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Abstract

Byzantine and rational behaviors are increasingly rec-
ognized as unavoidable realities in today’s cooperative ser-
vices. Yet, how to design BAR-tolerant protocols and rig-
orously prove them strategy proof remains somewhat of a
mystery: existing examples tend either to focus on unrealis-
tically simple problems or to want in rigor. The goal of this
paper is to demystify the process by presenting the full al-
gorithmic development cycle that, starting from the classic
synchronous Repeated Terminating Reliable Broadcast (R-
TRB) problem statement, leads to a provably BAR-tolerant
solution. We show i) how to express R-TRB as a game;
ii) why the strategy corresponding to the optimal Byzan-
tine Fault Tolerant algorithm of Dolev and Strong does not
guarantee safety when non-Byzantine players behave ratio-
nally; iii) how to derive a BAR-tolerant R-TRB protocol: iv)
how to prove rigorously that the protocol ensures safety in
the presence of non-Byzantine rational players.

1 Introduction

Cooperative services are increasingly popular distributed
systems in which nodes belong to multiple administrative
domains (MADs). Examples of MAD distributed systems
include Internet routing [8, 17], wireless mesh routing [13]
and peer-to-peer services [2, 5].

Designing dependable MAD services turns out to be,
quite appropriately, maddening. In these systems, nodes
may deviate arbitrarily from their specification because they
are broken (from bugs, hardware failures, configuration er-
ros, or even malicious attacks). Nodes may also deviate
because they are rational, i.e., selfishly intent on maxi-
mizing their own utility. Today, an administrator can turn
his node(s) from obedient to rational with the few mouse
clicks it takes to download and install a crafty modifica-
tion. Any system deployed across multiple administrative
domains needs to be designed for the possibility that any
node may deviate for personal gain.

Under these circumstances, modeling rational nodes as
Byzantine, though theoretically possible, may be pointless

as the number of nodes classified as Byzantine quickly ex-
ceeds the threshold beyond which many distributed systems
problems are unsolvable.

Aiyer et al. [3] propose the BAR model to explic-
itly distinguish rational from Byzantine behavior. Within
this model they classify nodes as Byzantine, altruistic, or
rational—hence BAR. Unlike Byzantine and rational nodes,
altruistic ones always obey the protocol. Aiyer et al. use this
classification to design and implement a replicated state-
machine that is BAR-tolerant, i.e., resilient to both Byzan-
tine faults and rational manipulation.

Subsequent works have also explicitly addressed ratio-
nal behavior as distinct from Byzantine in epidemic broad-
cast [12], virus protection [15], and secret sharing [1]. Al-
though each work has made advances in combining game
theory with distributed systems, the entire process of de-
signing protocols for MAD systems and rigorously prov-
ing them correct remains a dark art to the uninitiated. Ex-
isting works either focus on building MAD systems while
only providing high-level proof sketches or emphasize the
mathematical rigor for each proof but address over simpli-
fied problems.

Furthermore, despite claims that rational actions cause
problems in existing Byzantine fault-tolerant protocols [3],
there is no documented example of such a chain of events.
It seems hasty to build a new class of protocols before un-
derstanding the shortcomings in current ones.

This work exposes the entire process of designing a
BAR-tolerant protocol. We anchor our discussion to the
classic terminating reliable broadcast (TRB) problem [11].
Specifically, we analyze protocols that solve a sequence of
TRB instances as would be used for state-machine replica-
tion. This paper makes the following contributions:

• Formalizes the Repeated TRB (R-TRB) problem as a
game and characterizes the classic Dolev-Strong pro-
tocol [6] as a strategy within that game;
• Demonstrates that Dolev-Strong is not an ex ante Nash

equilibrium, i.e., a rational player expects to benefit by
unilaterally deviating from the protocol;
• Shows that if more than one rational node follows the

deviant strategy, then safety can be violated;
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• Derives a new TRB protocol, Just TRB, based upon
Dolev-Strong that demonstrates techniques to address
the shortcomings of traditional Byzantine algorithms
in a MAD environment;
• Proves that Just TRB solves R-TRB and is an ex ante

Nash equilibrium.

