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ABSTRACT 
Widespread use of the Internet infrastructure for 
deploying services creates new issues and raises serious 
concerns regarding the security of their execution 
environment. Ideas of employing dynamic distributed 
systems for mounting e-services on the web are gaining 
strength. The main idea behind their proposed design is 
the use of distributed extensions. This permits execution 
of un-trusted service code at clients, content distribution 
service machines or proxies, in order to make the dynamic 
services more effective.  
   Over the past few years Java has surfaced as an 
attractive option for constructing web services and 
programming their execution environment. Java provides 
the capability of automatic memory operations but fails to 
provide an accounting interface.  In order to make the 
services more secure the language needs a robust resource 
accounting interface. 
   This paper discusses the design and implementation of a 
memory accounting interface as a key component of 
resource management. We discuss the design, 
implementation and issues regarding the implementation 
of this system. To consider its practical application, we 
evaluate the performance and accuracy of this system. 
 
KEYWORDS 
Java, Resource Management, Security, Bytecode 
Rewriting, Mobile Services, Un-trusted Code. 
 
1. INTRODUCTION 
  
This paper examines the advantages and practicality of a 
memory management interface for Java. The object is to 
lower the denial of service risk which has escalated due to 
increasing use of active services over the web, the 
circulation of un-trusted code from unreliable sources and 
of possibly aggressive intentions. This activity can pose a 
potential security threat on both the client side and server 
side likewise, especially in the presence of mobile service 
code [13]. 
       
* This work was supported in part the Texas Advanced Technology Program, the 
Texas Advanced Research Program, and a grant from Novell. Dahlin was also 
supported by an NSF CAREER award (CCR-9733842) and an Alfred P. Sloan 
Research Fellowship. 

   Java has surfaced as an appropriate choice for creating 
extensible services and deploying them on the Internet. 
This extension demands the Java Runtime Environment to 
provide adequate security as well as a fair distribution of 
resources among services. Java applets are a prime 
example of downloadable content executing on a client. 
Disallowing access to the disk and network connectivity 
to this piece of un-trusted code by executing it in a black 
box environment does protect the user from a potential 
security breach, not from denial-of-service. For example, 
there are no limits to the amount of memory this code can 
use, thus allowing it to utilize memory resources at its 
discretion.  This scenario illustrates a potential threat of 
denial-of-service by crashing the browser. Simply 
consuming the available memory would render the JVM 
unable to function normally. Similarly server extensions 
can pose an even greater threat to service providers. Java 
servlets are an example of such extensions. Such 
uploadable content can potentially disable the server to a 
state where it is no longer capable of processing any 
further requests. 
   In the current implementation of Java (version 1.3) [9] 
an interface for memory resource management is absent 
i.e. a system using Java as its execution environment is 
unable to control resource distribution between services. 
Unless the Java runtime environment has the ability to 
associate memory allocations to their allocating codelets 
(through their respective threads) can limit memory 
consumption, the task of deploying extensible systems 
seems impractical. 
   In this paper we propose a memory management system 
for Java. This interface accounts for heap memory on a 
per thread basis. The system is designed to associate all 
allocated live objects to their respective allocating threads 
and hence account for the total memory allocated by each 
thread. In addition the system sets limits on memory 
consumption for each thread. The system also terminates 
threads of misbehaving code.  
   The main contribution of the paper is to motivate the 
incorporation of a memory management module in the 
Java Runtime Environment. The goal here is to show that 
this can be done without modifying the underlying 
structure of the Java Virtual Machine. Including such an 
interface in the runtime environment can be done with a 
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reasonable overhead and this is demonstrated by the 
performance of the prototype system. 
   The rest of the paper is structured as follows. In the next 
section we discuss the motivating factors for our work. 
Then we describe the architecture of the prototype 
system, this section is followed by a section on 
experimental results. In the following sections we discuss 
the issues with the current implementation, some related 
and ongoing work, and we conclude by evaluating the 
practical applications of the system. 
 
