
���������
	 ����
���	����������������������� �!��"��	���#%$&��'���
(�*)+�����,�-�/.0�
)1'�!��2��
 3547698�:�4;8=<?>;@A8;4�B�:�694;CED5F�8�G�H�I"JLK�3 M N0O M P-Q R S�T
UWV1X�Y2Z5[�\�]/^5T�T-_%U

 Page 1

A Memory Accounting Interface for The
Java Programming Language*

Mirza Beg, Mike Dahlin

beg@alumni.utexas.net, dahlin@cs.utexas.edu
Department of Computer Sciences
The University of Texas at Austin

ABSTRACT
Widespread use of the Internet infrastructure for
deploying services creates new issues and raises serious
concerns regarding the security of their execution
environment. Ideas of employing dynamic distributed
systems for mounting e-services on the web are gaining
strength. The main idea behind their proposed design is
the use of distributed extensions. This permits execution
of un-trusted service code at clients, content distribution
service machines or proxies, in order to make the dynamic
services more effective.
 Over the past few years Java has surfaced as an
attractive option for constructing web services and
programming their execution environment. Java provides
the capability of automatic memory operations but fails to
provide an accounting interface. In order to make the
services more secure the language needs a robust resource
accounting interface.
 This paper discusses the design and implementation of a
memory accounting interface as a key component of
resource management. We discuss the design,
implementation and issues regarding the implementation
of this system. To consider its practical application, we
evaluate the performance and accuracy of this system.

KEYWORDS
Java, Resource Management, Security, Bytecode
Rewriting, Mobile Services, Un-trusted Code.

1. INTRODUCTION

This paper examines the advantages and practicality of a
memory management interface for Java. The object is to
lower the denial of service risk which has escalated due to
increasing use of active services over the web, the
circulation of un-trusted code from unreliable sources and
of possibly aggressive intentions. This activity can pose a
potential security threat on both the client side and server
side likewise, especially in the presence of mobile service
code [13].

* This work was supported in part the Texas Advanced Technology Program, the
Texas Advanced Research Program, and a grant from Novell. Dahlin was also
supported by an NSF CAREER award (CCR-9733842) and an Alfred P. Sloan
Research Fellowship.

 Java has surfaced as an appropriate choice for creating
extensible services and deploying them on the Internet.
This extension demands the Java Runtime Environment to
provide adequate security as well as a fair distribution of
resources among services. Java applets are a prime
example of downloadable content executing on a client.
Disallowing access to the disk and network connectivity
to this piece of un-trusted code by executing it in a black
box environment does protect the user from a potential
security breach, not from denial-of-service. For example,
there are no limits to the amount of memory this code can
use, thus allowing it to utilize memory resources at its
discretion. This scenario illustrates a potential threat of
denial-of-service by crashing the browser. Simply
consuming the available memory would render the JVM
unable to function normally. Similarly server extensions
can pose an even greater threat to service providers. Java
servlets are an example of such extensions. Such
uploadable content can potentially disable the server to a
state where it is no longer capable of processing any
further requests.
 In the current implementation of Java (version 1.3) [9]
an interface for memory resource management is absent
i.e. a system using Java as its execution environment is
unable to control resource distribution between services.
Unless the Java runtime environment has the ability to
associate memory allocations to their allocating codelets
(through their respective threads) can limit memory
consumption, the task of deploying extensible systems
seems impractical.
 In this paper we propose a memory management system
for Java. This interface accounts for heap memory on a
per thread basis. The system is designed to associate all
allocated live objects to their respective allocating threads
and hence account for the total memory allocated by each
thread. In addition the system sets limits on memory
consumption for each thread. The system also terminates
threads of misbehaving code.
 The main contribution of the paper is to motivate the
incorporation of a memory management module in the
Java Runtime Environment. The goal here is to show that
this can be done without modifying the underlying
structure of the Java Virtual Machine. Including such an
interface in the runtime environment can be done with a

 Page 2

reasonable overhead and this is demonstrated by the
performance of the prototype system.
 The rest of the paper is structured as follows. In the next
section we discuss the motivating factors for our work.
Then we describe the architecture of the prototype
system, this section is followed by a section on
experimental results. In the following sections we discuss
the issues with the current implementation, some related
and ongoing work, and we conclude by evaluating the
practical applications of the system.

