
Copyright

by

Allen Grogan Clement

2010

The Dissertation Committee for Allen Grogan Clement

certifies that this is the approved version of the following dissertation:

UpRight Fault Tolerance

Committee:

Lorenzo Alvisi, Co-Supervisor

Mike Dahlin, Co-Supervisor

Peter Druschel

Michael Walfish

Emmett Witchel

UpRight Fault Tolerance

by

Allen Grogan Clement, A.B.

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

December 2010

Acknowledgments

As much as this document is “mine,” it would not exist without the support, assis-

tance, and guidance of numerous people.

My advisors, Lorenzo Alvisi and Mike Dahlin, have been instrumental in the

process of completing this document. Their guidance over the last several years has

been invaluable and I would not be the person or researcher that I am today without

them.

The other members of the thesis committee (Peter Druschel, Michael Wal-

fish, and Emmett Witchel) have exhibited great patience and understanding during

the writing process. Their insights and comments on the work have been greatly

appreciated and improved the quality of this document.

Fellow graduate students make grad school both possible and bearable. Over

the past 8 years I’ve had the pleasure of working closely with some great students in

the LASR group: especially Amit Aiyer, Manos Kapritsos, Rama Kotla, Sangmin

Lee, Harry Li, Prince Mahajan, Mirco Marchetti, J.P. Martin, Jeff Napper, Don

Porter, Taylor Riche, Eric Rozner, Chris Rossbach, Srinath Setty, Yang Wang, and

Ed Wong. Thank you all for your friendship, advice, help, beers, and patience—I

would not have finished without you.

Sara Strandtman, the LASR administrator, was very important in getting

me out the door. While I may have survived graduate school without her, life was

much less stressful knowing that she was there to protect me from the bureaucracy.

iv

I would like to thank my parents and sisters for putting up with me for all

these years. Without you I wouldn’t be here today.

Finally, I thank Nathalie for her patience and understanding. While this

process has been trying for me, it has probably been more trying for her. I wouldn’t

be writing this today without her patience and for that I am eternally grateful.

Allen Grogan Clement

The University of Texas at Austin

December 2010

v

UpRight Fault Tolerance

Publication No.

Allen Grogan Clement, Ph.D.

The University of Texas at Austin, 2010

Co-Supervisor: Lorenzo Alvisi

Co-Supervisor: Mike Dahlin

Experiences with computer systems indicate an inconvenient truth: computers fail

and they fail in interesting ways. Although using redundancy to protect against fail-

stop failures is common practice, non-fail-stop computer and network failures occur

for a variety of reasons including power outage, disk or memory corruption, NIC

malfunction, user error, operating system and application bugs or misconfiguration,

and many others. The impact of these failures can be dramatic, ranging from service

unavailability to stranding airplane passengers on the runway to companies closing.

While high-stakes embedded systems have embraced Byzantine fault tolerant

techniques, general purpose computing continues to rely on techniques that are

fundamentally crash tolerant. In a general purpose environment, the current best

vi

practices response to non-fail-stop failures can charitably be described as pragmatic:

identify a root cause and add checksums to prevent that error from happening again

in the future. Pragmatic responses have proven effective for patching holes and

protecting against faults once they have occurred; unfortunately the initial damage

has already been done, and it is difficult to say if the patches made to address

previous faults will protect against future failures.

We posit that an end-to-end solution based on Byzantine fault tolerant (BFT)

state machine replication is an efficient and deployable alternative to current ad hoc

approaches favored in general purpose computing. The replicated state machine

approach ensures that multiple copies of the same deterministic application execute

requests in the same order and provides end-to-end assurance that independent

transient failures will not lead to unavailability or incorrect responses. An efficient

and effective end-to-end solution covers faults that have already been observed as

well as failures that have not yet occurred, and it provides structural confidence that

developers won’t have to track down yet another failure caused by some unpredicted

memory, disk, or network behavior.

While the promise of end-to-end failure protection is intriguing, significant

technical and practical challenges currently prevent adoption in general purpose

computing environments. On the technical side, it is important that end-to-end

solutions maintain the performance characteristics of deployed systems: if end-to-

end solutions dramatically increase computing requirements, dramatically reduce

throughput, or dramatically increase latency during normal operation then end-

to-end techniques are a non-starter. On the practical side, it is important that

end-to-end approaches be both comprehensible and easy to incorporate: if the cost

of end-to-end solutions is rewriting an application or trusting intricate and arcane

protocols, then end-to-end solutions will not be adopted.

In this thesis we show that BFT state machine replication can and be used in

vii

deployed systems. Reaching this goal requires us to address both the technical and

practical challenges previously mentioned. We revisiting disparate research results

from the last decade and tweak, refine, and revise the core ideas to fit together

into a coherent whole. Addressing the practical concerns requires us to simplify the

process of incorporating BFT techniques into legacy applications.

viii

Contents

Acknowledgments iv

Abstract vi

List of Tables xiii

List of Figures xv

Chapter 1 Introduction 1

Chapter 2 Failure models and fault tolerance 5

2.1 Classifying node and network behaviors 6

2.1.1 Faulty behaviors . 6

2.1.2 Correct behaviors . 6

2.1.3 Cryptographic assumptions and notation 8

2.1.4 Network Behaviors . 9

2.2 Fault tolerance . 9

2.3 Why UpRight? . 13

Chapter 3 Robust Performance 17

3.1 Introduction . 17

3.2 Recasting the problem . 19

3.3 Aardvark: RBFT in action . 21

3.4 Protocol description . 26

3.4.1 Client request transmission 26

3.4.2 Replica agreement . 31

ix

3.4.3 Primary view changes . 36

3.4.4 Implementation . 39

3.5 Analysis . 39

3.6 Experimental evaluation . 42

3.6.1 Common case performance 43

3.6.2 Evaluating faulty systems . 46

3.7 Conclusion . 52

Chapter 4 UpRight RSM Architecture 54

4.1 UpRight architecture . 56

4.2 Division of responsibilities . 58

4.2.1 Library properties . 58

4.2.2 Application requirements . 60

4.3 Looking forward . 62

Chapter 5 UpRight Stages 63

5.1 Basic stage interactions . 66

5.1.1 Client properties . 67

5.1.2 Authentication properties . 67

5.1.3 Order properties . 68

5.1.4 Execution properties . 70

5.1.5 Putting the stages together 71

5.2 Network efficiency . 74

5.3 Garbage collection and transient crashes 76

5.3.1 Order stage . 77

5.3.2 Execution stage. 82

5.3.3 Authentication stage . 85

5.3.4 Client . 89

5.4 Full property list . 89

5.4.1 Client Properties . 89

5.4.2 Authentication stage properties 90

5.4.3 Order stage properties . 91

5.4.4 Execution stage properties . 92

5.5 Supported optimizations . 93

x

5.6 Messages and notation . 94

5.7 Stage level pseudo-code . 96

5.7.1 Client operation . 97

5.7.2 Authentication operation . 97

5.7.3 Order operation . 101

5.7.4 Execution operation . 104

5.8 Conclusion . 107

Chapter 6 UpRight Replication 108

6.1 Consensus background . 110

6.2 Replicated order stage . 112

6.2.1 Normal-operation—Zyzzyvark 113

6.2.2 Checkpoint-operation . 120

6.2.3 Interactions with other stages 122

6.2.4 Order stage properties . 123

6.3 Replicated execution stage . 126

6.3.1 Execution consensus . 126

6.3.2 Execution-stage checkpoints 128

6.3.3 Interactions with other stages 133

6.3.4 Execution stage properties . 135

6.4 Replicating authentication stage . 136

6.4.1 Authentication consensus . 137

6.4.2 Interactions with other stages 139

6.4.3 Authentication stage properties 140

6.5 Implementation and performance . 141

6.6 Discussion . 148

6.7 Conclusion . 149

Chapter 7 UpRight Applications 150

7.1 Request Processing . 154

7.2 Checkpoint Generation . 155

7.3 HDFS case study . 160

7.3.1 Baseline system . 160

7.3.2 UpRight-HDFS . 162

xi

7.3.3 Evaluation . 164

7.3.4 MapReduce . 167

7.4 ZooKeeper case study . 167

7.4.1 Baseline system . 168

7.4.2 UpRight-ZooKeeper . 169

7.4.3 Evaluation . 169

7.5 Conclusion and Discussion . 173

Chapter 8 Background and state machine replication 175

8.1 RSM approach . 175

8.2 Consensus . 176

8.3 Recent RSM history . 176

8.4 Performance with failures . 177

8.5 Application fault tolerance . 178

Chapter 9 Conclusion 180

Appendix A UpRight Library Byte Specifications 182

A.1 Basic Message Structure . 182

A.2 Inter-stage messages . 186

A.2.1 Message Tags . 186

A.2.2 Inter-stage messages . 186

A.2.3 Order stage checkpoint . 194

A.3 Execution node specifications . 194

A.3.1 Message Tags . 194

A.3.2 Execution checkpoints . 196

A.3.3 Execution Messages . 196

Appendix B UpRight Library API 200

B.1 Client API . 200

B.2 Server API . 202

Bibliography 205

Vita 215

xii

List of Tables

2.1 (a) Acceptors required to solve asynchronous consensus under various

failure models. c is the maximum number of crash failures and b is

the maximum number of Byzantine failures tolerated while ensuring

the system is both safe and live. u is the maximum number of failures

tolerated while ensuring the system is up. r is the maximum number

of commission failures tolerated while ensuring the system is right.

(b) Acceptors required to solve asynchronous consensus under the

crash (Byzantine) failure model for various values of f = b = c. (c)

Acceptors required to solve asynchronous consensus under a hybrid

failure model with varying values of b and c. (d) Acceptors required to

solve asynchronous consensus under the UpRight model with varying

values of u and r. Values representing equivalent configurations across

tables are marked with emphasis (italicized for BFT configurations,

bolded for CFT configurations, or underlined for HFT configurations). 14

3.1 Observed peak throughput of BFT systems in a fault-free case and

when a single faulty client submits a carefully crafted series of re-

quests. We detail our measurements in Section 3.6.2. † The result

reported for Q/U is for correct clients issuing conflicting requests.
‡ The HQ prototype demonstrates fault-free performance and does

not implement many of the error-handling steps required to resolve

inconsistent MACs. 18

3.2 Peak throughput of Aardvark and PBFT for different implementation

choices. 45

xiii

3.3 Observed peak throughput of BFT systems in the fault free case

and under heavy client retransmission load. UDP network flooding

corresponds to a single faulty client sending 9KB messages. TCP

network flooding corresponds to a single faulty client sending requests

to open TCP connections and is shown for TCP based systems. . . . 50

3.4 Throughput during intervals in which the primary delays sending

pre-prepare message (or equivalent) by 1, 10, and 100 ms. 51

3.5 Average throughput for a starved client that is shunned by a faulty

primary versus the average per-client throughput for any other client. 51

3.6 Observed peak throughput and observed throughput when one replica

floods the network with messages. UDP flooding consists of a replica

sending 9KB messages to other replicas rather than following the

protocol. TCP flooding consists of a replica repeatedly attempting

to open TCP connections on other replicas. 52

5.1 Message specification for messages exchanged between stages. The

sender and recipients of the messages are indicated. 95

5.2 Summary of symbols used and their meanings. 95

6.1 Summary of stage-level replication requirements. 109

6.2 Consensus semantics for messages related to the order stage. Each

proposal or learn message is part of a single consensus instance. The

utility messages are used by both consensus protocols. 122

6.3 State management messages exchanged between execution replicas. . 129

6.4 Summary of replication requirements for different checkpoint storage

strategies. 134

6.5 Inter stage messages and their role in the execution consensus protocol.134

6.6 Inter stage messages related to stage management. 135

6.7 Messages sent to and from the authentication stage. 139

7.1 Informal statement of application requirements. 151

A.1 Message Tags for all intra-node messages. 186

A.2 Set of messages for intra-node communication 194

xiv

List of Figures

2.1 Different classifications of failure types. (a) represents crash failures.

(b) represent omission failures, a superset of crash failures. (c) repre-

sents Byzantine, or arbitrary, failures which encompass all behaviors.

(d) represents commission failures, the set of Byzantine behaviors

that cannot be classified as omission failures. 7

3.1 Physical network in Aardvark. 23

3.2 Architecture of a single replica. The replica utilizes a separate NIC

for communicating with each other replica and a final NIC to com-

municate with the collection of clients. Messages from each NIC are

placed on separate worker queues. 25

3.3 Basic communication pattern in Aardvark. 26

3.4 Decision tree followed by replicas while verifying a client request. The

narrowing width of the relative volume of client requests that survive

each step of the verification process. 28

3.5 Decision tree followed by a replica when handling messages received

from another replica. The width of the edges indicates the rate at

which messages reach various stages in the processing. 33

3.6 Average per request latency vs. average throughput for Aardvark,

HQ, PBFT, Q/U, and Zyzzyva. 44

3.7 The latency of an individual client’s requests running Aardvark with

210 total clients. The sporadic jumps represent view changes in the

protocol. 46

3.8 CDF of request latencies for 210 clients issuing 100,000 requests with

Aardvark servers. 47

xv

4.1 Basic flow of messages in the UpRight architecture. 57

5.1 Message flow between idealized stages in the UpRight architecture. . 66

5.2 Messages exchanged between stages. (1) Clients send requests to the

authentication stage. (2) The authentication stage sends validated

request hashes to the order stage. (3) The order stage sends ordered

batches to the execution stage. (4a, 4b) The execution stage fetches

request bodies from the authentication stage. (4c) The execution

stage sends responses to the clients. Note that the messages travel

through the system in a clockwise fashion. 75

5.3 Interactions between persistent state at each stage. The state main-

tained by the other stages depends on the state maintained at the

order stage. The order stage maintains one or two checkpoints and

between CP interval and 2×CP interval−1 ordered batches. The authen-

tication stage maintains every request referenced by an ordered batch

stored at the order stage and at most one pending request per client.

The execution stage maintains two checkpoints that correspond to or-

der stage checkpoints. Additional details on the contents of the order

and execution checkpoints can be found in Figure 5.4 and Figure 5.5

respectively. 78

5.4 Order stage checkpoint. 80

5.5 Execution stage checkpoint. 83

5.6 Pseudo-Code for the client . 97

5.7 Pseudo-Code for the authentication stage to follow. 99

5.8 Pseudo-Code for the order stage to follow. 102

5.9 Pseudo-Code for the execution node to follow. 105

6.1 Basic communication pattern for complete agreement. 116

6.2 Basic communication pattern for tentative agreement. 117

6.3 Basic communication pattern for speculative agreement. 117

6.4 Basic communication pattern for the order stage checkpoint consen-

sus protocol. Note that while the execution stage acts as a single

proposer, each individual replica is a distinct learner. In the context

of the UpRight library, learning is done only when a network or node

failure occurs. 121

xvi

6.5 Execution consensus. 127

6.6 Execution replica pseudo-code related to intra-stage checkpoint and

state transfer. 129

6.7 Authentication consensus. 138

6.8 Latency v. throughput for J-Zyzzyvark and JSZyzzyvark. 142

6.9 Latency v. throughput for JSZyzzyvark configured for various values

of r and u. 143

6.10 Latency v. throughput for JSZyzzyvark configured for various values

of r and u with authentication, order, and execution replicas colocated.144

6.11 Jiffies per request. RQ indicates the jiffies at the authentication stage;

Order indicates the jiffies at the order stage; Execution indicates the

jiffies at the execution stage. 144

6.12 JSZyzzyvark performance when using the authentication replica and

matrix signatures, standard signatures, and MAC authenticators.

(1B requests) . 146

6.13 JSZyzzyvark performance for 1B, 1KB, and 10KB requests, and for

1KB and 10KB requests where full requests, rather than digests, are

routed through order replicas. 147

7.1 UpRight application architecture from an application developer per-

spective. The UpRight library is a black box with a well defined

interface. At both the client and the server, the developer imple-

ments application-specific glue that connects the library shim to the

original application. 153

7.2 The checkpoint/delta approach for managing application checkpoints.

Original application checkpoints are taken infrequently, but the li-

brary requests a checkpoint every 100 batches. (a) shows the original

application checkpoint taken after executing batch n. (b) shows the

checkpoint returned to the replication library after executing batch

n+ 100. This checkpoint consists of the application checkpoint at n

and the log of the next 100 batches. (c) shows the checkpoint returned

to the replication library after executing batch n+200. (d) shows the

checkpoint returned to the replication library after executing batch

n+ 400. 158

xvii

7.3 Checkpoint-deltas returned to the application. Each returned checkpoint-

delta consists of a coarse grained application checkpoint and sufficient

deltas to produce the next coarse grained checkpoint. 159

7.4 Throughput for HDFS and UpRight-HDFS. 165

7.5 CPU consumption (jiffies per GB of data read or written) for HDFS

and UpRight-HDFS. 165

7.6 Completion time for requests issued by a single client. In (a), the

HDFS NameNode fails and is unable to recover. In (b), a single

UpRight-HDFS NameNode fails, and the system continues correctly. 166

7.7 Execution time for TeraGen and TeraSort MapReduce workloads. . . 168

7.8 Throughput for UpRight-ZooKeeper and ZooKeeper for workloads

comprising different mixes of 1KB reads and writes. 170

7.9 Per-request CPU consumption for UpRight-ZooKeeper and ZooKeeper

for a write-only workload. The y axis is in jiffies. In our system, one

jiffy is 4 ms of CPU consumption. 172

7.10 Performance v. time as machines crash and recover for ZooKeeper

and UpRight-ZooKeeper. 173

A.1 Messages are built upon a verified message base. This basis byte

structure contains 4 fields: tag, payload size, payload, authentication 183

A.2 Basic byte structure of a message with simple MAC authentication. 184

A.3 Byte definition for a message authenticated with a MAC array. The

sender is the replica responsible for generating the MACs, the Digest

field is a digest of the tag, payload size, and sender fields. The MACs

are generated using the byte representation of the digest rather than

the full message. 184

A.4 Message authenticated with a matrix signature. The authentiation

block of these messages consists of a collection of MAC Arrays that

each authenticate the tag, size and payload. 185

A.5 Byte Specification of the Entry at the core of every request. 187

A.6 Byte Specification of the payload of a 〈auth-req, 〈req-core, c, nc,

hash(op)〉~µf,O , f〉µf,o message. 188

A.7 Byte Specification of the payload of a 〈command, no, c, nc,op, f〉µf,e
message. 188

xviii

A.8 Byte Specification of a 〈next-batch, v, no,H,B, t,bool, o〉~µo,E message189

A.9 Byte encoding of non-determinism. The two fields correspond to time

and a seed for random number generation. 190

A.10 Byte Specification of the 〈reply, nc,R,H, e, 〉µe,c message. 190

A.11 Byte Specification of the payload for a 〈request-cp, no, o〉~µo,E message.190

A.12 Byte Specification of the payload for a 〈release-cp, Tcp, no, o〉~µo,E
message. 191

A.13 Byte Specification of the payload for a 〈retransmit, c, o, ~µo,E〉message.191

A.14 Byte Specification of the payload for a 〈load-cp, Tcp, no, o〉µo,e message.191

A.15 Byte specification of a 〈batch-complete, v, no, C, e〉~µe,F message. . 192

A.16 Byte specification of a 〈fetch, no, c, nc, hash(op), e〉~µe,F message. . . 192

A.17 Byte specification of a 〈cp-up, no, C, e〉~µe,F message. 193

A.18 Byte Specification of 〈last-exec, ne, e〉~µe,O and 〈cp-loaded, no, e〉~µe,O
messages. 193

A.19 Byte specification for the payload of a 〈cp-token, no, Tcp, e〉~µe,O mes-

sage. 194

A.20 Order node checkpoint. 195

A.21 Order node checkpoint byte specification. 195

A.22 Exec node checkpoint. 196

A.23 Order node checkpoint byte specification. 197

A.24 Byte Specification of the payload of a 〈fetch-exec-cp, n, e〉~µe,E mes-

sage. 197

A.25 Byte Specification of the payload of a 〈exec-cp-state, n,S, e〉µe,e′
message. 198

A.26 Byte Specification of the payload of a 〈fetch-state, Tstate, e〉~µe,E mes-

sage. 198

A.27 Byte Specification of the payload of a 〈state, Tstate,S, e〉µe,e′ message. 199

B.1 Interface exported by the UpRight library to the application client. . 201

B.2 Interface implemented by the application client. 201

B.3 Interface implemented by the application server and called by the

UpRight library. The six functions can be considered as three pairs

of common functionality: (a) request execution, (b) checkpoint man-

agement, and (c) state transfer. 203

xix

B.4 Interface exported by the UpRight library to the application server

as call-backs. The functions can be considered in groups based on

common functionality: (a) response processing, (b) checkpoint man-

agement, (c) state transfer, and (d) generic management. 204

xx

Chapter 1

Introduction

Experiences with computer systems indicate an inconvenient truth: computers fail

and they fail in interesting ways. Although using redundancy to protect against

fail-stop failures is common practice [12, 19, 39, 44, 89, 108], non-fail-stop computer

and network failures occur for a variety of reasons including power outage [51], disk

or memory corruption [8, 90, 91], NIC malfunction [2, 21, 96], user error [41, 78],

operating system and application bugs [82, 105, 106] or misconfiguration [71, 102],

and many others. The impact of these failures can be dramatic, ranging from service

unavailability [97] to stranding airplane passengers on the runway [21] to companies

closing [14].

While high-stakes embedded systems have adopted Byzantine fault tolerant

techniques (e.g., avionics [10, 31, 46]), general purpose computing continues to rely

on techniques that are fundamentally crash tolerant. In a general purpose envi-

ronment, the current best practices response to non-fail-stop failures can charitably

be described as pragmatic: identify a root cause and add check-sums to detect the

error and prevent it from causing more problems in the future. Pragmatic responses

have proven effective for patching holes and protecting against faults once they have

occurred; unfortunately the initial damage has already been done, and it is difficult

to say if the patches made to address previous faults will protect against future

failures.

We posit that an end-to-end solution based on Byzantine fault tolerant (BFT)

state machine replication is an efficient and deployable alternative to current ad hoc

approaches favored in general purpose computing. The replicated state machine

1

approach ensures that multiple copies of the same deterministic application execute

requests in the same order and provides end-to-end assurance that independent

transient failures will not lead to unavailability or incorrect responses. An efficient

and effective end-to-end solution covers faults that have already been observed as

well as failures that have not yet occurred, and it provides structural confidence that

developers won’t have to track down yet another failure caused by some unpredicted

memory, disk, network, or other behavior.

While the promise of end-to-end failure protection is intriguing, significant

technical and practical challenges currently prevent adoption in general purpose

computing environments. On the technical side, it is important that end-to-end

solutions maintain the performance characteristics of deployed systems: if end-to-

end solutions dramatically increase computing requirements, dramatically reduce

throughput, or dramatically increase latency during normal operation, then end-

to-end techniques are not appealing. On the practical side, it is important that

end-to-end approaches be both comprehensible and easy to incorporate: if the cost

of end-to-end solutions is rewriting an application or trusting intricate and arcane

protocols, then end-to-end solutions will not be widely adopted.

The goal of this thesis is to make deploying Byzantine fault tolerant systems

in a general purpose computing environment easier. To that end, the contributions

of this thesis fall into three broad categories. First, we re-define what it means for

a system to be fault tolerant. Second, we re-architect a (Byzantine) fault-tolerant

library. Third, we re-engineer legacy applications to be Byzantine fault tolerant.

• Re-defining the problem. We restate what it means for systems to be fault

tolerant in two fundamental ways. First, we embrace the UpRight model for

counting failures and designing systems. Second, we advocate the design of

fault tolerant systems that are robust to failures, i.e., systems that provide

solid performance even when failures occur.

Chapter 2 presents the UpRight failure model, an alternative formulation to

the traditional Byzantine and crash failure models. The UpRight model has

three distinct advantages over traditional failure models. First, it can express

the traditional crash [11], Byzantine [79], and hybrid [98] fault models. Second,

systems designed under the UpRight failure model provide the specified fault

tolerance at the minimal replication cost. Third, designing systems under the

2

UpRight failure model makes the question of providing “Byzantine or crash

fault tolerance” a deployment rather than an implementation question; the

implementation question becomes whether it is appropriate to provide “fault

tolerance or no fault tolerance?”

Chapter 3 presents the case for robust fault tolerance and demonstrates that

robust (Byzantine) fault tolerant systems are feasible. Fault tolerant systems

have traditionally been evaluated based on the throughput provided during

failure-free executions and ignored the performance in the presence of failures.

A side effect of this evaluation focus has been protocol designs and prototype

implementations that can be rendered unusable by a single faulty client or

server. We argue that fault tolerant systems should be expected to perform

well during failure-ful executions and demonstrate that robust fault tolerant

implementations are possible.

• Re-architecting BFT. We revisit the design of BFT systems in order to

correct, combine, and refine a multitude of ideas that have been developed in

the last decade. This portion of the thesis focuses on the design and imple-

mentation of the UpRight library. The contribution from this portion of the

thesis rests with (a) the specification of responsibilities for the library and the

application, (b) the stage-wise description of the steps required for state ma-

chine replication, and (c) the use of consensus to fully describe the interactions

between nodes in the system.

Chapter 4 lays the foundation for the subsequent chapters. Chapter 4 estab-

lishes (1) the basic interaction between the UpRight library and a replicated

application and (2) a new architecture for state machine replication. The

UpRight library delivers a linearized sequence of batches of requests—rather

than individual requests delivered by previous systems—to the application

for deterministic execution. This subtle shift in the objects delivered to the

application provides the application with additional freedom with respect to

processing requests. The UpRight architecture divides state machine repli-

cation around three core functions—request authentication, request ordering,

and request execution—rather than the traditional two (request ordering and

request execution) [88]. We present a replication architecture based on sepa-

rating authentication, order, and execution into three distinct stages and an

3

abstract protocol for coordinating those stages.

Chapter 5 details the interactions between the stages identified in Chapter 4.

Our work at the stage-level is geared towards providing an end-to-end protocol

for correct stages to follow that fulfills the library requirements described in

the previous chapter. We ensure that the stage-level protocol provides the

appropriate end-to-end properties with correct stages despite faulty clients, an

unreliable network with finite bandwidth, finite storage, and transient crashes

(i.e. due to temporary power outages).

While Chapter 5 focuses on the interaction between stages, Chapter 6 discusses

the replicated implementation of each each stage of the UpRight architecture.

We base each stage on consensus. Even though our design for the authentica-

tion, order, and execution stages are each based on consensus, the protocols

implementing each stage require different amounts of replication and different

coordination between the replicas.

• Re-engineering deployed applications. We demonstrate that BFT repli-

cation techniques can be incorporated into existing applications with modest

effort and without decimating performance. This work requires us to design

the interface between replication libraries and applications to be minimally in-

vasive to the application and also to test that design by integrating the library

into deployed applications.

Chapter 7 describes the interface between the UpRight library and applica-

tions and relates our experience incorporating the UpRight library into the

Hadoop distributed file system (HDFS) and Zookeeper distributed coordina-

tion service. We take a pragmatic view of the interactions between the library

and applications. For example, we prioritize using existing mechanisms, e.g.,

for checkpoint generation, over highly optimized and generic functionality in

the library that may require extensive modification to the application to be

useful. We find that we can provide UpRight versions of HDFS and ZooKeeper

that offer competitive performance at only nominal development effort.

Appendix A describes the byte specification for all messages exchanged and

persistent state in our prototype of the UpRight library. Appendix B de-

tails the Java interfaces exported to the application client and server by the

UpRight library.

4

Chapter 2

Failure models and fault

tolerance

We want distributed systems to be up (live) and right (safe). Intuitively, a system

is up if it processes every received request and right if processed requests are pro-

cessed correctly. The variety of ways in which things can go wrong, however, makes

building systems that are up and right challenging: networks can fail—by delaying,

corrupting, or dropping messages—and nodes can misbehave—by failing to take a

specified action or taking an arbitrary unspecified action. A fault tolerant system is

designed to be up and right despite node and network failures.

In this thesis, we target distributed systems that are UpRight; an UpRight

system is up (i.e., live) despite up to u Byzantine failures and right (i.e., safe) despite

up to r commission failures. This definition of UpRight fault tolerance is layered

with jargon and technical terms. To understand the practical implications of Up-

Right fault tolerance we must first understand the terminology and taxonomy of

how computers and the network behave (Section 2.1) and the relationship between

UpRight fault tolerance and traditional notions of crash and Byzantine fault toler-

ance (Section 2.2). We conclude this chapter with a brief discussion of the practical

benefits of building systems to provide UpRight fault tolerance (Section 2.3) as

opposed to traditional crash [87], Byzantine [61], or hybrid fault tolerance [98].

5

2.1 Classifying node and network behaviors

There is a clear dichotomy between nodes that are correct and nodes that are faulty.

Correct nodes always follow a protocol specification faithfully while faulty nodes

deviate from the specification in some way. Failures can take different forms, and

fault tolerant protocols must be designed under some failure model that defines the

failures the protocol is designed to tolerate. The rest of this section explores the

definition of such failure models.

2.1.1 Faulty behaviors

The simplest type of failures is a crash failure. A replica exhibits a crash failure

[87] if it permanently halts. Note that a node that “crashes” and is subsequently

rebooted does not exhibit a crash failure because the “crash” is not permanent. A

replica that fails to send or receive a subset of messages exhibits a general omission

failure [80]. A replica that arbitrarily deviates from its specification exhibits a

Byzantine failure [61]. These failure types form a simple hierarchy: every crash

failure is an omission failure and every omission failure is a Byzantine failure.

The traditional failure hierarchy provides a well-defined classification for ev-

ery type of failure, but does not provide a convenient label for an important and

interesting subset of failures: Byzantine failures that are not omission failures. These

failures are called commission failures [72]. Intuitively, a node exhibits a commission

failure when it deviates from its specification by taking an unnecessary or incorrect

action. This is in contrast with omission failures, which are marked by the failure to

take an action. We present a graphical depiction of the relationship between crash,

omission, Byzantine, and commission failures in Figures 2.1(a)-(d).

Differentiating between omission and commission failures allows us to identify

precisely the behaviors that make tolerating Byzantine failures more expensive than

tolerating omission failures.

2.1.2 Correct behaviors

Correct nodes follow their specification faithfully. Many fault tolerant systems rely

on a threshold of correct nodes to ensure correct operation. Fulfilling this expecta-

tion can be difficult given the practical reality that a power outage can cause every

6

(a) crash failures (b) omission failures

(c) Byzantine failures (d) commission failures

Figure 2.1: Different classifications of failure types. (a) represents crash failures. (b)
represent omission failures, a superset of crash failures. (c) represents Byzantine, or
arbitrary, failures which encompass all behaviors. (d) represents commission failures,
the set of Byzantine behaviors that cannot be classified as omission failures.

7

machine in a data center to temporarily crash before power is restored. In theory,

machines that exhibit transient crash behavior can be treated as “correct yet slow”

and do not impact the safety guarantees provided by the system. In practice, ensur-

ing that nodes remain “correct yet slow” despite transient crashes requires individual

nodes to be engineered (a) to commit state to persistent memory before outputting

messages onto the network and (b) to restore working state from persistent memory

following a transient crash.

Note that a node that is not engineered to tolerate transient crashes may be

technically guilty of a commission failure if it loses important state while recovering

from a transient crash. Consider, for example, a banking service that loses all

records of the last ten transactions, including a deposit of $10, 000 into a client’s

account, when it crashes due to a power outage. When power is restored and the

service resumes operation it will have no record of the deposit and will incorrectly

report the balance to be smaller than it should be. In this case the service is guilty

of a commission failure—the client believes the transaction occurred but the service

does not.

2.1.3 Cryptographic assumptions and notation

We assume that cryptographic techniques like collision-resistant hashing, message

authentication codes (MACs), encryption, and signatures are secure. In particular,

no node d can (a) create hash collisions or (b) forge the signature or MAC of correct

node c 6= d. Note that any node can forge the signature or MAC of another node

that has shared its authentication credentials; sharing authentication credentials

constitutes a commission failure.

We denote a message X signed by principal p’s public key as 〈X〉σp . We

denote a message X with a MAC appropriate for principals p and r as 〈X〉µp,r ; by

standard convention, the order of the nodes indicates that p is the sender and r is the

recipient. We denote a message containing a MAC authenticator—an array of MACs

appropriate for verification by multiple nodes—as 〈X〉~µp or 〈X〉~µp,R . The former

notation denotes a message authenticated by principal p for verification by every

node; the latter denotes a message authenticated by principal p for authentication

by nodes in the set R.

8

2.1.4 Network Behaviors

In this thesis, we focus on designing systems under the assumption that the network

connecting nodes is asynchronous and unreliable. An asynchronous network provides

no bound on how long after message is sent by a correct node it is received by the

recipient. An unreliable network may arbitrarily reorder, lose, duplicate, or corrupt

messages.

We define a synchronous interval [18, 33, 53], to be a period in which the

network reliably delivers messages with a bounded delay.

Definition 1 (Synchronous interval). During a synchronous interval any message

sent between correct nodes is delivered within a bounded delay T if the sender re-

transmits according to some schedule until the message is delivered.

We assume that synchronous intervals of arbitrary length occur infinitely

often. This assumption is known as eventual synchrony [33].

2.2 Fault tolerance

Fault tolerant systems are designed to be safe and live despite failures. Intuitively,

a system is live (aka up) if it provides a response to client requests and is safe (aka

right) if all provided responses are correct. The number of nodes required to im-

plement a fault tolerant system depends on the number and types of failures to be

tolerated in addition to the targeted safety and liveness properties. The primary

focus of this section is exploring four different ways to formulate the number and

type of failures that the system tolerates—crash fault tolerance, Byzantine fault tol-

erance, hybrid fault tolerance, and UpRight fault tolerance. To make the discussion

more concrete, we describe the replication requirements for asynchronous consen-

sus [79] protocols under each fault tolerance formulation. A consensus protocol is

at the core of every replicated state machine.

Consensus. We focus our discussion on Lamport’s formulation of Paxos-style con-

sensus [53, 54, 56], which is based on the assignment of each node in the system to

at least one of three roles: proposers, acceptors, and learners. Proposers propose

values to the system, acceptors coordinate in some way to choose a single proposed

9

value, and learners learn values that have been chosen. In this context, consensus

is defined by three safety properties [56]:

• Only a value proposed by a proposer can be chosen.

• Only a single value is chosen.

• Non-faulty learners only learn chosen values.

and a single liveness property:

• Given a sufficiently long synchronous interval, if a non-faulty proposer proposes

a value, then non-faulty learners eventually learn a value.

A fault tolerant consensus protocols is safe and live for any number of faulty pro-

posers and learners and a bounded number of faulty acceptors1

Crash fault tolerance. Crash fault tolerant (CFT) protocols are guaranteed to be

safe and live despite up to c crash failures. In practice, omission failures and a lossy

network are indistinguishable from any participant in the system, so asynchronous

CFT systems are effectively safe and live despite up to c omission failures [28].

In general, a total of at least 2c + 1 acceptors are required to implement a CFT

consensus protocol that is safe and live despite c crash/omission failures[53, 56]2.

Byzantine fault tolerance. Researchers have developed a multitude of Byzan-

tine fault tolerant (BFT) protocols designed to be safe and live despite up to b

Byzantine failures [1, 18, 24, 26, 49, 50, 92, 100, 104, 107]. In general, a total of at

least 3b + 1 acceptors are required to implement a BFT consensus protocol that is

safe and live despite b Byzantine failures[56, 79]3.

Because every omission failure is also a Byzantine failure, Byzantine fault

tolerant systems provide protection against a wider variety of failures than crash

fault tolerant systems. This makes BFT techniques very powerful and flexible,

1Note that this claim does not violate the FLP impossibility result [35] due to the inclusion of
the “sufficiently long synchronous interval” condition in the statement of liveness.

2As Lamport notes, there are very specific configurations of proposers, acceptors, and learners
that require fewer acceptors. A total of 2c + 1 acceptors is always sufficient to implement CFT
consensus.

3As Lamport notes, there are very specific configurations of proposers, acceptors, and learners
that require fewer nodes. A total of 3b+1 acceptors is always sufficient to implement BFT consensus.

10

benefits that can come at a significant cost. Consider, for example, a system running

CFT consensus configured to tolerate up to c = 4 crash failures requires 9 = 2 ×
4 + 1 acceptors. If it is subsequently discovered that it is important to tolerate one

additional failure, a commission failure, the system has to be transitioned to use

BFT techniques requiring 16 = 3× (4 + 1) + 1 acceptors.

Hybrid fault tolerance. Hybrid fault tolerance (HFT) [98] is a response to the

trepidation over the high cost of transitioning from CFT to BFT techniques and

the observation that failures that require BFT are relatively rare. HFT protocols

are designed to be safe and live despite up to b Byzantine and c crash failures. A

total of at least 3b+ 2c+ 1 acceptors are required to implement an HFT consensus

protocol [98].

Returning to the example above where the system needs to be safe and

live despite c = 4 crash failures and b = 1 Byzantine (commission) failure, HFT

consensus can be implemented using 12 = 3× 1 + 2× 4 + 1 acceptors.

UpRight fault tolerance. In this thesis, we advocate UpRight fault tolerance [23],

initially described by Lamport [55] and subsequently employed by others [1, 32]. Up-

Right fault tolerance is motivated by the reality that systems should be up (i.e., live)

and right (i.e., safe) despite failures and the recognition that the replication require-

ments for these two concerns are separate. Under UpRight fault tolerance, systems

are designed to be live despite up to u failures of any type and safe despite up to r

commission failures.

Intuitively, UpRight systems provide the following guarantees: (1) as long as

there are at most u failures, the system is guaranteed to respond and (2) as long as

there are at most r commission failures, any response is guaranteed to be correct.

We note that when u < r, UpRight systems do not guarantee a response when there

are between u + 1 and r commission failures, inclusive, but do guarantee that any

received response will be correct.

The formulation of UpRight fault tolerance can be initially difficult to inter-

nalize. As a simple primer, consider a pair of hypothetical distributed systems, one

where u = 3 and r = 1 and a second where u = 1 and r = 3.

The first system is appropriate for environments where (a) crashes are much

more common than commission failures or (b) a higher premium is placed on liveness

11

than on safety. This configuration is guaranteed to provide a response to any request

as long as at most three servers are faulty. Further, any response is guaranteed to

be correct as long as at most one server is guilty of a commission failure. If two

servers have been hacked (an extreme version of a commission failure) and all other

servers are correct, then a user is guaranteed to receive a response (u = 3 > 2), but

that response is not guaranteed to be correct (r = 1 < 2). If there are four failures

then a user is not guaranteed to receive a response; further if at least two of the

failures are commission failures then the user is not guaranteed that any received

response can be trusted.

The second system is appropriate for environments where (a) commission

failures are more common than omission failures and/or (b) a higher premium is

placed on safety than on liveness. This configuration is guaranteed to provide a

response as long as at most one server fails in any way. If multiple servers fail, then

a user is not guaranteed a response. However, if at most three servers are guilty of

commission failures any response is guaranteed to be correct.

In general, a total of 2u + r + 1 acceptors are required to implement an

UpRight consensus protocol that is live despite up to u Byzantine failures and safe

despite up to r commission failures [32, 56]4.

We now revisit the previous example intended to tolerate four crash failures

and one commission failure. In UpRight parlance, the system is expected to be up

despite up to u = 4 omission failures and right despite up to r = 1 commission

failures. An UpRight fault tolerant consensus protocol can be implemented using

10 = 2× 4 + 1× 1 + 1 acceptors.

Comparing replication requirements. Table 2.1(a) summarizes the formulas

for the minimum number of acceptors required to implement CFT, BFT, HFT, and

UpRight consensus protocols.

Table 2.1(b) shows the minimum number of acceptors to implement crash

(Byzantine) fault tolerant consensus for various values of c (b).

Table 2.1(c) shows the minimum number of acceptors required to implement

HFT consensus for various values of b and c. Note that the row where b = 0

4As Lamport notes, there are very specific configurations of proposers, acceptors, and learners
that require fewer acceptors. A total of 2u + r + 1 acceptors is always sufficient to implement
UpRight consensus.

12

corresponds to crash fault tolerance and the column where c = 0 corresponds to

traditional Byzantine fault tolerance.

Table 2.1(c) shows the minimum number of acceptors required to implement

UpRight consensus for various values of b and c. Note that crash, Byzantine, and

hybrid fault tolerance can all be expressed under the UpRight framework. The row

where r = 0 is equivalent to configurations that are safe and live despite up to c = u

crash failures (aka crash fault tolerance); the diagonal where u = r is equivalent to

configurations that are safe and live despite up to b = u = r Byzantine failures (aka

Byzantine fault tolerance); the upper right quadrant is equivalent to configurations

that are safe and live despite up to b = r Byzantine and c = u + r crash failures

(aka hybrid fault tolerance).

The end-to-end impact of adapting the UpRight language for fault tolerance

is a reduction in the number of acceptors required when compared to BFT and HFT

consensus. Intuitively, BFT solutions to consensus require more replicas (3b+1) than

UpRight solutions (2u+r+1) because the BFT solutions count every failure against

the budgets for both u and r, even if only one of the b total failures is expected to be

a commission failure. Similarly, HFT solutions to consensus require more replicas

(2c+ 3b+ 1) than UpRight solutions because the Byzantine portion of the equation

(3b) increases both the u and the r portions of the of the replication requirements

even though it is needed only because of the commission failures captured by r.

2.3 Why UpRight?

The previous sections describe terminology for classifying and counting failures in

fault tolerant systems that departs from the customary notions of crash and Byzan-

tine fault tolerance. Although UpRight fault tolerance generalizes crash Byzantine,

and hybrid fault tolerance, it is tempting to view the discussion as a theoretical

novelty. We believe that UpRight fault tolerance is more than a novelty and is in

fact the right framework to use when designing fault tolerant systems.

UpRight fault tolerance provides several advantages when compared to other

fault tolerance frameworks:

• UpRight fault tolerance is flexible and allows system designers and adminis-

trators to configure systems with the minimum number of servers. Traditional

13

CFT 2c+ 1

BFT 3b+ 1

Hybrid 2c+ 3b+ 1

UpRight 2u+ r + 1

f CFT BFT

0 1 1
1 3 4
2 5 7
3 7 10

(a) Replication requirements (b) CFT and BFT replication

b\c 0 1 2 3

0 1 3 5 7
1 4 6 8 10

2 7 9 11 13

3 10 12 14 16

r\u 0 1 2 3

0 1 3 5 7
1 2 4 6 8

2 3 5 7 9

3 4 6 8 10

(c) Hybrid replication (d) UpRight replication

Table 2.1: (a) Acceptors required to solve asynchronous consensus under various
failure models. c is the maximum number of crash failures and b is the maximum
number of Byzantine failures tolerated while ensuring the system is both safe and
live. u is the maximum number of failures tolerated while ensuring the system is up.
r is the maximum number of commission failures tolerated while ensuring the system
is right. (b) Acceptors required to solve asynchronous consensus under the crash
(Byzantine) failure model for various values of f = b = c. (c) Acceptors required to
solve asynchronous consensus under a hybrid failure model with varying values of b
and c. (d) Acceptors required to solve asynchronous consensus under the UpRight
model with varying values of u and r. Values representing equivalent configurations
across tables are marked with emphasis (italicized for BFT configurations, bolded
for CFT configurations, or underlined for HFT configurations).

14

fault tolerance constructs are limited: crash fault tolerant systems cannot tol-

erate commission failures that result from server malfunction while Byzantine

and hybrid fault tolerance can unnecessarily increase the replication require-

ments of the system.

• UpRight fault tolerance is a generalization of crash, Byzantine, and hybrid

fault tolerance. If crash, Byzantine, or hybrid fault tolerance does accurately

capture the design requirements of a specific environment then those require-

ments can be efficiently expressed using the UpRight framework. Further,

if those requirements change then the changes can be accounted within the

UpRight framework by adjusting the values of u and r—there is no need to

shift from crash to Byzantine or hybrid fault tolerant protocol configuration as

the design goals and deployment requirements change. UpRight is the single

framework for all of your fault tolerant needs.

There are two non-questions that are frequently asked whenever Byzantine

fault tolerant systems are discussed. While these questions do not apply to the

technical discussion of UpRight fault tolerance, it is important to address them.

Do Byzantine failures actually happen? This question is outside the scope of

this chapter and this thesis. We claim that fault tolerant systems should be designed

to be UpRight and that it is the responsibility of the administrators deploying

the system to choose values of u and r that are appropriate for their deployment.

Put another way, rather than choosing between crash or Byzantine fault tolerance,

system designers should choose UpRight fault tolerance and leave the decision of

the type of failures to tolerate to the users of the system.

