assumption, it follows thatv == v′.

Lemma 7. If a value has been chosen in turnt, then no other
value can be proposed in turnt′, t′ > t.

Proof. By contradiction. Letv be the value chosen in turn
t, andt′ > t be the earliest turn aftert in which some node
proposed a different valuev′.

If v has been chosen in turnt it follows that all non-
Byzantine nodes in a quorumQ have received a write message
for v, but have not received a read message from any later turn.

For a value to be proposed, it needs to contain agree-acks
from a quorum of nodes. Non-Byzantine nodes will respond

with an agree-ack only if the agree message is well formed,
i.e. the valuev′ that is proposed is consistent with the vector~r
that has been sent (in particular,latest(~r, t′) == v′ and every
element of~r is a valid message).

Vector~r contains signed values from a quorum of nodes
Q′ and cannot be modified. Since Q and Q’ intersect in at
least one non-Byzantine node, and the non-Byzantine node
will send the valuev, it follows that there is at least one en-
try in ~r stating that valuev was written in turnt.

Since entries in~r include~a in addition to the value and
turn, all non-⊥ values in~r, even if they are from a Byzantine
node, must have been proposed earlier.

Moreover,t′ is the earliest turn aftert to propose a value
other thanv. So there cannot be any proposed valuev” 6= v
with a turn numbert” > t in ~r received in turnt′.

Value v from turn t is therefore the value in~r with the
highest turn number, andlatest(~r, t′) will return v. Therefore
the leader in turnt′ must propose valuev.

Lemma 8. A valuev is chosen in turnt only if v was proposed
in turn t.

Proof. A non-Byzantine node accepts awrite message only
after it accepted the correspondingagree message. Since all
quorums contain at least one non-Byzantine node, it follows
that forv to be chosen at turnt it must have been proposed at
turn t.

Theorem 3 (Safety). If some non-Byzantine node decides on
a valuev in turn t then no non-Byzantine node will decide on
a value other thanv.

Proof. A node decides on a valuev only after either seeing
evidence that the value was chosen, either through a show-
quorum message (lines 42 or 73), a show-decision message
(line 129) or report-decision (line 22). The previous two lem-
mas indicate that at most one value may ever be chosen.

Theorem 4 (Liveness).Eventually every non-Byzantine node
decides.

Proof. Since the time-out delays increase exponentially, dur-
ing the synchronous period there will be some turn after which
every leader is guaranteed to have enough time to complete
without being interrupted by another leader election. Consider
the first such leader who is non-Byzantine. That leader will be
able to write a consensus value without interference, and itwill
have gathered a quorum of acknowledgments (~b) that show
that no other leader was elected before the end of the write.
That information allows nodes to decide. Since the leader is
non-Byzantine he sends it to all and all non-Byzantine nodes
decide, and report to the sender if necessary.

Theorem 5. The protocol satisfies the conditions for TRB.

Proof. • Termination is guaranteed by Theorem4.

• Agreement follows from Theorem3 and Theorem4
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• Integrity is assured because a leader cannot propose any ar-
bitrary value. The expect in line 56 is satisfied only if the
proposed value has been written earlier, or is⊥. The fact
that a leader cannot propose an arbitrary value hence fol-
lows by induction on the turn numbert.

• In a period of synchrony, if the sender is non-Byzantine then
no non-Byzantine node will time out on the sender because
the time out values are larger than the known guaranteed
delivery time∆. It follows that the sender will be able to
complete the turn and get all non-Byzantine nodes to deliver
the message.

C.3 Equilibrium and incentive compatibility

Background We now show that the protocol represents an
equilibrium point. More specifically, it represents aNash equi-
librium. We start by introducing this concept and relating it to
our domain.

Nash Equilibira are a game theory concept. Game theory
studies “games” among rational players. In one-shot games,
for example, every playeri (we shall call them nodes from
here on) simultaneously picks somestrategyσi. The rules of
the game determine autility u for each node, as a function of its
strategy and the strategy of the othern − 1 nodes. The utility
for node i can be written as the functionui(σ0, . . . , σn−1),
which we abbreviateui(σi, σ−i).

