Resource management
for scalable disconnected access to web services *

Bharat Chandra, Mike Dahlin, Lei Gao, Amjad-Ali Khoja
Amol Nayate, Asim Razzaq, Anil Sewani

Department of Computer Sciences
The University of Texas at Austin

ABSTRACT

Disconnected operation, in which a client accesses a service
without relying on network connectivity, is crucial for im-
proving availability, supporting mobility, and providing re-
sponsive performance. Because many web services are not
cachable, disconnected access to web services may require
mobile service code to execute in client caches. Unfortu-
nately, (a) this code is untrusted, (b) this code may have
nearly limitless resource demands due to prefetching, and
(c) a large number of competing code modules must coex-
ist. Thus, resource management is a key problem both for
preventing denial of service attacks and for providing good
performance across many services. This paper addresses
the feasibility of meeting the resource management needs
of an environment where service code is shipped to clients,
proxies, or content distribution intermediaries. It first ex-
amines the requirements of such a system and then develops
a resource-management strategy to meet these requirements
by (a) providing isolation across services to prevent denial
of service attacks, (b) automatically providing appropriate
allocations to different services to provide good global per-
formance, and (c) requiring no hand tuning across a wide
range of system configurations and workloads.

1. INTRODUCTION

This paper examines resource management issues for con-
structing a scalable infrastructure to support disconnected
access to web services. We focus on environments that al-
low web services to ship service code to caches and proxies
and that allow this code to use prefetching, hoarding [1, 17,
18], write buffering, persistent message queues [7, 16], and

*This work was supported in part by an NSF CISE grant
(CDA-9624082), the Texas Advanced Technology Program,
the Texas Advanced Research Program, and grants from
Dell, IBM, Novell, and Tivoli. Dahlin was also supported
by an NSF CAREER award (CCR-9733842) and an Alfred
P. Sloan Research Fellowship.

Copyright is held by the author/owner.
WWW10, May 1-5, 2001, Hong Kong.
ACM 1-58113-348-0/01/0005.

application-specific adaptation [21] to mask disconnections
by satisfying requests locally. Several researchers have pro-
posed such systems [5, 16, 30]. However, web workloads
pose a key scalability and resource management challenge:
systems must provide a framework to allow hundreds of dif-
ferent services to use these techniques without interfering
with one another.

Support for disconnected operation allows clients to ac-
cess web services without relying on the network connection
between the client and the origin server. Supporting discon-
nected operation is a key problem for improving web services
for three reasons.

1. Disconnected operation allows mobile clients to access
services when their network connection is unavailable,
expensive, or slow.

2. Disconnected operation can improve service availabil-
ity. Studies consistently find that, in contrast with
targets of “four nines” or “five nines” of availability
(99.99% uptime or 99.999% uptime) for important ser-
vices, the Internet network layer provides only about
two nines of host-to-host connection availability [6, 23,
25, 32]. The resulting average of about 14 minutes per
day of unavailability to a typical client hinders com-
mercial sites such as information sites and commerce
sites, and it prevents the use of the standard web in-
frastructure for mission-critical sites such as a hospital
medical information access and order-dispatching ser-
vice.

3. Disconnected operation can significantly improve per-
formance. Traditional web caching is a simple example
of this strategy, and several studies have demonstrated
even more dramatic speedups when service code is
shipped to clients and proxies [5, 30].

Infrastructure for gaining these benefits has been devel-
oped for file systems that use caching, hoarding, and write
buffers to support disconnected file access [17]. Unfortu-
nately, modern web services no longer treat HT'TP’s Get/Put
interface as a simple file Read/Write interface. Instead,
many HTTP requests are essentially arbitrary RPCs that
are not cachable using traditional means. Wolman et al. [31]
find that uncachable web accesses reduce the upper bound
on cache hit rates by about a factor of two. In the context of
disconnected operation, Chandra et al. [6] find that if an in-
frastructure supports mobile service code for disconnected
operation, it can reduce average service unavailability by
factors of 2.7 to 15.4, but if an infrastructure only supports
caching and aggressive prefetching, average improvements
are limited to 1.8 to 6.2.

Although Java applets and Javascript allow services to
ship code to clients, they do not provide the infrastructure
needed to support scalable disconnected service access where
large numbers of services use mobile code to mask disconnec-
tion. On one hand, these systems are too restrictive. They
prevent access to disk by untrusted code, and they can evict
stored state without warning. These restrictions prevent
these systems from supporting crucial building blocks for
disconnected operation such as hoarding, prefetching, write
buffering, and persistent message queuing. On the other
hand, these systems are too permissive. Current imple-
mentations provide no limits on the memory space, network
bandwidth, or CPU cycles consumed by untrusted code. As
a result, systems are vulnerable to denial of service attacks,
and they have no way to partition resources fairly among
downloaded services.

Although several experimental systems have provided low
level mechanisms for limiting resources consumed by un-
trusted Java code [3, 8], properties of web service work-
loads make it challenging to develop a scalable infrastruc-
ture for disconnected access. First, clients may access a large
number of services, meaning that many untrusted services
will compete for resources. Second, the resources available
at client devices may vary widely. Third, prefetching and
hoarding — key techniques for coping with disconnected op-
eration — can dramatically increase the resource demands of
applications: Ironically, providing mobile code with the abil-
ity to access disk to support disconnected operation worsens
the resource management challenge because it gives applica-
tions an incentive to use more resources. Finally, the large
number of services and the diverse user population preclude
solutions that require user intervention to manage system
resources.

Although this paper focuses on an aggressive point in the
web-service design space — caching service code at clients,
proxies, or content-distribution nodes — many of the re-
source management issues we examine arise in less aggres-
sive service architectures. For example, systems such as
AvantGo [2] for palm-size computers or Microsoft Internet
Explorer [19] that provide hoarding for disconnected op-
eration must divide storage space and network bandwidth
across services. And efforts such as ICAP [29] to allow ser-
vices to install code near clients must manage a wide range
of resources that are shared across competing services.

This paper makes three contributions. First, we quantify
the resource requirements of disconnected services by ex-
amining both the general requirements across services and
the requirements of several case-study services. These data
suggest that supporting disconnected operation for a large
number of services is feasible. In particular, we argue that
prefetching an order of magnitude more data than is used on
demand may often be reasonable. However, we also find that
careful resource management by the system and application-
specific adaptation by the services is needed. Second, we
develop a resource management framework that (i) provides
efficient allocation across extensions to give important ex-
tensions more resources than less important ones, (ii) pro-
vides performance isolation so that aggressive extensions do
not interfere with passive ones, and (iii) makes allocation au-
tomatic self-tuning decisions without relying on user input
or directions from untrusted extensions. Third, we develop a
prototype system that provides these resource management
abstractions for mobile servelets.

Resource Resources insufficient Resource Resources
Availability for most services constrained plentiful
Design Efficient resource Denial-of-

an Resource management - service protection
Implication not sufficient management required required

Figure 1: Design space for resource management.

The rest of this paper proceeds as follows. Section 2 stud-
ies the system requirements imposed by the workload. Sec-
tion 3 describes and evaluates a simple resource management
policy for this environment. Section 4 describes our proto-
type. Finally, Sections 5 and 6 discuss related work and our
conclusions.