Stronger claims about the frequency and impact of commission failures re-

quire extensive deployment and classification and analysis of observed failures. We

note that preventing transient crashes from becoming commission failures, as dis-

cussed in Section 2.1.2, is non-trivial since it can be difficult to determine when a

disk write is really complete [75].

Who cares about fault tolerance, the failure models are wrong because

correlated failures do happen? This question is misguided. The failure model

describes and classifies the types of failures that can occur. Different fault tolerance

15

criteria express different failure scenarios under which safety and/or liveness are

desired. The different failure models discussed in this chapter provide a framework

for discussing and designing systems: the system should be live despite up to u

failures and safe despite up to r commission failures. In principle, there is no reason

not to attempt to build systems that are safe and live despite u = r = n − 1

failures (where n is the total number of servers). Specific problems, i.e. definitions

of safety and liveness, may require u and r to be smaller and/or fractions of the total

number of servers. Solutions to the consensus problem referred to in this chapter, for

example, require n ≥ 2u+ r+ 1 servers, introducing a failure threshold significantly

smaller than the total number of servers in the system. The concern with correlated

failures is not connected to the failure model, but rather to the specific techniques

employed. The rest of this thesis presents a better way to reason about and design

state machine replication; it does not demonstrate that state machine replication is

the right approach for solving any specific deployment challenge.

16

Chapter 3

Robust Performance

Prelude

While the previous chapter focuses on the framework for discussing fault tolerant

systems, i.e. how are failures classified and counted, this chapter focuses on what

it means for a system to be fault tolerant. Although the discussion is presented

in terms of asynchronous Byzantine fault tolerant state machine replication, the

conclusion is generally applicable to any fault tolerant system.

3.1 Introduction

This chapter is motivated by a simple observation: although recently developed

BFT state machine replication protocols have driven the costs of BFT replication

to remarkably low levels [1, 18, 26, 49], the reality is that they don’t tolerate Byzan-

tine faults very well. In fact, a single faulty client or server can render these systems

effectively unusable by inflicting multiple orders of magnitude reductions in through-

put and even long periods of complete unavailability. Performance degradations of

such degree are at odds with what one would expect from a system that calls itself

Byzantine fault tolerant—after all, if a single fault can render a system unavailable,

can that system truly be said to tolerate failures?

To illustrate the problem, Table 3.1 shows the measured performance of a

variety of systems both in the absence of failures and when a single faulty client sub-

mits a carefully crafted series of requests. As we show later, a wide range of other

17

behaviors—faulty primaries, recovering replicas, etc.—can have a similar impact.

We believe that these collapses are byproducts of a single-minded focus on design-

ing BFT protocols with ever more impressive best-case performance. While this

focus is understandable—after years in which BFT replication was dismissed as too

expensive to be practical, it was important to demonstrate that high-performance

BFT is not an oxymoron—it has led to protocols whose complexity undermines ro-

bustness in two ways: (1) the protocols’ design includes fragile optimizations that

allow a faulty client or server to knock the system off the optimized execution path

to expensive alternative paths and (2) the protocol implementations often fail to

handle properly all of the intricate corner cases, so that the implementations are

even more vulnerable than the protocols appear on paper.

The primary contribution of this chapter is to advocate a new approach,

robust BFT (RBFT), to building BFT systems. Our goal is to change the way

BFT systems are designed and implemented by shifting the focus from construct-

ing high-strung systems that maximize best-case performance to constructing sys-

tems that offer good and predictable performance under the broadest possible set

of circumstances—including when faults occur.

In Section 3.2 we elaborate on the need to rethink Byzantine fault toler-

ance and identify a set of design principles for RBFT systems. In Section 3.3 we

present a systematic methodology for designing RBFT systems and an overview

of the Aardvark RBFT prototype. In Section 3.4 we describe in detail the impor-

tant components of the Aardvark protocol. In Section 3.5 we present an analysis

System Peak Throughput Faulty Client

PBFT [18] 61.7k 0
Q/U [1] 23.8k 0†

HQ [26] 7.6k N/A‡

Zyzzyva [49] 66k 0
Aardvark 38.7k 38.7k

Table 3.1: Observed peak throughput of BFT systems in a fault-free case and when
a single faulty client submits a carefully crafted series of requests. We detail our
measurements in Section 3.6.2. † The result reported for Q/U is for correct clients
issuing conflicting requests. ‡ The HQ prototype demonstrates fault-free perfor-
mance and does not implement many of the error-handling steps required to resolve
inconsistent MACs.

18

of Aardvark’s expected performance. In Section 3.6 we present our experimental

evaluation.

3.2 Recasting the problem

The foundation of modern BFT state machine replication rests on an impossibility

result and on two principles that assist us in dealing with it. The impossibility

result, of course, is FLP [35], which states that no solution to consensus can be both

safe and live in an asynchronous systems if nodes can fail. The two principles, first

applied by Lamport to his Paxos protocol [53], are at the core of Castro and Liskov’s

seminal work on PBFT [17]. The first states that synchrony must not be needed for

safety: as long as a threshold of faulty servers is not exceeded, the replicated service

must always produce linearizable executions, independent of whether the network

loses, reorders, or arbitrarily delays messages. The second recognizes, given FLP,

that synchrony must play a role in liveness: clients are guaranteed to receive replies

to their requests only during intervals in which messages sent to correct nodes are

received within some fixed (but potentially unknown) time interval from when they

are sent.

Within these boundaries, the engineering of BFT protocols has embraced

Lampson’s well-known recommendation: “Handle normal and worst-case separately

as a rule because the requirements for the two are quite different. The normal case

must be fast. The worst-case must make some progress” [62]. Ever since PBFT, the

design of BFT systems has then followed a predictable pattern: first, characterize

what defines the normal (common) case; then, pull out all the stops to make the

system perform well for that case. While different systems don’t completely agree on

what defines the common-case [42], on one point they are unanimous: the common-

case includes only gracious executions, defined as follows:

Definition 2 (Gracious execution). An execution is gracious iff (a) the execution

is synchronous with some implementation-dependent short bound on message delay

and (b) all clients and servers behave correctly.

The results of this approach have been spectacular. In 2007, Zyzzyva re-

ported throughput of over 85,000 null requests per second [49], and subsequent

protocols have improved on that mark [42, 93].

19

Despite these impressive results, we argue that a single minded focus on

aggressively tuning BFT systems for the best-case of gracious execution, a practice

that we have engaged in with relish [49], is increasingly misguided, dangerous, and

even futile.

It is misguided, because it encourages the design and implementation of

systems that fail to deliver on their basic promise: to tolerate Byzantine faults.

While providing impressive throughput during gracious executions, today’s high-

performance BFT systems are content to provide weak liveness guarantees (e.g.

“eventual progress”) in the presence of Byzantine failures. Unfortunately, as we

previewed in Table 3.1 and show in detail in Section 3.6.2, these guarantees are

weak indeed. Although current BFT systems can survive Byzantine faults with-

out compromising safety, we contend that a system that can be made completely

unavailable by a simple Byzantine failure can hardly be said to tolerate Byzantine

faults.

It is dangerous, because it encourages fragile optimizations. Fragile optimiza-

tions are harmful in two ways. First, as we will see in Section 3.6.2, they make it

easier for a faulty client or server to knock the system off its hard-won optimized

execution path and enter an alternative, much more expensive one. Second, they

weigh down the system with subtle corner-cases, increasing the likelihood of buggy

or incomplete implementations.

It is (increasingly) futile, because the race to optimize common-case perfor-

mance has reached a point of diminishing return where many services’ peak demands

are already far under the best-case throughput offered by existing BFT replication

protocols. For such systems, good enough is good enough, and further improvements

in best-case agreement throughput will have little effect on end-to-end system per-

formance.

In our view, a BFT system will be most useful if it provides acceptable and

dependable performance across the broadest possible set of executions, including

executions with Byzantine clients and servers. In particular, the temptation of

fragile optimizations should be resisted: a BFT system should be designed around

an execution path that has three properties: (1) it provides acceptable performance,

(2) it is easy to implement, and (3) it is robust against Byzantine attempts to push

the system away from it. Optimizations for the common-case should be accepted

only as long as they don’t endanger these properties.

20

FLP tells us that we cannot guarantee liveness in an asynchronous environ-

ment. This is no excuse to focus only on performance during gracious executions. In

particular, there is no theoretical reason why BFT systems should not be expected

to perform well in what we call uncivil executions:

Definition 3 (Uncivil execution). An execution is uncivil iff (a) the execution is

synchronous with some implementation-dependent bound on message delay, (b) up

to f servers and any number of clients are Byzantine, and (c) all remaining clients

and servers are correct.

Hence, we propose to build RBFT systems that provide adequate perfor-

mance during uncivil executions. Although we recognize that this approach is likely

to reduce the best-case performance, we believe that for a BFT system a limited

reduction in peak throughput is usually preferable to the devastating loss of avail-

ability that we report in Table 3.1 and Section 3.6.2.

Increased robustness may come at effectively no additional cost as long as a

service’s peak demand is below the throughput achievable through RBFT design:

as a data point, our Aardvark prototype reaches a peak throughput of 38.7k req/s.

Similarly, when systems have other bottlenecks, Amdahl’s law limits the

impact of changing the performance of agreement. For example, we report in Sec-

tion 3.6 that PBFT can execute almost 62,000 null requests per second, suggesting

that agreement consumes 16.1µs per request. If, rather than a null service, we repli-

cate a service for which executing an average request consumes 100µs of processing

time, then peak throughput with PBFT settles to about 8613 requests per second.

For the same service, a protocol with twice the agreement overhead of PBFT (i.e.,

32.2µs per request), would still achieve peak throughput of about 7564 requests/sec-

ond: in this hypothetical example, doubling agreement overhead would reduce peak

end-to-end throughput by about 12%.

3.3 Aardvark: RBFT in action

Aardvark is a new BFT system designed and implemented to be robust to failures.

The Aardvark protocol consists of three stages: client request transmission, replica

agreement, and primary view change. This is the same basic structure of PBFT [18]

and its direct descendants [7, 49, 50, 104, 107], but revisited with the goal of achiev-

21

ing an execution path that satisfies the properties outlined in the previous section:

acceptable performance, ease of implementation, and robustness against Byzantine

disruptions. To avoid the pitfalls of fragile optimizations, we focus at each stage of

the protocol on how faulty nodes, by varying both the nature and the rate of their

actions and omissions, can limit the ability of correct nodes to perform in a timely

fashion what the protocol requires of them. This systematic methodology leads us

to the three main design differences between Aardvark and previous BFT systems:

(1) signed client requests, (2) resource isolation, and (3) regular view changes.

Signed client requests. Aardvark clients use digital signatures to authenticate

their requests. Digital signatures provide non-repudiation and ensure that all cor-

rect replicas make identical decisions about the validity of each client request, elim-

inating a number of expensive and tricky corner cases found in existing protocols

that make use of weaker (though faster) message authentication code (MAC) au-

thenticators [17] to authenticate client requests. The difficulty with utilizing MAC

authenticators is that they do not provide the non-repudiation property of digital

signatures—one node validating a MAC authenticator does not guarantee that any

other nodes will validate that same authenticator [3].

As we mentioned in the introduction to this chapter, digital signatures are

generally seen as too expensive to use. Aardvark uses them only for client requests,

where it is possible to push the expensive act of generating the signature onto

the client while leaving the servers with the less expensive verification operation1.

Server initiated communication—primary-to-replica, replica-to-replica, and replica-

to-client communication—relies on MAC authenticators. The quorum-driven nature

of server-initiated communication ensures that f or fewer2 faulty replicas are unable

to force the system into undesirable execution paths.

Because of the additional costs associated with verifying signatures in place

of MACs, Aardvark must guard against new denial-of-service attacks where the

system receives a large numbers of requests with signatures that need to be verified.

1In developing the Aardvark prototype we explicitly assumed that clients are external entitities
that are not controlled by the service provider. In this context, the service provider is not respon-
sible for costs incurred by the clients. In retrospect, this assumption is not appropriate for many
deployments and impacts our design of the UpRight library in Chapters 4- 6.

2Note that we target systems that are safe and live despite up to f = u = r faulty replicas in
this chapter.

22

Replica
Replica

Replica

Replica

Clients

Figure 3.1: Physical network in Aardvark.

Our implementation limits the number of signature verifications a client can inflict

on the system by (1) utilizing a hybrid MAC-signature construct to put a hard limit

on the number of faulty signature verifications a client can inflict on the system and

(2) forcing a client to complete one request before issuing the next.

Resource isolation. The Aardvark prototype implementation explicitly isolates

network and computational resources.

As illustrated by Fig. 3.1, Aardvark uses separate network interface con-

trollers (NICs) and wires to connect each pair of replicas. This step prevents a faulty

server from interfering with the timely delivery of messages from good servers, as

happened when a single broken NIC shut down the immigration system at the Los

Angeles International Airport [21]. It also allows a node to defend itself against

brute-force denial-of-service attacks by disabling the offending NIC. However, using

23

physically separate NICs for communication between each pair of servers incurs a

performance cost, as Aardvark can no longer use ethernet multicast to optimize all-

to-all communication, and limits the number of replicas in the system to the number

of expansion slots on each machine.

As Figure 3.2 shows, Aardvark uses separate work queues for processing mes-

sages from clients and individual replicas. Employing a separate queue for client

requests prevents client traffic from drowning out the replica-to-replica communi-

cations required for the system to make progress. Similarly, employing a separate

queue for each replica allows Aardvark to schedule message processing fairly, ensur-

ing that a replica is able to gather efficiently the quorums it needs to make progress.

Aardvark can also easily leverage separate processors to process incoming client

and replica requests. Taking advantage of hardware parallelism allows Aardvark to

reclaim part of the costs paid to verify signatures on client requests.

We use simple brute-force techniques for resource scheduling. One could

consider network-level scheduling techniques rather than distinct NICs in order to

isolate network traffic and/or allow rate-limited multicast. Our goal is to make

Aardvark as simple as possible, so we leave exploration of these techniques and

optimizations for future work.

Regular view changes. To prevent a primary from achieving tenure and exerting

absolute control on system throughput, Aardvark invokes the view change operation

on a regular basis. Replicas monitor the performance of the current primary, slowly

raising the required throughput level. If the current primary fails to provide the

required throughput, replicas initiate a view change.

The key properties of this technique are:

1. During uncivil intervals, system throughput remains high even when replicas

are faulty. Since a primary maintains its position only if it achieves some in-

creasing level of throughput, Aardvark bounds throughput degradation caused

by a faulty primary by either forcing the primary to be fast or selecting a new

primary. When a new primary is selected, the required throughput is reset to

an initial threshold, e.g. one half of the previous requirement.

2. As in prior systems, eventual progress is guaranteed when the system is even-

tually synchronous.

24

Clients

Replica

Replica

Replica

NIC

NIC

NIC

NIC

Verification

Replica
Processing

Figure 3.2: Architecture of a single replica. The replica utilizes a separate NIC for
communicating with each other replica and a final NIC to communicate with the
collection of clients. Messages from each NIC are placed on separate worker queues.

25

C

0

1

2

3

REQUEST PRE−PREPARE PREPARE COMMIT REPLY

1 2 3 4 5

6

Figure 3.3: Basic communication pattern in Aardvark.

Previous systems have treated view change as an option of last resort that

should only be used in desperate situations to avoid letting throughput drop to zero.

However, although the phrase “view change” carries connotations of a complex and

expensive protocol, in reality the cost of a view change is similar to the regular cost

of agreement. Performing view changes regularly introduces short periods of time

during which new requests are not being processed, but the benefits of rapidly evict-

ing a misbehaving primary outweigh the periodic costs associated with performing

view changes.

3.4 Protocol description

Figure 3.3 shows the agreement phase communication pattern that Aardvark shares

with PBFT [18]. Variants of this pattern are employed in other recent BFT RSM

protocols [1, 26, 42, 49, 93, 104, 107], and we believe that, just as Aardvark illustrates

how the RBFT design approach can be applied to PBFT, new RBFT systems based

on these other protocols can and should be constructed. We organize the following

discussion around the numbered steps of the communication pattern of Figure 3.3.

3.4.1 Client request transmission

The fundamental challenge in transmitting client requests is ensuring that, upon

receiving a client request, every replica comes to the same conclusion about the

authenticity of the request. We ensure this property by having clients sign requests.

To guard against denial of service, we break the processing of a client request

into a sequence of increasingly expensive steps. Each step serves as a filter, so that

26

more expensive steps are performed less often. For instance, we ask clients to include

a MAC on their signed requests and have replicas verify only the signature of those

requests whose MAC checks out. As mentioned in Section 3.3, Aardvark explicitly

dedicates a single NIC to handling incoming client requests so that incoming client

traffic does not interfere with replica-to-replica communication.

Protocol Description

The steps taken by an Aardvark replica to authenticate a client request follow.

1. Client sends a request to a replica.

A client c requests an operation o be performed by the replicated state ma-

chine by sending a request message 〈〈request, o, s, c〉σc , c〉µc,p to the replica p it

believes to be the primary. If the client does not receive a timely response to that

request, then the client retransmits the request 〈〈request, o, s, c〉σc , c〉µc,r to all

replicas r. Note that the request contains the client sequence number s and is

signed with signature σc. The signed message is then authenticated with a MAC

µc,r for the intended recipient. The MAC ensures that the signature cannot be

corrupted by an intermediary.

Upon receiving a client request, a replica proceeds to verify it by following a

sequence of steps designed to limit the maximum load a client can place on a server,

as illustrated by Figure 3.4:

(a) Blacklist check. If the sender c is not blacklisted, then proceed to step (b).

Otherwise discard the message.

(b) MAC check. If µc,p is valid, then proceed to step (c). Otherwise discard the

message.

(c) Sequence check. Compre the sequence number sreq of the most recently

cached reply for client c to the sequence number s of the incoming request. If

the request sequence number s is exactly scache + 1, then proceed to step (d).

Otherwise

(c1) Retransmission check. Each replica uses an exponential back off to

limit the rate of client reply retransmissions. If a reply has not been sent

27

(a) Blacklist
Check

(b) MAC
Check Discard

(c) Sequence
Check

(e)
Signature

Check
Blacklist Sender

(c1)
Retransmission

Check

Retransmit
Cached Reply

(f) Once per
View Check

(d) Redundancy
Check

Discard

Discard

Discard

Discard

Act on Request

pass

fail

pass

fail

pass

fail

pass

fail

pass

fail

pass

fail

pass

fail

Figure 3.4: Decision tree followed by replicas while verifying a client request. The
narrowing width of the relative volume of client requests that survive each step of
the verification process.

to c recently, then retransmit the last reply sent to c. Otherwise discard

the message.

(d) Redundancy check. Examine the most recent cached request from c. If no

request from c with sequence number sreq has previously been verified or the

request does not match the cached request, then proceed to step (e). Otherwise

(the request matches the cached request from c) proceed to step (f).

(e) Signature check. If σc is valid, then proceed to step (f); additionally, if the

request does not match the previously cached request for sreq, then blacklist c

28

and discard the message. Otherwise if σc is not valid, then blacklist the node

x that authenticated µx,p and discard the message.

(f) Once-per-view check. If an identical request has been verified in a previous

view, but not processed during the current view, then act on the request.

Otherwise discard the message.

Primary and non-primary replicas act on requests in different ways. A pri-

mary adds requests to a pre-prepare message that is part of the three-phase

commit protocol described in Section 3.4.2. A non-primary replica r processes a

request by authenticating the signed request with a MAC µr,p for the primary p and

sending the message to the primary. Note that non-primary replicas will forward

each request at most once per view, but they may forward a request multiple times

provided that a view change occurs between each occurrence.

Note that a request message that is verified as authentic might contain an

operation that the replicated service that runs above Aardvark rejects because of

an access control list (ACL) or other service-specific security violation. From the

point of view of Aardvark, such messages are valid and are delivered to all replicas

in the same order. It is the responsibility of the replicated service to handle such

messages and security violations, either by rejecting the operation at the service

level or generating an application-level error code.

A node p only blacklists a sender c of a 〈〈request, o, s, c〉σc , c〉µc,p message

if (a) the MAC µc,p is valid but the signature σc is not or (b) the client applies

the same sequence number to two distinct requests. A valid MAC is sufficient to

ensure that routine message corruption is not the cause of the altered request or

invalid signature sent by c, but rather that c has suffered a significant fault or is

engaging in malicious behavior. A replica discards all messages it receives from a

blacklisted sender and removes the sender from the blacklist after 10 minutes to

allow reintegration of repaired machines.

Resource scheduling

Client requests are necessary to provide input to the RSM while replica-to-replica

communication is necessary to process those requests. Aardvark implements sepa-

rate work queues for receiving client requests and receiving replica-to-replica com-

munication to limit the fraction of replica resources that clients are able to consume,

29

ensuring that a flood of client requests is unable to prevent replicas from making

progress on requests already received. Of course, as in a non-BFT service, mali-

cious clients can still deny service to other clients by flooding the network between

clients and replicas. Defending against these attacks is an area of active independent

research [63, 101].

We deploy our prototype implementation on dual-core machines. As Fig-

ure 3.2 shows, one core verifies client requests and the second runs the replica pro-

tocol. This explicit assignment allows us to isolate resources and take advantage of

parallelism to partially mask the additional costs of signature verification.

Discussion

RBFT aims at minimizing the costs that faulty clients can impose on replicas. As

Figure 3.4 shows, there are four actions triggered by the transmission of a client

request that can consume significant replica resources: MAC verification (MAC

check), retransmission of a cached reply, signature verification (signature check),

and request processing (act on request). The cost a faulty client can cause increases

as the request passes each successive check in the verification process, but the rate

at which a faulty client can trigger this cost decreases at each step.

Starting from the final step of the decision tree, the design ensures that

the most expensive message a client can send is a correct request as specified by

the protocol, and it limits the rate at which a faulty client can trigger expensive

signature checks and request processing to the maximum rate a correct client would.

The sequence check step (c) ensures that a client can trigger signature verification

or request processing for a new sequence number only after its previous request has

been successfully executed. The redundancy check (d) prevents repeated signature

verifications for the same sequence number by caching each client’s most recent

request. Finally, the once-per-view check (f) permits repeated processing of a request

only across different views to ensure progress. The signature check (e) ensures that

only requests that will be accepted by all correct replicas are processed. The net

result of this filtering is that, for every k correct requests submitted by a client, each

replica performs at most k + 1 signature verifications, and any client that imposes

a k + 1st signature verification is blacklisted and unable to instigate additional

signature verifications until it is removed from the blacklist.

30

Moving up the diagram, a replica responds to retransmission of completed

requests paired with valid MACs by retransmitting the most recent reply sent to

that client. The retransmission check (c1) imposes an exponential back-off on re-

transmissions, limiting the rate at which clients can force the replica to retransmit a

response. To help a client learn the sequence number it should use, a replica resends

the cached reply at this limited rate upon receipt of requests that are from the past

and very far in the future.

Any request that fails the MAC check (b) is immediately discarded. MAC

verifications occur on every incoming message that claims to have the right format

unless the sender is blacklisted, in which case the blacklist check (a) results in the

message being discarded. The rate of MAC verification operations is thus limited

by the rate at which messages purportedly from non-blacklisted clients are pulled

off the network, and the fraction of processing wasted is at most the fraction of

incoming requests from faulty clients.

3.4.2 Replica agreement

Once a request has been transmitted from the client to the current primary, the repli-

cas must agree on the request’s position in the global order of operations. Aardvark

replicas coordinate with each other using a standard three-phase-commit proto-

col [18].

The fundamental challenge in the agreement phase is ensuring that each

replica can quickly collect the quorums of prepare and commit messages necessary

to make progress. Conditioning expensive operations on the gathering of a quorum

of messages makes it easier to ensure robustness in two ways. First, it is possible

to design the protocol so that incorrect messages sent by a faulty replica will never

gain the support of a quorum of replicas. Second, as long as there exists a quorum

of timely correct replicas, a faulty replica that sends correct messages too slowly, or

not at all, cannot impede progress. Faulty replicas can introduce overhead also by

sending useless message or by sending messages too quickly: to protect themselves,

correct replicas in Aardvark process messages from other replicas in a round-robin

fashion whenever messages from multiple replicas are available.

Not all expensive operations in Aardvark are triggered by a quorum. In

particular, a correct replica that has fallen behind its peers may ask them for the

31

state it is missing by sending them a catchup message (see Section 3.4.2). Aardvark

replicas defer processing such messages to idle periods. Note that this state-transfer

procedure is self-tuning: if the system is unable to make progress because it cannot

assemble quorums of prepare and commit messages, then it will become idle and

devote more time to processing catchup messages.

Agreement protocol

The agreement protocol requires replica-to-replica communication. A replica r fil-

ters, classifies, and finally acts on the messages it receives from another replica

according to the decision tree shown in Figure 3.5:

(a) Volume Check. If replica q is sending too many messages, blacklist q and

discard the message. Otherwise continue to step (b). Aardvark replicas use a

distinct NIC for communicating with each replica. Using per-replica NICs al-

lows an Aardvark replica to silence replicas that flood the network and impose

excessive interrupt processing load. In our prototype, we disable a network

connection when q’s rate of message transmission in the current view is a fac-

tor of 20 higher than for any other replica. After disconnecting q for flooding,

r reconnects q after 10 minutes, or when f other replicas are disconnected for

flooding.

(b) Round-Robin Scheduler. Among the pending messages, select the next

message to process from the available messages in round-robin order based on

the sending replica ID. Discard received messages when the buffers are full.

(c) MAC Check. If the selected message has a valid MAC, then proceed to step

(d) otherwise, discard the message.

(d) Classify Message. Classify the authenticated message according to its type:

• If the message is pre-prepare, then process it immediately in protocol

step 3 below.

• If the message is prepare or commit, then add it to the appropriate

quorum and proceed to step (e).

• If the message is a catchup message, then proceed to step (f).

32

(c) MAC
Check Discardfail

(d) Classify
Message

pass

Act on Message

Act on Quorum

(f) Idle CheckAdd to Quorum

Quorum Message

Status
Message

Nonsense Message

full

not idle

idle

Discard

Defer

(b) Round
Robin

Scheduler

(a) Volume
Check Blacklist Sender

fail

pass

Discard
overflow

Act on
Preprepare

Preprepare
Message

Discard

(e) Quorum
Check

Figure 3.5: Decision tree followed by a replica when handling messages received
from another replica. The width of the edges indicates the rate at which messages
reach various stages in the processing.

• If the message is anything else, then discard the message.

(e) Quorum Check. If the quorum to which the message was added is complete,

then act as appropriate in protocol steps 4-6 below.

(f) Idle Check. If the system has free cycles, then process the catchup message.

Otherwise, defer processing until the system is idle.

Replica r applies the above steps to each message it receives from the network.

Once messages are appropriately filtered and classified, the agreement protocol con-

tinues from step 2 of the communication pattern in Figure 3.3.

33

2. Primary forms a pre-prepare message containing a set of valid

requests and sends the pre-prepare to all replicas.

The primary creates and transmits a 〈pre-prepare, v, n, 〈request, o, s, c〉σc〉~µp
message where v is the current view number, n is the sequence number for the pre-

prepare, and the authenticator is valid for all replicas. Although we show a single

request as part of the pre-prepare message, multiple requests can be batched in

a single pre-prepare [18, 37, 49, 50].

3. Replica receives pre-prepare from the primary, authenticates the

pre-prepare, and sends a prepare to all other replicas.

Upon receipt of 〈pre-prepare, v, n, 〈request, o, s, c〉σc〉~µp from primary p,

replica r verifies the message’s authenticity following a process similar to the one

described in Section 3.4.1 for verifying requests. If r has already accepted the pre-

prepare message, r discards the message preemptively. If r has already processed

a different pre-prepare message with n′ = n during view v, then r discards the

message. If r has not yet processed a pre-prepare message for n during view v,

r first checks that the appropriate portion of the MAC authenticator ~µp is valid.

If the replica has not already done so, it then checks the validity of σc. If the

authenticator is not valid r discards the message. If the authenticator is valid and

the client signature is invalid, then the replica blacklists the primary and requests a

view change. If, on the other hand, the authenticator and signature are both valid,

then the replica logs the pre-prepare message and forms a 〈prepare, v, n, h,r〉~µr
to be sent to all other replicas where h is the digest of the set of requests contained

in the pre-prepare message.

4. Replica receives 2f prepare messages that are consistent with the

pre-prepare message for sequence number n and sends a commit

message to all other replicas.

Following receipt of 2f matching prepare messages from non-primary repli-

cas r′ that are consistent with a pre-prepare from primary p, replica r sends a

〈commit,v, n, r〉~µr message to all replicas. Note that the pre-prepare message

from the primary is the 2f + 1st message in the prepare quorum.

5. Replica receives 2f + 1 commit messages, commits and executes

the request, and sends a reply message to the client.

34

After receipt of 2f + 1 matching 〈commit,v, n, r′〉~µr′ from distinct replicas

r′, replica r commits and executes the request before sending 〈reply, v, u,r〉µr,c to

client c where u is the result of executing the request and v is the current view.

6. The client receives f + 1 matching reply messages and accepts the

request as complete.

We also support Castro’s tentative execution optimization [18]. The details

of tentative execution do not impact the RBFT design and analysis.

Catchup messages. State catchup messages are not an intrinsic part of the agree-

ment protocol, but they fulfill the important logistical priority of bringing replicas

that have fallen behind back up to speed. If replica r receives a catchup message

from a replica q that has fallen behind, then r sends q the state that q requires

to catch up and resume normal operations. Sending catchup messages is vital to

allow temporarily slow replicas to avoid becoming permanently non-responsive, but

it also offers faulty replicas the chance to impose significant load on their non-faulty

counterparts. Aardvark explicitly delays the processing of catchup messages until

there are idle cycles available at a replica—as long as the system is making progress,

processing a high volume of requests, there is no need to spend time bringing a slow

replica up to speed!

Discussion

We now discuss the Aardvark agreement protocol through the lens of RBFT, starting

from the bottom of Figure 3.5. Because every quorum contains at least a majority

of correct replicas, faulty replicas can only marginally alter the rate at which cor-

rect replicas take actions (e) that require a quorum of messages. Further, because a

correct replica processes catchup messages (f) only when otherwise idle, faulty repli-

cas cannot use catchup messages to interfere with the processing of other messages.

When client requests are pending, catchup messages are processed only if too many

correct replicas have fallen behind and the processing of quorum messages needed

for agreement has stalled—and only until enough correct replicas to enable progress

have caught up. Also note that the queue of pending catchup messages is finite, and

a replica discards excess catchup messages. If the number of discarded messages

exceeds a fixed maximum, then clear the queue of pending catchup messages and

35

reset the discarded message count.

A replica processes pre-prepare messages at the rate they are sent by the

primary. If a faulty primary sends them too slowly or too quickly, throughput may

be reduced, hastening the transition to a new primary as described in Section 3.4.3.

Finally, a faulty replica could simply bombard its correct peers with a high

volume of messages that are eventually discarded. The round-robin scheduler (b)

limits the damage that can result from this attack: if c of its peers have pending

messages, then a correct replica wastes at most 1
c of the cycles spent checking MACs

and classifying messages on what it receives from any faulty replica. The round-robin

scheduler also discards messages that overflow a bounded buffer, and the volume

check (a) similarly limits the rate at which a faulty replica can inject messages that

the round-robin scheduler will eventually discard.

3.4.3 Primary view changes

Employing a primary to order requests enables batching [18, 37] and avoids the need

to trust clients to obey a back-off protocol [1, 22]. However, because the primary

is responsible for selecting which requests to execute, the system throughput is at

most the throughput of the primary. The primary is thus in a unique position to

control both overall system progress [4, 7] and fairness to individual clients.

The fundamental challenge to safeguarding performance against a faulty pri-

mary is that a wide range of primary behaviors can hurt performance. For example,

the primary can delay processing requests, discard requests, corrupt clients’ MAC

authenticators, introduce gaps in the sequence-number space, unfairly delay or drop

some clients’ requests but not others, etc.

Hence, rather than designing specific mechanisms to defend against each of

these threats, past BFT systems [18, 49] have relied on view changes to replace

an unsatisfactory primary with a new, hopefully better, one. Past systems trigger

view changes conservatively, only changing views when it becomes apparent that

the current primary is unlikely to allow the system to make even minimal progress.

Aardvark includes the same view change mechanism and triggers described

for PBFT [18]; in conjunction with the agreement protocol, view changes in PBFT

are sufficient to ensure eventual progress. They are not, however, sufficient to en-

sure acceptable progress, so Aardvark adds additional adaptive throughput triggers

36

that can cause a view change when the current throughput is determined to be

insufficient.

Adaptive throughput

Replicas monitor the throughput of the current primary. If a replica judges the

primary’s performance to be insufficient, then the replica initiates a view change.

More specifically, replicas in Aardvark expect two things from the primary: a reg-

ular supply of pre-prepare messages and high sustained throughput. Following

the completion of a view change, each replica starts a heartbeat timer that is reset

whenever the next valid pre-prepare message is received. If a replica does not

receive the next valid pre-prepare message before the heartbeat timer expires,

the replica initiates a view change. To ensure eventual progress, a correct replica

doubles the heartbeat interval each time the timer expires. Once the timer is reset

because a pre-prepare message is received, the replica resets the heartbeat timer

back to its initial value. The value of the heartbeat timer is application and environ-

ment specific: our implementation uses a heartbeat of 40ms, so that a system that

tolerates f failures demands a minimum of 1 pre-prepare every 2f×40ms during

uncivil intervals.

The periodic checkpoints that, at pre-determined intervals, correct replicas

must take to bound their state offer convenient synchronization points to assess the

throughput that the primary is able to deliver. If the observed throughput in the

interval between two successive checkpoints falls below a specified threshold, initially

90% of the maximum throughput observed during the previous n views, the replica

initiates a view change to replace the current primary. At each checkpoint interval

following an initial grace period at the beginning of each view, 5s in our prototype,

the required throughput is increased by a factor of 0.01. Continually raising the

bar that the current primary must reach in order to stay in power guarantees that

a view change will eventually occur and replace the primary, restarting the process

with the next primary. Conversely, if the system workload changes, the required

throughput adjusts over n views to reflect the performance that a correct primary

can provide. Note that every replica decides to initiate a view change independently,

so some correct replicas may initiate a view change while others do not. As long as

the remaining replicas are satisfied with the current throughput, they can continue

37

processing messages in the current view even though some replicas have stopped

processing requests in their desire to join the next view.

The combined effect of Aardvark’s new expectations on the primary is that

during the first 5s of a view the primary is required to provide throughput of at least

1 request per 40ms or face eviction. The throughput of any view that lasts longer

than 5s is at least 90% of the maximum throughput observed during the previous

n views.

Fairness

In addition to hurting overall system throughput, primary replicas can influence

which requests are processed. A faulty primary could be unfair to a specific client

(or set of clients) by neglecting to order requests from that client. To limit the

magnitude of this threat, replicas track fairness of request ordering. When a replica

receives from a client a request that it has not seen in a pre-prepare message,

it adds the message to its request queue and, before forwarding the request to the

primary, it records the sequence number k of the most recent pre-prepare received

during the current view. The replica monitors future pre-prepare messages for

that request, and if it receives two pre-prepares for another client before receiving

a prepare for client c, then it declares the current primary to be unfair and initiates

a view change. This ensures that two clients issuing comparable workloads observe

throughput values within a constant factor of each other.

Discussion

The adaptive view change and pre-prepare heartbeats leave a faulty primary with

two options: it can provide substandard service and be replaced promptly, or it can

remain the primary for an extended period of time and provide service comparable

to what a non-faulty primary would provide. A faulty primary that does not make

any progress will be caught very quickly by the heartbeat timer and summarily

replaced. To avoid being replaced, a faulty primary must issue a steady stream of

pre-prepare messages until it reaches a checkpoint interval, when it is going to be

replaced until it has provided the required throughput. To do just what is needed

to keep ahead of its reckoning for as long as possible, a faulty primary will be forced

to deliver 95% of the throughput expected from a correct primary.

38

Periodic view changes may appear to institutionalize overhead, but their cost

is actually relatively small. Although the term view change evokes images of sub-

stantial restructuring, in reality a view change costs roughly as much as a single in-

stance of agreement with respect to message/protocol complexity: when performed

every 100+ requests, periodic view changes have marginal performance impact dur-

ing gracious or uncivil intervals. We quantify these overheads experimentally in

section 3.6.

3.4.4 Implementation

new section The Aardvark prototype is based on the December 2007 release

of the PBFT code base [9]. Our implementation of Aardvark consists of selected

modifications to implement the signed client requests, periodic view changes, and

resource scheduling discussed above. We rely on the same basic data structures as

PBFT and the UDP-based network communication provided by PBFT [9].

3.5 Analysis

In this section, we analyze the throughput characteristics of Aardvark when the

number of client requests is large enough to saturate the system and a fraction g of

those requests is correct. We show that Aardvark’s throughput during long enough

uncivil executions is within a constant factor of its throughput during gracious

executions of the same length provided there are sufficient correct clients to saturate

the servers.

For simplicity, we restrict our attention to a simplified Aardvark implemen-

tation on a single-core machine with a processor speed of κ GHz. We consider

only the computational costs of the cryptographic operations—verifying signatures,

generating MACs, and verifying MACs, requiring θ, α, and α cycles, respectively3.

Since these operations occur only when a message is sent or received, and the cost

of sending or receiving messages is small, we expect similar results when modeling

network costs explicitly.

We begin by calculating simplified Aardvark’s peak throughput during a gra-

cious view, i.e. a view that occurs during a gracious execution, in Theorem 1. We

3Note that generating and verifying MACs are symmetric operations and have identical cost α.

39

then show in Theorem 2 that during uncivil views, i.e. views that occur during un-

civil executions, with a correct primary simplified Aardvark’s throughput is at least

g times the throughput achieved during a gracious view; as long as the primary is

correct, faulty replicas are unable to adversely impact simplified Aardvark’s through-

put. Finally, we show that the throughput of an uncivil execution is at least the

fraction of correct replicas times g times the throughput achieved during a gracious

view, in Theorem 3. Note that the latter two theorems are applicable only when the

workload remains constant across multiple gracious views. The Aardvark adaptive

view change mechanism can require up to n views to converge on the appropriate

required throughput for a given workload.

We begin in Theorem 1 by computing tpeak , simplified Aardvark’s peak

throughput during a gracious view, i.e. a view that occurs during a gracious execu-

tion. We then show in Theorem 2 that during uncivil views in which the primary

replica is correct, simplified Aardvark’s peak throughput is only reduced to g×tpeak :

in other words, ignoring low level network overheads, faulty replicas are unable to

curtail simplified Aardvark’s throughput when the primary is correct. Finally, we

show in Theorem 3 that the throughput across all views of an uncivil execution is

within a constant factor of n−f
n × g × tpeak .

Theorem 1. Consider a gracious view during which the system is saturated, all

requests come from correct clients, and the primary generates batches of requests of

size b. Simplified Aardvark’s throughput is then at least κ

θ+
(4n−2b−4)

b
α

operations per

second.

Proof. We examine the actions required by each server to process one batch of size b.

For each request in the batch, every server verifies one signature. The primary also

verifies one MAC per request. For each batch, the primary generates n − 1 MACs

to send the pre-prepare and verifies n − 1 MACs upon receipt of the prepare

messages; replicas instead verify one MAC in the primary’s pre-prepare , generate

(n − 1) MACs when they send the prepare messages, and verify (n − 2) MACs

when they receive them. Finally, each server first sends and then receives n − 1

commit messages, for which it generates and verifies a total of n − 2 MACs, and

generates a final MAC for each request in the batch to authenticate the response

to the client. The total computational load per request is thus θ + (4n+2b−4)
b α at

the primary, and θ+ (4n+b−4)
b α at a replica. The system’s throughput at saturation

40

during a sufficiently long view in a gracious interval is thus at least κ

θ+
(4n+2b−4)

b
α

requests/sec.

Theorem 2. Consider an uncivil view in which the primary is correct and at most

f replicas are Byzantine. Suppose the system is saturated, but only a fraction of the

requests received by the primary are correct. The throughput of simplified Aardvark

in this uncivil view is within a constant factor of its throughput in a gracious view

in which the primary uses the same batch size.

Proof. Let θ and α denote the cost of verifying, respectively, a signature and a

MAC. We show that if g is the fraction of correct requests then the throughput

during uncivil views with a correct primary approaches g of the gracious view’s

throughput as the ratio α
θ tends to 0.

In an uncivil view, faulty clients may send unfaithful requests to every server.

Before being able to form a batch of b correct requests, the primary may have to

verify b
g signatures and MACs, and correct replicas may verify b

g signatures and

an additional (bg)(1 − g) MACs. Because a correct server processes messages from

other servers in round-robin order, it will process at most two messages from a faulty

server per message that it would have processed had the server been correct. The

total computational load per request is thus 1
g (θ+ b(1+g)+4g(n−1+f)

b α) at the primary,

and 1
g (θ+ b+4g(n−1+f)

b α) at a replica. The system’s throughput at saturation during

a sufficiently long view in an uncivil interval with a correct primary thus is at least
gκ

θ+
(b(1+g)+4g(n−1+f)

b
α

requests per second: as the ratio α
θ tends to 0, the ratio between

the uncivil and gracious throughput approaches g.

Theorem 3. For sufficiently long uncivil executions and for small f , the throughput

of simplified Aardvark, when properly configured, is within a constant factor of its

throughput in a gracious execution in which primary replicas use the same batch size

and the system is saturated.

Proof. First consider the case in which all the uncivil views have correct primary

replicas. Assume that in a properly configured simplified Aardvark, tbaseViewTimeout

is set so that during an uncivil interval, a view change to a correct primary completes

within tbaseViewTimeout . Since a primary’s view lasts at least tgracePeriod , as the ratio
α
θ tends to 0, the ratio between the throughput during a gracious view and an uncivil

interval approaches g
tgracePeriod

tbaseViewTimeout+tgracePeriod

41

Now consider the general case. If the uncivil interval is long enough, at

most f
n of its views will have a Byzantine primary. Simplified Aardvark’s heartbeat

timer provides two guarantees. First, a Byzantine server that does not produce the

throughput that is expected of a correct server will not last as primary for longer

than a grace period. Second, a correct server is always retained as a primary for

at least the length of a grace period. Furthermore, since the throughput expected

of a primary at the beginning of a view is a constant fraction of the maximum

throughput achieved by the primary replicas of the last n views, faulty primary

replicas cannot arbitrarily lower the throughput expected of a new primary. Finally,

since the view change timeout is reset after a view change that results in at least

one request being executed in the new view, no view change attempt takes longer

then tmaxViewTimeout = 2f tbaseViewTimeout . It follows that, during a sufficiently long

uncivil interval, the throughput will be within a factor of
tgracePeriod

tmaxViewTimeout+tgracePeriod

n−f
n

of that of Theorem 2, and, as α
θ tends to 0, the ratio between the throughput during

uncivil and gracious intervals approaches g
tgracePeriod

tmaxViewTimeout+tgracePeriod

(n−f)
n .

3.6 Experimental evaluation

In evaluating Aardvark we compare the throughput and latency provided by Aard-

vark and previous replication protocol prototypes (PBFT [18], HQ [26], Q/U [1],

and Zyzzyva [49]) during failure-free and failure-ful executions. Our evaluation

demonstrates three points: (a) despite our choice to utilize signatures, change views

regularly, and forsake IP multicast, Aardvark’s peak throughput is competitive with

that of existing systems ; (b) existing systems are vulnerable to significant disruption

as a result of a broad range of Byzantine behaviors; and (c) Aardvark is robust to a

wide range of Byzantine behaviors. When evaluating existing systems, we attempt

to identify places where the prototype implementation departs from the published

protocol.

Environment We evaluate the performance of Aardvark, PBFT [18, 9], HQ [26],

Q/U [1, 83], and Zyzzyva [49] on an Emulab cluster [103] deployed at the University

of Texas at Austin. This cluster consists of machines with 3GHz Intel Pentium

4 Xeon processors with hyperthreading, 1GB of memory, and 1 Gb/s Ethernet

connections.

42

The code bases used to report our results are provided by the respective

systems’ authors. James Cowling provided us the December 2007 public release of

the PBFT code base [9] as well as a copy of the HQ codebase. We used version

1.3 of the Q/U codebase, provided to us by Michael Abd-El-Malek in October

2008 [83]. The Zyzzyva codebase is the version used in the SOSP 2007 paper [49].

The Aardvark code is the version used for the NSDI 2009 paper [24]. We rely on

the existing configurations for each system to handle f = 1 Byzantine failures.

Method. Our basic experimental setup involves correct clients that operate in a

closed loop—that is they issue requests one at a time and do not issue request i until

they receive a response to request i−1. Unless otherwise noted, correct clients issue

100k 4KB requests. We increase system load by increasing the number of clients.