The Nash equilibrium is defined as follows [29]:

ui(σ
∗

i , σ∗

−i) ≥ ui(si, σ
∗

−i) for all si ∈ Si

Whereσ∗

i is the strategy proposed to nodei, andSi is the
set of all deterministic strategiesi can choose from.

To link these concepts to our domain, we observe that
the strategy represents which actions the node will take in re-
sponse to events it can observe. In other words, the strategyis
the protocol that the node follows. A game-theoretic “game”
is determined by a function that takes every node’s strategy
as input and outputs a resulting utility for each node. In our
case, the input is which protocol each node follows and node’s
utilities are determined by the costs and benefits that the node
experiences from running the protocol. We define the cost pre-
cisely later in this section. The two differences between our
setting and the traditional phrasing of the Nash equilibrium is
that, first, the utility can be influenced by network delays so
that rational nodes must reason based on their expected util-
ity. Second, Byzantine nodes may deviate arbitrarily from the
protocol.

In a way similar to how an assignment of strategies to
nodes can be said to be a Nash equilibrium for a given game
if no player can improve its utility by unilaterally deviating
from the assigned strategy, we say that a given protocol is a
Nash equilibrium if no rational node can improve its expected
utility by unilaterally deviating from the assigned protocol.

Proof technique To prove that the protocol is a Nash equi-
librium, we show that it is in every node’s best interest not to
deviate from the proposed protocol under the assumption that
all other non-Byzantine nodes follow the protocol.

Showing that something is in the best interest of a rational
node is dependent on what the node considers in its interest,
but also of the node’s beliefs and knowledge. For example, a
node that knows that a given nodex is Byzantine will see no
incentive to send messages tox, whereas one that does not
know who is Byzantine must instead consider the expected
utility of sending a message tox.

A rational noder evaluates its utilityu for a strategyσ by
computing its worst-case expected outcome. The worst case
is computed over the choices of which nodes are Byzantine,
and what Byzantine nodes do. The expectation is over net-
work performance. The outcome then includes the costs: send-
ing and receiving messages and computing signatures, and the
benefits are: having their own proposal accepted. Noder
also includes future effects of its actions, for example whether
some node(s) now considerr to be Byzantine (by setting the
corresponding entry inbadlist to true) or whether nodes will
ignorer in the future (because thehasBubble function returns
true). A change that would preventr from participating in fu-
ture instances of TRB is considered to have infinite cost since it
robsr from an infinite number of beneficial instances of TRB.

Our assumptions are presented in the System model, Sec-
tion 3. In short, we assume that rational nodes gain a long-
term benefit in participating, we assume that they consider the
worst-case outcome of their actions, and we assume that if they
observe that the protocol is a Nash equilibrium then they will
follow the protocol.

The simplest deviations are those that do not modify the
messages that a node sends. In our state machine protocol,
no such deviation increases the utility. We must then examine
every message that the node sends and show that there is no
incentive to either (i) not send the message (ii) send the mes-
sage with different contents, or (iii) send the message earlier
or later than required. Also, we must show that nodes have no
incentive to (iv) send any additional message.

Our protocol also imposes two requirements that must be
met in an implementation: (a) The penance is larger than the
benefit of sending a time-out message late, and (b) The⊥ an-
swer (in read-ack) is at least as large as the largest allowed
proposal value. (that size does not need to be constant, it may
grow as the sender fails to propose values)

Theorem 6 (Incentive Compatibility). No node has any uni-
lateral incentive to deviate from the protocol.

In order to show that no deviation is beneficial, we system-
atically explore all deviations. Table1 maps each deviation to
the lemma that shows that it is not beneficial. The concern of
nodes sending additional messages is covered by Lemmas9
and10.

19



not send send different diff. time
set-turn Lemma11 Lemma16 Lemma14
read Lemma11 Lemma17 Lemma26
read-ack Lemma11 Lemma18 Lemma30
agree Lemma11 Lemma21 Lemma27
agree-ack Lemma11 Lemma19 Lemma30
write Lemma11 Lemma22 Lemma28
write-ack Lemma11 Lemma20 Lemma30
show-quorum Lemma11 Lemma23 Lemma29
show-decision Lemma11 Lemma24 Lemma31
untimely Lemma11 Lemma15 Lemma15

Table 1: Map of deviation to lemma

Lemma 9. Rational nodes only send a messagem to nodej
if j expects that message.