We organize the rest of this paper as follows. In the next
section, we frame our contributions within the existing liter-
ature. In Section 3, we cast R-TRB as a game and introduce
notational conventions. Section 4 reviews the Dolev-Strong
protocol and defines a deviant strategy that ultimately leads
rational players to jeopardize safety. Sections 5 and 6 de-
scribe Just TRB and proves it is a Nash equilibrium, respec-
tively. We conclude in Section 7.

2 Why a Primer?

Although a number of works combine Byzantine fault-
tolerance with game theory, a detailed look at those works
leaves one wanting more. The current literature is missing
step-by-step examples of the process of creating a correct
BAR-tolerant protocol. Existing approaches fall into two
broad categories. The first focuses on developing a theory
to formally reason about rational behavior in the presence
of Byzantine activity. The second emphasizes building sys-
tems that tolerate Byzantine and rational participants. Al-
though both make important contributions, neither shows
the process in its entirety, namely, i) formalizing a proto-
col as a game, ii) showing how players can cheat and vio-
late correctness conditions in the game, iii) designing a new
BAR-tolerant protocol, and iv) analyzing the new protocol.
In the rest of this section, we summarize related work, high-
lighting strengths and weaknesses of previous approaches to
make clear where this paper fits.

To the best of our knowledge, Eliaz [7] is the first to
address rational behavior in the presence of Byzantine ac-
tivity. He defines a k-Fault Tolerant Nash Equilibrium (k-
FTNE) as a situation in which no player benefits from uni-
laterally deviating despite up to k players behaving in ar-
bitrary ways. Eliaz applies this concept to the constrained
Walrasian function that is used in auctions. It is unclear
whether the Walrasian function is applicable to a broader
range of distributed problems.

More recently, Aiyer et al. [3, 14] introduce the BAR
model to reason about systems with Byzantine and ratio-
nal participants. They design a cooperative backup sys-
tem based around a BAR-tolerant replicated state machine.
Aiyer et al. recognize that in many situations, consuming
bandwidth incurs cost, and so, design their protocols to curb
rational deviations that may benefit from using less band-
width. Li et al. [12] also use the BAR model, but design a
peer to peer live streaming application based around a BAR-
tolerant gossip protocol. Although both works prove game

theoretic properties, the emphasis is on building a reason-
ably practical system. As such, the proofs contained in both
papers remain at a high-level, sometimes appealing to intu-
ition instead of exposing the mathematical foundation.

Moscibroda et al. [15] complement the BAR work by
formalizing a Byzantine Nash equilibrium and rigorously
analyzing a game in the context of that equilibrium. They
examine a virus inoculation game in which Byzantine and
rational players independently decide whether to inoculate
against a virus that will eventually be inserted at random
into the system. Inoculations are not free, but being in-
fected is far worse. Moscibroda et al. show i) how to rea-
son about what rational participants expect to happen when
Byzantine participants seek to maximize infections and ii)
how to quantify the increased cost because of Byzantine ac-
tions. The work makes valuable contributions in establish-
ing a theory to reason about Byzantine and rational players.
However, it is unclear how to extend the rigorous analysis
of the inoculation game to situations, such as state machine
replication protocols, that have correctness criteria.

Abraham et al. [1] propose (k, t)-robustness, extending
Eliaz’s work to accommodate rational players who collude.
They design a secret sharing protocol and prove that it is
(k, t)-robust, meaning that it is correct despite up to k col-
luding rational players and t Byzantine players. Although
correct, their proof assumes that communication costs are
zero, an assumption at odds with the fact that in real life
bandwidth is not free. More broadly, Clement et al. [4]
show that if communication is not free, then only trivial
fault-tolerant distributed systems can be (k, t)-robust.

3 R-TRB Meets Game Theory

In the rest of this paper, we consider the Repeating Ter-
minating Reliable Broadcast (R-TRB) problem. The R-
TRB problem consists of an infinite sequence of TRB in-
stances in which a non-Byzantine node is leader an infinite
number of times. We say that a protocol fulfills the function-
ality FTRB of R-TRB if the protocol guarantees the safety
and liveness properties below for every TRB instance.