Clients record the time at which each request is issued and the response received.

We calculate the average latency of all requests issued by all clients. We calculate

per second throughput by dividing the total duration of the experiment, in seconds,

by the total number of requests issued by all clients.

3.6.1 Common case performance

In this section we evaluate Aardvark in the absence of failures. We compare the

throughput and latency of Aardvark to select previous systems during gracious

execution and evaluate the impact of the key differences between Aardvark and

previous systems.

Failure-free performance. We first measure the throughput and latency of

Aardvark and the competing systems in the absence of failures. The results are

shown in Figure 3.6. We see that Aardvark’s peak throughput is competitive with

that of contemporary state of the art systems. Aardvark’s throughput peaks at

38.7k operations per second, while Zyzzyva and PBFT observe maximum through-

puts of 66k and 61.7k operations per second, respectively. The reliance on digital

signatures to authenticate client requests increases the per request processing in

Aardvark, resulting in increased per request latency and lower throughput. Aard-

vark, PBFT, and Zyzzyva provide higher throughput than HQ and Q/U because

the former set of systems batch requests while the latter two systems process each

request individually.

43

 0

 1

 2

 3

 4

 5

 6

 7

 0 10 20 30 40 50 60 70 80

La
te

nc
y

(m
s)

Throughput (Kops/sec)

Aardvark
HQ

PBFT
Q/U

Zyzzyva

Figure 3.6: Average per request latency vs. average throughput for Aardvark, HQ,
PBFT, Q/U, and Zyzzyva.

Putting Aardvark together. Aardvark incorporates several key design decisions

that enable it to perform well in the presence of Byzantine failure. We study the per-

formance impact of these decisions by measuring the throughput of several variants

of PBFT and Aardvark. Each variation corresponds to a piece-wise evolutionary

step from PBFT to Aardvark. We measure the peak throughput of each variant

by increasing the offered workload until throughput stabilizes. We report the peak

throughput of each variant in Table 3.2.

While requiring clients in PBFT to sign requests reduces throughput by 50%,

we find that the cost of requiring Aardvark clients to use the hybrid MAC-signature

scheme imposes a smaller 33% hit to system throughput. Explicitly separating the

work queues for client and replica communication makes it easy for Aardvark to

utilize the second processor in our test-bed machines, which reduces the throughput

costs Aardvark pays to verify signed client requests. This parallelism is the primary

source of the 30% improvement we observe between PBFT with signatures and

Aardvark.

Peak throughput for Aardvark with and without regular view changes is

44

System Peak Throughput

Aardvark 38.7k
PBFT 61.7k
PBFT w/ client signatures 31.8k
Aardvark without signatures 57.4k
Aardvark without regular view changes 39.8k

Table 3.2: Peak throughput of Aardvark and PBFT for different implementation
choices.

comparable. The reason for this is rather straightforward: when both the new and

old primary replicas are non-faulty, a view change requires approximately the same

amount of work as a single instance of consensus. Aardvark views led by a non-faulty

primary are sufficiently long that the throughput costs associated with performing

a view change are negligible.

View Changes. We now explore the impact of performing regular view changes

on the per request latencies observed by clients. We measure the latencies observed

by 210 clients, each issuing 100k requests. Clients are configured to retransmit

requests if they do not receive a response within 150ms of issuing the request.

Figure 3.7 shows the per-request latency observed by a single client during

one run of the experiment. The periodic latency spikes correspond to view changes.

When a client issues a request as the view change is initiated, the request is not

processed until the request arrives at the new primary following a client timeout

and retransmission. In most cases a single client retransmission is sufficient, but

additional retransmissions may be required when multiple view changes occur in

rapid succession.

Figure 3.8 shows the CDF for latencies of all client requests in the same

experiment. We observe that a vast majority of requests have latency under 15ms4

, and only a small fraction of all requests incur the higher latencies induced by view

changes.

4Though it is not visible in the graph, we observe that 99.99% fo requests have throughput
under 15ms

45

 0

 100

 200

 300

 400

 500

 600

 700

 0 1 2 3 4 5 6 7 8 9 10

La
te

nc
y

(m
s)

Request # (x 10000)

Figure 3.7: The latency of an individual client’s requests running Aardvark with
210 total clients. The sporadic jumps represent view changes in the protocol.

3.6.2 Evaluating faulty systems

In this section we evaluate Aardvark and existing systems in the context of failures.

It is impossible to test every possible Byzantine behavior; consequently we use our

knowledge of the systems to construct a set of workloads that we believe to be close

to the worst case for Aardvark and other systems. While other faulty behaviors are

possible and may stress the evaluated systems in different ways, we believe that our

results are indicative of both the vulnerability of existing systems and the robustness

of Aardvark.

Faulty clients

We focus our attention on two aspects of client behavior that have significant impact

on system throughput: request dissemination and network flooding.

Request dissemination. Table 3.1 (in Section 3.1) depicts the impact of faulty

client behavior related to request distribution on the PBFT, HQ, Zyzzyva, and Aard-

46

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 1 10 100 1000

C
D

F

Latency (ms)

Figure 3.8: CDF of request latencies for 210 clients issuing 100,000 requests with
Aardvark servers.

vark prototypes. We implement different client behaviors for the different systems

to stress test the design decisions the systems have made.

In PBFT and Zyzzvya, the clients send requests that are authenticated with

MAC authenticators. The faulty client includes an inconsistent authenticator on

requests so that request verification will succeed at the primary but fail for all other

replicas. When the primary includes the client request in a pre-prepare message,

the replicas are unable to verify the request.

We developed this workload because, on paper, the protocols specify what

appears to be an expensive processing path to handle this contingency. In this situ-

ation PBFT specifies a view change while Zyzzyva invokes a conflict resolution pro-

cedure that blocks progress and requires replicas to generate signatures. In theory,

these procedures should have a noticeable, though finite, impact on performance.

In particular, PBFT progress should stall until a timeout forces a new view ([16]

pp. 42–43), at which point other clients can make some progress until the faulty

client stalls progress again. In Zyzzyva, the servers should pay extra overheads for

signatures and view changes.

47

In practice, the throughput of both prototype implementations drops to 0.

In Zyzzyva the reconciliation protocol is not fully implemented; in PBFT the client

behavior results in repeated view changes, and we have not observed our experi-

ment to finish. While the full PBFT and Zyzzyva protocol specifications guarantee

liveness under eventual synchrony, the protocol steps required to handle these cases

are evidently sufficiently complex to be difficult to implement, easy to overlook, or

both.

In HQ, our intended attack is to have clients send certificates during the

write-2 phase of the protocol with an inconsistent MAC authenticator. The re-

sponse specified by the protocol is a signed write-2-refused message which is

subsequently used by the client to initiate a call to initiate a request processed by

an internal PBFT protocol. This set of circumstances presents a point in the HQ

design where a single client, either faulty or simply unlucky, can force the replicas to

generate expensive signatures resulting in a degradation in system throughput. We

are unable to evaluate the precise impact of this client behavior because the replica

processing necessary to handle inconsistent MAC authenticators from clients is not

implemented in the HQ prototype.

In Q/U during periods of contention when multiple clients issue concurrent

requests that modify or depend on overlapping state, replicas are required to perform

barrier and commit operations that are rate limited by a client-initiated exponential

back-off. During the barrier and commit operations, a faulty client that sends incon-

sistent certificates to the replicas can theoretically complicate the process further.

We implement a simpler scenario in which all clients are correct, yet they issue con-

tending requests to the replicas. In this setting with only 20 clients, the throughput

of the Q/U prototype also drops to zero. Q/U’s focus on performance in the absence

of both failures and contention makes it especially vulnerable in practice—clients

that issue contending requests can decimate system throughput, whether the clients

are faulty or not.

To avoid corner cases where different replicas make different judgments about

the legitimacy of a request, Aardvark clients sign requests. In Aardvark, the closest

client behaviors analogous to those discussed above for other systems are sending

requests with a valid MAC and invalid signature or sending requests with invalid

MACs. We implement both attacks and find the results to be comparable. In Ta-

ble 3.1 we report the results for requests with invalid MACs. Aardvark does not

48

suffer from a throughput degradation comparable to the ones observed in previous

systems because it is able to process the faulty requests efficiently. Requests with an

invalid MAC are discarded quickly and do not induce any replica-to-replica commu-

nication. Similarly, requests with an invalid signature induce a high one time cost

for the primary, but subsequent requests from that client are efficiently discarded. It

is important to note that the client in this attack follows the retransmission schedule

for a correct client. Our next discussion explores the impact of a clients and servers

that aggressively transmit messages.

Network flooding. In Table 3.3 we demonstrate the impact of a single faulty

client that floods the replicas with messages. During these experiments correct

clients issue requests sufficient to saturate each system while a single faulty client

implements a brute-force denial-of-service attack by repeatedly sending 9KB UDP

messages to the replicas5. For PBFT and Zyzzyva, 210 clients are sufficient to

saturate the servers, while Q/U and HQ are saturated with 30 client processes6.

The PBFT and Zyzzyva prototypes suffer dramatic performance degradation

as their incoming network resources are consumed by the flooding client; processing

the incoming client requests disrupts the replica-to-replica communication necessary

for the systems to make progress. In both cases, the pending client requests even-

tually overflow queues internal to the server processes resulting in a seg-fault and

subsequent crash. Q/U and HQ suffer smaller degradations in throughput from the

spamming replicas. The UDP traffic is dropped by the network stack with minimal

processing because it does not contain valid TCP packets. The slowdowns observed

in Q/U and HQ correspond to the displaced network bandwidth.

The reliance on TCP communication in Q/U and HQ changes rather than

solves the challenge presented by a flooding client. For example, a single faulty client

that repeatedly requests TCP connections crashes both the Q/U and HQ servers.

In each of these systems, the vulnerability to network flooding is a byproduct

of the prototype implementation and is not fundamental to the protocol design.

Network isolation techniques such as those described in Section 3.4 could similarly

be applied to these systems.

5The faulty client is a modified PBFT client instrumented to repeatedly send messages of max-
imal size, 9KB in the release we evaluate.

6These client saturation numbers are specific to our experimental machines and closed-loop client
construction

49

System Peak Throughput
Network Flooding
UDP TCP

PBFT 61.7k crash -
Q/U 23.8k 23.1k crash
HQ 7.6k 4.5k 0
Zyzzyva 66k crash -
Aardvark 38.7k 7.8k -

Table 3.3: Observed peak throughput of BFT systems in the fault free case and
under heavy client retransmission load. UDP network flooding corresponds to a
single faulty client sending 9KB messages. TCP network flooding corresponds to a
single faulty client sending requests to open TCP connections and is shown for TCP
based systems.

In the case of Aardvark, the decision to use separate NICs and work queues

for client and replica requests ensures that a faulty client is unable to prevent replicas

from processing requests that have already entered the system. The throughput

observed by Aardvark tracks the fraction of requests that replicas receive that were

sent by non-faulty clients.

Faulty Primary

In systems that rely on a primary, the primary controls the sequence of requests

that are processed.

In Table 3.4 we show the impact on PBFT, Zyzzyva, and Aardvark proto-

types of a primary that delays sending pre-prepare messages by 1, 10, or 100

ms. The throughput of both PBFT and Zyzzyva degrades dramatically as the slow

primary is not slow enough to trigger their view change conditions. This through-

put degradation is a consequence of the protocol design and specification of when

view changes should occur. With an extremely slow primary, Zyzzyva eventually

succumbs to a memory leak exacerbated by holding on to requests for an extended

period of time. The throughput achieved by Aardvark indicates that adaptively

performing view changes in response to observed throughput is a good technique for

ensuring performance.

In addition to controlling the rate at which requests are inserted into the

system, the primary is also responsible for controlling which requests are inserted

into the system. We evaluate this impact by instrumenting a single replica to defer

50

System Peak Throughput 1 ms 10 ms 100 ms

PBFT 61.7k 5k 4.9k 1.1k
Zyzzyva 66k 27.8k 5k crash
Aardvark 38.7k 38.5k 37.3k 37.9k

Table 3.4: Throughput during intervals in which the primary delays sending pre-
prepare message (or equivalent) by 1, 10, and 100 ms.

System Starved Throughput Normal Throughput

PBFT 1.25 1.5k
Zyzzyva 0 1.7k
Aardvark 358 465

Table 3.5: Average throughput for a starved client that is shunned by a faulty
primary versus the average per-client throughput for any other client.

processing request from a specified client and report the throughput observed for the

shunned client and average throughput for remaining clients. Table 3.5 depicts the

results of this experiment. In the case of PBFT and Aardvark, the primary sends

a pre-prepare for the targeted client’s request only after receiving the request 9

times. This heuristic prevents the PBFT primary from triggering a view change

and demonstrates dramatic degradation in throughput for the targeted client in

comparison to the other clients in the system. For Zyzzyva, the unfair primary

ignores messages from the targeted client entirely. The resulting throughput is 0

because the implementation is incomplete, and replicas in the Zyzzyva prototype do

not forward received requests to the primary as specified by the protocol. Aardvark’s

fairness detection and periodic view changes limit the impact of the unfair primary.

Non-Primary Replicas

We implement a faulty replica that does not process protocol messages and blasts

network traffic at the other replicas instead. We report the results of running the

systems with the blasting replica in Table 3.6. In the first experiments, a faulty

replica blasts 9KB UDP messages at the other replicas7. The PBFT and Zyzzyva

7The PBFT prototype uses UDP for inter-server communication. The faulty client is imple-
mented with a PBFT client that sends well-formed, but non-sensical, request messages.

51

System Peak Throughput
Replica Flooding
UDP TCP

PBFT 61.7k 251 -
Q/U 23.8k 19.3k crash
HQ 7.6k crash crash
Zyzzyva 66k 0 -
Aardvark 38.7k 11.7k -

Table 3.6: Observed peak throughput and observed throughput when one replica
floods the network with messages. UDP flooding consists of a replica sending 9KB
messages to other replicas rather than following the protocol. TCP flooding consists
of a replica repeatedly attempting to open TCP connections on other replicas.

prototypes again show very low performance as the incoming traffic from the spam-

ming replica displaces much of the legitimate traffic in the system, denying the

system both requests from the clients and also replica messages required to make

progress. Aardvark’s use of separate worker queues ensures that the replicas pro-

cess the messages necessary to make progress. In the second experiment, the faulty

Q/U and HQ replicas again open TCP connections, consuming all of the incoming

connections on the other replicas and denying the clients access to the service.

Once again, the shortcomings of the systems are a byproduct of implemen-

tation and not protocol design. We speculate that improved network isolation tech-

niques would make the systems more robust.

3.7 Conclusion

We claim that high-assurance systems require BFT protocols that are more robust

to failures than existing systems. Specifically, BFT protocols suitable for high-

assurance systems must provide adequate throughput during uncivil intervals in

which the network is well behaved but an unknown number of clients and up to

f servers are faulty. We present Aardvark, the first BFT state machine protocol

designed and implemented to provide good performance in the presence of Byzantine

faults. Aardvark sacrifices peak throughput during gracious executions in order to

gain significant improvement in performance during uncivil executions.

This chapter contains two important contributions. The first contribution

is the design, presentation, and evaluation of the Aardvark prototype. The second,

52

and most important, contribution is the observation that fault tolerant systems

should be robust to failures—it is not enough to ensure safety and eventual liveness

if, during a synchronous interval, a faulty node can reduce system throughput to

unacceptably low levels. This simple observation is most notable for its absence in

the discussion of previous systems [1, 18, 26, 45, 50, 49, 67, 86, 92, 104, 107]. While

the discussion in this chapter has focused on the specific example of asynchronous

BFT RSM protocols, we believe that robust performance is an important goal for

all fault tolerant systems.

53

Chapter 4

UpRight RSM Architecture

State machine replication is a powerful technique for building reliable services from

faulty components [52, 88]. The basic approach is simple: convert an application

to a deterministic state machine, replicate the state machine, and ensure that each

replica executes the same set of requests in the same order. Clients then gather votes

from multiple replicas to determine the correct response to deliver to the user. The

ultimate goal of an application built on top of an RSM protocol is to ensure that

the set of responses received by users of the replicated service are indistinguishable

from a set of responses that could have been generated by a single correct server

given the same set of requests.

Indeed, the systems described in the previous chapter (and many others [1,

12, 18, 24, 26, 49, 50, 67, 92, 104, 108]) are based on state machine replication.

These libraries typically specify a linearized order of requests and require replicated

applications to execute the requests in the specified linearized order. Initial work

towards accommodating parallel execution has focused on requiring the applica-

tion to execute requests so that the responses and resulting state are equivalent to

executing the requests in the specified order [50].

The rest of this thesis focuses on the design, implementation, and use of the

UpRight library for state machine replication. The UpRight library is a new library

for state machine replication that differs from previous fault tolerant RSM libraries

in three important ways.

First, the UpRight library is the first RSM library designed to provide (a)

UpRight fault tolerance (as opposed to the customary crash[12, 53, 67, 108] or

54

Byzantine [18, 24, 26, 49, 50, 92, 104] fault tolerance) and (b) robust performance

from the outset. While statements of fault tolerance equivalent to UpRight fault

tolerance have been described before [1, 32, 55], these statements have not resulted

in systems designed to leverage the flexibility and low replication costs of UpRight

fault tolerance. Similarly, although the Aardvark prototype discussed in Chapter 3

instantiates RBFT, it is accurate to say that robustness was shoe-horned onto an

existing library (PBFT [18]). Starting the design with robustness and UpRight

tolerance as initial goals allows for a clean end-to-end design. Chapters 2 and 3

provide the foundation for understanding UpRight and robust fault tolerance.

Second, the architecture of the UpRight library is based on three distinct

stages corresponding to the key steps of state machine replication: request au-

thentication, agreement on an execution order, and deterministic execution of the

specified order1. The latter two stages are standard and form the core of Schnei-

der’s definition of state machine replication [89]. The distinction between these two

stages has been leveraged in previous system designs [60, 104, 107] in order to re-

duce the required number of replicas2. The request authentication stage is a new

stage introduced for the UpRight library as a direct result of our experience the

Aardvark prototype and robust fault tolerance (Chapter 3). The three stages of

the UpRight architecture have distinct replication requirements, and designing the

library around the three stages facilitates efficient usage of computer resources in

deployed systems.

Third, the UpRight library refines the responsibilities and expectations of

the library and replicated applications. The refined responsibilities are reflected in

two key differences between API exposed by the UpRight library and the API of

previous libraries. First, the UpRight library requires a replicated application to

deterministically execute batches of requests in a linearized order; in contrast, pre-

vious libraries [18, 24, 49, 50, 92, 104, 107] have required replicated applications to

deterministically execute a linearized order of requests. This change in semantics

exposes the efficiency-driven internal batching performed by libraries [18, 24, 49, 50,

92, 104, 107] to the application and explicitly emphasizes the possibility of execut-

ing non-conflicting requests within the batch in parallel, providing a solid basis for

1The client side of the library can be considered a fourth stage.
2It is important to note that most existing systems combine agreement and execution into a

single stage [1, 18, 24, 26, 49, 50, 53, 92].

55

leveraging parallel hardware and resources. Second, the UpRight library requires a

replicated application to deterministically produce checkpoints on demand; previous

replication libraries have taken the checkpoint for the application. While generating

deterministic checkpoints on demand initially seems like an extra burden for the ap-

plication programmer, we believe that it is actually simpler than current techniques

requiring the application to be rewritten to support a memory model defined by the

replication library.

The rest of this chapter is organized as follows. Section 4.1 provides an

overview of the UpRight architecture. Section 4.2 describes the responsibilities of

the UpRight library and replicated applications in more detail. Section 4.3 previews

the subsequent chapters and explains the relationship between those chapters to the

ideas discussed in this chapter.

4.1 UpRight architecture

There are a multitude of design decisions that go into building systems. Many

of these decisions, i.e. using MACs rather than digital signatures to authenticate

messages, appear straightforward; it is easy to hope that they can be introduced

through local pinhole changes. The reality is that these “small” design decisions

can have wide-reaching impact on the end-to-end system. For example, the decision

to replace digital signatures with MACs improves performance (i.e. reduces latency

and increases throughput) in the common case, but introduces an expensive corner

case that can lead to significant performance degradation as shown in Section 3.6.2.

We design the UpRight library to replicate the servers, using state machine

replication, in client-server systems. The “client” portion of the system consists of

the client-side application (aka user) and a library client. The “server” portion of

the system consists of the original application server and the library components

used to coordinate multiple replicas of the application server.

Figure 4.1 provides a graphical depiction of a client-server system imple-

mented with the UpRight library. The client portion of the UpRight library is

responsible for interfacing between the application-level user code and the repli-

cated server. The server portion of the UpRight library consists of three distinct

stages: (1) request authentication stage, (2) request ordering stage, and (3) request

execution stage. Each stage fulfills a specific function: the authentication stage in-

56

Request

Valid
Request

Ordered
Request

Response

OrderClient

Authentication

Execution

UpRight Library

Application

Execute
Request

User Issue
Request

Server

Client

Figure 4.1: Basic flow of messages in the UpRight architecture.

sures that client requests are valid, the order stage places valid requests in batches

and orders the batches, and the execution stage delivers batches to the application

and relays application responses to clients.

Separating the server side of the UpRight library into three distinct stages

allows us to provide clean solutions to problems that arise as we replicate the server

and also to address shortcomings in previous replicated systems. Separating the

authentication stage allows us to (a) authenticate client requests at low cost in both

the average and worst cases (i.e. avoid the dangers of faulty clients (Section 3.6.2)

without relying on public key cryptography) and (b) minimize the overall network

bandwidth and costs associated with ordering requests. Separating order and ex-

ecution allows us to (a) reduce the overheads of ordering and (b) reduce the total

computation in the system by replicating each stage the minimum amount required

for that stage rather than the maximum replication required for any stage3.

3The benefits of separating order from execution have been noted by others [60, 104, 107]. We

57

At a high level, the protocol is simple: clients send requests to the authen-

tication stage; the authentication stage authenticates the requests; the order stage

assigns each authenticated request to a batch and assigns an execution order to the

batches; the execution stage executes the batches of requests (by delivering them to

the application) in the specified order and reports the results back to the clients.

Of course, the reality is more complex than this high level view implies, as

various factors conspire to complicate the design—individual nodes can fail in unpre-

dictable ways, the network may not be reliable, and computational/storage/network

resources are finite. We will discuss the interaction between stages and challenges

associated with replicating each stage for reliability in subsequent chapters.

This description also glosses over the interactions between the library and the

application. We explore that set of interactions in the next section with a specific

focus on the properties that the library and application are required to uphold.

4.2 Division of responsibilities

The previous section describes the internal architecture of the UpRight library. In

this section, we focus on the contract between the UpRight library and replicated

applications. Section 4.2.1 details the responsibilities of the UpRight library. Sec-

tion 4.2.2 details the responsibilities of replicated applications.

4.2.1 Library properties

The UpRight library delivers a linearized sequence of batches of one or more re-

quests to the application. In addition to guaranteeing that each application replica

receives the same sequence of request batches, the UpRight library ensures that

only authorized requests are included in the ordered batches and that the batches

themselves are well-formed.

The key difference between the properties of the UpRight library and previous

libraries is that the UpRight library defines a linearized order for batch execution

while previous libraries define a linearized order for request execution. In otherwords,

the Upright library defines a partial order for request execution rather than the total

order defined by previous systems.

take care to address technical challenges related to checkpoint coordination overlooked in previous
efforts to leverage that separation.

58

Before specifying the properties provided by the UpRight library, we first

describe some basic notation. A batch of requests is identified by an identifier no.

A batch contains a set of one or more requests each issued by an authorized client

c, an associated pseudo-random number generator (PRNG) seed, and an associated

time t. Requests from client c are differentiated by a request identifier nc and each

request is placed in at most one batch. Batch no is well-formed if it contains at

most one request per authorized client c.

The UpRight library provides the following safety properties:

LS1 Only responses generated by the application are delivered to non-faulty users.

LS2 Only non-empty batches are delivered to the application.

LS3 Batch no is only delivered to the application if the previously delivered batch

is no − 1.

LS4 Request nc issued via client c is placed in at most one batch.

LS5 If requests nc and n′c issued via client c are in batches no and n′o respectively,

then nc < n′c iff no < n′o.

LS6 Only requests issued to an authorized client are placed in a batch4.

LS7 Given batches no and n′o and associated times t and t′, no < n′o → t < t′.

The UpRight library provides two distinct liveness properties. First, any

request issued by an authorized (and correct) client is delivered to the application.

Second, any response generated by the application is delivered to the user that

issued the request.

LL1 Any request issued via a correct client is eventually delivered to the applica-

tion.

LL2 Any application-produced response to a request issued via correct client c is

eventually provided to c and delivered to the user.

4A client is “authorized” if it has appropriate credentials to interact with the servers. It is the
responsibility of the sysadmin to secure access to authorized clients.

59

4.2.2 Application requirements

We explicitly depart from the “standard” requirements imposed on applications by

replication libraries in the PBFT lineage [18, 86, 24, 26, 49, 92, 107, 104] in two

important ways. First, as stated above, we require applications to execute batches,

rather than individual requests, in a specified linearized order. Second, we explicitly

charge the application with taking and loading checkpoints. Previous libraries have

provided automatic checkpointing functionality and required the application to place

all relevant information in a library managed (and checkpointed) memory space.

We define some basic terminology that is useful in understanding the ap-

plication properties and API. Let H be a linearized sequence of ordered batches.

Let Hi be the sequence of the first i ordered batches. Let SH be the state of the

application after executing every batch in H in order. Let CH be the checkpoint

of state SH. Let H : b be a linearized sequence of ordered batches where b is the

last batch in the sequence. Let Rb be a set of responses generated when processing

batch b.

We require the application to implement three basic functions: execute a

batch, take a checkpoint, and load a checkpoint. The execute batch function exec :

S × b→ 〈S,R〉 is a function from an application state and a batch of requests that

transitions the application to a new state and produces a set with one response per

request in the batch. The take checkpoint function takeCP : S → C generates a

checkpoint that describes a valid application state and the load checkpoint function

loadCP : S×C → S sets the application state to the state described by the specified

checkpoint56.

In a break from our normal pattern, we specify the application liveness prop-

erties first:

APPL1 exec(S, b) returns a set of responses Rb.

APPL2 takeCP (S) returns a checkpoint C.

APPL3 loadCP (S, C) returns.

5Note that exec, takeCP , and loadCP are not functions in the strictly mathematical sense.
They correspond instead to functions in a programming API, as such there is no guarantee that
exec will produce the same output each time it is provided with a specified input.

6Note that exec and loadCP don’t return an application state S, but rather transition the
application to be in the specified state

60

In short, the liveness properties correspond to providing a terminating implementa-

tion of the execute, take checkpoint, and load checkpoint functions.

The required application safety properties are more interesting as they ag-

gressively restrict the behavior of the application:

APPS1 Only requests contained in batches received from the library are executed.

APPS2 If exec(SH, b) = 〈SH:b,Rb〉 and exec(SH, b) = 〈S ′H:b,R′b〉 then SH:b = S ′H:b and

Rb = R′b

APPS3 If takeCP (SH) = CH and takeCP (SH) = C′H then CH = C′H

APPS4 ∀S : loadCP (S, takeCP (SH)) = SH

APPS1 ensures that the application does not execute random requests. APPS2 en-

sures that the application executes batches deterministically. Deterministic batch

execution is (a) useful when running multiple copies of the application and (b) vital

because the UpRight library relies on execution replay to tolerate transient crashes.

Note that deterministic batch execution requires that the application, when given

the same sequence of batches from a specified starting state, (a) reaches the same

final application state and (b) generates the same set of responses. APPS3 ensures

that checkpoints generated by the application are deterministic based on when in

the execution sequence take checkpoint is called. APPS4 ensures that after loading a

checkpoint, the application is in the same state as when take checkpoint was called.

While these properties are intuitive, they are not intrinsic to every applica-

tion. APPS2 for example, is violated by any application that puts a system time-stamp

on every response it generates as rolling back the application state and re-executing

requests would result in a different set of time-stamps on the generated responses.

APPS3-4 are violated by the checkpoints generated by replicas in the ZooKeeper dis-

tributed coordination service [108]. ZooKeeper replicas generate checkpoints at time

t by asynchronously recording an application snapshot to stable storage and logging

all requests processed between time t and when the snapshot is completed. The

resulting checkpoint is loaded through a two-step process of first loading the snap-

shot and then replaying the log of requests7. This checkpoint procedure ensures

a pair of weaker properties than we target. Specifically, ZooKeeper ensures that

7ZooKeeper requests are idempotent.

61

takeCP (SH) = CK and ∀S′ : loadCP (S ′, takeCP (SH)) = SJ where H is a prefix of

both K and J .

4.3 Looking forward

This chapter lays the framework for the design of the UpRight library and the

expectations we place on the library and replicated applications. The chapters that

follow expand on this key points made in this chapter and the interplay between the

goals laid out in this chapter and the design and use of the UpRight library.

Chapter 5 describes the stage level architecture in detail. We focus the

discussion on the interaction between correct stages and the properties that each

stage must uphold.

Chapter 6 describes the replication of each stage. We focus the discussion

on how we provide replicated instantiations of the stages that fulfill the properties

defined in Chapter 5 in a robust UpRight fault tolerant manner.

Chapter 7 describes our experiences with modifying the ZooKeeper dis-

tributed coordination service [108] and Hadoop Distributed File System [43] to be

compatible with the UpRight library. Our primary interest in Chapter 7 is evalu-

ating the complexity of adapting an existing application to be compatible with the

UpRight library.

Future work remains on expanding on the techniques employed by Kotla et

al. [50] to general applications or developing novel approaches to achieving deter-

ministic parallel execution.

62

Chapter 5

UpRight Stages

This chapter treats each stage of the UpRight architecture as a unit, ignoring internal

replication details. In practice each stage is implemented by a set of nodes, but to

the extent possible we abstract away that detail in this chapter. In particular, the

replication we discuss in Chapter 6 will mask individual node crash, omission, and

commission failures in the three stages and allows us to treat the stages as abstract

correct entities in the current discussion. Our goal in this chapter is to fully describe

the messages exchanged between stages1 and the properties that each stage provides.

In the context of this chapter we differentiate between correct and idealized

stage. An idealized stage follows its specification faithfully and is not limited by

practical constraints such as limited memory or power outages. In contrast, a correct

node follows its specification faithfully, but has limited memory and is subject to

temporary power outages. Even though the replication within each stage masks

failures of individual nodes and provides the abstraction of a correct stage, there

are multiple challenges that we must address in the stage-level design: (1) clients

can be faulty, (2) the network may not be reliable, (3) network resources are limited,

(4) node (and by extension stage) storage resources are limited, and (5) an entire

stage may transiently crash (i.e. temporary power failure).

First, clients can fail. While we can rely on replication to ensure that a

stage is correct, clients cannot be replicated and many systems would not trust

1When discussing the stage-level protocol we refer to a single message. The stage replication
discussed in Chapter 6 requires most messages to be sent to every node in the next stage. Receiving
messages from a replicated stage generally requires the recipient to gather a quorum of matching
messages.

63

clients to be correct even if client replication were possible. There are two distinct

challenges associated with handling client failures: we must ensure that requests

issued by correct clients are processed by the system and we must ensure that faulty

clients are unable to corrupt the system state or prevent correct clients’ requests

from being processed. Our high-level solution is to specify a contract for clients to

follow—requests issued by a client that fulfills its part of the contract are eventually

executed while no guarantees are provided to clients that violate the contract.

Second, lossy and asynchronous networks can lose and arbitrarily delay mes-

sages. Messages can be lost between any pair of stages: a client request may not

reach the authentication stage, an authenticated request may not reach a order

stage, an ordered request may not reach the execution stage, and a result may not

reach the client. Thus, our second challenge is to ensure that the system is safe and

live despite the loss or delayed delivery of various messages. It is well known that it

is impossible to achieve safe and live operation in the presence of an asynchronous

network with failures [35]; we consequently target liveness only during sufficiently

long synchronous intervals. Our high-level solution is to ensure that each stage

caches relevant messages in transient memory for retransmission as needed. Note

that retransmission can be caused by a push, i.e., the client retransmits a request if

it does not receive a timely response, or a pull, i.e., the execution stage requests the

retransmission of ordered batch i if it receives batch i+ 1 first.

Third, network bandwidth is a limited resource. There is a limit to the

number of bytes that can be exchanged between nodes. This limit becomes especially

important when we consider one of the requirements of the replicated order stage:

in order to order a request, every order node must have a copy of the request. Thus,

our third challenge is to be economical in our use of network resources and avoid

sending unnecessary information between stages or the nodes ins a given stage. Our

high-level solution is to order cryptographic hashes of requests hashes and store

the request bodies at the authentication stage. The key observation is that request

bodies can skip the order stage entirely and go straight to the execution stage.

Fourth, nodes have finite memory. The nodes in each stage cannot maintain

the arbitrary number of messages that they may be required to retransmit for mes-

sages that are lost in transmission. Thus, our fourth challenge is to ensure that each

stage garbage collects messages without impeding the system’s ability to make safe

and consistent progress (e.g., by discarding a message that may still be needed by

64

another stage). Our high-level solution is to take order and execution checkpoints

at pre-determined intervals and garbage collect messages that are made obsolete by

recent checkpoints. Efficient checkpoint generation and garbage collection requires

us to pay careful attention to the state stored, the timing of when checkpoints are

taken, and when stored state can be garbage collected at each stage.

Fifth, even though replication can mask failure of some subsets of nodes

(i.e. ensure liveness despite u failures and safety despite r commission failures),

the nodes in a stage can transiently crash at arbitrary times (e.g. due to power

failure). When a node crashes it loses the contents of transient memory, but storing

data in persistent memory that survives transient failures is an expensive operation

that we would like to avoid when possible. Avoiding frequent access to persistent

memory is especially important at the execution stage, which is colocated with an

application that may rely heavily on persistent memory access as part of processing

requests. Thus, our final challenge is to ensure that sufficient state is stored in

persistent memory to allow the system to efficiently resume operation following a

transient crash of individual nodes or all nodes in a stage while at the same time

limiting the extent to which persistent memory becomes a performance bottleneck.

Our high-level solution is to store in persistent memory (1) every request sent by

the authentication and order stages and (2) order and execution checkpoints. This

solution provides sufficient causal logging [5] to ensure that no information is lost

due to catastrophic power failure while minimizing persistent memory contention at

the execution stage.

The rest of this chapter is organized as follows. Section 5.1 presents a sim-

plified end-to-end protocol across stages targeted at asynchronous networks and

correct stages. In the context of this discussion we address the challenges associated

with faulty clients and an unreliable asynchronous network; we do not consider the

limitations of finite resources or transient crashes. Section 5.2 describes our basic

approach for handling network bandwidth limitations. Section 5.3 describes our ap-

proach to handling the challenges of finite memory resources and transient crashes.

Section 5.4 compiles the full set of safety and liveness properties for each stage into

a collection of tables for easy reference. Section 5.5 describes performance opti-

mizations supported by the UpRight prototype. Section 5.6 establishes notational

conventions that we rely on in Chapter 6 and Appendix A. Section 5.7 contains

extensive pseudo-code and description for each stage.

65

Request

Valid
Request

Ordered
Request

Response

OrderClient

Authentication

Execution

Figure 5.1: Message flow between idealized stages in the UpRight architecture.

5.1 Basic stage interactions

We present a simplified version of the interactions between stages intended to provide

a solid intuition for our goals at each stage and for how the stages interact with clients

and each other. Our initial description focuses on the basic properties provided by

each stage and on how the stages combine to provide the end-to-end properties

defined in Section 4.2.1. In this initial description, we describe the interactions

between idealized stages that have infinite memory, are not subject to transient

failures, and always follow their specification faithfully; we allow for an unreliable

asynchronous network and do not assume that the network or clients are correct.

The communication between idealized stages is shown in Figure 5.1.

We address the challenges of a faulty network and faulty clients in the ex-

pected ways. We rely on clients to retransmit requests until they receive a response,

we ensure that all executed requests are executed safely, but we only promise that

requests issued by correct clients will be executed. We do not promise anything to

faulty clients.

66

5.1.1 Client properties

Clients issue requests and accept responses to those requests. As clients cannot be

assumed correct, we specify the expected behavior of correct clients—i.e. their side

of the contract. A correct client c upholds a pair of safety properties:

CS1 Each request issued by client c is assigned a unique request identifier nc starting

with 1 and increasing with each subsequent request.

CS2 Client c operates in a closed loop: it does not issue request nc > 1 unless it

has received a response to request nc − 1.

Clients also uphold a single liveness property:

CL1 Client c resends request nc until it receives a response.

Note that we explicitly consider requests to be different if they are issued by

different clients or issued by the same client but with different request identifiers.

Additionally, we implicitly assume that requests issued by client c depend on each

other: nc + 1 depends on nc and so forth.

Clients view the service as a black box. If client c upholds CS1-2 and CL1 then

it eventually receives a response to every request that it issues. If c fails to uphold

any of the properties then it may or may not receive a response.

5.1.2 Authentication properties

The authentication stage validates client requests and sends authenticated copies of

those requests to the order stage.

The authentication stage validates a request op with request identifier nc

from client c if (a) the request is verifiably issued by client c, (b) it has not received

any request n′c > nc from client c, and (d) it has not received a request op′ 6= op

from client c with request identifier nc. We say that a request is authenticated

when the authentication stage creates an authenticated request message containing

the request and its associated authentication credentials. A correct verifier2 a that

receives an authenticated request message directly from the authentication stage

can verify the authenticity of the request based on the authentication credentials.

2A verifier is any node tasked with verifying the authenticity of a received message. In this
context, it refers to a node that receives a message from the authentication stage.

67

We say that an authenticated request message m is one-step transferable if, when

a provides m received from the authentication stage to verifier b both a and b

make the same determination about the authenticity of the request. Note that if

b subsequently passes m to a third verifier c, one-step transferability says nothing

about the consistency between the conclusions drawn by verifiers b and c.

AS1 Only requests issued by authorized clients are authenticated and every au-

thenticated request is one-step transferable.

The authentication stage also provides a simple liveness property:

AL1 If the authentication stage receives a request nc issued by correct client c, then

an authenticated request message containing request n′c ≥ nc is sent to the

order stage.

AL1 implies a potentially unexpected handling of retransmitted client requests: if

the authentication stage has authenticated request nc from client c and subsequently

receives request n′c < nc from c, then it resends authenticated request nc to the order

stage. This behavior converts “old” requests to the most recent request processed

for a specific client and does not impact correct clients that issue requests in a

closed loop. The one-step transferable component of AS1 simplifies the design of the

replicated order stage by circumventing challenges associated with handling the Big

MAC attack discussed in Chapter 3.

5.1.3 Order properties

The order stage receives valid requests from the authentication stage, places them

into a batch, and assigns an execution order to the batches. The order stage places

each batch into a next-batch message which is sent to the execution stage. The

order stage provides the following safety properties:

OS1 Only client requests authenticated by the authentication stage are placed into

batches, and request nc issued by client c is placed in at most one batch.

OS2 Batches contain one or more requests and are assigned monotonically in-

creasing batch identifiers no starting with 1 and increasing by 1 with each

subsequent batch. For batches no and n′o with associated times t and t′,

no > n′o → t > t′.

68

OS3 If request nc > 1 issued by client c is in batch no, then request nc − 1 issued

by client c is in batch n′o < no.

Note that the order stage enforces CS2; the order stage orders request nc for client c

only if request nc− 1 has already been ordered. Hence, requests from a faulty client

that does not uphold CS2 are not processed.

The liveness properties ensured by the order stage are straightforward:

OL1 If the order stage receives unordered authenticated request nc issued by correct

client c, then the order stage places the request in batch no and eventually

sends a next-batch message containing no to the execution stage.

OL2 If the order stage receives authenticated request nc from client c that is already

in batch no, then it instructs the execution stage to retransmit a response to

request n′c from client c in batch n′o where n′c ≥ nc and n′o ≥ no by sending a

retransmission message.

OL3 If the execution stage requests all batches after ne and the order stage has

ordered batches through no > ne, then the order stage resends all ordered

batches from ne + 1 through no inclusive.

During normal operation, the order stage receives each authenticated client request

once, places the request in a batch, and sends the batch to the execution stage for

execution.

An unreliable asynchronous network can drop messages arbitrarily; when

that occurs, some form of retransmission is necessary. Dropped messages and re-

transmissions impact the order stage in two ways.

First, if client c does not receive a response to request nc, then it retransmits

the request until it receives a response. This retransmission, in conjunction with the

authentication stage, can result in the order stage receiving authenticated request

nc multiple times. When the order stage receives from c a request nc that has

already been ordered, it instructs the execution stage to retransmit the response

to that request—if the order stage has ordered a subsequent request n′c > nc from

c then it requests retransmission of the response to request n′c instead. Note that

correct clients operate in a closed loop and are consequently not impacted by the

retransmission of a later request.

69

Second, if the execution stage misses an ordered batch (i.e. receives batch no

but not batch no−1) then it requests the missing batches from the order stage. The

order stage responds to the execution stage with the collection of missing batches.

5.1.4 Execution properties

The execution stage delivers batches to the application in the order specified by

the order stage. Each batch is delivered to the application exactly once, and the

responses provided by the application after executing the contained requests are

cached by the execution stage for potential future retransmission.

We say that the execution stage is in state no if it has executed every batch

with batch identifier at most no. The execution stage transitions from state no to

state no + 1 when it executes batch no + 1.

We assume that the application executes a batch of requests instantaneously.

This assumption simplifies the discussion by masking additional complexity that can

be accounted for through engineering the execution stage and application. It does

not change the conceptual properties or relationship between the execution stage

and the rest of the system.

The execution stage provides three safety properties.

ES1 Batch no is delivered to the application only if the last batch delivered to the

application is no − 1.

ES2 Only ordered batches are delivered to the application

ES3 Only responses generated by the application are cached or sent to clients.

We note that ES1 and ES2 are closely related but distinct properties. ES1 ensures that

ordered batches are delivered to the application in the specified order. ES2 ensures

that only ordered batches are delivered to the application, ES2 specifically prevents

arbitrary requests that are not included in an ordered batch from being delivered

to the application.

Intuitively, the execution stage ensures that every ordered batch is executed.

To achieve that goal, we rely on the following liveness properties:

EL1 If the execution stage receives ordered batch no and the last batch it delivered

to the application is no − 1, then the execution stage delivers batch no to the

application.

70

EL2 If the execution stage receives a response from the application, then it stores

the response for retransmission and sends the response to the client that issued

the corresponding request.

EL3 If the execution stage receives a retransmission instruction for request nc from c

in batch no and the last batch executed by the execution stage is ne > no, then

the execution stage resends the response to the most recent request n′c ≥ nc

executed for client c.

EL4 If the execution stage receives a retransmission instruction for request nc from

client c in batch no and the last batch executed by the execution stage is

ne < no, then the execution stage informs the order stage that it has missed

the batches since ne.

Note that the execution stage notifies the order stage that it has missed a

collection of ordered batches only after receipt of a retransmission request and not

when it receives ordered batch messages out of order. This counter-intuitive decision

is driven by how we handle limited resources and will be discussed in more detail in

Section 5.3.

5.1.5 Putting the stages together

Given the stage properties identified above, demonstrating that the combination of

stages maintains the desired end-to-end properties is straightforward. Recall the

properties that the library is expected to uphold as defined in Section 4.2.1:

LS1 Only responses generated by the application are delivered to non-faulty users.

LS2 Only non-empty batches are delivered to the application.

LS3 Batch no is only delivered to the application if the previously delivered batch

is no − 1.

LS4 Request nc issued via client c is placed in at most one batch.

LS5 If requests nc and n′c issued via client c are in batches no and n′o respectively,

then nc < n′c iff no < n′o.

71

LS6 Only requests issued to an authorized client are placed in a batch3.

LS7 Given batches no and n′o and associated times t and t′, no < n′o → t < t′.

LL1 Any request issued via a correct client is eventually delivered to the applica-

tion.

LL2 Any application-produced response to a request issued via correct client c is

eventually provided to c and delivered to the user.

Note that the two liveness properties apply only to requests issued via correct clients.

Theorem 4. If the authentication, order, and execution stages uphold their respec-

tive safety properties then LS1-7 hold.

Proof. LS1: Follows from ES3.

LS2: Follows from ES2.

LS3: Follows from ES1.

LS4: Follows from OS1.

LS5: Follows from OS3.

LS6: Follows from OS1 and AS1.

LS7: Follows from OS2.

Lemma 1. Given eventual synchrony and correct authentication, order, and execu-

tion stages LL1 holds.