2. REQUIREMENTS

This section examines the impact of web workloads on
the requirements for infrastructures that support discon-
nected service access. Systems could operate in one of three
regimes illustrated by Figure 1. First, services may demand
large amounts of resources in order to support disconnected
operation, and the aggregate demands of services may sig-
nificantly exceed the total capacity of the infrastructure. In
that case, providing a general infrastructure for disconnected
operation may not be feasible. At the other extreme, re-
sources may be plentiful relative to the likely demands of
services. In that case, infrastructure should focus on pro-
viding mechanisms for shipping code to clients, running that
code securely, and, perhaps, limiting “resource hogs” to pre-
vent deliberate or unintentional denial of service; beyond
that, resource management is not likely to determine sys-
tem performance. The middle case is more challenging: if
resources are constrained but sufficient for applications to
provide reasonable disconnected service, then a key task for
the infrastructure is partitioning resources fairly among un-
trusted code modules to maximize global utility.

It is difficult to specify workload requirements definitively.
First, applications vary widely. Some can easily operate in
disconnected mode with few additional resources compared
to their normal requirements. For example, a daily comic
site could be prefetched in its entirety once per day for little
more cost than fetching it on demand. Other services are
not suitable for disconnected operation at all because they
require live network communication (e.g., a stock ticker or
phone call) or would require unreasonable amounts of state
to be replicated at clients for disconnected operation (e.g.,
a search engine). Many services may operate between these
extremes: by expending additional resources (i.e., prefetch-
ing data that may be needed in the future or buffering writes
or outgoing requests) they can support disconnected oper-
ation. Examples of this class may include many shopping,
news, entertainment, and corporate services.

Note that the application-specific adaptation afforded by
mobile code often may allow services to provide degraded,
though still useful, service when disconnected. For exam-
ple, although a stock trading service probably would not ac-
cept orders when disconnected, the company providing the
service may desire to operate in “degraded” disconnected
mode by turning off the order service but providing other
services: a portfolio summary, news bulletins related to the
user’s holdings, a history of past orders, and so on. In this
example, even though the “primary” function for a service is
inoperable when disconnected, the service may gain signifi-
cant benefit from mobile code that allows the user to access
a subset of the services when disconnected.

A second challenge to precisely specifying workload re-
quirements is that the potential demands of an individual

service may span a wide range. In particular, prefetching
is a common technique to cope with failures. Often, the
more data that are prefetched the larger fraction of client
requests that can be handled during disconnection, and the
better service that can be provided. Thus, over some range
of demands, using incrementally more resources can yield in-
crementally better service when disconnected. For example,
a news service might prefetch headlines and abstracts in a
resource constrained environment, full text of articles from
a few major sections (e.g., headlines, international, sport,
finance) in a less constrained environment, and so on up to
full text, pictures, and video from all articles in an uncon-
strained environment.

Given the methodological challenges posed by the wide
range of web service behaviors, we take the following ap-
proach. First, we examine the average demands of current
web workloads in order to assess approximately how many
additional resources may be available for supporting dis-
connected operation. This provides a rough guide to the
constraints of the system. Second, we examine several case
study workloads to determine their resource requirements to
provide different levels of service.

We focus primarily on the bandwidth and space require-
ments of hoarding and related techniques such as prefetch-
ing. Although other techniques — write-buffering message
queues, and application-specific adaptation — are also im-
portant for coping with disconnection, the resource demands
of services using these techniques may not be significantly
higher than the normal demands of the services. In con-
trast, aggressive hoarding may dramatically increase the
network bandwidth and disk space demands of applications
and therefore presents the most direct challenge to scalabil-

ity.

2.1 Workload characteristics

The operating regime of the system with respect to re-
sources is largely determined by the workload. We study
several client traces of web service workloads to determine
how many services are in a client’s working set and how
much data those services access. From this, we derive an es-
timate of the amount of spare capacity machines are likely
to have to support disconnected operation and argue that it
may be feasible for services to prefetch 10 or more times as
much data as they access on demand.

We analyze two traces: Squid [26], which contains 7 days
(3/28/00 — 4/03/00) of accesses to the Squid regional cache
at NCAR in Boulder, Colorado that serves requests that
miss in lower-level Squid caches, and the first seven days
from UC Berkeley Home-IP HTTP traces [13]. The sim-
ulator uses information in the traces to identify cachable
and non-cachable pages as well as stale pages that require
reloads. In this analysis, we study the resource demands
from each service, where a “service” is defined by the set of
URLs from the same DNS domain (for the Squid trace) or
from the same IP address (for the UCB trace, which identi-
fies origin servers using a 1-way hash of the IP address).

We study two cache configurations. In the first, we simu-
late a separate cache at each client IP address in the trace.
Since the UCB trace tracks individual client machines, this
corresponds to the environment that might be seen by code
that seeks to support mobile clients as well as to improve
client performance and availability. In the second, we sim-
ulate a proxy cache shared by all clients in the trace. This

configuration does not support client mobility, but it may
improve service availability or performance. Note that the
Squid traces remap client IDs each day, so we only examine
the first day of the Squid workload in our per-client cache
analysis. We refer to this workload as Squid-1-day for clar-
ity. Also note that for the Squid trace, some clients may
correspond to lower-level Squid proxy caches that aggregate
requests from collections of users.

Figure 2 summarizes the number of services accessed by
each cache over different time scales to provide a rough guide
to the “working set” size of the number of services a cache
might have to host. Each graph summarizes data for a dif-
ferent trace/cache configuration. Each graph shows the min-
imum, 25th percentile, median, 75th percentile, and maxi-
mum number of services accessed by a cache over intervals
of the specified length. Only UCB statistics shown due to
space constraints.

Figure 3 summarizes the distribution of the per-client
maximum number of services accessed at different interval
sizes for UCB. For example, if a client accesses 3 services
during the first hour, 7 during the second, and 2 during the
third, that client’s maximum working set size for 1 hour is 7
services. The plot shows the range of maximums at different
clients.

Two features of these distributions stand out. First, the
working sets of a cache can be large over even modest time
scales. For caches at individual clients, 25% of 16-hour-long
intervals contain accesses to more than 10 services in the
UCB trace and 200 services in the Squid-1-day trace(not
shown). For proxy caches, 25% of 16-hour-long intervals
contain accesses to more than 8,000 services in the UCB
trace and 18,000 services in the Squid trace.

Second, these working sets vary widely from client to
client. For example, in the UCB trace 25% of clients never
use more than 3 services in a 16-hour period and in the
squid trace 25% use at least 148 services during at least one
16-hour period.

These features have several implications on the system de-
sign. First, they suggest that resource management could be
a significant challenge for some caches where many services
compete for service. They also suggest that the framework
must be self-tuning over a wide range of situations both be-
cause the range of demands is large and because the number
of services under consideration is often too large for conve-
nient hand-tuning.

Figures 4 and 5 show the disk space consumption of indi-
vidual services and of the collection of services hosted by a
cache, respectively. In Figure 4, the x-axis is the approxi-
mate service working set size (the amount of data the service
accesses during the trace) and the y-axis is the fraction of
services with working sets of the specified size or smaller. In
Figure 5, we plot the total disk size consumed by all services
at each client on the x-axis with the fraction of clients with
disk consumption below the specified amount on the y-axis.

