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Abstract

This paper describes a general approach to constructing camrrect and faulty nodes becomes inadequate. Nodes in MAD
erative services that span multiple administrative dosiain systems may depart from protocols for two distinct reasons.
such environments, protocols must tolerate batfional be- First, as in traditional systems, nodes may either break—
haviorswhen nodes arbitrarily deviate from the protocol fahrough component failure, misconfiguration, or corruptio
their local benefit andyzantine behaviorsvhen a broken, or be genuinely malicious. Second, nodes may be selfish
misconfigured, or malicious node arbitrarily deviates frii and alter the protocol in order to increase their util®y 31].
protocol for any other reason. The paper examines this pr@lyzantine Fault Tolerance (BFT15, 34, 39] handles the first
lem in the context of a cooperative backup system and makgsss of deviations well. However, the Byzantine modelsitas
three contributions. First, it introduces the BAR (Byzasti fies all deviations as faults and requires a bound on the numbe
Altruistic, Rational) model, which provides the foundatior of faults in the system; these bounds are not tenable in MAD
reasoning about the properties of this class of services: Sg/stems where all nodes may exhibit selfish behavior. Models
ond, it presents a general three-tier architecture aimed-atthat only account for selfish behavid] handle the second
ducing the complexity of building services developed in thgass of deviations, but the presence of a single node wiesse b
BAR model. Our realization of this architecture includes dravior deviates from the expected model may cause arbitrary
asynchronous replicated state machine that provides the miisruptions.

mal safety and liveness guarantees as long as at most tharGiven the potential for nodes to develop arbitrarily subtle
n=2 nodes are Byzantine; the rest of the nodes can be ratigetics, it is not sufficient to verify experimentally thapeo-

nal. The paper’s third contribution is to describe an immem tocol tolerates a collection of attacks identified by thetgro
tation of PIB, the first cooperative backup service to tdkeracol’s creator. Instead, just as for authentication systdi@isor

both Byzantine users and an unbounded number of ratioBgzantine-tolerant protocol84], it is necessary to design sys-
users. We show that, under the BAR model, PIB providgsms thaprovablymeet their goals, no matter what strategies
provable safety and liveness guarantees. We also show Hufes may concoct within the scope of the adversary model.
our approach is practical: our prototype of a BART state ma- To allow construction of such protocols, we define a
chine executes 20 requests per second and our PIB protokyastem model that captures the essential aspects of MADs.

can back up a gigabyte of data in 20 minutes. The Byzantine-Altruistic-Rational (BAR) model accommo-
) dates three classes of nodd®ational [61] nodes participate
1 Introduction in the system to gain some net benefit and can depart from a

~ proposed program in order to increase their net berifitan-
This paper describes a general approach to constructmgt%[la 34, 39] nodes can depart arbitrarily from a proposed
operative services that.span multiple administrative domaprogram whether it benefits them or not. Finally, BAR accom-
(MADS). Ina c.ooperatlve service, nodes collaboratg 0 P@odates the presence alfruistic [48] nodes that execute a
vide some service that benefits each node, but there is no ¢&Bposed program even if the rational choice is to deviate. A
tral authority that controls the actions of all nodes. ExarBFotocol is BAR Tolerant (BART) if it provably provides tcsit

ples of such services include Internet routi@g, [61], wireless qn_gyzantine participants a set of desired safety anddise
mesh routing $7], file distribution [L8], archival storage4l], properties. In this paper, we focus on BART protocols that do

or cooperative backu[ 20, 35]. As MAD distributed sys- 1ot depend on the existence of altruistic nodes in the system
tems become more commonplace, developing a solid founga- 5ssume that at most2 of the nodes in the system are
tion for constructing this class of services becomes imre%yzantine and that every non-Byzantine node is rational.

ingly important. _ . A key question is whether useful systems can be built un-
There currently exists no satisfactory way to model MARer the BAR model. To answer this question, we develop

services. In these systems, the classical dichotomy betwg&eneral three-tier architecture for building BART seesic



The bottom layer implements a small set of key BART akelf interest3, 31], and (c) some nodes may be fundamentally
stractions (e.g., state machine replication and ternmigate- broken B4, 15, 39].

liable broadcast) that simplify implementing and reasgnin The Byzantine Altruistic Rational (BAR) model addresses
about BART distributed services. The middle layer pamisio these requirements by classifying nodes into three cagsgyor
and assigns work to either single nodes or state machines. Fi Altruistic nodes follow the suggested protocol exactly. Al-
nally, the top layer implements the application-speciffpesss truistic nodes may reflect the existence of Good Samaritans
of BART services (e.g., verifying that responses to requeand “seed nodes” in real systems. Intuitively, altruisticies
conform to application semantics.) correspond t@orrect nodesn the fault-tolerance literature.

We use this architecture to construct PIB, a BART co- Rational nodes are self interested and seek to maximize
operative backup service. PIB is targeted at environmentieir benefit according to a specified utility function. Rati
such as a group of students in a dorm, home machines fornatnodes will deviate from the suggested protocol if ang onl
searchers in a group, or machines donated to non-profit orfaoing so increases their net utility from participatingthe
nizations B6]l—that, by supporting a notion of an identity thasystem. The utility function must account for the relevangts
is “expensive” to obtain, avoid the Sybil attack?]. We do (e.g., computation cycles, storage, network bandwidtler-ov
not target open membership peer-to-peer systems. head associated with sending and receiving messages, power

We find that our architecture significantly simplifies andonsumption, or threat of financial sanctiol®5]) and ben-
improves the design of PIB. Compared to previous peer to peéts (e.g., access to remote storadé, P, 20, 35, network
backup architectured 9, 20, 35], PIB has several advantagescapacity B7], or computational cyclesbp]) to a node for par-
it is unique in tolerating both rational and Byzantine peérs ticipating in a system.
provides deterministic retrieval guarantees; and it da¢se: Byzantine nodes may deviate arbitrarily from the sug-
quire peers to exchange storage symmetrically. Perhaps ngested protocol for any reason. In some cases a node deviates
importantly, we find that using a layered architecture signibecause it is broken (e.g., misconfigured, compromised, mal
cantly simplifies proving concrete safety and liveness eropfunctioning, or misprogrammed). In other cases, the node is
ties. functioning properly from the point of view of an owner, but

We also show that our approach is practical: our prototyfie owner’s utility function significantly differs from thatil-
of a BART state machine executes 20 requests per secondipnfdinction specified for rational nodes. Such a utility étion
our PIB prototype can back up a gigabyte of data to 21 nodweay simply model costs in an unexpected manner or it may as-
in 20 minutes, so that the data can be recovered despitestheiate great value to inflicting harm on the system or itsause
failure of 7 nodes. for personal satisfaction or commercial considerati&@. [

In this paper we make three main contributions. First, we Useful protocols specify guarantees to their participants
formalize a model for reasoning about systems in the preseblmder BAR, the goal is to provide safety guarantees similar t
of both Byzantine and rational behavior. Second, we intceduthose from Byzantine fault tolerance to “all rational antiwal
a general architecture and identify a set of design priesipistic nodes” (as opposed to “all correct nodes”). We identif
which, together, make it possible to build and reason abowb classes of protocols that meet these goals.

BART systems. Third, we describe the implementation of PI, Incentive-Compatible Byzantine Fault Tolerant (IC-BFT)
a cooperative backup system that provides provable safety a protocols. A protocol is IC-BFT if it guarantees the ap-
liveness properties within the BAR model. A key component propriate set of safety and liveness properties and it is in

of our system is a BART protocol for state machine repligatio the best interest of all rational nodes to follow the protoco
that relies on synchrony assumptions only for liveness. exactly.

The rest of this paper is organized as follows. In SectioasByzantine Altruistic Rational Tolerant (BART) protocols:
2 and3 we formally present the BAR model and our system A protocol is BART if it guarantees the appropriate set of
model. In Sectio, we describe our overall 3-level architec- safety and liveness properties in the presence of ratianal d
ture, and the next three sections present our implementatio viations from the protocol.
each of the layers: our asynchronous BART Paxos protocol, o |C-BFT protocol thus must define the optimal strategy

our techniques for work assignment, and our PIB applicatiqgy 5 rational node. In a BART protocol a rational node may

Section8 evaluates the prototype and Sect®discusses re- gain by deviating without violating the global safety guara
lated work. tees.

2 BAR Model 3 System Model

To model a MAD environmen_t we must account for three inklthough we seek to develop a general framework for con-
portant factors: (&) no node is guaranteed to follow the Sugrycting a range of cooperative services, our approach is
gested protocol, (b) the actions of most nodes are guidedfyded by a specific problem in a specific set of environments.

In particular, we are building a cooperative backup system



for three user communities: 30 co-workers who cooperativeem.
back up their personal home machines, 500 students in a dor-

mitory who cooperatively back up their personal machinggational nodes We make three technical assumptions about
and 50 nonprofit organizations that receive free or low-cqgtional nodes. First, we assume that rational nodes eeeiv
refurbished PCs36]. long-term benefit from participating in the protocol. Sedon

We assume that a trusted authority controls which nodgg assume that rational nodes are pessimistic when comput-
may enter the system, that each such member has a uniggehe impact of Byzantine nodes may have on their utility.
identity corresponding to a cryptographic public key, amatt Finajly, we assume that Nash Equilibria are an appropriate s
each member can determine whether a public key belong§ithn target.

a specific member. These are reasonable assumptions for ouRational nodes will only participate in a cooperative sys-
target environments: a volunteer distributes a list of k&yStem if they receive a long term net benefit from participation
coworkers, a university's electronic ID system maps id&@¥i |n practice, this requires that the long-term benefit (e r
to dormitory residents, and the refurbisher installs tevent |japle backup) of participation is sufficient to offset thests
information in the non-profit scenario. The strong and ledit (e.g. storage, bandwidth, computation) of participatimghie
identity assumption facilitates three important factoFsist, system. We consequently model our protocols as infinite hori
it allows for a reasonable bound on the number of Byzantingp, repeated gamesg, [8].

nodes P2]. Second, it provides rational nodes with an incen- Rational nodes want to reduce their work, if possible, with-
tive to consider the long-term consequences of their astiogyt renouncing the benefits that come from participatingén t
Third, it allows us to tie identities to real world entitieghis protocol. We assume a fairly simple model, in which nodes’
last point allows us to apply both internal sanctions (eemial tjlities are affected by the work that must be done do but not
of service, data deletion) and external sanctions (e.geta py the order in which work is performed, or who requests the
fines, suspension, social shunning) to nodes which miskeehgyork. These two variants can be handled by hiding the rele-
Support for external sanctions increases the flexibilitpwf yant factors (contents of the request or identity of the send
protocols, but is not required for deployment. respectively) until after nodes commit to executing theses,

We have different timing assumptions for PIB and for thge assume that rational nodes deviate from the protocol only
underlying BART state machine replication. PIB is a syf¢they receive a net benefit from doing so—in a tie, they con-
chronous protocol and relies on synchrony to guarantee b@ffe to follow the protocol. This appears reasonable, give
its liveness and safety properties—e.g. data trusted to ®IBjat deviating from the protocol requires some effort. Fert
guaranteed to be retrievable only until the lease assabiét  more, we assume that rational nodes abide by the promptness
It expires. principle: if they gain no benefit from delaying the sendirig o

The underlying BART state machine replication protoc@lmessage, they send the message as soon as they have idle cy-
instead relies on synchrony only for liveness. The protocgks available. This assumption recognizes that idle syate
ensures safety despite message omission, message mregydefherishable resource that may not be available at a later tim
and message alterations that do not subvert the cryptograph Rational nodes are conservative when estimating the po-
assumptions associated with public key signatusésdnd se- tential impact of Byzantine nodes on their utility. In patar,
cure hashing49]. We guarantee liveness during periods @fhen computing the expected outcome of their actions, a ra-
synchrony, as long as rational nodes consider the benefitighal node assumes that Byzantine nodes will act in the way
participating in the protocol to outweigh the costs. In pési that minimizes its utility. Additionally, since rationalbodes
of synchrony there is a known bouml on message deliveryare interested in continuing to benefit from the system, they
time. conservatively assume that the maximum number of Byzan-

In a system where costs may outweigh benefits, t0 e nodes are in fact present in the system.
sure that rational nodes continue to participate in theoprot \we focus on developing a protocol that achieves a Nash
col it is necessary to bound the cost that nodes will pay. Tliguilibrium [43]) in which no rational node has a unilateral
further requirement translates for us into a stronger B&sn jncentive to deviate from the given protocbMWe assume that
guarantee—we assume that if nodemdb are non-Byzantine 3 rational node, if given a protocol that is a Nash equilitorju
anda sendsb a request at time, b's response will reaclr il follow it. [ 3.
by timet + max_response. This strengthening allows us to  \ve assume that rational nodes do not have the computa-
bound the state maintained by non'ByZantine in order to qib'naj power to Subvert the Standard Cryptographic assump_

swer late requests; further, it allows us to improve thelavaigns associated with public key signaturé[and secure
ability of our state machine by reducing the size of the qooru
of responsive nodes required by our protocol (fremf —1to 1Be_cause our “given protocol” can be regarded as coming froexemnal