Proof. It follows from CL1 that correct client c issues request nc until it receives a

response. There are two cases to consider: (1) the client receives a response, (2) the

client does not receive a response.

Case 1: The client c has received a response. It follows from ES3 that only re-

sponses generated by the application are sent to c. It follows from APPS1 that only

requests in batches delivered to the application by the execution stage are exe-

cuted. .

3A client is “authorized” if it has appropriate credentials to interact with the servers. It is the
responsibility of the sysadmin to secure access to authorized clients.

72

Case 2: The client has not received a response. It follows from CL1 that the client

will issue request nc arbitrarily often. It follows from eventual synchrony that the

request is received by the authentication stage arbitrarily often.

It follows from AL1 that some request n′c ≥ nc from c is authenticated arbi-

trarily often and from CS2 that that request is nc. It follows from eventual synchrony

that the request is received by the order stage arbitrarily often.

Request nc will be placed in a batch and a retransmission instruction for

request nc is sent to the execution stage arbitrarily often. The first time request nc

is received by the order stage, it follows from CS1 that OS1 is satisfied. It follows from

OL1 that nc is ordered in batch no and batch no is sent to the execution stage. Every

subsequent time that request nc is received it follows from OL2 that a retransmission

instruction for request n′c ≥ nc is sent to the execution stage. It follows from CS2

that n′c = nc. It follows from eventual synchrony that the retransmission instruction

is received by the order stage arbitrarily often.

Upon receipt of a retransmission instruction by the execution stage there are

two possibilities to consider: (1) the batch containing the request has been delivered

to the application or (2) the batch has not been delivered. In the first scenario we

are done. Consider the second scenario. It follows from EL4 that the execution stage

sends the last executed notification to the order stage arbitrarily often. It then

follows from OL3 that the order stage sends the missing batches until they are no

longer missing or arbitrarily often. It follows from eventual synchrony and induction

that all batch messages will eventually be received by the execution stage and that

the batches are subsequently delivered to the application.

Lemma 2. Given eventual synchrony and correct authentication, order, and execu-

tion stages LL2 holds.

Proof. It follows from EL1 that the response is cached and sent to the client. If it is

received, then we are done.

Otherwise, it follows from CL1 that a correct client reissues its request until

it receives a response. It follows from AL1 that the request is authenticated and sent

to the order stage. It follows from APPS1 that only requests contained in batches are

executed and from ES2 that only ordered batches are delivered to the application. It

then follows that nc has already been ordered so by OL2 a retransmission message is

sent. It then follows from EL4 that the response is retransmitted to the client. The

73

above happens arbitrarily often and by eventual synchrony the response is eventually

received by the client.

5.2 Network efficiency

When network resources are limited it is important to limit the number of bytes

sent across the network. Our basic description of the stage-level protocol has the

authentication stage sending authenticated requests to the order stage and the order

stage sending those requests to the execution stage. When we peek beneath the

covers at the implementation details of the order stage, we see that every order node

must receive and maintain a copy of every request that is ordered. We observe that

the order stage can add requests to batches and order batches without processing

the full requests—a cryptographic hash is sufficient to identify uniquely any ordered

request. We consequently modify the authentication stage to cache authenticated

requests and send only authenticated request hashes to the authentication stage for

ordering. The execution stage then fetches the bodies for all ordered requests prior

to executing a batch. The changes to basic operation are depicted in Figure 5.2.

We say a request is fetchable if the request body is stored at the authentica-

tion stage. Accommodating this change to the protocol requires us to introduce an

additional safety and liveness property at the authentication stage.

AS2 Every authenticated request is fetchable.

AL2 If the authentication stage receives a fetch message from the execution stage

for a authenticated request nc issued by client c, then the authentication stage

responds with the request body.

This change also requires us to modify OS1 to ensure that only requests that are

both authenticated and authenticated are ordered4.

OS1 Only fetchable client requests authenticated by the authentication stage are

placed into batches, and request nc issued by client c is placed in at most one

batch.

4This modification is subtle and its necessity is not immediately apparent. We will revisit this
point in section 6.4.

74

(1)
Request

(2)
Valid

Request

(3)
Ordered
Batch

(4c)
Response

OrderClient

Authentication

Execution

(4a)
Fetch
Body

(4b)
Body

Figure 5.2: Messages exchanged between stages. (1) Clients send requests to the
authentication stage. (2) The authentication stage sends validated request hashes
to the order stage. (3) The order stage sends ordered batches to the execution stage.
(4a, 4b) The execution stage fetches request bodies from the authentication stage.
(4c) The execution stage sends responses to the clients. Note that the messages
travel through the system in a clockwise fashion.

75

Additionally, we expand the liveness property EL1 into two components that

target fetching request bodies and executing batches separately.

EL1a If the execution stage receives ordered batch no and the last batch it has deliv-

ered to the application is n′o < no, then it fetches the request bodies for requests

in batch no from the authentication stage.

EL1b If the execution stage has all of the request bodies for batch no and the last

batch it delivered to the application is no−1, then the execution stage delivers

batch no to the application.

Note that EL1 can be acquired by combining the non-italicized portions of EL1a and

EL1b.

5.3 Garbage collection and transient crashes

Of the five challenges identified at the beginning of this chapter, two remain unad-

dressed: (1) stages have finite memory and (2) stages can exhibit transient crashes.

The mechanisms used to address these challenges are closely intertwined.

Individual machines have finite memory. The retransmission mechanisms

used to mask asynchronous network behaviors can require the authentication and

order stages to cache for retransmission an arbitrary number of requests and or-

dered batches respectively. We address this problem through the combination of

(a) checkpoint generation and garbage collection and (b) stage interlocking. Check-

point generation and garbage collection allow us to periodically eliminate a prefix of

the state at each stage, and stage interlocking allows us to prevent one stage from

getting too far ahead of, or behind, the others.

Figure 5.3 depicts the state stored by each stage and how the pieces interact;

the rest of this section is devoted to a detailed description of the basic approach

highlighted here. The order stage takes an order stage checkpoint every CP interval

batches. We ensure that the order stage always maintains at least one checkpoint

of its state and a log of between CP interval and 2 × CP interval batches ordered since

that checkpoint was generated. We ensure that the execution stage maintains an

execution stage checkpoint that corresponds to each checkpoint stored at the order

stage and that the authentication stage has the bodies of all requests ordered in

subsequent batches. We coordinate garbage collection at the three stages to ensure

76

that the authentication stage only garbage collects request bodies when they are

no longer needed by the execution stage, and the execution stage garbage collects

checkpoints only when they are no longer referenced by the order stage. At a high

level, these steps ensure that following a transient crash of one or more stages we

can resume operation as if nothing went wrong.

We differentiate between transient and persistent memory. The content of

transient memory may be lost during a transient crash; the content of persistent

memory persists through a transient crash. We ensure that stages survive transient

crashes by recording the checkpoints and associated state in persistent memory.

The order stage stores order checkpoints and the log of ordered batches in persistent

memory, the execution stage stores execution checkpoints in persistent memory, and

the authentication stage stores authenticated request bodies in persistent memory.

In the rest of this section we present a stage-by-stage description of the

state required by each stage, the construction of checkpoints, and the timing of

accesses to persistent memory. The details are tedious, but the specific design choices

directly impact the set of properties that each stage must maintain and consequently

have significant impact on the stage replication discussed in Chapter 6. Readers

not interested in the discussion may wish to read only the “Additional properties”

sections in the following text.

5.3.1 Order stage

State. The basic operation described so far requires the order stage to maintain

(1) the log of ordered batches, (2) a table containing information (request and batch

identifiers) on the last request ordered for each client, and (3) the next batch iden-

tifier to be consumed. The log of ordered batches is required to support batch

retransmission required by a lossy network; the last ordered table is required to

support appropriate handling of retransmitted client requests; the next batch iden-

tifier is used to ensure that there are no gaps or repeats in the sequence of batch

identifiers.

The order stage maintains two additional pieces of information: a concise

description of the history of ordered batches and the current time. The batch

history is a required component of the design of our replicated order stage, discussed

in Section 6.2, and it is included in the current discussion for completeness only.

77

Authentication
Stage

Order
Stage

Execution
Stage

commandCache
(ordered request bodies)

cached
(ordered batches)

Order
Checkpoints

Execution
Checkpoints

pending
(Requests per client)

CPint < CPint

X % CPint = 0 X + CPint

Figure 5.3: Interactions between persistent state at each stage. The state maintained
by the other stages depends on the state maintained at the order stage. The order
stage maintains one or two checkpoints and between CP interval and 2×CP interval− 1
ordered batches. The authentication stage maintains every request referenced by
an ordered batch stored at the order stage and at most one pending request per
client. The execution stage maintains two checkpoints that correspond to order
stage checkpoints. Additional details on the contents of the order and execution
checkpoints can be found in Figure 5.4 and Figure 5.5 respectively.

78

The order stage maintains the official system time for the UpRight library and any

application replicated with the library. The time is included as part of each ordered

batch, and the order stage guarantees that time is monotonically increasing with

each batch. Including this time field in each ordered batch is an important part of

(a) tolerating transient crashes at the execution stage and (b) facilitating application

replication. We discuss the time field in more detail when discussing the execution

stage in Section 5.3.2.

We define an order stage checkpoint no to be a snapshot of the order stage

state taken when all batches n′o < no have been ordered and no batch n′′o ≥ no has

been ordered. An order stage checkpoint is depicted in Figure 5.4: it contains the

next batch identifier to be consumed, the last ordered table, the history and time

fields, and an execution checkpoint token taken at the same relative point in logical

time (i.e. after processing batch no−1 and before processing batch no). The execu-

tion checkpoint token is a concise representation (i.e., a hash) of an execution stage

checkpoint. When an order stage checkpoint is initially generated, the execution

checkpoint token is initially null; that field of the order checkpoint is filled in only

after the checkpoint is relayed from the execution stage. We say that an order stage

checkpoint is complete if it contains the execution checkpoint token and incomplete

otherwise.

Garbage collection and transient crash recovery. The order stage always

maintains a base checkpoint taken at nCP, where nCP mod CP interval = 0, a sec-

ondary checkpoint taken at nCP + CP interval, and a log of between CP interval and

2 × CP interval batches ordered since the base checkpoint. The base checkpoint and

log of ordered batches are stable, i.e. stored in persistent memory. The secondary

checkpoint may or may not be complete or stable. When the secondary checkpoint

becomes complete, it is stored in persistent memory and made stable; only complete

checkpoints are stable.

To bound state, the order stage does not order batch nCP + 2 × CP interval

unless the secondary checkpoint at nCP + CP interval is both stable and complete.

This restriction on ordering batch nCP + 2×CP interval ensures that the order stage is

responsible for caching at most 2 × CP interval batches, each containing at most one

request per client. When batch nCP + 2 × CP interval − 1 is ordered, three steps are

taken:

79

Client Request
ID

Execution
Checkpoint

Token

Next Batch
Identifier

History

Time

Batch
ID

lastOrdered

Figure 5.4: Order stage checkpoint.

80

1. A new secondary checkpoint at nCP + 2× CP interval is generated.

2. The old secondary checkpoint at nCP +CP interval becomes the new base check-

point.

3. The old base checkpoint at nCP and all batches with identifier no < nCP +

CP interval are garbage collected.

In our implementation, we facilitate garbage collection of persistent memory

by storing each stable checkpoint in its own file (checkpoint nCP is stored in the

file “order CP.i” where i = nCP
CP interval

mod 2) and each block of CP interval ordered

batches in a single file (batches no through no+CP interval−1 are appended to the file

“order log.i” where i = nCP
CP interval

mod 2). Note that each ordered batch is recorded

to the appropriate log file before it is sent to the execution stage. When checkpoint

nCP is garbage collected, the files “order CP.i” and “order log.i” are cleared.

The order stage recovers from a transient crash by reading the base check-

point, secondary checkpoint, and log of ordered batches from persistent memory. If

there is no secondary checkpoint stored in persistent memory, then the secondary

checkpoint is derived from the base checkpoint and the first CP interval ordered batches

in the ordered batch log.

Additional properties. The techniques described above entail an additional

safety property maintained by the order stage:

OS4 The order stage always maintains in persistent memory a stable checkpoint at

no, where no mod CP interval = 0, and CP interval ≤ i ≤ 2×CP interval subsequent

ordered batches.

The authentication and execution stages rely on this property to determine when it

is safe for them to garbage collect state.

Garbage collecting the log of ordered batches prevents the order stage from

resending arbitrarily old batches to the execution stage. We consequently modify

OL3 to require the order stage to resend only recent batches and add a new liveness

property that requires the order stage to send the execution checkpoint descriptor

if the execution stage is further behind5.

5These considerations will become more apparent when we discuss execution stage garbage
collection and transient crash recovery.

81

OL3 If the execution stage requests all batches after ne and the order stage has

ordered batches through no ≥ ne and ne + 1 ≥ nCP, then the order stage

resends all ordered batches from ne through no.

OL4 If the execution stage requests all batches after ne and the order stage has

ordered batches through no > ne and ne + 1 < nCP, then the order stage

instructs the execution stage to load execution checkpoint nCP.

5.3.2 Execution stage.

State. The execution stage maintains a replyCache consisting of the last response

sent to each client, the identifier ne of the next batch to be delivered to the appli-

cation, and a potentially empty set of request bodies for batches that have not yet

been delivered to the application. The application is a component of the execution

stage; the application state is consequently also part of the state of the execution

stage.

We define an execution stage checkpoint ne to be a snapshot of the execution

stage taken when all requests in batches n′e < ne have been executed by the appli-

cation and no request in any batch n′′e ≥ ne has been executed. An execution stage

checkpoint contains the replyCache, the batch identifier of the next unexecuted

batch, and a snapshot of the application state as shown in Figure 5.5.

Garbage collection and transient crash recovery. The execution stage gener-

ates a new execution stage checkpoint before delivering batch no mod CP interval = 0

to the application. After generating the checkpoint, the execution stage stores the

checkpoint to persistent memory and sends a token (i.e. a hash) that uniquely de-

scribes the checkpoint to the order stage. Execution checkpoint no is written to file

“exec CP.no.”

Following a transient crash, the execution stage does nothing until it receives

a message from the order stage. Because the execution stage starts off in a default

state with ne = 0, it is unlikely to be able to execute the first batch that it re-

ceives and will eventually receive a retransmission request. Following receipt of the

retransmission request, it notifies the order stage that it has last executed request

0, at which point the order stage instructs the execution stage to load a specific

checkpoint by passing the checkpoint token defined by the execution stage. The ex-

82

Client Reply

Application
Checkpoint

Next Batch
Identifier

replyCache

Figure 5.5: Execution stage checkpoint.

83

ecution stage reads the checkpoint from persistent memory, confirms that the bytes

it reads are consistent with the checkpoint token, and then resumes operation using

the freshly loaded checkpoint.

The execution stage garbage collects execution checkpoint ne when it re-

ceives an ordered batch with identifier no ≥ ne + 2 × CP interval. This garbage col-

lection is timed to ensure that the execution stage garbage collects a checkpoint

only after the order stage has garbage collected any references to that execution

checkpoint—ensuring that the order stage will not expect the execution stage to

load the checkpoint in the future.

Network efficiency. Note that we do not send the execution checkpoint, but

rather a token describing the checkpoint, to the order stage. Sending the token in

place of the full checkpoint reduces (a) network traffic and (b) state maintained at

the order stage. In Chapter 6 we discuss the implications of other designs, notably

storing the full checkpoint or nothing at all in the order stage checkpoint.

Additional properties. We add two new safety properties and a single new live-

ness property to the execution stage. The safety properties are straightforward.

First, the execution stage is required to maintain in persistent memory any check-

point that it may be instructed to load by the order stage. Second, we require

the execution stage to replay previously executed batches; the execution of a batch

following a checkpoint load must correspond to the execution of that batch that

preceded the checkpoint load. The additional liveness property is similarly straight-

forward: we require the execution stage to load a specified checkpoint on demand.

ES4 The execution stage maintains in persistent memory the execution checkpoint

referenced by the order-stage base checkpoint.

ES5 The execution stage provides deterministic and replayable execution of ordered

batches.

EL5 If the execution stage receives an instruction to load checkpoint ne from the

order stage, then it loads execution checkpoint ne.

Application implications. Note that the application property APPS2 is impor-

tant because the UpRight library relies on log-based rollback recovery [34] to recover

84

from transient crashes. Without the deterministic execution provided by APPS2 the

execution stage could produce different responses when re-executing the set of or-

dered batches after loading the old checkpoint.

We believe that deterministic execution may be unnecessary if the appli-

cation can provide fine-grained checkpoints and support checkpoint-based rollback

recovery [34]. Fine-grained application checkpoints would allow the execution stage

to generate a checkpoint after executing each batch—the system could then agree on

the results (responses generated and state reached) of processing each batch before

outputting the reponses to the clients. Note that supporting this form of operation

would require the library to agree on the result of executing each batch rather than

than the order of batches. We leave the exploration of application techniques for

efficient fine-grained checkpoints and architectural changes to support speculative

execution to future work.

5.3.3 Authentication stage

State. Compared to the order and execution stages, the state maintained by the

authentication stage is straightforward, consisting only of the requests that it has

authenticated. There are three different types of requests that the authentication

stage must store at all times: (1) any request that has been ordered since the current

order-stage base checkpoint, (2) any request that has been authenticated and not

yet ordered, and (3) the last request authenticated for each client. In most cases

the last request authenticated for a client c is either pending or ordered since the

base checkpoint; the exception to this rule occurs when a client has been inactive

for an extended period of time. The primary challenge in garbage collecting the

state of the authentication stage is connected to the maintenance of the second type

of requests—requests that have been authenticated but not yet ordered when it is

time to perform garbage collection.

The authentication stage maintains three tables in transient memory. The

first table, lastSent, is indexed by client identifier c and contains the last authen-

ticated request sent to the order stage on behalf of that client. The second table,

pending, contains up to one tuple 〈c, nc,op〉 per client and identifies the body of

any request authenticated but not yet ordered for client c. When the authentication

stage authenticates a client request, it adds the body to the pending table and the

85

authenticated request message sent to the order stage to the lastSent table. The

third table, commandCache, stores one tuple 〈c, nc,op, no〉 per request ordered since

the current order-stage base checkpoint. When the authentication stage learns that

request nc issued by client c is ordered in batch no, it moves the request body from

the pending table into the commandCache. The commandCache is implemented

as a set of three distinct tables commandCache{0,1,2}. Request bodies ordered in

batch no are stored in commandCachei where i = no
CP interval

mod 3.

Note that the authentication stage effectively maintains 3 checkpoint inter-

vals worth of requests, in contrast to the 2 checkpoint intervals worth of batches

maintained by the order stage. Our experience indicates that a slow execution

replica is more likely to successfully catch up following a transient crash when the

authentication stage caches 3, rather than 2, checkpoint intervals worth of requests.

This benefit results from a race condition between the replica successfully fetching

the appropriate execution stage checkpoint and the occurrence of the next garbage

collection.

Garbage collection and transient crash recovery. When the authentication

stage learns that batch no has been ordered, it can safely garbage collect any request

bodies ordered prior to batch no−CP interval
CP interval

. We take a very simple approach to

garbage collection. The authentication stage keeps track of the identifier no for the

maximal ordered batch that it has observed. The first time it learns that batch n′o

has been ordered, where n′o
CP interval

> no
CP interval

, it garbage collects commandCachei

where i = n′o
CP interval

mod 3.

In order to survive transient crashes, authenticated requests must be stored

in persistent memory. To that end, the first time a request nc from client c is authen-

ticated, it is stored to a persistent log of authenticated requests before the authen-

ticated request is sent to the order stage. Garbage collecting the log can be difficult

because there may be very little correlation between when a request is authenticated

and the ordered batch that it eventually appears in. We consequently maintain a

log of authenticated request bodies in a set of three distinct log files organized as

a circular buffer: “authentication log.{0,1,2}.” As requests are authenticated and

placed in the pending and lasSent tables, their bodies are recorded into the cur-

rently active log file “authentication log.i” where i = no
CP interval

mod 3 and no is the

maximal batch identifier that the authentication stage has observed. Note that this

86

log corresponds to the most recently updated commandCachei and not necessarily

the commandCache where the request will eventually be placed. The authentication

stage switches from “authentication log.i” to “authentication log.j” when it garbage

collects commandCachej . At that point, the authentication stage closes “authen-

tication log.i” and clears the contents of “authentication log.j.” It then dumps the

base sequence number of the current checkpoint interval (i.e. no
CP interval

× CP interval)

and the contents of the pending table to “authentication log.j”—ensuring that any

request placed in commandCachei is also present in “authentication log.j” . Af-

ter logging the pending table, the authentication stage resumes processing client

requests, recording request bodies to the log file as they are added to the pending

table.

Following a transient crash, the authentication stage reconstructs the pending,

commandCache, and lastSent tables from the log files. For each client c, the

logged request with maximal nc is recorded as the entry for pending[c] and a cor-

responding authenticated request message is placed in lastSent[nc]. If there is no

entry for a client, then lastSent[nc] is left empty. Every request body recorded in

file “authentication log.i” is added to commandCachei, with the exception of re-

quests stored in the pending table. Note that requests initially authenticated and

recorded in “authentication log.i” may be placed in a different commandCachej

when they are finally ordered. By recording the pending table to the beginning of

each log file, we ensure that any request that is ordered during the interval covered

by commandCachej is present in “authentication log.j.” Given a base sequence

number base recorded at the beginning of “authentication log.j,” the authentica-

tion stage does not garbage collect commandCachej until it after it learns that a

batch with identifier no ≥ base+ 3× CP interval has been ordered.

Additional properties. Garbage collecting outdated request bodies slightly mod-

ifies the set of requests that are fetchable by the execution stage:

AS2 Every authenticated request referenced by a batch ordered since the base check-

point at the order stage or not yet ordered is fetchable.

We also modify the primary liveness property to ensure increasing client

request identifiers or the retransmission of any pending requests.

AL1a If the authentication stage receives a request nc issued by correct client c and

87

there is no pending request n′′c < nc, then request n′c ≥ nc is authenticated and

sent to the order stage.

AL1b If the authentication stage receives a request nc issued by correct client c and

there is a pending request n′c, then request n′c is authenticated and sent to the

order stage.

We also modify two liveness properties at the execution stage to ensure that

the authentication stage eventually learns that requests have been ordered:

EL1a If the execution stage receives ordered batch no and the last batch it has

delivered to the application is n′o < no, then it fetches the relevant request

bodies from the authentication stage and notifies the authentication stage that

the contained requests have been ordered.

EL3 If the execution stage receives a retransmission instruction for request nc from c

in batch no and the last batch executed by the execution stage is ne > no, then

the execution stage resends the response to the most recent request n′c ≥ nc

executed for client c and notifies the authentication stage that n′c has been

ordered no later than batch ne.

Fetching a request body implicitly notifies the authentication stage that the request

has been ordered, we simply make that implicit knowledge explicit. Retransmission

requests received by the execution stage can be caused not only because the client

failed to receive a response, but also because the authentication stage did not receive

the notification that a pending request has been successfully ordered.

Rate limiting. Faulty clients can issue an arbitrary number of requests and inflate

the size of the pending request table. With the goals of robust fault tolerance

(Chapter 3) in mind, the authentication stage maintains at most one pending request

per client and authenticates at most one request per client per request identifier.

AS3 At most one request per identifier nc per authorized client c is authenticated.

AS4 When request nc from client c is authenticated, no request n′c > nc has been

authenticated and there is no pending request n′c < nc.

88

In short, we ensure that there is at most one outstanding request per client waiting

to be ordered. Note that we don’t require the authentication stage to increment

client request identifiers by one even though correct clients obey that restriction.

This decision is a nod to the implications of a replicated authentication stage and

the reality, discussed in Chapter 6, that client requests can be processed by the

system without being processed by every authentication replica.

5.3.4 Client

A client intended to survive transient crashes must store its most recent request

in persistent memory. If it does not store the request in persistent memory, then

it may not be able to resume operation following a transient crash because it may

be unable to recreate a request nc that was authenticated but not ordered—the

authentication stage will reject the request according to AS1.

CS3 Client c stores the most recently issued request in persistent memory.

While it is easy to imagine techniques where the client sends a special “I’m

starting over” message after a transient crash, the internal details of how the au-

thentication stage is replicated complicates matters. Specifically, it is possible for a

client request to reach only a subset of the authentication replicas before the client

suffers the transient crash. Because each authentication replica individually autho-

rizes at most one request per client c per request identifier nc, this state divergence

can prevent any subsequent requests issued by client c from being authenticated.

5.4 Full property list

In this section we consolidate the stage properties describe in Sections 5.1,5.2,and 5.3

into one location. These properties, and the pseudo-code descriptions in Appendix ??,

form the basis of the replicated stage implementations discussed in Chapter 6.

5.4.1 Client Properties

A correct client issues one request per request identifier, consumes request identifiers

sequentially, and resends each request until it receives a response. The complete set

of properties provided by a correct client follow:

89

CS1 Each request issued by client c is assigned a unique request identifier nc starting

with 1 and increasing with each subsequent request.

CS2 Client c operates in a closed loop: it does not issue request nc > 1 unless it

has received a response to request nc − 1.

CS3 Client c stores the most recently issued request in persistent memory.

CL1 Client c resends request nc until it receives a response.

5.4.2 Authentication stage properties

The authentication stage authenticates requests to the order stage and caches re-

quest bodies as long as they may be required by the execution stage. The authen-

tication stage ensures that only requests from authorized clients are authenticated.

The complete set of properties provided by the authentication stage follow:

AS1 Only requests issued by authorized clients are authenticated and every au-

thenticated request is one-step transferable.

AS2 Every authenticated request referenced by a batch ordered since the base

checkpoint at the order stage or not yet ordered is fetchable.

AS3 At most one request per identifier nc per authorized client c is authenticated.

AS4 When request nc from client c is authenticated, no request n′c > nc has been

authenticated and there is no pending request n′c < nc.

AL1a If the authentication stage receives a request nc issued by correct client c and

there is no pending request n′′c < nc, then request n′c ≥ nc is authenticated

and sent to the order stage.

AL1b If the authentication stage receives a request nc issued by correct client c and

there is a pending request n′c, then request n′c is authenticated and sent to the

order stage.

AL2 If the authentication stage receives a fetch message from the execution stage

for a authenticated request nc issued by client c, then the authentication stage

responds with the request body.

90

5.4.3 Order stage properties

The order stage places authenticated requests into batches and assigns an execution

order to batches. Each distinct request is placed in at most one batch; if it receives

a request multiple times then the order stage requests a retransmission of the result

rather than ordering the request for execution multiple times. The complete set of

properties provided by the order stage follows:

OS1 Only fetchable client requests authenticated by the authentication stage are

placed into batches, and request nc issued by client c is placed in at most one

batch.

OS2 Batches contain one or more requests and are assigned monotonically in-

creasing batch identifiers no starting with 1 and increasing by 1 with each

subsequent batch. For batches no and n′o with associated times t and t′,

no > n′o → t > t′.

OS3 If request nc > 1 issued by client c is in batch no, then request nc − 1 issued

by client c is in batch n′o < no.

OS4 Order stage always has stable checkpoint at no, where no%CP interval = 0, and

CP interval ≤ i ≤ 2× CP interval subsequent ordered batches.

OL1 If the order stage receives unordered authenticated request nc issued by correct

client c, then the order stage places the request in batch no and eventually

sends a next-batch message containing no to the execution stage.

OL2 If the order stage receives an authenticated request nc from client c that is

already in batch no, then it instructs the execution stage to retransmit a

response to request n′c from client c in batch n′o where n′c ≥ nc and n′o ≥ no.

OL3 If the execution stage requests all batches after ne and the order stage has

ordered batches through no > ne and ne + 1 ≥ nCP, then the order stage

resends all ordered batches from ne through no.

OL4 If the execution stage requests all batches after ne and the order stage has

ordered batches through no > ne and ne + 1 < nCP, then the order stage

instructs the execution stage to load execution checkpoint nCP.

91

5.4.4 Execution stage properties

The execution stage processes batches of requests in the order specified by the order

stage. For each processed request, it delivers the result to the client that issued the

request. The complete set of properties provided by the execution stage follows:

ES1 Batch no is only delivered to the application if the last batch delivered to the

application is no − 1.

ES2 Only ordered batches are delivered to the application.

ES3 Only responses generated by the application are cached or sent to clients.

ES4 Execution stage maintains the execution checkpoint referenced by the order

-stage base checkpoint in persistent memory.

ES5 The execution stage has deterministic and replayable execution of ordered

batches.

EL1a If the execution stage receives ordered batch no and the last batch it has de-

livered to the application is n′o < no, then it fetches the request bodies for

requests in batch no from the authentication stage and notifies the authenti-

cation stage that the contained requests have been ordered.

EL1b If the execution stage has all of the request bodies for batch no and the last

batch it delivered to the application is no−1, then the execution stage delivers

batch no to the application.

EL2 If the execution stage receives a response from the application, then it stores

the response for retransmission and sends the response to the responsible

client.

EL3 If the execution stage receives a retransmission instruction for request nc from c

in batch no and the last batch executed by the execution stage is ne > no, then

the execution stage resends the response to the most recent request n′c ≥ nc

executed for client c and notifies the authentication stage that n′c has been

ordered no later than batch ne.

92

EL4 If the execution stage receives a retransmission instruction for request nc from

client c in batch no and the last batch executed by the execution stage is

ne < no, then the execution stage informs the order stage that it has missed

the batches since ne.

EL5 If the execution stage receives an instruction to load checkpoint ne from the

order stage, then it loads execution checkpoint ne.

5.5 Supported optimizations

We support three operation paths in addition to the basic protocol operation de-

scribed in the previous sections: (a) request pre-fetching between the authentication

and execution stages, (b) read-only request execution, and (c) spontaneous server

generated replies.

Request prefetching. As a performance optimization, the UpRight library sup-

ports request pre-fetching between the authentication and execution stages. When

request pre-fetching is enabled, the authentication stage sends the request to the

execution stage when it sends the authenticated request hash to the order stage.

Request pre-fetching reduces the latency to process requests by ordering and dis-

tributing requests in parallel rather than sequentially.

Read only replies. As a performance optimization, the UpRight library supports

PBFT’s read-only optimization [18], in which a client sends read-only, side-effect-

free requests directly to the execution stage and the execution stage processes them

without ordering them in the global sequence of requests. If the client receives a

response, the client can use the reply; otherwise the request is concurrent with an

interfering operation, and the client must reissue the request via the normal path to

execute the request in the global sequence of requests. To support this optimization,

the client and execution stage must identify read only requests.

Small requests. As a performance operations, the UpRight library does not or-

der hashes of “small” requests (i.e. requests of less than 100B) and instead orders

the requests themselves. Small requests are placed directly into the verified request

93

messages sent to the order stage. When the execution stage receives a batch con-

taining a small request, the request can be executed directly without being fetched

from the authentication stage.

Spontaneous replies. Replication libraries are designed around an implicit as-

sumption that all client-server communication follows a simple pattern: clients issue

requests and servers generate an immediate response for each processed request. In

reality, not all interactions follow this pattern. Specifically, in some systems (a)

every client request may not elicit a response from the server or (b) the server can

push a response to a client without being prodded to do so by a specific request. In

the first case, it is straightforward to have the server send a null response back to

the client to discharge the obligations of the request-response pattern. The latter

case is more difficult, as it is difficult to force the client to issue a request for a

response it may not be expecting.

The UpRight library provides unreliable channels for push events. We posit

that most client-server systems that rely on push events already cope with the

“lost message” case (e.g., to handle the case when the TCP connection is lost and

some events occur before the connection to the server can be reestablished), so

existing application semantics are preserved. In our implementation, the execution

stage includes sequence numbers on push events, sends them in FIFO order, and

attempts to resend them until they are acknowledged, but can unilaterally garbage

collect any pending push events at any time. The client signals the (presumed

existing) application lost-message or lost-connection handler.

5.6 Messages and notation

Messages exchanged among the client and the three server stages are shown in

Table 5.1. We augment the message structure and fields with the identity of the

stage that sends and receives the message. We expand on the use and meaning

of each message in subsequent sections. Details on the byte definitions of these

messages can be found in Appendix A.2.

There is a significant amount of notation introduced in the message defini-

tions above. We explain that notation in Table 5.2 and the following text.

We use c to indicate a client. Each time client c issues a command op, it

94

Message Sent by Received by

〈client-req, 〈req-core, c, nc,op〉, c〉~µc,F client authentication
〈auth-req, 〈req-core, c, nc, hash(op)〉~µf,O , f〉~µf,O authentication order

〈command, no, c, nc,op, f〉µf,e authentication execution
〈toCache, c, nc,op, f〉~µf,E authentication execution

〈next-batch, v, no,H,B, t,bool, o〉~µo,E order execution
〈request-cp, no, o〉~µo,E order execution
〈retransmit, c, no, o〉~µo,E order execution
〈load-cp, Tcp, no, o〉µo,e order execution

〈batch-complete, v, no, C, e〉~µe,F execution authentication
〈fetch, no, c, nc,hash(op), e〉~µe,F execution authentication

〈cp-up, no, C, e〉~µe,F execution authentication
〈last-exec, ne, e〉~µe,O execution order
〈cp-token, no, Tcp, e〉~µe,O execution order
〈cp-loaded, no, e〉~µe,O execution order
〈reply, nc,R,H, e, 〉µe,c execution client

Table 5.1: Message specification for messages exchanged between stages. The sender
and recipients of the messages are indicated.

Notation Meaning
c Client identifier
op Client command
nc Client request identifier
R Result of processing client command
f Authentication replica identifier
F Authentication stage
o Order replica identifier
O Order stage
p “Primary” order replica
e Execution replica identifier
E Execution stage
B Batch of client requests
C List of client request identifiers
no Batch sequence number
H History of ordered batches
ne Sequence number of last executed batch
Tcp Execution stage checkpoint
µi,j MAC from replica i to replica j
~µo,E MAC authenticator from replica o to stage E
~µF,O Matrix signature from stage F to stage O

Table 5.2: Summary of symbols used and their meanings.

95

binds the command to a unique identifier nc.

We differentiate between stages and replicas. A stage refers to the collection

of replicas that work together to provide the authentication, order, and execution

abstractions. We use f to refer to individual authentication replicas and F to refer

to the authentication stage; o refers to a single order replica and O refers to the

order stage, additionally p refers to a designate order replica also called the primary;

e refers to a single execution replica and E refers to the execution stage.

The order stage collates multiple client requests into a batch B. A batch

consists of sets of tuples 〈c, nc,op〉 and is associated with a non-determinism unit t

consisting of the system time and a pseudo random seed6. Batches are assigned a

unique sequence number no by the order stage. The history H of batches, records

the sequence of ordered batches including the time and PRNG seed associated with

each batch. The history at batch no is computed as Hn = hash(Hn−1,Bn, tn). We

use the history tie successive batches together.

The execution stage reports a sequence number as ne and periodically re-

ports checkpoints to the order stage through a checkpoint token Tcp. The set C is

composed of tuples 〈c, nc〉 corresponding to the last request identifier nc executed

by the execution stage for each client c.

We generically use hash(B) to indicate a hash of B and µi,j to indicate a

MAC authenticated by replica i for verification by replica j. We use ~µo,E to indicate

a MAC authenticator generated by replica o for verification by every execution

replica and ~µF ,O to indicate a matrix signature [3] generated by the replicas in F
for authentication by every replica in O.

5.7 Stage level pseudo-code

In this section we provide pseudo-code for correct clients and the authentication,

order, and execution stages. This pseudo-code describes the basic operation for each

stage and provides the foundation that the replicated stages discussed in Chapter 6

will emulate. The pseudo-code presented in this chapter implements the stage and

client properties listed in Section 5.4 and is presented here for completeness and

concreteness. Most readers will want to skip this section.

6Note that we explicitly separate the time and pseudo-random seed from the batch as part of
the implementation. The time and pseudo-random seed are logically a part of the batch of requests.

96

1 nc := 0 \\ next reques t ID
2 out := ∅ \\ outstanding c l i e n t r eques t

4 issueCommand (op) :
5 i f out 6= ∅ then
6 block
7 out := 〈client-req, 〈req-core, c, nc, op〉, c〉~µc,F
8 s t o r e out to p e r s i s t e n t memory
9 send out to F

10 s t a r t t imer

12 on rcv m = 〈reply, nc,R,H, e, 〉µe,c :

13 i f m.nc = nc then
14 nc := nc + 1
15 d e l i v e r R to user
16 c l e a r t imer

18 on timeout :
19 i f out 6= ∅ then
20 send out to F

22 on recovery :
23 load out := 〈client-req, 〈req-core, c, nc, op〉, c〉~µc,F from p e r s i s t e n t memory

24 nc := out.nc
25 send out to F
26 s t a r t t imer

Figure 5.6: Pseudo-Code for the client

5.7.1 Client operation

Client operation is straightforward and simple. The client issues commands, but

before sending the command to the authentication stage it stores the client request

message containing the command and the current client request identifier nc to

persistent memory. It continues resending the client request message until it receives

a response from the authentication stage. Pseudo-code for the client is shown in

Figure 5.6.

In our implementation, clients use an adaptive retransmission policy. When

the system starts, the timeout is initially set to 500 ms. Each time a retransmission

is required, the timeout is doubled up to a maximum of 4000 ms. When a response

is received, the base timeout is set to the maximum of 500ms and the observed

latency for the previous request-response pair.

5.7.2 Authentication operation

The authentication stage is responsible for authenticating client requests and caching

the request bodies so that they can be fetched by the execution stage. Pseudo-code

for the authentication stage is shown in Figure 5.7. We describe the operation of the

authentication stage by detailing the state maintained and the processing of each of

97

the three messages it receives from other participants in the system.

Data structures. The authentication stage maintains three data structures: (1)

a set lastSent indexed by client identifiers that stores the last validated request

message 〈auth-req, 〈req-core, c, nc, hash(op)〉~µf,O , f〉~µf,O sent to the authentica-

tion stage for each client, (2) a set pending indexed by client identifiers that stores

any validated requests that have been validated but not yet ordered for each client,

and (3) a set commandCache indexed by a client identifier/client request identi-

fier tuple that stores bodies of validated requests and the batch identifier for the

batch containing that request. The lastSent set aids in processing retransmitted

requests. The pending and commandCache sets are fundamental in ensuring that

any authenticated request body is fetchable.

In addition to the three sets described above, the authentication stage main-

tains a batch identifier nf that represents the next batch identifier that the authen-

tication expects to see ordered.

Processing 〈client-req, 〈req-core, c, nc,op〉, c〉~µc,F . The primary task of the

authentication stage is authenticating client requests. When the authentication

stage receives a request from client c, it first checks if a request from c with request

identifier n′c ≥ nc has already been authenticated by examining the contents of

lastSent[c]. If request n′c ≥ nc has been authenticated, then the authentication

stage resends the authenticated request message stored in lastSent[c] to the order

stage.

If no request n′c ≥ nc has been authenticated for client c then the authenti-

cation stage confirms that the last request authenticated for c has been successfully

ordered by checking pending[c]. If pending[c] is not empty, the the authentication

stage discards the client request message, otherwise it authenticates the request

and generates a new authenticated request message 〈auth-req, 〈req-core, c,

nc, hash(op)〉~µf,O , f〉~µf,O . This message is stored to lastSent[c] while the tuple

〈c, nc,op〉 is stored to persistent memory and pending[c].

The authentication stage processes new requests for c as they are received

but limits retransmissions to occur at most once per 4000ms per client request.

98

1 lastSent[c] := ∅ \\ l a s t r eques t va l i da t ed f o r each
2 c l i e n t

4 pending[c] := ∅ \\ r eques t va l idated , but not known
5 to be ordered , per c l i e n t

7 commandCache{0,1,2} := ∅ \\ s e t o f ordeed

8 commands indexed by c l i e n t i d e n t i f i e r and
9 c l i e n t r eques t i d e n t i f i e r

11 base{0,1,2} := 0 \\ i n i t i a l batch i d e n t i f i e r f o r commandCachei

13 nf := 0 \\ expected next batch i d e n t i f i e r

14 i :=
nf

CP interval
mod 3 \\ l og f i l e index

16 on rcv m = 〈client-req, 〈req-core, c, nc, op〉, c〉~µc,F :

17 i f m.nc ≤ lastSent[c].nc then
18 send lastSent[c] to O
19 else i f pending[c] = ∅ then
20 lastSent[c] := 〈auth-req, 〈req-core, c, nc, hash(op)〉~µf,O , f〉~µf,O
21 pending[c] := 〈c, nc, op〉
22 append pending[c] to au th en t i c a t i on l o g . i
23 send lastSent[c] to O

25 on rcv m = 〈batch-complete, v, no, C, e〉~µe,F :

26 i f m.no ≥ nf then

27 i f
nf−1

CP interval
< m.no
CP interval

∧ no > basei + 3× CP interval then

28 i := m.no
CP interval

mod 3

29 garbage c o l l e c t commandCachei
30 c l e a r au th en t i c a t i on l o g . i

31 append m.no
CP interval

× CP interval to au th en t i c a t i on l o g . i

32 ∀c do
33 i f pending[c] 6= ∅ then
34 append pending[c] to the au th en t i c a t i o n l o g . i
35 nf := m.no + 1

36 ∀b = 〈c, nc〉 ∈ C do
37 i f b.nc ≥ lastSent[b.c].nc then
38 i f pending[b.c].nc = b.nc then
39 commandCachei.add(pending[b.c], no)
40 pending[b.c] := ∅

42 on rcv m = 〈fetch, no, c, nc, hash(op), e〉~µe,F :

43 k := m.no
CP interval

mod 3

44 op := commandCachek.get(c, nc).op
45 i f hash(op) = hash(op) then
46 send 〈command, no, c, nc, op, f〉µf,e to e

49 on recove r :
50 ∀j ∈ {0, 1, 2} do
51 basej := i n i t i a l sequence number from au th en t i c a t i o n l o g . j

52 ∀m = 〈c, nc, op〉 ∈ au th en t i c a t i on l o g . j do
53 i f pending[m.c] = ∅ ∨ pending[m.c].nc < m.nc then
54 commandCachej .add(pending[m.c])

55 pending[m.c] = m
56 lastSent[m.c] := 〈auth-req, 〈req-core,m.c,m.nc, hash(m.op)〉~µf,O , f〉~µf,O
57 else
58 commandCachej .add(m)

Figure 5.7: Pseudo-Code for the authentication stage to follow.

99

Processing 〈batch-complete, v, no, C, e〉~µe,F . The batch completed message is

used to notify the authentication stage that the requests in the specified batch have

been ordered. When the authentication stage receives a batch completed message

it checks to see if it is safe to perform any garbage collection, performs any relevant

garbage collection, and then performs the semantic processing of the message.

Upon receipt of the batch completed message, the authentication stage com-

pares the batch identifier no with the next batch it expects to be ordered nf . If

no < nf , then the authentication stage proceeds directly to the semantic processing

of the message. If no ≥ nf , then the authentication stage checks if a checkpoint inter-

val boundary occurred between nf −1 and no. If the authentication stage finds that

a checkpoint boundary has occurred between nf−1 and no, i.e.
nf−1

CP interval
< no

CP interval
,

then the authentication stage garbage collects the commandCache and transitions

to a new log file. Independent of whether garbage collection is appropriate or not,

the authentication stage updates nf to be no + 1.

The semantic processing of batch completed messages is straightforward. The

batch summary C contains one client id/request identifier tuple 〈c, nc〉 per request

in the ordered batch no. For each request nc from client c is ordered in batch no, the

authentication stage compares the identifier of the pending request for that client

with nc. If the pending request identifier pending[c].nc = nc then the authentication

stage moves the contents of pending[c] to commandCache[c, no] and associates the

request with batch identifier no. The pending request for c is then cleared as long

as pending[c].nc ≤ nc.
Note that the pseudo-code allows for gaps in the sequence of client request

identifiers even though correct clients do not introduce gaps in their sequence of

request identifiers. The abstract authentication stage should not allow for gaps in

the sequence of client request identifiers, yet the pseudo-code and our description of

the authentication stage does: why? The answer is simple: when the authentication

stage is implemented by multiple replicas, it is impossible to ensure that all replicas

receive every request without implementing protocol that requires more communi-

cation than is strictly necessary. Providing the mechanisms for handling gaps in the

client request identifier sequence does not impact the behavior of the abstract (un-

replicated) order stage in this discussion, but including those details now simplifies

our detailed discussion of replicating the authentication stage in Chapter 6.

100

Processing 〈fetch, no, c, nc,hash(op), e〉~µe,F . Processing the fetch body mes-

sage is straightforward. Upon receipt of a fetch body message, the authentication

stage pulls the request body stored in commandCache[c, nc. If the body is consis-

tent with the request hash hash(op) in the message, then the authentication stage

sends the body to the execution stage.