The graphs indicate that per-service demand fetched data
typically have modest footprints in caches; for the Squid and
UCB traces, 90% and 80% of services consume less than
100KB. A few large services consume large amounts of disk
space. Overall, for the UCB per-client caches, the total data
footprint of all services accessed by a cache is below 10MB
for all but a few percent of clients. The Squid data footprints
are significantly larger, but recall that each “client” in the
Squid trace may correspond to a lower-level Squid proxy

1000

100 |

10

Unique Servers Per Client

10 100
Interval Size (hours)

Figure 2: The number of services accessed by (a)
different time scales for UCB trace file.

1000

100 |

Unique Servers Per Client

10 100
Interval Size (hours)

Figure 3: The range of the maximum number of
services accessed by different clients for the UCB
trace.

1

09

0.8

0.7 | Squid (proxy)——\.ﬁ,x’l B
2 /
g osf L 4
S { ~-UCB (proxy)
o) L id-1-day--/, 1
3 0.5 Squid-1-day £
— }
S 0.4
< .

03 | < 4

~--tJCB
02| 1
01| 1
o b T l | | | | | |
1 10 100 1000 10000 100000 le+06 1le+07 1le+08 le+09

Cache Size (bytes)
Figure 4: Per-service cache size demands. Shows
the cumulative histogram of the faction of services
that occupy the specified size at the end of the trace.

serving many clients.

These data have several implications with respect to scal-
able resource management. First, the wide range of per-
service and per-cache demands suggests the need for a flex-
ible approach. For example, allocating 100KB to each ser-
vice would waste large amounts of space for many services

100000

10000 75%-tile

1000 f- T Median 7 E

Unique Servers

<&
00 F -7 Min E

10 L L
100

10
Interval Size (hours)

a per-client cache or (b) an active shared proxy over

1

09

0.8

0.7

06 UCB trace-. ,

05| /

"--Squid trace

% of Clients

0.4

03

02

0.1

‘ Wi ‘ ‘ . s
1 10 100 1000 10000 100000 1le+06 1e+07 1e+08 le+09
Cache Size (bytes)

Figure 5: Per-client cache size demands.

0

and be far to little space for others. Second, for the desktop
clients that presumably make up most of the UCB trace, the
amount of disk space consumed for caching demand-fetched
objects is relatively small compared to the total disk capac-
ity of such machines. This suggests that disk space consid-
erations may allow significant prefetching. We discuss this
issue in more detail below.

Another key resource for supporting disconnected oper-
ation is network bandwidth. Figure 6 summarizes the net-
work bandwidth consumption by the trace workloads. As in-
dicated in Figure 6(a), most services have low average band-
width requirements of a few tens of KB per hour or less. This
suggests that caches with modest bandwidth can support
relatively large number of prefetching services. Figure 6(b)
shows the hourly bandwidth usage at each client. 90% of
clients demand less than 2 MB/hour — 8% of a 56Kbit/s
modem and 0.4% of a 1Mbit/s DSL. This suggests that con-
siderable spare bandwidth may be available.

Similar analysis for maximum bandwidth usage shows the
distribution across clients and services of the maximum band-
width demand during any hour for that client (graph not
shown). 90% of clients demand less than 10MB per hour —
40% of a 56Kbit/s modem and 2% of 1Mbit/s DSL connec-
tion — during their worst hour. Most services need only a
few hundreds of KB in their worst hour. This suggests that
considerable spare bandwidth may be available even during

09

08 /

/
07 F /7UCB trace
0.6 |- Squid trace -,

05

0.4

% of Services

03

02

0.1

% of Clients

BW Usage per hour
(a) Per-service distribution

L L
0.1 1 10 100 1000 10000 100000 1le+06 1le+07 1le+08

0.9

0.8

/

07 UCB trace-- j' “-.--Squid trace |
/

0.6

0.5

0.4

0.3

0.2

0.1

1 10 100 1000 10000 100000 1e+06 1e+07 1e+08
BW Usage per hour

(b) Per-client distribution

Figure 6: Distribution of average bandwidth usage.

periods of high demand.

Discussion. The above data suggest that in terms of raw
capacity, client disks and networks may be able to provide
considerable resources to support disconnected operation.
For example, in the UCB workload, 95% of client systems
could allow each service to prefetch approximately 10 bytes
for every byte served on demand and still consume less than
1% of a 10GB disk. Similarly, a client on a 1MBit/s DSL
connection could prefetch 10 bytes for every byte served on
demand and consume less than 4% of the raw connection
bandwidth for most clients. Given this spare capacity, one
might ask: is it reasonable for a service to fetch and store 10
or even 100 times as much data as is accessed on demand?

In classic operating systems terms, fetching 10 or 100
bytes per byte accessed might seem excessive. However, the
long latencies and significant failure rates of wide-area net-
works may make doing so a reasonable strategy. Further-
more, whereas the costs of prefetching (network bandwidth,
server processing, and disk space) fall rapidly over time, the
value of human time remains approximately constant. Thus,
prefetching a large number of bytes to save a small amount
of latency or risk of disconnection becomes a more attractive
strategy over time.

Gray and Shenoy [12] suggest a methodology for estimat-
ing whether caching a data object is economically justified
by comparing the cost of storage against the cost of net-
work bandwidth and human waiting time. They estimate
that downloading a 10KB object across an Internet/LAN
network costs about NW Costran = $.0001, across a Mo-
dem costs about NW Costaroge, = $.0002, across a wire-
less modem about NW Costwireiess = $.01, and they esti-
mate that storing a 10KB object costs about StorageCost =
$8 - 107%/month. Assuming that human time is worth
about $20/hour, the “waiting cost” due to cache miss la-
tency is about WaitCostran =$.02 when connected via an
LAN/Internet, WaitCostmodem =$.03 when connected via
a modem, and W aitCostwireiess = $.07 when connected via
a wireless modem. Based on these estimates, they conclude,
for example, that once fetched, an object should be kept in
cache even if the expected time to reaccess it is on the order
of decades.

That methodology can be extended to estimate whether

Network used for demand fetch

Prefetch NW |} || LAN/Internet | Modem | Wireless
LAN/Internet 0.0054 | 0.0036 0.0014
Modem 0.0069 0.0026
Wireless 0.1251

Table 1: Estimate of the Pp break-even probabil-
ity that a prefetched object is used that justifies
prefetching it to reduce human waiting time to de-
mand fetch it (based on Gray and Shenoy’s year
2000 estimates of cost data).

prefetching an object is justified. Suppose that Pygseq is
the probability that a prefetched object is used before it
is updated or evicted from the cache and that unreferenced
prefetched objects are evicted after one month. Then the
break-even probability Pg can be defined as the lowest Py sed
for an object that justifies prefetching it:

_ NW CCostprefetchnw + StorageCost
WaitCostgemananw + NW CostgemandNw

Table 1 summarizes our estimates of Pg. The rows
correspond to different networks used for prefetching
(prefetchNW), and the columns to different networks used
for demand fetch (demandNW). The diagonal corresponds
to prefetching on the same network as the later demand
fetch. For a LAN/Internet environment, for example, it can
make sense to prefetch an object if the user has a 0.5%
chance of accessing it over the next month.