Proof. The queue protocol discards messages that are not ex-
pected. Therefore no rational nodei would send an unexpected
message to a non-Byzantine node because it has no benefit, but
some costs (cost of sending the message, plus any signature in
the message). Sending an unexpected messages to Byzantine
nodes cannot improve their worst-case behavior (if anything, it
may help them drive the system to an even less pleasant state).
Therefore, no rational node sends an unexpected message to
anyone, Byzantine or not.

Lemma 10. Once a rational nodei knows that some other
nodej is Byzantine,i will not send any further message toj.

Proof. If j is known to be Byzantine (for example because
it was observed deviating from an incentive-compatible proto-
col), then sending messages to it does not affect the worst-case
outcome. In particular, nodej can always opt to ignore any
message fromi. Therefore, there is nothing to be gained from
the expense of sending messages toj.

Lemma 10 is a natural consequence from the fact that
nodes are rational and that they believe that some nodes may
be Byzantine. Naturally, in the worst case Byzantine nodes
will not do something so foolish as letting themselves be iden-
tified.

Lemma 11. If a rational noder knows that not sending some
expected messagem to non-Byzantine nodes would cause the
hasBubble function ins to return true, thenr has incentive
to send the message.

Proof. If hasBubble(s, r) returnstrue (indicating thats be-
lieves thatr has not fulfilled all its obligations towards), then
s will not answerr’s messages in futures instances of TRB.
In the worst case (forr), all f Byzantine nodes will ignorer.
In that case, whenr is sender in a later instancei, it will not
be able to gather the requiredn − f − 1 answers to itsagree
message (sincef + 2 nodes will not be included: the sender
itself, s, and thef faulty nodes). As a resulthasBubble(x, r)

will be true for all non-Byzantine nodes in instancei. From
then on, noder will not be able to send its proposals to any-
one: it is effectively excluded from the state machine. Noder
would forgo participation in an infinite number of future ben-
eficial instances of TRB: no finite benefit from not sending
the messagem may be worth this cost. Noder will therefore
make sure to send all expected messages whose absence would
causehasBubble to return true.

Lemma 12. No rational noder (r is not the sender) can en-
sure with certainty that⊥ will be delivered in a given instance
of TRB.

Proof. Nodes can influence the delivered value through their
actions. However, if Byzantine nodes were to follow the pro-
tocol, then in a period of synchrony the sender will be able to
communicate with a quorum of nodes and get its value deliv-
ered regardless of the actions ofr (in particular if r does not
send any message).

Therefore, rational noder cannot ensure with certainty that
value⊥ will be delivered as the result ofr’s actions.

Lemma 13. Rational nodes other than the sender have to do
the same amount of total work if in a given instance of TRB
the decision is⊥ instead of the sender’s value.

Proof. If a sender’s proposal is not accepted, then the sender
will propose it again next time. Lemma12 indicates that if
a sender tries forever, the proposed value will be eventually
delivered. The total amount of work, therefore, is the same (of
course, the utility may be different because a different number
of messages may be exchanged).

Lemma 14. There is nothing to be gained by sending the time-
out message earlier or later than the protocol calls for.

Proof. The protocol requires non-leader nodes to send the
timeout message for turnt (“set-turn(t)”) as soon as they be-
lieve that turnt started: either because timert − 1 fired (i.e. a
time-out) or because show-quorum for turnt − 1 failed. The
leader in turnt never sends “set-turn(t)”, and the sender never
sends set-turn messages either.

Starting the next turn earlier (or later, as the case may be)
may influence the outcome of TRB (toward either⊥ or the
sender’s value), but that has no effect on the amount of work
that noder has to perform (Lemma13).

All the messages for the current turn must be sent, so there
is no other benefit from starting a turn earlier.

Delaying the start of turnt may save a node some effort,
because it is possible that the delay allows turnt − 1 to re-
ceive (or compose, if the node is the leader) a successful show-
quorum message, so that there is no need to send the set-turn
message anymore.