Recovery. Following a transient failure, the authentication stage populates the

pending and commandCache sets from the authentication log.* files. It populates

the lastSent set with authenticated request messages corresponding to the contents

of the pending set.

Additionally, following recovery from a transient crash, the authentication

stage explicitly delays garbage collection until it has observed ordered batches that

span at least 4 checkpoint intervals.

5.7.3 Order operation

The order stage is responsible for placing authenticated requests into batches and

assigning an execution order to the batches. Pseudo-code for the order stage is

shown in Figure 5.8. We describe the operation of the order stage by detailing the

state maintained and the processing of each of the four messages it receives from

other participants in the system.

Data structures. The lastOrdered set records the client request identifier nc of

the last request ordered for each client nc. The B is an incomplete batch of requests

that has not yet been communicated to the execution stage. The cached log contains

between CP interval and 2× CP interval consecutive ordered batches. The log is broken

up into two pieces; at any point in time either cached0 or cached1 contains CP interval

consecutive ordered batches.

In addition to the three sets described above, the order stage maintains

the identifier no of the next batch to be ordered, the identifier of the current base

checkpoint nCP, the current time (defined as the time associated with the previously

ordered batch), and a binary index ind.

Processing 〈auth-req, 〈req-core, c, nc,hash(op)〉~µf,O , f〉~µf,O . The primary task

of the order stage is creating batches of one or more authenticated request and as-

101

1 lastOrdered := ∅ \\ l a s t r eques t i d e n t i f i e r ordered f o r each c l i e n t
2 cached{0, 1} := ∅ \\ l og o f next batch messages indexed by order batch i d e n t i f i e r

3 B := ∅ \\batch o f r eque s t s
4 no := 0 \\batch i d e n t i f i e r o f the next batch to be ordered
5 nCP := 0 \\batch i d e n t i f i e r o f the base checkpoint
6 baseCP := ∅ \\ base checkpoint
7 secondaryCP := ∅ \\ secondary checkpoint
8 time := 0 \\ l a s t batch time
9 ind := 0 \\ cur rent log index

11 on rcv 〈auth-req, 〈req-core, c, nc, hash(op)〉~µf,O , f〉~µf,O :

12 i f lastOrdered[c] ≥ nc then
13 send 〈retransmit, c, no, o〉~µo,E to E
14 return
15 i f lastOrdered[c] + 1 = nc then
16 lastOrdered[c] := nc
17 B ∪=〈c, nc, hash(op)〉
18 i f B i s f u l l then
19 time = System.time
20 t := 〈time, random〉
21 cachedind[no] := 〈next-batch, v, no,H,B, t, bool, o〉~µo,E
22 append cachedind[no] to o rd e r l o g . ind

24 send cachedind[no] to E
25 no := no + 1
26 i f no mod CP interval = 0 then
27 i f 6 secondaryCP.isStable() then
28 wait f o r secondaryCP.isStable()
29 nCP := no − CP interval
30 ind := (ind + 1) mod 2
31 garbage c o l l e c t cachedind and baseCP
32 c l e a r o rd e r l o g . ind and order CP . ind
33 baseCP := secondaryCP
34 secondaryCP := take order checkpoint

36 on rcv m = 〈cp-token, v, no,Tcp〉e~µe,O :

37 i f m.no 6= secondaryCP.no then
38 d i s ca rd message and return
39 i f secondaryCP.hasExecCP () then
40 d i s ca rd message and return
41 secondaryCP.addExecCP (Tcp)

42 c l e a r order CP . ind
43 wr i t e secondaryCP to order CP . ind
44 secondaryCP.makeStable()

46 on rcv 〈last-exec, ne, e〉~µe,O :

47 i f nCP ≤ ne < no then
48 ∀i ∈ [ne, no)
49 send cached[i] to e
50 i f ne < nCP then
51 send 〈load-cp,Tcp, nCP, o〉µo,e to e

53 on recove r :
54 load cachedi from o rd e r l o g . i
55 load minimal checkponit in order CP .0 or order CP .1 as base checkpoint
56 repopu late remaining va r i a b l e s by r ep l ay ing contents o f cached0 and cached1

Figure 5.8: Pseudo-Code for the order stage to follow.

102

signing those batches an order. Upon receipt of a authenticated request, the order

stage first checks if the request has already been placed in a batch; if the request

has been placed in a batch, then the order stage instructs the execution stage to

retransmit the last response to the issuing client c and returns. If the request has

not yet been ordered and it corresponds to the next request in sequence for client c,

then it is added to the pending batch of requests B and the lastOrdered record for c

is updated to nc. If the batch B is sufficiently full, then the order stage sets the tuple

t to contain the system time to be used when executing the batch of requests and

a random PRNG seed. The order stage ensures that time increases with successive

ordered batches, i.e. if n′o > no then t′ > t. The batch B and tuple t are placed

in ordered batch message no. The next batch message is added to cachedind and

appended to ordered log.ind before it is sent to the execution stage. The next batch

identifier to be used is incremented by 1, no := no + 1 and the order stage waits for

the next request to arrive.

After incrementing the next batch identifier, the order stage checks to see if

it has reached a checkpoint interval. If no mod CP interval = 0, then the order stage

has arrived at a checkpoint interval and it is time for garbage collection. The order

stage waits for the checkpoint at no−CP interval to become stable, at which point it (1)

increments ind, (2) designates checkpoint no−CP interval as the new base checkpoint,

(3) garbage collects cachedind and the old base checkpoint, (4) clears files associated

with garbage collected state, and (5) generates a secondary checkpoint at no.

Processing 〈cp-token, v, no, Tcp〉e~µe,O. The order stage receives CP messages

from the execution stage that contain a token Tcp describing the execution checkpoint

at no. Upon receipt of the execution checkpoint token, the order stage adds Tcp to

the order checkpoint at no and stores the order checkpoint to order CP.ind.

Processing 〈last-exec, ne, e〉~µe,O . The execution stage sends last executed mes-

sages when it detects that the network is not behaving reliably due to dropping/de-

laying/reordering a subset of next batch messages. When the order stage receives a

last executed message, it responds with the ordered batches with identifiers in the

range ne to no exclusive.

If the last batch executed by the execution stage ne is smaller than the base

checkpoint maintained by the order stage baseCP , then the order stage instructs

103

the execution stage to load the execution checkpoint described by Tcp stored in

order checkpoint baseCP . This scenario seems far fetched, but can occur when the

execution stage suffers a transient crash. The scenario can also occur during normal

operation when the execution stage is replicated because the network (and faulty

order replicas) cannot be relied on to deliver messages to all order replicas in a

timely fashion.

Recovery. Following recovery from a transient crash, the order stage sets the base

checkpoint to be the earliest checkpoint contained in order CP.0 or order CP.1. The

order stage then reads the contents of order log.i into cachedi for i ∈ {0, 1} and

updates lastOrdered to be consistent with the logged next batches as described in

Section 5.3.1.

5.7.4 Execution operation

The execution stage is responsible for delivering batched requests to the application

in the linearized order specified by the order stage and relaying the response to each

request to the client that issued the request. Pseudo-code for the execution stage is

shown in Figure 5.9. We describe the operation of the execution stage by detailing

the state maintained and the processing of each of the four messages it receives from

other participants in the system.

Data structures. The execution stage maintains a replyCache of the most recent

response sent to each client. It also maintains a collection of sets of batchCommands.

Each set in batchCommands corresponds to the set of request bodies specified for

an ordered batch and is augmented by the designated system time and PRNG seed.

The execution stage additionally maintains an identifier ne of the next batch

to be executed.

Processing 〈next-batch, v, no,H,B, t,bool, o〉~µo,E . When the execution stage

receives an ordered batch, it first compares the batch identifier no with the identifier

ne of the next unexecuted batch in the sequence. If no < ne then the execution stage

discard the next batch message. If no ≥ ne, then it notifies the authentication stage

that the batch is complete and fetches the bodies of all requests contained in the

batch.

104

1 ne := 0 \\ i d e n t i f i e r o f the next batch to execute
2 replyCache := ∅ \\ l a s t r ep ly sent to each c l i e n t
3 batchCommands := ∅ \\ per batch s e t o f r eques t bodies , keyed by batch i d e n t i f i e r
4 state := ∅ \\ app l i c a t i on s t a t e

6 on rcv m = 〈next-batch, v, no,H,B, t, bool, o〉~µo,E :

7 i f m.no < ne then
8 d i s ca rd and return
9 else i f m.no ≥ ne then

10 batchCommands[m.no].setT imeAndPRNG(t)
11 batchCommands[m.no].setCommands(B)
12 C := ∅
13 ∀b = 〈c, nc, hash(op)〉 ∈ B do
14 batchCommands ∪=〈b.c, b.nc〉
15 send 〈batch-complete,m.v,m.no, C,m.e〉~µe,F to F
16 ∀〈c, nchash(op)〉 ∈ B
17 send 〈fetch, no, c, nc, hash(op), e〉~µe,F to F

19 on rcv 〈command, no, c, nc, op, f〉µf,e :

20 batchCommands[no].add(c, nc, op)
21 whi le batchCommands[ne].isComplete do
22 〈state, responses〉 := app.exec(state, C[ne])
23 batchCommands[ne] := ∅
24 ∀r = 〈c, nc,R〉 ∈ responses
25 replyCache[r.c] := 〈reply, r.nc, r.R,H, e, 〉µe,r.c
26 send replyCache[r.c] to r.c
27 ne := ne + 1
28 i f ne mod CP interval = 0 then
29 CPapp := app.takeCP (state)
30 CPexec := take execut ion checkpoint ne
31 CPexec.setAppCP (CPapp)
32 record CPexec to exec CP .ne
33 Tcp := hash(CPexec)

34 ∀i ≤ ne − 2× CP interval : ∃ exec CP .{ne} do
35 de l e t e exec CP .ne
36 send 〈cp-token, ne,Tcp, e〉~µe,O to O

38 on rcv 〈retransmit, c, no, o〉~µo,E :

39 i f no ≥ ne then
40 send 〈last-exec, ne, e〉~µe,O to O
41 i f no + 1 = ne then

42 send 〈cp-token, CP interval × (ne
CP interval

),Tcp, e〉~µe,O to O

43 i f no < ne then
44 C := ∅
45 ∀m = 〈reply, nc,R,H, e, 〉µe,c ∈ replyCache do

46 C ∪=〈m.c,m.nc〉
47 send 〈batch-complete, v, ne − 1, C, e〉~µe,F to F
48 send replyCache[c] to c

50 on rcv 〈load-cp,Tcp, no, o〉µo,e :

51 CPexec := load checkpoint from exec CP .no
52 i f hash(CPexec) = Tcp then

53 load CPexec
54 state := app.loadCP (CPexec.getAppCP ())
55 s e t ne = no

Figure 5.9: Pseudo-Code for the execution node to follow.

105

Note that notifying the authentication stage that the batch is complete and

fetching request bodies from the authentication stage are actions based on sending

two distinct messages. Using two distinct messages is unnecessary at the intra-stage

level of the protocol, but becomes an important concern when the authentication

and execution stages are replicated—while it is certainly sufficient for every au-

thentication replica to send every request body to every execution replica, it is not

necessary. Using the two distinct messages, one to notify the authentication stage

that requests have been ordered and the other to explicitly fetch the requests allows

us to limit the number of times a request body is sent over the network. We discuss

these concerns in more detail in Chapter 6.

Processing 〈command, no, c, nc,op, f〉µf,e. Upon receipt of a request body mes-

sage, the execution stage adds the body to the set of bodies it has gathered for batch

no. Batch no is complete if the execution stage has bodies for every request in the

batch. After adding a body to the batch, the execution stage checks if batch ne, the

first batch it has not yet executed, is complete. If batch ne is complete, then the

execution stage delivers the batch (including time and PRNG) to the application,

stores the responses in the replyCache and sends the responses to the appropriate

clients before incrementing ne by one. The authentication stage continues this pro-

cess until batch ne is not complete, either because the execution stage is missing

one or more request bodies or because the execution stage has not yet received the

ordered batch ne from the order stage.

Before executing batch ne%CP interval, the execution stage takes a checkpoint

of the execution state, records the checkpoint to persistent memory, and sends a

token Tcp describing the checkpoint to the order stage.

Processing 〈retransmit, c, no, o〉~µo,E . The retransmission message contains two

important fields, the client c that needs a response and the next batch identifier

no that will be used by the order stage. Upon receipt of a retransmission message,

the execution stage sends client c the last response stored in the replyCache for

c. Additionally, if no is at least the next unexecuted batch identifier ne then the

execution stage notifies the order stage that it has not yet executed any batch with

identifier n′o ≥ ne and waits for the appropriate batches to be retransmitted; if

no + 1 = ne, then the execution stage sends the execution stage checkpoint to the

106

order stage; if no < ne then the execution stage sends a special batch completed

message to the authentication stage. This message asserts that every request with

a response in the replyCache is ordered in batch ne − 1 (or earlier).

Processing 〈load-cp, Tcp, no, o〉µo,e. When the execution stage receives a load

checkpoint message, it loads the execution checkpoint described by Tcp. We imple-

ment the checkpoint token Tcp as a hash of the byte representation of the execution

checkpoint.

Recovery. The execution stage does not do anything to recover from transient

crashes. It simply begins operation as if it is starting from a fresh slate and waits

for messages form the order stage.

5.8 Conclusion

This chapter describes the interactions between correct stages in the UpRight library.

Because we assume the stages are correct, and not ideal, the interactions between

correct stages accounts for the possibility that clients or the network may be faulty,

the reality that network and storage resources are finite, and the threat of transient

power outages. The interactions between stages define the properties that each stage

must fulfill in order to reliably replicate an application. We discuss the challenges

of replicating each stage to sustain the requisite properties despite failures in the

next chapter.

The replicas of each stage must be deployed on separate machines to receive

the benefits of fault tolerant replication. Although the stages are described as logi-

cally separate entities, the replicas implementing each stage need not be physically

separate. For example, one machine can host an authentication and order replica

while another hosts an authentication and execution replica while yet another ma-

chine hosts only an execution replica.

107

Chapter 6

UpRight Replication

Chapter 5 describes the interactions between the stages of the UpRight architecture

assuming that each replicated stage provides the abstraction of a single correct

machine. In this chapter we focus on the intra-stage protocols required to discharge

the assumption that an individual stage is correct. We consider a replicated stage

to be correct if it is up—i.e. ensures the liveness properties specified in Chapter 5—

despite at most u arbitrary failures; and right—i.e. ensures the safety properties

specified in Chapter 5—despite at most r commission failures.

When discussing the replication of each stage, there are three key questions

that we must address. How do the replicas within a stage coordinate with each

other? How does replicating one stage impact the other stages? How many replicas

are required to implement each stage?

The answer to all three questions is closely tied to the challenge of solving

asynchronous consensus. The combination of stages described in Chapter 5 can

be viewed as a sequence of three consensus protocols. In the first instantiation of

consensus, clients propose requests, the authentication accepts and authenticates

the requests, and the order stage learns the authenticated requests. In the second

instantiation of consensus, the authentication stage proposes authenticated requests,

the order stage accepts and orders the requests in batches, and the execution stage

learns the ordered request batches. In the third instantiation of consensus, the order

stage proposes ordered batches of requests, the execution stage accepts the ordered

batches and executes them in order, and the clients learn the results of executing

requests in the sequence of ordered batches.

108

Stage Replication requirements

Authentication u+ max{u, r}+ r + 1

Order 2u+ r + 1

Execution u+ max{u, r}+ 1

Table 6.1: Summary of stage-level replication requirements.

We consequently base our design and implementation of each stage on consen-

sus protocols. Although consensus is a well known and extensively studied problem,

it is important to note that consensus protocols are not created equal. Both the

replication requirements and the acceptor-acceptor and proposer-acceptor-learner

communication are influenced by (a) the identity and number of proposers and

learners, (b) the desired number of communication steps between proposing and

learning, and (c) the semantics of the values being learned. While 2u + r + 1 (i.e.,

3f + 1 when f = u = r) replicas are generally sufficient to solve consensus, there

are interesting configurations (e.g., a single unfailing proposer) that require fewer

acceptors (u + r + 1). Similarly, there are semantics (e.g., a proposed value must

be one-step transferable and authenticated via MACs) that may require additional

acceptors (u+ 2r + 1) [32, 60, 56, 68].

Table 6.1 shows the replication requirements for the authentication, order,

and execution stages. The order stage requires the standard 2u + r + 1 replicas.

The execution stage requires fewer replicas—u+ max{u, r}+ 1 to be precise. This

number is impacted by two considerations that will be explored in this chapter: (1)

the order stage acts as a single unfailing proposer and (2) execution checkpoints

require indirect learning. Indirect learning occurs any time a hash of data, rather

than the data itself, is passed from one stage to another. The authentication stage

instead requires u+ max{u, r}+ r+ 1 replicas. The core replication requirements of

the authentication stage are based on the same factors as the execution stage, with

the additional requirement that learned values must be one-step transferable.

In the rest of this chapter we expand on the design of each stage and the

specifics of the consensus problem that each stage solves. In Section 6.1 we discuss

relevant background on asynchronous consensus, paying specific attention to envi-

ronments that do not require the standard 2u+ r + 1 acceptors. In Section 6.2 we

discuss the mapping of the order stage to consensus and thedetails of implementing

a replicated order stage with 2u + r + 1 replicas. We begin the discussion of repli-

109

cated stages with the order stage because it is most similar to previous work. In

Section 6.3 we discuss the mapping of the execution stage to consensus and details

of implementing a replicated execution stage with u + max{u, r} + 1 replicas. In

Section 6.4 we discuss the mapping of the authentication stage to consensus and the

details of implementing a replicated authentication stage with u+ max{u, r}+ r+ 1

replicas. In Section 6.5 we present microbenchmark experiments that explore the

performance characteristics of our prototype implementation of the UpRight library.

In Section 6.6 we discuss the costs and benefits of maintaining the logical separation

when stages are replicated.

6.1 Consensus background

Recall that we briefly introduced Paxos style consensus [53, 54, 56] in Chapter 2

and subsequently used consensus as a concrete foundation for discussing the Up-

Right failure model. To recap, the participants in a consensus protocol are divided

into three categories based on their role in the system. Proposers propose values,

acceptors accept proposed values, and learners learn accepted values.

A consensus protocol is correct if its safety properties hold despite up to r

commission failures and its liveness properties hold despite up to u total failures.

The three consensus safety properties are: (1) only proposed values are accepted,

(2) at most one value is accepted, and (3) non-faulty learners only learn accepted

values. The single consensus liveness property is: if a non-faulty proposer proposes

a value during a synchronous interval then non-faulty learners eventually learn a

value.

We highlight consensus at this point in the thesis for two reasons. First,

because RSM protocols are traditionally based on consensus protocols, it is impor-

tant to understand consensus before discussing the details of replication protocols.

Second, the number of replicas required to implement consensus varies with (a) the

configuration of proposers, acceptors, and learners, (b) the targeted communication

steps, and (c) the semantics of the values being learned.

Consensus and state machine replication. RSM protocols including PBFT [18],

Paxos [53], Zyzzyva [49], and many others are traditionally built around repeatedly

executing a consensus protocol that is used to order requests for processing. During

110

the ith instance of consensus, the replicas assign the sequence number i to a request.

The replicas then execute the requests in the specified order and relay the result of

executing the request to the client that issued the request before moving on to the

i+1st instance of consensus. When the client receives a response, it explicitly learns

the result of executing its request as the ith request in the sequence and implicitly

learns the relevant impact of the previous i− 1 requests.

Consensus replication requirements. As mentioned in the previous section,

the number of acceptors (i.e. replicas) required to implement consensus is not always

2u+ r+ 11. While 2u+ r+ 1 replicas are generally sufficient to solve asynchronous

consensus, this number can increase or decrease based on the specific semantics and

configuration of replicas for that instance of consensus [32, 60, 56, 68]

If there is exactly one proposer and that proposer cannot fail, then u+ r+ 1

replicas are sufficient to solve consensus [32, 60, 56]. The intuition for the reduced

costs is straightforward. First, a single proposer that cannot fail can be trusted to

send the same messages, in the same order and with appropriate message identifiers,

to each acceptor. Second, a correct acceptor can be trusted to accept messages in

the order they were sent by the proposer. Third, a learner that receives matching

values from r + 1 distinct acceptors knows that at least one acceptor is non-faulty;

it can then be confident that no other value will be accepted for that sequence

number and proceed to learn the value. Note that this implies that r + 1 replicas

are sufficient to ensure the safety properties. An additional u replicas are required

to ensure that a value can be learned, i.e., that a quorum of r + 1 correct replicas

exists, despite up to u total failures.

The semantics of the value being learned can increase the replication require-

ments. Continuing to consider a single correct proposer, we explore two specific se-

mantics of learned values—indirect learning, i.e. a hash of a value is learned rather

than the value itself, and one-step transferable with MAC authentication, i.e. the

initial learner can teach other learners a value authenticated with MACs.

In the context of indirect learning, the learner can be sure that the hash is

correct after receiving the value from r + 1 distinct acceptors but has no assurance

that the actual value will be available for use in the future. If it is important that the

value itself be fetchable in the future, then the learner must receive the hash from

1Recall that 2u+ r + 1 is equivalent to 3f + 1 when u = r = f .

111

u+1 distinct acceptors. Combining these two concerns, the learner must receive the

hash from max{u, r} + 1 distinct acceptors to be sure that the hash is correct and

the underlying value is fetchable. Ensuring that indirect learning is always possible

requires an additional u replicas for a total of u+ max{u, r}+ 1.

One-step transferability requires any correct learner a that learns a value

directly from the acceptors to teach correct learner b that same value. In order for a

to teach a learned value to b, a must provide b with the value and sufficient proof for

b to believe that the value was accepted. With a single correct proposer, a can learn

a value when it receives the value from r+ 1 distinct acceptors. If the messages are

authenticated using public key cryptography, then a can pass the r + 1 signatures

and the value to b and know that b, if correct, will also learn the value. If, however,

messages are authenticated with MAC authenticators, then a cannot be sure that b

will successfully authenticate all r + 1 MAC authenticators and recognize that the

value has been accepted—some subset of the acceptors may be faulty. If a receives

the value from 2r+1 replicas, on the other hand, it can provide the value and the set

of 2r+ 1 MAC authenticators to b and know that b will successfully authenticate at

least r+1 authenticators and subsequently learn the value. An additional u replicas

are required to ensure that a can always teach a learned value to b2.

Note that matrix signatures [3] provide a general mechanism for implement-

ing one-step transferability. The discussion here clarifies the relationship between

consensus and matrix signatures. We initially developed matrix signatures in the

traditional context of f Byzantine failures and observed that matrix signatures, like

standard consensus, require 3f+1 replicas. We now see that matrix signatures solve

a specialized consensus problem with a replication requirement of u+2r+1 replicas

that differs from the traditional 2u+ r + 1.

6.2 Replicated order stage

The order stage is responsible for placing requests in batches and selecting a lin-

earized batch order. The order stage also tracks the recent execution-stage check-

points used as part of (1) keeping state at each stage finite and (2) recovering from

2We note that one-step transferability is the core property provided by digital signatures in
Chapter 3.3.

112

stage level transient crashes. We view both of these activities as instances of con-

sensus, where the order stage acts as the acceptors. We refer to the first instance

as normal-operation and the second as checkpoint-operation.

During normal-operation, the authentication stage proposes authenticated

requests to the order stage, the order stage accepts the requests by placing them into

batches and assigning an order to the batches, and the execution replicas learn the

linearized sequence of request batches. Note that because the authentication stage

acts as a proxy for clients that actually issue requests and does not provide any cross-

client coordination, we view it as acting as multiple proposers—one proposer per

client3. Thus, the normal-operation consensus problem corresponds to the standard

configuration with multiple proposers and multiple learners.

During checkpoint-operation, the execution stage proposes execution check-

points to the order stage, the order stage accepts and stores the checkpoint, and

the execution replicas may (or may not) learn the checkpoint. Note that the exe-

cution stage acts as a single proposer while individual execution replicas learn the

checkpoint.

The rest of this section details our design for the replicated order stage.

Section 6.2.1 describes the Zyzzyvark protocol, a PBFT-like [18] consensus pro-

tocol, used for normal-operation. Section 6.2.2 describes our approach to piggy-

backing checkpoint-operation onto Zyzzyvark’s internal checkpointing mechanisms.

Section 6.2.3 describes how the inter-stage messages sent to and from the order

stage fit into our design and how replicating the order stage impacts the behavior of

the authentication and execution stages. Section 6.2.4 describes how the replicated

order stage fulfills the properties of a correct order stage described in Chapter 5.

6.2.1 Normal-operation—Zyzzyvark

Normal-operation maps to a standard configuration of consensus with multiple pro-

posers and multiple acceptors that is comparable to the consensus problem solved

by the PBFT lineage of RSM protocols [18, 24, 26, 50, 49, 92, 104, 107]. We could,

in principle, use a protocol like PBFT [18], Zyzzyva [49], or Aardvark [24] as the

basis for the order stage. We instead rely on a new replication protocol called Zyzzy-

vark. We do not introduce any fundamentally new ideas or insights in the design of

3Semantically, that the authentication stage asserts “Client c said X”, not “Client c said X before
client c′ said Y.”

113

Zyzzyvark. We instead combine key ideas from previous protocols to get a simple

and robust protocol design.

Zyzzyvark, like its predecessors, is based on three subprotocols: agreement,

checkpointing, and view change. The agreement subprotocol is used to batch and

order requests. One replica is designated the primary of the current view and is

responsible for leading the replicas through a standard three phase commit protocol

to agree on the order and contents of request batches. The checkpoint subprotocol

is used to coordinate checkpoints across replicas and allow the garbage collection of

old batches and checkpoints. The view change protocol is used to replace the current

primary and transition to a new view led by a new primary. As part of transitioning

to a new view v, the view change protocol must ensure that the starting state for

view v reflects all batches ordered in previous views v′ < v.

In this section we provide an overview of how the Zyzzyvark protocol works

and highlight the ways in which Zyzzyvark differs from previous protocols. We refer

readers interested in technical proofs and detailed description of agreement and view

change protocols to PBFT [18] and Zyzzyva [49].

Replication requirements and quorum size

Previous protocols have been designed to be safe and live despite up to f Byzantine

failures. We design Zyzzyvark to be safe despite up to r commission failures and

live despite up to u Byzantine failures.

Translating a protocol described in the language of traditional Byzantine

fault tolerance to the language of UpRight fault tolerance is relatively straightfor-

ward, requiring only the relabeling of quorum sizes in the system. We identify

three distinct quorum sizes as small, medium, and large quorums. In most systems,

the protocols are described with the explicit assumption that the minimum 3f + 1

replicas are used. In that context, small quorums have size f + 1 and correspond

to the smallest quorum guaranteed to contain at least one correct replica; medium

quorums have size 2f + 1 and correspond to the largest quorum that a replica can

wait for without endangering liveness; large quorums have size n and contain ev-

ery replica. Translating these quorums definitions to UpRight is straightforward: a

small quorum has size r + 1, a medium quorum has size n− u, and a large quorum

has size n.

114

Agreement

We begin by describing the PBFT-like agreement protocol that is the core of Zyzzy-

vark. The protocol begins when the authentication stage, on behalf of an authorized

client c, sends an auth-req message to the designated primary order replica. The

primary adds the authenticated request contained in the auth-req message to a

batch; if the batch is “full” or sufficient time has passed since the last batch was

formed, the primary sends a pre-prepare message containing the finalized batch

to the other replicas. Each replica verifies that the batch is well-formed—that is

that the batch identifier is the next in sequence, that the time associated with the

batch is larger than the time associated with the previous batch, and that all re-

quests in the batch are (a) issued on behalf of an authorized client, (b) the next

in sequence for that client, and (c) have not been placed in a previous batch). If

the batch is well-formed then the replica sends a prepare message to the other

replicas. Upon receipt of a medium quorum of matching prepare messages each

replica sends a commit message to the other replicas. Upon receipt of a medium

quorum of matching commit messages each order replica sends a next-batch mes-

sage to the execution stage, notifying the execution stage that the batch has been

ordered. The execution stage accepts the batch as ordered when it receives a small

quorum of matching notifications. This basic communication pattern is employed

by PBFT [17] and is shown in Figure 6.1.

A straightforward optimization of the basic pattern described above is ten-

tative agreement [18]. Under tentative agreement, the replicas send a tentative

batch (tent-batch) to the execution stage after receiving the quorum of prepare

messages as shown in Figure 6.2. The execution stage accepts the batch as ordered

upon receipt of a medium quorum of matching tent-batch messages. The primary

contribution of the Zyzzyva work is speculative ordering [49]. When speculative or-

dering is employed, replicas notify the execution stage that a batch is speculatively

ordered after receiving the pre-prepare message from the primary as shown in

Figure 6.3. The execution stage accepts a batch as ordered when it receives a large

quorum of spec-batch messages. Enabling speculative ordering requires the order

replicas to agree not just on the contents of the next batch, but also on the history

of batches that have been ordered—replicas only accept a pre-prepare message

if (a) the batch is well formed, (b) the batch is specified as the next batch in the

115

Valid
Request Preprepare Prepare Commit Complete

Ordered Batch

r+1

Authentication
Stage

Execution
Stage

Order
Stage

Primary

Replica

Replica

Replica

Figure 6.1: Basic communication pattern for complete agreement.

sequence, and (c) the history H contained in the pre-prepare message summarizes

the sequence of batches that the replica has observed.

The Zyzzyvark protocol makes use of both speculative and traditional or-

dering. By default, the protocol relies on speculative ordering, and replicas do not

exchange prepare or commit messages. The primary can, however, initiate the

traditional three phase order protocol at any time. This may be appropriate and/or

necessary if the primary believes that another replica is faulty, or if one replica has

requested a view change but the other replicas have not yet joined in the insurrec-

tion.

Note that one benefit of including the current batch history with every batch

is that committing (i.e. gathering a quorum of commit messages) a batch no with

history H implies that all batches n′o < no whose histories are prefixes of H are

also committed. This observation extends to the execution stage processing of next-

batch messages. Recall that the execution stage waits for n speculative next-batch

messages, n−u tentative next-batch messages, or r+ 1 committed next-batch mes-

sages for each batch and that each next batch message contains a batch and the

116

Valid
Request Preprepare Prepare Tentative

Ordered Batch

n-u

Authentication
Stage

Execution
Stage

Order
Stage

Primary

Replica

Replica

Replica

Figure 6.2: Basic communication pattern for tentative agreement.

Valid
Request Preprepare Speculative

Ordered Batch

n

Authentication
Stage

Execution
Stage

Order
Stage

Primary

Replica

Replica

Replica

Figure 6.3: Basic communication pattern for speculative agreement.

117

history up to that batch. When the execution stage receives sufficient next batch

messages to confirm batch no with history H, it implicitly commits batch no − 1

with history H′ provided that (a) H′ is the immediate prefix of history and (b) the

execution stage has received at least one next batch message (complete, tentative

or speculative) for n′o with history H′.

Further refining failure counts. Several authors have noted [32, 56, 68, 92]

that it is possible to provide speculative ordering even when failures occur. These

systems introduce a new qualification to the UpRight goals: up despite at most

u Byzantine failures, right despite at most r commission failures, and fast despite

at most e Byzantine failures. We do not explore the specifics of fast ordering but

observe that this work is complementary and can be incorporated into the order

stage. Note that specifying fast failures exposes the true size of large quorums as

n− e and that a minimum of max{2e+ u+ 2r+ 1, 2u+ r+ 1} acceptors are always

sufficient for fast consensus4. Note that the protocols sketched above implicitly have

e = 0.

Message authentication. We rely on MACs to authenticate all messages ex-

changed as part of the Zyzzyvark protocol.

Faulty client requests. Note that Zyzzyvark neither relies on signatures for

client request authentication (Section 3.3) nor requires special handling for incon-

sistently authenticated client requests (Section ??). We rely on the one-step transfer-

able property of requests authenticated by the authentication stage to preemptively

solve the problem.

Checkpoint management

As discussed in Section 5.3, the order stage maintains a base checkpoint, a secondary

checkpoint, and a log of between CP interval and 2 × CP interval batches ordered since

the base checkpoint. The discussion in Section 5.3 focused on the definition of the

order checkpoints and stage-level maintenance. In this section, we focus on how

the order replicas coordinate to ensure that they each maintain a consistent order

4The familiar caveat that there exists specific configurations that require fewer acceptors applies.

118

checkpoint. Note that the checkpoint management discussed here is distinct from

the checkpoint-operation to be discussed in Section 6.2.2

Before we get into the details of how Zyzzyvark replicas coordinate on order-

stage checkpoints, it is important to note that checkpoint generation and garbage

collection is a standard part of previous replication libraries such as PBFT [18],

Zyzzyva [49], and Aardvark [24]. The checkpoint coordination in Zyzzyvark differs

from its predecessors in two important ways. First, Zyzzyvark checkpointing (and

by extension the order-stage checkpoints) are comparatively conservative: previous

protocols ensure that each replica has one or two checkpoints and a log of at most

2 × CP interval batches since the oldest checkpoint, while Zyzzyvark guarantees that

each replica always maintains two checkpoints and a log of between CP interval and

2×CP interval requests since the oldest checkpoint. Second, previous systems rely on a

distinct protocol for checkpoint coordination while Zyzzyvark piggybacks checkpoint

coordination onto normal operation.

Zyzzyvark piggybacks checkpoint coordination onto the agreement protocol

that the system runs during normal-operation. The primary augments the pre-

prepare message for batch (no+ 1) mod CP interval = 0 with the order-stage check-

point for no − CP interval and the replicas perform the traditional three phase agree-

ment on this batch. The batch no is not ordered, i.e. the pre-prepare containing

no is neither sent by the primary nor processed by a replica, until the replica gath-

ers a medium quorum of commit messages for no − 1. Once no − 1 is committed,

a replica can safely garbage collect checkpoint no − 2 × CP interval and all batches

n′o < no−CP interval. At the same time, the order replica generates a new checkpoint

before considering the pre-prepare message for batch no.

View change

Zyzzvyark, like PBFT and Zyzzyva, operates in “views.” During a view v, replica v

mod |replicaCount| is the designated primary. The view-change protocol is used to

elect a new primary and determine the starting state for the next view v+1; in order

for the system to remain consistent the new view must reflect all batches that were

successfully ordered in the previous view. The Zyzzyvark view-change protocol uses

standard techniques developed in PBFT [18] and Zyzzyva [49]. Zyzzyvark adopts

the adaptive view-change triggers discussed in Chapter 3. Specifically, a replica

119

initiates a view-change when (a) the throughput in the current view drops below

a constantly increasing threshold, (b) too much time passes between pre-prepare

messages, (c) the primary commits a detectable commission failure (e.g., attempts

to include an invalid batch in a pre-prepare message), or (d) a small quorum of

other replicas initiate a view change.

6.2.2 Checkpoint-operation

Checkpoint-operation refers to the transfer of execution-stage checkpoints to and

from the order stage and is conceptually distinct from the internal Zyzzyvark check-

pointing discussed in the previous section.

Checkpoint-operation is conceptually simple: the execution stage proposes an

execution-stage checkpoint to the order stage, the order stage accepts the checkpoint,

and individual execution replicas learn the agreed upon checkpoint. Rather than

implement another consensus protocol with the order replicas, we map checkpoint-

operation onto the existing Zyzzyvark internal checkpoint mechanism.

We piggyback the checkpoint consensus protocol onto the Zyzzyvark check-

pointing mechanism described above. The execution stage proposes an execution-

stage checkpoint by sending a cp-token message containing the execution check-

point to each order replica. The order replicas add the execution-stage checkpoint to

the corresponding order-stage checkpoint. At designated points in the sequence of

ordered batches, the primary includes the checkpoint in the pre-prepare message

and the checkpoint is subsequently agreed upon by the order replicas using the full

three phase agreement path only if the checkpoint contained in the pre-prepare

message matches the checkpoint stored at each non-faulty order replica. Execution

replicas can subsequently learn an execution-stage checkpoint after receiving a small

quorum of r + 1 matching load-cp messages from the order stage.

Note that because the execution stage consists of execution replicas (i.e. the

proposer is the learners), the execution replicas generally only learn the value explic-

itly when recovering from a transient crash or catching up following an asynchronous

interval. The communication pattern for the checkpoint consensus protocol is shown

in Figure 6.4.

120

Execution
Checkpoint Preprepare Prepare Commit Execution

Checkpoint

Replica

Order
Stage

Primary

Replica

Replica

Replica

Execution
Stage

Replica
r+1

Figure 6.4: Basic communication pattern for the order stage checkpoint consensus
protocol. Note that while the execution stage acts as a single proposer, each indi-
vidual replica is a distinct learner. In the context of the UpRight library, learning
is done only when a network or node failure occurs.

121

Message Consensus Instance Consensus Semantics

auth-req normal propose request
spec-batch
tent-batch normal learn ordered batch
comp-batch
cp-token checkpoint propose checkpoint
load-cp checkpoint learn checkpoint
last-exec both utility — missed learning
retransmit both utility — should have learned

Table 6.2: Consensus semantics for messages related to the order stage. Each pro-
posal or learn message is part of a single consensus instance. The utility messages
are used by both consensus protocols.

6.2.3 Interactions with other stages

Replicating the order stage impacts how the authentication and execution stages

process messages from the order stage and how they send messages to the order

stage. To understand these changes, we must first put the intra-stage messages in

the context of the normal and checkpoint consensus protocols.

There are a total of three intra-stage messages sent to the order stage and

three-intra stage messages sent by the order stage. In Table 6.2 we divide these

messages into three categories based on which consensus protocol the message is

related to: normal-operation, checkpoint-operation, or both. The auth-req mes-

sages sent by the authentication stage are the proposals for normal-operation and

the next-batch messages sent to the execution stage are the corresponding learn-

ing messages. The cp-token messages sent by the execution stage are the proposals

for checkpoint-operation and the load load-cp messages sent to specific execution

replicas are the corresponding learning messages. The retransmit messages sent

to the execution stage and last-exec messages sent by individual execution replicas

are utility messages indicating that something should have been learned or some-

thing was not learned respectively. The utility messages are used to ensure that an

asynchronous network does not prevent the learners from learning accepted values.

The first time that the authentication stage authenticates client request nc

from client c, it sends an auth-req message containing request nc to the current

primary. On subsequent retransmissions of the request, the authentication stage

sends the auth-req message to every order replica. Note that the first send results

122

in the request being ordered by the order stage (unless the primary is faulty or the

network is ill-behaved) while subsequent sends trigger the retransmission process,

notifying the execution stage that it (a) should retransmit any cached response for

client c and/or (b) has missed one or more batches.

There are three distinct types of next-batch messages sent to the execution

replicas: speculative, tentative, and complete. An execution replica learns that

a batch has been ordered only after gathering an appropriately-sized quorum of

next-batch messages: a large quorum of n speculative next-batch messages, a

medium quorum of n − u tentative next-batch messages, or a small quorum of

r + 1 complete next-batch messages. Execution replicas act on an ordered batch

only once the batch has been learned, i.e., after receiving the appropriately sized

quorum of matching next-batch messages.

The execution stage sends cp-token messages to every order replica. Each

order replica independently places the contained execution checkpoint in its local

order checkpoint before participating in Zyzzyvark’s checkpointing protocol. An

execution replica learns that an execution checkpoint should be loaded when it

receives a small quorum of r+ 1 load-cp messages. The small quorum is sufficient

because checkpoint-operation relies on the three-phase-commit of the Zyzzyvark

internal checkpoint mechanism.

The retransmit message is a hint that the order stage may have made

accepted values that an execution replica has not yet learned. An execution replica

acts on a retransmit message once it has received a small quorum of r+1 retrans-

mission messages: enough to ensure that at least one correct order replica believes

some action by the execution replica is necessary.

An execution replica sends last-exec messages to every order replica. The

last-exec message explicitly states the last thing the sending replica learned and

induces the order stage to resend the appropriate next-batch and load-cp mes-

sages to the execution replica.

6.2.4 Order stage properties

We identified a set of properties to be maintained by the order stage in Chapter 5.

Before discussing how the replicated order stage fulfills those properties, we must

first adjust the properties to account for replication. The replicated order stage is

123

correct if it is safe despite up to r commission failures and live despite up to u total

failures. This results in a pair of simple modifications to the safety and liveness

properties: the prefix “if there are at most r commission failures, then” is added

to the safety properties and the prefix “if there are at most u total failures and” is

added to the liveness properties.

We additionally further qualify OL1 to include the qualification “sufficiently

often during a sufficiently long synchronous interval.” This additional qualification

is made necessary by two properties of the Zyzzyvark protocol. First, for a batch

to be ordered, Zyzzyvark requires coordination between multiple order replicas.

The requisite communication is only guaranteed to happen during sufficiently long

synchronous intervals. Second, Zyzzyvark relies on a primary to place requests in

batches and propose an order for the batches. A faulty primary can fail to place

specific requests into batches or fail to order requests entirely. The view-change

protocol ensures that every primary is eventually replaced, guaranteeing that every

request received infinitely often by the order stage during a synchronous interval is

eventually received by a non-faulty primary and processed appropriately.

The augmented safety and liveness properties are presented below. Note that

the augmentations are distinguished through italics.

OS1 If there are at most r commission failures, then only fetchable client requests

authenticated by the authentication stage are placed into batches, and request

nc issued by client c is placed in at most one batch.

OS2 If there are at most r commission failures, then batches contain one or more

requests and are assigned monotonically increasing batch identifiers no starting

with 1 and increasing by 1 with each subsequent batch. For batches no and

n′o with associated times t and t′, no > n′o → t > t′.

OS3 If there are at most r commission failures and request nc > 1 issued by client

c is in batch no, then request nc − 1 issued by client c is in batch n′o < no.

OS4 If there are at most r commission failures, then the stage always has stable

checkpoint at no, where no%CP interval = 0, and CP interval ≤ i ≤ 2 × CP interval

subsequent ordered batches.

OL1 If there are at most u total failures and the order stage receives, sufficiently

often during a sufficiently long synchronous interval, unordered authenticated

124

request nc issued by correct client c, then the order stage places the request

in batch no and eventually sends a next-batch message containing no to the

execution stage.

OL2 If there are at most u total failures and the order stage receives an authenti-

cated request nc from client c that is already in batch no, then it instructs the

execution stage to retransmit a response to request n′c from client c in batch

n′o where n′c ≥ nc and n′o ≥ no.

OL3 If there are at most u total failures and (i) the execution stage requests all

batches after ne, (ii) the order stage has ordered batches through no > ne,

and (iii) ne + 1 ≥ nCP, then the order stage resends all ordered batches from

ne through no.

OL4 If there are at most u total failures and the execution stage requests all batches

after ne and the order stage has ordered batches through no > ne and ne +

1 < nCP, then the order stage instructs the execution stage to load execution

checkpoint nCP.

The final point for consideration is how the replication strategy discussed in

this section fulfills these properties. The safety properties OS1-4 describe the inter-

nal invariants maintained by Zyzzyvark and previous protocols such as PBFT [18],

HQ [26], Zyzzyva [49], Aardvark [24], and others. Liveness property OL1 describes

the basic liveness property of all asynchronous consensus protocols, and OL2-4 de-

scribe internal messages used as part of ensuring that every value proposed by a

correct proposer is eventually learned by all correct learners.

Note that the “sufficiently often” condition of OL1 is satisfied through an

interaction between correct clients and the authentication stage. Correct clients

retransmit requests according to a regular schedule (at most four seconds between

retransmissions) until a response to that request is received, and the authentication

stage ensures that a request is retransmitted to the order stage at most once per four

seconds. During synchronous intervals, the order stage receives an authenticated

client request nc issued by correct client c every four seconds until it is ordered.

125

6.3 Replicated execution stage

The primary responsibilities of the execution stage are delivering ordered batches to

the application in the specified order and relaying the results of the executed requests

to the clients. As part of processing each ordered batch, the execution stage notifies

the authentication stage of the requests contained in that batch. Additionally,

the execution stage sends an execution-stage checkpoint to the order stage every

CP interval batches. We view all of these activities as part of a single consensus

protocol.

In this consensus protocol, the order stage acts as the single always cor-

rect proposer by proposing the sequence of ordered batches. The execution replicas

accept the sequence of ordered batches and process batches in order. The clients, au-

thentication stage, and order stage subsequently learn something—clients learn the

results of executing batches in the specified ordered, the authentication stage learns

which batch contains individual requests, and the order stage learns the execution-

stage checkpoint. Note that each class of learners explicitly learns a subset of the

information accepted by the acceptors; the portions of accepted state not learned

explicitly are learned implicitly.