2. MOTIVATION 
 
Two main factors have motivated the development of this 
prototype system. The first being the absence of a 
resource management interface in the language 
specification. Second being the need for additional 
security, which is essential for stable execution 
environments. We gather most of our motivation from the 
intended use of Java for extensible environments. In order 
to be practical, such environments need to control the 
access to resources and be able to enforce limits on 
consumption.  
   A leading example of extensible service deployment 
would be the Active Names System [2], which allows un-
trusted code to execute dynamically over the network 
with the intention of improving availabilit y of wide-area 
services. In this system a client can upload service 
extensions to customize the available services. This 
uploaded code is then available to a large group of other 
potential clients employing the same system for accessing 
web services whether through a simple web browser or a 
more sophisticated mode. The important thing to note 
here is that both the system core and the uploaded code 
are being executed on the same Virtual Machine. They are 
essentially running in different security domains yet there 
is no distinction between the two as far as resource access 
is concerned. Hence the system is susceptible to denial-
of-service attacks unless a resource management unit is 
added to improve and restrict resource distribution and 
consumption. 
   The absence of a resource management interface can 
have serious consequences both for the service provider 
and the end-user. The un-trusted codelet can exhaust the 
available memory and cause starvation in all other 
applications executing on the system. Such an attack can 
not only cause denial-of-service by not allowing other 
requests to be processed by the system but can also lead 
to a system wide crash and prevent new processes from 
initiating. 
   From the end-users point of view it would be desirable 
to have a memory management interface that the system 
can use to prevent un-trusted code from using excessive 
memory in order to prevent the denial-of-service attacks 
on the client side. The potential threat to the end-user 
comes primarily from web applets and other 

downloadable Java content. Code with malicious 
intentions can overwhelm the system by extensively 
consuming memory and possibly resulting in application 
failures and even system crashes, in the worst scenario. 
   Denial-of-service attacks can disable a system through 
all the resources available to the un-trusted code. To deal 
with these attacks work is currently being done for the 
management disk and network resources [3]. 
 
3.  PRELUDE TO SYSTEM IMPLEMENTATION 
 
The implementation of the memory management interface 
could be simpler if the code was trusted and the 
programmers could be trusted to send notifications for 
memory manipulations. Unfortunately there are a few 
problems with this approach. Firstly, we cannot trust the 
programmer. Secondly, even if we did trust the 
programmer there is always the risk of human error. And 
lastly, the process is entirely mechanical. 
   Keeping the above-mentioned limitations in mind, we 
decided upon an automated module, bytecode-rewrite, to 
rewrite the compiled java `.class̀  files to insert the 
notification callbacks to the memory manager. The details 
of bytecode rewriting are discussed in Section 4.3, 
explaining the engineering of these modifications. 
 
 
4. MEMORY MANAGEMENT: THE PROPOSED 
INTERFACE 
 
Faced with the challenges discussed in Section 2, our goal 
is to construct a flexible Memory Management Interface 
without modifying the existing structure of the Java 
Virtual Machine. Modifying the JVM would mean 
sacrificing the portabilit y of java code. 
   Memory accounting in this system is accomplished 
through bytecode engineering; by adding notifications 
signals upon state changes in heap memory. This is 
accomplished by inserting appropriate bytecode 
instructions at selected places in the original classes in 
order to maintain information about memory consumption 
recorded on a per-thread basis.  
   Our implementation consists of three main components: 
A memory accounting module, that provides an 
accountabilit y interface for heap memory, a management 
policy module that uses a policy to set limits to memory 
consumption and enforces them, and a bytecode-rewriting 
module that inserts callbacks in appropriate locations in 
the code. These modules are individually discussed in the 
following subsections. 
 
