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Web workloads influencing
disconnected service access

Bharat Baddepudi Chandra, M.A.
The University of Texas at Austin, 2001

Supervisor: Michael D. Dahlin

Disconnected operation, in which a client accesses a service without re-
lying on network connectivity, is crucial for improving availability, supporting
mobility, and providing responsive performance. Because many web services
are not cachable, disconnected access to web services may require mobile ser-
vice code to execute in client caches. Furthermore as web workloads access
large amounts of data, disconnected access must require prefetching data that
will later be used on demand. Unfortunately, this can significantly increase
the total amount of data fetched by a service. In this thesis we present an
argument that aggressive prefetching is feasible. A study of the web work-
load characteristics at typical clients suggests a need for a flexible, automated
resource management system to prevent denial of service attacks by these
potentially unreliable mobile service codes that prefetch at the clients. We
therefore present and evaluate a Popularity based resource management policy

for such an environment.
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Chapter 1

Introduction

Traditional WAN caches provide limited hit rates and efforts to improve
these rates have met with limited success. Many HTTP requests are essentially
arbitrary RPCs(Remote Procedure Calls) that are not cachable using tradi-
tional means. Wolman et al. [1] find that uncachable web accesses reduce the
upper bound on cache hit rates by about a factor of two. The increasing use of
mobile devices further pressures traditional caching strategies. Mobile devices
function in the disconnected mode, which allows clients to access web services
without relying on the network connection between the client and the origin
server. Supporting disconnected operation is a key problem for improving web
services for three reasons.

1. Disconnected operation allows mobile clients to access services when
their network connection is unavailable, expensive, or slow.

2. Disconnected operation can improve service availability. Studies consis-
tently find that, in contrast with targets of “four nines” or “five nines” of
availability (99.99% uptime or 99.999% uptime) for important services,

the Internet network layer provides only about two nines of host-to-host



connection availability [2, 3, 4]. The resulting average of about 14 min-
utes per day of unavailability to a typical client hinders commercial sites

as well as mission-critical sites.

3. Disconnected operation can significantly improve performance. Tradi-
tional web caching is a simple example of this strategy, and several stud-
ies have demonstrated even more dramatic speedups when service code

is shipped to clients and proxies [5, 7].

1.1 Challenges

A combination of mobile service codes and prefetching mechanisms can
support disconnected operations. In the context of disconnected operation,
Chandra et al. [2] find that if an infrastructure supports mobile service code for
disconnected operation, it can reduce average service unavailability by factors
of 2.7 to 15.4, but if an infrastructure only supports caching and prefetching,
average improvements are limited to 1.8 to 6.2. In order to provide better
services, these services should have fair access to resources such as disk space,
network bandwidth, CPU cycles and memory space at the client. In addition,
multiple mobile services should coexist in a resource constrained environment
without allowing denial of service attacks at the client. Current mobile ser-
vice frameworks (e.g., Applets, Javascript) have limited flexibility in that they
prevent access to disk by untrusted code (limiting support for disconnected op-
erations) but provide no limits on CPU cycles or memory consumed (making
the system vulnerable to denial of service attacks). Although several exper-
imental systems have provided low level mechanisms for limiting resources

consumed by untrusted Java code [8, 9], properties of web service workloads



make it challenging to develop a scalable infrastructure for disconnected ac-
cess. First, clients may access a large number of services, meaning that many
untrusted services will compete for resources. Second, the resources available
at client devices may vary widely. Third, prefetching and hoarding — key tech-
niques for coping with disconnected operation — can dramatically increase the
resource demands of applications: Ironically, providing mobile code with the
ability to access disk to support disconnected operation worsens the resource
management challenge because it gives applications an incentive to use more
resources.

This work examines the impact of web workloads on constructing a
scalable infrastructure to support disconnected access to web services. We
focus on environments that allow web services to ship service code to caches
and proxies and that allow this code to use prefetching, hoarding [12, 13, 14],
write buffering, persistent message queues [15, 16], and application-specific
adaptation [17] to mask disconnections by satisfying requests locally. Several
researchers have proposed such systems [16, 5, 7]. In this thesis we propose
that aggressive prefetching is feasible. We will quantify the costs and demands
of this aggressive prefetching and analyze the framework needed to support
it. The main challenge in building the framework is that it should scale to
a diverse set of services used by a large user population. This paper focuses
mainly on the prefetching issues and the client side support needed to maintain
disconnected operations. The prefetching issues can be categorized broadly
into server related, network related and client related issues. Each of these
issues relates to the additional overhead that can potentially be experienced
at these locations. These overheads can be reduced with improved scheduling

algorithms at both the client and server and by using restrained versions of



prefetching to reduce the network overhead [31, 33, 35]

1.2 Contributions

The key result of this work is quantifying the tradeoff between the costs
of prefetching and the performance improvement perceived at the end user. A
sensitivity analysis of this result provides a better understanding of the result
by varying assumptions on the changes in cost, technology, and the end user
devices. This work also makes two other contributions. First, we quantify the
resource requirements of disconnected services by examining both the general
requirements across services and the requirements of several case-study ser-
vices. These data suggest that supporting disconnected operation for a large
number of services is feasible. In particular, we argue that prefetching an or-
der of magnitude more data than is used on demand may often be reasonable.
However, we also find that careful resource management by the system and
application-specific adaptation by the services is needed. Second, we develop
a resource management framework that (i) provides efficient allocation across
services to give important services more resources than less important ones,
(i) provides performance isolation so that aggressive services do not interfere
with passive ones, and (iii) makes allocation automatic self-tuning decisions

without relying on user input or directions from untrusted services.

Organization

The rest of this report is organized as follows. Chapter 2 describes and

analyses a quantitative measure for the tradeoff between resources consumed



and performance gained with prefetching. Chapter 3 studies the web workload
characteristics at the client. Chapter 4 describes a simple resource manage-
ment policy for clients. Chapter 5 looks into some related work in these areas
and Chapter 6 summarizes our results and conclusions, and finally look into

potential future work in this area.



Chapter 2

End-to-end costs and benefits of

prefetching

This chapter evaluates a methodology for quantifying the cost and ben-
efits of prefetching from the end user point of view. The web content is not
only becoming more dynamic (e.g., CGI scripts, .asp) but also changing very
rapidly. This is the reason why traditional caching mechanisms are not able to
provide increased benefits to the client. Speculative prefetching can, to some
extent, improve the performance delivered to the end user. By hoarding a sub-
set of the pages the user is most likely to view, prefetching can improve both
the hit rate and the latency experienced by the client. There are numerous
push-based or pull-based algorithms that can be employed by the service or
the client [18, 21].

The current internet infrastructure also suffers an average 1% downtime
(or unavailability of about 14min/day) on a typical path from a client to

a server [3]. To mask failures that cause this downtime and improve the



availability to 3-9’s or even 4-9’s, active objects [16, 5, 7] can be deployed over
the unreliable internet architecture. A mixture of active object technology
and hoarding techniques such as prefetching can potentially improve the client
perceived latency and hit-rates even in the case of failures [2]. Disconnected
mode of operation can be viewed as a generalized case of failure, where the
client and server cannot communicate over a reliable channel.

Some current systems provide the option of hoarding for disconnected
operations. For example, systems such as AvantGo [44] for palm-size comput-
ers or Microsoft Internet Explorer [45] can be set to prefetch a (subset of a) par-
ticular site that the user might want to browse offline. Even in the traditional
browser context, the CNN home page (http://www.cnn.com/index.html) has
the feature of being reloaded every thirty minutes, even though the user might
not have asked for the updated version. This feature ensures that the user has
the latest version of the page in case she gets disconnected from the internet,
thus increasing the hit rate.