2. MOTIVATION

Two main factors have motivated the development of this
prototype system. The first being the absence of a
resource management interface in the language
specification. Second being the need for additional
security, which is essential for stable execution
environments. We gather most of our motivation from the
intended use of Java for extensible environments. In order
to be practical, such environments need to control the
access to resources and be able to enforce limits on
consumption.
 A leading example of extensible service deployment
would be the Active Names System [2], which allows un-
trusted code to execute dynamically over the network
with the intention of improving availabilit y of wide-area
services. In this system a client can upload service
extensions to customize the available services. This
uploaded code is then available to a large group of other
potential clients employing the same system for accessing
web services whether through a simple web browser or a
more sophisticated mode. The important thing to note
here is that both the system core and the uploaded code
are being executed on the same Virtual Machine. They are
essentially running in different security domains yet there
is no distinction between the two as far as resource access
is concerned. Hence the system is susceptible to denial-
of-service attacks unless a resource management unit is
added to improve and restrict resource distribution and
consumption.
 The absence of a resource management interface can
have serious consequences both for the service provider
and the end-user. The un-trusted codelet can exhaust the
available memory and cause starvation in all other
applications executing on the system. Such an attack can
not only cause denial-of-service by not allowing other
requests to be processed by the system but can also lead
to a system wide crash and prevent new processes from
initiating.
 From the end-users point of view it would be desirable
to have a memory management interface that the system
can use to prevent un-trusted code from using excessive
memory in order to prevent the denial-of-service attacks
on the client side. The potential threat to the end-user
comes primarily from web applets and other

downloadable Java content. Code with malicious
intentions can overwhelm the system by extensively
consuming memory and possibly resulting in application
failures and even system crashes, in the worst scenario.
 Denial-of-service attacks can disable a system through
all the resources available to the un-trusted code. To deal
with these attacks work is currently being done for the
management disk and network resources [3].

3. PRELUDE TO SYSTEM IMPLEMENTATION

The implementation of the memory management interface
could be simpler if the code was trusted and the
programmers could be trusted to send notifications for
memory manipulations. Unfortunately there are a few
problems with this approach. Firstly, we cannot trust the
programmer. Secondly, even if we did trust the
programmer there is always the risk of human error. And
lastly, the process is entirely mechanical.
 Keeping the above-mentioned limitations in mind, we
decided upon an automated module, bytecode-rewrite, to
rewrite the compiled java `.class̀ files to insert the
notification callbacks to the memory manager. The details
of bytecode rewriting are discussed in Section 4.3,
explaining the engineering of these modifications.

4. MEMORY MANAGEMENT: THE PROPOSED
INTERFACE

Faced with the challenges discussed in Section 2, our goal
is to construct a flexible Memory Management Interface
without modifying the existing structure of the Java
Virtual Machine. Modifying the JVM would mean
sacrificing the portabilit y of java code.
 Memory accounting in this system is accomplished
through bytecode engineering; by adding notifications
signals upon state changes in heap memory. This is
accomplished by inserting appropriate bytecode
instructions at selected places in the original classes in
order to maintain information about memory consumption
recorded on a per-thread basis.
 Our implementation consists of three main components:
A memory accounting module, that provides an
accountabilit y interface for heap memory, a management
policy module that uses a policy to set limits to memory
consumption and enforces them, and a bytecode-rewriting
module that inserts callbacks in appropriate locations in
the code. These modules are individually discussed in the
following subsections.

4.1 MEMORY ACCOUNTING
The objective of the memory management interface is to
know, at any given time, the amount of memory
consumed by each individual thread currently executing
in the system.