This economic argument for aggressive prefetching is par-
ticularly attractive for supporting heterogeneous networks
or disconnected operation. As the table indicates, prefetch-
ing when network bandwidth is cheap (e.g., on a LAN con-
nected to the Internet) to avoid network traffic when it
is expensive (e.g., on a wireless modem) can be advanta-
geous even if there is a 1/500 chance that an object will
be used. Furthermore, in the case of disconnected opera-
tion, the WaitCost term would be replaced by a (typically
higher) DenialOfService term that represents the cost of not
delivering the service to the user at all.

One factor ignored in these calculations is server costs.
One concern about aggressive prefetching is that it could
swamp servers. Our system controls this by putting
prefetching under the control of programs supplied by
servers. This allows servers to avoid prefetching when it

Pgp

would interfere with demand traffic. More generally, the
above methodology can be extended to include server pro-
cessing costs.

Another argument against aggressive prefetching is that
it may overwhelm the Internet infrastructure. Certainly, if
everyone started aggressively prefetching tomorrow, capac-
ity would be stretched. One way of viewing this calculation
is that it suggests that the economic incentives to grow net-
work capacity over time to accommodate prefetching may
exist. Odlyzko [22], for example, suggests that in rapidly-
growing communications systems, capacity and demand in-
creases seldom occur at more than 100% per year, partially
due to the time needed to diffuse new applications with new
demands.

Another factor ignored in these calculations is the pres-
ence of heterogeneous devices. For example, a palmtop
machine may have significantly less storage space than a
desktop machine. This can be modeled by increasing the
StorageCost term [12].

Technology trends may favor more aggressive replication
in the future. First, network and disk costs appear likely
to fall much more quickly than human waiting time costs.
Second, the deployment of commercial content-distribution
networks (CDNs) may significantly reduce the network costs
of prefetching by allowing clients to prefetch from a nearby
CDN node rather than the origin server.

Overall, the raw capacity of disks and networks as well as
the back of the envelope economic calculations all suggest
that in many current environments, it may be reasonable
for services to use significant amounts of spare capacity to
support disconnected operation. We conclude that for web
service workloads, capacity to support prefetching of ten
times more data than is used on demand may often be avail-
able, though support to prefetch 100 times more data than
is used may be excessive for today’s configurations. This
factor, however, may increase in the future.

2.2 Case study application

The above section provides a sense of how much spare
capacity a service might have available to it for prefetching
or hoarding. This section examines a case study workload
to illustrate the range of demands such services can require.
We focus on prefetching for the www.cnn.com news service
because it is typically referenced by a significant number of
clients in the daily NLANR Squid access logs. This service
is, of course, not representative of the broad range of web
services, but it serves to illustrate various techniques that
services may use. In previous work [9, 30], we illustrate sev-
eral additional approaches for supporting disconnected op-
eration including advertisement rotation and logging, a “dis-
connected catalog” that hoards catalog contents and buffers
orders, and a hospital order-transmission system. Here, we
focus on prefetching behavior.

As discussed above, services can choose from an almost
limitless number of different algorithms for trading prefetch
bandwidth for performance. Our goal is not to identify the
“best” algorithm for prefetching services in general or this
service in particular. Instead, we seek to understand the
extent of the design space.

We simulate five algorithms:

1. Demand. Clients maintain an infinite cache but do not

prefetch.
2. Oracle. An oracle prefetches the current version of any

uncached or stale object immediately before a client

Oracle ' Push new +
: push updates(immediate)

Push new +

08 i push updates(1hr) b
M Push new +
. push updates(referenced data only)

o o mPush-updates °

(immediate) Push new

06 []

B Push- s—x—**Headlines
H updates 1 2 34

Demand (dhr)

04| 4

Hit Rate

02 B

0 | |
100000 le+06 1le+07 1le+08
Bandwidth (Bytes/day)

Figure 7: Range of trade-offs for CNN prefetch al-
gorithms. Filled points show hit rates and unfilled
points show hit rates including hits to stale objects.

references it.

3. Push-updates. The system pushes updates of objects
that the client is caching. A parameter is the time-
granularity: how often are updates pushed to clients.
We examine two values: 15 minutes (which is the fre-
quency at which we take snapshots of server state) and
1 hour.

4. Push-new. When a new object is created, the server
immediately pushes it to all subscribed clients. After
that, push updates of such objects according to the
push update protocol.

5. Headlines. This is a CNN-specific algorithm. Push
objects attached to the first N links under each major
section (e.g., “Sports”, “Finance”, “International”) to
each client.

To study these algorithms, we periodically scan
http://www.cnn.com/index.html for all files (including
HTML and images, but excluding streaming media) within
the cnn.com domain referenced directly by that page. We
gather a simultaneous trace of requests to this service from
the daily NLANR Squid cache logs. We focus on the subset
of requests to the “CNN-top” pseudo-service represented
by the pages reached by our scan.

In our simulations, we assume an infinite client cache, and
we use delta-encoding (via diff+gzip) of non-image files to
transfer updates.

In Figure 7 we plot the network cost of each algorithm as
the x-axis and use hit rate — the fraction of requests that can
be satisfied locally — as a figure of merit. For each algorithm
we show the hit rate considering both the hit rate to fresh
objects and the total hit rate including hits to “stale” ob-
jects. In the graph, the fresh hit rates are shown with filled
symbols and the total (fresh + stale) hit rates are shown
with outline symbols.

Note that the presence of application-specific adaptation
makes “hit rate” an imperfect figure of merit. In particular,
when disconnected, the mobile code that implements our
CNN service shows users only the subset of locally stored
stories. Thus, rather than allowing users to click a link
and see a failure, the system hides useless links so that the
user will be less aware of missing articles. We speculate
that by using application-specific prioritization of articles
such as the Headlines algorithm above, and by controlling

presentation, this service would provide high utility to users
with a modest fraction of its total set of articles.

This set of algorithms illustrates the a broad range of
trade-offs between network bandwidth consumption and hit
rate available to many web services. Push updates provides
significant improvements to fresh hit rates for modest band-
width costs. Push-new with different push-updates varia-
tions allows the system to achieve total hit rates of 100%
and fresh hit rates ranging from 52% to 100% for band-
widths from 1.1 MB/day to 22.6 MB/day. The Headlines
algorithm uses bandwidth from 2.9 MB/day to 4.5 MB/day
but it achieves modest hit rate improvements; we speculate
that the improvement in utility to the service may be higher
than indicated by the hit rates. Finally note that the range
of bandwidth demands extends further: in this simulation
we have not prefetched streaming media files and we have
only prefetched the “CNN-top” subset of the service.

3. POLICY

In this section we first outline the requirements for re-
source management in this environment. We then examine
a simple policy that appears to meet these requirements.

1. Isolation. The policy should prevent denial of ser-
vice attacks by bounding the resources consumed by
any service, and it should prevent aggressive services
from interfering with other services. This goal is mo-
tivated by the fact that the target workload comprises
large numbers of untrusted modules competing for re-
sources.