Along with the potential benefits, prefetching also involves costs. These
primarily include the cost of additional resource usage which can be in the form
of network bandwidth, disk space, CPU cycles or memory consumed at the end
user. Hence there is a need to trade off improved performance (measured in
terms of the latency or availability or freshness) with the additional resources
consumed in the process. This scenario can be viewed as in figure 2.1.

Note that in this report we do not provide a method to achieve 3-9’s
or 4-9’s of availability nor do we propose the best prefetching algorithm. We
just seek to understand the extent of the parameters involved in judging the
amount of prefetching that could be justified.

As can be seen, the metrics involved in the trade-off are not directly



Increased

Resource Improved
Consumption Performance
[ bytes of disk space, [Time,

bytes over the NW, Availability

disk I/O,CPU cycles] Freshness ]

Figure 2.1: Trade-off between resources and response time.

Resource Cost
(dollars/10KB)
NWCOStLAN 0.0001

NW Costprodgem | 0.0002
StorageCost | 8%107%/month
WaitCost 0.02

Table 2.1: Cost Chart. Source Gray and Shenoy [32].

comparable. Gray and Shenoy [32] suggest a methodology for converting all
the units of measurement into monetary values to estimate whether caching a
data object is economically justified by comparing the cost of storage against
the cost of network bandwidth and human waiting time. We extend that
method to balance prefetch costs and benefits.

First, we summarize Gray and Shenoy’s calculations for disk costs, net-
work cost, and human waiting time benefit for caching an average web object.
These results are shown in the Figure 2.1.

Based on the above measures we can estimate that downloading a 10KB
object across an Internet/LAN network costs about NWCostpany = $.0001,
across a Modem costs about NW Cost progem = $.0002, across a wireless modem
about NWCostwireress = $.01, and Gray and Shenoy estimate that storing a
10KB object costs about StorageCost = $8 - 10 /month. Assuming that

human time is worth about $20/hour, the “waiting cost” due to cache miss



latency is about WaitCostran =$.02 when connected via an LAN/Internet,
W aitCostarogem =$.03 when connected via a modem, and WaitCostwireiess =
$.07 when connected via a wireless modem. Notice that disk space is “rental”
of a byte per second while network is just cost per byte. (Once you use a
bit of network bandwidth, you can never use that bit again; but when you
stop using disk space, you can use it for something else.) We could also have
computed cost of replicating an object through several versions; in that case
the network transmission time would be amortized by version lifetime rather
than (as in this case) the disk space being consumed for version lifetime. Based
on these estimates, Gray and Shenoy conclude, for example, that once fetched,
an object should be kept in cache even if the expected time to reaccess it is
on the order of decades.

This methodology can be extended to estimate whether prefetching an
object is justified. Suppose that P,s.q is the probability that a prefetched
object is used before it is updated or evicted from the cache and that unref-
erenced prefetched objects are evicted after one month. Then the threshold
probability Pr can be defined as the lowest P, .4 for an object that justifies
prefetching it. Thus an object is prefetched only if its P,,.q4 is greater than the
Pr.

_ NWCostyrefetcnnw + StorageCost
B WaitOOStdemandNW + NWCOStdemandNW

Py (2.1)

Pr can be viewed as the ratio of cost incurred due to prefetching to
the cost incurred with traditional on-demand fetching. indicates how useful

prefetching an object can be. In other words, if there is Pr probability of



Network used for demand fetch

Prefetch NW |} | LAN/Internet | Modem | Wireless
LAN/Internet 0.0054 | 0.0036 | 0.0014
Modem 0.0069 | 0.0026
Wireless 0.1251

Table 2.2: Estimate of the Pr threshold probability that a prefetched object
is used that justifies prefetching it to reduce human waiting time to demand
fetch it. Source [32]

prefetching an object, then it is economically justified to prefetch it. Note

that amount of additional resources consumed is limited to a factor of at most

1

7. compared to an on-demand system.
T

Table 2.2 summarizes our estimates of Pr. The rows correspond to
different networks used for prefetching (prefetchNW), and the columns to
different networks used for demand fetch (demandNW'). The diagonal cor-
responds to prefetching on the same network as the later demand fetch. For
a LAN/Internet environment, for example, it can make sense to prefetch an
object if the user has a 0.5% chance of accessing it over the next month and
before it expires.

This economic argument for aggressive prefetching is particularly at-
tractive for supporting heterogeneous networks or disconnected operation. As
the table indicates, prefetching when network bandwidth is cheap (e.g., on a
LAN connected to the Internet) to avoid network traffic when it is expensive
(e.g., on a wireless modem or when congested) can be advantageous even if
there is a 1/200 chance that an object will be used. If, for example, network
bandwidth per byte is 100x more expensive across a wireless PCS modem than

across a DSL connection !, then it makes sense to prefetch an object if there

1 For example, suppose PCS provides about 1KB/s of useful bandwidth at $0.10/minute
for a cost of about $1 per 600KB. And suppose that a $50/month DSL connection provides

10



is a 1% chance that it will be used while mobile, even neglecting the benefits

to human waiting time.

Assumptions and Limitations

In the case of disconnected operation, the WaitCost term would be
replaced by a (typically higher) DenialOfService term that represents the cost
of not delivering the service to the user at all.

One factor ignored in these calculations is server costs. One concern
about aggressive prefetching is that it could swamp servers. Our system con-
trols this by putting prefetching under the control of programs supplied by
servers. This allows servers to avoid prefetching when it would interfere with
demand traffic. More generally, the above methodology can be extended to
include all server processing costs.

Another argument against aggressive prefetching is that it may over-
whelm the Internet infrastructure. Certainly, if everyone started aggressively
prefetching tomorrow, capacity would be stretched. One way of viewing this
calculation is that it suggests that the economic incentives to grow network
capacity over time to accommodate prefetching may exist. Odlyzko [46], for
example, suggests that in rapidly-growing communications systems, capacity
and demand increases seldom occur at more than 100% per year, partially due
to the time needed to diffuse new applications with new demands.

Another factor ignored in these calculations is the presence of hetero-

geneous devices. For example, a palmtop machine may have significantly less

100KB/s of useful bandwidth but is only used 1% of the time for a cost of about $1 per
50MB. Given the “use it or lose it” nature of DSL bandwidth pricing compared to the
per-minute pricing of most wireless services, this estimate is conservative.

11



storage space than a desktop machine. This can be modeled by increasing the
StorageCost term [32].

Technology trends may favor more aggressive replication in the future.
First, network and disk costs appear likely to fall much more quickly than
human waiting time costs. Second, the deployment of commercial content-
distribution networks (CDNs) may significantly reduce the network costs of
prefetching by allowing clients to prefetch from a nearby CDN node rather
than the origin server.

Overall, the raw capacity of disks and networks as well as the back of the
envelope economic calculations all suggest that in many current environments,
it may be reasonable for services to use significant amounts of spare capacity to
support disconnected operation. We conclude that for web service workloads,
capacity to support prefetching of ten times more data than is used on demand
may often be available, though support to prefetch 100 times more data than
is used may be excessive for today’s configurations. Given this economic view
we can interpret that users might increase the usage of prefetching in order
to decrease their wait time. A caveat in this scenario is that it might not be
feasible to support aggressive prefetching in the very near future due to the
limitations of the network infrastructure.

Below we discuss the implications and sensitivity of the above result to
the assumptions made above. The sensitivity to these results can be evaluated

for assumptions on:

e Cost

Technology

Device heterogeneity

Prioritized traffic

12



2.1 Cost assumptions

The cost values used for the network, server, client and human waiting
time were assumed to be constants in the above analysis. These may however
change with varying conditions and hence affect the value of the prefetch

threshold. We analyze each of these factors in turn.