 Page 3

 This interface is designed to receive notifications for
any activity in the heap memory of the system. This
means that when an object is allocated in the memory
space, a notification is sent to the Memory Manager. A
similar notification is sent upon object de-allocation.
These notifications are received as function calls to the
Memory Manager, within which these signals are handled
appropriately.
 This module is responsible for keeping the current state
of memory distribution in the heap. It keeps track of all
threads in the system, the references to their live objects
and the amount of memory consumed by these objects
measured in bytes. When an object is allocated a
notification arrives at the memory manager along with the
information regarding the allocating thread and the size of
the object. At this time the allocating thread is charged for
the space occupied by this object. When this object is

 weakly
 reachable

 reachable unreachable

Figure 1: State transitions for reclaiming an object.

de-allocated and is collected by the Garbage Collector
another notification arrives at the memory manager,
signifying the expiration of this object. As a response to
this callback the memory manager subtracts the space
occupied by this object from the usage account of its
allocating thread.
 Accounting for memory allocated by arrays is a little
trickier. When an array allocation notification is received
a weak pointer for this array object is saved in the account
of the allocating thread, in addition to incrementing its
usage by the amount of memory allocated by this array.
This value is calculated by multiplying the array length to
the size of a single array object. In the case of
multidimensional arrays the dimensions are multiplied out
to calculate the size of the array. In the case of a primitive
array the dimension is multiplied by the corresponding
primitive size.
 When the object is no longer reachable from any part of
the code it is garbage collected. Figure 1 shows the state
transitions an object goes through during its lifetime.

Weak pointers do not obstruct de-allocations of objects.
Thus the array-objects, which are garbage collected, their
corresponding weak pointers turn to null. The sizes of
these array-objects are subtracted from the total memory
usage of the thread after they have been garbage collected
and the memory manager finds their references to be null.

4.2 MANAGEMENT POLICY
This module performs three essential functions. (i)
Registers new threads (ii) sets an upper limit to the
memory that can be consumed by a particular thread (iii)
handles overuse callbacks and takes appropriate action
whenever memory usage of a particular thread exceeds its
limit.

 Registration. Thread registration is one of the most
important steps in memory accountability. When a thread
allocates an object in heap memory for the first time, it is
registered with the memory manager. This registration
initializes the parameters in the memory manager for the
corresponding thread. The purpose of this registration is
to keep track of all the threads whether active or not, that
have made use of the memory heap. This means that
threads that do not perform any dynamic memory
allocations are not registered at all. Once the thread is
registered, the memory manager can proceed with the
memory usage data that becomes available.

 Limits. The limits to memory consumption are set at
the time of thread registration by this policy module. The
limit for a particular thread is a numerical value, which
acts as an upper bound on the memory bytes that can be
consumed by this thread. The limit can be assigned a
fixed value but a more plausible idea would be to assign it
a value that is a percentage of the available free memory.
Yet a better idea is to let this limiting value be dynamic.
In service providing systems, higher limits can be set for
more popular services and lower for the least popular
ones. The schema of popularity based resource
management has been developed on the notion that
popular services should be given higher priority. Practical
application and prototype implementation of such a
system is discussed in the proposed disk-space
management system [3]. For the purposes of the
experiments described in this paper we used constant
limits.

 Enforcement. Memory overuse callbacks are currently
handled by terminating the thread and freeing the memory
resources consumed by it. This module is responsible for
accomplishing thread termination, when required. It is
important that the threads are terminated softly so that any
locks held are released before the thread is killed to avoid
a deadlock in the system. Dr. Wallach has done a

 Page 4

 COMPILER
 Java Source Java Class

Verification Java
 Unit ClassLoader

 Figure 2. The normal stages a simple java program goes
through before it is executed.

 COMPILER
 Java Source Java Class

 Bytecode Rewrite Module

Verification Java
 Unit ClassLoader

Figure 3. The modification to the pre-runtime stages of a
simple program to add hooks into Java bytecode.

significant amount of research in the area of Soft
Termination in Java Runtime [1]. In the prototype
discussed here we force the thread to throw a
ThreadDeathError, which releases the locks held by this
thread after which it terminates the thread.