However, the recipient of set-turn expects that message at
a given time (and follows the protocol by hypothesis), so if the
node sends “set-turn” late it increases its chance of missing the
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window, thus raising the expected cost through the penance
mechanism. By requirement (a), this expected cost is larger
than the expected benefit from potentially not having to send
“set-turn” and going through an extra turn (potentially with
value⊥).

Lemma 15. Rational nodes have no incentive to omit or mod-
ify the untimely message.

Proof. The untimely message (computed in lines 109 and
130, sent in line 5) is intended to inflict additional cost onto
nodes that are believed to be untimely. If a rational noder
omits this message, then its agree message is malformed (see
Lemma21). Modifying the contents of the message does not
change its size, and the untimely message sent by noder does
not impact noder (it impacts everyone else, as lines 169–172
show). Therefore, noder has no incentive to modify the un-
timely message.

Lemma 16. There is nothing to be gained by sending a set-
turn message with the wrong contents.

Proof. Since set-turn only contains a turn number and a sig-
nature, wrong contents would be equivalent to either sending
twice to the message queue or sending a malformed message
(Lemma9), or sending set-turn early (Lemma14).

Lemma 17. There is no incentive to lie in the read request.

Proof. The format of the read request is entirely determined
(line 127), the only freedom being in the specific choice of
which quorum of entries in the POL are filled. Since all POL
entries have the same size, all choices result in a POL of the
same total size and hence the same cost. Since using a different
valid POL has no impact on the protocol and does not reduce
cost, there is no reason why a rational node would choose one
quorum over another.

Lemma 18. There is no incentive to lie in the response to a
read message.

Proof. There are only two different possible answers to a read
message: either the sender’s value, or⊥. Since the sender’s
value is signed and nodes cannot forge signatures, the only
possible lie is to answer⊥ when, in fact, one has received a
value.

This lie increases the likelihood of⊥ being delivered in-
stead of the sender’s value, which has two consequences. First,
it changes the amount of work that must be done in this turn.
However, as we argue in Lemma13, nodes other than the
sender expect to have to do the same amount of work even
if they try to increase the likelihood of⊥ being delivered. Sec-
ond, it increases the size of the messages that must be sent be-
cause the⊥ answer has the same size (in bytes) as the longest
allowed proposal (requirement b). Therefore there is no bene-
fit to lying in response to a read message.

Lemma 19. There is no incentive to lie in the response to an
agree message.

Proof. The answer to agree is entirely determined by the agree
message itself, so any deviation would be equivalent to not
sending a message that the leader expects. Lemma11 shows
that there is no incentive to do that.

Lemma 20. There is no incentive for a rational noder to lie
in the response to a write message.

Proof. The only choice in the response ismax pol, the latest
leader that the node has received a message from. Since these
messages are signed, the only possible lie for a rational node
is to reply with some POL it has received.

Since the size of the POL is constant, the only benefit of
replying with an older POL is to influence the protocol. As
we argued before (Lemma13), only the sender has a stake in
influencing the decision and the sender does not receive write
messages.

Remains the possibility that answering with a different
POL will influence the number of turns that the protocol takes
to complete (that’s a cost). Answering with the requester’s
POL instead of a later one (if we received one) means that
there is some chance that the requester now thinks its proposal
succeeded when, in fact, it failed. The potential benefit would
be that if the requester succeeds, then there is no need to send
a time-out message to the next leader. However, the fact that
noder heard from the later leader means that it has already
sent a time-out message to the later leader, therefore thereis
no incentive to lie in the response to the write message.

Lemma 21. There is no incentive to send incorrect data in the
agree message.

Proof. The agree message (sent in lines 8 and 32) include
the turn number, proposal, and~r. Changing the turn number
would be equivalent to not sending the agree message, which
would result inhasBubble returningtrue (Lemma11). The
protocol does not restrict which proposal the sender can send,
other than the condition that it must include the untimely vec-
tor. Lemma15 argues that there is no incentive to send an
incorrect untimely vector. Leaders that are not the sender have
no choice in the proposal, as it is entirely determined by the
contents of~r and thelatest function. The vector~r itself con-
tains signed answers from other nodes, so it cannot be tam-
pered with, other than choosing which answers to include in~r.
These deviations are covered by Lemma27.

Lemma 22. There is no incentive forr to send incorrect data
in the write message.