TRB1 Validity. If a non-Byzantine leader broadcasts value v,
no non-Byzantine process delivers v′ 6= v.

TRB2 Integrity. Each non-Byzantine process delivers at
most one value, and if it delivers v 6= sender faulty
(SF) then the leader broadcast v.

TRB3 Agreement. No two non-Byzantine processes deliver
different values.

TRB4 Termination. Each non-Byzantine process eventually
delivers a value.

We address the R-TRB problem using authenticated
messages [10] and synchronous and reliable communica-
tion channels. Further, we assume at most f processes are
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Byzantine and act arbitrarily. The remaining processes are
either rational or altruistic; that is, they act to maximize per-
sonal gain or obey the prescribed protocol, respectively.

We describe a distributed system as a game Γ =
(N ,SN ,U). The players N correspond to the processes
in the system; we let B ⊂ N represent the set of Byzantine
players. The strategy space SN denotes the set of proto-
cols or strategies available to each player p ∈ N . Strategy
profile ~σB assigns a strategy σp to each player p ∈ B. For
notational simplicity ~σ = ~σN . Note that σp and σq are not
necessarily identical. The set U contains a utility function
up(~σ) for each p ∈ N that maps a strategy profile1 to the
utility p receives when every player plays their component
of ~σ. The utility p receives is benefitsp(~σ) minus costsp(~σ)
where the game’s outcome decides the benefits and p’s ac-
tions determine the costs.

We assume that rational players incur costs for sending
protocol messages. Player p’s cost in TRB instance k is

costskp(~σ) =
∑

m∈sentk
p(~σ)

csnd(m)

where sentkp(~σ) is the set of messages player p sent and
csnd(m) is the cost of sending message m. We assume that
large messages cost more to send than smaller ones. The
costs incurred by p when playing R-TRB are the sum of the
costs of each individual instance.

The benefits received by rational player p depend on
which TRB properties hold and whether or not p is the
leader. When p is the leader, if TRB2–4 hold then p benefits
by $ from delivering the appropriate value. If TRB1 also
holds, then p receives an additional β benefit for proposing
the delivered value. When p is not the leader and TRB2–
4 hold, then p benefits by $ as before. In any other case,
p does not benefit. Similar to costs, p’s benefit in playing
R-TRB is the sum of the benefits received in each TRB in-
stance.

We assume that rational players follow protocols if there
is no expected benefit from unilaterally deviating; that is,
the protocol is an ex ante Nash equilibrium [16]. Formally,

∀p ∈ N ,∀φi ∈ Sp : ūp(~σ) ≥ ūp(~σN−{p}, φi)

where ūp is a function that models the utility p expects when
playing a given strategy.

In this work, we choose to model risk averse players who
act to maximize the worst case utility. Formally,

ūp(~σ) = min
B⊆N :|B|≤f

◦ min
~τB∈SB

◦up(~σN−B, ~τB)

1Note that the strategy profile argument to the utility function is a set
of strategies for all players that may be specified by a single argument (~σ)
or as multiple sets of strategies such as (~σN−{p},φp), which specifies φi

for player p, and ~σ for everyone else.

1 I n i t i a l i z a t i o n f o r p r o c e s s p i n i n s t a n c e k > 0 :
2 leader := k mod |N| // Leader in this instance
3 extracted := ∅ // Values extracted this instance
4 ∀i : 1 < i ≤ f + 1 : relayi := ∅ // Messages to send in round i

7 Round 1 , f o r p = leader , and v a l u e v :
8 extracted := {v}

9 R := N − {p} |R| = f + 1

10 send 〈VALUE, k, v〉p t o q ∈ R

12 Round 1 , f o r p 6= leader :
13 when r e c e i v e m = 〈VALUE, k, v〉leader
14 i f v /∈ extracted ∧ |extracted| < 2 then
15 relay2 ∪= {m}
16 sigsv := {leader}
17 extracted∪= {v}