4.1 MEMORY ACCOUNTING 
The objective of the memory management interface is to 
know, at any given time, the amount of memory 
consumed by each individual thread currently executing 
in the system.  
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   This interface is designed to receive notifications for 
any activity in the heap memory of the system. This 
means that when an object is allocated in the memory 
space, a notification is sent to the Memory Manager. A 
similar notification is sent upon object de-allocation. 
These notifications are received as function calls to the 
Memory Manager, within which these signals are handled 
appropriately. 
   This module is responsible for keeping the current state 
of memory distribution in the heap. It keeps track of all 
threads in the system, the references to their live objects 
and the amount of memory consumed by these objects 
measured in bytes. When an object is allocated a 
notification arrives at the memory manager along with the 
information regarding the allocating thread and the size of 
the object. At this time the allocating thread is charged for 
the  space  occupied  by  this  object. When  this  object  is  
 
 
 
                                weakly 
                        reachable 
 
 
 
 
 
 
 
        reachable                                 unreachable 
   
 
 
Figure 1: State transitions for reclaiming an object.  
 
 
de-allocated and is collected by the Garbage Collector 
another notification arrives at the memory manager, 
signifying the expiration of this object. As a response to 
this callback the memory manager subtracts the space 
occupied by this object from the usage account of its 
allocating thread. 
   Accounting for memory allocated by arrays is a little 
trickier. When an array allocation notification is received 
a weak pointer for this array object is saved in the account 
of the allocating thread, in addition to incrementing its 
usage by the amount of memory allocated by this array. 
This value is calculated by multiplying the array length to 
the size of a single array object. In the case of 
multidimensional arrays the dimensions are multiplied out 
to calculate the size of the array. In the case of a primitive 
array the dimension is multiplied by the corresponding 
primitive size.  
   When the object is no longer reachable from any part of 
the code it is garbage collected. Figure 1 shows the state 
transitions an object goes through during its lifetime. 

Weak pointers do not obstruct de-allocations of objects. 
Thus the array-objects, which are garbage collected, their 
corresponding weak pointers turn to null. The sizes of 
these array-objects are subtracted from the total memory 
usage of the thread after they have been garbage collected 
and the memory manager finds their references to be null.  
 
 
4.2 MANAGEMENT POLICY 
This module performs three essential functions. (i) 
Registers new threads (ii) sets an upper limit to the 
memory that can be consumed by a particular thread (iii) 
handles overuse callbacks and takes appropriate action 
whenever memory usage of a particular thread exceeds its 
limit. 
 
   Registration. Thread registration is one of the most 
important steps in memory accountability. When a thread 
allocates an object in heap memory for the first time, it is 
registered with the memory manager. This registration 
initializes the parameters in the memory manager for the 
corresponding thread. The purpose of this registration is 
to keep track of all the threads whether active or not, that 
have made use of the memory heap. This means that 
threads that do not perform any dynamic memory 
allocations are not registered at all. Once the thread is 
registered, the memory manager can proceed with the 
memory usage data that becomes available.  
 
   Limits. The limits to memory consumption are set at 
the time of thread registration by this policy module. The 
limit for a particular thread is a numerical value, which 
acts as an upper bound on the memory bytes that can be 
consumed by this thread. The limit can be assigned a 
fixed value but a more plausible idea would be to assign it 
a value that is a percentage of the available free memory. 
Yet a better idea is to let this limiting value be dynamic. 
In service providing systems, higher limits can be set for 
more popular services and lower for the least popular 
ones. The schema of popularity based resource 
management has been developed on the notion that 
popular services should be given higher priority. Practical 
application and prototype implementation of such a 
system is discussed in the proposed disk-space 
management system [3]. For the purposes of the 
experiments described in this paper we used constant 
limits. 
 
   Enforcement. Memory overuse callbacks are currently 
handled by terminating the thread and freeing the memory 
resources consumed by it. This module is responsible for 
accomplishing thread termination, when required. It is 
important that the threads are terminated softly so that any 
locks held are released before the thread is killed to avoid 
a deadlock in the system. Dr. Wallach has done a  
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 Figure 2. The normal stages a simple java program goes 
through before it is executed. 
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Figure 3. The modification to the pre-runtime stages of a 
simple program to add hooks into Java bytecode. 
 
 
significant amount of research in the area of Soft 
Termination in Java Runtime [1]. In the prototype 
discussed here we force the thread to throw a 
ThreadDeathError, which releases the locks held by this 
thread after which it terminates the thread. 
 