2.1.1 Network

In this section we present an economic view which justifies increased
prefetching with the current trend of decreasing network costs. In the above
prefetch threshold calculations we assumed that the cost of transmitting over a
network is constant for that network. We can calculate an approximate value
for this as shown below:

For a modem connection (costing $20/month at 5 KB/s) with 10%

utilization, the network transmission cost is

$20/month
30days/month * 86400sec/day * 5 x 103bytes/sec * 0.1

~ 2 % 1058 /byte.

For DSL connection ($50/month; 100 KB/s) similar network cost is
1079$/byte. Wireless access via cell phone ($50/2000 minutes; 64kpbs) costs
around 5 * 10~ "$/byte. Hence we will initially estimate the cost of network
transmission is of the order of 1072 $/byte. We will examine the sensitivity of
our result to these assumptions below.

Table 2.3 generated in 1998 indicates the cost of transmitting over the
typical networks in that year. Table 2.4 shows the same monthly costs for

providing some typical network connections in the current year. It can be

13



Network Transmission Cost
(dollars/MB)

Modem 0.25-0.50

Private line 0.5-1

T1 Frame Relay | 0.3

Internet 0.04-0.15

Table 2.3: Costs of transmitting a megabyte of data over various networks(in
1998). Source Odlyzko [47].

Network | Speeds Monthly Price | Transmission Cost
(Mbps) | (9) ($/MB)

ISDN 0.128 $395.00 0.285

T1 1.54 $900.00 0.054

Ethernet | 10 $5000.00 0.046

T3 45 $51000.00 0.104

Table 2.4: The connection costs for various networks (in 2001). Source Net-
door.com [48].

14
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Figure 2.2: Decrease in prefetch threshold as network cost is decreased

observed that either
e Most of the network costs have become cheaper (e.g., T1 network) or
e The costs have remained relatively same (e.g., ISDN) or
e Some new relatively cheaper networks have emerged (e.g., T3)

Figure 2.2 shows the variation in the prefetch threshold Pr with decreas-
ing network costs (assuming constant values for StorageCost and WaitTime).
It also gives a range of cost values for current networks. It can be seen that
the prefetch threshold remains constant after a certain network cost, at which
point the StorageCost and WaitCost dominate. Thus we can conclude that
it is possible to prefetch larger amounts of data with decreasing network costs

since Pr decreases.
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Symbol | Description

So size of an object

Cq cost of disk space (per byte per second)
Cn cost of network transmission (per byte)
l, object lifetime

Table 2.5: List of symbols used for comparing the network transmission cost
versus the replication cost.

2.1.2 Client

We can compare the cost of transmission across the network to the cost
of creating and maintaining a replica at the client by prefetching to predict
the usefulness of the prefetched object.

Based on the definitions given in the table 2.5, we can write

Disk space cost = s, *cq*1,

Network cost = s, *c,

The values of ¢4 and ¢, are the cost of disk space (StorageCost) and
network transmission cost (NW Costppe fetcnnw, calculated in the previous sec-
tion), respectively.

Today disks are about $.005/MB (e.g., 20GB disk costs $100). We
assume that a disk lasts 3 years. There are about 10® seconds in 3 years. So,

to rent disk space the cost is ~

$.005/(10%bytes*10%seconds) ~ 107§/ (byte * second) ~ 10~%$/(byte * month)

16



StorageCost ~ 107%$/(byte * month)

NWCOStprefetchNW ~ 10_8$/byte

Hence

Disk space cost  cgx 1,

Network cost Cn

107§/ (byte * second) * [,
10-8$/byte

10~% /seconds * I,

Q

Q

So, if an object’s lifetime [, is significantly more than 10~% seconds
(about 3 years) then the storage cost dominates. If its lifetime is considerably
less than 3 years, then transmission cost dominates. The work in [26] examines
the costs and benefits of prefetching popular long-lived objects. They evaluate
a long-term prefetching algorithm which significantly improved steady state hit
rates at modest bandwidth costs. These calculations indicate that the client
can afford to prefetch an object if the local storage cost for the objects usage
lifetime is lesser than the cost to actually prefetch. The StorageCost in the
prefetch threshold Py equation 2.1 is thus dependent on the longetivity of the
object and the network cost NWCostpefetcnvw. Thus equation 2.1 can be

rewritten as

17



NWCOStprefetchNW * (1 + lo)

Pr = _
W aitCost gemananw + NW Co08t gemanaNw

2.1.3 Server

In the above calculations the cost of maintaining an object at the server

itself is being ignored. This term should be added to the Pr equation to obtain

NW Costprefetchnw * (1 + 1,) + ServerCost

Pr =
T W aitCost gemananw + NW Cost gemananw + ServerCost

Current web server machines cost upto $2000 per month. A typical
server cluster can be assumed to have around 500 such nodes each catering to
around 30*10° requests per day [30]. For a typical server each request accesses
around 10Kbytes. An example server provider [50] allows up to 50GB/month
of burstable bandwidth for each server node. Hence the typical $/byte cost

for server storage is approximately

2000 * 5008 /month
50 % 102 % 500MB/month
= 4x107%$/byte (2.3)

ServerCost

Figure 2.3 shows the variation of Pr as the ServerCost is varied. The

range of values for ServerCost are indicated. Once again the Pr becomes

18
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Figure 2.3: Decrease in prefetch threshold as server storage cost is decreased

constant as ServerCost is dominated by NW Costs and WaitCost. It can be
inferred that as the server technologies improve and costs fall, we can expect

an increase the amount of prefetching feasible at the client.

2.1.4 Human wait time

The WaitCost term might vary with the user in question and also with
the time of the day. For example, one might assign more wait cost to a doctor
who is waiting for a report in the middle of a surgery.

Varian [28] presents an argument wherein the total cost of time, Cr can

be calculated from

Cr = [c+p(b)]

19



where b is the bandwidth being used, c is the cost associated with the
user and p(b) is the dollar cost as a function of the bandwidth chosen. Hence,
given a preferred bandwidth, b, one can estimate the range of ¢ which will
minimize the above total time cost. Also in Varian’s [29] paper a pricing
method based on usage and condition of the network is proposed whereby
the user is charged per byte of data used based on the amount of congestion
in the network. These results can be used to specify a range of values for
W aitCost depending on the user time and actual users perceived performance

improvements.

2.2 Technology trends

Technology trends may favor more aggressive replication in the future.
First, network and disk costs appear likely to fall much more quickly than
human waiting time costs. Second, the deployment of commercial content-
distribution networks (CDNs) may significantly reduce the network costs of
prefetching by allowing clients to prefetch from a nearby CDN node rather
than the origin server.

Pr decreases as technology improves and becomes cheaper. We can
approximate Moore’s law so that network and storage costs decrease at a rate

of K every year.

NWCostprefetch NW + StorageCost
0

t—1 i1
. N .
W aitCostemandnw + S C o epand

The plot of 2.4 is shown in figure 2.4 with K = 2, ¢ty = year 2000. This
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Figure 2.4: Effect of cheaper and better technology on prefetch threshold.

result is the combination of the results of the above cost assumptions.
Hence from this simple analysis, we can conclude that one can expect
an increase in the amount of data that can be prefetched as the network

infrastructure costs go down.

2.3 Heterogeneous devices

Another factor ignored in these calculations is the presence of hetero-
geneous devices. For example, a palmtop machine may have significantly less
storage space than a desktop machine. The continuous usage of network may
also be limited not only because of its high cost, variable performance and
reliability but also because of the finite energy available to perform the op-

eration. This can be modeled by increasing the StorageCost term [32]. We
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have always assumed that the prefetchNW and the demand NW to be the
same for the above results. By using different networks for demand fetching
and prefetching one can decrease the Pr, e.g., by using a costlier network for
demand fetch than prefetch (other things being the same).

From the above discussion of improving technologies, one can hypothe-
size that the decrease in the costs of bandwidth and disk space for hand held
devices can lead to a further decrease in the storage cost term. The analysis of
the statistics is out of the scope of this paper and is the goal of future research

in this area.