. . authority, Papadimitriou prefers to regard such an equilibras acorrelated
[(n+ f+1)/2], wheref is the number of Byzantine nodes)eqiiprium [6], which is a generalization of Nash equilibrium. This view
In order to complete our model, we must also make specifiguld not change our analysis.

assumptions on the rational and Byzantine nodes in the sys-




hashing #9]. Additionally, we assume that rational nodes dequest to read the file with a signed message that contains th
not collude. wrong data, the two messages amount to a signed confession
by the node that it is faulty and should be punished. This “ag-

Byzantine nodes. We assume a Byzantine fault model fogressively Byzantine” behavior is actually the simpleskof
Byzantine nodesl[5, 34, 39] and a strong adversary. Byzanmisbehavior to detect and punish, and a number of systems
tine nodes can exhibit arbitrary behavior. For exampley th@ave done salf6, 44].

can crash, lose data, alter data, and send incorrect ptotoco TWo other “passive-aggressive” cases are more difficult.
messages. Furthermore, we assume an adversary whoFdEgh @ node may decline to send a message that it should send
coordinate Byzantine nodes in arbitrary ways. However, W8€ receiver is in a position to accuse the node of wrongdoing
assume that Byzantine nodes do not have the computatidi#lit becomes a case of “he said/she said"—it is difficult for
power to subvert the standard cryptographic assumpticaes a@ny third party to decide whether an accusation of inacson i
ciated with public key signature54] and secure hashingg|. egitimate or has been unjustly leveled by a self-intekste

We assume that at mosg2 of the nodes in the system ardaulty node. Second, a node may exploit nondeterminism to

Byzantine. provide incomplete information or make undesirable deaoisi
that interfere with operation but are difficult to concluiv
4 System Architecture prove wrong. For example in an asynchronous replicated stat

machine 5], a node normally transmits a signed copy of the

We propose a three-layer architecture to support the develequest, but for liveness it is permitted to unilateraliyii out
ment of BAR services. Thasic primitivesottom layer pro- and transmit a signed timeout message instead. In such a sys-
vides IC-BFT versions of key abstractions (e.g. Termirgatitem, it may be preferable for a self-interested node to send a
Reliable Broadcast (TRBBH] and Replicated State Machingimeout rather than transmit the request. This choice winuld
(RSM) [15, 33, 58)) for constructing reliable distributed serhibit progress, but it would be hard for another node to prove
vices. Building on these abstractions, the middierk as- that a timeout message was inappropriate.
signmentlayer implements mechanisms that address, in the Our architecture addresses these passive-aggressiwe beha
BAR model, a basic design issue of many distributed servicegss in two steps. First, at the lower, application-indegemt
how to partition work among the system’s components. HFayers, we explicitly design the protocols and the incentiv
nally, the topapplicationlayer performs application-specificstructure to ensure that it is not in the interest of a rafiona
actions, e.g. defining application-level requirementsgut- node (i) to be silent when the protocol calls for it to send a
antees, verifying that each component faithfully perfothes message, (ii) to send messages that arevedtformed(e.qg.,
work assigned to it, and taking appropriate action when oaevell formed response message would have to be signed and
does not. include a hash of the corresponding request), or (iii) tastub

In our backup application, we use the bottom twiite an undesired message for a desired one when it is free to
application-independent layers to take a requestended for make a nondeterministic choice. Conversely, the highesi lev
node: and bind it to either (a) a well-formed responserfo protocols deal with these behaviors by (i) relying on lovest |
signed by: (b) a provably ill-formed response (or set of reels to “force” applications to provide well-formed respesso
sponses) signed by or (c) a “no evidence” response, afterequests and (ii) using application-level state and seicgit
/ + 1 nodes unilaterally decide that an application-specifiestrict what replies may legally be made to a request.
timeout has been exceeded far Given a response-request The purpose of this layered architecture is to simplify the
binding, the application layer is responsible for (a) judpi design and analysis of BAR services. Abstractions with prov
whether a syntactically “well formed” response to a requesile properties and layered architectures are powerfid foo
constitutes a “legal” response to the request based oncapplinanaging the complexity involved in building and reasoning
tion semantics and (b) taking appropriate action in respéms about fault-tolerant distributed servicel)[ 15, 39, 58]. We
any proof of misbehavior against a node. believe it is crucial to leverage these tools as we constuer t

Accountability lies at the core of this approach to comdded difficulties that a BAR model introduces — protocadt th
structing BAR services: if nodes are accountable for their tattempt to handle these challenges with monolithic, end-to
havior, then rational peers have an incentive to behave aamd solutions run the risk of being too prohibitively comple
rectly. Strong identities and restricted membership maked reason about. On the other hand, a layered IC-BFT solu-
possible to enforce meaningful internal and external desin tion introduces its own set of challenges, as it needs torensu
tives. But that is only part of the solution. How should a sys-seamless binding between the incentive structure uséeé in t
tem detect and react to incorrect behavior? lower layers and the overall end-to-end incentive strctfr

One case occurs when a set of messages constitute a gadfapplication.
contained cryptographic Proof Of Misbehavior (POM) by a Our architecture essentially defines a contract between the
node. For example, if a node first signs a promise to stora@plication layer and two two lower, application-independ
file with a particular cryptographic hash and then respoods tlayers. The lower, application-independent layers preia-



portant abstractions to the upper one, but they require fremsure progres€ncouraging timelinesallows nodes to uni-

the application an incentive to drive nodes to participatdhée laterally judge whether other nodes’ responses are “on’time

lower-level work: the overall benefit of being in the servicend to inflict sanctions for untimely messages. Our techesqu

must exceed the cost for every rational node in the system.ensure that (a) nodes have incentives neither to mete out un-
warranted sanctions nor to forbear deserved punishingeatd t

5 Level O: BART state machine (b) the costs imposed by Byzantine nodes through spurious

o ] sanctions are limited.
At the core of fault-tolerant distributed services are a femw

damental primitives. For instance, state machine rejticat5.1  Protocol description
is essential to most highly available replicated servide}, [
and quorum-based replication is the basis for fault-toledss-

tributed st t h Ph |&N)}. [Th agree write show-quorum

ributed storage systems such as Phal e purpose Sender

of the bottom layer of our architecture is to implement funda mmm%k

mental primitives so that they provide their familiar gusteses

within the BAR model. In this section, we present a BART

asynchronous replicated state machine (RSM). Our protocol _'nstancelofTRB Instance :

is based on PBFT1[], with modifications motivated by the Figure 1: TRB

BAR model. These modifications are based on three high-level oy BAR replicated state machine protocol is based on
ideas. PBFT [15]. When a node wants the state machine to execute a

The benefit principle states that nodes must gain longequest, the node proposes the request in a TRB instance. In-
term utility for participating in the system. This long-t@in- gi5ces proceed in sequence, with instandeciding theith
centive is necessary to motivate self-interested nodesrt@p peration to be executed by the state machine. We differ from
ipate faithfully. Our RSM rotates the leadership role torgugpggT protocol in several key points.
antee that every node has the opportunity to submit propogal\ye yse TRB instead of consensus. This choice is a specific
to the system. application of the principle dfmiting non-determinismas

Predictable communication patternsencourage nodes to opposed to consensus, in TRB only endemay propose
participate at every step of the protocol instead of jushat t 4 vajue during a particular instance. We initially attendpte
steps that bring them a direct benefit. Our protocol requiresg yse a consensus protocol as the engine of our state ma-
nodes to have participated in all past steps in order for toem  chine, put found the restriction on who can propose in each

be able to submit a proposal. _ instance necessary in accounting for the behavior of ration
Limiting non-determinism ensures that the predictable noges. Without this restriction, a new leader elected to ter
communication patterns  contain useful work.  NON- yinate instance after sufficiently many nodes have timed

determinism offers nodes the choice of multiple acceptabley,t on the sender may prevent progress by selfishly trying
behaviors, each of which are “correct” in different circum- 1o make the state machine adopt its value, rather than the
stances. Given a specific state of the protocol, one of theenger's (see Appendiz.4).

behaviors is preferred by the protocol, and nodes mustpbeye enforce a round-robin leader election policy. Thistot
given proper incentive to choose the preferred behavior. Injon gives every node a fair chance to propose commands to

our implementation of IC-BFT primitives we Carefully limit the RSM, and enforces a predictab|e exchange of the lead-
the choices available to a node. For example, we base ougrship position.

state machine on TRB rather than consensus, because thgfaive require at leastf + 2 nodes (rather thaff + 1) to

mer protocol, by allowing fewer valid outcomes, gives raéib  toleratef Byzantine nodes. The reason is subtle and, once

nodes fewer options to choose from when deciding which be-again, has to do with the need to account for rational nodes;

havior maximizes their benefit. in particular, in instance liveness can be compromised if
When non-determinism is unavoidable, two low level tech- the sendes is slow, and, after a new leader has been elected

niques are often usefulCost balancings employed when a  to complete;, s is able to influence whether the new elected

node has a choice between multiple actions. The costs of the:ader proposes’s original value, or a default value (see

actions involved are engineered so that the protocol-pede  AppendixC.4).

choice is no more expensive than any other potentially lega

choice. For instance, instead of sending a list OT nodgs thaﬁSarticipating in the steps required to complete the inganc
are up-to-date, an IC-BFT protocol would sencbits with without jeopardizing safety or liveness

an entries set to “1” for up-to-date nodes so that the sender ~too protocol provides four guarantees in an even-
saves no network bandwidth by sending incomplete infom}ﬁélly synchronous BAR environmentTermination every

t'o?' As;:jnc;hror!y.ls pam:(:ul;arly tchlalltsnglngtdue toits Gt“h non-Byzantine process eventually delivers exactly one-mes
ent non-determinism; unfortunately, timeouts are requice sage.Agreementif a non-Byzantine process delivers a mes-

by using an extra node, we can prevent the slow sender from



sagem, then all non-Byzantine processes eventually delivilratz expects fromy. A bubble must be filled with an appro-

m. Integrity. if a non-Byzantine process delivers, then the priate message from beforex can proceed to send the mes-
sender sentn. Non-triviality: In periods of synchrony wheresages in the queue beyond the bubble. To ensure;tbands

the benefit principle holds, if the sender is non-Byzanting athe appropriate message, and not just any message, a predi-
sends a message, then the sender eventually delivens cate is associated with each bubble: a message frisral-

The protocol provides safety under an asynchrondesved to fill some bubble only if it satisfies the correspormdin
model, but is live only during periods of synchror2g]. We predicate—otherwise, it is discarded. The message queue ex-
assume that, during these periods, there exists a knowrdboports three operationssend andexpect (predicatg insert
A on message delivery time. Note, however, that practiéalthe queue, respectively, a message and a bubble; ver
implementations of our protocol are likely to further regui removes the bubble closest to the head of the queue and lets
a known but large (e.g., 1-week) bound on the time betwesad the corresponding message.
when a request is made and a response is returned by a raMessage queues, combined with quorums of sizef —
tional node. We use this stronger assumption to bound stateprovide the incentive for rational nodes to send messages
we discuss this issue in Sectidnl.5 Relaxing this tim- expected in the protocol. If a given rational nodehooses
ing assumption requires the inclusion of incentive-corilppat not to send a message to some netleat follows the protocol,
garbage collection and checkpoint recovery; this does pot thens will ignore r in the future. In the worst case for the
pear to introduce additional fundamental difficulties asthe f Byzantine nodes in the system will not communicate with
focus of ongoing work. r, preventing it from gathering a quorum during its next turn

Figurelillustrates an execution of TRB occurring in a peassender This will preventr from gathering the quorum of
riod of synchrony when no failures are present. Each TR&sponses required in a later step of the protocol, stopping
instanceis organized in a series ¢firns In each turn, some from making progress and effectively excluding it from the
process is designated tleader The pre-specifiedenderfor state machine.
instancei is the first leader for instance In the first turn,
thesenderattempts a three-phase-commit on a proposed vaﬁl
(the phases are labeled agree, write, and show-quorunh If traditional replicated state machines require the cliesend
other nodes receive the messages on time then they accepithemmand to a sender, who proposes the command to the
value and the broadcast is successful. If, on the other hast@te machine. The client is missing from Figliieecause we
nodes decide the message is late, they send a “set-turn” niete the role ofenderamong the nodes in the system. This
sage to indicate that a new turn should start. Nodes othar tRgovides nodes with a periodic opportunity to propose \&lue
the sender are selected round-robin for the leader role.  to the state machine, partially satisfying thenefit principle

First, the newly selected leader performs a read: it querfege to the self-interested nature of rational nodes, a nade ¢
all nodes for their current observed value and waits for a quilly be certain that a specific request is proposed to the stat
rum of responses. If any node reports seeingstilels pro- machine if that nodes proposes the request itself.
posal, then the new leader attempts to broadcast that v

a%!‘i:a Balanced messages
Otherwise, the new leader broadcastsindicating that the o g .
senderis suspected of having failed. Once a value is deliV© @Pply the principle otost balancingo the consensus pro-
ered, thei + 1th instance starts with the nesenderin the tocol, we make sure that all messages have the same cost. This

sequence. influences for example the behavior in the first phase of the
AppendixB includes detailed pseudo-code for the a|g@_rotocol (“giveOldValue”), in which a newly elected leader

rithm. Due to space constraints, we limit our discussion &Ks nodes for the latest command they have seen. We require

the key differences between our protocol and traditional Bthe answer to always be of the length of the largest possible

%.2 Rotating leadership

implementations. command—even if in fact the node has received no command
yet—so that lying would not allow a node to send a shorter
5.1.1 Message queue message.