2. Efficiency. The policy should divide resources among
services so as to maximize overall utility. In contrast
with the first goal, which might be achieved by placing
a loose upper bound on worst-case resource demands,
this goal implies careful resource allocation may be
necessary. This goal is motivated by our expectation
that systems are likely to have sufficient resources to
be useful for disconnected operation, but that they
probably will not have sufficient resources to prefetch
everything that applications might want.

3. Self-tuning. The policy should not require user in-
tervention or hand tuning. This goal is motivated by
the large number of services that a client may host as
well as the wide range of service demands and system
configurations likely to be encountered.

A potential problem with standard resource management
polices — such as LFU or LRU for cache replacement or
FIFO or round-robin for CPU or network scheduling — is
that these policies reward increasing resource demands with
increasing allocations: as a program references more data, it
is given more memory; as it spawns more threads or sends
more network packets, it gains a larger fraction of those
resources. Such approaches provide global allocation of re-
sources that can meet the goal of efficiency (assuming that
each application’s requests have similar utility.) Such an
approach also meets the goal of self-tuning. However, this
approach is vulnerable to denial of service attacks.

A second simple approach is to give each service an equal
share of resources. But such an approach faces a dilemma:
making that fixed amount too large risks denial of service
attacks while making it too small thwarts construction of
useful services. For example, browser cookies represent re-
quests from untrusted sources to store data on client ma-
chines, but limitations on allowed cookie size and number of

cookies prevent construction of, say, a “disconnected Hot-
mail.” On the other hand, if cookies large enough to contain
a respectable inbox and outbox were made available to all
services, a user’s disk might fill quickly.

3.1 Popularity-based resource policy

Given these constraints, a resource management system
for mobile extensions should attempt to forge a compromise
between static allocations that require no knowledge about
users or services and dynamic approaches that require un-
realistic amounts of knowledge about users or services. Our
goal is to construct a dynamic allocation framework that
can make reasonable, albeit not perfect, allocation decisions
based on information about users or services that can readily
be observed by the system and that are not easily manip-
ulated by the extensions. We use service “popularity” as a
crude indication of service priority, and allocate resources to
services in proportion to their popularities. This approach
is based on the intuition that services that users often access
are generally more valuable to them than those the they sel-
dom use. It also has the attribute of providing users with
better service for those services that they often access.

Our approach is simple: for each resource and each ser-
vice, the system maintains an exponentially decaying time-
average of the number of requests by the user agent to the
service. The resource manager for each resource allocates
the resource to each service in proportion to the service’s
time average popularity as a fraction of the popularity of
other services. Our resource schedulers are work conserv-
ing: if one service uses less than its full share of a resource,
the excess is divided among the remaining services in pro-
portion to their scaled popularities.

A key idea in the system is that separate scaled per-
service popularities are maintained for each resource, and
each resource uses a different timescale for computing its
time average popularity. This is because the appropriate
definition of “popularity” varies across resources because
different resources must be scheduled at different granular-
ities. In particular, “stateless” resources such as CPU can
be scheduled on a moment-to-moment basis to satisfy cur-
rent requests. Conversely, “stateful” resources such as disk
not only take longer to move allocations from one service
to another but also typically use their state to carry infor-
mation across time, so disk space may be more valuable if
allocations are reasonably stable over time. Thus, the CPU
might be scheduled across services according to the momen-
tary popularity of each service, while disk space should be
allocated according to the popularity of the service over the
last several hours, days, or longer. Other resources — such
as network bandwidth, disk bandwidth, and memory space
— fall between these extremes.

Although having different time scales for different re-
sources might appear to introduce the need for extensive
hand-tuning, we avoid this by choosing each resource’s time
scale to be proportional to the state associated with the
resource or typical occupancy time in the resource for a de-
mand request. For example, for disks, we count the number
of bytes delivered by the system to the HTTP user agent
and rescale the per-service running popularity averages by
multiplying them by % each time diskSize bytes are deliv-
ered. As our results below indicate, this approach works well
across several workloads and several orders of magnitude of
disk sizes without changing any parameters.

For network and CPU scheduling, we use the weighted
sum of two popularities with each averaged over a different
time-scale. The first represents the share of “demand”
resources that should be allocated to allow a service to
respond to user requests. This time scale should be on
the order of the time needed to respond to a user request.
We use 10 seconds. The second term represents the share
of background CPU and network resources that should be
allocated to allow a service to, for example, prefetch and
write back data. Since these background actions primarily
support disk usage, we use the disk’s timescale here so
that services are granted “background” network and CPU
resources in proportion to the disk space they control.
Since we wish to favor demand requests over background
requests, we weight the first term much more heavily
than the second in computing the total CPU and network
resource fractions for each service. In particular, suppose
that the scaling interval for the demand term is ¢1, that the
scaling interval for the background term is ¢2, and that we
scale the running average by % at the end of each interval.
If requests arrive at some rate r, then the total raw weight
for the demand term is about ¢1r + %tlr + %tlr... ~ 2t1r.
Similarly, the total raw weight for the background term
is about 2tar. Therefore, to allow demand requests to
dominate background requests during the first seconds
after a demand request, we weight the demand term by a
factor of 100:—2. During periods of idleness, the second term
becomes dominant in roughly 100 seconds.

Limitations. One focus of our evaluation is to determine
whether the readily observable metric of popularity provides
sufficient indication of user priority to serve as a basis for
resource management. To make the analysis tractable, our
analysis abstracts some important details.

In particular, our strategy of providing one credit per in-
coming HTTP request represents a simplistic measure of
popularity. For example, one might also track the size of
the data fetched or the amount of screen real estate the user
is devoting to a page representing a service. Other means
will also be required for streaming media.

In addition to these simplifications in these simulations,
the algorithm itself has several significant limitations.

First, even if our popularity measures perfectly captured
user priority, our resource management algorithm empha-
sizes simplicity over optimality. It could be enhanced in
several ways. For example, one might implement a more
complete economic model that gives services coins in pro-
portion to their popularity and that allows “the market”
to determine the prices of different resources over different
time scales. Applications that have a surplus of one resource
could then trade rights to that resource for a different one;
or applications could follow application-specific strategies to
optimize their resource usage (e.g., “my content is not time
critical, so wait until 2AM when BW is cheap to prefetch
it.”) Developing flexible economies and strategies for com-
peting in them is an open research problem.

Second, our use of the requests from legacy HTTP user
agents as a measure of raw popularity makes the system
vulnerable to attacks in which legacy client-extension code
running at clients (e.g., Java Applets or Javascript) issues
requests to the mobile extension proxy in the client’s name,
thus inflating the apparent popularity of a service. This par-
ticular problem could be addressed by having browsers tag

each outgoing request with the number of requests issued
by a page or its embedded code since the last user interac-
tion with the page; our system would then assign smaller
coins to later requests. But this problem illustrates a more
fundamental issue: any system that tries to infer priority
from user activity provides the opportunity for applications
to “game” the system by encouraging activities that will in-
crease resource allocation. We must therefore compromise
between simplicity on one hand and precision on the other.

Third, a user’s value of a service may not correspond to
frequency that the user accesses that service. For example, a
user might consider her stock trading service to be her most
important service even though she only accesses it once per
day to read one page. Although popularity will clearly not
capture precise priority, we believe that the heuristic that
services a user often uses are likely to be more important
than services she seldom uses is a reasonable compromise
between simplicity on one hand and precision on the other.
Our prototype system provides an “override module” to al-
low manual adjustment of service priorities if users desire to
do so.