2.4 Prioritized traffic

In this section we analyze the impact of prefetching on the network, the
server and the client infrastructures. The above calculations were pessimistic
in that they assumed prefetch traffic competed directly with demand traffic
for resources at the network and the server. We will provide a brief survey
of the various strategies that have been proposed to reduce the cost incurred
by the network. At the server we measure the availability of spare capacity
and propose mechanisms by which the an interference of prefetching requests
with on-demand requests can be avoided. We study the usage patterns of
the limited resources present at the client and come up with a novel resource
management policy which can fairly, efficiently and automatically allocate and

monitor the limited resources.
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2.4.1 Network

One of the main concerns with aggressive prefetching is that the net-
work might get congested because of the additional traffic that is generated by
the increased traffic from prefetching. There have been many research projects
which provide mechanisms for restraining and optimizing the prefetching al-

gorithms.

e Crovella et. al., [31] present a rate controlled prefetching algorithm. This
is a transport level method which can reduce the load on network router
queues by maintaining the prefetch transfer rate sufficient to deliver it

just in advance of users request.

e Another approach suggests the use of server based multicast instead of

traditional unicast. In [33], Chuang and Sirbu present the scaling law,
P,
_m _ Nk
Py

where P,, is the price of multicast streams to N nodes, P, is the price
of a unicast stream to a single receiver nodes, N is the number of mul-
ticast members in the network and k is the economies of scale factor
ranging between 0 and 1. They find that this relation in independent
of the network topology, network size and membership distribution and
dependent only on the membership size, N. The idea is that multicast-
ing prefetch can give better level of efficiency because of reduced overall
bandwidth demand of content transmission since packet duplication only

occurs when paths to multiple receivers diverge.
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e Techniques such as digital fountain [51] and delta-encoding [52] can give
lower priority to prefetching that demand traffic and so suite well to
prefetching for content distribution and allow data transmission at a

much lower cost than traditional network transmission.

e Bestravos [19] provide a protocol for Demand-based Document Dissem-
ination (DDD) to reduce traffic. The model disseminates the most pop-
ular documents on server closer to clients in a hierarchical replication
strategy which controls traffic over the network while maintaining load-

balanced servers.

e The goal of the evolving IETF differentiated services (diffserv) [23] frame-
work is to offer services without the need for per-flow state and signaling
in every router. By aggregating many QoS-enabled flows with differ-
entiated treatments within the network, diffserv eliminates the need to
recognize and store information about individual flows in core routers.

This technique can allow the prefetching mechanism to scale well.

e Application level support can be accomplished by prefetching based on
the time-of-day heuristic. For example, the mobile service code can

prefetch during periods of low activity such as nights or weekends.

The evaluation of the above schemes is the subject matter of future
research in this area. We can estimate the useful spare network capacity that
can be potentially used for improving the effectiveness of prefetching without
burdening the infrastructure. The implementation issues for a prototype incor-
porating a combination of these strategies in beyond the scope of the current

report.
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Figure 2.5: Distribution of spare capacity at server for different time intervals.

2.4.2 Server

Given the bursty nature of prefetching, one can expect the server to be
swamped with prefetching requests. If the server processes these requests along
with demand requests on a FCFS basis, then there is a potential problem of
increased latency for the user waiting for his demand request. First we analyze
the presence of spare resources (measured in terms of requests processed per
second) at the server. If there is spare capacity then we propose methods by
which it can utilized to serve prefetching and on demand requests fairly.

The amount of resources being consumed at the server is approximately
proportional to the number of requests being processed per unit time. We
analyzed a server trace obtained from the server web site for Olympics 1998.

This workload was generated by a major Sporting and Event web site hosted
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by IBM, which in 1998 server 56.8 million requests on the peak day, 12% of
which were to dynamically generated data [37]. The peak number of requests
serviced by a server in unit time, can be approximated to the peak capacity of
that server during that interval. The spare capacity available for prefetching
in each time interval can be viewed as the difference of this maximum and the
actual requests processed during that interval.

In Figure 2.6 we plot this spare capacity for the time granularity of
one second, 10 seconds, one minute, ten minute, one hour, and four hours.
It can be seen that a maximum of 167, 95.2, 78.23, 63.77, 57.38, and 41.86
additional requests can be processed per second, respectively, for each of the
time granularities. Similar analysis is shown in figure 2.7 for the server accesses
to Macys Web server for one day with a maximum of 77, 44.6, 35.85, 25.88,
22.74, 20.93 additional requests that can be processed for each of the time
granularities above.

Figure 2.5 shows the distribution statistics (25%tile, mean, median,
75%tile, max) of capacities at different intervals of consideration for the Olympics
trace.

Due to this available spare capacity at the server, it should be efficiently
used to process prefetch requests (along with on demand requests). One as-
sumption in [21] is that the on-demand requests and prefetch requests are
of same priority. A potential hazard of this is that machine As on-demand
requests (for which a user is waiting) might be delayed because of a set of
prefetch requests from another machine B (which a user might not even use).
We propose a dual queue model at the server which schedules the requests

based on

e Non preemptive queues with higher priority to on demand queue ele-
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ments.

e Preempt and resume queues where prefetch requests are pushed back

while on-demand get served.

Because of the increased load at the server, there will be an increase
in the CPU cycles and disk bandwidth. CPU cycles cost can be negligible
compared to disk bandwidth. In most cases, disk bandwidth cost will be
less than network bandwidth cost if a disk IO is less than just a network
transmission. Hence in all the above calculations a free I0 system was assumed
instead of the combined cost of disk seek, ¢, ($ per byte), and bandwidth.

One can use server-based speculative prefetch methods such as in [20]
which reduced both server load and service time. In our current system we
assume the mobile service code avoids prefetching when when it would in-
terfere with on-demand traffic. In general, the above methodologies can be
extended to include all server processing costs. An interesting question for
future research can be the reduction in the locality and hit rate that might
be a result of not processing prefetching requests (which tend to be to closely

related objects).

2.4.3 Client

The effect of multiple untrusted mobile services running on the client
can potentially cause a resource contention at the client. The main resources
that we are interested in are disk space, network bandwidth, CPU cycles and
memory. In Chapter 3 we present a trace-based analysis of the number of
services that are accessed by a typical client. We also provide an estimate

of the network bandwidth and disk space used by the services and the clients
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accessing them. These measurements suggest the availability of spare resources
that can be used effectively to support disconnected operations. They also
warrant a need for a flexible resource management framework so that the
resource contention does not end up in a denial of service attack. These and

other related issues are discussed in detail in Chapter 4.
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Olympics Server.

29



40

Spare Capacity (requests/second)

Spare Capacity (requests/second)

= = N o w © I
S =] S & 8 & ]

@

L
0 10000

A .
20000 30000 40000

L L
50000 60000

Interval Number

L
70000

(a) 1 second interval

40 T

L
80000 90000

1000 2000 3000 4000 5000 6000 7000 8000 9000
Interval Number

(b) 10 second interval

W ©
s &

N
]

I =
) o

Spare Capacity (requests/second)

Spare Capacity (requests/second)

30

25 -

20 -

10 -

600 800
Interval Number

L
1000

minute interval

1200 1400

20 60 80 100 120 140
Interval Number

(d) 10 minute interval

Spare Capacity (requests/second)

Spare Capacity (requests/second)

25

Ir%?erval NumSEer
(e) 1 hour interval

20

2 3
Interval Number

(f) 4 hour interval

Figure 2.7: Spare capacity available at the server at different time granularities for

Macys Server.

30



Chapter 3

Client resource requirements

This chapter examines the impact of web workloads on the requirements

for client infrastructures that support disconnected service access.