The handling of execution-stage checkpoints—specifically how the order stage

learns the checkpoints—is the primary design decision that must be addressed when

replicating the execution stage. We rely on indirect learning of the checkpoints, but

note that other designs are possible.

The rest of this section details the design and replication requirements of

the replicated execution stage. Section 6.3.1 describes the consensus protocol im-

plemented by the execution stage in more detail. Section 6.3.2 describes alternate

design options for handling execution-stage checkpoints. Section 6.3.3 describes the

impact that relying on a replicated execution stage has on the authentication stage,

the order stage, and clients. Section 6.3.4 describes how the replicated execution

stage fulfills the properties of a correct execution stage described in Chapter 5.

6.3.1 Execution consensus

The consensus protocol implemented by the execution replicas is very simple and

does not require any intra-stage communication because the order stage acts as

a single always-correct proposer. Consensus with a single always-correct proposer

126

Ordered
Batch

Execution
Stage

Replica

Replica

Replica

Order
Stage

Authentication
Stage

Clients

Execution
Checkpoint

Batch
Completed Reply

max(u,r)+1

r+1

r+1

Figure 6.5: Execution consensus.

follows the communication pattern shown in Figure 6.5: the order stage proposes

a batch of requests, the execution stage accepts the batch, and the clients learn

the results of executing the batch/the authentication stage learns which batch each

request is placed in/the order stage learns an execution checkpoint. As mentioned in

Section 6.1, asynchronous consensus with a single correct proposer requires at least

u + r + 1 replicas [56]. In this environment, learners can learn when they receive

a quorum of r + 1 matching messages from the acceptors unless indirect learning

requiring a quorum of max{u, r}+1 matching messages is necessary. The consensus

protocol implemented by the execution replicas provides both regular learning (to

the authentication stage and clients) and indirect learning (to the order stage).

Note that unlike the replicated order stage, the replicated execution stage

does not require any coordination between internal replicas to implement consensus.

The basic consensus protocol shown in Figure 6.5 can consequently be implemented

by a set of execution replicas running the execution stage pseudo-code described in

Section 5.7.4 without modification.

127

6.3.2 Execution-stage checkpoints

Recall that execution replicas send a hash of the execution-stage checkpoint to the

order stage and not the checkpoint itself. When an execution replica falls behind

or suffers from a transient crash, it learns the hash of the appropriate checkpoint

to load and must subsequently fetch the checkpoint from another execution replica.

Consequently, the order stage learns checkpoint hashes that are both correct and

fetchable. This corresponds to indirect learning as discussed in Section 6.1 and re-

quires at least max{u, r} + u + 1 execution replicas. While the consensus protocol

itself does not require any coordination between execution replicas, allowing indi-

vidual execution replicas to fetch execution-stage checkpoints from another replica

does require additional coordination.

Replica coordination

The only interaction required between execution replicas occurs when one replica

falls far enough behind the other replicas that it must load a checkpoint that is not

present locally. Figure 6.6 contains execution replica pseudo-code that handles the

exchange of state between replicas. The additional messages introduced are shown

in Table 6.3; full byte specifications of these messages can be found in Appendix A.3.

Recall from Section 5.3.2 that the execution stage loads a checkpoint upon

receipt of a load-cp message from the order stage. For replicas that have the

specified checkpoint in their local storage (i.e. because they are recovering from a

transient crash), loading the checkpoint is simple. However, it is also possible for

a replica to receive the load-cp checkpoint message and not have the execution

stage checkpoint in local storage (e.g., because the replica became disconnected or

suffered a transient crash and the other replicas made progress in its absence). When

this occurs, the replica must first fetch the execution checkpoint described by the

token Tcp contained in the load checkpoint message by sending an fetch-exec-

cp message to other execution replicas. Another execution replica responds with

an exec-cp-state message containing the checkpoint state; the fetching replica

compares the state to the checkpoint token compared in the load-cp message and

loads the state only if it is valid. As part of loading the execution checkpoint, the

replica instructs the local copy of the application to load the application checkpoint

contained in the execution checkpoint. If the application has the requisite state,

128

1 on rcv 〈load-cp,Tcp, no, o〉µo,e :

2 i f ∃ exec CP .ne and hash(exec CP .ne) = Tcp then

3 CPexec := exec CP .ne
4 state := app.loadCP (CPexec.getAppCP ())
5 i f loadCP f a i l s because app l i c a t i on i s miss ing s t a t e Tstate then
6 send 〈fetch-state,Tstate, e〉~µe,E to E
7 else
8 send 〈fetch-exec-cp, n, e〉~µe,E to E

10 on rcv 〈fetch-exec-cp, n, e〉~µe,E :

11 i f checkpoint Tcp i s l o c a l l y a v a i l a b l e then

12 send 〈exec-cp-state, n,S, this.e〉µthis.e,e

14 on rcv 〈exec-cp-state, n,S, e〉µe,this.e :

15 i f requested checkpoint n and S matches Tcp then

16 CPexec := exec CP .ne
17 state := app.loadCP (CPexec.getAppCP ())
18 i f loadCP f a i l s because app l i c a t i on i s miss ing s t a t e Tstate then
19 send 〈fetch-state,Tstate, e〉~µe,E to E

21 on rcv m = 〈fetch-state,Tstate, e〉~µe,E :

22 S := app.getState(m.Tstate)
23 send 〈state,m.Tstate,S, this.e〉µthis.e,m.e to m.e

25 on rcv m = 〈state,Tstate,S, e〉µe,this.e :

26 state := app.loadState(m.S,m.Tstate)

Figure 6.6: Execution replica pseudo-code related to intra-stage checkpoint and
state transfer.

Message Semantic meaning

fetch-exec-cp Fetch execution checkpoint ne
exec-cp-state Contains the state S of execution checkpoint ne
fetch-state Fetch application state described by Tstate

state Contains application state S described by Tstate

Table 6.3: State management messages exchanged between execution replicas.

then the checkpoint is loaded and operation can continue. It is likely, however, that

the application may not have all of the requisite state available locally. If this is the

case, the replica fetches the missing state by exchanging fetch-state and state

messages with other execution replicas.

The application can provide the full checkpoint to the execution stage or a

token that describes the checkpoint concisely. If the former option is chosen then

the execution replicas never fetch application state using the latter two messages in

Table 6.3. If the latter option is chosen, then those two messages may be used to

retrieve relevant state from other execution replicas.

129

Checkpoint alternatives

Note that we require u + max{u, r} + 1 execution replicas rather than u + r + 1

because execution checkpoints are learned indirectly. Specifically, we require the

execution stage to send a token, or cryptographic hash, describing the checkpoint to

the order stage. Because we store the hash of the checkpoint at the order stage and

the checkpoint at individual execution replicas, the order stage must be sure both

that the checkpoint hash is correct and that the checkpoint is stored by at least one

correct execution replica so that it can be fetched by another replica as needed.

There are two natural questions to ask. First, can we simplify the max{u, r}
part of that expression? Second, can we avoid sending the execution-stage check-

point (or its hash) to the order stage? At a high level, the answer to both questions

is “no.”

We can, in theory, simplify the max{u, r} portion of the expression to r by

storing the entire execution-stage checkpoint (and not a hash) at the order-stage. We

reject this approach because it can dramatically increase the network requirements

of the system.

Similarly, we can remove the execution-stage checkpoint from the order stage

entirely by increasing the number of execution replicas or relying on digital signa-

tures to authenticate checkpoints. We reject these approaches for two reasons. First,

to ensure that the order stage does not outrun the execution stage (i.e. orders sev-

eral checkpoint intervals worth of batches that are not delivered to the execution

stage because a lossy network), the execution stage must notify the order stage

when it has completed a checkpoint. Second, augmenting that checkpoint notifica-

tion to include a hash of the execution-stage checkpoint is less expensive than (a)

authenticating execution-stage checkpoints with digital signatures or (b) increasing

the number of execution replicas.

Can we simplify max{u, r}? It is straightforward to simplify the required num-

ber of execution replicas to r + u+ 1 by storing execution checkpoints at the order

stage rather than tokens that describe the checkpoint. If this approach is taken,

the order stage need only affirm that the checkpoint was correctly generated (i.e.

receive at least r+ 1 matching checkpoint messages) and does not need to ascertain

that the checkpoint will be fetchable by another execution replica. The repercus-

130

sions of storing the full execution checkpoint at the order stage are very application

and deployment dependent. In deployments where there are few clients and the

application checkpoints are very small, then the execution checkpoints will be small

and inexpensive to transfer to and store at the order stage. On the other hand, if

there are large numbers of clients or the application checkpoints are large (gigabyte

or even terabytes), then the costs of transferring the checkpoint from the execution

replicas to the order stage and maintaining that checkpoint within the order stage

may become prohibitive.

We choose to err on the side of conserving network bandwidth and simpli-

fying the order stage and consequently store checkpoint hashes rather than the full

checkpoints at the order stage.

Can we avoid sending the execution-stage checkpoint (or its hash) to the

order stage? Previous work by on separating order from execution by Yin et

al. [107] is based on a protocol where the order stage is oblivious to checkpoints

generated by the execution stage and requires u + r + 1 execution replicas5. Lam-

port [60] presents a similar architecture that requires u + 1 execution replicas for

a CFT system. We could adopt a similar approach and not store any reference to

execution stage checkpoints at the order stage. Doing so would, however, require us

to either use digital signatures6 to authenticate execution stage checkpoints or rely

on u + 2r + 1 execution replicas to provide one-step transferability within the exe-

cution stage. We believe it is better to store the execution-stage checkpoint at the

order stage than to introduce digital signatures or increase the number of execution

replicas.

In order to understand why digital signatures are necessary if there are only

u+ max{u, r}+ 1 execution replicas, let us consider a deployment where u = r = 1

and there are 3 execution replicas. Suppose replica a is correct, but does not receive

any messages because of a lossy network. Meanwhile, the other two replicas, b and c,

process ordered batches from the execution stage. Replica b is in fact Byzantine, but

follows the protocol faithfully and generates correct client responses. After several

checkpoint intervals, the network failure is repaired and replica a begins receiving

5Note that the work was presented as requiring 2f + 1 execution replicas where f = u = r.
6Note that non-repudiation provided by digital signatures is equivalent to ∞-step transferability.

Any authentication scheme that provides non-repudiation suffices.

131

messages again. At this point, a discovers that it is very far behind its peers and

requests the most recent checkpoint from both b and c. Replica c responds with the

correct checkpoint while replica b responds with a different checkpoint. Replica a is

potentially in the unfortunate position of not being able to differentiate the correct

checkpoint from a faulty checkpoint.

We could avoid this problem by having the replicas agree on the checkpoint

and a proof that the checkpoint is correct. While this hypothetical proof would

certainly ensure that only correct checkpoints are loaded, implementing the proof

requires digital signatures (or another authentication scheme that provides non-

repudiation) to ensure that the checkpoint will be loaded. Using digital signatures,

b could gather a proof by waiting for digital signatures that match its checkpoint

from r other replicas; this would require a total of at least u+ r + 1 replicas.

Note that even with digital signatures, u+ max{u, r}+ 1 execution replicas

are required; u + r + 1 replicas do not suffice. Consider a setting where u > r = 0

and there are u + 1 ≥ 2 total execution replicas. Assume, for the moment, that

u replicas are caught behind a network partition resulting in only one execution

replica processing batches from the order stage. The execution stage is guaranteed

to be live despite up to u failures, so the system is able to continue processing

requests as long as the clients continue to provide them. Note that the disconnected

replicas are not actually faulty, but are prevented from receiving messages by an

asynchronous and lossy network. Now suppose that the single active replica suffers

a permanent crash and that the network failure is simultaneously repaired, but only

after the system has processed several checkpoint intervals worth of requests. When

the formerly disconnected replicas begin receiving messages again, they are unable

to process the batches because their local state is not current, they do not possess

a recent checkpoint because of garbage collection, and they are unable to fetch a

recent checkpoint because the only replica that had the checkpoint is now failed.

The net result is that the system cannot make safe progress despite the fact that no

replica is guilty of a commission failure and only 1 ≤ u replicas have failed.

We could replace digital signatures in the previous discussion with matrix

signatures [3]. Doing so would trade the expense of digital signatures for additional

execution replicas. Matrix signatures can be implemented using MACs, but require

3f = 2u+r+1 replicas [3]; replacing digital signatures with matrix signatures would

require u+ max{u, r}+ r + 1 execution replicas.

132

Regardless of which approach we use to remove execution-stage checkpoints

from the order stage, the execution stage must notify the order stage when it gen-

erates a checkpoint to prevent the order stage from outrunning the execution stage.

Given this constraint, and the three options of (a) storing an execution-stage check-

point token at the order stage, (b) using digital signatures to authenticate execution-

stage checkpoints, and (c) increasing the number of execution replicas, we believe

that storing an execution-stage checkpoint token at the order stage is the most

reasonable decision.

Summary. Table 6.4 shows the tradeoffs for various checkpointing strategies: (1)

the required execution replicas, (2) the network costs, and (3) the computation costs.

We consider schemes that rely on digital signatures to have high computation costs

and schemes that rely exclusively on MACs to have low computation costs. Schemes

that push one or more copies of the execution checkpoint across the network have

high network costs, while schemes that exclusively push hashes of the checkpoint

have low network costs.

We compare four schemes for handling execution checkpoints. In the first

scheme, we store a full checkpoint at the order stage. In the second scheme, we

store the hash of the checkpoint at the order stage. In the third scheme, we do

not store anything related to the checkpoint at the order stage and rely on digital

signatures to generate a transferable proof for execution replicas to exchange with

a valid checkpoint. In the final scheme, we replace digital signatures with matrix

signatures. Storing the hash of the checkpoint at the order stage provides the

right practical tradeoff between the required number of execution replicas and total

network and computational costs.

6.3.3 Interactions with other stages

Replicating the execution stage impacts how the authentication stage, order stage,

and clients process messages received from the execution stage and how they send

messages to the execution stage. To understand these changes, we divide the inter-

stage messages into two categories: consensus messages and state management mes-

sages. The consensus messages are the proposal and learning messages from the

consensus protocol as well as the utility messages that alert the execution replicas

133

Checkpoint Required execution Network Computation
strategy replicas costs costs

Full CP at order stage u+ r + 1 high low

Hash of CP at order stage u+ max{u, r}+ 1 low low

Full CP at execution stage
u+ max{u, r}+ 1 low high

with digital signatures

Full CP at execution stage
u+ max{u, r}+ r + 1 low low

with matrix signatures

Table 6.4: Summary of replication requirements for different checkpoint storage
strategies.

Message Consensus Semantics

next-batch proposal
batch-complete learn

reply learn
cp-token learn

retransmit utility — learning failed
last-exec utility — missed proposal

Table 6.5: Inter stage messages and their role in the execution consensus protocol.

that something should have happened. The state management messages are used

to transfer request bodies from the authentication stage to the execution replicas.

Table 6.5 shows the six inter-stage messages that are part of the execution

stage consensus protocol. The next-batch message is the proposal and is sent by

the order stage to all execution replicas. The batch-complete, reply, and cp-

token messages are sent by execution replicas to the authentication stage, client

that issued the request, and order stage respectively. Upon receipt of a quorum of

n−u matching messages, the recipient can safely learn the contents of the message.

The retransmit message is sent by the order stage to every execution replica as a

notification that either an accepted value was not learned or a proposed value was

not accepted. An individual execution replica sends the last-exec message to the

order stage to indicate that the replica did not receive a proposal—the order stage

processes last-exec messages on a replica-by-replica basis and does not gather a

quorum of matching messages.

Table 6.6 shows the two inter-stage state management messages. These mes-

sages are used to transfer request bodies from the authentication stage to individual

134

Message Consensus Semantics

fetch none – state management
command none – state management

Table 6.6: Inter stage messages related to stage management.

execution replicas. After receiving an ordered batch, an execution replica sends the

fetch message to the authentication stage indicating that the replica needs the

specified request body. The authentication stage responds by sending a command

message containing the request body to the execution replica that issued the fetch

message.

6.3.4 Execution stage properties

We identified the properties maintained by a correct execution stage in Chapter 5.

A replicated execution stage is correct if it maintains the safety properties despite

up to r commission failures and the liveness properties despite up to u total failures.

Additionally, indirect learning requires ES4 to hold despite up to u total failures.

The requisite modifications to the safety and liveness properties are italicized below.

ES1 If there are at most r commission failures, then batch no is only delivered to

the application if the last batch delivered to the application is no − 1.

ES2 If there are at most r commission failures, then only ordered batches are

delivered to the application

ES3 If there are at most r commission failures, then only responses generated by

the application are cached or sent to clients.

ES4 If there are at most r commission failures and at most u total failures, then

execution stage maintains the execution checkpoint referenced by order base

checkpoint in persistent memory.

ES5 If there are at most r commission failures, then then the execution stage

provides deterministic and replayable execution of ordered batches.

EL1A If there are at most u total failures and the execution stage receives ordered

batch no and the last batch it has delivered to the application is n′o < no, then

135

it fetches the request bodies for requests in batch no from the authentication

stage and notifies the authentication stage that the contained requests have

been ordered.

EL1B If there are at most u total failures and the execution stage has all of the

request bodies for batch no and the last batch it delivered to the application

is no − 1, then the execution stage delivers batch no to the application.

EL2 If there are at most u total failures and the execution stage receives a response

from the application, then it stores the response for retransmission and sends

the response to the responsible client.

EL3 If there are at most u total failures and the execution stage receives a re-

transmission instruction for request nc from c in batch no and the last batch

executed by the execution stage is ne > no, then the execution stage resends

the response to the most recent request n′c ≥ nc executed for client c and

notifies the authentication stage that n′c has been ordered no later than batch

ne.

EL4 If there are at most u total failures and the execution stage receives a retrans-

mission instruction for request nc from client c in batch no and the last batch

executed by the execution stage is ne < no, then the execution stage informs

the order stage that it has missed the batches since ne.

EL5 If there are at most u total failures and the execution stage receives an in-

struction to load checkpoint ne from the order stage, then it loads execution

checkpoint ne.

Each correct execution replica independently implements the safety and live-

ness properties above. Coordinating the replicas through the consensus protocol as

discussed in Section 6.3.1 ensures that a collection of at least max{u, r} + u + 1

execution replicas is sufficient to implement a correct execution stage.

6.4 Replicating authentication stage

The authentication stage is responsible for authenticating requests issued by autho-

rized clients, caching the body of those requests, and delivering a hash of authen-

136

ticated requests to the order stage. This process maps to a collection of consensus

protocols, one per client per request. The consensus protocols share the same set of

acceptors (the authentication replicas) and learners (the order stage) and are differ-

entiated by the proposer (each client is a proposer in a distinct instance of consensus

each time it issues a distinct request).

The rest of this section details the design of the replicated authentication

stage. Section 6.4.1 describes the implementation of each authentication replica

and intra-stage coordination. Section 6.4.2 describes the impact of replicating the

authentication stage on clients, the order stage, and the authentication stage. Sec-

tion 6.4.3 describes how the replicated authentication stage fulfills the properties of

a correct authentication stage described in Chapter 5.

6.4.1 Authentication consensus

We map the authentication stage to the acceptors in a collection of consensus proto-

cols. Each distinct request issued by a client c is the proposal for a distinct instance

of consensus. The authentication replicas accept the request. The order stage learns

request hashes that (a) correspond to requests issued by authorized clients, (b) cor-

respond to request bodies that are cached by the authentication stage, and (c) are

one-step transferable.

As discussed in Section 6.1, a total of u+r+1 replicas are sufficient to provide

basic consensus with a single proposer and satisfy requirement (a). Requirement (b)

lays out the need for indirect learning and a baseline of u+ max{u, r}+ 1 replicas.

Requirement (c) requires one-step transferability and increases the requisite number

of authentication replicas to the final total of u+ max{u, r}+ r + 1.

Authentication replicas implement the authentication stage pseudo-code pre-

sented in Chapter ?? and do not communicate with each other when processing client

requests. The communication induced by this (lack of) coordination is similar to the

consensus protocol employed by the execution stage and can be found in Figure 6.7.

The authentication stage differs from the execution stage in two important ways.

First, the authentication stage does not require any checkpoints to be coor-

dinated between the authentication replicas because it is okay for replica state to

diverge. Values learned from the execution stage depend on each other—it is im-

possible for the execution stage to process batch no without first processing batch

137

Client
Request

Authentication
Stage

Replica

Replica

Replica

Clients

Order
Stage

Authenticated
Request

max{u,r}+r+1

Figure 6.7: Authentication consensus.

138

Message Sent by

〈client-req, 〈req-core, c, nc,op〉, c〉~µc,F client
〈auth-req, 〈req-core, c, nc,hash(op)〉~µf,O , f〉~µf,O authentication stage

〈batch-complete, v, no, C, e〉~µe,F execution stage
〈fetch, no, c, nc,hash(op), e〉~µe,F execution stage
〈command, no, c, nc,op, f〉µf,e authentication stage

Table 6.7: Messages sent to and from the authentication stage.

n′o < no. Values learned from the authentication stage, on the other hand, are

independent of each other—learning that “client c said X” does not require any

knowledge that “client c′ said Y.”

Second, the authentication stage is required to provide one-step transferabil-

ity of authenticated requests. This requirement is important because the order stage

is based on a primary-led consensus protocol, and we rely on MACs for message au-

thentication.

6.4.2 Interactions with other stages

The authentication stage receives three messages from other stages and sends two

messages to other stages. The complete set of messages sent to and processed by

the authentication stage is shown in Table 6.7.

The first time a client c issues request nc, the client optimistically assumes

that the network is well-behaved and there are no failed authentication replicas and

sends a client-req message to a preferred medium quorum of n−u authentication

replicas. The preferred quorum used by client c consists of the n−u authentication

replicas starting with replica c mod n. If c retransmits the client-req message

containing request nc then it sends the request to all authentication replicas on

the assumption that either the network is ill-behaved or one or more replicas in its

preferred quorum are in fact faulty.

The order stage primary gathers a medium quorum of max{u, r} + r + 1

auth-req messages before placing a request in a batch. Order replicas, including

the primary, gather a small quorum of r + 1 auth-req messages before sending a

retransmit message for a previously ordered request.

The execution stage sends batch-complete messages to all authentication

replicas. Execution replicas initially send fetch messages to a specific member

139

of each client’s designated preferred quorum—authentication replica c mod n. If

the execution replica does not receive the request body, then it resends the fetch

message to all authentication replicas. An execution replica may act on the first

fetch message that it receives from an authentication replica, though it checks the

body against the request hash contained in the ordered batch before acting on the

body.

6.4.3 Authentication stage properties

We modify the authentication stage properties identified Chapter 5 to accommodate

the UpRight design goals. A replicated execution stage is correct if it maintains the

safety properties despite up to r commission failures and the liveness properties

despite up to u total failures. The requisite modifications to the safety and liveness

properties are italicized below.

AS1 If there are at most r commission failures, then only requests issued by au-

thorized clients are authenticated and every authenticated request is one-step

transferable.

AS2 If there are at most r commission failures and at most u total failures, then

every authenticated request referenced by a batch ordered since the base check-

point at the order stage or not yet ordered is fetchable.

AL1a If there are at most u total failures and the authentication stage receives a

request nc issued by correct client c and there is no pending request n′′c < nc,

then request nc is authenticated and sent to the order stage.

AL1b If there are at most u total failures and the authentication stage receives a

request nc issued by correct client c and there is a pending request n′c, then

request n′c is authenticated and sent to the order stage.

AL2 If there are at most u total failures and the authentication stage receives a

fetch body message from the execution stage for a authenticated request nc

issued by client c, then the authentication stage responds with the request

body.

The safety properties AS3 and AS4 are maintained by individual authentication

replicas and are not properties maintained by the authentication stage as a whole.

140

Note that in the context of the end-to-end system AS3 and AS4 are not strictly

necessary. These two properties are used to limit the rate at which faulty clients

can force the system to consume storage and bandwidth.

AS3 At most one request per identifier nc per authorized client c is authenticated.

AS4 When request nc from client c is authenticated, no request n′c > nc has been

authenticated and there is no pending request n′c < nc.

Each authentication replica implements the protocol described in Figure 5.7

and correct replicas maintain local versions of the authentication stage safety and

liveness properties (intuitively, replace “authentication stage” with “authentication

replica” and ignore the failure count qualifier). The union of replicas that individu-

ally provide the specified properties ensures that the stage as a whole provides the

properties.

6.5 Implementation and performance

We implement the UpRight library based on the inter-stage protocol described in

Chapter 5 and the replicated stages previously discussed in this chapter in Java and

regrettably must name the prototype JSZyzzyvark7; J-Zyzzyvark refers to a config-

uration where we omit writing to disk to compare more meaningfully our prototype

with prior Byzantine agreement protocols and to expose bottlenecks in our protocol.

We believe that a Java-based solution is more suitable for widespread deployment

with the Java-based Zookeeper and HDFS systems than a C implementation despite

the difference in performance between C and Java implementations. We also note

that logging actions to disk places a ceiling on throughput so the benefits of further

optimization may be limited.

We run our servers on 3GHz dual-core Pentium-IV machines, each running

Linux 2.6 and Sun’s Java 1.6 JVM. We use the FlexiProvider [36] cryptographic

libraries for MACs and digital signatures and the Netty [74] networking library

for asynchronous Java I/O. Nodes have 2GB of memory and are connected via a

100Mbit/s Ethernet. Except where noted, we use separate machines for authenti-

cation, order, and execution replicas.

7“J” because the prototype is implemented in Java, “S” because the prototype stores state to
stable storage, and “Zyzzyvark” because the prototype is based on the Zyzzyvark protocol.

141

 0

 10

 20

 30

 40

 50

 60

 70

 0 1 2 3 4 5 6

La
te

nc
y

(m
s)

Throughput (Kops/s)

JS-Zyzzyvark 1KB

J-Zyzzyvark 1KB

JS-Zyzzyvark
 1B

J-Zyzzyvark 1B

Figure 6.8: Latency v. throughput for J-Zyzzyvark and JSZyzzyvark.

The UpRight library (client, authentication, order, and execution stages)

comprise 20,403 lines of code (LOC).

Method. Our basic experimental setup involves correct clients that operate in a

closed loop—that is they issue requests one at a time and do not issue request i

until they receive a response to request i−1. Unless otherwise noted, correct clients

issue 100k requests. We increase system load by increasing the number of clients.

Clients record the time at which each request is issued and the response received.

We calculate the average latency of all requests issued by all clients. We calculate

per second throughput by dividing the total duration of the experiment, in seconds,

by the total number of requests issued by all clients. Each data point corresponds

to a single experimental run.

Response time and throughput. Figure 6.8 shows the throughput and response

time of J-Zyzzyvark and JSZyzzyvark. We vary the number of clients issuing 1 byte

or 1 KB null requests that produce 1 byte or 1 KB responses and drive the system

to saturation. We configure the system to tolerate 1 fault (u = r = 1).

142

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14

La
te

nc
y

(m
s)

Throughput (Kops/s)

u=0, r=0

u=1, r=0

u=1, r=1

u=2, r=0

u=2, r=1

u=2, r=2
u=3, r=0

Figure 6.9: Latency v. throughput for JSZyzzyvark configured for various values of
r and u.

For small requests J-Zyzzyvark’s and JSZyzzyvark’s peak throughputs are

a respectable 5.5 and 5.1 Kops/second, which suffices for our applications. They

are comparable to unmodified Zookeeper’s peak throughput for small read/write

requests, and they appear sufficient to support an HDFS installation with a few

thousand active clients. Peak throughputs fall to 4.5 and 4.2 Kops/second for a

workload with larger 1KB requests and 1KB replies.

For comparison, in Chapter 3 we reported small request throughputs of 7.6,

23.8, 38.6, 61.7, and 66.0 Kops/s for the C/C++-based HQ [26], Q/U [1], Aard-

vark [24], PBFT [18], and Zyzzyva [49] on the same hardware. For environments

where performance is more important than portability or easy packaging with ex-

isting Java code bases, we believe a well-tuned C implementation of Zyzzyvark

with writes to stable storage omitted would have throughput between that of Aard-

vark and Zyzzyva—our request validation and agreement protocols are cheaper than

Aardvark’s, but our request validation is more expensive than Zyzzyva’s.

143

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10

La
te

nc
y

(m
s)

Throughput (Kops/s)

u=0, r=0

u=1, r=0

u=1, r=1

u=2, r=0

u=2, r=1u=2, r=2

u=3, r=0

Figure 6.10: Latency v. throughput for JSZyzzyvark configured for various values
of r and u with authentication, order, and execution replicas colocated.

 RQ

 Order

Execution

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

C
o

lo
ca

te
d

S
ep

ar
at

e

C
o

lo
ca

te
d

S
ep

ar
at

e

C
o

lo
ca

te
d

S
ep

ar
at

e

C
o

lo
ca

te
d

S
ep

ar
at

e

C
o

lo
ca

te
d

S
ep

ar
at

e

Ji
ff

ie
s/

re
q

u
es

t

Clients

1

16 64 128 256

Figure 6.11: Jiffies per request. RQ indicates the jiffies at the authentication stage;
Order indicates the jiffies at the order stage; Execution indicates the jiffies at the
execution stage.

144

Other configurations. Figure 6.9 shows small-request performance as we vary u

and r. Recall that Zyzzyvark requires 2u+ r + 1 authentication and order replicas

and u+ r+ 1 execution replicas to ensure that it can tolerate u failures and remain

up and r failures and remain right. Peak throughput is 11.1 Kops/second when

JSZyzzyvark is configured with u = 1 and r = 0 to tolerate a single omission failure

(e.g., one crashed replica), and throughput falls as the number of faults tolerated

increases. For reference, we include the u = 0 r = 0 line for which the system has

just one authentication, order, and execution replica and cannot tolerate any faults;

peak throughput exceeds 22 Kops/s, at which point we are limited by the load that

our clients can generate.

Figure 6.10 shows small-request performance when the authentication, order,

and execution replicas are co-located on 2u+ r+ 1 total machines. Splitting phases

across machines improves peak throughput by factors from 1.67 to 1.04 over such

co-location when any fault tolerance is enabled, with the difference falling as the

degree of fault tolerance increases. Figure 6.11 shows the the number of CPU jiffies

(4ms of CPU time) per request summed across authentication, order, and execution

processes on all replicas for two configurations: (1) when all stages share a common

set of machines and (2) when each stage runs on its own separate set of machines.

As load increases, larger batch sizes amortize some costs, reducing processing per

request. In the second configuration, the bottleneck is the order stage, and the

execution replicas are lightly utilized. The higher per-request processing cost that

we observe in the first configuration is unexpected and we have not to date identified

a convincing explanation for it.

Request authentication. In Figure 6.12 we examine the throughput of the JS-

Zyzzyvark prototype configured for u = 1 and r = 1 and using different strategies for

client request authentication. The MAC RQ line shows performance of the default

JSZyzzyvark configuration that relies on MAC-based matrix signatures formed at

the authentication stage. In contrast, the SIG no RQ line omits the authentication

stage entirely and shows the significant performance penalty imposed by relying

on traditional digital signatures for request authentication, as in Aardvark. The

MAC no RQ line shows the performance that is possible in a system that relies,

like PBFT, on MAC authenticators and uses no authentication stage for client au-

thentication. In a system where the robustness risk and corner-case complexity of

145

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12

La
te

nc
y

(m
s)

Throughput (Kops/s)

Sig no RQ
Mac RQ

Mac no RQ

No auth RQ

No auth no RQ

Figure 6.12: JSZyzzyvark performance when using the authentication replica and
matrix signatures, standard signatures, and MAC authenticators. (1B requests)

relying on MAC authenticators as opposed to matrix signatures are viewed as ac-

ceptable, this configuration may be attractive. For comparison, the no auth RQ line

shows performance when we use the authentication stage but turn off calculation

and verification of MACs, and the no auth no RQ line shows performance when we

eliminate the authentication stage and also turn off calculation and verification of

MACs.

Request digests. Figure 6.13 demonstrates the value of storing requests at the

authentication stage so that the order stage can operate on digests rather than full

requests. We configure the system for u = 1 and r = 1. For small requests (under 64

bytes in our prototype), the authentication stage sends full requests and the order

replicas operate on full requests; the figure’s 1B Request line shows performance

for 1 byte requests. The 1KB Digest and 10KB Digest lines show performance

for 1KB and 10KB requests when authentication replicas store requests and send

request digests for ordering, and the 1KB Request and 10KB Request lines show

performance with the request storage and digests turned off so that order replicas

146

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6

La
te

nc
y

(m
s)

Throughput (Kops/s)

1B Request

1KB Digest

1KB Request

10KB Digest

10KB Request

Figure 6.13: JSZyzzyvark performance for 1B, 1KB, and 10KB requests, and for
1KB and 10KB requests where full requests, rather than digests, are routed through
order replicas.

147

operate on full requests. Storing requests at the authentication more than doubles

peak throughput for 1KB and 10KB requests.

6.6 Discussion

Separating the stages in the UpRight architecture facilitates a clean and modular

design and implementation. The separation is a logical separation only and there

is no fundamental reason to not colocate an authentication, order, and execution

replica on the same machine. When this is done, the replicas communicate as if

they are all on distinct machines8. It is tempting to bind colocated replicas to each

other more tightly in order to eliminate the intra-stage communication steps, espe-

cially the all-to-one authentication-to-order and all-to-all order-to-execution steps.

This temptation is misguided, however, as these communication steps are intrinsic

to important properties of our design. The authentication-to-order step allows us

to order request hashes rather than full request bodies and avoid the dangers of in-

consistently authenticated client requests without relying on digital signatures while

the order-to-execution step allows us to ensure that no replica is ever required to

roll back application state.

The authentication stage is responsible for authenticating requests issued by

clients and caching the bodies of those requests until they are ordered. The for-

mer responsibility simplifies the protocol for agreeing on the order of batches by

ensuring that any request deemed valid by a correct primary will also be deemed

valid by a correct replica (discussed in Section 3.3 and Section 6.2) while the latter

responsibility reduces the network bandwidth required when agreeing on the batch

execution order. Removing the all-to-one communication between the authenti-

cation stage and the order stage primary effectively eliminates the authentication

stage from the architecture and would require the agreement protocol to order client

requests, increasing inter-order-stage bandwidth and storage costs, and either use

digital signatures to authenticate client requests or implement the code to handle

the corner case where a client request is inconsistently authenticated (or suffer the

consequences observed in Section 3.6.2).

The all-to-all communication between the order and execution stages ensures

8An obvious optimization in that case is to send messages to colocated replicas using memory
channels rather than relying on the network infrastructure.

148

that the execution replicas only execute a batch of requests when that batch is def-

initely the next batch in the sequence. One important side effect of this design is

that the execution replicas are never required to roll application state back. While

rolling application state back is feasible, the standard mechanism used to roll appli-

cation state back is to load an old checkpoint and then replay the requests since the

old checkpoint. This can be an expensive activity and is one that should be avoided.

In order to maintain this property of no application roll back with the order and

execution stages merged, the replicas could not execute batches until after the pre-

pare phase completed—merging the order and execution stages would not reduce

the required number of message delays and could actually increase the total network

traffic since there are always at least as many order replicas as execution replicas.

Of course, if an application can support fine grained checkpoints and roll back then

it may be tenable to allow the execution replicas to execute batches speculatively,

rather than rely on speculation simply to speed the learning process.

6.7 Conclusion

This chapter describes the replicated implementation of the authentication, order,

and execution stages specified in Chapter 5. The key to understanding the design

of each stage is understanding the problem of consensus and the impact that the

context that consensus is being solved in has on the number of required replicas.

The authentication, order, and execution stages each implement the acceptors for

one or more instances of consensus. Once those instances are identified, the design

of each stage is straightforward.

Understanding the mapping between each stage and consensus allows us to

implement each stage with a minimal number of replicas and also to identify and fix

problems with previous systems that attempt to separate the stages of state machine

replication.

In the context of this chapter, UpRight fault tolerance is a fact of the imple-

mentation and design. The next chapter describes our experience incorporating the

UpRight library into HDFS and ZooKeeper. The value of the flexibility of UpRight

fault tolerance will be discussed in that context.

149

Chapter 7

UpRight Applications

The previous chapters have focused on the challenges of implementing the library

specification provided in Chapter 4. This chapter, in contrast, focuses on our expe-

riences adapting the ZooKeeper distributed coordination service [108] and Hadoop

distributed file system (HDFS) [43] to be compatible with the UpRight library. Our

goal in this chapter is to use these two systems as case studies to demonstrate three

points:

1. The application changes required to make existing applications UpRight are

small in scope and complexity.

2. UpRight applications provide flexible fault tolerance—a single code base can

provide different levels of crash and Byzantine fault tolerance through simple

modifications to a configuration file.

3. The performance of UpRight applications is competitive with the performance

of the unmodified code bases.

While the second point can be objectively demonstrated, the first and third are

largely subjective and are demonstrated through observation and experience reports.

While the experiences reported in this chapter are specific to our two case studies,

we believe the lessons learned are applicable to other applications for which UpRight

is likely to be of interest.

Recall that we specified a set of properties to be maintained by the applica-

tion in Chapter 4. Intuitive statements of these properties are shown in Table 7.1 for

150

APPS1
Only requests contained in batches received from the library
are executed.

APPS2 Requests are executed deterministically

APPS3 Checkpoints are generated deterministically

APPS4
Loading a checkpoint puts the application into the state
it was in when the checkpoint was generated.

APPL1 The function call execute(batch) returns.

APPL2 The function call takeCP () returns.

APPL3 The function call loadCP () returns.

Table 7.1: Informal statement of application requirements.

easy reference. The primary challenge we face in this chapter is adapting ZooKeeper

and HDFS to meet these requirements, namely to provide deterministic execution

(APPS2) and on-demand deterministic checkpoint generation (APPS3,4). The UpRight

library, because it is implemented in Java, implicitly requires applications to be writ-

ten in Java though there is no fundamental reason that the library cannot be ported

to support applications written in other programming languages.

Application requirement APPS1 requires the application to process only valid

requests, that is requests delivered to the application by the by the replication

library, and is trivial to maintain.

Application requirement APPS2 requires the application to execute batches

deterministically—given an application state and a batch of requests, the appli-

cation should always produce the same set of responses and end in the same ap-

plication state. We employ standard techniques for ensuring deterministic request

execution [1, 18, 24, 26, 49, 50, 86, 92, 104, 107] when modifying ZooKeeper and

HDFS to fulfill this requirement.

Application requirements APPS3 and APPS4 require the application to produce

determinist checkpoints on demand. As discussed at the end of Section 5.3.2, gen-

erating application checkpoints on demand plays an important role in bounding the

state stored by the UpRight library and bringing “slow” replicas up to speed. We

suspect that applications for which replication is appropriate already rely on some

form of checkpointing to handle power outages and other transient failures; our

experiences with ZooKeeper and HDFS reinforce this belief. However, our experi-

ences indicate two challenges to providing deterministic on demand checkpoints as

required by the UpRight library. First, the checkpoints are not always deterministic

151

or complete—HDFS stores some required information as soft state and relies on

an asynchronous protocol to replenish that state following a transient crash while

ZooKeeper creates fuzzy snapshots that are equivalent but not identical. Second, ap-

plications are generally tuned to generate checkpoints at a much slower rate (10,000s

of requests) than the UpRight library (100s of requests). To address the first chal-

lenge, we modify the native HDFS and ZooKeeper to provide complete and deter-

ministic checkpoints on demand. We address the second challenge by implementing

a generic log-based checkpointing mechanism that combines large-granularity appli-

cation checkpoints with a batch log to produce the fine-grained checkpoints required

by the UpRight library.

Note that the requirement that the application generate deterministic check-

points on demand departs from the application requirements imposed by most pre-

vious libraries [1, 18, 24, 26, 49, 50, 86, 92, 104, 107]. These libraries do not expose

checkpointing to the application and instead require the application developer to

store relevant application state in a memory space managed by the replication li-

brary. The replication library, in turn, handles checkpoint generation and rollback

without any application support. The primary drawback to this approach is that it

can require significant parts of the application to be rewritten. In contrast, the re-

quirement that the application implement its own checkpointing actually facilitates

reuse of existing functionality.

We approach the challenges of modifying an application using the framework

shown in Figure 7.1. From the application developer’s perspective, the UpRight

library is a black box. The application developer’s sole responsibility is attaching

the application to the library—the application server must attach to the execution-

stage and each application client attaches to a distinct library client instance. We

conceptually divide the execution stage and client into three distinct components to

facilitate this process:

1. A generic shim: the shim moderates communication between the stages in

the UpRight architecture. The shim implements the execution stage of the

UpRight architecture and exports a simple API to the application.

2. Application-specific glue: The application-specific glue is the bridge between

the UpRight library and the application. it is the one part of the system

where knowledge of both how the application works and awareness of repli-

152

Execution
 Replicas

Shim

G
lue Application

Server

Shim

G
lue Application

Server

Shim

G
lue Application

Server

Sh
im

G
lu
e

Application
Client

Client

UpRight Library

Figure 7.1: UpRight application architecture from an application developer per-
spective. The UpRight library is a black box with a well defined interface. At both
the client and the server, the developer implements application-specific glue that
connects the library shim to the original application.

cation are mixed. The glue contains the application-specific knowledge neces-

sary for replication: demuxing request batches, maintaining and constructing

application-specific instantaneous checkpoints, identifying which state must

be transferred in order to load a checkpoint, etc. At the client stage the glue

performs appropriate request pre-processing and response post-processing.

3. The application: the application is the (mostly) unmodified application. The

application is responsible for providing deterministic execution and determin-

istic checkpoints. Our goal is to keep changes to the application to a minimum

and isolate the application awareness of replication in the glue.

The rest of this chapter contains six sections. Section 7.1 provides an overview

of what is needed to provide deterministic request execution that satisfy APPS1,

APPS2, and APPL1. Section 7.2 describes a generic checkpoint management scheme

that we adapt for use with both ZooKeeper and HDFS to provide APPS3, APPS4,

APPL2, and APPL3. Section 7.3 describes specifics of our experience with HDFS and

reports on observed performance. Section 7.4 describes specifics of our experience

153

with ZooKeeper and reports on observed performance. Section 7.5 summarizes our

experiences with ZooKeeper and HDFS and highlights the key lessons learned.

The Java APIs for the client and server shims and glues can be found in

Appendix B.

7.1 Request Processing

We identified three main challenges in ensuring that batch execution meet the re-

quirements of APPS1 and APPS2. APPS1, unsurprisingly, was straightforward. Enforc-

ing APPS2 required us to (a) demux batches of requests into individual requests, (b)

handle sources of nondeterminism including PRNG seeds and system time, and (c)

address challenges associated with multi-threading. We report on the techniques we

found sufficient in our work with HDFS and ZooKeeper. Note that the experiences

we report here and in the rest of this chapter are pragmatic responses to the chal-

lenges that we encountered and are not driven by first principles. Nonetheless, we

believe that these challenges (and our solutions) are likely to be relevant to many

replicated applications.

Our core strategy to providing deterministic execution is ensuring that our

applications execute requests deterministically and sequentially based on the or-

der they appear in the batch. Ensuring deterministic execution is a well explored

research area [48, 73]. Our approach to this problem is guided by the goal of mak-

ing minimal changes to the application and the run-time, rather than identifying a

principled and potentially invasive approach that can automatically be applied to

an arbitrary application.

Demuxing batches. The UpRight library provides the application with batches

of requests. The glue/application must demux the batches into individual requests

for execution. We take the simple approach of interpreting the batch sequentially—

the first request is executed first, the second is executed second, and so forth.

Nondeterminism. Many applications rely on real time or random numbers as

part of normal operation. These factors can be used in many ways including garbage

collecting soft state, naming new data structures, or declaring uncommunicative

nodes dead. Each request issued by the UpRight shim to the application server glue

154

is accompanied by a time and random seed to be used in conjunction with executing

the request [18]. UpRight applications must be modified to rely on these specified

times rather than the local machine time and to use the random seed as appropriate

when using a pseudo random number generator.

Multithreading. Parallel execution allows applications to take advantage of hard-

ware resources, but application servers must ensure that the actual execution is

equivalent to executing the request batches sequentially in the order specified by

the UpRight library. The simplest way to enforce this requirement is for the glue

to complete execution of batch no before the execution of batch no + 1 and request

i of batch no before beginning execution of request i + 1. Although we take the

simple approach of executing batches and requests sequentially, more sophisticated

glue may process the requests of an individual batch in parallel [50, 100] or may

even support parallel execution of batches as long as all replicas generate the same

output from a set of ordered batches.

Some systems include “housekeeping” threads that asynchronously modify

application server state. For example, an HDFS server maintains a list of live data

servers, removing an uncommunicative server from the list after a timeout. An

application must ensure that housekeeping threads run at well-defined points in the

sequence of requests by, for example, scheduling such threads at specific points in

virtual time rather than at periodic real time intervals.