Message queues are the low-level mechanism we use 10LN-4  penance

force predictable communication patternsAll communica- _

tion takes place through the message queue infrastructure.In the Byzantine model, correct nodes send all relevanpprot
Message queues implement a simple “you don't talk to rr%)’l messages without fail. In the BAR_modeI,.r_anonaI nodes

| won't talk to you” policy: if nodex next expects a messagénay.sklp messages that decrease their net qtlllty. When com-

from nodey, = will ignore any communication from and delaymunication patterns are prgdlctable and a rational node/&no

any communication tg until it receives the expected messagat @ specific message will be sent eventually, that message

The message queue used:byo regulate its communication!S Sent immediately by the promptness principle. Host

with y contains entries for the messages thattends to send balancingmechanism described in Sectibri.3provides in-

to y, interleaved with “bubbles” corresponding to messagggntlves to send the protocol preferred message when a node



must choose between two or more possibilities. Encouraging In addition to bounding the time that a node is required to

good behavior among rational nodes is more challenging wrstore intermediate data to a coarse grained time out, we also

waiting may allow a node to avoid sending a specific mdsnit the amount of data any node can insert in each timeout

sage entirely. In our protocol this is especially relevamntthe interval. The middle and upper layers implement a request-

"set-turn” message required as part of the new leader electiesponse communication pattern and it is appropriate tgrass

phase. to a requestor the overheads imposed by both a request and
We implement a “penance” mechanism to encourage tintikee resulting response. We consequently address thesdetail

liness in the state machine. Individual nodes maintaini@n limiting the rate of requests to the state machine as paniof o

timely vector that tracks their perception of other nodes timeork allocation primitive in Sectio6.4.

liness: a node is considered untimely if the node sends "set- .

turn” messages earlier or later than they are expected by r? Proving IC-BFT

other node. Values proposed bgenderinclude thesendels To prove that a protocol is IC-BFT for a given model of ratio-

untimely vector. When a value is delivered, all nodes exwal nodes’ utility and beliefs, one must first prove that the p

cept thesenderexpect a penance message from each untimé&bgol provides the desired safety and liveness propertidsiu

node. The untimely nodes must send the penance messagdleg@assumption that all non-Byzantine nodes follow thegrot

all nonsendernodes in order to continue using the systernol. Second, one must prove that it is in the best interestt of a

There are three important considerations to the penance masonal nodes to follow the protocol.

sage: (1) the size and form of the penance message must b&ur rationality model is described in Secti®nwWe assume

chosen so that the expected benefit of sending late is less that rational nodes will follow the protocol if they obseat

the expected penance cost, (2) seaderis excluded from re- it is a Nash equilibrium, so we must show that no node has a

ceiving penance messages to prevenstdraerfrom incurring unilateral incentive to deviate. We show this by enumegatin

additional costs through truthfully reporting a penancel ) all possible deviations.

the spurious work introduced by Byzantine nodes through the The simplest deviations are those that do not modify the

penance mechanism is bounded by penance messages panessages that a node sends. In our state machine protocol,

node. no such deviation increases the utility. We must then examin

every message that the node sends and show that there is no

incentive to either (i) not send the message, (ii) send the me

In specifying gpredictable communication pattgrwe require sage with different contents, or (iii) send the messagéeearl

all nodes to send all protocol messages. In particular,deao or |ater than required. Also, we must show that nodes have no

remains silent for an extended period of time it can force-ngRcentive to (iv) send any additional message.

Byzantine nodé to cache an arbitrarily large set of messages Using these techniques, we arrive at the following (Ap-

reflecting the history of the protocol. These messages neuspendixB).

cached so the two nodes can fulfill their message queue ebliga o o

tions oncex becomes active again. In the absence of incenti\%jeorem 1. The TRB protocol satisfies Termination, Agree-

compatible checkpointing (to allow garbage collectias], Ment, Integrity and Non-Triviality.

the cost of participating in the system can grow without Bbuntheorem 2. No node has a unilateral incentive to deviate from

Rational nodes will withdraw from the system when the cosjgs protocol. [ncentive compatibility

become too large, eliminating liveness even in periods of sy

chrony. To illustrate the methodology, we show some of the lem-
We bound this state in two ways. First, we introduce dRas involved in verifying the incentive-compatibility dfie

additional weak synchrony assumption: non-Byzantine sod@nding of the “set-turn” timeout message. The incentive fo

are guaranteed to respond to a requestiay:_response (e.g. sending the message at all and not sending it twice are dis-

1 week) after the request is issued. Our state machine leg@issed in more general lemmas, not shown here.

ages this assumption to bound state through the per node Maip, 15 1 No rational node- benefits from delaying sending

tenance of &adlist. Nodea considers nodeto bebad if bhas o «sat.tyrn” message.

not sent an expected message for longer thanm _response.

Nodes publish theibadlists when submitting proposals to thd.emma 2. No rational node- benefits from sending the “set-

state machine; any node listed fn+ 1 lists is considered to turn” message early.

be Byzantine. Nodes which consider another node Byzan-

tine are able to unilaterally discard all messages correspo

ing to the presumed Byzantine node. In addition to helpir'?

to bound state, this mechanism enables the use of quorum

size[%f] rather tham — f — 1, improving availability of the

state machine.

5.1.5 Timeouts and garbage collection

The proof sketch for the first lemma relies on the penance
rotocol described in the previous section. The second Emm
(%IS with early time-outs. By construction, is at least as
I%lrge as the sender’'s command. Nodes other than the sender
have no stake in which command is decided because they can-
not prevent the sender's command from executing but at most



delay it. The sender itself could have an interest in manipu-

lating the outcome by sending “set-turn” early or late, vahic A B
is why in our protocol the sender is not allowed to send these OO Oo
messages. Op %0 ., o
. . . O=0 0= O O
Lemma 3. No rational noder benefits from sending a mal- @) O U
formed “set-turn” message. ainA b% 5

The set-turn message contains no information other than ) o _
the turn number, so a malformed message reduces to either a Figure 2: Partitioning work in the system

nonsensical message, a resend or an early send. _ . _
e The state machine “testimony”, in the form of a Proof of

Misbehavior (POM) can be used by higher levels of the pro-
6 Level 1. Partitioning Work tocol to hold rational nodes accountable for their (in)asi

In addition, the state machine can “take justice in its own
State machine replication requires each replica to pra@ss  hands” by refusing service to non-responsive nodes.
command and maintain a full copy of the state required to doCredible threatsZ1] can be used to reduce the load on the
so. This can be impractical for many applications in coopera state machine. The credible threat of asking the state ma-
tive services with 10’s, 100’s or more nodes. For example, achine to witness a work assignment is enough, in the com-
cooperative backup application that requires 100 GB ofactu mon case, to motivate rational nodes to honor work assigned
storage in order to provide the abstraction of 1 GB of stabledirectly to them by other nodes.
storage is unacceptable. The purpose of the middle layer of
our architecture is to support flexible and efficient streg 6.1  Assigning work to nodes

for partitioning work among the nodes in the system. When nodes wants to assign works to nodea, it submits to

In particular, we support two general approaches. The fifigk state machine the commaassigrfreques), whererequest
is to organize the nodes into multiple state machide$8|. s a tuple of the fornfw, a). The state machine replies with an
Intuitively, each replicated state machine can be thoufjbso 5K forrequest Whens receives the ack, it inserts aspect
providing the abstraction of a single, correct node. In tA&RB pypple in its message queues to each of the nodes in the state
model, this translates into saying that, if the incentivesia  machine. The corresponding predicates indicatedleapects
place for individual rational nodes to follow the assigneo-p from each node a well-formed response’s response should
tocol, the replicated state machine provides the abstracli gijther include a message signeddoyith the result of execut-
a known, altruistic node. The work can then be partition% w: or it should indicate that received no evidence that
among the replicated state machines, which can also bedgscyteds. To avoid being shunned by each non-Byzantine
lied upon to route the work where appropriate. Using this agnde; has an incentive to send a well-formed response to
proach, the replication of work and state grows with the sigg@thermore, since by design the cost of sending the “no evi-
of the individual replicated state machines, rather tharstbe gence” response is higher than the expected cost of foragrdi
of the system. a message from, ¢ has an incentive to try to respond with the

A second, more aggressive approach is to assign workdfier. Hence, each non Byzantinénserts in turn arexpect
specific nodes in the system. Of course, unlike replicate sty pple in its message queuedowith a predicate that requires
machines, individual nodes may be faulty, but some classe$, Qg send it a well-formed message that includes the result of
applications can cope with such failures. For example, én t@xecutingw.

context of backup, arithmetic codin§J| can be used to store  Nodess files to the application layer a POM againsif it

reducing the storage overhead. two or more different responses signeddoyin our extended

Our middle layer supports a combination of these two agchnical report]] we prove the following lemma:
proaches: as shown in FiguPewe let an individual node as-

sign work to the state machine to which it belongs (egg Lemma 4. If the state machine executes the command
A); state machines can assign work to each other, and cgrre@8sigriw, a) anda is rational, thena will executew.

route these work assignments (e4.to B to C); and finally,

a state machine can assign work to any one of its nodes (ggga Assigning work to state machines

Btob).

The implementation of work partitioning layer Ieverage];he primary d|ff_|cglty |n-pro.wd|ng communication between
three principles: state machines is in motivating state machihe process re-

. . . . %uefsts which originated from another state machneWe
e State machines can function as unimpeachable withesses 0

the interactions that lead to work assignments.



address this difficulty by overlapping membership of stage nmit assigriw, a) through the state machine—by Lemiaa
chines. Figures illustrates the architecture for a simple diwould in that case have to performanyway, and would fur-
rected ring topology. Requests assigned to an adjoinirig staermore have to send more messages, incurring higher cost.
machineB are conceptually assigned to tfie- 1 nodes in the Counting ona’s reasoning,s, having submitted a credible
intersection. This intersection is guaranteed to contilieast threat, would in turn have an incentive to contacdirectly

1 non-Byzantine node and all rational nodes in the interséefore issuin@ssign

tion assume that the othgmodes are faulty and consequently For technical reasondl], the incentive compatibility of
submit the request t& at their next opportunity. this approach is only guaranteed wheis the concurrent tar-

In our extended technical repofi] jwe prove the following get of f + 1 opencredible threats, i.e. credible threats where
lemma concerning state machindésand B which overlap in a’s action may determine whether the threat will come to pass.
f + 1 nodes: )

6.4 Regulating work volume

As discussed in Sectida1l.5we must regulate the volume of
work submitted to the state machine. Since our fundamental
communication pattern is that of request-response, it make
sense to attribute the work imposed by both the request and it
subsequent response to the requester. We regulate theeszolum
of work submitted to the state machine by granting each node
a consumption quota that is reset after an appropriate tene p
riod, for our application this time period is on the order ato
week. The size of every request the node issues through the
state machine as well as the size of every resulting response
counts against the node’s quota. If the node exceeds its con-
Figure 3: Linking state machines sumption quota, then the state machine treats the nodelts fau

In a system composed of state machines linked as we ag_dispussed in Secti@nl.5 Itis the (esponsibility of the ap-
scribe, the safety of the whole system relies on the assumpf?“ca“on layer to set the consumption quota to a reasonable
that there are no more thgrByzantine faults in any replicated"alue-

state machines. As the number of state machines incre&s§, [ . . .
may be wise to be more conservative in one’s choicg. of Level 2: The Appllcatlon

6.3 Optimizing work assignment In our architecture, BAR applications must discharge edch o

. . . . the following four responsibilities in order to take adveag
In a backup service like PIB, requiring to submit large of lower-level abstractions.