3.1 Design space

Systems could operate in one of three regimes illustrated by Figure 3.1.
First, services may demand large amounts of resources in order to support
disconnected operation, and the aggregate demands of services may signifi-
cantly exceed the total capacity of the infrastructure. In that case, providing
a general infrastructure for disconnected operation may not be feasible. At
the other extreme, resources may be plentiful relative to the likely demands
of services. In that case, infrastructure should focus on providing mechanisms
for shipping code to clients, running that code securely, and, perhaps, limit-
ing “resource hogs” to prevent deliberate or unintentional denial of service;
beyond that, resource management is not likely to determine system perfor-

mance. The middle case is more challenging: if resources are constrained but
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Figure 3.1: Design space for resource management.

sufficient for applications to provide reasonable disconnected service, then a
key task for the infrastructure is partitioning resources fairly among untrusted
code modules to maximize global utility.

It is difficult to specify workload requirements definitively. First, appli-
cations vary widely. Some can easily operate in disconnected mode with few
additional resources compared to their normal requirements. For example, a
daily comic site could be prefetched in its entirety once per day for little more
cost than fetching it on demand. Other services are not suitable for discon-
nected operation at all because they require live network communication (e.g.,
a stock ticker or phone call) or would require unreasonable amounts of state
to be replicated at clients for disconnected operation (e.g., a search engine).
Many services may operate between these extremes: by expending additional
resources (i.e., prefetching data that may be needed in the future or buffering
writes or outgoing requests) they can support disconnected operation. Ex-
amples of this class may include many shopping, news, entertainment, and
corporate services.

Note that the application-specific adaptation afforded by mobile code
often may allow services to provide degraded, though still useful, service when
disconnected. For example, although a stock trading service probably would
not accept orders when disconnected, the company providing the service may
desire to operate in “degraded” disconnected mode by turning off the order ser-

vice but providing other services: a portfolio summary, news bulletins related
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to the user’s holdings, a history of past orders, and so on. In this example,
even though the “primary” function for a service is inoperable when discon-
nected, the service may gain significant benefit from mobile code that allows
the user to access a subset of the services when disconnected.

A second challenge to precisely specifying workload requirements is that
the potential demands of an individual service may span a wide range. In
particular, prefetching is a common technique to cope with failures. Often,
the more data that are prefetched the larger the fraction of client requests
that can be handled during disconnection, and the better service that can be
provided. For example, a news service might prefetch headlines and abstracts
in a resource constrained environment, full text of articles from a few major
sections (e.g., headlines, international, sport, finance) in a less constrained
environment, and so on up to full text, pictures, and video from all articles in
an unconstrained environment.

Given the methodological challenges posed by the wide range of web
service behaviors, we take the following approach. We examine the average
demands of current web workloads in order to assess approximately how many
additional resources may be available for supporting disconnected operation.
This provides a rough guide to the constraints of the system. We focus pri-
marily on the bandwidth and disk space requirements of hoarding and related
techniques such as prefetching. Although other techniques — write-buffering
message queues, and application-specific adaptation — are also important for
coping with disconnection, the resource demands of services using these tech-
niques may not be significantly higher than the normal demands of the ser-
vices. In contrast, aggressive prefetching may dramatically increase the net-

work bandwidth and disk space demands of applications and therefore presents
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Figure 3.2: The number of domains (a,c) or individual IP addresses (b,d) ac-
cessed by each active shared proxy (a,b) or per-client cache (c,d) over different
time scales.

the most direct challenge to scalability.

3.2

Workload characteristics

The operating regime of the system with respect to resources is largely

determined by the workload. We study several client traces of web service

workloads to determine how many services are in a client’s working set and
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| Workload | Date

| NClients | NServers | Sessions |

Squid-P | 3/28/00 — 4/03/00 | 1 131193 | 1557875
Squid-C | 3/28/00 107 52526 | 403235
BU-P 1/17/95 - 5/17/95 | 1 4614 56789
BU-C 1/17/95 — 5/17/95 | 33 4614 68949

Table 3.1: Web access trace parameters.

how much data those services access. From this, we derive an estimate of the
amount of spare capacity machines are likely to have to support disconnected
operation and argue that it may be feasible for services to prefetch 10 or more
times as much data as they access on demand.

We analyze two traces: Squid [36], which contains 7 days (3/28/00 —
4/03/00) of accesses to the Squid regional cache at NCAR in Boulder, Colorado
that serves requests that miss in lower-level Squid caches, and the first seven
days from UC Berkeley Home-IP HTTP traces [38]. Table 3.1 summarizes key
parameters for our access pattern traces. The simulator uses information in
the traces to identify cachable and non-cachable pages as well as stale pages
that require reloads. In this analysis, we study the resource demands from
each service, where a “service” is defined by the set of URLs from the same
DNS domain (for the Squid trace) or from the same IP address (for the UCB

trace, which identifies origin servers using a 1-way hash of the IP address).

3.3 Working set study

We study two cache configurations. In the first, we simulate a separate
cache (Squid-C and BU-C in Table 3.1) at each client IP address in the trace.
Since the UCB trace tracks individual client machines, this corresponds to the

environment that might be seen by code that seeks to support mobile clients
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Figure 3.3: The range of the maximum number of services accessed by different
clients.

as well as to improve client performance and availability. In the second, we
simulate a proxy cache shared by all clients (Squid-P and BU-P) in the trace.
This configuration does not support client mobility, but it may improve service
availability or performance. Note that the Squid traces remap client IDs each
day, so we only examine the first day of the Squid workload in our per-client
cache analysis. We refer to this workload as Squid-1-day for clarity.

Figure 3.2 summarizes the number of services accessed by each cache
over different time scales to provide a rough guide to the “working set” size
of the number of services a cache might have to host. Each graph summarizes
data for a different trace/cache configuration. Each graph shows the minimum,
25th percentile, median, 75th percentile, and maximum number of services
accessed by a cache over intervals of the specified length.

Figure 3.3 summarizes the distribution of the per-client maximum num-
ber of services accessed at different interval sizes for UCB. For example, if a

client accesses 3 services during the first hour, 7 during the second, and 2 dur-
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Figure 3.4: Per-service cache size demands. Cumulative histogram of the
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ing the third, that client’s maximum working set size for 1 hour is 7 services.
The plot shows the range of maximums at different clients.

Three features of these distributions stand out. First, the working sets
of a cache can be large over even modest time scales. For caches at individual
clients, 25% of 16-hour-long intervals contain accesses to more than 10 services
in the UCB trace and 200 services in the Squid-1-day trace(not shown). For
proxy caches, 25% of 16-hour-long intervals contain accesses to more than 8,000
services in the UCB trace and 18,000 services in the Squid trace. Second, these
working sets vary widely from client to client. For example, in the UCB trace
25% of clients never use more than 3 services in a 16-hour period and in the
squid trace 25% use at least 148 services during at least one 16-hour period.
Third, the scale of the number of services that an active proxy may have to
host is large; scaling, say, a Java virtual machine to gracefully handle tens of
thousands of mobile code extensions may require considerable research and

engineering effort. The scale of the individual client working sets, conversely,
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Figure 3.5: Per-client cache size demands.

appears relatively manageable.

These features have several implications on the system design. First,
they suggest that resource management could be a significant challenge for
some caches where many services compete for resources. They also suggest
that the framework must be self-tuning over a wide range of situations both
because the range of demands is large and because the number of services

under consideration is often too large for convenient hand-tuning.

3.4 Disk space consumption

Figures 3.4 and 3.5 show the cumulative distribution functions (CDF) of
disk space consumption of individual services and of the collection of services
hosted by a cache, respectively. In Figure 3.4, the x-axis is the approximate
service working set size (the amount of data the service accesses during the

trace) and the y-axis is the fraction of services with working sets of the specified
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size or smaller. In Figure 3.5, we plot the total disk size consumed by all
services at each client on the x-axis with the fraction of clients with disk
consumption below the specified amount on the y-axis.