20 Round i , 2 ≤ i ≤ f f o r p :
21 foreach m = 〈VALUE, k, v〉leader,...,si−1

∈ relayi

22 R := N − sigsv − {p} |R| = min(n − 1, f + 1) − |sigsv|

23 send 〈m〉p t o q ∈ R

24 when r e c e i v e m = 〈VALUE, k, v〉leader,...,si
25 i f v /∈ extracted ∧ |extracted| < 2 then
26 relayi+1 ∪= {m}
27 sigsv := {leader, . . . , si}
28 e l s e i f v ∈ extracted then
29 sigsv ∪= {leader, . . . , si}
30 extracted∪= {v}

32 Round f + 1 f o r p :
33 foreach m = 〈VALUE, k, v〉leader,...,sf

∈ relayf+1

34 send 〈m〉p t o q ∈ N − sigsv − {p}
35 when r e c e i v e m = 〈VALUE, k, v〉leader,...,sf+1
36 i f v /∈ extracted ∧ |extracted| < 2 then
37 extracted∪= {v}
38 i f |extracted| = 1 then
39 d e l i v e r v ∈ extracted
40 e l s e
41 d e l i v e r SF

Figure 1. Dolev-Strong protocol for instance
k > 0. The lazy strategy is derived by further
constraining the size of R at Lines 8 and 21
using the boxes on the right.

Intuitively, we define a rational player p’s expected util-
ity ūp by considering the worst configuration of Byzantine
players and the worst set of strategies that those Byzantine
players could take, assuming that all other non-Byzantine
participants obey the specified strategy profile.

4 BFT 6=⇒ Incentive-Compatible

We now demonstrate that Byzantine fault-tolerance does
not necessarily imply a natural resilience to rational devi-
ations. In particular, we show in the classic Dolev-Strong
(D-S) TRB protocol [6] how a rational player can benefit
by shirking its responsibility of forwarding messages onto
other players. Interestingly, such a deviation preserves the
safety and liveness properties of TRB despite Dolev-Strong
being a message optimal protocol. However, if more than
one rational player takes that deviation, then safety is lost.
We now describe the D-S TRB protocol for a TRB instance
k and provide Figure 1 for reference.

A D-S TRB instance proceeds through f + 1 rounds. In
round 1, the leader broadcasts a signed message m contain-
ing a value v to all players. A message m is valid for player
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pj in round i ifm has the form 〈VALUE, v, k〉p1,...,pi where
v is a value, k is the instance number, p1 is leaderk, the
players’ signatures p1, . . . , pi are unique, and pj’s signa-
ture is not in {p1, . . . , pi}. In every round i, upon receiving
a valid message m containing value v, player p adds v to
its extracted set that represents values that the leader sent.
In round 1 < i ≤ f , a player considers each value v added
to extracted in the previous round, appends its signature to
m where m is the message containing v, and relays m to
all players who have not yet signed a message containing
v. Note that a player is allowed to relay at most two mes-
sages in each TRB instance. In the last round, each player
delivers v if v is the only value in extracted and delivers
SF otherwise. We denote ~δ as the strategy profile in which
each player obeys the D-S TRB protocol; δp denotes player
p’s strategy in ~δ.

We now consider a lazy strategy λr that rational player r
can use as an alternative to δr. Strategy λr is similar to δr.
The difference is that in round i ≤ f , rather than relaying
message m to all players as in δr, r sends m to a subset of
f + 1 − s players who to r’s knowledge have not yet ex-
tracted v, where s is the number of players whom r believes
to have extracted v.

By following λr, r shirks the responsibility of relaying
messages onto other players. By forwarding a message to
f + 1− s players instead of all other players who have not
yet extracted v, r pushes some of the relaying work onto
at least one other non-Byzantine player. That player then
finishes the relay for r and thereby guarantees safety for all.

4.1 No Harm in Being Lazy

We now prove that a rational player r expects the same
benefit from following the lazy strategy λr as from obey-
ing the Dolev-Strong protocol δr. In the next section, we
combine this proof with the observation that λr is no more
costly than δr, and in some cases even cheaper, implying
that r should expect greater utility from λr.