backup requests through the state machine could incur larg . . . , -
overhead when the system is under heavy load. To enable rﬁo erqwd_e rational nodes with a long-term benefit for partic
efficient work assignment in these circumstances, we Igeer@ %ité?gnlsv?ri ?gsntce)égs in a fault tolerant manner

the game-theoretic notion of credible thre&#[ In the game 5’ 9 ’

£ chick dible threat inst rational bl g Determine if the contents of a request or response consti-
or chicken Fl, a credible threat against rational players Would y vo 5 proof of Misbehavior (POM) under the application
be to visibly rip off the steering wheel and throw it out the

. . semantics.
window. IIn (?ur case, a credible threat takes a somewhat Jesgnction nodes that have provably misbehaved.
spectacular form. . . ... Itis much simpler to design an application under these regui
o tlhne F;Itiiean?ggriiésfhu:ioam%i\matggéa;ﬁyoj;gn;tlztln%nents than under the lower-level priqcip!es discussed ('?q Se
promises, by time (i) to ask some work 70& and (ii) to sub- tions5 and6. Because Iowgr-lgvel primitives hanQIg reliable
mit to the,state machine the response it receives frolivhen work assignment, the application focuses on defining the le-
a state machine replicaexecutessow(a, t), it inserts in its gal requests a nd responses overthg syst_em’s o!ata: A.Sa resul
message queue tcanexpect bubble 1:his’ makes the threa%he reaqer will notice thz.it the _foIIowm_g d|sgu55|on IS ddns

. : . N erably simpler than that in earlier sections: it focusestarcs
credible, as long asis sufficiently far in the future, because turing the messages so that incorrect responses are alsis pro

knows thats would be shunned by all replicas after timi it ) : X
. ! . of misbehavior and not on encouraging nodes to respond or on
were to break its vow. To fill the bubbls,either sends a re- .
balancing costs.

ceipt for the work performed by, or a more expensive default To illustrate how an application addresses these issuss, th

message mandated by the protocol. . . .section examines PIB, a MAD cooperative backup system.
Intuitively, the presence of a credible threat gives an in-

centive to rationak to respond directly to the work assign-
mentw that it receives frons without waiting for s to sub-

Lemma 5. If A executes the commargsign(w,B) then B
will executew.




7.1 PIB overview containing theStorelnfoand aProofthat is stamped and signed

PIB is a cooperative backup system in which nodes commitQ% the storer, and (c) anything else. If a receipt is recetied
contributing an amount of storage to the system (and togari{'® "€Ceipt is added to the owner’s record of consumption on
ipate in the system’s state machine) in exchange for an ed{}§ System, known as tl@wnlList A StoreRejectan validly
amount of space on other nodes. In normal operation, Fngtam_ proof that the storer is fuII:_a list Sltorelnforecords,
consists of three fundamental operations: store, retrieng ©2Ch signed and stamped by their respective senders, where
audit. When a group of files are marked for storage, the owlfg#Ses from their stamps have not expired and whose to@l siz
splits them into smaller pieces (chunks) which are sentfto d?!US the requestStorelnfosize exceed the node’s quota. Any
ferent nodes (storers) for storage on the system. The stof§Per response constitutes a POM against the storer—¢sther
respond with signed receipts. The owner keeps the recefﬁ‘f‘s response itself is a POM gene_rat_ed by the.work allocation
and the storers keep the Storelnfos (part of the store réases'@Yer (€-..L) or (b) the response is inappropriate for the re-
their “record of participation” in the system. When the own&U€st and thus a signed confession.
needs to retrieve a file, it sends a retrieve request to eatd no
holding a relevant chunk. Any node that refuses to return tRetrieve. A PIB retrieve request consists of tReceiptfor
chunk without valid reason (e.g. it holds a more recent Stdire chunk to be returned. The three possible responses to a
elnfo that overwrote the chunk) is guilty of misbehaving arfétrieve request are: (a)RetrieveConfirntontaining theRe-
can be punished. Nodes periodically audit each other'sdscoceiptand the corresponding chunk stamped and signed by the
in order to verify that nodes are not using more space in tterer, (b) eRetrieveDenyontaining theReceiptand aProof
system than their quota allows. PIB relies on the work alocstamped and signed by the storer, and (c) anything else. If
tion primitive described in Sectidhito reliably distribute work the response is RetrieveDenythen the théProof must show
in the system. The work allocation rate limit is set to pravegither (a)Receipthas expired (b) th&eceipthas been super-
a node from triggering requests and responses totaling mégged by a more receStoreRequedtom the samewner to
than double the node’s storage quota per coarse timeout inflee samename, or (c) the storer is in the process of recov-
val; violation of this limit may lead to the formation of a POMering its data (see below). Any other response constitutes a
against the offending node. POM against the storer— either the response itself is a POM
. . ) generated by the work allocation layer or the response s ina
7.1.1  Arithmetic coding propriate for the request and thus a signed confession.
We employ arithmetic coding for (a) fault tolerance and (b)

reducing the cost of running the PIB system. Nodes erasifgjit. The audit mechanism takes place in three phases.
code b9 files with anz — f out of 2 encoding and store thegirst the auditing node selects a node to audit. The auditing
resulting chunks on different peers in order to tolerafaults  oge then requests both ti@vnListand StoreListfrom the
with less storage than required by full replication. Forraxa g ,ditee. After retrieving the two lists, the auditing noae r
ple, in a 10-node system with = 2, a node must contributeqyests thewnListfor every node the auditee claims to store
1.3GB of local storage to back up 1GB of data. Keeping thifss for and theStoreListfor every node the auditee claims to
ratio reasonable is crucial to motivate self-interestedent® oy, files on. The collection of lists are cross-checked fer in
participate faithfully. consistencies; any inconsistencies result in a POM aggiast
offending node. ArOwnListand StoreListare inconsistent if

a Receiptindicated on one should be present but is not on the

Th? core of a BAR applicatiqn in our system is carefully SUUGther. Audits are potentially very expensive operatioms] a
turing messages so that an incorrect response to a request ¢0qes will avoid performing them if possible. We avoid this

stltu_tes a POM a_g_am_st the s_ender of the response. The lem by requiring each node to submit the results from a
assignment primitive in Sectidhprovably binds responses t ecent audit — either a POM or a complete seDafnList and

requests or tal if the target fails to respond. Every Message | isk to the state machine every 1000 proposals.
in the PIB protocol is stamped with a unique sequence number

and signed by the sender. 7.1.3 Time constraints

The primary purpose of a backup system is to provide con-
Store. A PIB store request consists of two components. Thenient retrieval following a catastrophic disk or useifie.
firstis a tuple(name, owner, storer, hash, sizg)lled theStor- The utility of a backup program is greatly reduced if the re-
elnfo. The second is the chunk being stored. Tashand trieval guarantee is “eventual recovery” rather than “uecg
sizefields of theStorelnfocorrespond to the hash and size, revithin time ¢.” In order to guarantee a concrete recovery win-
spectively, of the chunk being stored. TBeorelnfotuple is dow, PIB assumes that all non-Byzantine nodes will respond
stamped and signed by the owner. There are three possibla request withinnax_response. Any node that fails to do
responses to a store request: (&eceiptcontaining theStor- so is considered faulty, a POM against such a node can be ac-
elnfoand stamped and signed by the storer, (St@eReject

7.1.2 Request-response pattern
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quired by issuing a request through the work allocation prina valid response by; to any retrieve request, and (4) evicts
tive. i, from the systemi; uses the grace period to first issue RE-
We utilize leases to bound the duration of store requests@BVER requests to all nodes; nodes must reply with each non-
the system. When messages are signed, the sequence nuexpéned chunk on theiBtoreListstored byi; (they may have
is actually a time stamp reflecting the local clock of theipart to Retrieve other chunks to construct this information, thet
ipating machine. In PIB, ever$torelnfoexpires 30 days afterwork assignment operation ensures that they perform this ex
the request is signed by the owner. If the owner needs to keepsive action.) Then; may retrieve its own data from the
the chunk in the system for more than 30 days, the owner mbgtkup system. ldentity, is technically removed from the
renew the chunk by sending a sec@tdreRequediefore the system (and no longer counts against our limitfagimulta-
original lease expires. neous failures) at the moment thaffinishes recovering other
In order to support leases and allow nodes to consistenttydes’ stored data.
interpret the time stamps applied by other nodes, we assumeThree factors prevent a rational node from deliberately ex-
that the clocks for all non-Byzantine nodes are synchrahizgloiting linked identities to avoid punishment. First, bawde
to within one day of each other. Jf + 1 nodes certify that a has a small number of identities (e.g., 3 initially plus 1rgve
node’s clock is outside this synchronization window, they atwo years) and cannot recover its data after all have beeat) use
collectively capable of issuing a POM against the node.  using a linked identity thus reduces the future utility oé th
The introduction of these timing assumptions and lease dystem. Second, a new linked identity is responsible for the
rations allows PIB to (a) provide stronger guarantees véth messages of previous identities, so hodes cannot avoid. work
spect to recovery time and (b) limit the amount of “dead” stoFhird, linked identity; ; must contributel.17 times the storage
age in the system. These two factors aid in increasing the o\ identity iy but receives no corresponding increase in quota;
all utility of the system, making it more attractive for i@tial this ensures that a node cannot reduce its total disk storage
nodes. costs by failing to store data and then switching to a newelihk
identity to hide this fact. Note that the first factor alsoitisn

/.14 Sanctions the damage that can be done by a series of linked entities unde
Various components of the PIB system, from the primitives‘persistently Byzantine” node’s control.

in Sections5 and 6 to the mechanisms described earlier in
this section, generate POMs against specific nodes. Thésd Guarantees

POMs convict a node of misbehavior and require that the norlge PIB system provides the following guarantees undersP1B’
be punished appropriately; without appropriate punisitme®arse synchrony assumptions. (i) Data stored on PIB can be
nodes have no incentive not to misbehave. retrieved within the lease period. (i) No POM can be gattiere

For simplicity PIB handles all POMs in the same fashioggainst a node that does not deviate from the protocol. (iii)
whenever a POM is submitted to the state machine, the PQM node can store more than its quota on PIB without risking
is distributed to all nodes and each node evicts the guilttypapeing caught. (iv) If a node with at least one unused linked-
Note that the POM provides a basis for more sophisticatig@ntity crashes and loses its disk, it is guaranteed a windo
strategies including suspending a node’s store and retrigy time during which it can rejoin the system and recover all
rights pending administrative intervention, increasimg $tor- data it has stored.
age a node must contribute (without increasing its quota) or
emitting the POM “up a level” to an administrative entity fo  Evaluation
external disciplinary action.

In this section we evaluate our replicated state machine and

7.2 Recovery PIB prototype. Our microbenchmarks show that our RSM
Since we are dealing with a backup system, nodes that lpgetotype can perform about 15 operations a second for small
their local state must still be able to make use of the systegroups of users, an adequate level of performance for our ap-
Our approach (1) allows such a node to assume a new ideligation’s requirements. We then evaluate the perforreanc
tity to access its old state and (2) restricts this abilitypte- of the PIB application by storing and retrieving large amtsun
vent rational nodes from shirking work and to limit damage t8f data. We find that our non-optimized PIB prototype can
Byzantine nodes. backup in 20 minutes a gigabyte of data to 21 nodes, which en-

Initially we give each node a fixed serieslifked identi- sures that the data is recoverable despite the failure ofl@so
ties ig .. .imaz. A node using identityi; ; can begin using .
i; at any time. Any node that receiveé a message from id<§n-1 Experimental setup
tity i; (1) assigns all message queue bubble obligations of &g ran all experiments on Pentium-1V machines with 2.4Ghz
preceding linked identityif,(k < j)) toi;, (2) grants Retrieve processors, 1 GB of memory, and Debian Linux 3.0. These are
rights toi; for any data with a valid lease hy, (3) initiates a public machines, connected through 100Mbps ethernet.
fixed grace period during whicRECOVERINGSs considered
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Our prototypes are implemented using Java 1.4. We set 250

Fixed, unlucky ——

the initial TRB network timeout to 10 seconds. The maximum Round-Robin -

response time and lease duration are set to a week and a month 200 | Fixed, lucky -

respectively, but our experiments did not rely on theseaslu O

The experiments assume no failures. We use the BouncyCastle § 150 ¢

cryptographic library and Onion Networks’ FEC library for 2

erasure coding. g 100 1

8.2 Micro-benchmarks 50T e
We use micro-benchmarks to evaluate our replicated state ma okl

chine prototype. The main questions we try to answer are (a) 0 5 10 15 20 25
whether our RSM is practical, (b) whether our RSM scales to a Number of consensus

reasonable number of peers, and (c) whether our RSM handles

: A Figure 6: Impact of rotating leadership
intentionally slow nodes well.