 
4.3 BYTECODE REWRITE 
Bytecode engineering has been employed in this system 
to implement the notification mechanisms for activity in 
the memory heap. This means that the notifications 
received by the memory manager discussed in Section 4.1 
are inserted into the code by this bytecode rewriting 
module. Notifying function calls are inserted in 
appropriate places in the code to detect changes in the 
state of the memory heap.  
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Figure 4. The modifications to runtime stages when 
bytecodes are written online i.e. at runtime 
 
 
   The rewriting has been accomplished with the help of a 
bytecode modification toolkit developed at IBM, namely 
jikesBT [4]. An evaluation version of this toolkit can be 
obtained from the alphaworks website. The programming 
interface provided by this toolkit allows the programmer 
to dwell into java bytecode and experience the flavor of 
the stack based java environment [11]. 
 
   The modifications to the Java classes are completed 
before runtime i.e. the classes are modified after 
compilation and before execution. These modifications to 
the class files are discussed in the following paragraphs 
. 
 
   Allocation Detection. The code for every method is 
modified to send callbacks to the memory manager upon 
every allocation of a Java object or array after the 
allocating instruction. This callback is made in the form 
of a function call to the memory manager and the required 
information is passed to the interface as function 
parameters. As a result of this notification the 
accountability interface credits this memory allocation to 
the account of the allocating thread. 
 
De-allocation Detection. Before an object is collected 
and its space freed, the finalizer function is called by the 
system garbage collector. We use this feature in Java to 
notify the memory management system of object de-
allocation. We insert a callback to the memory manager at 
the end of the finalizer code. This piece of code is 
executed when the garbage collector runs the finalizer. 
When this notification is received by the accounting 
interface, the space occupied by the collected object is 
subtracted from the allocating threads account.  
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  Obtaining Object Size. An additional function (public 
static __sizeof() ) is added to each rewritten class to 
obtain the size of the allocated object. This is calculated 
as the sum of its fields’ sizes. This function is made static 
so that it can be called to calculate the array sizes. 
 
  Allocating Thread. A public field (__allocator) is 
added to the code of each class to record the information 
regarding the allocating thread. This field is also used as a 
rewrite flag to prevent classes from being rewritten more 
than once. 
 
  Initialization. Constructors of non-array objects are 
modified to initialize the __allocator field to record the 
allocating thread identification. Thus when an object is 
allocated it records its allocating thread as being the 
current thread. This information is also used when an 
object is de-allocated to obtain allocator identification. If 
a constructor is not present, a default constructor is 
created. 
 
   Bytecode modifications can be accomplished before 
runtime as shown in Figure 2. but some environments 
may require this rewriting to occur during runtime, as 
shown in Figure 3. Although both approaches look 
similar, moving the rewrite module one step ahead in the 
execution schedule is diff icult and greatly affects the 
performance of the system. The challenging part in 
bytecode engineering is to maintain the consistency of the 
stack based execution model in Java. This is crucial for a 
class to pass through verification while the class is being 
loaded for execution.  Java Stack Inspection [5] provides 
details of maintaining and securing the stack-based model 
using a more formal approach. 
 
 
 
4.3.1 RESTRICTIONS 
The design of the system creates some limitations for the 
programmer.  
   The use of finalizers has been restricted in order to seal 
a backdoor passage into memory. The finalizer has been 
called on an object after its un-reachabilit y determined by 
the garbage collector. Once the finalizer is executed, the 
object cannot be re-incarnated.  
   The use of variables inserted by the bytecode-rewrite 
module is restricted. The programmer cannot use variable 
or function names (__allocator, __sizeof()). This 
restriction is to prevent verification conflicts in the code. 
   Access to memory manager functions is restricted, so 
that the user cannot trick the memory manager by sending 
false notifications. 
   If the code fails to comply with the above-mentioned 
rules, it will be restricted from passing the verification 
phase and as a result would not be loaded into the JVM. 
 

5. DISCUSSION 
 
The memory management system proposed in this paper 
was designed using the technique of bytecode 
engineering. This strategy raised certain issues during the 
implementation of the system. These issues are discussed 
in greater detail i n this section. Also there is this 
noteworthy relationship between heap allocations and 
stack consumption, this topic also needs some 
clarification. 
 