Remember that r’s benefit is tied to the properties
TRB1–4. We show that those properties continue to hold,
thereby preserving r’s benefit, despite r following λr while
the remaining non-Byzantine players obey δr. Formally, we
prove the following:

Theorem 1 (Lazy Safety and Liveness). For all B ⊆ N ,
|B|≤f , and ∀~τB ∈SB, if ~σ=(~δN−B−{r}, λr, ~τB) is played
for ΓTRB then TRB1-4 hold.

We structure the proof of Theorem 1 into four parts
corresponding to TRB1–4. Validity (TRB1) and Integrity
(TRB2) are simple to prove, whereas Agreement (TRB3)
is more involved. Termination (TRB4) is also easy to
prove. For the lemmas in this section, we assume that non-
Byzantine players follow strategy profile (~δN−B−{r}, λr)
and |B| ≤ f . We present Validity and Integrity first.

Lemma 1 (Lazy Validity—TRB1). If a non-Byzantine
leader broadcasts v, then no non-Byzantine process delivers
v′ 6= v.

Proof. A valid message requires a signature by the leader.
If a non-Byzantine leader broadcasts at most one value v,
then no valid message can contain value v′ 6= v. Therefore,
v′ 6∈ extracted for any non-Byzantine player.

Lemma 2 (Lazy Integrity—TRB2). Each non-Byzantine
process delivers at most one value, and if it delivers v 6= SF
then the leader broadcast v.

Proof. Both strategies specify to deliver a single value only
during round f+1. If v 6= SF, then v was extracted in round
i ≤ f + 1. Extracted values come from valid messages, and
a message is valid only if it contains the signature of the
leader. As signatures are unforgeable, the leader broadcast
a message containing v.

The following four lemmas ensure a property called
relay—essentially if any non-Byzantine player extracts a
value v then all non-Byzantine players extract that same
value (or two distinct values) by round f + 1.

Lemma 3. If a player p following the Dolev-Strong proto-
col extracts v in round i ≤ f then all non-Byzantine players
extract v or 2 values v′ 6= v′′ by round i+ 1.

Proof. Assume v is the first or second value extracted by p.
Since p follows δp, p signs and forwards a valid message
containing v during round i + 1 (guaranteed to exist since
i ≤ f ) to all other players that p has not observed to sign a
message containing v. Each of those non-Byzantine players
extracts v in round i+ 1. Finally, all non-Byzantine players
that signed the message containing v followed the Dolev-
Strong protocol and thus extracted v prior to signing the
message.

If v is the third or higher value extracted by p, then it
follows from the previous discussion that all non-Byzantine
players extract at least two distinct values by round i + 1,
completing the proof.

Lemma 4. If lazy player r extracts v in round i < f then
all non-Byzantine players extract v or 2 values v′ 6= v′′ by
round i+ 2.

Lemma 5. If lazy player r extracts v in round f then all
non-Byzantine players extract v or 2 values v′ 6= v′′ by
round f + 1.

Lemma 6 (Lazy Relay). If a non-Byzantine player extracts
v in round i ≤ f , then all non-Byzantine players extract v
or 2 values v′ 6= v′′ by round f + 1.

Lemma 7 (Lazy Agreement—-TRB3). If non-Byzantine
player p delivers v and non-Byzantine player q delivers v′

then v = v′.
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Proof. Without loss of generality, assume that v 6= SF. It
follows from the protocol definition that p’s extracted set
contains exactly one value, v, at the end of round f + 1.
Since p is non-Byzantine, p extracted v in round i ≤ f . It
follows from Lemma 6 that q extracted v or two distinct val-
ued by round f + 1. Since q delivers v′ there are two cases
to consider, either v = v′ or v′ = SF. In the former case
the proof is complete. In the latter case, q delivered SF be-
cause |extracted| ≥ 2 implying that q extracted some value
u 6= v. Again, since there are at most f Byzantine players
and non-Byzantine players only extract values contained in
valid messages, some non-Byzantine player r′ extracted u
in round j ≤ f . It then follows from Lemma 6 that p ex-
tracted u or 2 distinct values by round f + 1. Since p ex-
tracted v, p extracted 2 distinct values by round f + 1 and
delivers v = SF at the end of round f + 1. This contradicts
our initial assumption that v 6= SF, so v′ = v completing
the proof.