Our performance is inferior to protocols that are not de-

= ‘ ‘ ‘ ‘ signed for the BAR model. PBFTLH] requires only 15 ms
£ Lol [ ______ i per consensus on less powerful hardware than ours. Pas of th
3 1 l difference is explained by our language choice, but the main
g s8o0f ll 1 factor is the fact that our IC-BFT RSM requires the proper-
§ 60 | l l ties of digital signatures, so we cannot rely on the fastelGVA
E I primitives.
G a0t 1 Figure 5 shows the effect of a single node (out of four)
% that is unreachable for an hour. Our protocol, for incentive
E 20 compatibility reasons, does not allow that node to skipatliye

0 : : : : to later instances of TRB when it returns: a concern therais th

0 5 10 15 20

it may take too long for nodes to catch up. The experiment
Number of peers

shows that the unreachable node (solid line) was able td catc
Figure 4: RSM performance as peers are added  up in less than two minutes, so the impact of long periods of
unreachability is minor.

Figure 6 shows the relative impact of two leader elec-
tion policies in the presence of failures. Our protocol resa
the role of sender between each instance of TRB. A PBFT-
like protocol instead rotates the sender only when the otirre
sender is determined to be faulty or untimely. When the sender
is timely and non-Byzantine, the state machine proceeds at
full speed for either protocol, without timing out (cf. “Féx,
L lucky”). However, a Byzantine sender can proceed slowly—

.| just fast enough to avoid triggering a time-out (cf. “Fixed,
0 : 0 s w0 50 unlucky”). Our sender rotation (cf. “Round-Robin”) limitise
Running time (min) . .
worst case damage imposed by a slow node and achieves a
gerformance closer to the best case.

4500 T
| slow node —
normal node -
3500

4000

3000~

2500

2000~

15001~

1000 ==

Number of consensus (4 peers

500

Figure 5: Time a node spends catching up for its absenc

Figure4 shows the average speed of consensus operatigré PIB
for systems of 4 to 20 nodes. Each trial measures the avera{l®@ performs adequately when storing and retrieving data.
duration over 50 consensus operations. We run each configigure 7 shows the time taken to store and retrieve 100MB
ration 10 times and show the median value as well as@He of data using different encoding parameters. The expetimen
and 90" percentiles. The chart shows consensus complet@sws that (i) the use of error correcting codes instead k& pu
in less than 50ms for 4 peers or 100ms for 20 peers, a lexsilication increases the performance in terms of bothttire s
of performance that is appropriate for our application.ldba age time and overhead, and that (ii) PIB is able to transfar at
shows that performance scales almost linearly with the mumiate of 1-2 MBps, which is sufficient for a backup system. At
of peers, hinting that performance would remain approgriahis rate, it would take our non-optimized PIB prototype @ibo
even with larger groups. Eventually, however a large coogd minutes to back up a gigabyte of data to 21 nodes so that the
erative service should be split into multiple state machia® data can be recovered despite the failure of 7 nodes. The per-
described in Sectio6. formance difference between the store and retrieve opesati
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To our knowledge, Eliaz’s notion df Fault-Tolerant Nash
Time to Store and Retrieve 100MB Equilibrium (k-FTNE) [23] is the only previous attempt to
tegend formally model games that include both rational and Byzan-
I Ret tine agents. Eliaz's model is more general than the one we
assume—for our Nash equilibrium, a rational node that is con-
sidering deviating from the protocol assumes that Byzantin
nodes will perform the actions that are most damaging toiit; t
achieve equilibrium, Eliaz requires that rational playease
no incentive to deviateegardlessof the actions of the Byzan-
tine players. Eliaz's problem domain differs from ours:ait-t
gets auctions with human participants and provides no exam-
ple of howk-FTNE may be used to build cooperative computer
services with Byzantine and rational nodes.
Rigorous design for incentive compatible systems has
largely been restricted to theoretical work. Practicatays
. ] . L .__for tolerating rational behavior2pD, 17] commonly rely on
Figure 7: Access time for 100 MB with different enCOdIngSinformal reasoning. Bittorrentl]7] uses a tit-for-tat strategy
to build a Pareto efficient mechanism for content distriuti

comes from an inefficiency in the store code in our prototypdowever Shneidman demonstrates that the algorithm is Rot ac
the data being stored is unnecessarily written to disk sévdrally incentive compatibled?]. Other systems use audieq]
times before being sent on the network. We intend to corr@tWithesses42] to discourage rational nodes from deviating

Time in min

1/8 714 14/21 11

Encoding X/N

this problem in a later version. from their assigned task, but they do not specify an incentiv
compatible or Byzantine tolerant mechanism for implement-
9 Related Work ing audits or witnessing. Using BART state machines to im-

plement a reliable withess from self-interested or Byzamti
Our work brings together Byzantine fault-tolerance and gamodes is one of the contributions of this paper.
theory. Cooperative storage and backup systems have been stud-
Byzantine agreement3f] and Byzantine fault tolerantied extensively in the literaturel[9, 19, 20, 35, 53, 57]. The
state machine replication have been studied in both thealetbackup systems proposed # 19 rely on the assumption that
and practical settingdl[l, 14, 30, 52, 58]. Our work is clearly all non-faulty nodes behave correctly. Sams&@ pnd Lil-
indebted to recent research [L5, 39, 56, 64] that has shown libridge et al. B5] introduce a set of incentives to influence
how BFT can be practical in distributed systems that fallaindational nodes, but they do not bound the damage Byzantine
a single administrative domain—indeed, Castro and Liskoviedes can inflict to stored data. An additional limitation of
BFT state machinelf] is the starting point for our IC-BFT Samsara is its reliance on random spot-checks to verify that
state machine. Our work addresses the new challenges ¢habode is storing data it has promised under which if a node
arise in MAD distributed systems, where the BFT safety reails such a spot check, the system probabilistically @slet
quirement that fewer than one third of the nodes deviate frara data. This increases the likelihood that a node will be un-
the assigned protocol can be easily violated. able to retrieve its files precisely when they are needed.most
Game theory29 has a long history in the economics litConversely, we guarantee that a node can recover its data for
erature 6, 43, 32] and has recently become of general intea period of time, even if it suffers a total disk failure. This
est in computer sciencé,[26, 27, 24, 47, 51, 63]. Proto- property seems useful in a backup system.
col and system designers have used game theoretic concepts
to model behaviors in a variety of settings including routQ Conclusions
ing [25, 61, 60], multicast j5], and wireless network6g]. ] . ]
Common across these works is the assumptionatatodes This paper describes a general approach to constructing coo
behave rationally—the presence of a single Byzantine nd@tive services spanning MADs in the context of a coopezati
may lead to a violation of the guarantees that these systemfckup system. The three primary contributions of this pape
tend to provide. are (1) the introduction of the BAR (Byzantine, Altruistand
Shneidman et al L, 62] recognize the need for a modeRational) model, (2) a general architecture for building se
that includes both Byzantine and rational nodes, but their pvices in the BAR model, and (3) an application of this general
tocols address only the latter. Nielson et48][identify differ- architecture to build PIB, the first cooperative backup iserv
ent rational attacks and discuss high-level strategietsctna to 'Folerate both Byzantine users and an unbounded number of
be used to address them. rational users.
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smessage): | cally. Clearly, if both correspondants deviate in this me&mn
toSend.enqueuefnessage
‘ ! then no messages are exchanged.

expect(predicat):

1
2
3
4 . .
5 toSend enauevepredicate) The problem, at the root, is that some work is redundant:
Tdehero: a rational node can shirk work because it knows that the other
8 ock until received is not empt .
S return reecived dequeve(y node’s actions are enough to ensure progress.
10
11 run () :
ig Wh”e.,(?Oébazliﬁt[rCCiPicnt]):
W G e mestage): A.3 Message queue protocol
15 sending.enqueuef)
16 oSend. " . .
1 ! remeve) Our protocol assigns different roles to the ends of the commu
el U nication. Only one end, thserver is responsible for resend-
20 if (z i di h . .
211 trot mimenstmey thea recarn ing messages (the server could be the node with the lower I.P.
B reocived enquesbincssage) address, or any other deterministic function). This sothes
Figure 8: The message queue work shirking problem identified above by making all work
™ 5 necessary.
server-run N .
102 while (not badlistlrecipient]): We assume that nodes believe that messages sent to non-
if sendin is empty then . . . . .
104 send “ingr Byzantine nodes either reach their destination by til{e.g.
105 else .
106 send all messages inending the TCP timeout), or never do.
107 wait for send.delay . . .
108 send.delay ‘= min(2send.delay , 10 min) This assumption ensures that the server does not gain by
109 e . . .
110 onReceivemsg) waiting more than required in between sends, in the hope to
111 remove fromsending all messages acknowledged byisg .
112 senddelay := 2T receive a delayed answer from the other node.

113 call higherlevel onReceivefnsg)

Figure 9: Message queue helper funclions (Server side).l.h Figure 8 presents the pseudocode for the message queue.

e resending protocol is shown in Figu@éserver) andLO

201 onReceivdmsg) : (client). As shown in lines 12 and 102, the message queue
202 remove fromsending all messages acknowledged byisg . P . .
203 send all messages inending stops sending messages to a nodi it believes thatb is

204 if msg # "ping” then call higherlevel onReceivetnsg)

Figure 10: Message queue helper functions (client side)

Byzantine. One thing that is not shown explicitely in theypse
docode is the connection between sends and expects (lites 11
and 202): filling anexpectbubble accounts as acknowledg-
ing some messages, but not necessarily the last message sent
Al O . The protocol itself must indicate which expects acknowéedg
) verview which sends.

The message queue implements, in an incentive-compatibleThe protocol uses &adlist array to indicate nodes that
manner, a reliable channel with a simple “you don't talk tg mare believed to be Byzantine: there is nothing to be gained by
| won't talk to you” policy. The pseudocode implementingsthisending to these nodes and therefore the message queug shoul
policy is shown in Figure. not send to them (LemnikD). There is no step in the message

The message queue is challenging because it is impleeue itself that puts nodes in the badlist, these come from
mented on unreliable links, so nodes must resend messagéégher levels of the protocol.
which is considered a cost. The implementation must make

sure that no node can save cost by unilaterally deviating fr . . .
the protocol. B Terminating Reliable Broadcast

A Message Queue

The protocol is described in Secti®nl, and the pseudocode
A.2 Strawman protocol is in Figuresl1and12. In terminating reliable broadcast, the
ﬁ?der goes through a three-phase commit to get all nodes to

periodically until they are acknowledged. This protocaikia- ecide on its value. If nodes time out waiting for the last mes

sonnable outside the BAR model, but it is not be incentiya9© for the sender they electa new leader, the leader then co
compatible: rational nodes can reduce their cost by umilat hues where the sender left off. In our pseudocode the sende

ally deviating from the protocol IS process 0, although in fact the sender changes between in-

A rational node- may sometimes resend a message unng&a}r}ches Of(-erﬁ]' tis th der instantiates two thread
essarily, because the previous send reached the recifient, € node that IS the sender Instantates two threads, one

skip this cost, rational nodes can rely on the fact that tieeir that druE§ tthﬁeser:derfugfélon agd the IOthgt;?hat rgnsf the
cipient resends its messages: The recipient’s responls'&wvilsen ertistertunction. er nodes instant reads for

dicate whether's message reached it or not. Sonly sends n turns. Each of these threads runs le&derfunction if that

its messages when it receives a message, instead of per(ﬁ%‘f‘-e Is leader fpr that tum, eonleaderinstead. Turn 0. IS
then started, which allows the code to proceed beyond line 47

Consider a TCP-like protocol in which messages are res
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1 Il sender protocol for processor i (i=0)

2 sender(z) :

3 updateBadlistbadlist)

4 start senderListeni() in parallel

5 prop := (proposal,badlist,untimely)

6 nv = (prop, i)

7 s = hash@v)

8 send (agree t, nv, 1) to all others

9 expect <agree-ackt,s)j in response

10 wait for a quoruma of answers

11 send (write, 0, nv, @) to all others

12 expectbj = (write-ack, t,mam,pol)]» in response
13 accumulate responses into the sé& until:

14 there existsgg R s.t. not failed@,t),

15 or |[R| =n — f —1 (then pick any quorum inR for 5)
16 send (show-quorum ¢, 5) to all others

17 if not failed(b,0) then decideuv, @, b)

18

19 Il sender thread that listens to all turné
20 senderListen() :

21 expect (repon—decisiont,nv’,E’,E’) from all others
22 wait for one

23 decide @v’, @', 8")

24

25 /I leader protocol for processor i on turn t B0, i=leaderForTurn(t))
26 leader(t, i) :

27 poly := waitUntilElected ¢, i)

28 if poly == "done” return

29 7 .= readOldValue¢, i, poly)

30 nv = latest(@,t)

31 s = hash@v)