5.1 ISSUES 
Although the objective of building a memory 
management system was to be able to monitor memory 
activity to its entirety, there are certain forms of memory 
activity that the current system is unable to detect. 
   The technique of sending notifications to the 
accountabilit y interface upon every allocation and de-
allocation works fine for memory manipulations in the 
non-system code. The problem arises when a system 
object allocates another system object. The system classes 
are not modified to have callbacks. These files are a part 
of the standard JVM and modifying them would mean 
loosening the JVM standards and consequently making 
this system non-portable. 
   The system files could be modified while they are being 
loaded at runtime. This would prevent us form modifying 
the JVM structure, but system-class-loading in existing 
versions of the java runtime environment is done 
exclusively by the system class-loader, preventing us 
from accounting for system objects allocated by system 
code.  
   The important point to note here is that non-system 
objects allocated by system classes are still accounted for 
by the memory manager because their code is 
continuously monitored. In conclusion we found that with 
the current tools system code is an exception to memory 
accountabilit y. 
  
5.2 STACK ALLOCATIONS 
A significant point to note is that the memory manager 
described in this system only accounts for the heap 
memory utili zed by the system’s threads. It does not 
account for automatic allocations done on the program 
stack. These allocations are not a concern here because 
each Java thread has its own stack space initially set at a 
default size of 2 megabytes. The limits are enforced by 
the system. Program threads that overflow the allocated 
stack will receive java.lang.StackOverFlowException. 
Since the limitations on stack space are enforced by the 
system itself and individual thread stacks cannot interfere 
with each other, the stack space is not a potential target 
for attacks via denial-of-service.  
   Dynamic allocations create objects on the heap. This 
memory heap is common to all  the threads running in the 
process. As a consequence a single thread can consume 
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most of the heap memory and cause starvation. As a result 
other threads running in the system may not be able to 
perform their functions and in severe cases the system 
may not be able to process any further requests. 
Individual thread stacks cannot pose such a threat to the 
system simply because they cannot occupy the stack 
space reserved for other threads in the system.  
   If it were possible to launch denial-of-service attacks 
using stack space, the same technique of bytecode 
engineering could be applied to restrict stack 
consumption. Although in the current runtime, limiting 
stack space on a per thread basis is dealt within the JVM 
itself.   
 
5.3 SYSTEM LIMITATIONS 
Although the system works fine in most usual cases but 
there is a way in which the accounting can be deceived. 
This can be done by reincarnating the object within the 
finalizer method after the de-allocate notification has been 
sent to the memory manager. To accomplish this the 
object can pass its own reference to some other location 
which prevents the garbage collector from trashing it even 
after it has called the finalizer on this object.  
   To prevent this from happening and for the sake of fair 
accountabilit y, we have decided to disallow finalizers in 
un-trusted code. To accomplish this task a class within the 
un-trusted code containing a finalizer can be prevented 
from being loaded into the system.  
 
 
 
6. EXPERIMENTS AND RESULTS 
 
In this section we evaluate the performance of the system 
by conducting a few tests to monitor memory 
consumption by threads running in a system. 
 
6.1 ACCURACY  
Several experiments were conducted to test the accuracy 
of the memory management system. Each of these 
experiments demonstrates the execution of a dominant 
thread that allocates objects of known sizes at known 
rates. Figure 5 shows the actual memory consumption of a 
thread compared to its account with the memory manager, 
plotted against time. This instance shows that the 
accountabilit y system is detecting allocations and de-
allocations with extreme precession. This is clearly visible 
via regions of significant overlaps between the two graphs 
in figure 5. This precision owes to the fact that the thread 
being monitored here allocates only non-system objects 
and primitive arrays. 
   Figure 6 shows a similar comparison for another thread 
monitored by the system. This thread allocates both non- 
system and system objects with second level allocations. 
In this instance it can be seen that the actual memory 
usage  continues  to  increase  whereas  the  accountabilit y 
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Figure 5. Actual memory consumption vs. Consumption 
according to accountabilit y data.  Non-system allocations. 
 