Proof. Sending a value that does not match the agreed-up hash
would cause everyone to considerr Byzantine. The vectors~r
and~a are both constant-size and cannot influence the protocol
other than markingr as Byzantine, so there is no incentive to
change them either.
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Lemma 23. There is no incentive forr to send incorrect data
in the show-quorum message.

Proof. That message contains information signed by others,
so it cannot be faked byr.

Lemma 24. There is no incentive forr to send incorrect data
in the show-decision (or report-decision) message.

Proof. Both messages have the same content. Their size is
fixed, and nodes cannot lie about the decided value because
they cannot forge signatures. The only deviation would be to
use a different quorum for~r, but there is no benefit to that.

Lemma 25. There is no incentive for a rational leaderr to
send a message in its leader turnt before the protocol indicates
turn t should start.

Proof. It may prevent the previous leader from succeeding.
Leaders have no stake in the outcome, so all that preventing
the other from succeeding achieves is potentially cause more
set-turn messages to be sent.

The sender cannot start early because the protocol says it
should start immediately.

Lemma 26. There is no incentive for a rational leaderr to
wait for more than a quorum of time-out messages before start-
ing its leader duty.

Proof. That would allow the leader to go the show-decision
route instead of the normal three phase commit. We use the
penance mechanism to balance the costs (decisionfee, line
130).

Lemma 27. There is no incentive for a rational leaderr to
wait for more than a quorum of answers to its read message.

Proof. Waiting for more answers may allow the leader to go
from a situation in which it must propose⊥ (because none of
the answers so far have seen the sender’s value) to one in which
it can propose the sender’s value (because one of the answers
includes it, cf. thelatest function in line 143)—or the other
way around.

These two situations do not modify the expected number of
turns for this instance of consensus. They are also identical in
term of message size, because the leader must pad the proposal
to maximum size, the same size as⊥. The difference between
the two is which value is decided in the end, which may change
how much work the leader must go through in this instance.
However, as we argue in Lemma13, this does not change the
total amount of work. There is therefore no incentive forr to
deviate from the protocol by waiting for more answers.

Lemma 28. There is no incentive for a rational leaderr to
wait for more than a quorum of answers to its agree message.

Proof. Getting more answers cannot influence the outcome, so
there is no incentive to wait for more.

Lemma 29. There is no incentive to wait for more answers to
write.

Proof. The protocol lets you wait forn−f −1 answers, wait-
ing for more may get you stuck.

Lemma 30. There is no incentive to answer late to either a
read, agree or write message.

Proof. The effect of a late reply to these requests is to poten-
tially slow down the leader (or sender), increasing the riskthat
this instance of TRB lasts one more turn and potentially influ-
encing the outcome.

Only the sender has a stake in the outcome, and it does not
answer to these messages. Remains the possibility of addinga
turn, which would cause the rational node to send more mes-
sages and therefore increase its cost. Rational nodes therefore
have an incentive to respond to these queries immediately.

Lemma 31. There is no incentive to send the show-decision
message late.

Proof. Once a leaderr knows that it must respond with the
show-decision message, then further waiting has no impact on
its cost: nothing can remove the requirement onr to send that
message. The leader therefore has nothing to gain by delaying
the answer.

C.4 Enlightening examples

The protocol is Figure11distinguishes between the sender and
the leader: the sender proposes a value and, if it is not timely, a
new leader is elected. This distinction may seem unnecessary,
but in fact it is important that the sender not be involved in
steps where it may influence whether its value gets decided.
This can occur in two places.

First, the sending of the “set-turn” messages. Suppose an
execution in which the sender receives a POL from a later
leader, and then a write for the value⊥, indicating that the
new leader did not see any of the messages sent by the sender.
The sender may then have an incentive to send its “set-turn”
message early to elect a new leader, in the hope that the new
leader may see one of the written values and will attempt to
write the sender’s value instead of⊥.

Second, the answer to “read” requests. In the same sce-
nario as described above, if the sender receives a write for⊥
by leader 1 and then a read request from leader 2, then the
sender would have an incentive to deviate from the protocol
and send its own value instead, pretending it hasn’t received
the message from leader 1.