7.2 Checkpoint Generation

In an asynchronous system, even correct server replicas can fall arbitrarily behind,

so state machine replication frameworks must provide a way to checkpoint a server

replica’s state, to certify that a quorum of server replicas have produced identical

checkpoints, and to transfer a certified checkpoint to a node that has fallen be-

hind [18]. Recall from the discussions in Chapters 4 and 6 that the UpRight library

periodically tells the server application to checkpoint its state to persistent memory

and asks for a cryptographic hash that uniquely identifies that stable state. Further,

if a replica falls behind, the library (i.e., the server shim at that replica) communi-

cates with the other server shims to retrieve the most recent checkpoint, restarts the

server application using that state, and finally replays the log of ordered requests

155

after that checkpoint to bring the replica to the current state.

Given this context for how and when application checkpoints are generated

and applied, there are several pragmatic concerns to consider. Application check-

points must be (1) inexpensive to generate because the replication framework re-

quests checkpoints at a high frequency, (2) inexpensive to apply because the repli-

cation framework uses checkpoints in both the rare case of a machine crashing and

restarting and the more common case of a machine falling behind on message pro-

cessing, (3) deterministic because correct nodes must generate identical checkpoints

for a given request sequence number, and (4) nonintrusive on the codebase because

we must not require extensive modifications of applications.

There is tension among these requirements. For example, generating check-

points more frequently increases generation cost but reduces recovery time (because

the log that must be applied will be correspondingly shorter.) For example, re-

quiring an application to store its data structures in a memory array checksummed

with a Merkle tree [18] can reduce checkpoint generation and fetch time (since only

changed parts need be stored or fetched) but may require intrusive changes to legacy

applications.

We resolve this tension through a generic checkpoint glue library that imple-

ment a checkpoint/delta approach and relies on a helper process for deterministic

checkpoint generation. The checkpoint/delta approach allows the generic checkpoint

glue to provide the UpRight library with the required frequent checkpoints while

only rarely paying the high cost of generate the native application checkpoints.

We use the generic checkpoint glue with both HDFS and ZooKeeper. The

generic checkpoint glue is suitable for use with other applications, though an appli-

cation specific glue can implement a different checkpoint strategy [18, 104] if needed.

Checkpoint/delta approach. The checkpoint/delta approach seeks to minimize

intrusiveness to legacy code by reusing existing application functionality and inter-

posing a small amount of batch logging.

We posit that most crash fault tolerant services will already have some means

to checkpoint their state. So, to minimize intrusiveness, to lower barriers to adop-

tion, and to avoid the need for projects to maintain two distinct checkpoint mecha-

nisms, we wish to use applications’ existing checkpoint mechanisms. Unfortunately,

the existing application code for generating checkpoints is likely to be suitable for

156

infrequent, coarse grained checkpoints. For example, both the HDFS and Zookeeper

applications produce their checkpoints by walking their important in-memory data

structures and writing their contents to persistent memory.

The checkpoint/delta approach uses existing application code to take check-

points at the approximately the same coarse-grained intervals the original systems

use. We presume that these intervals are sufficiently long that the overhead is ac-

ceptable. To produce the more frequent checkpoints required by the UpRight shim,

the glue library augments these infrequent, coarse-grained, application checkpoints

with frequent fine-grained deltas. A delta is the log of batches since the previous

delta; the log of deltas compose to form a log of batches from one checkpoint to the

next. Figure 7.2 presents the checkpoint/delta approach graphically.

A naive implementation of the checkpoint/delta approach produces check-

points as shown in Figure 7.2. Specifically, each time a coarse-grained checkpoint

is produced, that checkpoint is returned to the library. This naive approach has

two fundamental limitations. First, it can introduce periodic latency spikes into the

system if generating the coarse-grained checkpoint is a very expensive operation.

Second, if an execution replica begins loading a checkpoint/delta around the same

time that a coarse-grained checkpoint is produced, the replica is likely to fetch both

the new and old coarse-grained checkpoints.

We avoid these two issues by structuring the checkpoints produced by the

checkpoint/delta approach in a similar fashion to the checkpoint and batch logs

maintained by the order stage (Section 5.3.1): a checkpoint consists of one course-

grained checkpoint and sufficient deltas to reach the next course-grained checkpoint,

but not enough to reach the subsequent course-grained checkpoint, as shown in

Figure 7.3. This increases the time budget available to the application to produce

the coarse-grained checkpoint before it is needed by the system. It also makes it

possible for a recovering replica to load a single coarse-grained checkpoint and as

many logs as necessary to catch up with the rest of the system, even if multiple

coarse-grained checkpoints are generated while the recovery takes place.

Within the checkpoint/delta approach, the application’s checkpoints must be

produced deterministically. We overview several approaches below: helper processes,

stop and copy, OS fork, and application copy-on-write. We use the helper process

approach in our HDFS and ZooKeeper prototypes.

157

(a)

(b)

(c)

(d)

Original
Application
Checkpoint
@ batch n

Delta
(n,n+100)

Delta
(n+100,
 n+200)

Delta
(n+200,
 n+300)

Delta
(n+300,
 n+400)

Figure 7.2: The checkpoint/delta approach for managing application checkpoints.
Original application checkpoints are taken infrequently, but the library requests a
checkpoint every 100 batches. (a) shows the original application checkpoint taken
after executing batch n. (b) shows the checkpoint returned to the replication library
after executing batch n+100. This checkpoint consists of the application checkpoint
at n and the log of the next 100 batches. (c) shows the checkpoint returned to the
replication library after executing batch n+ 200. (d) shows the checkpoint returned
to the replication library after executing batch n+ 400.

158

... ...

Checkpoint 1

Checkpoint 2

Checkpoint 3

Checkpoint 4

Figure 7.3: Checkpoint-deltas returned to the application. Each returned
checkpoint-delta consists of a coarse grained application checkpoint and sufficient
deltas to produce the next coarse grained checkpoint.

Helper process. The helper process approach produces checkpoints asynchronously

to avoid pausing request execution and seeks to minimize intrusiveness to legacy

code.

To ensure that different replicas produce identical checkpoints without having

to pause request processing, each node runs two slightly modified instances of the

server application process—a primary and a helper—to which we feed the same

series of requests. We deactivate the checkpoint generation code at the primary.

For the helper, we omit sending replies to clients, and we pause the sequence of

incoming requests so that it is quiescent while it is producing a checkpoint.

The helper process approach requires us to run two copies of the application

at each replica. Surprisingly, our experiences with ZooKeeper and HDFS indicate

that the overheads of this approach are not unmanageable.

Stop and copy. If an application’s state is small and an application can tolerate

a few tens of milliseconds of added latency, the simplest checkpoint strategy is to

pause the arrival of new requests so that the application is quiescent while it writes

it state to disk. Since we eliminate other sources of nondeterminism as described

above, this approach suffices to ensure that replicas produce identical checkpoints

for a given sequence number.

Unfortunately, stop and copy is not suitable for applications that either (a)

have a large amount of application state or (b) are not compatible with periodic

159

latency spikes.

OS fork. Operating systems provide a fork() call that can be used to make an

instantaneous copy of a process. One approach is to use fork() to create a copy of

the application and then generate the checkpoint from the copy before destroying

the auxiliary process.

Unfortunately, on most operation systems fork() does not interact properly

with the JVM and it is not uncommon to see the child process crash due to unfor-

tunately timed garbage collection or some other background process.

Application copy on write. Rather than use a helper process to produce a

deterministic checkpoint, applications can be modified so that their key data struc-

tures are treated as copy on write while checkpoints are taken [19, 18, 86]. This

approach can have lower performance overheads, but can require extensive applica-

tion modification to support.

7.3 HDFS case study

The Hadoop Distributed File System (HDFS) [43] is an open-source cluster file

system modeled loosely on the Google File System [39]. It provides parallel, high-

throughput access to large, write-once, read-mostly files.

An HDFS deployment comprises a single NameNode and many DataNodes.

Files are broken into large (default 64MB) blocks, and by default each block is stored

on three DataNodes. The NameNode keeps the file name to block ID mappings

and caches the block ID to DataNodes mappings reported by DataNodes as soft

state. We overview the interactions between NameNodes, DataNodes, and clients

in Section 7.3.1.

UpRight-HDFS enhances HDFS by (1) eliminating a single point of failure

and improving availability by supporting redundant NameNodes with automatic

failover and (2) providing end-to-end Byzantine fault tolerance against faulty clients,

DataNodes, and NameNodes.

7.3.1 Baseline system

In this section we overview the basic operation of HDFS.

160

To write a new block, a client requests a new block ID from the NameNode,

the NameNode selects a block ID and a list of DataNodes, the client sends a write

comprising the block ID, the data, a list of 4-byte CRC32 checksums for each 512

bytes of data, and a list of DataNodes to the nearest listed DataNode, that DataN-

ode stores the data and checksums, forwards the write to the next DataNode on the

list, and reports the completed write to the NameNode. After the DataNodes ac-

knowledge the write, the client sends a write complete request to the NameNode; the

write complete request returns once the NameNode knows that the data has reached

the required number of DataNodes. To read a block, a client requests a list of the

block’s DataNodes from the NameNode, sends the read request to a DataNode, and

gets the data and checksums in reply.

DataNodes send periodic heartbeats to the NameNode. After a number of

missed heartbeats, the NameNode declares the DataNode dead and replicates the

failed node’s blocks from the remaining copies to other DataNodes.

The NameNode checkpoints its state to a file with the help of a Secondary

NameNode. The NameNode writes all transactions to a series of log files. Peri-

odically, the Secondary fetches the most recent log file and the current checkpoint

file. The Secondary then loads the checkpoint, replays the log, and writes a new

checkpoint file. Finally, the Secondary sends the new checkpoint file back to the Na-

meNode, and the NameNode can reclaim the corresponding log file. If a NameNode

crashes and recovers, it first loads the checkpoint and then replays the log.

The fault tolerance of the baseline HDFS system is not cleanly categorizable

as “crash” or “Byzantine.” The checksums at the DataNodes protect against some

but not all Byzantine failures. For example, if a DataNode suffers a fault that

corrupts a disk block but not the corresponding checksum, then a client would

detect the error and reject the data, but if a faulty DataNode returns the wrong

block and also returns the checksum for that wrong block, a client would accept

the wrong result as correct. In its default configuration, HDFS can ensure access to

all data even if two DataNodes fail by omission, and it can ensure that it returns

correct data for some but not all commission failures of up to two DataNodes. We

will summarize HDFS DataNodes’ fault tolerance as u = 2 r = 0/2.

HDFS’s Secondary NameNode’s role is just to compact the log into the check-

point file, and there is no provision for automatically transferring control from the

NameNode to the Secondary NameNode. If the NameNode suffers a catastrophic

161

failure, one could imagine manually reconfiguring the system to run the NameNode

on what had been the Secondary’s hardware, but recent updates could be lost. An

HDFS NameNode’s fault tolerance is u = 0 r = 0.

7.3.2 UpRight-HDFS

Given the UpRight framework, adding Byzantine fault tolerance to HDFS is straight-

forward.

UpRight-NameNode

Adapting the HDFS NameNode to work with UpRight requires modifications to

less than 1750 lines of code. The bulk of these changes, almost 1600 lines, relates

to checkpoint management and generation. In particular, we add about 730 lines

to include additional state in checkpoints. For example, we include mappings from

block IDs to DataNodes in a NameNode’s checkpoints—although we still treat these

mappings as soft state that expires when a DataNode is silent for too long, including

this state in the checkpoint ensures that NameNode replicas processing a request

agree on whether the state has expired or not. In addition, we add about 830 lines

to modify the logs to record every operation that modifies any NameNode state

rather than only the modifications to the file ID to block ID mapping.

The other major change needed to make the HDFS NameNode compatible

with UpRight is removing sources of nondeterminism from its request execution

path. These changes affect under 150 lines and fall into 3 categories. We replace

5 references to local system time with references to the time provided by the order

nodes for the current batch of request. Similarly, we modify 20 calls to random() so

that they are all seeded by the agreed upon order time. The final step to removing

nondeterminism is disabling the threads responsible for running a variety of periodic

background jobs based on System.time() and instead executing those tasks based

on the time specified by the order nodes.

Clients. The modified HDFS NameNode corresponds to the application server in

the UpRight library deployment. When deploying the service, we treat both HDFS

clients and and HDFS DataNodes as application clients. Reads and writes issued

by HDFS clients are processed as client requests in the UpRight library. Similarly,

162

DataNode heartbeats and notifications that a write has completed are processed as

client requests in the UpRight library.

UpRight-DataNode

We originally imagined that we would replicate each DataNode as a BFT state

machine and reduce the application-level data replication in light of the redundancy

in the BFT DataNode “supernodes.” Although academically pure, simply using a

black box state machine replication library to construct BFT data nodes would have

changed the replication policies of the system in significant and perhaps undesirable

ways. For example, HDFS’s default data placement policy is to store the first

copy on a node in the same rack as the writer, the second copy on a node in

another rack, the third copy on a different node in the same rack as the second, and

additional copies on randomly selected, distinct nodes. Further, if a DataNode fails

and is replaced, HDFS ends up spreading the recovery cost approximately evenly

across the remaining DataNodes. Additionally, if a new DataNode is added, the

system gradually makes use of it. Although one could imagine approximating some

of these policies within a state machine replication approach, we instead leave the

(presumably) carefully-considered HDFS DataNode replication policies in place (i.e.,

3-way replication). These policies ensure that block writes complete if at most u = 0

of the selected DataNodes are faulty and reads complete if at most u = 2 of the

selected DataNodes are faulty. Our modifications further ensure that a reads only

return correct values, i.e., r = 3.

To that end, our UpRight-DataNode makes a few simple changes to the

existing DataNode. The main changes are to (1) add a cryptographic subblock hash

on each 64KB subblock of each 64MB (by default) block and a cryptographic block

hash across all of a block’s subblock hashes and (2) store each block hash at the

NameNode. In particular, DataNodes compute and store subblock and block hashes

on the writes they receive, and they report these block hashes to the NameNode

when they complete the writes. A client includes the block hash in its write complete

request to the NameNode, and the NameNode commits a write only if the client and

a sufficient number of DataNodes report the same block hash. As in the existing

code, clients retry on timeout, the NameNode eventually aborts writes that fail to

complete, and the NameNode eventually garbage collects DataNode blocks that are

163

not included in a committed write.

To read a block, a client fetches the block hash and list of DataNodes from

the NameNode, fetches the subblock hashes from a DataNode, checks the subblock

hashes against the block hash, fetches subblocks from a DataNode, and finally checks

the subblocks against the subblock hashes; the client retries using a different DataN-

ode if there is an error.

These changes require us to change or add 189 LOC at the client, 519 lines

at the DataNode, and 238 lines at the NameNode.

Finally, we add the expected MACs and MAC authenticators to all messages

with the exception of subblock hash and subblock data read replies from DataNodes

to clients, which are directly or indirectly checked against the block hash from the

NameNode.

Programmer background. The modifications to HDFS were performed by a

junior graduate student (Sangmin Lee) with minimal knowledge of the internals of

the UpRight library. Development took a total of approximately three months, most

of that time was spent learning how the internals of the HDFS codebase work.

7.3.3 Evaluation

In this section we compare UpRight-HDFS with the original. Unless otherwise

noted, experiments run on subsets of 107 Amazon EC2 small instances [6]. In each

experiment, we have 50 DataNodes and 50 clients, and each client reads or writes

a series of 1GB files. For both systems, we replicate each block to 3 DataNodes,

giving u = 2, r = 2/0 for HDFS and u = 2 r = 2 for UpRight. HDFS’s NameNode

is a single point of failure (u = r = 0). For the UpRight-HDFS runs, we configure

the NameNodes for u = r = 1 and co-locate the RQ and order nodes. To evaluate

UpRight’s ability to support CFT configurations, we also look at a u = 1 r = 0

configuration.

Figure 7.4 shows the throughput achieved with 50 clients and DataNodes.

For both systems, write throughput is lower than read throughput because each

block is written to three disks but read from one. Even with r = 1, UpRight-

HDFS’s read performance is approximately equal to that of HDFS’s because only

one DataNode is required to read and send the data. With r = 1, UpRight-HDFS’s

write performance is over 70% of HDFS’s; the slowdown on writes appears to be

164

HDFS
 CFT HDFS
 BFT HDFS

 0

 200

 400

 600

 800

 1,000

Write Read

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Figure 7.4: Throughput for HDFS and UpRight-HDFS.

 UpRight Core

 Data Node

Name Node

 0

 200

 400

 600

 800

 1,000

 1,200

H
D

F
S

C
F

T
_
H

D
F

S

B
F

T
_
H

D
F

S

H
D

F
S

C
F

T
_
H

D
F

S

B
F

T
_
H

D
F

S

M
cy

cl
es

/G
B

Write Read

Figure 7.5: CPU consumption (jiffies per GB of data read or written) for HDFS and
UpRight-HDFS.

165

due to added agreement for the replicated NameNode and the overheads of MAC

computations for the DataNodes. With r = 0, the MAC computations are omitted

and write performance is over 80% of HDFS’s; the compensation for this slowdown

is the ability to remain available even if a NameNode crashes.

Figure 7.5 shows the CPU consumption for these workloads. When r = 1,

UpRight-HDFS’s CPU costs are within a factor of 2.5 of the original for writes and

within a factor of two for reads. Note that CPU consumption is one of the worst

metrics for UpRight-HDFS; other system resources like the disks and networks have

much lower overheads. When r = 0, the overheads are smaller—factors of 1.1 and

1.6 for writes and reads, respectively. We also note that the computational cycles

for these workloads are dominated by the work performed at the DataNodes and

not the NameNode replicated with the UpRight library.

 0

 10

 20

 30

 40

 50

 0 5 10 15 20 25 30

R
eq

ue
st

 I
D

Time (second)

namenode corrupted

namenode restarted

file read completely

 0

 10

 20

 30

 40

 50

 0 5 10 15 20 25 30

R
eq

ue
st

 I
D

Time (second)

namenode corrupted

namenode restarted

file read completely

(a) (b)

Figure 7.6: Completion time for requests issued by a single client. In (a), the HDFS
NameNode fails and is unable to recover. In (b), a single UpRight-HDFS NameNode
fails, and the system continues correctly.

UpRight-HDFS incurs additional computational overheads for lower perfor-

mance than HDFS. These costs come with a benefit as demonstrated by Figure 7.6.

The two graphs plot completion time for requests issued by a single client that issues

each request .5 seconds after the previous request completes. After 10 seconds of

this workload we kill a NameNode and in the process corrupt its checkpoint log.

We then restart the NameNode after an additional 5 seconds. Progress with the

HDFS NameNode stops at 10 seconds when the log becomes corrupted. When the

NameNode restarts 5 seconds later it immediately crashes again after attempting

166

to load the corrupted log. In UpRight-HDFS, the absence of a single NameNode

does not prevent progress. Additionally, when the failed NameNode restarts, it

fetches a valid state from the other replicas and resumes correct operation rather

than attempting to load its corrupted local log.

7.3.4 MapReduce

MapReduce is an application frequently run on top of HDFS. In Figure 7.7 we report

the execution times of the TeraSort and TeraGen MapReduce workloads. TeraGen

generates 100,000,000 random 100 byte entries and TeraSort sorts the generated

data.

This set of experiments is run on a collection of 4 core 2.4Ghz processors

and 8GB of RAM. There are 20 DataNodes in the experiments, with 20 map tasks

for TeraGen and 20 reducers for TeraSort all running on the DataNodes. HDFS is

configured to use 3 way data replication.

Our current UpRight implementation allows clients to have at most one re-

quest outstanding at any time and uses a single proxy client per machine, regardless

of how many tasks are running on that machine. In this experiment, each mapper,

reducer, and DataNode process on a single machine shares one UpRight client proxy.

Our results indicate that the UpRight library imposes a modest overhead

on overal execution time. We believe this overhead can be reduced by improving

the implementation of both the UpRight library and the interactions between the

application and library at the client side application. Specifically, we believe that

engineering UpRight to support multiple outstanding requests per client or to have

a client per task rather than a single client per machine would improve performance.

7.4 ZooKeeper case study

ZooKeeper [108] is an open-source coordination service that, in the spirit of Chubby [12],

provides services like consensus, group management, leader election, presence pro-

tocols, and consistent storage for small files.

ZooKeeper guards against omission failures. However, because data centers

typically run a single instance of a coordination service on which many cluster

services depend [19], and because even a small control error can have dramatic

167

HDFS

UR HDFS 1/0

UR HDFS 1/1

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

TeraGen TeraSort

E
x
e
c
u
ti

o
n
 T

im
e
 (

S
e
c
o
n
d
s)

Figure 7.7: Execution time for TeraGen and TeraSort MapReduce workloads.

effects [97], investing modest additional resources to protect the service against a

wider range of faults may be attractive.

7.4.1 Baseline system

A ZooKeeper deployment comprises 2u + 1 servers; a common configuration is 5

servers for u = 2 r = 0. Servers maintain a set of hierarchically named objects in

memory. Writes are serialized via a Paxos-like protocol, and reads are optimized to

avoid consensus where possible [18]. A client can set a watch on an object so that

it is notified if the object changes unless the connection from the client to a server

breaks, in which case the client is notified that the connection broke.

For crash tolerance, each server synchronously logs updates to stable stor-

age. Servers periodically produce fuzzy snapshots to checkpoint their state: a thread

walks the server’s data structures and writes them to disk, but requests concurrent

with snapshot production may alter these data structures as the snapshot is pro-

duced. If a ZooKeeper server starts producing a snapshot after request sstart and

finishes producing it after request send, the fuzzy snapshot representing the system’s

state after request send comprises the data structures written to disk plus the log of

updates from sstart to send.

168

7.4.2 UpRight-ZooKeeper

UpRight-ZooKeeper is based on ZooKeeper version 3.0.1. Given the UpRight frame-

work, adding Byzantine fault tolerance to ZooKeeper to produce UpRight-ZooKeeper

is straightforward. Our shims use standard techniques to add authenticators to mes-

sages and to send/receive them to/from the right quorums of nodes. We use the

techniques described above to support watches via server push, to make time-based

events happen deterministically across replicas at the same virtual time, and to

canonicalize read-only replies. ZooKeeper’s fuzzy snapshots align well with our

hybrid checkpoint/delta approach; we modify ZooKeeper to make the snapshots

deterministic and identical across replicas using helper-process approach.

The original ZooKeeper server comprises 13589 lines of code (LOC). We add

or modify 604 lines to integrate it with UpRight. The bulk of these changes in-

volved modifying the checkpoint generation code to include all required state and

integrate a helper process for use with the hybrid checkpoint/delta approach (347

LOC), glue code to handle communication between ZooKeeper and the UpRight

and checkpoint/delta libraries (129 LOC), and making references to time and ran-

domness deterministic across replicas (66 LOC). We also deactivate or delete some

existing code. In particular, we delete 342 LOC that deal with asynchronous IO and

multithreading, and we no longer use 5644 LOC that handle ZooKeeper’s original

replication protocols.

Programmer background. The modifications to ZooKeeper were performed by

a pair of junior graduate students (Manos Kapritos and Yang Wang) with minimal

knowledge of the internals of the UpRight library. Development took a total of

approximately three months, most of that time was spent learning how the internals

of the ZooKeeper codebase work.

7.4.3 Evaluation

We evaluate ZooKeeper 3.0.1 and UpRight-ZooKeeper running on the hardware

described in Section 6.5. For ZooKeeper, we run with the default 5 servers (u =

2 r = 0). We then configure UpRight-ZooKeeper to tolerate as many or more

faults. In particular, we examine UpRight-ZooKeeper with u = 2 r = 1 for all

phases to minimize the replication cost of adding commission failure tolerance while

169

ZK

CFT ZK 2/0

 BFT ZK 2/1

 0

 10

 20

 30

 40

 50

 60

Write_Only Serial_Read 90/10_Mix

T
h

ro
u

g
h

p
u

t
(K

o
p

s/
s)

Figure 7.8: Throughput for UpRight-ZooKeeper and ZooKeeper for workloads com-
prising different mixes of 1KB reads and writes.

retaining at least ZooKeeper’s original omission failure tolerance. We also examine

a configuration that we refer to as u =2+ r = 1 that has u = 2 r = 1 for the RQ

and order stages and uexec = 3 rexec = 1 for the execution stage; this configuration

retains ZooKeeper’s default 5 execution replicas. The results presented here rely

on the helper process approach for checkpointing. We observe similar performance

when using copy on write techniques.

In addition, we evaluate UpRight-ZooKeeper’s performance in CFT config-

urations (r = 0) to explore whether UpRight would be a suitable for new applica-

tions that want to support both CFT and BFT configurations using a single library.

We evaluate the performance of UpRight-ZooKeeper with u = 2 r = 0 to match

ZooKeeper’s omission tolerance with the minimum degree of replication. We also

evaluate a configuration that we refer to as u =2+ r = 0 that has u = 2 r = 0

for the RQ and order stages and uexec = 4 rexec = 0 for the execution stage; this

configuration retains ZooKeeper’s default 5 execution replicas.

Figure 7.8 shows throughput for different mixes of 1KB reads and writes.

For writes, the systems sustain several thousand requests per second. Nearly

a decade of effort to improve various aspects of BFT agreement [1, 18, 24, 26, 49, 50,

92, 100, 104, 107] have paid off: when r = 1, UpRight-ZooKeeper’s write throughput

is 77% of ZooKeeper’s for both u = 2 and u =2+. UpRight also appears to provide

competitive write performance for CFT configurations: for u = 2 or u =2+ and

r = 0 UpRight-ZooKeeper’s throughput with r = 0 and either u = 2 or u =2+ is

170

more than 111% of ZooKeeper’s.

For reads that can accept serializability for their consistency semantics,

both ZooKeeper and UpRight-ZooKeeper exploit the read-only optimization to skip

agreement and issue requests to a quorum of r + 1 execution nodes that have pro-

cessed the reader’s most recent write. Both systems’ read throughputs are many

times their write throughputs, but in configurations where ZooKeeper queries fewer

execution nodes or has more total execution nodes, its peak throughput can be pro-

portionally higher. For example, when ZooKeeper sends read requests to 1 server

and spreads these requests across 5 execution replicas, we expect to see about 2.5

times the throughput of a configuration where UpRight-ZooKeeper sends read re-

quests to 2 servers (for r = 1) and spreads them across 4 execution replicas. When

UpRight-ZooKeeper is configured to tolerate commission failures, it pays additional

CPU overheads for cryptographic checksums but saves some network overheads by

having only one execution node send a full response and having the others send a

hash [18]. Overall, UpRight-ZooKeeper’s serializable read throughput ranges from

17.5 Kops/s to 43.4 Kops/s, which is 34% to 85% of ZooKeeper’s 51.1 Kops/s

throughput.

Although reading identical results from a properly chosen quorum of r + 1

servers can guarantee that the read can be sequenced in a global total order, the

position in the sequence may not be consistent with real time: a read by one client

may not reflect the most recently completed write by another. So, some applications

may opt for the stronger semantics of linearizability. For linearizable reads, UpRight-

ZooKeeper can still use the read only optimization, but it must increase the read

quorum size to nexec−rexec. To enforce linearizability the original ZooKeeper issues

a sync request through the agreement protocol and then issues a read to the same

server, which ensures that server has seen all updates that completed before the

sync.

The last group of bars examines performance for a mix of 90% serializable

reads and 10% writes. When UpRight-ZooKeeper is configured to tolerate r = 1

commission failures, its performance is over 66% of ZooKeeper’s. When it is config-

ured to tolerate omission failures only, its performance is comparable to ZooKeeper’s.

Although the throughputs of our BFT configurations are comparable to those

of the original CFT system, the extra guarantees come at a cost of resource consump-

tion. Figure 7.9 shows that each request consumes significantly more CPU cycles

171

 RQ

 Order

Execution

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

Z
K

C
F

T
_
Z

K
_
2
/0

B
F

T
_
Z

K
_
2
/1

Z
K

C
F

T
_
Z

K
_
2
/0

B
F

T
_
Z

K
_
2
/1

Z
K

C
F

T
_
Z

K
_
2
/0

B
F

T
_
Z

K
_
2
/1

M
cy

cl
es

/r
eq

u
es

t

Write Only Read Only 90/10 mix

Figure 7.9: Per-request CPU consumption for UpRight-ZooKeeper and ZooKeeper
for a write-only workload. The y axis is in jiffies. In our system, one jiffy is 4 ms of
CPU consumption.

under UpRight-ZooKeeper than under ZooKeeper. The graph shows per-request

CPU consumption when both systems are heavily loaded; we observe similar results

across a wide range of loads.

We note that although using Java rather than C for agreement only modestly

hurts our throughput for this application, it does significantly increase our resource

consumption. Judging by peak throughputs on similar hardware, agreement proto-

cols like PBFT and Zyzzyva may consume an order of magnitude fewer CPU cycles

per request than our Zyzzyvark implementation. Future work is needed to see if a

C realization of UpRight’s agreement protocol would provide a lower cost option for

deployments willing to shift from Java to C.

Figure 7.10 shows how throughput varies over time as nodes crash and re-

cover. For this experiment we compare against ZooKeeper 3.1.1 because it fixes

a bug in version 3.0.1’s log garbage collection that prevents this experiment from

completing. The workload is a series of 1KB writes generated by 16 clients, and

we compare ZooKeeper (u = 2 r = 0) with UpRight-ZooKeeper configured with

u =2+ r = 1. At times 30, 270, 510, 750, and 990 we kill a single execution node

and restart it 60 seconds later. At time 1230 we kill all execution nodes and restart

them 20 seconds later. Both systems successfully mask partial failures and recover

172

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 200 400 600 800 1000 1200 1400

T
hr

ou
gh

tp
ut

 (
R

eq
s/

se
c)

Time (seconds)

kill0 restart0 kill1 restart1 kill2 restart2 kill3 restart3 kill4 restart4

kill all
restart all

Zookeeper
UpRight Zookeeper

Figure 7.10: Performance v. time as machines crash and recover for ZooKeeper and
UpRight-ZooKeeper.

quickly after a system-wide crash-recover event.

7.5 Conclusion and Discussion

In this chapter we relate our experience modifying HDFS and ZooKeeper to be

compatible with the UpRight library. We take three lessons from our experience.

First, the changes required to make an existing (Java) application UpRight

compliant are modest in scope and do not require extensive knowledge of (BFT)

replication. In concrete terms, we modified approximately 2500 lines of code (out

of 37,000) in HDFS (between the NameNode and the DataNode) and 600 lines

of code (out of 13,500) in ZooKeeper. These modifications were made by junior

students that did not know the details of the replication library. They reported

that the ability to make the system fail stop by setting u = 0 and r = 1 facilitated

their development by highlighting the presence of non-determinism and aiding in

identifying the source of the non-determinism. We believe this is a step forward in

comparison to previous replication libraries that are either integrated tightly into the

173

application (i.e., ZooKeeper [108], Q/U [1], and Chubby [12]) or require extensive

application modifications to fit a library defined memory model (i.e., PBFT [18, 86],

Zyzzyva [49], Aardvark [24], and others [50, 104, 107]).

Second, building a replication library to provide UpRight fault tolerance

transforms the question of Byzantine or crash fault tolerance from a design decision

to a configuration decision. With a single library, and a single application code

base, we are able to provide Byzantine, crash, or hybrid fault tolerance. We believe

this is an important step to facilitating adoption of BFT replication in production

applications.

Finally, the performance of UpRight applications can be competitive with the

original code bases. Despite the fact that we made the conscious decision to keep

the application modifications simple and to reuse application functionality when

possible rather than optimizing the application and environment, we observe that

the performance of an UpRight system is within 25% of the performance of the

original system for most workloads.

174

Chapter 8

Background and state machine

replication

There is a large body of research on fault tolerance and state machine replication.

This thesis builds on much of that work and refines and incorporates ideas developed

by a multitude of other researchers.

Section 8.1 discusses the foundations of state machine replication. Section 8.2

discusses a variety of work on consensus and quorum systems that lies at the core

of most RSM protocols. Section 8.3 discusses contemporary replication libraries

developed as part of the effort to demonstrate that Byzantine fault tolerance and

poor performance are not synonymous. Section 8.4 discusses previous work related

to the performance of fault tolerant systems in the presence of failures. Section 8.5

discusses current commercial best practices for building reliable systems.

8.1 RSM approach

State machine replication is a powerful technique for building reliable services from

faulty components [52, 88]. The basic idea behind state machine replication is

simple: as long as every replica executes the same sequence of requests then correct

replicas will provide the same responses to those requests and the collection of

potentially faulty components can be viewed as a single correct node. There is a

large body of previous work on the development of asynchronous replicated state

machine (RSM) prototypes [1, 18, 24, 26, 49, 50, 92, 100, 104, 107] and deployed

175

systems [12, 108] based on the Paxos RSM protocol [53].

The primary objective of RSM protocols is to ensure that the end-to-end

service remains both safe, e.g. correct, and live, e.g. available, despite the failure

of individual replicas. The network connecting replicas in these systems is assumed

to be asynchronous and consequently capable of arbitrarily delaying, reordering, or

dropping messages. In asynchronous environments where nodes are allowed to fail,

it is impossible to insure that non-trivial systems will remain both safe and live [35].

RSM protocols are consequently designed to be fault tolerant. A protocol is fault

tolerant if, despite a bounded number of failures, it is (1) safe always and (2) live

provided that the network is sufficiently well behaved.

8.2 Consensus

The core unit of every RSM protocol is a consensus, or agreement, protocol. There

is a large body of work on synchronous [79, 61, 27, 84, 64, 38, 47, 29, 59] and

asynchronous [11, 15, 33, 65, 30, 13, 54, 56, 53, 54, 57, 58, 60, 69, 70, 68, 32, 35]

consensus that establishes when it is possible to solve consensus and the number of

replicas required.

While the full body of previous work on consensus informs our design and

implementation, the work by Lamport [56, 60], Dutta et al. [32], and Martin et

al. [68] is especially important. These works explore circumstances when the stan-

dard 3f + 1 replicas are not required to solve consensus and provide the foundation

for the protocols we use to replicate the authentication, order, and execution stages

of the UpRight architecture.

8.3 Recent RSM history

Our work builds on a number of previous asynchronous RSM prototypes [18, 42, 86,

1, 26, 45, 50, 49, 92, 104, 107].

Historically, BFT state machine replication was widely considered to be in-

efficient and fundamentally inappropriate for use in deployed systems. This belief

held until Castro and Liskov provided a practical BFT NFS implementation [18].

Their protocol, PBFT, is based on a three-phase commit protocol that uses MACs,

rather than digital signatures, for message authentications. Many subsequent BFT

176

RSM systems [86, 26, 42, 50, 49, 92, 104, 107] are inspired by PBFT.

The systems directly inspired by PBFT can be broken down into three cat-

egories. Systems in the first set [26, 49, 92, 42] attempts to optimize throughput

and latency by taking advantage of situations in which Byzantine consensus can be

solved using two, rather than three, phase commit [42, 49, 92] or without requiring

any all-to-all communication steps [26, 42]. Systems in the second set [104, 107]

reduce deployment costs by leveraging the disparity between the number of repli-

cas required to agree on the order of requests and the number of replicas required

to execute the requests. Systems in the third set optimize performance by facili-

tating parallel execution [50] or simplify development [86] through an object based

API. The UpRight architecture extends the separation of agreement and execution

emplyed by the second set of systems while the replicated order stage is based on

similar techniques to those developed in the first set of systems. The work in the

third set of systems is orthogonal to the UpRight library.

Another thread of previous work [45, 1] differentiates itself from the PBFT

lineage by explicitly basing its replication protocols on quorums, rather than con-

sensus. While the protocols at the core of these systems do not share many obvious

similarities with the systems in the PBFT lineage, careful consideration of general-

ized Paxos consensus [53] and the various special case replication requirements for

implementing consensus in two step [32, 56, 68] indicate that the underlying quorum

protocols are in fact very specific special cases of consensus. The protocols we use

for the replicated authentication and execution stages are similar to the quorum

protocols used in this lineage of work.

8.4 Performance with failures

We are not the first to notice significantly reduced performance for BFT protocols

during periods of failures or bad network performance or to explore how timing and

failure assumptions impact performance and liveness of fault tolerant systems.

Singh et al. [95] show that PBFT [18], Q/U [1], HQ [26], and Zyzzyva [49]

are all sensitive to network performance. They provide a thorough examination of

the gracious executions of the four canonical systems through a ns2 [76] network

simulator. Singh et al. explore performance properties when the participants are

well behaved and the network is faulty; we focus our attention on the dual scenario

177

where the participants are faulty and the network is well behaved.

Aiyer et al. [4] and Amir et al. [7] note that a slow primary can result in

dramatically reduced throughput. Aiyer et al. combat this problem by frequently

rotating the primary. Amir et al. address the challenge instead by introducing

a pre-agreement protocol requiring several all-to-all message exchanges and using

signatures for all authentication. Condie et al. [25] address the ability of a well

placed adversary to disrupt the performance of an overlay network by frequently

restructuring the overlay, effectively changing its view.

The signature processing and scheduling of replica messages in Aardvark is

similar in flavor to the early rejection techniques employed by the LOCKSS sys-

tem [40, 66] in order to improve performance and limit the damage an adversary

can inflict on system.

8.5 Application fault tolerance

Commercial best practices for replication have evolved towards increasing tolerance

to fail-stop faults as hardware costs fall, as replication techniques become better

understood and easier to adopt, and as systems become larger, more complex, and

more important. For example, once it was typical for storage systems to recover

from media failures using off-line backups; then single-parity or mirrored RAID [20]

became de rigeur; now, there appears to be increasingly routine use of doubly-

redundant storage [39, 90, 81]. Similarly, although two-phase commit is often good

enough—in the absence of commission failures it can be always safe and rarely

unlive—increasing numbers of deployments pay the extra cost to use Paxos [53, 77]

three-phase commit [12, 99] to simplify their design or avoid corner cases requiring

operator intervention [12].

Failed processes and hardware are not always polite enough to stop cleanly.

Instead, they may continue to operate and provide incorrect outputs or corrupt

internal state for a variety of reasons including bad NICs [2], soft CPU errors [94],

memory errors [19], disk errors [82, 90, 81], and software Heisenbugs [105].

Deployed systems increasingly include limited Byzantine fault tolerance aimed

at high-risk subsystems. For example the ZFS [85], GFS [39], and HDFS [43] file

systems provide checksums for on-disk data [82]. As another example, after Ama-

zon S3 was felled for several hours by a flipped bit, additional checksums on system

178

state messages were added [97]. Although it may be cheaper to check for and correct

faults at critical points than to do so end-to-end, we fear that it may be difficult

to identify all significant vulnerabilities a priori and complex to solve them case by

case with ad hoc techniques. We demonstrate that end-to-end techniques can be

applied to existing applications.

179

Chapter 9

Conclusion

This thesis describes the design, implementation, and deployment of the UpRight

replication library. More importantly, it presents a concrete step towards making

Byzantine fault tolerance a deployable option for general computing systems.

We believe that the UpRight library eases the path to adopting Byzantine

fault tolerance in two important ways. First, the UpRight library provides both

crash and Byzantine faul tolerance in a single code base. Flexible fault tolerance

encourages incremental adoption of Byzantine fault tolerance by removing the need

to maintain multiple code bases and allowing sysadmins to “add” Byzantine fault

tolerance to an existing system by adding additional resources and changing a config-

uration parameter rather than deploying and supporting an entirely different system.

Second, the application interface provided by the UpRight library is not onerous; our

experience indicates that programmers unfamiliar with the details of the replication

library can port legacy applications with only nominal effort.

In addition to the practical benefits mentioned above, this thesis makes three

important conceptual contributions that improve the understanding of fault toler-

ance and state machine replication.

First, we refine the definition of fault tolerance to more accurately reflect the

needs of deployed systems. Our refinement comes in two parts. First, we reject the

traditional dichotomy between crash and Byzantine fault tolerance and instead em-

brace the Upright failure model (Chapter 2). Embracing the UpRight model allows

system developers to ask “Do I want fault tolerance or not?” rather than decide in

advance whether Byzantine or crash fault tolerance is appropriate for the deploy-

180

ment environments. Second, we reject the exclusive focus on best-case performance

and observe that fault tolerant systems should provide good performance even when

failures occur (Chapter 3).

Second, we clarify the definition of state machine replication. We refine the

responsibilities of the replication library and the application (Chapter 4) and revisit

the key functional pieces of state machine replication (Chapter 5). With respect to

the responsibilities of the library and the application, we emphasize that the library

is responsible for delivering batches of requests to application replicas in a single

order. The application replicas are in turn responsible for executing those batches

deterministically and providing, on-demand, determinist checkpoints of their state.

With respect to the functional pieces of state machine replication, we observe that

request authentication must be added to the traditional steps of order, agree, and

execute1.

Third, we clarify the design of replication protocols around variations of

consensus (Chapter 6). By mapping the interactions between nodes in the system

to a consensus problem we are able to better understand the requirements of each

component of the system and leverage the existing body of work on consensus.

Moving forward, the recognition that state machine replication can be described

as a collection of consensus protocols should make it easier to understand new and

existing protocols and also highlights the fundamental differences between systems.

While we have made it easier to understand and deploy Byzantine fault

tolerant systems, there are still significant barriers to wide spread adoption. Chief

among these barriers to adoption is the widespread belief that “Byzantine failures

just don’t happen.” If true, this implies that Byzantine fault tolerant systems are a

luxury that is not needed in a general computing environment. The next round of

Byzantine fault tolerant systems research consequently should focus on deployment,

failure tracking, and failure analysis. The key questions to answer are (a) what

fraction of failures can be masked by BFT techniques and not CFT techniques and

(b) what is the real impact of these failures.

1Note that order and agree are frequently merged into a single step.

181

Appendix A

UpRight Library Byte

Specifications

This Appendix provides the full byte definition for all data structures that are sent

across the network or placed on disk in the UpRight library. This appendix provides

the byte specification for the inter-stage messages, order stage checkpoints, execution

stage checkpoints, and intra-execution stage messages. We do not include the byte

specification for intra-order stage messages.

A.1 Basic Message Structure

All messages in the UpRight library conform to the basic structure shown in Fig-

ure A.11. Every message contains (a) a 2 byte message tag, (b) a 4 byte payload

size, (c) a payload of the specified size, and (d) a block of bytes dedicated to au-

thentication as shown in Figure A.1.

We implement three distinct authentication strategies: (1) simple MAC au-

thentication, (2) MAC authenticator authentication, and (3) matrix signature [3]

authentication.

We use MD5 for digests/hashes and SHA1 for MAC authentication.

In our current implementation, an individual MAC is 16 bytes and a digest

is 20 bytes. For subsequent message definitions we will indicate which of the au-

1The fields in Figure A.1 and all other figures in this chapter are presented in the order they
appear. The sizes of fields in the figures do not correlate with the byte size of the implementations.

182

Tag Payload Size

Payload

Authentication Block

Figure A.1: Messages are built upon a verified message base. This basis byte struc-
ture contains 4 fields: tag, payload size, payload, authentication

thentication types are being used and describe the byte specification for the payload

of the specific message.

Simple MAC authentication A MAC is a shared private key between a pair

of nodes. Authenticating a MAC ensures that one of the nodes sharing that key

generated the message. Messages authenticated with a MAC follow the structure

shown in Figure A.2. The authentication block of MAC messages contains a 4 byte

sender field and a 20 byte MAC. The MAC is computed over the tag, payload size,

payload, and sender fields of the message.

MAC authenticator authentication A MAC authenticator [18] is an array of

MACs designed to provide authentication to multiple recipients. The byte layout

of a MAC authenticator message is shown in Figure A.3. The authentication block

of a MAC authenticator message consists of (a) a 4 byte sender field, (b) a 16 byte

digest of the tag, payload size, payload, and sender fields, and (c) one 20 byte MAC

per recipient. The digest is computed over the tag, payload size, payload and sender

fields. For efficiency, the MACs are computed over the digest.

183

Tag Payload Size

Payload

sender

MAC

Figure A.2: Basic byte structure of a message with simple MAC authentication.

Tag Payload Size

Payload

sender

Digest

MAC

MAC

MAC

MAC

Figure A.3: Byte definition for a message authenticated with a MAC array. The
sender is the replica responsible for generating the MACs, the Digest field is a digest
of the tag, payload size, and sender fields. The MACs are generated using the byte
representation of the digest rather than the full message.