Lemma 8 (Lazy Termination—TRB4). Each non-
Byzantine process eventually delivers a value.

Proof. Trivial.

4.2 Rationality

In this section, we use the lazy strategy to demonstrate
that D-S TRB is not a Nash Equilibrium. We also prove that
the lazy strategy is not guaranteed to fulfill the functionality
of TRB when it is played by all non-Byzantine players. We
focus our attention on the setting in which n > f+2, f > 1,
and |B| ≤ f—the conditions under which D-S TRB and the
lazy strategy differ.

Theorem 2. D-S TRB is not a Nash Equilibrium.

Proof. It follows from Theorem 1 that TRB1–4 hold in all
instances when non-Byzantine players utilize the strategy
profile (~δN−B−{r}, λr). Player r thus expects the same
benefit from playing either λr or δr.

We now show that player r expects less cost from playing
λr than from playing δr. When following either strategy in
instances with a Byzantine leader, player r sends at most
two messages to n − 2 other players, resulting in identical
expected costs.

When following δr in instances with a non-Byzantine
leader, player r sends one message to n − 2 other players
(or one message to n − 1 players if r is the leader). Mean-
while, when following λr in instances where the leader is
non-Byzantine, player r sends one message to f other play-
ers (or one message to f + 1 other players when r is the
leader). Since n > f + 2 it follows that r sends more mes-
sages by following δr than by following λr when the leader
is non-Byzantine.

Since the leader is non-Byzantine infinitely often, player
r expects less cost and thus higher utility from following
λr. Hence ūr(~δ) < ūr(~δN−{r}, λr) and D-S TRB is not a
Nash Equilibrium.

The consequence of D-S TRB not being a Nash Equilib-
rium is that all rational players will choose to follow the lazy
strategy instead. Unfortunately, this results in a tragedy of
the commons scenario [9] as Agreement is not guaranteed.

Theorem 3 (Failed Agreement). If all non-Byzantine play-
ers follow strategy profile ~λN−B then TRB3 can be vio-
lated.

Proof. It is sufficient to show a scenario in which TRB3
does not hold. Since n > f + 2, there are at least
three non-Byzantine players p, q, and r. Suppose r is
the leader. In the first round, r sends the broadcast value
m = 〈VALUE, v, k〉r to f + 1 other players. Without loss
of generality, assume this set contains player p and f other
Byzantine players that never forward v. Since f > 1, there
are guaranteed to be at least three rounds. In the second
round, p should send m′ = 〈VALUE, v, k〉r,p to f + 1 other
players. Because sigsm = {r}, p need only send m′ to f
other players, which can include the set of Byzantine play-
ers chosen by r. These f players continue to not forward
v in the third round, and thus non-Byzantine player q does
not receive or extract v. In round f + 1, q delivers SF while
r and p both deliver v, violating TRB3.

5 Just TRB

This section presents Just TRB, a R-TRB protocol based
on D-S TRB and resilient to both Byzantine and rational
players. For clarity, we structure our presentation into five
parts.

1. Underscore the weaknesses in D-S TRB that a rational
player exploits.

2. Discuss design principles that we use to control ratio-
nal players.

3. Describe Just TRB and explain the mechanisms that
curb rational deviations.

4. Show that Just TRB solves the R-TRB problem if all
non-Byzantine players obey the protocol.

5. Prove that Just TRB is an ex ante Nash equilibrium.

The D-S TRB protocol has three shortcomings that a ra-
tional player r abuses by playing the lazy strategy. First, it
is impossible for a player to determine whether r’s silence
in a round is because r has not recently extracted a message
or because r is deviating from the protocol. Second, r in-
creases its long-term utility by relaying messages to fewer
players than prescribed. Third, there is no consequence for
failing to send a message.
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Design principles from earlier BAR works [3, 12] guide
our solution. We impose a predictable communication pat-
tern to aid players in detecting when another player has
failed to send a message. We also balance costs across pro-
tocol messages to eliminate any long-term utility a player
can gain by failing to send prescribed messages. Finally, we
enforce accountability through a shunning mechanism that
punishes players for deviating from the predictable commu-
nication pattern.