32 send (agreg t, nv, ¥) to all except sender

33 expect (agree—ackt,s)j from all j

34 wait for a quoruma of answers

35 send (write, t, @) to all except sender

36 expectbj = (write-ack, t,mn..'l:,pol)j from all j

37 accumulate responses into the sét until:

38 there existsb C R s.t. not failed®,t),

39 or |[R| =n — f —1 (then pick any quorum inR for b)
40 send(show-quorumt,g) to all except sender

41 if failed(g.t) then start next turn

42 else decide(nv&,l;)

43

44 /1 non-leader protocol for proc. i on turn t

45 nonleader(t, i) :

46 ! := leaderForTurn¢)

47 wait until started

48 start timert: if it fires, then start the next turn
49 time—out for t is chooseTimeoutf, i)

50 if (turn>0) then

51 send (setturn (¢t + 1)); to I

52 x := giveOldValuef, i)

53 if x "done” then stop timert; return

54 expect (agreg t, nv, ) from | ; wait for it

55 send (agree-ackt, hash(nv)); to |

56 expect (write, t, @) from | ; wait for it

57 Il @ is a vector of agreeack for turn t with the same s we got
58 Il's == hasi(nv)

59 /I ¥ contains a quorum of readack for turn t
60 I/l such that either nv is the latest value if,
61 /1 or ¥ contains only L values

62 if ¢t > m.ovalt then

63 (mowal, mvalt, mta) := (nv, t, @)

64 send (write-ack t, maz_-pol); to |

65 expect (show—quorumt,g) from I; wait for it

66 /I & contains a quorum of writeack for turn t
67 stop timert

68 if timer t fired more thanavg.latency + window ago,
69 then untimely[l] := untimely[l] + 1

70 if failed(l;,t) then start next turn

71 else decidefu_val, @, b)

Figure 11: IC-BFT TRB, high level functions

The send and expect calls in the pseudocode all refe
sending through a message queue. Each turn has one mes

101 waitUntilElected (¢, ) :

102 expect (set-turn t)j from all other nodesj

103 wait until started

104 start timert: if it fires , then start the next turn
105 time—out for ¢ is chooseTimeoutd, 7)

106 tr 1= now() + avg-latency

107 for every nodej from which we do not receive the expected
108 time—out message between, — window and t, + window:
109 untimely[j] 1= untimely[j] + 1

110 wait until:

111 we receive a quorunpol; of these messages:

112 stop timert

113 return poly ,

114 or i calls decidequv,d,b):

115 send(show-decisiont,nv,d‘,5) to all

116 stop timert

117 return "done”

118

119 readOldValue(t, 7, poly):

120 send (read t, poly) to all except the sender

121 expectr; = (read—ackt,val,val_t,&>j

122 from all j other than the sender

123 wait for a quorum# of answers

124 return 7@

125

126 giveOldValue(t, ) :

127 expect (read t, poly) or (show—decisiont,nv,d’,g) from 1
128 wait to receive it

129 if it's the latter then

130 untimely[l] := untimely[l] + decision fee

131 decide @v, @, b)

132 return "done”

133 if i is the sender then return "skipping”

134 max_pol := max(mawx_pol, poly)

135 send (read-ack t, m_val, mval.t, m’a); to |

136 return "go on”

137

138 failed(b, t):

139 return true ifb contains at least one

140 (write-ack, t,mp>j with mp.t # t,

141 or false if all ¢ have mp.t ==

142

143 latest(7, t):

144 If all rj € 7 have r_j.valt == L then

145 return (L ,t)

146 else

147 return pad(rj.'val) for rj €7 with the Iargestrj.val.t
148

149  updateBadlist(badlist):

150 /1 this function is different for the "quasisynchronous” version
151 if there is some nodej that sent us a malformed message then
152 badlist[j] := true

153

154  leaderForTurn (t) :

155 if (t==0) return O

queue per other node. Within one instance of TRB they are  if decide(...) was not yet called then return true

linked together so that if there is a bubble against nadeurn
t, then sends on turh+ 1's message queue ioare delayed
until the bubble is filled.

Turns are created as needed, to make sure that no meg

156 return (¢ mod (n—1)) + 1

157

158 computePenancéuntimely) :

159 return a buffer of sizeuntimely * late fee

160

161  chooseTimeou(t, i) :

162 if i is leader next turn, then returtimeout * 2%

163 else pick the value that maximizes the likelihood thateth

164 time—out message will reach the next leader in the center of its

165 window (in the absence of other information , pi(ﬂ«imeout*Zt).

166

167  decide((v, t), @, b):

168 myPenance 1= computePenancef( untimely[i])

169 for every nodex # 0:

170 send nyPenance) to x

171 penance := computePenancef untimely[z])

172 expect penance) from =z

173 if nodei was sender then

174 for all j: untimely[j] := untimely[j] — v.untimely[j]

175 if some nodexz is in f + 1 nodes’badlist then badlist[z] := true

176 if this process is not the sender and has not sent repdetcision

177 to the sender yet then sen(eport-decisiont, nv, @, 5) to the sender

m let the application know that we decided on value

;%gg // should "node” be prevented from participating in theext instance?
asBubble(i, node) :

183 it decide((v,t), d, b) was called then:

184 if i has an outstanding expect fonode in any of the turns 0 throug

185 t (included), then return true

186 if there exists some turn in which

187 i has sent a message tmode, and

188 i has an outstanding expect fromode

189 then return true

Sﬁge else return false

will be discarded because the turn that would have inselned
expect for that message is missing. To prevent this situat

t Figure 12: IC-BFT TRB, low level functions

io

it is enough to make sure that whenever some tuinishes wait to be started: this is done explicitely in the time olitsss
(because the last instruction of that turléaderor nonleader 48 and 104) or when a leader failed to gather a successful quo-
method returns), turns+- 1 throught + n are created. Turnsrum for its write (lines 41 and 70). A write is successful in
that are created place expects on their message queuegandiin ¢ if it includes a vector” such thatfailed (7, t) (line 138)
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returns false. with an agree-ack only if the agree message is well formed,
The asynchronous protocol uses quorums ofsize’ — 1, i.e. the valua’ that is proposed is consistent with the veator
and quorums cannot include the protocol designated as isetioigt has been sent (in particulartest (7, t') == v’ and every
for this instance of TRB. element ofis a valid message).
Vector i contains signed values from a quorum of nodes
Q' and cannot be modified. Since Q and Q’ intersect in at

C TRB Correctness least one non-Byzantine node, and the non-Byzantine node
) will send the valuev, it follows that there is at least one en-
C.1 Proof technique try in 7 stating that value was written in turrt.

To prove that a protocol is IC-BFT for a given model of ratio- Smltl:e eth_rlesl il |ncLudea ”.‘f ahddltlon ;EO the vglue apd
nal nodes’ utility and beliefs, one must first prove that the p turg, a nonr—] va ges Inr, even :j t e?{ are from a Byzantine
tocol provides the desired safety and liveness propertidsu hode, must have been proposed earlier.

e .
the assumption that all non-Byzantine nodes follow thegrot Moreover,t' is the earliest tumn aftefrto propose a value

col. Second, one must prove that it is in the best interest of%{{_her thanu. So th‘ire ca_nni)t be any _propos/ed vatiez v
rational nodes to follow the protocol. with a turn numbet” > ¢ in 7" received in turrt’.

We start by proving correctness assuming that all nor?— r\]/aluev Ll Eurn trliz thert—:;fo/re tqle g 'm_l_\a”th ]Ehe
Byzantine nodes follow the protocol. Ighest turn number, ardtest(7, ¢") will return v. Therefore

the leader in tur’ must propose value. O
C.2 Correctness assuming incentives Lemma 8. A valuev is chosen in turr only if v was proposed
inturnt.
Here we assume that all non-Byzantine nodes follow the pro-
tocol. Proof. A non-Byzantine node acceptswi t € message only

o o ) after it accepted the correspondiagr ee message. Since alll
Definition 1. A valuev is said to beproposedn turn t, if & quorums contain at least one non-Byzantine node, it follows
leader sends a validgr ee message in turhwith valuev.  that forv to be chosen at turhit must have been proposed at

Definition 2. A valuev is said to bechoserin turn ¢ if there is "™ O

a quorum@ such that all non-Byzantine nodes(hanswered Thegrem 3 (Safety). If some non-Byzantine node decides on

thewr i t e message fov in turn ¢ before receiving theead 3 valuev in turn ¢ then no non-Byzantine node will decide on
message from any later tuth a value other tham.

Lemma 6. If two non-Byzantine nodes satisfy the expect folgoof. A node decides on a value only after either seeing
write message in turnwith valuesv andv’ respectively, then evidence that the value was chosen, either through a show-

v=="1'. quorum message (lines 42 or 73), a show-decision message
Proof. Each write message has the fornatite, ¢, nv, @, 7), (line _129) or report-decision (line 22). The previous twmie

N : as indicate that at most one value may ever be chosen.
where @ consists of a quorum of answers of formal’
(agree-ackt, s);, ands is the hash of the value Theorem 4 (Liveness).Eventually every non-Byzantine node

Since any two quorums intersect in a non-Byzantine no@gcides.
and such a node sends only agree-ack message in a par- ) _ _ .
ticular turn, it follows that the sanagree-acknessage is used!:’rOOf- Since the time-out delays increase exponentially, dur-

in thea value for the write ofy andv’. ing the synchronous period there will be some turn after tvhic
This requires that the hash forande’ be the same. Under€Very leader is guaranteed to have enough time to complete
the secure hash assumption, it follows that= v’ [ Wwithout being interrupted by another leader election. @ers

the first such leader who is non-Byzantine. That leader ill b
Lemma 7. If a value has been chosen in tutythen no other able to write a consensus value without interference, anifl it
value can be proposed in tuth ' > t. have gathered a quorum of acknowledgmeﬁ)stmat show
- : that no other leader was elected before the end of the write.
Proof. I/3y contradlctlon.. Lew be the 'value' chosen in WMrhat information allows nodes to decide. Since the leader is
t, andt’ > ¢ be the earliest tumn afterin which some node non-Byzantine he sends it to all and all non-Byzantine nodes

proposed a different value. . . decide, and report to the sender if necessary. O
If v has been chosen in tumit follows that all non-

Byzantine nodes in a quoru@ have received a write messag&heorem 5. The protocol satisfies the conditions for TRB.
for v, but have not received a read message from any later turn. S

For a value to be proposed, it needs to contain agree-agkeof-  Termination is guaranteed by Theorém
from a quorum of nodes. Non-Byzantine nodes will respordAgreement follows from Theore@and Theorend
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e Integrity is assured because a leader cannot propose anyPesef technique To prove that the protocol is a Nash equi-
bitrary value. The expect in line 56 is satisfied only if thibrium, we show that it is in every node’s best interest ot t
proposed value has been written earlier, ol is The fact deviate from the proposed protocol under the assumptidn tha
that a leader cannot propose an arbitrary value hence fidl-other non-Byzantine nodes follow the protocol.
lows by induction on the turn number Showing that something is in the best interest of a rational

« Ina period of synchrony, if the sender is non-Byzantine th8Rde i dependent on what the node considers in its interest,
no non-Byzantine node will time out on the sender beca ¥ also of the node’s beliefs and knowledge. For example, a

the time out values are larger than the known guarantdiRfi® that knows that a given nodés Byzantine will see no
incentive to send messagesapwhereas one that does not

delivery time A. It follows that the sender will be able to g - - |
complete the turn and get all non-Byzantine nodes to delif&loW Who is Byzantine must instead consider the expected
the message. utility of ;endlng a message m_ -
0 A rational noder evaluates its utility: for a strategy by
computing its worst-case expected outcome. The worst case

ey . . s is computed over the choices of which nodes are Byzantine,
C.3 Equilibrium and incentive compatibility and what Byzantine nodes do. The expectation is over net-

Background We now show that the protocol represents Ayork performance. The outcome then includes the costs:-send

equilibrium point. More specifically, it representdlash equi- INd and receiving messages and computing signatures, and th

librium. We start by introducing this concept and relating it 8enefits are: having their own proposal accepted. Node

our domain. also includes future effects of its actions, for example tivee
Nash Equilibira are a game theory concept. Game theSRMe node(s) now considerto be Byzantine (by setting the

studies “games” among rational players. In one-shot gamggr’respondmg entry ibadlist to true) or whether nodes will

for example, every player (we shall call them nodes fromignorer in the future (because theis Bubble function returns

here on) simultaneously picks sorsgategyo;. The rules of true). A change that would preventfrom participating in fu-

the game determineility « for each node, as a function of itdure instances of TRB is considered to have infinite cosesinc

strategy and the strategy of the other- 1 nodes. The utility robsr from an infinite number of beneficial instances of TRB.

for nodei can be written as the function; (oo, . ..,0n_1),  OUr assumptions are presented in the System model, Sec-
which we abbreviate, (o;, o _;). tion 3. In short, we assume that rational nodes gain a long-
The Nash equilibrium is defined as followad: term benefit in participating, we assume that they consfuer t
worst-case outcome of their actions, and we assume thaif th
wi(or,0%,) > ui(si,or,;) foralls; € S; observe that the protocol is a Nash equilibrium then they wil
follow the protocol.
Whereoy is the strategy proposed to nodeandsS; isthe  The simplest deviations are those that do not modify the
set of all deterministic strategiegan choose from. messages that a node sends. In our state machine protocol,

To link these concepts to our domain, we observe thag such deviation increases the utility. We must then examin
the strategy represents which actions the node will take-n gyery message that the node sends and show that there is no
sponse to events it can observe. In other words, the strieg)centive to either (i) not send the message (i) send the mes
the protocol that the node follows. A game-theoretic “gamegage with different contents, or (jii) send the messageeearl
is determined by a function that takes every node’s strategMater than required. Also, we must show that nodes have no
as input and outputs a resulting utility for each node. In ojjcentive to (iv) send any additional message.
case, the input is which protocol each node follows and reode’  our protocol also imposes two requirements that must be
utilities are determined by the costs and benefits that thle nenet in an implementation: (a) The penance is larger than the
experiences from running the protocol. We define the cost pignefit of sending a time-out message late, and (b).The-

Cisely later in this section. The two differences between %er (|n read_ack) is at least as |arge as the |argest allowed
setting and the traditional phrasing of the Nash equiliria  proposal value. (that size does not need to be constantyit ma
that, first, the utility can be influenced by network delays g@ow as the sender fails to propose values)

that rational nodes must reason based on their expected util

ity. Second, Byzantine nodes may deviate arbitrarily frtwn t Theorem 6 (Incentive Compatibility). No node has any uni-
protocol. lateral incentive to deviate from the protocol.