4.3 BYTECODE REWRITE
Bytecode engineering has been employed in this system
to implement the notification mechanisms for activity in
the memory heap. This means that the notifications
received by the memory manager discussed in Section 4.1
are inserted into the code by this bytecode rewriting
module. Notifying function calls are inserted in
appropriate places in the code to detect changes in the
state of the memory heap.

 COMPILER
 Java Source Java Class

Verification Java
 Unit ClassLoader

 Bytecode Rewrite Module

Figure 4. The modifications to runtime stages when
bytecodes are written online i.e. at runtime

 The rewriting has been accomplished with the help of a
bytecode modification toolkit developed at IBM, namely
jikesBT [4]. An evaluation version of this toolkit can be
obtained from the alphaworks website. The programming
interface provided by this toolkit allows the programmer
to dwell into java bytecode and experience the flavor of
the stack based java environment [11].

 The modifications to the Java classes are completed
before runtime i.e. the classes are modified after
compilation and before execution. These modifications to
the class files are discussed in the following paragraphs
.

 Allocation Detection. The code for every method is
modified to send callbacks to the memory manager upon
every allocation of a Java object or array after the
allocating instruction. This callback is made in the form
of a function call to the memory manager and the required
information is passed to the interface as function
parameters. As a result of this notification the
accountability interface credits this memory allocation to
the account of the allocating thread.

De-allocation Detection. Before an object is collected
and its space freed, the finalizer function is called by the
system garbage collector. We use this feature in Java to
notify the memory management system of object de-
allocation. We insert a callback to the memory manager at
the end of the finalizer code. This piece of code is
executed when the garbage collector runs the finalizer.
When this notification is received by the accounting
interface, the space occupied by the collected object is
subtracted from the allocating threads account.

 Page 5

 Obtaining Object Size. An additional function (public
static __sizeof()) is added to each rewritten class to
obtain the size of the allocated object. This is calculated
as the sum of its fields’ sizes. This function is made static
so that it can be called to calculate the array sizes.

 Allocating Thread. A public field (__allocator) is
added to the code of each class to record the information
regarding the allocating thread. This field is also used as a
rewrite flag to prevent classes from being rewritten more
than once.

 Initialization. Constructors of non-array objects are
modified to initialize the __allocator field to record the
allocating thread identification. Thus when an object is
allocated it records its allocating thread as being the
current thread. This information is also used when an
object is de-allocated to obtain allocator identification. If
a constructor is not present, a default constructor is
created.

 Bytecode modifications can be accomplished before
runtime as shown in Figure 2. but some environments
may require this rewriting to occur during runtime, as
shown in Figure 3. Although both approaches look
similar, moving the rewrite module one step ahead in the
execution schedule is diff icult and greatly affects the
performance of the system. The challenging part in
bytecode engineering is to maintain the consistency of the
stack based execution model in Java. This is crucial for a
class to pass through verification while the class is being
loaded for execution. Java Stack Inspection [5] provides
details of maintaining and securing the stack-based model
using a more formal approach.

4.3.1 RESTRICTIONS
The design of the system creates some limitations for the
programmer.
 The use of finalizers has been restricted in order to seal
a backdoor passage into memory. The finalizer has been
called on an object after its un-reachabilit y determined by
the garbage collector. Once the finalizer is executed, the
object cannot be re-incarnated.
 The use of variables inserted by the bytecode-rewrite
module is restricted. The programmer cannot use variable
or function names (__allocator, __sizeof()). This
restriction is to prevent verification conflicts in the code.
 Access to memory manager functions is restricted, so
that the user cannot trick the memory manager by sending
false notifications.
 If the code fails to comply with the above-mentioned
rules, it will be restricted from passing the verification
phase and as a result would not be loaded into the JVM.

5. DISCUSSION

The memory management system proposed in this paper
was designed using the technique of bytecode
engineering. This strategy raised certain issues during the
implementation of the system. These issues are discussed
in greater detail i n this section. Also there is this
noteworthy relationship between heap allocations and
stack consumption, this topic also needs some
clarification.