 
interface is only able to account for only a fraction of the 
thread’s consumption. This is a demonstration of the 
phenomenon discussed in Section 5. The memory 
manager is unable to detect allocations and de-allocations 
of second level system objects, which results in a huge 
difference between the actual memory consumption of the 
thread and the consumption recorded for accountabilit y. 
Hence the two graphs for actual and recorded 
consumption are utterly disconnected. Second level 
system allocations can potentially create a scenario where 
a thread that has exceeded its allocated limit could 
continue executing normally. 
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Figure 6. Actual memory consumption vs. Consumption 
according to accountabilit y data. Multiple System 
allocations. 
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6.2 PERFORMANCE 
Accounting for heap memory requires additional 
computation on part of the system. As a direct 
consequence the system receives a dual performance 
setback associated with memory accountabilit y. The first 
delay comes from the extra time it takes to engineer the 
bytecodes and add hooks for the memory management 
system. This slowdown is proportional to the size of the 
file and the number of memory modifying instructions. 
The second setback comes from the execution of the 
additional instructions that were added to the classes 
during bytecode modification. This slowdown is directly  
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Figure 7. Performance analysis. 
 
proportional to the number of allocating instructions 
executed during the run of the system. Figure 7 shows a 
graphical depiction of these performance hits compared to 
the number of allocating instructions executed in the 
system. Statistics have shown that execution of a large 
number of these instructions would generate considerable 
performance degradation. Fortunately most general-
purpose programs have a low percentage of memory 
allocating instructions. 
 
 
7. RELATED WORK 
 
This work is done as part of a complete resource 
management interface for Java. As discussed earlier, 
using Java as a runtime environment for deploying web 
services necessitates resource control and fair distribution 
of these resources at the system level. In this respect 
considerable effort has been made to build similar 
interfaces to manage other resources. Other areas of 
resource accounting include disk usage, network 
bandwidth, CPU cycles, write buffers and the cache etc. 
design of a comprehensive Resource Management 

Interface has already been proposed for disconnected 
services [3]. In their proposal the authors have discussed 
issues regarding disk and cache resources in great detail . 
   This work is also directly related to systems deploying 
extensible services. These systems rely on Java for a 
reliable execution environment. Work has been going on 
several projects, which have been proposed to run un-
trusted code with the system core. Such projects include 
Active Names [2], Active Networks [6] and Active 
Services [7], providing services using the potential of 
active executable content. These systems rely on 
execution of un-trusted code to provide eff icient access to 
Internet services. 
   Moreover this work is also associated with efforts made 
at bytecode engineering. For example successful attempts 
have been made at runtime optimizations through 
bytecode modifications by Joseph Hummel [10] and Lars 
R. Clausen [12].  They present prime examples of 
bytecode engineering applied to increase the strength of 
Java, both as a programming language and an execution 
environment.  
   An attempt at Resource management for Java was also 
made through the KaffeOS project [14]. KaffeOS dealt 
with the resource management issues at the process level 
but disregarded accountabilit y on a per thread basis. A 
similar system was Dr. Czajkowski’s Jres, which 
discussed a prototype implementation of a Resource 
Accounting Interface for Java PL [8]. The Memory 
Management system described in this paper differs from 
the one described in Jres with respect to its stricter 
adherence to the JVM standards and system portabilit y. 
The prototype that we have described does not dependent 
on any native code and is built completely at user level. 
 
 
8. CONCLUSIONS AND FUTURE DIRECTIONS 
 
The strategy of using bytecode engineering to account for 
heap memory on a per thread basis has been successful 
partly because of its simplistic low-level design. 
Unfortunately, this approach becomes a limiting factor 
when it comes to monitoring the internal system classes, 
which we have taken as an exception. The goal of 
building this prototype system is to demonstrate the need 
for a complete resource management interface for Java. 
The memory management system proposed in this paper 
seeks to patch up existing security structure of the 
language. We have presented a prototype system that uses 
the technique of bytecode rewriting to build a memory 
accounting unit on top of the existing JVM model. The 
intent here is to create a more robust environment for 
deploying service extensions in which un-trusted code is 
executed with a minimal overhead. Finally, the issues and 
performance statistics discussed in this paper would be 
useful when incorporation of a resource interface is 
considered for Java. 