184

Tag Payload Size

Payload

MAC, s1->r0

MAC, s1 -> r1

MAC, s1 -> r2

MAC, s1 -> r3

Macs generated by sender 1

Macs generated by sender 2

Macs generated by sender 3

MAC, s2->r0

MAC, s2 -> r1

MAC, s2 -> r2

MAC, s2 -> r3

MAC, s3->r0

MAC, s3 -> r1

MAC, s3 -> r2

MAC, s3 -> r3

Figure A.4: Message authenticated with a matrix signature. The authentiation
block of these messages consists of a collection of MAC Arrays that each authenticate
the tag, size and payload.

Matrix signature authentication Matrix signatures [3] are a technique that

provide the strong properties of digital signatures (specifically forwardability) at

the lower costs afforded by MACs. A matrix signature consists of a collection of

MAC authenticators from muliple senders. A recipient considers a matrix signature

valid if it can authenticate a threshold of th MAC authenticators. The byte layout

of a matrix signature message is shown in Figure A.4. The authentication block

of a matrix signature message consists of (a) a 16 byte digest of the tag, payload

size, and payload fields, (b) followed by k MAC authenticators with |recipient set|
20 byte MACs each. For efficiency, the individual MACs are computed over a digest

of the tag, payload size, and payload fields of the message.

185

Message Tag

〈client-req, 〈req-core, c, nc,op〉, c〉~µc,F
1 (regular)

16 (read only)

〈auth-req, 〈req-core, c, nc, hash(op)〉~µf,O , f〉~µf,O 19

〈command, no, c, nc,op, f〉µf,e 22

〈toCache, c, nc,op, f〉~µf,E 25

〈next-batch, v, no,H,B, t,bool, o〉~µo,E
11 (speculative)
12 (tentative)

13 (committed)

〈request-cp, no, o〉~µo,E 10

〈retransmit, c, no, o〉~µo,E 4

〈load-cp, Tcp, no, o〉µo,e 5

〈batch-complete, v, no, C, e〉~µe,F 20

〈fetch, no, c, nc,hash(op), e〉~µe,F 21

〈cp-up, no, C, e〉~µe,F 24

〈last-exec, ne, e〉~µe,O 6

〈cp-token, no, Tcp, e〉~µe,O 7

〈cp-loaded, no, e〉~µe,O 14

〈reply, nc,R,H, e, 〉µe,c
8 (regular)
15 (watch)

17 (readonly)

Table A.1: Message Tags for all intra-node messages.

A.2 Inter-stage messages

This section defines the byte specification and message tags for all messages ex-

changed betweeen clients, filter, order, and execution nodes. Details on messages

that are internal to the execution stage can be found in Sections A.3.

A.2.1 Message Tags

The specific message tags used for all inter-node messages are shown in Table A.1.

A.2.2 Inter-stage messages

This section defines the payload structure for all messages that pertain directly to

client requests.

186

Request ID

Command size

Command

Client ID

Command/
Digest Flag 1 byte

4 bytes

4 bytes

4 bytes

command size
bytes

Figure A.5: Byte Specification of the Entry at the core of every request.

Entry. All messages which contain a request in their payload are built around

a common entry data structure shown in Figure A.5. An entry consists of five

fields: (1) a 1 byte flag indicating if the entry contains a command or a digest of a

command, (2) a 4 byte identifier of the client that issued the command, (3) a 4 byte

request identifier, (4) the size, in bytes, of the command (or command digest), and

(5) the command (or digest) itself.

Client Requests. A 〈client-req, 〈req-core, c, nc,op〉, c〉~µc,F message relies on

the MAC authenticator byte layout. The payload of the message is an entry shown

in Figure A.5.

Filtered Requests. A 〈auth-req, 〈req-core, c, nc, hash(op)〉~µf,O , f〉µf,o mes-

sage relies on the MAC authenticator byte layout. The implementation of each

filtered request message contains one or more requests that have been individually

validated by the sending filter replica. The payload of a filtered request message

is a 2 byte integer k followed by k authenticated entries. An authenticated entry

is a message authenticated by a matrix signature whose payload is an entry. The

payload of a filtered request message is shown in Figure A.6.

Forward Requests. A 〈command, no, c, nc,op, f〉µf,e message relies on MAC au-

thentication. The payload of a forward request message is a 4 byte sequence number

followed by a request entry. The entry in a forward request is always a command

187

Number of entries

Authenticated Entry

Authenticated Entry

......

Figure A.6: Byte Specification of the payload of a 〈auth-req, 〈req-core, c, nc,
hash(op)〉~µf,O , f〉µf,o message.

Sequence Number

Entry

Figure A.7: Byte Specification of the payload of a 〈command, no, c, nc,op, f〉µf,e
message.

itself and not a digest. The byte format is shown in Figure A.7

Speculatively Forwarded Requests. A 〈toCache, c, nc,op, f〉~µf,E messages

uses the MAC authenticator authentication byte layout. The payload of this mes-

sage is a request entry shown in Figure A.5.

Next Batch. A 〈next-batch, v, no,H,B, t,bool, o〉~µo,E message uses the MAC

authenticator byte layout. The payload of the message is shown in Figure A.8 and

consists of 9 fields: (1) a 4 byte view number, (2) a 4 byte sequence number, (3) a 16

byte history digest, (4) a 16 byte checkpoint digest, (5) a 2 byte boolean, (6) a 2 byte

integer for the byte size of encoding non-determinism and time, (7) encoded non-

determinism and time, (8) a 2 byte integer representing the number of commands

188

View Number

Sequence Number

Non-determinism

History Digest

Entries

Take CP NonDetSize

Batch Size (bytes)

Number of
Entries

Checkpoint Digest

Figure A.8: Byte Specification of a 〈next-batch, v, no,H,B, t,bool, o〉~µo,E message

in the batch, and (9) an entry per command in the bath. Non-determinism is

encoded as a pair of 8 byte numbers corresponding to time and a seed for a pseudo

random number generator as shown in Figure A.9. There are three different types of

NextBatch messages corresponding to the level of agreement achieved by the order

node: speculative, tentative, and commmitted.

Replies A 〈reply, nc,R,H, e, 〉µe,c message is based on the simple MAC authenti-

cation byte layout. The payload of a reply consists of (a) a 4 byte sequence number,

(b) a 4 byte encoding of the size of the reply, (c) and the reply itself as shown in

Figure A.10.

189

Time

Random seed

Figure A.9: Byte encoding of non-determinism. The two fields correspond to time
and a seed for random number generation.

Request ID

Response size

Response

Figure A.10: Byte Specification of the 〈reply, nc,R,H, e, 〉µe,c message.

Checkpoint request. A 〈request-cp, no, o〉~µo,E message relies on the MAC au-

thenticator byte layout. The payload of a checkpoint request consists of a 4 byte

sequence number for the checkpoint being requested as shown in Figure A.11.

Checkpoint release. A 〈release-cp, Tcp, no, o〉~µo,E message relies on the MAC

authenticator byte layout. The payload of a checkpoint release message consists

of (a) a four byte sequence number of the checkpoint to be released, (b) a four

byte length of the checkpoint token, and (c) the checkpoint token itself as shown in

Figure A.12.

Retransmit. A 〈retransmit, c, no, o〉~µo,E message relies on the MAC authenti-

cator byte layout. The payload of a retransmit message consists of (a) a 4 byte

Sequence Number

Figure A.11: Byte Specification of the payload for a 〈request-cp, no, o〉~µo,E mes-
sage.

190

Sequence Number

Token size

Token Data

Figure A.12: Byte Specification of the payload for a 〈release-cp, Tcp, no, o〉~µo,E
message.

Client ID

Figure A.13: Byte Specification of the payload for a 〈retransmit, c, o, ~µo,E〉message.

client identifier and (b) a 4 byte batch identifier as shown in Figure A.13.

Load checkpoint. A 〈load-cp, Tcp, no, o〉µo,e message uses the simple MAC au-

thentication byte layout. The fields of a load checkpoint message are (a) a 4 byte

sequence number, (b) a 4 byte length of a checkpoint descriptor, and (c) the check-

point to be loaded as shown in Figure A.14.

Batch Completed. A 〈batch-complete, v, no, C, e〉~µe,F message relies on the

MAC authenticator byte layout. The payload consists of (a) a 4 byte view number,

Sequence Number

Token Size

Exec CP token

Figure A.14: Byte Specification of the payload for a 〈load-cp, Tcp, no, o〉µo,e mes-
sage.

191

View Number

SequenceNumber

Entry

Number of entries

...

Entry

Batch size

Figure A.15: Byte specification of a 〈batch-complete, v, no, C, e〉~µe,F message.

(b) a 4 byte sequence number, (c) a 4 byte count of the subsequent bytes in the

payload, (d) a 2 byte count k of the number of contained entries, and (e) k entries

as shown in Figure A.15. The byte layout of each entry is shown in Figure A.5.

Fetch Command. A 〈fetch, no, c, nc, hash(op), e〉~µe,F message relies on the MAC

authenticator byte layout. The payload consists of a 4 byte sequence number and an

entry as shown in Figure A.16. The byte layout of the entry is shown in Figure A.5.

Sequence Number

Entry

Figure A.16: Byte specification of a 〈fetch, no, c, nc,hash(op), e〉~µe,F message.

192

Sequence Number

Last executed

Last executed

...
Total Clients
in System

Figure A.17: Byte specification of a 〈cp-up, no, C, e〉~µe,F message.

Sequence Number

Figure A.18: Byte Specification of 〈last-exec, ne, e〉~µe,O and
〈cp-loaded, no, e〉~µe,O messages.

Checkpoint Update. A 〈cp-up, no, C, e〉~µe,F message relies on the MAC authen-

ticator byte layout. The payload consists of (a) a 4 byte sequence number and (b)

the 4 byte identifier of the most recent request executed for each client as shown in

Figure A.17. The checkpoint update message is used in place of a batch completed

message when the execution stage processes retransmission instructions.

Last executed. A 〈last-exec, ne, e〉~µe,O message relies on the MAC authentica-

tor byte layout. The payload of a last executed message is a 4 byte sequence number

shown in Figure A.18.

Checkpoint loaded. A 〈cp-loaded, no, e〉~µe,O uses the MAC authenticator byte

layout. The payload consist of a 4 byte sequence number shown in Figure A.18.

Note that the checkpoint loaded message is used as an efficient replacement for a

last executed message. The handling of the two messages is identical, except that

instructions to load a checkpoint are never sent in response to a checkpoint loaded

notification.

Checkpoint message. A 〈cp-token, no, Tcp, e〉~µe,O message relies on the MAC

authenticator byte layout. The payload of the message consists of (a) a 4 byte

sequence number, (b) the size of the checkpoint, and (c) the checkpoint as shown in

193

Sequence Number

Token Size

Exec CP token

Figure A.19: Byte specification for the payload of a 〈cp-token, no, Tcp, e〉~µe,O mes-
sage.

Message Tag

〈fetch-exec-cp, n, e〉~µe,E 70

〈exec-cp-state, n,S, e〉µe,e′ 71

〈fetch-state, Tstate, e〉~µe,E 72

〈state, Tstate,S, e〉µe,e′ 73

Table A.2: Set of messages for intra-node communication

Figure A.19.

A.2.3 Order stage checkpoint

During normal operation, the order stage periodically records checkpoints to disk.

The contents of a checkpoint are shown in Figure A.20. The basic layout of bytes

when serializing an order checkpoint is shown in Figure A.21. The serialization

consists of (a) a 16 bytes history digest, (b) an 8 byte time, (c) a 4 byte sequence

number, (d) a 2 byte count of the number of clients k in the system, (e) k pairs

of 4 byte request identifiers and 4 byte sequence numbers, and (f) the execution

checkpoint.

A.3 Execution node specifications

A.3.1 Message Tags

The message tags used for all intra-execution messages are shown in Table A.2.

194

Client Request
ID

Execution
Checkpoint

Token

Next Batch
Identifier

History

Time

Batch
ID

lastOrdered

Figure A.20: Order node checkpoint.

Request ID Seq. Number

Time

Sequence Number

History

Base Sequence Number

Number of Clients

Request ID Seq. Number

...

Execution Checkpoint

Figure A.21: Order node checkpoint byte specification.

195

Client Reply

Application
Checkpoint

Next Batch
Identifier

replyCache

Figure A.22: Exec node checkpoint.

A.3.2 Execution checkpoints

During normal operation, order nodes record checkpoints to disk. The contents of

a checkpoint are shown in Figure A.22. The basic layout of bytes when serializing

an order checkpoint is shown in Figure A.23. The serialization consists of (a) a 4

byte base sequence number, (b) a 4 byte current sequence number, (c) a 4 byte max

sequence number, (d) a 4 byte size of the application checkpoint, (e) the application

checkpoint, and (f) for each client, (i) a 4 byte sequence number, (ii) a 4 byte request

id, (iii) a 4 byte response length k, and (iv) a reply message. The serialization is

shown in Figure A.23.

A.3.3 Execution Messages

Fetch checkpoint. A 〈fetch-exec-cp, n, e〉~µe,E message relies on the MAC au-

thenticator byte layout. The paylod consists of a 4 byte sequene number shown in

Figure A.24.

Execution Checkpoint. A 〈exec-cp-state, n,S, e〉µe,e′ message uses the basic

MAC authentication byte layout. The payload consists of a 4 byte sequence number,

a 4 byte checkpoint size, and the checkpoint from Figure A.23. The byte layout of

196

Current Sequence Number

Max Sequence Number

Base Sequence Number

App Checkpoint Size

App Checkpoint

Sequence Number

Request ID

Response Size

Response

Sequence Number

Request ID

Response Size

Response

...

Figure A.23: Order node checkpoint byte specification.

Sequence Number

Figure A.24: Byte Specification of the payload of a 〈fetch-exec-cp, n, e〉~µe,E mes-
sage.

197

Checkpoint size

Sequence Number

Checkpoint

Figure A.25: Byte Specification of the payload of a 〈exec-cp-state, n,S, e〉µe,e′
message.

State Token Size

Token

Figure A.26: Byte Specification of the payload of a 〈fetch-state, Tstate, e〉~µe,E mes-
sage.

the payload is shown in Figure A.25.

Fetch State. A 〈fetch-state, Tstate, e〉~µe,E message uses the MAC authenticator

byte layout. The payload consists of a 2 byte token size and a token as shown in

Figure A.26.

Send State. A 〈state, Tstate,S, e〉µe,e′ message relies on the simple MAC authen-

tication byte layout. The payload consists of a 2 byte token size, the token, a 4 byte

state size, and then the state as shown in Figure A.27.

198

State Token Size

Token

State Size

State

Figure A.27: Byte Specification of the payload of a 〈state, Tstate,S, e〉µe,e′ message.

199

Appendix B

UpRight Library API

This appendix describes the Java API between the UpRight library and replicated

applications. Section B.1 describes the application client-library client API. Sec-

tion B.2 describes the application server-library server API.

B.1 Client API

Figure B.1 depicts the four function calls provided by the UpRight library to appli-

cation clients. The function calls provide synchronous (execute) and asynchronous

(enqueue) calls instructing the library to execute general or read-only requests. Each

call takes a byte array representation of the application request as a parameter.

Figure B.2 depicts the functions that the application client should implement.

All three functions are optional and are not required to support basic functionality

of synchronous request execution. The function brokenConnection is used to signal

the application when a network error occurs and is important for applications that

explicitly rely on TCP connections to maintain sessions. The function returnReply

is used in conjunction with asynchronous request execution and server initiated

communication. The function canonicalEntry allows the application to select a

canonical response (if it exists) from a quorum of responses that are semantically

equivalent but based on different byte representations.

200

1 /∗∗
2 Returns the r e s u l t o f execut ing operat ion through the normal execut ion path
3 ∗∗/
4 pub l i c byte [] execute (byte [] operat ion) ;

6 /∗∗
7 Returns the r e s u l t o f execut ion read only reques t operat ion .
8 ∗∗/
9 pub l i c byte [] executeReadOnlyRequest (byte [] operat ion) ;

11 /∗∗
12 Enqueues a read only reques t f o r asynchronous execut ion
13 ∗∗/
14 pub l i c void enqueueReadOnlyRequest (byte [] op) ;

16 /∗∗
17 Enque a r egu l a r r eques t f o r asynchronous execut ion
18 ∗∗/
19 pub l i c void enqueueRequest (byte [] operat ion) ;

Figure B.1: Interface exported by the UpRight library to the application client.

1 /∗∗
2 Function c a l l e d when the connect ion between the c l i e n t and the
3 s e rv e r i s determined to be broken .
4 ∗∗/
5 pub l i c void brokenConnection () ;

7 /∗∗
8 Returns a rep ly r e c e i v ed from the s e rv e r
9 ∗∗/

10 pub l i c void returnReply (byte [] r ep ly) ;

12 /∗∗
13 Cons iders the s e t o f p o s s i b l e r e p l i e s opt ions . Returns a
14 canon i ca l v e r s i on o f those r e p l i e s i f i t e x i s t s , r e tu rns nu l l
15 otherwi se
16 ∗∗/
17 pub l i c byte [] canonica lEntry (byte [] [] opt ions) ;

Figure B.2: Interface implemented by the application client.

201

B.2 Server API

Figure B.3 shows the six functions an UpRight application must impement.

The first two functions, execute and executeReadOnly, are used to execute

ordered batches or requests and read only requests respectively. The application calls

result once per executed request. The application is expected to execute batches

in the order they are received using the time and PRNG in the nondeterminism

field. The final parameter of execute is a boolean takeCP. If takeCP is true, then

the application is expected to take a checkpoint immediately after executing the

current batch and before processing any requests contained in subsequent batches.

The second two functions, loadCP and releaseCP, are required for managing

application checkpoints. The function loadCP takes a byte array describing either

the application checkpoint, or a description that the application can use to map to

a specific checkpoint, and instructs the application to load the specified checkpoint.

The function releaseCP is an optional call that should be used if the application

provides a descriptor of its checkpoint rather than the checkpoint itself. releaseCP

allows the application to manage checkpoints internally and potentially rely on

incremental checkpoints for efficiency.

The final two functions, fetchState and loadState are used in the case that the

application reports tokens describing a checkpoint to the library. These functions

are used to transfer small portions of an application checkpoint between replicas

and allow for incremental state transfer when checkpoints are loaded.

Figure B.4 shows the five functions exported by the UpRight library to the

application server. The function result is called whenever the application finishes

processing a request and inidcates the result of that computation, the clientId of the

client that issued the request, the reqId associated with the request, and a boolen

toCache indicating if the request is a regular response (true) and should be stored

in the reply cache or not. The function readOnlyResult serves the same purpose,

but is used only for responses to read only requests.

The function returnCP is called by the application when it finishes generating

a checkpoint following the execution of batch seqno. The checkpoint is described

by the byte array AppCPToken; the format of AppCPToken is dictated by the

application.

The functions returnState and requestState facilitate the transfer of applica-

202

1 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2 Request Execution
3 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
4 /∗∗
5 Execute the commands in batch with a s s o c i a t ed order sequence
6 number seqNo and us ing time f o r any non−determinism

8 Fol lowing each command in batch , shim . r e s u l t () i s c a l l e d .
9 ∗∗/

10 pub l i c void exec (CommandBatch batch , long seqNo ,
11 NonDeterminism time , boolean takeCP) ;

13 /∗∗
14 Execute operat ion as a read only reques t .

16 Fol lowing execut ion o f operat ion , shim . readOnlyResult () i s
17 c a l l e d .
18 ∗∗/
19 pub l i c void execReadOnly (i n t c l i e n t I d , long reqId , byte [] operat ion) ;

23 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
24 Checkpoint Management
25 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
26 /∗∗
27 Load the app l i c a t i on checkpoint i nd i ca t ed by cpToken

29 Returns true i f the checkpoint i s s u c c e s s f u l l y loaded ,
30 r e tu rns f a l s e otherwi se

32 When loadCP returns , i t i n d i c a t e s that any r eque s t s executed as
33 part o f a preced ing c a l l to exec () or execReadOnly () that have
34 not a l ready generated a response w i l l not generate a fu tu r e
35 response .
36 ∗∗/
37 pub l i c void loadCP (byte [] appCPToken , long seqNo) ;

39 /∗∗
40 Release the app l i c a t i on checkpoint de sc r ibed by appCPToken .
41 ∗∗/
42 pub l i c void re leaseCP (byte [] appCPToken) ;

46 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
47 State Trans fer
48 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
49 /∗∗
50 Fetch the s t a t e de sc r ibed by stateToken .
51 ∗∗/
52 pub l i c void f e t chS ta t e (byte [] stateToken) ;

54 /∗∗
55 Load the s t a t e s t a t e that i s de s c r ibed by stateToken .
56 ∗∗/
57 pub l i c void loadState (byte [] stateToken , byte [] s t a t e) ;

Figure B.3: Interface implemented by the application server and called by the Up-
Right library. The six functions can be considered as three pairs of common func-
tionality: (a) request execution, (b) checkpoint management, and (c) state transfer.

203

1 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2 Request Execution
3 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
4 /∗∗
5 Upcal l that d e l i v e r s the r e s u l t o f execut ing c l i e n t I d ’ s
6 reqId ˆ th reques t at seqNo po s i t i o n in the sequence to the shim .
7 ∗∗/
8 pub l i c void r e s u l t (byte [] r e su l t , i n t c l i e n t I d , long reqId ,
9 long seqNo , boolean toCache) ;

11 /∗∗
12 Upcal l d e l i v e r i n g the r e s u l t o f execut ing c l i e n t I d ’ s reqId ˆ th
13 read only reques t .
14 ∗∗/
15 pub l i c void readOnlyResult (byte [] r e su l t , i n t c l i e n t I d , long reqId) ;

18 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
19 Checkpoint Management
20 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
21 /∗∗
22 Upcal l d e l i v e r i n g the Appl i cat ion checkpoint token cpToken
23 taken at batch number seqNo to the shim
24 ∗∗/
25 pub l i c void returnCP (byte [] AppCPToken , long seqNo) ;

28 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
29 State Trans fer
30 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
31 /∗∗
32 Upcal l d e l i v e r i n g the app l i c a t i on s t a t e corresponding to
33 stateToken to the shim
34 ∗∗/
35 pub l i c void re turnState (byte [] stateToken , byte [] s t a t e) ;

37 /∗∗
38 Upcal l r eques t app l i c a t i on s t a t e de s c r ibed by stateToken from
39 the shim
40 ∗∗/
41 pub l i c void r eque s tS ta t e (byte [] stateToken) ;

Figure B.4: Interface exported by the UpRight library to the application server as
call-backs. The functions can be considered in groups based on common function-
ality: (a) response processing, (b) checkpoint management, (c) state transfer, and
(d) generic management.

tion state between execution replicas. The application is expected to call returnState

as part of processing a fetchState command. The application is expected to call re-

questState if it does not have a copy of the state required to successfully load a

checkpoint.

204

Bibliography

[1] M. Abd-El-Malek, G. Ganger, G. Goodson, M. Reiter, and J. Wylie. Fault-

scalable Byzantine fault-tolerant services. In Proc. 20th SOSP, Oct. 2005.

[2] T. Abdollah. LAX outage is blamed on 1 computer. Los Angeles Times, Aug.

2007.

[3] A. S. Aiyer, L. Alvisi, R. Bazzi, and A. Clement. Matrix signatures: From

MACs to digital signatures in distributed systems. In Proc. DISC 2008), pages

16–31, Oct. 2008.

[4] A. S. Aiyer, L. Alvisi, A. Clement, M. Dahlin, J.-P. Martin, and C. Porth.

BAR fault tolerance for cooperative services. In Proc. 20th SOSP, Oct. 2005.

[5] L. Alvisi and K. Marzullo. Message Logging: Pessimistic, Optimistic, Causal,

and Optimal. IEEE Transactions on Software Engineering, 24(2):149–159,

February 1998.

[6] Amazon elastic compute cloud. http://aws.amazon.com/ec2/, Mar. 2009.

[7] Y. Amir, B. Coan, J. Kirsch, and J. Lane. Byzantine replication under attack.

In International Conference on Dependable Systems and Networks, June 2008.

[8] W. Bartlett and L. Spainhower. Commercial fault tolerance: A tale of two

systems. IEEE Transactions on Dependable and Secure Computing, 1(1):87–

96, 2004.

[9] BFT project homepage. http://www.pmg.csail.mit.edu/bft/#sw.

[10] R. H. Black. Using proven aircraft avionics principles to support a responsive

space infrastructure. In 4th Responsive Space Conference, 2006.

205

http://aws.amazon.com/ec2/
http://www.pmg.csail.mit.edu/bft/#sw

[11] G. Bracha and S. Toueg. Asynchronous consensus and broadcast protocols.

J. ACM, 32(4):824–840, 1985.

[12] M. Burrows. The chubby lock service for loosely-coupled distributed systems.

In Proc. 7th OSDI, 2006.

[13] C. Cachin, K. Kursawe, and V. Shoup. Random oracles in constantipole:

practical asynchronous byzantine agreement using cryptography (extended ab-

stract). In PODC ’00: Proceedings of the nineteenth annual ACM symposium

on Principles of distributed computing, pages 123–132, New York, NY, USA,

2000. ACM.

[14] M. Calore. Ma.gnolia suffers major data loss, site taken offline. Wired, Jan.

2009.

[15] R. Canetti and T. Rabin. Optimal Asynchronous Byzantine Agreement. Tech-

nical Report 92-15, TR 92-15, Dept. of Computer Science, Hebrew University,

1992.

[16] M. Castro. Practical Byzantine Fault Tolerance. PhD thesis, Jan. 2001.

[17] M. Castro and B. Liskov. Practical Byzantine fault tolerance. In Proc. 3rd

OSDI, pages 173–186, Feb. 1999.

[18] M. Castro and B. Liskov. Practical Byzantine fault tolerance and proactive

recovery. ACM Trans. Comput. Syst., 2002.

[19] T. Chandra, R. Griesmer, and J. Redstone. Paxos made live – an engineering

perspective. In Proc. 26th PODC, June 2007.

[20] P. Chen, E. Lee, G. Gibson, R. Katz, and D. Patterson. RAID: High-

performance, reliable secondary storage. ACM Computing Surveys, 26:145–

185, 1994.

[21] At LAX, computer glitch delays 20,000 passengers.

http://travel.latimes.com/articles/la-trw-lax12aug12.

[22] G. Chockler, D. Malkhi, and M. Reiter. Backoff protocols for distributed

mutual exclusion and ordering. In ICDCS-21, pages 11–20, 2001.

206

[23] A. Clement, M. Kapritsos, S. Lee, Y. Wang, L. Alvisi, M. Dahlin, and T. Riche.

Upright cluster services. In SOSP ’09: Proceedings of the ACM SIGOPS 22nd

symposium on Operating systems principles, pages 277–290, New York, NY,

USA, 2009. ACM.

[24] A. Clement, M. Marchetti, E. Wong, L. Alvisi, and M. Dahlin. Making Byzan-

tine fault tolerant systems tolerate Byzantine faults. In Proc. 6th NSDI, Apr.

2009.

[25] T. Condie, V. Kacholia, S. Sankararaman, J. M. Hellerstein, and P. Maniatis.

Induced churn as shelter from routing-table poisoning. In NDSS, 2006.

[26] J. Cowling, D. Myers, B. Liskov, R. Rodrigues, and L. Shrira. HQ replication:

A hybrid quorum protocol for Byzantine fault tolerance. In Proc. 7th OSDI,

Nov. 2006.

[27] F. Cristian, H. Aghili, R. Strong, and D. Dolev. Atomic broadcast: from

simple message diffusion to byzantine agreement. Inf. Comput., 118(1):158–

179, 1995.

[28] C. Delporte-Gallet, H. Fauconnier, F. C. Freiling, L. D. Penso, and A. Tiel-

mann. From crash-stop to permanent omission: Automatic transformation

and weakest failure detectors. In A. Pelc, editor, DISC, volume 4731 of Lec-

ture Notes in Computer Science, pages 165–178. Springer, 2007.

[29] D. Dolev and H. R. Strong. Authenticated algorithms for Byzantine agree-

ment. Siam Journal Computing, 12(4):656–666, Nov. 1983.

[30] A. Doudou, B. Garbinato, R. Guerraoui, and A. Schiper. Muteness Failure

Detectors, Specification and Implementation. Technical report, 1999.

[31] K. Driscoll, B. Hall, M. Paulitsch, P. Zumstag, and H. Sivencrona. The real

Byzantine generals. In Digital Avionics Ssytems Conference, 2004.

[32] P. Dutta, R. Guerraoui, and M. Vukolić. Best-case complexity of asynchronous

Byzantine consensus. Technical Report EPFL/IC/200499, EPFL, Feb. 2005.

[33] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of partial

synchrony. J. ACM, 35(2):288–323, 1988.

207

[34] E. N. Elnozahy, L. Alvisi, Y. Wang, and D. B. Johnson. A survey of rollback-

recovery protocols in message-passing systems. ACM Computing Surveys,

34(3):375–408, 2002.

[35] M. Fischer, N. Lynch, and M. Paterson. Impossibility of distributed consensus

with one faulty process. Journal of the ACM, 32(2):374–382, 1985.

[36] The FlexiProvider Group. the FlexiProvider Project. http://www.

flexiprovider.de.

[37] R. Friedman and R. V. Renesse. Packing messages as a tool for boosting the

performance of total ordering protocls. In HPDC, 1997.

[38] J. Garay and Y. Moses. Fully Polynomial Byzantine Agreement for n>3t

Processors in t+ 1 Rounds. SIAM J. of Computing, 27(1):247–290, 1998.

[39] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google file system. In Proc.

19th SOSP, pages 29–43. ACM Press, 2003.

[40] T. J. Giuli, P. Maniatis, M. Baker, D. S. H. Rosenthal, and M. Roussopoulos.

Attrition defenses for a peer-to-peer digital preservation system. In USENIX,

2005.

[41] J. Gray. A census of Tandem system availability between 1985 and 1990.

IEEE Trans. on Reliability, 39(4), Oct. 1990.

[42] R. Guerraoui. The next 700 bft protocols. In T. P. Baker, A. Bui, and

S. Tixeuil, editors, OPODIS, volume 5401 of Lecture Notes in Computer Sci-

ence, page 1. Springer, 2008.

[43] Hadoop. http://hadoop.apache.org/core/.

[44] Hdfs. http://hadoop.apache.org/hdfs.

[45] J. Hendricks, G. R. Ganger, and M. K. Reiter. Low-overhead Byzantine fault-

tolerant storage. In SOSP, 2007.

[46] M. Iacoponi. System architecture for byzantine resilient computation in launch

vehicle applications. In Digital Avionics Systems Conference, 1990.

208

http://www.flexiprovider.de
http://www.flexiprovider.de
http://hadoop.apache.org/core/
http://hadoop.apache.org/hdfs

[47] K. P. Kihlstrom, L. E. Moser, and P. M. Melliar-Smith. The securering group

communication system. ACM Trans. Inf. Syst. Secur., 4(4):371–406, 2001.

[48] C. Killian, J. Anderson, R. Jhala, and A. Vahdat. Life, death, and the critical

transition: Finding liveness bugs in systems code. In NSDI, 2007.

[49] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong. Zyzzyva: Specula-

tive Byzantine fault tolerance. In Proc. 20th SOSP, Oct. 2007.

[50] R. Kotla and M. Dahlin. High throughput Byzantine fault tolerance. In

Conference on Dependable Systems and Networks, DSN’04, June 2004.

[51] M. Lagos and M. Stannard. Power restored in San Francisco. San Francisco

Chronicle, July 2007.

[52] L. Lamport. Time, clocks, and the ordering of events in a distributed system.

Communications of the ACM, 1978.

[53] L. Lamport. The part-time parliament. ACM Trans. Comput. Syst.,

16(2):133–169, 1998.

[54] L. Lamport. Paxos made simple. ACM SIGACT News (Distributed Computing

Column), 32(4):51–58, Dec. 2001.

[55] L. Lamport. Lower bounds for asynchronous consensus. In Proceedings of the

International Workshop on Future Directions in Distributed Computing, pages

22–23, June 2003.

[56] L. Lamport. Lower bounds for asynchronous consensus. Technical Report

MSR-TR-2004-72, Microsoft Research, July 2004.

[57] L. Lamport. Fast Paxos. Technical Report MSR-TR-2005-112, Microsoft

Research, July 2005.

[58] L. Lamport. Generalized consensus and paxos. Technical Report MSR-TR-

2005-33, Mar. 2005.

[59] L. Lamport and M. Fischer. Byzantine generals and transaction commit pro-

tocols. Technical Report 62, SRI International, 1982.

209

[60] L. Lamport and M. Masa. Cheap paxos. In Proc. DSN-2004, pages 307–314,

June 2004.

[61] L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem.

ACM Trans. Program. Lang. Syst., 1982.

[62] B. W. Lampson. Hints for computer system design. SIGOPS Oper. Syst. Rev.,

17, 1983.

[63] A. Mahimkar, J. Dange, V. Shmatikov, H. Vin, and Y. Zhang. dFence: Trans-

parent network-based denial of service mitigation. In NSDI, 2007.

[64] D. Malkhi and M. Reiter. A high-throughput secure reliable multicast pro-

tocol. In CSFW ’96: Proceedings of the 9th IEEE workshop on Computer

Security Foundations, page 9, Washington, DC, USA, 1996. IEEE Computer

Society.

[65] D. Malkhi and M. Reiter. Unreliable intrusion detection in distributed compu-

tations. In CSFW ’97: Proceedings of the 10th IEEE workshop on Computer

Security Foundations, page 116, Washington, DC, USA, 1997. IEEE Computer

Society.

[66] P. Maniatis, M. Roussopoulos, T. J. Giuli, D. S. H. Rosenthal, and M. Baker.

The LOCKSS peer-to-peer digital preservation system. ACM Trans. Comput.

Syst., 2005.

[67] Y. Mao, F. P. Junqueira, and K. Marzullo. Mencius: building efficient repli-

cated state machines for wans. In Proceedings of the 8th USENIX conference

on Operating systems design and implementation, OSDI’08, pages 369–384,

Berkeley, CA, USA, 2008. USENIX Association.

[68] J.-P. Martin and L. Alvisi. Fast Byzantine consensus. IEEE Transactions on

Dependable and Secure Computing, 3(3):202–215, July 2006.

[69] J.-P. Martin, L. Alvisi, and M. Dahlin. Minimal Byzantine storage. In 16th

International Conference on Distributed Computing, DISC 2002, pages 311–

325, Oct. 2002.

210

[70] J.-P. Martin, L. Alvisi, and M. Dahlin. Small Byzantine quorum systems.

In Proceedings of the International Conference on Dependable Systems and

Networks (DSN 02), DCC Symposium, pages 374–383, June 2002.

[71] S. Misel. Wow, AS7007! NANOG mail archives

http://www.merit.edu/mail.archives/nanog/1997-04/msg00340.html.

[72] C. Mohan, R. Strong, and S. Finkelstein. Method for distributed transaction

commit and recovery using byzantine agreement within clusters of processors.

In PODC ’83: Proceedings of the second annual ACM symposium on Prin-

ciples of distributed computing, pages 89–103, New York, NY, USA, 1983.

ACM.

[73] J. Napper. Robust Multithreaded Applications. PhD thesis, The University of

Texas at Austin, 2008.

[74] Netty project. http://www.jboss.org/netty.html.

[75] E. B. Nightingale, K. Veeraraghavan, P. M. Chen, and J. Flinn. Rethink the

sync. In Proc. 7th OSDI, Nov. 2006.

[76] NS-2. http://www.isi.edu/nsnam/ns/.

[77] B. Oki and B. Liskov. Viewstamped replication: A general primary copy

method to support highly-available distributed systems. In Proc. 7th PODC,

1988.

[78] D. Oppenheimer, A. Ganapathi, and D. Patterson. Why do internet services

fail, and what can be done about it, 2003.

[79] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence

of faults. Journal of the ACM, 27(2):228-234, Apr. 1980.

[80] K. J. Perry and S. Toueg. Distributed agreement in the presence of processor

and communication faults. IEEE Trans. Softw. Eng., 12(3):477–482, 1986.

[81] E. Pinheiro, W. Weber, and L. Barroso. Failure trends in a large disk drive

population. In Proc. USENIX FAST, 2007.

211

http://www.jboss.org/netty.html
http://www.isi.edu/nsnam/ns/

[82] V. Prabhakaran, L. N. Bairavasundaram, N. Agrawal, H. S. Gunawi, A. C.

Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Iron file systems. In Proc. 20th

SOSP, 2005.

[83] Query/Update protocol. http://www.pdl.cmu.edu/QU/index.html.

[84] M. K. Reiter. A secure group membership protocol. IEEE Trans. Softw. Eng.,

22(1):31–42, 1996.

[85] A. Rich. ZFS, sun’s cutting-edge file system. Technical report, Sun Microsys-

tems, 2006.

[86] R. Rodrigues, M. Castro, and B. Liskov. BASE: using abstraction to improve

fault tolerance. In Proc. 18th SOSP, Oct. 2001.

[87] F. B. Schneider. Byzantine generals in action: implementing fail-stop proces-

sors. ACM Trans. Comput. Syst., 2(2):145–154, 1984.

[88] F. B. Schneider. Implementing fault–tolerant services using the state machine

approach: A tutorial. Computing Surveys, 22(3):299–319, September 1990.

[89] F. B. Schneider. Implementing fault-tolerant services using the state machine

approach: a tutorial. ACM Computing Surveys, 22(4):299–319, Sept. 1990.

[90] B. Schroeder and G. Gibson. Disk failures in the real world: What does an

MTTF of 1,000,000 hours mean to you. In Proc. USENIX FAST, 2007.

[91] B. Schroeder, E. Pinheiro, and W.-D. Weber. Dram errors in the wild: a large-

scale field study. In SIGMETRICS ’09: Proceedings of the eleventh interna-

tional joint conference on Measurement and modeling of computer systems,

pages 193–204, New York, NY, USA, 2009. ACM.

[92] M. Serafini, P. Bokor, D. Dobre, M. Majuntke, and N. Suri. Scrooge: Reducing

the costs of fast byzantine replication in presence of unresponsive replicas. In

Proc. of the IEEE Int’l Conf. on Dependable Systems and Networks (DSN),

2010.

[93] M. Serafini, P. Bokor, and N. Suri. Scrooge: Stable speculative byzantine

fault tolerance using testifiers. Technical report, Darmstadt University of

Technology, Department of Computer Science, September 2008.

212

http://www.pdl.cmu.edu/QU/index.html

[94] P. Shivakumar, M. Kistler, S. W. Keckler, D. Burger, and L. Alvisi. Modeling

the effect of technology trends on the soft error rate of combinational logic.

In Proc. DSN-2002, pages 389–398, 2002.

[95] A. Singh, T. Das, P. Maniatis, P. Druschel, and T. Roscoe. Bft protocols

under fire. In NSDI’08: Proceedings of the 5th USENIX Symposium on Net-

worked Systems Design and Implementation, pages 189–204, Berkeley, CA,

USA, 2008. USENIX Association.

[96] Single network card downed lax computers.

http://www.tgdaily.com/content/view/33398/113/.

[97] A. S. Team. Amazon S3 availability event: July 20, 2008.

http://status.aws.amazon.com/s3-20080720.html, 2008.

[98] P. Thambidurai and Y.-K. Park. Interactive consistency with multiple failure

modes. In Proc. 7th SRDS, 1988.

[99] C. A. Thekkath, T. Mann, and E. K. Lee. Frangipani: A scalable distributed

file system. In Proc. 16th SOSP, pages 224–237, 1997.

[100] B. Vandiver, H. Balakrishnan, B. Liskov, and S. Madden. Tolerating Byzantine

faults in transaction processing systems using commit barrier scheduling. In

Proc. 20th SOSP, 2007.

[101] M. Walfish, M. Vutukuru, H. Balakrishnan, D. Karger, and S. Shenker. DDoS

defense by offense. In SIGCOMM, 2006.

[102] H. J. Wang, J. C. Platt, Y. Chen, R. Zhang, and Y.-M. Wang. Automatic

misconfiguration troubleshooting with peerpressure. In OSDI, Dec. 2004.

[103] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold, M. Hi-

bler, C. Barb, and A. Joglekar. An integrated experimental environment for

distributed systems and networks. In Proc. 5th OSDI, pages 255–270, Boston,

MA, Dec. 2002. USENIX Association.

[104] T. Wood, R. Singh, A. Venkataramani, and P. Shenoy. ZZ: Cheap practi-

cal BFT using virtualization. Technical Report TR14-08, University of Mas-

sachusetts, 2008.

213

[105] J. Yang, C. Sar, and D. Engler. EXPLODE: A lightweight, general system for

finding serious storage system errors. In Proc. 7th OSDI, 2006.

[106] J. Yang, P. Twohey, D. Engler, and M. Musuvathi. Using model checking to

find serious file system errors. In OSDI’04: Proceedings of the 6th conference

on Symposium on Opearting Systems Design & Implementation, pages 19–19,

Berkeley, CA, USA, 2004. USENIX Association.

[107] J. Yin, J.-P. Martin, A. Venkataramani, L. Alvisi, and M. Dahlin. Separating

agreement from execution for Byzantine fault tolerant services. In Proc. 19th

SOSP, Oct. 2003.

[108] Zookeeper. http://hadoop.apache.org/zookeeper.

214

http://hadoop.apache.org/zookeeper

Vita

Allen Clement was born in Alexandria, Virginia, as the son of two lawyers. His

family moved to Houston, Texas, when he was seven and he lived there until he

graduated from Strake Jesuit College Preparatory in 1996. He attended Princeton

University in Princeton, New Jersy, where he graduated with an A.B. in Computer

Science in 2000. He taught introductory Java programming at Ngee Ann Polytechnic

in Singapore from July 2000 through June 2001. He spent fall 2001 through May

2002 studying computational geometry and hypercube embedding at the University

of British Columbia in Vancouver, British Columbia. In fall 2002 he enrolled in the

PhD program in the Department of Computer Sciences at the University of Texas

at Austin, where he was a teaching assistant and graduate research assistant.

Permanent Address: 1902 Coulcrest

Houston, Texas, 77055

This dissertation was typeset with LATEX 2ε
1 by the author.

1LATEX 2ε is an extension of LATEX. LATEX is a collection of macros for TEX. TEX is a trademark of
the American Mathematical Society. The macros used in formatting this dissertation were written
by Dinesh Das, Department of Computer Sciences, The University of Texas at Austin, and extended
by Bert Kay, James A. Bednar, and Ayman El-Khashab.

215

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Chapter Introduction
	Chapter Failure models and fault tolerance
	Classifying node and network behaviors
	Faulty behaviors
	Correct behaviors
	Cryptographic assumptions and notation
	Network Behaviors

	Fault tolerance
	Why UpRight?

	Chapter Robust Performance
	Introduction
	Recasting the problem
	Aardvark: RBFT in action
	Protocol description
	Client request transmission
	Replica agreement
	Primary view changes
	Implementation

	Analysis
	Experimental evaluation
	Common case performance
	Evaluating faulty systems

	Conclusion

	Chapter UpRight RSM Architecture
	UpRight architecture
	Division of responsibilities
	Library properties
	Application requirements

	Looking forward

	Chapter UpRight Stages
	Basic stage interactions
	Client properties
	Authentication properties
	Order properties
	Execution properties
	Putting the stages together

	Network efficiency
	Garbage collection and transient crashes
	Order stage
	Execution stage.
	Authentication stage
	Client

	Full property list
	Client Properties
	Authentication stage properties
	Order stage properties
	Execution stage properties

	Supported optimizations
	Messages and notation
	Stage level pseudo-code
	Client operation
	Authentication operation
	Order operation
	Execution operation

	Conclusion

	Chapter UpRight Replication
	Consensus background
	Replicated order stage
	Normal-operation—Zyzzyvark
	Checkpoint-operation
	Interactions with other stages
	Order stage properties

	Replicated execution stage
	Execution consensus
	Execution-stage checkpoints
	Interactions with other stages
	Execution stage properties

	Replicating authentication stage
	Authentication consensus
	Interactions with other stages
	Authentication stage properties

	Implementation and performance
	Discussion
	Conclusion

	Chapter UpRight Applications
	Request Processing
	Checkpoint Generation
	HDFS case study
	Baseline system
	UpRight-HDFS
	Evaluation
	MapReduce

	ZooKeeper case study
	Baseline system
	UpRight-ZooKeeper
	Evaluation

	Conclusion and Discussion

	Chapter Background and state machine replication
	RSM approach
	Consensus
	Recent RSM history
	Performance with failures
	Application fault tolerance

	Chapter Conclusion
	Appendix UpRight Library Byte Specifications
	Basic Message Structure
	Inter-stage messages
	Message Tags
	Inter-stage messages
	Order stage checkpoint

	Execution node specifications
	Message Tags
	Execution checkpoints
	Execution Messages

	Appendix UpRight Library API
	Client API
	Server API

	Bibliography
	Vita