5.1 ISSUES
Although the objective of building a memory
management system was to be able to monitor memory
activity to its entirety, there are certain forms of memory
activity that the current system is unable to detect.
 The technique of sending notifications to the
accountabilit y interface upon every allocation and de-
allocation works fine for memory manipulations in the
non-system code. The problem arises when a system
object allocates another system object. The system classes
are not modified to have callbacks. These files are a part
of the standard JVM and modifying them would mean
loosening the JVM standards and consequently making
this system non-portable.
 The system files could be modified while they are being
loaded at runtime. This would prevent us form modifying
the JVM structure, but system-class-loading in existing
versions of the java runtime environment is done
exclusively by the system class-loader, preventing us
from accounting for system objects allocated by system
code.
 The important point to note here is that non-system
objects allocated by system classes are still accounted for
by the memory manager because their code is
continuously monitored. In conclusion we found that with
the current tools system code is an exception to memory
accountabilit y.

5.2 STACK ALLOCATIONS
A significant point to note is that the memory manager
described in this system only accounts for the heap
memory utili zed by the system’s threads. It does not
account for automatic allocations done on the program
stack. These allocations are not a concern here because
each Java thread has its own stack space initially set at a
default size of 2 megabytes. The limits are enforced by
the system. Program threads that overflow the allocated
stack will receive java.lang.StackOverFlowException.
Since the limitations on stack space are enforced by the
system itself and individual thread stacks cannot interfere
with each other, the stack space is not a potential target
for attacks via denial-of-service.
 Dynamic allocations create objects on the heap. This
memory heap is common to all the threads running in the
process. As a consequence a single thread can consume

 Page 6

most of the heap memory and cause starvation. As a result
other threads running in the system may not be able to
perform their functions and in severe cases the system
may not be able to process any further requests.
Individual thread stacks cannot pose such a threat to the
system simply because they cannot occupy the stack
space reserved for other threads in the system.
 If it were possible to launch denial-of-service attacks
using stack space, the same technique of bytecode
engineering could be applied to restrict stack
consumption. Although in the current runtime, limiting
stack space on a per thread basis is dealt within the JVM
itself.

5.3 SYSTEM LIMITATIONS
Although the system works fine in most usual cases but
there is a way in which the accounting can be deceived.
This can be done by reincarnating the object within the
finalizer method after the de-allocate notification has been
sent to the memory manager. To accomplish this the
object can pass its own reference to some other location
which prevents the garbage collector from trashing it even
after it has called the finalizer on this object.
 To prevent this from happening and for the sake of fair
accountabilit y, we have decided to disallow finalizers in
un-trusted code. To accomplish this task a class within the
un-trusted code containing a finalizer can be prevented
from being loaded into the system.

6. EXPERIMENTS AND RESULTS

In this section we evaluate the performance of the system
by conducting a few tests to monitor memory
consumption by threads running in a system.

6.1 ACCURACY
Several experiments were conducted to test the accuracy
of the memory management system. Each of these
experiments demonstrates the execution of a dominant
thread that allocates objects of known sizes at known
rates. Figure 5 shows the actual memory consumption of a
thread compared to its account with the memory manager,
plotted against time. This instance shows that the
accountabilit y system is detecting allocations and de-
allocations with extreme precession. This is clearly visible
via regions of significant overlaps between the two graphs
in figure 5. This precision owes to the fact that the thread
being monitored here allocates only non-system objects
and primitive arrays.
 Figure 6 shows a similar comparison for another thread
monitored by the system. This thread allocates both non-
system and system objects with second level allocations.
In this instance it can be seen that the actual memory
usage continues to increase whereas the accountabilit y

0

100

200

300

400

500

600

700

800

900

1000

38
6

42
0

42
1

75
2

75
3

10
84

10
85

13
85

15
38

16
29

17
82

18
43

20
84

20
85

23
83

25
36

26
28

Time (milliseconds)

M
em

o
ry

 S
p

ac
e

(b
yt

es
)

Actual Consumption

Recorded Consumption

Limit

Figure 5. Actual memory consumption vs. Consumption
according to accountabilit y data. Non-system allocations.

interface is only able to account for only a fraction of the
thread’s consumption. This is a demonstration of the
phenomenon discussed in Section 5. The memory
manager is unable to detect allocations and de-allocations
of second level system objects, which results in a huge
difference between the actual memory consumption of the
thread and the consumption recorded for accountabilit y.
Hence the two graphs for actual and recorded
consumption are utterly disconnected. Second level
system allocations can potentially create a scenario where
a thread that has exceeded its allocated limit could
continue executing normally.