 

 Page 8 

 
ACKNOWLEDGEMENTS  
 
We would like to especially thank Dr. Gouda, without 
whose guidance and moral support this thesis would not 
exist.  
   Our appreciation goes to all other people in the area of 
research. To Dr. Wallach for his experimental insights 
and for sharing the techniques of bytecode engineering. 
To Amol Nayate and Bharat Chandra for helping further 
demystify the correlations within the Active Names 
System, and distributed web services in general.  
   We owe a great deal to Usman Shuja and Nabeel 
Ahmed for their assistance during the project, which 
helped make this thesis a reality and kept me from giving 
up.  
   Last but not least to Dr. Dahlin: Thank you for your 
patience and continuous support, which helped me in 
more ways than I can imagine.   
 
 
REFERENCES 
 
[1] Algis Rudys, John Clements, and Dan S. Wallach. 
Termination in Language-based Systems, Network and 
Distributed Systems Security Symposium (San Diego, 
Cali fornia), February 2001. 
 
[2] A. Vahdat, M. Dahlin, T. Anderson and A. Aggarwal. 
Active Naming: Flexible Location and Transport of 
Wide-Area Resources. In Proceedings of the Second 
USENIX Symposium on Internet Technologies and 
Systems, October 1999. 
 
 
[3] Bharat Chandra, Mike Dahlin, Lei Gao, Amjad-Ali 
Khoja, Amol Nayate, Asim Razzaq, Anil Sewani. 
Resource Management for scalable disconnected access to 
web services. WWW10, May 2001. 
 
[4] Chris Laff ra. Jikes Bytecode Toolkit. 
http://www.alphaworks.ibm.com/tech/jikesbt 
 
[5] Dan S. Wallach and Edward W. Felten, Understanding 
Java Stack Inspection, 1998 IEEE Symposium on Security 
and Privacy (Oakland, Cali fornia), May 1998, pp. 52-63. 

 
[6] David Wetherall , Ulana Legedza, and John Guttag. 
Introducing New Network Services: Why and How. In 
IEEE Network Magazine, Special issue on Active 
Programmable Networks, July 1998. 
 
[7] Elan Amir, Steven McCanne, and Randy Katz. An 
Active Service Framework and its Application to 
Realtime Multimedia Transcoding. In Proceedings of 
SIGCOMM, September 1998. 
 
[8] G. Czajkowski and T. von Eicken. Jres: A Resource 
Accounting Interface for Java. In Proceedings of 198 
ACM OOPSLA Conference, October 1998. 
 
[9] Gosling, J., Joy, B., and Steele, G. The Java Language 
Specification. Addison-Wesley, Reading, Massachusetts. 
1996.  
 
[10] Joseph Hummel, Ana Azevedo, David Kolson, and 
Alexandru Nicolau. Annotating the java bytecodes in 
support of optimization. Technical Report ICS-TR-97-01, 
University of Cali fornia, Irvine, Department of 
Information and Computer Science, April 1997. 
 
[11] Jon Meyer, Troy Downing. Java Virtual Machine. 
O’Rielly. 1997. 
 
[12] Lars R. Clausen. A java bytecode optimizer using 
side-effect analysis. Concurrency: Practice and 
Experience, November 1997. 
 
[13] Mike Dahlin, Bharat Chandra,  Lei Gao, Amjad-Ali 
Khoja, Amol Nayate, Asim Razzaq, Anil Sewani. Using 
Mobile Extensions to Support Disconnected Services. 
Technical Report TR-2000-20, University of Texas at 
Austin.  
 
[14] Godmar Back, Wilson C. Hsieh, and Jay Lepreau. 
Processes in KaffeOS: Isolation, resource management, 
and sharing in Java. In Proceedings of the 4th Symposium 
on Operating Systems Design and Implementation (OSDI 
2000), San Diego, Cali fornia, October 2000. USENIX 
Association.  

 
 
 
 
 
 
 