3.2 Evaluation

The simulation experiments in this subsection test
whether a simple popularity-based policy can meet the three
goals — isolation, efficiency, and self-tuning — outlined above.

Our simulator uses as input two traces: Squid [26], which
contains 7 days (3/28/00 — 4/03/00) of accesses to the Squid
regional cache at NCAR in Boulder, Colorado that serves
requests that miss in lower-level Squid caches, and the first
seven days from UC Berkeley Home-IP HTTP traces [13].
The simulator uses information in the traces to identify
cachable and non-cachable pages as well as stale pages that
require reloads. We simulate a separate resource principal
for each service (as defined in Section 2) in the trace. We
simulate two cache configurations. In the first, we simulate a
separate cache at each client in the trace. This corresponds
to the environment that might be seen by code that seeks
to support mobile clients as well as to improve client perfor-
mance and availability. In the second, we simulate a proxy
cache shared by all clients in the trace. This configuration
does not support client mobility, but it may improve service
availability or performance.

We first study the resource management algorithms in
the context of disk space management by examining three
algorithms: (1) traditional LRU cache replacement that em-
phasizes global performance, (2) Fized-N, which supports
performance isolation by dividing the cache into N equal
parts and allowing each of the the N most recently accessed
services to use one part, and (3) Service Popularity, which
allocates disk spaces in proportion to each service’s time-
scaled popularity as described above.

A key challenge in studying web services is that as indi-
cated in Section 2, services’ prefetching demands, prefetch-
ing strategy, and prefetching effectiveness vary widely. It
is not practical to simulate application-specific prefetching
and adaptation for each of the thousands of services that
appear in our trace. The key observation that makes our
analysis tractable is that for the purposes of evaluating re-
source management algorithms, it is not necessary to deter-
mine the impact of prefetching on the service that issues the
prefetching; one may assume that a service benefits from its
own prefetching. What is more relevant is the impact that

one service’s prefetching has on other services.

So, rather than simulating what benefit a particular ser-
vice gains from prefetching, we focus instead on the impact
that services’ resource demands have on other services’ per-
formance. We simulate prefetching by a service by fetching
sets of dummy data that occupy space but that provide no
benefit.

Figure 8 shows the hit rate of the LRU, Fixed-N, and Ser-
vice Popularity algorithms as we vary per-client cache size
(figure (a)) or total cache size (figures (b)) for UCB trace. In
this experiment no services prefetch. This experiment thus
tests whether the algorithms allocate resources fairly and
efficiently when all services are equally aggressive relative
to their demand consumption. In such environments, LRU
works well because it optimizes global hit rate. Conversely,
Fixed-N’s performance suffers because it allocates the same
amount of space to all services and because the parameter
N must be chosen carefully to match the size of the cache.
The Service Popularity algorithm is competitive with LRU
across a wide range of cache sizes for both workloads and
for both the per-client and proxy cache configurations. The
results of the Squid traces (not shown) are qualitatively sim-
ilar. These results suggest two things. First, they indicate
that the service popularity algorithm is reasonably efficient:
it partitions resources nearly as well as the global LRU al-
gorithm. Second, they provide evidence that the use of time
averages proportional to the “natural frequency” of disk res-
idence time supports our goal of developing a self-tuning
algorithm.

In Figure 9 we examine what happens when prefetching
aggressiveness varies across services. We randomly select
20% of the services and introduce artificial prefetch requests
from them. For each demand request, a prefetching service
fetches ten objects whose total size is the x-axis value times
the size of the demand object. The remainder of the services
do not prefetch. The figure plots the performance of the ser-
vices that do not prefetch. If a system that provides good
isolation, the performance of less aggressive services should
not by hurt by more aggressive services. In this experiment,
when prefetching is restrained, the Popularity and LRU
algorithms are competitive. However, as prefetching be-
comes more aggressive, the performance of non-prefetching
sites suffers under LRU, whereas their performance under
Popularity-based replacement remain largely unaffected.

Figure 10 evaluates the resource management approach
for network bandwidth. We consider three network sched-
ulers: (1) FCFS which services requests in FIFO order, (2)
Equal-Fair, which splits bandwidth equally across all ser-
vices that request bandwidth using start-time fair queuing
(SFQ) [11], and (3) Popularity-Fair, which also uses a SFQ
scheduler, but which divides bandwidth according to the
Popularity-based algorithm described above.

In this simulation, we assume that the bottleneck in the
network is the shared link. Note that our base SFQ sched-
uler is a work-conserving scheduler: if a service is not able
to use its full allocation due to a different bottleneck, the
algorithm divides the excess among the remaining services
in proportion to their priorities.

To introduce prefetching load, we randomly select 20% of
the services and introduce artificial prefetch requests from
them at the rate specified on the x-axis. For each demand
request, a prefetching service fetches ten objects whose total
size is the x-axis value times the size of the demand object.

Fair Shares / Allocation in %

0.8

. : o
07| Far Share B%‘ =

i L
Consumption B—————=~

5

|
IR

0.

=

J
[Service Load B—= // /
L

/
i
(Y| ———— —

0.

~
T
[
o}
s
I}
®
—
o
D
=%

|
RN L
ConsumpfionA——=", e
i AN

0.

w
I
=
%)
>
2

o

02

01 / 4

‘ ‘ ‘ ‘ ‘
6000 8000 10000 12000 14000
Number of Requests

Figure 11: Service load, disk fair share, and disk con-

sumption.

0

L L
0 2000 4000

The remainder of the services do not prefetch. The figure
plots the performance of the services that do not prefetch.
As for the disk space case, we do not assess the effective-
ness of prefetching for the services that issue prefetching.
Instead, we focus on how excess demand from one service
affects other services.

Under FCFS scheduling, prefetching services slow down
demand-only services by a factor of 10 and a factor of 2
in the Squid and UCB traces for prefetching rates of 10.
In contrast, Equal-Fair is not sensitive to the aggressive-
ness of the prefetching services. Even though this algorithm
does not favor recently accessed services over prefetching ser-
vices, the fact that only 20% of our services are prefetching
and that they prefetch soon after their demand requests fin-
ish limits the amount of damage that prefetching inflicts on
other services in this experiment. When there is no prefetch-
ing, Popularity-Fair is competitive with the FCFS scheduler.
When prefetching by aggressive services increases, however,
this increase has almost no affect on the less aggressive ser-
vices.

4. PROTOTYPE SYSTEM

Our prototype implementation is constructed as an HT'TP
proxy that accepts legacy HTTP requests and by default
forwards these requests to legacy HTTP servers. We
constructed it using the Java-based Active Names frame-
work [30], which allows services to define a pipeline of pro-
grams that will interpret a request. The system provides a
delegation interface to allow an HTTP reply from a service
to specify a service-extension program to handle future re-
quests to that service. The mobile service programs are Java
programs that implement an interface fundamentally similar
to Java Servelets. Although we use Active Names for our
prototype, the resource management approach we describe
would also apply to other prefetching or distributed service
execution systems.

Currently, we have implemented resource management for
disk space and network bandwidth, and we are in the process
of implementing resource management for CPU cycles and
memory space.