In order to avoid both scenarios, we allow the sender to try
to write its value only once: it cannot be elected leader in later
turns, and read messages are not sent to it. Since the read and
write quorums must still intersect in at least one correct node
and there must be a quorum of correct nodes among all nodes
but the sender, it follows thatn ≥ 3f + 2.
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D Replicated State Machine

The “hasBubble” function (Figure12) is used to determine
whether a given node should be allowed to participate in the
next instance of TRB.

The replicated state machine provides the following guar-
antee under our liveness assumption that all non-Byzantine
nodes get some overall benefit from participating in the state
machine.

Theorem 7. If non-Byzantine nodea submits some command
c to the state machine then eventually every non-Byzantine
noden in the state machine will deliverc.

Proof. Eventual synchrony guarantees that eventuallya gets
its turn as sender in the state machine. TRB’s non-triviality
condition then guarantees thata will successfully deliver its
proposal. Oncea is done with earlier submissions it will sub-
mit c, which it will deliver. The agreement condition guaran-
tees that all non-Byzantine nodes will deliverc as well.

E Work Assignment

This section addresses issues related to work assignment and
relevant efficiency optimizations. In general, work assignment
is used to reduce replication factors associated with running a
protocol and to increase communication efficiency and relia-
bility. The work assignment protocol leverages the state ma-
chine to replicate the assignment of work to a specific node or
set of nodes. The work itself is then performed on the specific
nodes. In general, the messages and execution of allocation
are orders of magnitude less expensive than the execution of
the work itself.

The work assignment protocol proceeds in 5 basic steps:
(1) submit request to state machine, (2) state machine delivers
request, (3) subset of state machine performs request, (4) result
is sent back to all nodes in state machine, (5) all nodes in state
machine forward request to the requester and done.

For all proofs in this section, we make the “sufficient ben-
efit” assumption, that is rational nodea gains sufficient benefit
from membership to outweigh the cost of participating in the
system if no more thanf nodes deviate from the protocol.

Let w be work instructions,a, b be nodes in state machine
A. Let u be the result of performingw. We also assume that
all liveness conditions are met.

E.1 Work assignment to individual nodes

Here we address issues related to assigning work to an indi-
vidual node. LetA be a state machine,a andb be nodes in the
state machine, andw be work assigned byb to a. We assume
that the result of performingw can only be acquired through
actually performingw (i.e. thatw is an unforgeable operation).
The most relevant of this is the following lemma:

1 / / p r o t o c o l f o r e x e c u t i o n o fassign(w, a, b) on p ∈ A

2 e x e c u t e (assign(w, a, b) ) :
3 i f (p = a)
4 r : = per fo rm (w ) ;
5 ∀c ∈ A c . send(r) ;
6
7 s t a r t w.timer ;
8 a . e x p e c t < m : m.reqHash = hash(w) > ;
9 m : = a . d e l i v e r ( ) ;

10 c a n c e l w.timer ;
11 b . send (witness(m, a)) ;
12 i f (p = b)
13 r e s p o n s e s : ={} ;
14 ∀c ∈ A s t a r twc.timer ;
15 ∀c ∈ A

16 c . e x p e c t < m : m = witness(u : u.reqHash = hash(w)) > ;
17 r e s p o n s e s : = r e s p o n s e s∪ c . d e l i v e r ( ) ;
18 c a n c e l wc.timer ;
19 i f | r e s p o n s e s| ≥ f + 1
20 p r o c e s s ( r e s p o n s e s ) ;
21
22 \\ p r o t o c o l f o r h a n d l i n g w.timer

23 on t i m e o u t (w.timer ) :
24 b . send(witness( ‘ ‘ no ev idence ’ ’)) ;
25 badlist[a] := true ;
26
27
28 \\ p r o t o c o l f o r h a n d l i n g wc : timer

29 on t i m e o u t (wc : timer ) :
30 badlist[c] := true ;
31
32 \\ p r o t o c o l f o r p r o c e s s i n g r e s p o n s e s
33 p r o c e s s ( r e s p o n s e s ) :
34 hand r e s p o n s e s up t o t h e c a l l e r o fb