5.1 Just TRB Protocol

The Just TRB protocol is similar in structure to the D-S
TRB protocol. Differences between the two reflect changes
made when appyling the above principles. Each player in
Just TRB maintains a status with other players. All players
begin as friends with one another. If a player p observes q
to have deviated from the predictable communication pat-
tern, then p considers q an ex-friend and henceforth shuns q
by not sending messages to q. Ex-friend q can be lowered
further to enemy status if q causes p to do more work in any
Just TRB instance. Ex-friends are tracked in the set shunp
and enemies are tracked in the set penDuring. A player
cannot make amends for past actions once it damages a re-
lationship.

Each Just TRB instance proceeds through f + 1 rounds.
In round 1, the leader broadcasts a signed message m con-
taining a value v to its friends. A valid message has the
same definition as in D-S TRB. In each round i ≤ f , upon
receiving a valid message m containing value v, player p
adds v to its extracted set only if i 6= 1 or the leader is not
an enemy. The leader immediately becomes p′s enemy if p
does not receive a valid message from the leader in round
1 because this forces p to send extra penance messages, to
be discussed shortly, in the last round. In round 1 < i ≤ f ,
a player considers each value v added to extracted in the
previous round, appends its signature to m where m is the
message containing v, and relays m to all friends. Note that
a player relays at most two values in each TRB instance.
We say that a message is meaningful if it contains a value.

In the last round, players may send dummy value mes-
sages, which contain no value. A player sends enough
dummy messages to its friends so that each friend receives
exactly two value messages (meaningful or dummy) in each
Just TRB instance. A player also sends penance messages
to all friends if the leader is an enemy. A player reduces
a friend to an ex-friend if that friend fails to send the ap-
propriate messages by the end of the instance. Finally, each
player examines its extracted set. If extracted = {v} then
a player delivers v and delivers SF otherwise. We provide
Figure 2 for reference.

Just TRB shows the repeated application of our earlier
principles. We impose a predictable communication pattern
by requiring players to send exactly two value messages to

1 P r o t o c o l i n i t i a l i z a t i o n f o r p r o c e s s p :
2 shunp := ∅ // Set of players that p shuns
3 foreach a ∈ N
4 penDuring[a] := ∅ // Leaders where p expects penance from a
5 recvdSeq[a] := ∅ // Messages p received from a

7 I n i t i a l i z a t i o n f o r p r o c e s s p i n i n s t a n c e k > 0 :
8 leader := k mod |N|
9 extracted := ∅ ; penance := ∅

10 ∀i : 1 < i ≤ f + 1 : relayi := ∅

13 Round 1 , f o r p = leader , and v a l u e v :
14 extracted := {v}
15 send 〈VALUE, k, v〉p t o q ∈ N − shunp − {p}

17 Round 1 , f o r p 6= leader :
18 when r e c e i v e m = 〈VALUE, k, v〉leader
19 i f leader /∈ penDuring[p] then
20 i f v /∈ extracted ∧ |extracted| < 2 then
21 relay2 ∪= {m}
22 extracted∪= {v}
23 recvdSeq[leader]∪= {m}
24 i f extracted = ∅ then
25 penDuring[p]∪= {leader} ; shunp ∪= {leader}
26 penance := {〈PENANCE, k, |penDuring[p]|, filler〉p}

29 Round i , 2 ≤ i ≤ f f o r p :
30 foreach m = 〈VALUE, k, v〉leader,...,si−1

∈ relayi

31 send 〈m〉p t o q ∈ N − shunp − {p}
32 when r e c e i v e m = 〈VALUE, k, v〉leader,...,si
33 i f v /∈ extracted ∧ |extracted| < 2 then
34 relayi+1 ∪= {m}
35 extracted∪= {v}
36 recvdSeq[si]∪= {m}