The graphs indicate that per-service demand fetched data typically have
modest footprints in caches; for the Squid and UCB traces, 90% and 80% of
services consume less than 100KB. A few large services consume large amounts
of disk space. Overall, for the UCB per-client caches, the total data footprint
of all services accessed by a cache is below 10MB for all but a few percent
of clients. The Squid data footprints are significantly larger, but note that
each “client” in the Squid trace may correspond to a lower-level Squid proxy
serving many clients.

These data have several implications with respect to scalable resource
management. First, the wide range of per-service and per-cache demands
suggests the need for a flexible approach. For example, allocating 100KB to
each service would waste large amounts of space for many services and be far to
little space for others. Second, for the desktop clients that presumably make
up most of the UCB trace, the amount of disk space consumed for caching
demand-fetched objects is relatively small compared to the total disk capacity
of such machines. This suggests that disk space considerations may allow

significant prefetching. We discuss this issue in more detail below.

3.5 Network bandwidth consumption

Another key resource for supporting disconnected operation is network
bandwidth. Figure 3.6 summarizes the network bandwidth consumption by the

trace workloads. As indicated in Figure 3.6(a), most services have low average
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bandwidth requirements of a few tens of KB per hour or less. This suggests
that caches with modest bandwidth can support relatively large number of
prefetching services. Figure 3.6(b) shows the hourly bandwidth usage at each
client. 90% of clients demand less than 2 MB /hour — 8% of a 56Kbit/s modem
and 0.4% of a 1Mbit/s DSL. This suggests that for services where prefetching
is not time-critical, considerable spare bandwidth may be available.

Similar analysis for maximum bandwidth usage shows the distribution
across clients and services of the maximum bandwidth demand during any
hour for that client in Figure 3.7. 90% of clients demand less than 10MB per
hour — 40% of a 56Kbit/s modem and 2% of 1Mbit/s DSL connection — during
their worst hour. Most services need only a few hundreds of KB in their worst
hour. This suggests that considerable spare bandwidth may be available even
during periods of high demand.

The above data suggests that in terms of raw capacity, client disks and
networks may be able to provide considerable resources to support discon-
nected operation. For example, in the UCB workload, 95% of client systems
could allow each service to prefetch approximately 10 bytes for every byte
served on demand and still consume less than 1% of a 10GB disk. Similarly,
a client on a 1MBit/s DSL connection could prefetch 10 bytes for every byte
served on demand and consume less than 4% of the raw connection bandwidth
for most clients. Given this spare capacity, one might ask: is it reasonable for
a service to fetch and store 10 or even 100 times as much data as is accessed on
demand? In classic operating systems terms, fetching 10 or 100 bytes per byte
accessed might seem excessive. However, the long latencies and significant
failure rates of wide-area networks may make doing so a reasonable strategy.

Furthermore, whereas the costs of prefetching (network bandwidth, server pro-
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cessing, and disk space) fall rapidly over time, the value of human time remains
approximately constant. Thus, prefetching a large number of bytes to save a
small amount of latency or risk of disconnection becomes a more attractive
strategy over time. This result thus proves our earlier claim that aggressive

prefetching is feasible.

42



Chapter 4

Resource management system

for clients

In this chapter we first outline the requirements for resource manage-
ment in this client environment running many untrusted services which access
the local limited resources such as disk space and bandwidth. Then we sketch
the details of such a system. A simple resource management system should

meet the following requirements.

1. Isolation. The policy should prevent denial of service attacks by bound-
ing the resources consumed by any service, and it should prevent aggres-
sive services from interfering with other services. This goal is motivated
by the fact that the target workload comprises large numbers of un-

trusted modules competing for resources.

2. Efficiency. The policy should divide resources among services so as to
maximize overall utility. In contrast with the first goal, which might be

achieved by placing a loose upper bound on worst-case resource demands,
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this goal implies careful resource allocation may be necessary. This goal
is motivated by our expectation that systems are likely to have sufficient
resources to be useful for disconnected operation, but that they probably
will not have sufficient resources to prefetch everything that applications

might want.

3. Self-tuning. The policy should not require user intervention or hand
tuning. This goal is motivated by the large number of services that a
client may host as well as the wide range of service demands and system

configurations likely to be encountered.

One observation worth noting is that due to the untrusted nature of
the mobile services, the system has to base its allocation policies strictly on
observable phenomena. We argue that one such phenomenon is the amount
of useful work the service is doing for the user, i.e., the combination of the
number of times it is used and the amount of useful data it transfers to the

user.

4.1 System architecture

The resource management architecture consists of four components:
popularity layer, scaling layer (time-scaled popularity), per-resource resource
managers and override module. The overall architecture of the system is shown
in figure 4.1

The general overview of how this system works is as follows. The pop-
ularity layer monitors the activities of services (mobile code) in the system

and tracks the popularity of each. The scaling layer takes the output of the
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popularity layer and converts it to a proportional per-resource, per-service re-
source allocation. The override module, if active, will override the service’s
resource allocation by a manually specified value. Through the API provided
by the scaling layer, the per-resource manager is able to access the fraction
of each resource to which a service is entitled. Based on this information,
the per-resource manager enforces the resource usage on each service in the
system.

The per-resource resource managers and override modules can be based

on existing mechanisms discussed here:

e The JRes project [9] proposes a Java API for resource management. The
limitation of JRes prototype is that for all the processes in the system,
an equal share of system resource is given. This idea is simple but not
as efficient and applicable for a dynamic environment with untrusted

mobile code.

e The Resource Container [10] paper presents a precise mechanism for
tracking resource usage per process. The paper suggests that to guaran-
tee proper resource accounting a resource container should be notified of
any access a process (and all its threads) makes to a resource. We are
using this concept to account for resources such as CPU cycles, network

bandwidth, disk space, and memory space through resource containers.

e Start-time Fair Queuing (SFQ) scheduling [11] is a computationally ef-
ficient, work-conserving algorithm, which achieves fairness of network
bandwidth allocation regardless of variation in a server capacity. The

proportional-share schedulers for stateless resources, such as CPU and

45



RESOURCE

MANAGERS
> DISK
> 8
'_ > .
User 1 z 53 Service
Requests < b N/W Requests
to 2 2 = & for Resources
. [
Services g z
3 3 CPU
E § Grant/Deny
P b
£
= MEM
Policy Mechanism

Figure 4.1: Resource Management subsystem architecture.

network, enforce resource limits by scheduling requests and threads using

SFQ.

We extended these methodologies to fit in the dynamic environment by
combining them with some internet-oriented approaches. For example, with
combination of JRes and SFQ, we could not only limit the total amount of
resources each program can use in the system, but also manage the resources
of each process more dynamically as programs enter and exit the system.

The popularity layer and scaling layer are developed based on our policy
which divides resources fairly among the services. This is the topic of interest

for the rest of this report.

4.2 Policy requirements

The policy used for allocating resources should provide isolation, effi-
ciency and automation as described above. A potential problem with standard
resource management polices — such as LFU or LRU for cache replacement or

FIFO or round-robin for CPU or network scheduling — is that these policies
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reward increasing resource demands with increasing allocations: as a program
references more data, it is given more memory; as it spawns more threads
or sends more network packets, it gains a larger fraction of those resources.
Such approaches provide global allocation of resources that can meet the goal
of efficiency (assuming that each application’s requests have similar utility.)
Such an approach also meets the goal of self-tuning. However, this approach
is vulnerable to denial of service attacks.

A second simple approach is to give each service an equal share of re-
sources. But such an approach faces a dilemma: making that fixed amount
too large risks denial of service attacks while making it too small thwarts con-
struction of useful services. For example, browser cookies represent requests
from untrusted sources to store data on client machines, but limitations on
allowed cookie size and number of cookies prevent construction of, say, a “dis-
connected Hotmail.” On the other hand, if cookies large enough to contain a
respectable inbox and outbox were made available to all services, a user’s disk
might fill quickly.