35
36
37 \\ p r o t o c o l f o r e x e c u t i o n o fassign(w, B, b) on p ∈ A

38 e x e c u t e (assign(w, B, b) ) :
39 i f (p ∈ A ∩ B)
40 i f ( r no t a l r e a d y s u b m i t t e d t oB )
41 r = B . submi t (w ) ;
42 e l s e
43 r = B . r e s u l t (w ) ;
44 ∀c ∈ A c . send(r) ;
45 ∀a ∈ A ∩ B

46 s t a r t wa.timer ;
47 a . e x p e c t< m : m.reqHash = hash(w) > ;
48 m : = a . d e l i v e r ( ) ;
49 c a n c e l wa.timer ;
50 b . send (witness(m, a)) ;
51 i f (p = b)
52 r e s p o n s e s ={} ;
53 ∀c ∈ A s t a r twc.timer ;
54 ∀c ∈ A

55 c . e x p e c t < m : m = witness(u : u.reqHash = hash(w)) > ;
56 r e s p o n s e s : = r e s p o n s e s∪ c . d e l i v e r ( ) ;
57 c a n c e l wc.timer ;
58 i f | r e s p o n s e s| ≥ f + 1
59 p r o c e s s ( r e s p o n s e s ) ;

Figure 13: Work assignment protocol

Lemma 32. If state machineA executes the command
assign(w, a, b) anda is rational, thena will performw.

Proof. Line 8 of Figure13introduces an expect to the message
queue. If the expect is not filled, thena will be added to the
badlist in line 25, resulting ina’s loss of access to the state
machine and subesequent loss of benefit. Sincew is a non-
forgeable operation,a must performw to have a result which
will be accepted by the message queue.

It is important to note that the exact semantics of “per-
formingw” must be suitably defined by the application. In the
context of PIB, the result of performing a store request is re-
turning a Receipt or StoreReject for that request. There maybe
additional side effects (such as storing the actual chunk ifthe
receipt is returned) which must be enforced at the application
level.

E.2 Work assignment to another state machine

We can also partition the nodes of a system into multiple state
machines. When this is done, it becomes necessary to assign
work between state machines. The following lemma provides
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certain guarantees when our state machine liveness criteria are
met:

Let A andB be state machines which sharef +1 nodes in
their intersection.

Lemma 33. If A executesassign(w, B, a) thenB will execute
w.

Proof. By Theorem7, if rational b ∈ B submitsw to B then
B will executew. It remains to show show that∃b that will
submit the request toB. Line 47 inserts an expect into the
message queue. By Lemma11 rational b will send the ex-
pected message which is the result ofw being performed by
B. Since|A ∩ B| = f + 1, ∃b ∈ A ∩ B such thatb is non-
Byzantine. Ifb is altruistic it submitsw to B trivially. Let b be
rational. Sinceb is rational,b assumes that the otherf nodes
in the intersection are Byzantine and will not submitw to B
(thus possibly preventingb from returning the actual result of
w to A). So in order to get a valid result ofw, b must submit
w to B.

E.3 Credible threats

Ordinarily, all work is assigned through the state machine.A
node submits anassignrequest to the state machine, the re-
quest is replicated on all nodes, and finally some subset of the
nodes performs the request and the result is returned to the
state machine. This can lead to problems if the requests them-
selves are large or costly to store and transport. A performance
optimization is to instead submit a promise to assign work to
the state machine, a direct message assigning the work to an
individual node (submitting the request through the state ma-
chine only if the initiating node does not get a response back
directly), and then report the result of the work assignment
back to the state machine. The actual protocol is presented in
Figure14. There are two technical difficulties in implement-
ing such a scheme: (1) should the requester actually submit
the direct request and (2) should the requestee submit the di-
rect request.

When requests are considered in isolation, the answer to
both (1) and (2) is “no.” Due to our modeling assumptions, in
a pairwise communication rational nodes assume that the other
node is Byzantine and plan for the worst action the other node
could do to them. For both cases, the “worst” thing would be
to require the state machine to be used regardless. Since this
is a possibility, neither node will use the “fast” path solution.
We address this by introducingopenthreats.

Definition 3 (Open Credible Threat). A credible threat is
openiff the requester can expect a response from a fast path
request, based on the current time, before the requester must
submit the request to the state machine in order to guarantee
being able to fulfill his vow.