In a way similar to how an assignment of strategies to

nodes can be said to be a Nash equilibrium for a given gaal |% Iz?l|0rgfrltoor;rzl;ljl\/\clzlter\]/?;tri]gnie\fll'zgﬁl)snrrzzbsr;iﬂﬂé\\,/vizt?gr?ts)m-
if no player can improve its utility by unilaterally deviag y exp : P

from the assigned strategy, we say that a given protocol igqo%fsmsrgi;hnat 223Y¥i;g?tr:£s?teie'nsegglael'rezhg Cigcr:ﬁer:?agf
Nash equilibrium if no rational node can improve its expdct@ N9 ” ges | v y

utility by unilaterally deviating from the assigned protbc and10.
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notsend | send different| diff. time will be true for all non-Byzantine nodes in instanceFrom
set-turn Lemmall | Lemmal6 Lemmal4 | then on, node will not be able to send its proposals to any-
read Lemmall | Lemmal? Lemma26 | one: itis effectively excluded from the state machine. Node
read-ack Lemmall | Lemmal8 Lemma30 | would forgo participation in an infinite number of future ben
agree Lemmall | Lemma2l Lemma27 | eficial instances of TRB: no finite benefit from not sending
agree-ack Lemmall | Lemmal9 Lemma30 | the message: may be worth this cost. Nodewill therefore
write Lemmall | Lemma22 Lemma28 | make sure to send all expected messages whose absence would
write-ack Lemmall | Lemma20 Lemma30 | causeiasBubble to return true. O
show-quo_ru_m Lemmall | LemmaZs Lemmaz9 Lemma 12. No rational noder (r is not the sender) can en-
show-decision| Lemmall | Lemma24 Lemma31 . . : : . : .
. sure with certainty thatl will be delivered in a given instance
untimely Lemmall | Lemmal5 Lemmal5
of TRB.
Table 1: Map of deviation to lemma Proof. Nodes can influence the delivered value through their

. _actions. However, if Byzantine nodes were to follow the pro-
Lemma 9. Rational nodes only send a messageo node;  tocol, then in a period of synchrony the sender will be able to
if j expects that message. communicate with a quorum of nodes and get its value deliv-

Proof. The queue protocol discards messages that are noteer>(?-d regardless of the actionssofin particular ifr does not

pected. Therefore no rational nodeould send an unexpecte endhir;)éfrgr?assr:ggzm nodecannot ensure with certainty that
message to a non-Byzantine node because it has no benefit uT ' Y

some costs (cost of sending the message, plus any sigmutu\rlcglfueL will be delivered as the result ofs actions. -

the message). Sending an unexpected messages to Byzapiffina 13. Rational nodes other than the sender have to do

nodes cannotimprove their worst-case behavior (if angthtn the same amount of total work if in a given instance of TRB

may h6|p them drive the System to an even less pleasant Stﬂﬁ@decision isl instead of the sender’s value.

Therefore, no rational node sends an unexpected message to

anyone, Byzantine or not. O Proof. If a sender’s proposal is not accepted, then the sender
will propose it again next time. Lemmk2 indicates that if

Lemma 10. Once a rational node knows that some otherg sender tries forever, the proposed value will be eventuall

nodej is Byzantine; will not send any further messageto  delivered. The total amount of work, therefore, is the sanfie

Proof. If j is known to be Byzantine (for example becaudPurse: the utility may be different because a different neim

it was observed deviating from an incentive—compatibletq)ro& messages may be exchanged). -

col), then sending messages to it does not affect the was®-q emma 14. There is nothing to be gained by sending the time-

outcome. In particular, nodg can always opt to ignore anyoyt message earlier or later than the protocol calls for.

message fron.. Therefore, there is nothing to be gained from

the expense of sending messages to OO0 Proof. The protocol requires non-leader nodes to send the

timeout message for turh(“set-turn(t)”) as soon as they be-

Lemma10 is a natural consequence from the fact thfbve that turrt started: either because timer- 1 fired (i.e. a

nodes are rational and that they believe that some nodes m@¥-out) or because show-quorum for tura- 1 failed. The

be Byzantine. Naturally, in the worst case Byzantine nod@gder in turrt never sends “set-turn(t)”, and the sender never

will not do Something so foolish as Iettlng themselves bﬂ'id%ends set-turn messages either.

tified. Starting the next turn earlier (or later, as the case may be)

Lemma 11. If a rational noder knows that not sending somd"&Y influence the outcome of TRB (toward eitheror the

expected message to non-Byzantine nodewould cause the sender’s value), but that has no effect on the amount of work

hasBubble function ins to returntrue, thenr has incentive tha;\?ﬁf::}ii;g p:srf]% rrr?h((le_imrrzarz?t.urn must be sent. so there
to send the message. 9 '

is no other benefit from starting a turn earlier.

Proof. If hasBubble(s,r) returnstrue (indicating thats be- Delaying the start of turn may save a node some effort,
lieves that- has not fulfilled all its obligations towarg), then because it is possible that the delay allows ttra 1 to re-

s will not answerr’s messages in futures instances of TRBeive (or compose, if the node is the leader) a successful-sho

In the worst case (for), all f Byzantine nodes will ignore. guorum message, so that there is no need to send the set-turn
In that case, when is sender in a later instanéeit will not Message anymore.

be able to gather the required— f — 1 answers to itsigree However, the recipient of set-turn expects that message at
message (sincg + 2 nodes will not be included: the sende@ given time (and follows the protocol by hypothesis), st t
itself, s, and thef faulty nodes). As a resultasBubble(x,r) hode sends “set-turn” late it increases its chance of ngsbie
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window, thus raising the expected cost through the penahegnma 19. There is no incentive to lie in the response to an
mechanism. By requirement (a), this expected cost is larggree message.

than the expected benefit from potentially not having to send : . .
“set-turn” and going through an extra turn (potentially WVitPrOOf' The answer to agree is entirely determined by the agree
value 1) message itself, so any deviation would be equivalent to not

sending a message that the leader expects. Lehinsaows
Lemma 15. Rational nodes have no incentive to omit or modhat there is no incentive to do that. O

ify the untimely message. . . . . .
fy y 9 Lemma 20. There is no incentive for a rational nodeto lie

Proof. The untimely message (computed in lines 109 aifithe response to a write message.

130, sent in line 5) is intended to inflict additional costqi)mproof The only choice in the responserizz_pol, the latest

nodes that are believed to be untimely. If a rational nedei . .
. i . , ader that the node has received a message from. Since these
omits this message, then its agree message is malformed (See

Lemma?21). Modifying the contents of the message does no £ssages are signed, the. only poss'ible lie for a rationa nod
change its size, and the untimely message sent by nades > tos:igg tvk\:ghsiszoemoef I:h(ZLI;E)hLa?srre:gﬁgcz(rj{t the only benefit of
not impact node- (it impacts everyone else, as lines 169-172 ’ y

show). Therefore, node has no incentive to modify the un_replying with an older POL is to influence the protocol. As
timely.message ' we argued before (LemmEB), only the sender has a stake in

influencing the decision and the sender does not receive writ
Lemma 16. There is nothing to be gained by sending a séhessages.
turn message with the wrong contents. Remains the possibility that answering with a different
POL will influence the number of turns that the protocol takes
Proof. Since set-turn only contains a turn number and a sig- complete (that's a cost). Answering with the requester’s
nature, wrong contents would be equivalent to either sendipOL instead of a later one (if we received one) means that
twice to the message queue or sending a malformed messggee is some chance that the requester now thinks its pabpos
(Lemmag), or sending set-turn early (Lemni4). O succeeded when, in fact, it failed. The potential benefitidou
be that if the requester succeeds, then there is no needdo sen
a time-out message to the next leader. However, the fact that
Proof. The format of the read request is entirely determin@@der heard from the later leader means that it has already
(line 127), the only freedom being in the specific choice 6Nt a time-out message to the later leader, therefore ithere
which quorum of entries in the POL are filled. Since all PORO incentive to lie in the response to the write messagel]
entries have the same size, all choices result in a POL of Lhe 21 There | . . di datain th
same total size and hence the same cost. Since using anliffers 2 < 1NEIEISNO Incentive to send incorrect data in the
valid POL has no impact on the protocol and does not red it cc message.
cost, there is no reason why a rational node would choose @mgof. The agree message (sent in lines 8 and 32) include
quorum over another. Ul the turn number, proposal, amd Changing the turn number
would be equivalent to not sending the agree message, which
Rould result inhasBubble returningtrue (Lemmall). The
protocol does not restrict which proposal the sender cad, sen

Proof. There are only two different possible answers to a refher than the condition that it must include the untimelg-ve
message: either the sender's value,lor Since the sender'stor. Lemmal5 argues that there is no incentive to send an
value is signed and nodes cannot forge signatures, the dﬂgorrectuntlmely vector. Leaders that are not the senaleg h

possible lie is to answet. when, in fact, one has received &0 choice in the proposal, as it is entirely determined by the
value. contents of” and thelatest function. The vector itself con-

This lie increases the likelihood af being delivered in- tains signed answers from other nodes, so it cannot be tam-

stead of the sender’s value, which has two consequences, Hered with, other than choosing which answers to include in
it changes the amount of work that must be done in this tufflese deviations are covered by LemaYa O
However, as we argue in LemntB, nodes other than the
sender expect to have to do the same amount of work e
if they try to increase the likelihood af being delivered. Sec-
ond, it increases the size of the messages that must be senPhsof. Sending a value that does not match the agreed-up hash
cause thel answer has the same size (in bytes) as the long&suld cause everyone to consideByzantine. The vectorg
allowed proposal (requirement b). Therefore there is n@beanda are both constant-size and cannot influence the protocol
fit to lying in response to a read message. O other than marking as Byzantine, so there is no incentive to
change them either. O

Lemma 17. There is no incentive to lie in the read request.

Lemma 18. There is no incentive to lie in the response to
read message.

Lemma 22. There is no incentive far to send incorrect data
the write message.
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Lemma 23. There is no incentive far to send incorrect data Lemma 29. There is no incentive to wait for more answers to
in the show-quorum message. wite.

Proof. That message contains information signed by othePspof. The protocol lets you wait for — f — 1 answers, wait-
so it cannot be faked by. O ing for more may get you stuck. O

Lemma 24. There is no incentive far to send incorrect data Lemma 30. There is no incentive to answer late to either a
in the show-decision (or report-decision) message. read, agree or write message.

Proof. Both messages have the same content. Their sizé&ieof. The effect of a late reply to these requests is to poten-
fixed, and nodes cannot lie about the decided value becdiedey slow down the leader (or sender), increasing the thisk
they cannot forge signatures. The only deviation would bettos instance of TRB lasts one more turn and potentially influ
use a different quorum faf, but there is no benefit to that[] encing the outcome.

, ) ) ) Only the sender has a stake in the outcome, and it does not
Lemma 25. There is no incentive for a rational leaderto  onqyer to these messages. Remains the possibility of adding
send a message in its leader turbefore the protocol mdmatestum’ which would cause the rational node to send more mes-
turn ¢ should start. sages and therefore increase its cost. Rational nodesdtere

Proof. It may prevent the previous leader from succeedinfd@Ve an incentive to respond to these queries immediately.