Figure 11 shows the popularity-based resource manage-
ment algorithm in action. We construct two simple exten-
sion programs each of which repeatedly writes as much data
as it can to disk. We activate an artificial workload that
sends two requests per second to the services, initially split-

16000

0.3

0.25 |

L SRS X

Global-LRY-""

“~'Svc. Popularity

10000

Global-LRU

06 T . .
/',,35?6"9?4,:‘99‘!“@"& -
05 | o o 1
e Fixed-10000
[5) -
. :- g
0.4 o 1
o g
©]
o o03F LT JFixed-1000 4
T
Fixed-100
Fixed-10
0 i i {
10 100 1000 10000 100000

Cache Size (MB)
(b) UCB shared proxy

Figure 8: Cache replacement policy: Cache hit rate v. cache size.

Q Fixed-10
S
o 0.15 4 4
=
0. | Fixed-100 " Fixed-1000 Fixed-10000 1
: * a
0.05 | 4
=
o ‘ ‘ ‘
1 10 100 1000
Cache Size (MB)
(a) UCB per client cache
0.7
,_,J.OODMBEopulyi,ty,,, ,,,,,,,,,,,,,,,,,,,,, 4
o o4l 1000MB LRU. 1
IS} e
x
T 034&..._100MBLRU

MB LRU
10MB Populari

0.2

0.6
g
g

BLRU

10000MB Biputarity..

"TO00MB Poplarity -« o R

_1000MB LRU

Hit Rate

0.1 [
o . . o . .
1 10 100 1000 1 10 100 1000
Prefetch Aggressiveness Prefetch Aggressiveness
(a) UCB per client cache (b) UCB shared proxy
Figure 9: Cache performance with 20% of sites prefetching.
100000 10000
@ @)
S 10000 | B S 1000 | e
> > .
o o
c o
] I}
s - FCFS---
3 1000 | E 2 100 | E
> >3
o o
j9) Q
14 14
) [p—
f=2 - [=))
@ @ I
o 100 | 4 o 10 | P Popularity-fair-- o
> e > —)
< L e
- Popularity-fair ---, Equal-fair---.
10 - - 1 L
1 10 100 1 10 100

Prefetch Agresiveness

(a) Squid 4AMB/s network

Figure 10: Network response time

ting requests evenly between them. As the two services fill
up the small (3 MB) disk partition under test, their alloca-
tions are equal. Then, when the request distribution changes
so that the first service receives three times as many requests
as the second, the first’s allocation grows at the expense of
the second’s until their disk allocations are in the ratio of
3:1. Finally, the workload returns to even request rates to

Prefetch Agresiveness

(b) UCB 4MB/s network
v. prefetching aggressiveness.

the two services, and, over time, so do the disk allocations.
Note that the fair share and consumption lag the load be-
cause disk scales popularity over time. Also note that the
extensions’ schedulers keep consumption at about 95% of
fair share, yielding a small gap between the two lines.

5. RELATED WORK

File caching [14], replication [28], hoarding [17, 18], mes-
sage queues [7, 16], and write buffering are standard tech-
niques for coping with disconnection for static file services.
These systems have primarily been examined in environ-
ments where a small number of programs deliberately in-
stalled by a user share resources.

In the context of the WWW, Active channels [1] provide
an interface for server-directed hoarding. In addition to be-
ing limited to static web pages, active channels require user
intervention to enable each service. We speculate that the
primary reason for this limitation is the need to give the
user control over which servers may use client resources.
Similarly, Microsoft Internet Explorer [19] lets users iden-
tify groups of pages to hoard, but users must manually se-
lect sites and indicate prefetch frequency and hoard depth.
AvantGo [2] provides a similar interface where users are re-
sponsible for resource management; in this case, each chan-
nel reveals a maximum space allocation that the user can
consider when subscribing.

These manual approaches have a number of limitations.
First, although they may work for a few dozen services, they
appear unlikely to scale to the hundreds of services a user
may access in a day or a week. Second, the resource limits
are device-specific, so users must make different resource
management allocations for each device they use to access
the services. And, as devices’ resources change (e.g., due
to changes in network bandwidth), there is no easy way for
a user to reprioritize her decisions. Although this paper
focuses on caching mobile code, the resource management
strategies we describe could also be used to reduce the need
for user management of these hoarding interfaces.

A range of mobile code systems have been constructed to
improve performance or support mobility. These systems
typically have focused on environments where the need for
resource management is less severe than for the applications
and environment we target. In particular Rover [16] and
Odyssey [21] provide mobile code for mobility, but published
studies of these systems have focused on environments with
small numbers of installed services rather than the emerging
WWW service access model in which users access of different
services per day.

Commercial content distribution networks are beginning
to offer clients the ability to execute code at content distri-
bution nodes using interfaces such as ICAP [29]. Resource
management is simplified in this case by the existence of a
contractual relationship between code supplier and resource
supplier, which both limits the range of behavior that the
“untrusted” code may exhibit and which allows the admin-
istrator of the system to explicitly specify what fraction of
resources should be guaranteed to each service. We specu-
late that as ICAP scales to large numbers of locations and
services, the need for system support for resource manage-
ment will increase.

Java applets and javascript are similar to the systems we
target in that any service may ship code to a client or proxy;
however, the code is prevented from accessing disk. This,
in turn, reduces the incentive for these applications to use
other resources to, for example, aggressively prefetch. Java
applets are therefore able to get by without resource man-
agement because aggressive resource usage is an uncommon
case typically resulting from buggy or malicious code.

Our work shares many goals with market-based re-
source management system investigated in the D’Agents

project [4]. Both systems seek to develop scalable infrastruc-
ture to support large collections of untrusted code. Whereas
our policy uses an economics analogy to form the basis of
a simple policy, the D’Agents project is developing a more
flexible resource market approach. Also, we focus on under-
standing and meeting the requirements of web service work-
loads rather than supporting a more general agent-based
computational infrastructure.

A number of economics-based strategies have been pro-
posed for distributing resources among competing applica-
tions in large distributed systems [4, 24]. These systems
target more general network topologies than ours and they
use secure electronic currency to ration resources.

Adaptive research scheduling is an active research area.
However, most proposed approaches are designed for benign
environments where applications can be trusted to inform
the system of their needs [15, 20] or can be monitored for
progress [10, 27]. We treat applications as untrustworthy
black boxes and allocate resources based on inferred value
from the user rather than stated demand from the applica-
tions. The former approach can be more precise and can get
better performance in benign environments, but the latter
provides safety in environments with aggressive extensions.
Noble et. al [21] emphasize agility, the speed at which appli-
cations and allocations respond to changing resource condi-
tions, as a metric of dynamic resource schedulers. We argue
that for stateful resources such as memory and disk, agility
should be restrained to match the rate at which the resource
may usefully be transferred between applications.

6. CONCLUSIONS

In this paper, we first examine the resource demands for
environments that wish to support mobile code to enable
disconnected operation. We find that scalability is a key
challenge: dozens, hundreds, or thousands of extensions
may compete for client or proxy resources. Furthermore,
these services may be more aggressive than current services
because they use resources in the common case to guard
against the uncommon case of disconnection. Although
these demands can be large, the falling costs of resources
as well as the flexible demands that mobile code may ex-
hibit suggest that — if carefully managed — clients may have
sufficient resources to support significant disconnected oper-
ation. In order to avoid manual tuning, we examine a simple
algorithm for resource management that appears to provide
both good isolation and good efficiency.