0

1000

2000

3000

4000

5000

6000

7000

8000

38
6

71
9

10
52

13
85

17
19

20
52

23
83

27
18

30
53

33
93

37
28

40
62

43
98

47
32

50
83

Time (miliseconds)

M
em

o
ry

 S
p

ac
e

(b
yt

es
)

Actual Consumption

Recorded Consumption

Limit

Figure 6. Actual memory consumption vs. Consumption
according to accountabilit y data. Multiple System
allocations.

 Page 7

6.2 PERFORMANCE
Accounting for heap memory requires additional
computation on part of the system. As a direct
consequence the system receives a dual performance
setback associated with memory accountabilit y. The first
delay comes from the extra time it takes to engineer the
bytecodes and add hooks for the memory management
system. This slowdown is proportional to the size of the
file and the number of memory modifying instructions.
The second setback comes from the execution of the
additional instructions that were added to the classes
during bytecode modification. This slowdown is directly

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

14% 75%

Percentage of Allocating Instructions

P
er

fo
rm

an
ce

 (
m

ill
is

ec
o

n
d

s)

Actual Runtime

Rewrite Time

New Runtime

Figure 7. Performance analysis.

proportional to the number of allocating instructions
executed during the run of the system. Figure 7 shows a
graphical depiction of these performance hits compared to
the number of allocating instructions executed in the
system. Statistics have shown that execution of a large
number of these instructions would generate considerable
performance degradation. Fortunately most general-
purpose programs have a low percentage of memory
allocating instructions.

7. RELATED WORK

This work is done as part of a complete resource
management interface for Java. As discussed earlier,
using Java as a runtime environment for deploying web
services necessitates resource control and fair distribution
of these resources at the system level. In this respect
considerable effort has been made to build similar
interfaces to manage other resources. Other areas of
resource accounting include disk usage, network
bandwidth, CPU cycles, write buffers and the cache etc.
design of a comprehensive Resource Management

Interface has already been proposed for disconnected
services [3]. In their proposal the authors have discussed
issues regarding disk and cache resources in great detail .
 This work is also directly related to systems deploying
extensible services. These systems rely on Java for a
reliable execution environment. Work has been going on
several projects, which have been proposed to run un-
trusted code with the system core. Such projects include
Active Names [2], Active Networks [6] and Active
Services [7], providing services using the potential of
active executable content. These systems rely on
execution of un-trusted code to provide eff icient access to
Internet services.
 Moreover this work is also associated with efforts made
at bytecode engineering. For example successful attempts
have been made at runtime optimizations through
bytecode modifications by Joseph Hummel [10] and Lars
R. Clausen [12]. They present prime examples of
bytecode engineering applied to increase the strength of
Java, both as a programming language and an execution
environment.
 An attempt at Resource management for Java was also
made through the KaffeOS project [14]. KaffeOS dealt
with the resource management issues at the process level
but disregarded accountabilit y on a per thread basis. A
similar system was Dr. Czajkowski’s Jres, which
discussed a prototype implementation of a Resource
Accounting Interface for Java PL [8]. The Memory
Management system described in this paper differs from
the one described in Jres with respect to its stricter
adherence to the JVM standards and system portabilit y.
The prototype that we have described does not dependent
on any native code and is built completely at user level.