Hence we hypothesize that a popularity-based policy will have two prop-

erties that mix the benefits of these two simple approaches:
e Competitive with global policies for benign workloads

o Performance isolation for malicious workloads

4.3 Popularity-based resource policy

Given these constraints, a resource management system for mobile ser-

vices should attempt to forge a compromise between static allocations that
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require no knowledge about users or services and dynamic approaches that
require unrealistic amounts of knowledge about users or services. Our goal is
to construct a dynamic allocation framework that can make reasonable, albeit
not perfect, allocation decisions based on information about users or services
that can readily be observed by the system and that are not easily manipulated
by the services. We use service “popularity” as a crude indication of service
priority, and allocate resources to services in proportion to their popularities.
This approach is based on the intuition that services that users often access
are generally more valuable to them than those the they seldom use. It also
has the attribute of providing users with better service for those services that
they often access.

Our approach is simple: for each resource and each service, the system
maintains an exponentially decaying time-average of the number of requests
by the user agent to the service. The resource manager for each resource
allocates the resource to each service in proportion to the service’s time average
popularity as a fraction of the popularity of other services. QOur resource
schedulers are work conserving: if one service uses less than its full share of a
resource, the excess is divided among the remaining services in proportion to
their scaled popularities.

A key idea in the system is that separate scaled per-service popularities
are maintained for each resource, and each resource uses a different timescale
for computing its time average popularity. This is because the appropriate def-
inition of “popularity” varies across resources because different resources must
be scheduled at different granularities. In particular, “stateless” resources such
as CPU can be scheduled on a moment-to-moment basis to satisfy current re-

quests. Conversely, “stateful” resources such as disk not only take longer
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to move allocations from one service to another but also typically use their
state to carry information across time, so disk space may be more valuable if
allocations are reasonably stable over time. Thus, the CPU might be sched-
uled across services according to the momentary popularity of each service,
while disk space should be allocated according to the popularity of the ser-
vice over the last several hours, days, or longer. Other resources — such as
network bandwidth, disk bandwidth, and memory space — fall between these
extremes.

Although having different time scales for different resources might ap-
pear to introduce the need for extensive hand-tuning, we avoid this by choosing
each resource’s time scale to be proportional to the state associated with the
resource or typical occupancy time in the resource for a demand request. For
example, for disks, we count the number of bytes delivered by the system to
the HT'TP user agent and rescale the per-service running popularity averages
by multiplying them by % each time diskSize bytes are delivered.

For network and CPU scheduling, we use the weighted sum of two pop-
ularities with each averaged over a different time-scale. The first represents
the share of “demand” resources that should be allocated to allow a service
to respond to user requests. This time scale should be on the order of the
time needed to respond to a user request. We use 10 seconds. The second
term represents the share of background CPU and network resources that
should be allocated to allow a service to, for example, prefetch and write back
data. Since these background actions primarily support disk usage, we use
the disk’s timescale here so that services are granted “background” network
and CPU resources in proportion to the disk space they control. Since we

wish to favor demand requests over background requests, we weight the first
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term much more heavily than the second in computing the total CPU and
network resource fractions for each service. In particular, suppose that the
scaling interval for the demand term is ¢;, that the scaling interval for the
background term is t5, and that we scale the running average by % at the end
of each interval. If requests arrive at some rate r, then the total raw weight
for the demand term is about ¢;7 + %tlr + %tlr ...~ 2t;r. Similarly, the total
raw weight for the background term is about 2¢,r. Therefore, to allow de-
mand requests to dominate background requests during the first seconds after
a demand request, we weight the demand term by a factor of 100%. During

periods of idleness, the second term becomes dominant in roughly 100 seconds.

To verify our hypothesis, we have compared our popularity-based policy
with other allocation policies such as fixed-allocation policies and with globally
optimizing policies such as LRU. The results of this work are presented in the

next section.

4.4 Evaluation

The simulation experiments in this section test whether a simple popularity-
based policy can meet the three goals — isolation, efficiency, and self-tuning —
outlined above. We use the same trace files we used to study the workload
characteristics in Chapter 3.

We first study the resource management algorithms in the context of
disk space management by examining three algorithms: (1) traditional LRU
cache replacement that emphasizes global performance, (2) Fized-N, which

supports performance isolation by dividing the cache into N equal parts and
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allowing each of the the N most recently accessed services to use one part,
and (3) Service Popularity, which allocates disk spaces in proportion to each
service’s time-scaled popularity as described above.

A key challenge in studying web services is that as indicated in Chap-
ter 3, services’ prefetching demands, prefetching strategy, and prefetching ef-
fectiveness vary widely. It is not practical to simulate application-specific
prefetching and adaptation for each of the thousands of services that appear
in our trace. The key observation that makes our analysis tractable is that
for the purposes of evaluating resource management algorithms, it is not nec-
essary to determine the impact of prefetching on the service that issues the
prefetching; one may assume that a service benefits from its own prefetching.
What is more relevant is the impact that one service’s prefetching has on other
services.

So, rather than simulating what benefit a particular service gains from
prefetching, we focus instead on the impact that services’ resource demands
have on other services’ performance. We simulate prefetching by a service by
fetching sets of dummy data that occupy space but that provide no benefit.

Figure 4.2 shows the hit rate of the LRU, Fixed-N, and Service Pop-
ularity algorithms as we vary per-client cache size (figure (a)) or total cache
size (figures (b)) for UCB trace. In this experiment no services prefetch. This
experiment thus tests whether the algorithms allocate resources fairly and
efficiently when all services are equally aggressive relative to their demand
consumption. In such environments, LRU works well because it optimizes
global hit rate. Conversely, Fixed-N’s performance suffers because it allocates
the same amount of space to all services and because the parameter N must

be chosen carefully to match the size of the cache. The Service Popularity
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Figure 4.2: Cache replacement policy: Cache hit rate v. cache size.

algorithm is competitive with LRU across a wide range of cache sizes for both

workloads and for both the per-client and proxy cache configurations. The

results of the Squid traces are qualitatively similar. These results suggest two

things. First, they indicate that the service popularity algorithm is reasonably

efficient: it partitions resources nearly as well as the global LRU algorithm.

Second, they provide evidence that the use of time averages proportional to

the “natural frequency” of disk residence time supports our goal of developing

a self-tuning algorithm.

In Figure 4.3 we examine what happens when prefetching aggressiveness
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Figure 4.3: Cache performance with 20% of sites prefetching.

varies across services. We randomly select 20% of the services and introduce
artificial prefetch requests from them. For each demand request, a prefetching
service fetches ten objects whose total size is the x-axis value times the size
of the demand object. The remainder of the services do not prefetch. The
figure plots the performance of the services that do not prefetch. If a system
that provides good isolation, the performance of less aggressive services should
not by hurt by more aggressive services. In this experiment, when prefetching
is restrained, the Popularity and LRU algorithms are competitive. However,

as prefetching becomes more aggressive, the performance of non-prefetching
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sites suffers under LRU, whereas their performance under Popularity-based
replacement remain largely unaffected.

Figure 4.4 evaluates the resource management approach for network
bandwidth. We consider three network schedulers: (1) FCFS which services
requests in FIFO order, (2) Equal-Fair, which splits bandwidth equally across
all services that request bandwidth using start-time fair queuing (SFQ) [11],
and (3) Popularity-Fair, which also uses a SFQ scheduler, but which divides
bandwidth according to the Popularity-based algorithm described above. In
this simulation, we assume that the bottleneck in the network is the shared
link. Note that our base SFQ scheduler is a work-conserving scheduler: if a
service is not able to use its full allocation due to a different bottleneck, the
algorithm divides the excess among the remaining services in proportion to
their priorities.