7. REFERENCES

[1] Active channel technology overview.
http://msdn.microsoft.com/workshop/delivery/
channel/overview/overview.alsp, 1999.

[2] http://www.avantgo.com, February 2001.

[3] G. Back, W. H. Hsieh, and J. Lepreau. Processes in
KaffeOS: Isolation, Resource Management, and
Sharing in Java. In Proceedings of the Fourth
Symposium on Operating Systems Design and
Implementation, Oct 2000.

[4] J. Bredin, D. Kotz, and D. Rus. Market-based
Resource Control for Mobile Agents. In Autonomous
Agents, May 1998.

[5] P. Cao, J. Zhang, and Kevin Beach. Active Cache:
Caching Dynamic Contents on the Web. In
Proceedings of Middleware 98, 1998.

[6] B. Chandra, M. Dahlin, L. Gao, and A. Nayate.

8

[9

[10

[11

[12

13

[14

[16

[17

[18

[19

7

—

-

]

]

]

]

]

]

]

]

]

End-to-end WAN Service Availability. In Proceedings
of the Third USENIX Symposium on Internet
Technologies and Systems, 2001. To appear.

IBM Corporation. Mgseries: An introduction to
messaging and queueing. Technical Report
GC33-0805-01, IBM Corporation, July 1995.
ftp://ftp.software.ibm.com/software/mgseries/
pdf/horaal01.pdf.

G. Czajkowski and T. von Eicken. JRes: A Resource
Accounting Interface for Java. In Proceedings of 1998
ACM OOPSLA Conference, October 1998.

M. Dahlin, B. Chandra, L. Gao, A. Khoja, A. Nayate,
A. Razzaq, and A. Sewani. Using Mobile Extensions
to Support Disconnected Services. Technical Report
TR-2000-20, University of Texas at Austin
Department of Computer Sciences, June 2000.

J. Douceur and W. Bolosky. Progress-based
Regulation of Low-importance Processes. In
Proceedings of the Seventeenth ACM Symposium on
Operating Systems Principles, pages 247-258,
December 1999.

P. Goyal, H. Vin, and H. Cheng. Start-time Fair
Queuing: A Scheduling Algorithm for Integrated
Services Packet Switching Networks. In Proceedings of
the ACM SIGCOMM ’96 Conference on Applications,
Technologies, Architectures, and Protocols for
Computer Communication, pages 157-168, August
1996.

J. Gray and P. Shenoy. Rules of Thumb in Data
Engineering. In ”Proc. 16th Internat. Conference on
Data Engineering”, pages 3—12, 2000.

S. Gribble and E. Brewer. System Design Issues for
Internet Middleware Services: Deductions from a
Large Client Trace. In Proceedings of the USENIX
Sympostum on Internet Technologies and Systems,
December 1997.

J. Howard, M. Kazar, S. Menees, D. Nichols,

M. Satyanarayanan, R. Sidebotham, and M. West.
Scale and Performance in a Distributed File System.
ACM Transactions on Computer Systems, 6(1):51-81,
February 1988.

M. Jones, D. Rosu, and M. Rosu. CPU Reservations
and Time Constraints: Efficient, Predictable
Scheduling of Independent Activities. In Proceedings
of the Sizteenth ACM Symposium on Operating
Systems Principles, October 1997.

A. Joseph, A. deLespinasse, J. Tauber, D. Gifford, and
M. Kaashoek. Rover: A Toolkit for Mobile
Information Access. In Proceedings of the Fifteenth
ACMSymposium on Operating Systems Principles,
December 1995.

J. Kistler and M. Satyanarayanan. Disconnected
Operation in the Coda File System. ACM
Transactions on Computer Systems, 10(1):3-25,
February 1992.

G. Kuenning and G. Popek. Automated Hoarding for
Mobile Computers. In Proceedings of the Sizteenth
ACM Symposium on Operating Systems Principles,
pages 264-275, October 1997.

Microsoft internet explorer 5.
http://www.microsoft.com/windows/ie/default.htm,

[20]

(21]

(22]

23]

[24]

25]

[26]

27]

28]

[29]

[30]

(31]

32]

2000.

J. Nieh and M. Lam. The Design, Implementation,
and Evaluation of SMART: A Scheduler for
Multimedia Applications. In Proceedings of the
Sizteenth ACM Symposium on Operating Systems
Principles, October 1997.

B. Noble, M. Satyanarayanan, D. Narayanan,

J. Tilton, J. Flinn, and K. Walker. Agile
Application-Aware Adaptation for Mobility. In
Proceedings of the Sizteenth ACM Symposium on
Operating Systems Principles, October 1997.

A. Odlyzko. The history of communications and its
implications for the interne.
http://www.research.att.com/~amo/, June 2000.
V. Paxson. End-to-end Routing Behavior in the
Internet. In Proceedings of the ACM SIGCOMM ’96
Conference on Applications, Technologies,
Architectures, and Protocols for Computer
Communication, August 1996.

Z. Qin, W. Wang, F. Wu, T. Lo, and P. Aoki.
Mariposa: A Wide-Area Distributed Database
System. VLDB Journal, 5(1):48-63, January 1996.
S. Savage, A. Collins, E. Hoffman, J. Snell, and

T. Anderson. The End-to-end Effects of Internet Path
Selection. In Proceedings of the ACM SIGCOMM ’99
Conference on Applications, Technologies,
Architectures, and Protocols for Computer
Communication, pages 289-299, September 1999.
Squid sanitized access logs.
ftp://ftp.ircache.net/Traces/, April 2000.

D. Steere, A. Goel, J. Gruenberg, D. McNamee,

C. Pu, and J. Walpole. A Feedback-driven
Proportional Allocator for Real-Rate Scheduling. In
Proceedings of the Third Symposium on Operating
Systems Design and Implementation, January 1999.
D. Terry, M. Theimer, K. Petersen, A. Demers,

M. Spreitzer, and C. Hauser. Managing Update
Conflicts in Bayou, a Weakly Connected Replicated
Storage System. In Proceedings of the Fifteenth
ACMSymposium on Operating Systems Principles,
pages 172-183, December 1995.

The ICAP Protocol Group. Icap the internet content
adaptation protocol. Technical Report
draft-opes-icap-00.txt, IETF, December 2000.

A. Vahdat, M. Dahlin, T. Anderson, and A. Aggarwal.
Active Naming: Flexible Location and Transport of
Wide-Area Resources. In Proceedings of the Second
USENIX Symposium on Internet Technologies and
Systems, October 1999.

A. Wolman, G. Voelker, N. Sharma, N. Cardwell,
A. Karlin, and H. Levy. On the scale and performance
of cooperative web proxy caching. In Proceedings of
the Seventeenth ACM Symposium on Operating
Systems Principles, December 1999.

Y. Zhang, V. Paxson, and S. Shenkar. The
Stationarity of Internet Path Properties: Routing,
Loss, and Throughput. Technical report, AT&T
Center for Internet Research at ICSI,
http://www.aciri.org/, May 2000.