Since rational nodes assume the maximum number of
Byzantine nodes in the worst configuration, rational nodes will

assume that they receive requests from Byzantine nodes, and
that Byzantine nodes will send the request through the state
machine regardless of whether or not the rational node re-
sponds directly. If, however, there are at leastf + 1 nodes
who have issued concurrentopencredible threats against a ra-
tional node, at least one of them must be non-Byzantine so will
in fact not go through the state machine if the node responds
directly, and the rational node has reason to respond directly
upon receiving the direct request. Similarly the sender of the
request would expect to be ignored unless it currently hasf+1
opencredible threats issued. In order to quantify the necessary
conditions for the fast path to be used, we must introduce the
concept ofsufficient open threats.

Definition 4 (Sufficient Open Threats). There are sufficient
open threats fora to follow the fast path iffa ∈ A such that
|A| ≥ f + 1 and∀b ∈ A, b is the requester or recipient of a
credible threat fromB ⊂ A such that|B| ≥ f + 1.

Lemma 34. Rationala will follow the fast path if there are
sufficient open threats.

Proof. If there are sufficient open threats, then other non-
Byzantine nodes are assumed to use the fast path appropri-
ately. By thesufficient open threatsdefinition, there are open
threats involvinga from at leastf + 1 distinct nodes. Letk be
the number of distinct nodes involved in threats witha. Since
k ≥ f + 1, at least one of these nodes is non-Byzantine. The
cost of following the fast path is the cost associated with send-
ing a single messagem. When following the slow path, the
cost is at leastnm (the cost of sending a single message to all
other nodes in the state machine). So the expected cost of ig-
noring the fast path for all nodes is(k)nm while the cost of fol-
lowing the fast path for all nodes i at most(k)m+(f)(nm). If
the node follows a fast path for only some of the nodes, then by
our modeling assumption the ignored nodes will be assumed
to be Byzantine, so no node should be ignored if thek ≥ f +1
threshhold is met. So the expected cost is less ifa follows the
fast path anda will follow the fast path as suggested.

While thesufficient open threatrequirement is rather heavy
handed, it is instructive to note that the requirements are struc-
tured so that the fast path will be used when the system is under
heavy load – precisely when it using the fast path will have the
most noticeable affect.
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1 / / p r o t o c o l f o r s u b m i t t i n g a vow t o t h e s t a t e machine
2 / / w i s t h e r e q u e s t ,a i s t h e t a r g e t , b i s t h e r e q u e s t e r
3 t h r e a t e n(w, a, b) :
4 RSM. submi t (vow(hash(w), a, b) ) ;
5 d e l i v e r e d : = f a l s e ;
6 s t a r t (vow.timer1 ) ;
7 i f ( s u f f i c i e n t open t h r e a t s )
8 a . send (w) ;
9 a . e x p e c t< m : m. reqHash = hash (w)>;

10 r : = a . d e l i v e r ( ) ;
11 d e l i v e r e d : = t r u e ;
12 RSM. submi t (r ) ;
13 c a n c e l (vow.timer1 ) ;
14
15
16 / / p r o c e s s t o e x e c u t e a vow r e q u e s t
17 e x e c u t e (vow(u, a, b) :
18 i f ( p = a and s u f f i c i e n t open t h r e a t s )
19 b . e x p e c t < m : hash(m) = u >

20 r : = b . d e l i v e r ( ) ;
21 b . send (r ) ;
22 vowde l i ve red : = f a l s e ;
23 s t a r t (vow.timer2 ) ;
24 b . e x p e c t < m : m.reqHash = u > ;
25 r : = b . d e l i v e r ( ) ;
26 vowde l i ve red : = t r u e ;
27 c a n c e l (vow.timer2 ) ;
28
29
30
31 on t i m e o u t (vow.timer1 ) :
32 i f ( d e l i v e r e d = f a l s e )
33 r : = RSM. submi t (assign(w, a, b) ) ;
34 RSM. submi t (r ) ;
35
36
37 on t i m e o u t (vow.timer2 ) :
38 i f ( vowde l i eve red = f a l s e )
39 badlist[b] : = t r u e ;

Figure 14: Credible threat protocol
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