To introduce prefetching load, we randomly select 20% of the services
and introduce artificial prefetch requests from them at the rate specified on
the x-axis. For each demand request, a prefetching service fetches ten objects
whose total size is the x-axis value times the size of the demand object. The
remainder of the services do not prefetch. The figure plots the performance of
the services that do not prefetch. As for the disk space case, we do not assess
the effectiveness of prefetching for the services that issue prefetching. Instead,
we focus on how excess demand from one service affects other services.

Under FCFS scheduling, prefetching services slow down demand-only
services by a factor of 10 and a factor of 2 in the Squid and UCB traces
for prefetching rates of 10. In contrast, Equal-Fair is not sensitive to the
aggressiveness of the prefetching services. Even though this algorithm does

not favor recently accessed services over prefetching services, the fact that
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Figure 4.4: Network response time v. prefetching aggressiveness.

only 20% of our services are prefetching and that they prefetch soon after
their demand requests finish limits the amount of damage that prefetching
inflicts on other services in this experiment. When there is no prefetching,
Popularity-Fair is competitive with the FCFS scheduler. When prefetching by
aggressive services increases, however, this increase has almost no affect on the

less aggressive services.

4.5 Limitations

One focus of our evaluation is to determine whether the readily ob-
servable metric of popularity provides sufficient indication of user priority to
serve as a basis for resource management. To make the analysis tractable, our
analysis abstracts some important details.

In particular, our strategy of providing one credit per incoming HTTP
request represents a simplistic measure of popularity. For example, one might
also track the size of the data fetched or the amount of screen real estate the

user is devoting to a page representing a service. Other means will also be
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required for streaming media.

In addition to these simplifications in these simulations, the algorithm
itself has several significant limitations.

First, even if our popularity measures perfectly captured user priority,
our resource management algorithm emphasizes simplicity over optimality. It
could be enhanced in several ways. For example, one might implement a
more complete economic model that gives services coins in proportion to their
popularity and that allows “the market” to determine the prices of different
resources over different time scales. Applications that have a surplus of one
resource could then trade rights to that resource for a different one; or appli-
cations could follow application-specific strategies to optimize their resource
usage (e.g., “my content is not time critical, so wait until 2AM when BW is
cheap to prefetch it.”) Developing flexible economies and strategies for com-
peting in them is an open research problem.

Second, our use of the requests from legacy HT'TP user agents as a mea-
sure of raw popularity makes the system vulnerable to attacks in which legacy
client-extension code running at clients (e.g., Java Applets or Javascript) issues
requests to the mobile service proxy in the client’s name, thus inflating the
apparent popularity of a service. This particular problem could be addressed
by having browsers tag each outgoing request with the number of requests
issued by a page or its embedded code since the last user interaction with the
page; our system would then assign smaller coins to later requests. But this
problem illustrates a more fundamental issue: any system that tries to infer
priority from user activity provides the opportunity for applications to “game”
the system by encouraging activities that will increase resource allocation. We

must therefore compromise between simplicity on one hand and precision on
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the other.

Third, a user’s value of a service may not correspond to frequency that
the user accesses that service. For example, a user might consider her stock
trading service to be her most important service even though she only accesses
it once per day to read one page. Although popularity will clearly not capture
precise priority, we believe that the heuristic that services a user often uses
are likely to be more important than services she seldom uses is a reasonable
compromise between simplicity on one hand and precision on the other. Our
prototype system provides an “override module” to allow manual adjustment

of service priorities if users desire to do so.
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Chapter 5

Related work

5.1 Disconnected operations related

In the context of web services, previous studies have examined the per-
formance benefits of web caching [1, 6], prefetching [18, 21, 22, 31|, pushing
updates [6], mobile code [5, 16, 7], and overlay routing [4]. Systems imple-
menting variations of some of these techniques have been built. File caching [5],
replication [43], hoarding [13, 14], and write buffering are standard techniques
for coping with disconnection for static file services. Active channels [12] pro-
vide an interface for server-directed hoarding. In addition to being limited to
static web pages, active channels require user intervention to enable each ser-
vice, presumably to control servers’ use of client resources. Similarly, Microsoft
Internet Explorer [45] lets users identify groups of pages to hoard, but users
must manually select sites and indicate prefetch frequency and hoard depth.
AvantGo [44] for palm-size computers provides a similar interface where users

are responsible for resource management; a user can specify a set of web pages
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(services) which can be downloaded onto the PDA. These methods however
have the drawback that they are not very scalable to hundreds of services
because they require manual intervention on a per-service basis.

Our work is closely related to the ideas of the Rover [16] and Odyssey [17]
for building mobile applications, which uses mobile code, caching, and QRPC
to allow applications to access services when disconnected. The differences
between the approaches stem from our focus not only on mobility but also
disconnections due to network and server failures and our goal of providing an
infrastructure for large collections of services. As a result, we focus more of
our attention on resource management, provide location independence so that
extensions can run at clients, at proxies, and at servers. The strategies we
discuss in this paper focus on providing disconnected operation for robustness
and mobility and on the resource management problems that arise in such an

environment with many mobile services.

5.2 Resource management related

Adaptive resource scheduling is an active research area. However, most
proposed approaches are designed for benign environments where applications
can be trusted to inform the system of their needs [39] or can be monitored for
progress [40]. In our case applications as untrustworthy black boxes and hence
we allocate resources based on inferred value from the user rather than stated
demand from the applications. The former approach can be more precise and
can get better performance in benign environments, but the latter provides
safety in environments with aggressive extensions. Noble et. al [17] emphasize

agility, the speed at which applications and allocations respond to changing
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resource conditions, as a metric of dynamic resource schedulers. We argue
that for stateful resources such as memory and disk, agility must be restrained
to match the rate at which the resource may usefully be transferred between
applications.

A number of economics-based strategies have been proposed for dis-
tributing resources among competing applications in large distributed sys-
tems [42, 41]. The D’Agents project [41] is similar to our goal of developing a
scalable resource management system with large set of untrusted codes. These
systems target more general network topologies than ours and they use secure

electronic currency to ration resources.
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Chapter 6

Conclusion and Future Work

Disconnected operations can be effectively supported by a mobile service
codes which hoard data from the server using techniques like prefetching. In
this thesis work, we presented the case for supporting aggressive prefetching.
We derived a quantitative trade-off between resources consumed and response
time improvement gained by the client and performed a sensitivity analysis
for the same. This lead us to believe that current infrastructure has sufficient
spare resources to support prefetching of up to 10 times on-demand fetching.
The improving technological trends and almost constant human wait-time cost
can be interpreted as a justification to support even 100 times more prefetching
in the future.

The disconnected system functionality can cause an increased overhead
on the three elements of web interactions - client, server and the network. In
this report we studied the effect on the clients in detail with an overview of
issues at the server and network. An analysis of the workload characteristics
at the client revealed a large number of services being accessed which can

hog the limited resources at the client and cause resource contention. This
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motivated the deployment of a robust but flexible resource management system
at the client. We presented a novel popularity based resource allocation policy
which appears to provide good isolation and efficiency with no need for manual
tuning.

Our evaluation of our simulations suggest that mobile service code and
hoarding techniques hold promise to improve availability, mobility and perfor-
mance. However, additional work is need to fully understand the implications
of all parameters involved. As part of the ongoing research on this topic, we
would like to come up with a similar infrastructure support at the server and
network. The client resource management system should be extended to han-
dle other resources, such as CPU and memory, to make it a more complete
study. The resource management systems need to be more robust and im-
prove the scalability of our virtual machine. More experiments and prototype
version for aggressive prefetching should throw more light on the real world

usage of the mechanisms proposed in this report.
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