Leaders have no stake in the outcome, so all that preveniignma 31. There is no incentive to send the show-decision
the other from succeeding achieves is potentially cause mmessage late.
set-turn messages to be sent.
The sender cannot start early because the protocol say&aof. Once a leader knows that it must respond with the
should start immediately. [0 show-decision message, then further waiting has no impact o
its cost: nothing can remove the requirement-do send that

Lemma 26. There is no incentive for a rational leaderto a55aqe. The leader therefore has nothing to gain by dglayin
wait for more than a quorum of time-out messages before-staffe answer. 0

ing its leader duty.

Proof. That would allow the leader to go the show-decisioB.4 Enlightening examples

route instead of the normal three phase commit. We use %_fhe lis Fi 1distinquishes b h d d
penance mechanism to balance the coétsigion fee, line e protocol is Figurd Ldistinguishes between the sender an

130). B the leader: the sender proposes a value and, if it is notyjrael
new leader is elected. This distinction may seem unnecgssar

Lemma 27. There is no incentive for a rational leaderto but in fact it is important that the sender not be involved in

wait for more than a quorum of answers to its read messageteps where it may influence whether its value gets decided.
This can occur in two places.

Proof. Waiting for more answers may allow the leader to go First, the sending of the “set-turn” messages. Suppose an

from a situation in which it must propose (because none of execution in which the sender receives a POL from a later

the answers so far have seen the sender’s value) to one ih Wi@ﬁder, and then a write for the value indicating that the

it can propose the sender’s value (because one of the answgy$|eader did not see any of the messages sent by the sender.

includes it, cf. théatest function in line 143)—or the other the sender may then have an incentive to send its “set-turn”

way around. message early to elect a new leader, in the hope that the new

These two situations do not modify the expected numberghjer may see one of the written values and will attempt to
turns for this instance of consensus. They are also idémtica,ite the sender’s value instead of

term of message size, because the leader must pad the gropos&econd. the answer to “read” requests. In the same sce-
to maximum size, the same size asThe difference betweenario as described above, if the sender receives a write for
the two is which value is decided in the end, which may chang |eader 1 and then a read request from leader 2, then the
how much work the leader must go through in this instancgnder would have an incentive to deviate from the protocol
However, as we argue in Lemnig, this does not change the;ng send its own value instead, pretending it hasn't redeive
total amount of work. There is therefore no incentive/fdd e message from leader 1.

deviate from the protocol by waiting for more answers. [J In order to avoid both scenarios, we allow the sender to try

Lemma 28. There is no incentive for a rational leaderto © W€ 'tz Va"‘('je only once: it canrt10t b::‘telgtctgq Iea(t:iﬁruerla:j g
wait for more than a quorum of answers to its agree messa%r._ns' and read messages are not sent to It Since e read an
rite quorums must still intersect in at least one correateno
Proof. Getting more answers cannot influence the outcome @l there must be a quorum of correct nodes among all nodes

there is no incentive to wait for more. O but the sender, it follows that > 3f + 2.
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D Replicated State Machine

Il protocol for execution ofassign(w,a,b) onp € A
execute @ssign(w, a, b)):
if (p=a)
r 1= perform(w);

1
2
3
The “hasBubble” function (Figurd?2) is used to determine| Gec Ao sends);
whether a given node should be allowed to participate in the  <i..i w.cimer:
next instance of TRB. S Siver gy et ash = hash(w) >
The replicated state machine provides the following QUArT & tesd (urimeesim. ay:

antee under our liveness assumption that all non-Byzanting " %o onees =)

nodes get some overall benefit from participating in theestat;: vo gy Startwetimer

machine. w Tetponses 1= responsas s asliver o T skl >
18 f:ancelwc.timer:

Theorem 7. If non-Byzantine node submits some command %3 ! prodess (respantes);

c to the state machine then eventually every non-ByzanlJiné:eé \\ protocol for handling w.timer

noden in the state machine will deliver. 2 b sendwitnas( o evidence));

26
Proof. Eventual synchrony guarantees that eventualyets | 27

28 \\ protocol for handlingw, : timer

its turn as sender in the state machine. TRB’S non-triyialjt 22 on timeouttwe : timer):

30 badlistlc] == true;

condition then guarantees thatwill successfully deliver its |

32 \\ protocol for processing responses

proposal. Once is done with earlier submissions it will subt 33 process(responses):

X i X . . . 34 hand responses up to the caller of

mit ¢, which it will deliver. The agreement condition guaran- %

tees that all non-Byzantine nodes will deliveas well. — [I | 37 ) protoeel for execulion ofassign(w, B,b) on p € 4
39 it (peAanB)
40 if (r not already submitted toB)
41 r = B.submit(w);

- 42 |

E Work Assignment B T b resuni
44 Ve € A c.sendr);
45 VYVa e ANB ) )

This section addresses issues related to work assignment) afi P LT reqHash = hash(w) >

relevant efficiency optimizations. In general, work assignt | i ancel e por 0%

is used to reduce replication factors associated with ngnai | & ¢35 rres e

protocol and to increase communication efficiency and +eljag; v ok St timen:

bility. The work assignment protocol leverages the state ma Y et < m : m = witness(u : w.reqHash = hash(w)) >;

(ﬁ responses := responses c.deliver();
cancel we.timer;

chine to replicate the assignment of work to a specific node

set of nodes. The work itself is then performed on the specifi& e e dntesy.

nodes. In general, the messages and execution of allocation Figure 13: Work assignment protocol

are orders of magnitude less expensive than the execution of

the work itself. Lemma 32. If state machined executes the command

The work assignment protocol proceeds in 5 basic SteR8sigriw, a, b) anda is rational, thena will perform w.
(1) submit request to state machine, (2) state machinesigliv

request, (3) subset of state machine performs requesegditr Proof. Line 8 of Figurel3introduces an expect to the message
is sent back to all nodes in state machine, (5) all nodes ia stueue. [f the expect is not filled, thenwill be added to the
machine forward request to the requester and done. badlist in line 25, resulting ina’s loss of access to the state
For all proofs in this section, we make the “sufficient bemachine and subesequent loss of benefit. Sinds a non-
efit” assumption, that is rational nodegains sufficient benefit forgeable operation; must performw to have a result which
from membership to outweigh the cost of participating in thwill be accepted by the message queue. O
system if no more thayfi nodes deviate from the protocol. o . B
Let w be work instructionsg, b be nodes in state machin%r It is important to note that the exact semantics of “per-

A. Letwu be the result of performing.. We also assume that n:m%wf Q;Sttge swtalktalyfdeﬁ?ed py the atppllcat|on. Itn the
all liveness conditions are met. context o , the result of performing a store requestis re

turning a Receipt or StoreReject for that request. Therelmay
. o additional side effects (such as storing the actual chulttheif
E.1 Work assignment to individual nodes receipt is returned) which must be enforced at the apptinati

Here we address issues related to assigning work to an irk%iY—QI'

vidual node. Let4 be a state machine,andb be nodes in the

state machine, and be work assigned byto a. We assume E.2 Work assignment to another state machine
that the result of performing) can only be acquired throug}“\N

actually performingu (i.e. thatw is an unforgeable operation).me Chailr? alswr?rtrllt[[cr)]? t?e dnondesi tog a s;;ﬁten;]mto murlt'FiIEEStaE N
The most relevant of this is the following lemma: achines. € S IS dOne, 1t becomes necessary 1o assig

work between state machines. The following lemma provides
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certain guarantees when our state machine liveness aréeri assume that they receive requests from Byzantine nodes, and

met: that Byzantine nodes will send the request through the state
Let A and B be state machines which shgfe- 1 nodes in machine regardless of whether or not the rational node re-
their intersection. sponds directly. If, however, there are at ledst 1 nodes

who have issued concurreppencredible threats against a ra-
tional node, at least one of them must be non-Byzantine $o wil
in fact not go through the state machine if the node responds

Proof. By Theorem?, if rationalb € B submitsw to B then directly, and the rational node has reason to respond tirect
B will executew. It remains to show show thab that will Upon receiving the direct request. Similarly the sendehef t
submit the request t@. Line 47 inserts an expect into théequestwould expect to be ignored unless it currentlyfhas
message queue. By Lemnid rationalb will send the ex- opencredible threats issued. In order to quantify the necessary
pected message Wh|Ch iS the resulmbeing performed by Conditions fOI’ the faSt path to be Used, we must introduce the
B. Since|lAN B| = f+1,3b € AN B such that is non- concept olsufficient open threats
Byzantine. Ifb is altruistic it submitso to B trivially. Let b be
rational. Sincé is rational,b assumes that the othgrnodes
in the intersection are Byzantine and will not submito B
(thus possibly preventing from returning the actual result of
w to A). So in order to get a valid result af, b must submit
wto B. J Lemma 34. Rationala will follow the fast path if there are
sufficient open threats

Lemma 33. If A executesissigriw, B, a) thenB will execute
w.

Definition 4 (Sufficient Open Threats). There are sufficient
open threats fow to follow the fast path ifti € A such that
Al > f+ 1 andVb € A, b is the requester or recipient of a
credible threat fromB C A such thatB| > f + 1.

E.3 Credible threats Proof. If there are sufficient open threats, then other non-

Ordinarily, all work is assigned through the state machiie. Byzantine nodes are assumed to use the fast path appropri-
node submits amssignrequest to the state machine, the ré@tely. By thesufficient open threatdefinition, there are open
quest is replicated on all nodes, and finally some subsetof threats involving: from at leastf + 1 distinct nodes. Let be
nodes performs the request and the result is returned to thenumber of distinct nodes involved in threats withSince
state machine. This can lead to problems if the requests-thén> f + 1, at least one of these nodes is non-Byzantine. The
selves are large or costly to store and transport. A perfocmacost of following the fast path is the cost associated wittdse
optimization is to instead submit a promise to assign work it & single message.. When following the slow path, the
the state machine, a direct message assigning the work t¢@gf is at leastm (the cost of sending a single message to all
individual node (submitting the request through the stage nether nodes in the state machine). So the expected cost of ig-
chine only if the initiating node does not get a response bdting the fast path for all nodes(i)nm while the cost of fol-
directly), and then report the result of the work assignméging the fast path for all nodes i at mdét)m + (f) (nm). If

back to the state machine. The actual protocol is presentehie node follows a fast path for only some of the nodes, then by
Figure14. There are two technical difficulties in implementour modeling assumption the ignored nodes will be assumed
ing such a scheme: (1) should the requester actually subi®ipe Byzantine, so no node should be ignored ifithe f +1

the direct request and (2) should the requestee submit thetiifieshhold is met. So the expected cost is leasfdfilows the

rect request. fast path and will follow the fast path as suggested. [

When requests are considered in isolation, the answer to, , . - . .
o . . . While thesufficient open threaequirement is rather heavy
both (1) and (2) is “no.” Due to our modeling assumptions, jn L . .
N o . anded, it is instructive to note that the requirementsiave-s
a pairwise communication rational nodes assume that ttee oth . .
. . ; red so that the fast path will be used when the system issunde
node is Byzantine and plan for the worst action the other nade . o :
. s eavy load — precisely when it using the fast path will haee th
could do to them. For both cases, the “worst” thing would be :
: . . ost noticeable affect.
to require the state machine to be used regardless. Sirge thi
is a possibility, neither node will use the “fast” path sajat

We address this by introducirgpenthreats.

Definition 3 (Open Credible Threat). A credible threat is
openiff the requester can expect a response from a fast path
request, based on the current time, before the requester mus
submit the request to the state machine in order to guarantee
being able to fulfill his vow.

Since rational nodes assume the maximum number of
Byzantine nodes in the worst configuration, rational nodiés w
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Il protocol
Il w is the

for submitting a vow to the state machine

request ,a is the target ,b is the requester

threatenw, a, b):
RSM. submitpow (hash(w), a, b));

delivered

1= false;

start (vow.timerl);

if (sufficient open threats)
a.send(w);
a.expect<m : m.reqHash = hash(w)>;

r = a.deliver();
delivered := true;
RSM. submit ¢

cancel pow.timerl);

Il process to execute a vow request
execute pow(u, a, b):

if (p=a and sufficient open threats)
b.expect< m : hash(m) = u >
r := b.deliver();
b.send¢);

vowdelivered := false;

start (wow.timer2);

b.expect< m : m.reqHash = u >,
r 1= b.deliver();

vowdelivered := true;

cancel @ow.timer2);

on timeoutpow.timerl):
if (delivered = false)

7 = RSM.

submit@ssign(w, a, b));

RSM. submit¢) ;

on timeoutpow.timer2):
if (vowdelievered = false)
badlist[b] := true;

Figure 14: Credible threat protocol
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