8. CONCLUSIONS AND FUTURE DIRECTIONS

The strategy of using bytecode engineering to account for
heap memory on a per thread basis has been successful
partly because of its simplistic low-level design.
Unfortunately, this approach becomes a limiting factor
when it comes to monitoring the internal system classes,
which we have taken as an exception. The goal of
building this prototype system is to demonstrate the need
for a complete resource management interface for Java.
The memory management system proposed in this paper
seeks to patch up existing security structure of the
language. We have presented a prototype system that uses
the technique of bytecode rewriting to build a memory
accounting unit on top of the existing JVM model. The
intent here is to create a more robust environment for
deploying service extensions in which un-trusted code is
executed with a minimal overhead. Finally, the issues and
performance statistics discussed in this paper would be
useful when incorporation of a resource interface is
considered for Java.

 Page 8

ACKNOWLEDGEMENTS

We would like to especially thank Dr. Gouda, without
whose guidance and moral support this thesis would not
exist.
 Our appreciation goes to all other people in the area of
research. To Dr. Wallach for his experimental insights
and for sharing the techniques of bytecode engineering.
To Amol Nayate and Bharat Chandra for helping further
demystify the correlations within the Active Names
System, and distributed web services in general.
 We owe a great deal to Usman Shuja and Nabeel
Ahmed for their assistance during the project, which
helped make this thesis a reality and kept me from giving
up.
 Last but not least to Dr. Dahlin: Thank you for your
patience and continuous support, which helped me in
more ways than I can imagine.

REFERENCES

[1] Algis Rudys, John Clements, and Dan S. Wallach.
Termination in Language-based Systems, Network and
Distributed Systems Security Symposium (San Diego,
Cali fornia), February 2001.

[2] A. Vahdat, M. Dahlin, T. Anderson and A. Aggarwal.
Active Naming: Flexible Location and Transport of
Wide-Area Resources. In Proceedings of the Second
USENIX Symposium on Internet Technologies and
Systems, October 1999.

[3] Bharat Chandra, Mike Dahlin, Lei Gao, Amjad-Ali
Khoja, Amol Nayate, Asim Razzaq, Anil Sewani.
Resource Management for scalable disconnected access to
web services. WWW10, May 2001.

[4] Chris Laff ra. Jikes Bytecode Toolkit.
http://www.alphaworks.ibm.com/tech/jikesbt

[5] Dan S. Wallach and Edward W. Felten, Understanding
Java Stack Inspection, 1998 IEEE Symposium on Security
and Privacy (Oakland, Cali fornia), May 1998, pp. 52-63.

[6] David Wetherall , Ulana Legedza, and John Guttag.
Introducing New Network Services: Why and How. In
IEEE Network Magazine, Special issue on Active
Programmable Networks, July 1998.

[7] Elan Amir, Steven McCanne, and Randy Katz. An
Active Service Framework and its Application to
Realtime Multimedia Transcoding. In Proceedings of
SIGCOMM, September 1998.

[8] G. Czajkowski and T. von Eicken. Jres: A Resource
Accounting Interface for Java. In Proceedings of 198
ACM OOPSLA Conference, October 1998.

[9] Gosling, J., Joy, B., and Steele, G. The Java Language
Specification. Addison-Wesley, Reading, Massachusetts.
1996.

[10] Joseph Hummel, Ana Azevedo, David Kolson, and
Alexandru Nicolau. Annotating the java bytecodes in
support of optimization. Technical Report ICS-TR-97-01,
University of Cali fornia, Irvine, Department of
Information and Computer Science, April 1997.

[11] Jon Meyer, Troy Downing. Java Virtual Machine.
O’Rielly. 1997.

[12] Lars R. Clausen. A java bytecode optimizer using
side-effect analysis. Concurrency: Practice and
Experience, November 1997.

[13] Mike Dahlin, Bharat Chandra, Lei Gao, Amjad-Ali
Khoja, Amol Nayate, Asim Razzaq, Anil Sewani. Using
Mobile Extensions to Support Disconnected Services.
Technical Report TR-2000-20, University of Texas at
Austin.

[14] Godmar Back, Wilson C. Hsieh, and Jay Lepreau.
Processes in KaffeOS: Isolation, resource management,
and sharing in Java. In Proceedings of the 4th Symposium
on Operating Systems Design and Implementation (OSDI
2000), San Diego, Cali fornia, October 2000. USENIX
Association.