38 Round f + 1 , f o r p :
39 i f f > 0 then
40 foreach m = 〈VALUE, k, v〉leader,...,sf

∈ relayf+1

41 send 〈m〉p t o q ∈ N − shunp − {p}
42 i f |extracted| < 2 then
43 send 〈VALUE, k,⊥1〉p t o q ∈ N − shunp − {p}
44 i f |extracted| < 1 then
45 send 〈VALUE, k,⊥2〉p t o q ∈ N − shunp − {p}
46 i f penance 6= ∅ then
47 send m ∈ penance t o q ∈ N − shunp − {p}
48 when r e c e i v e m = 〈VALUE, k, v〉leader,...,sf+1
49 i f v /∈ extracted ∪ {⊥1,⊥2} then
50 extracted∪= {v}
51 recvdSeq[sf+1]∪= {m}
52 when r e c e i v e m = 〈PENANCE, k, t, filler〉q
53 penDuring[q]∪= {leader}
54 i f t = |penDuring[q]| then
55 recvdSeq[q]∪= {m}
56 foreach q ∈ N − shunp − {p}
57 i f recvdSeq[q] /∈ Mk

q→p then

58 shunp ∪= {q}
59 i f |extracted| = 1 then
60 d e l i v e r v ∈ extracted
61 e l s e
62 d e l i v e r SF
63 shunp ∪= {leader}

Figure 2. Just TRB for instance k > 0.

friends in each TRB instance. Players hold their friends ac-
countable for adhering to this pattern; if a player p receives
fewer than two such messages from a friend q, then p con-
siders q an ex-friend and shuns q.

We introduce penance messages to balance costs. With-
out penance messages in Just TRB, a rational player p
could, without just cause, turn some friends into ex-friends
to save costs by not sending them messages. This would
expose Just TRB to the same weakness that plagued D-S
TRB. Penances inoculate Just TRB: p will not frivolously
turn q into an ex-friend because q, as the future leader of an
infinite number of TRB instances, can force p to incur addi-
tional costs (via penances) during the last round of each of
those instances. Section 6 establishes the inequalities nec-
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essary to balance appropriately the cost of penances against
the possible savings from frivolously losing friends.

The next subsection formalizes the predictable commu-
nication pattern and friend, ex-friend, and enemy relation-
ships. Afterwards, we prove that Just TRB is safe and live
if rational players obey the protocol.

5.2 Definitions & Lemmas

Let ~ρ denote the strategy profile in which each player
obeys the Just TRB protocol. We formally define
the message sequence sent from player r to player p
through instance k when ~σ is played as seqkr→p(~σ) =⋃
h∈[1,k] senthr→p(~σ). A message sequence is acceptable if

it could have been sent by a player r following ρr. Formally,

Definition 1 (Acceptable Message Sequence). A message
sequence from r to p through instance k is acceptable if and
only if that sequence is in the set:

Mk
r→p =

⋃
∀C ⊆ N − {r, p},
∀~σC ∈ SC

seqkr→p(~ρN−C , ~σC)

For simplicity,Mr→p ≡M∞r→p.

In Just TRB, a message sequence is acceptable for an
instance k if it contains two value messages and, when nec-
essary, a penance message—that is, if either no value is for-
warded in round 2 of k or a penance message was sent dur-
ing a previous instance led by k’s leader.

Definition 2 (Friends). The friends of a player r at in-
stance k when ~σ is played are Fkr (~σ) = {p ∈ N − {r} :
seqkr→p(~σ) ∈Mk

r→p ∧ seqkp→r(~σ) ∈Mk
p→r}.

Definition 3 (Ex-friends). The ex-friends of a player r at
instance k when ~σ is played are Xk

r (~σ) = N−Fkr (~σ)−{r}.

Definition 4 (Enemies). The enemies of player r at instance
k when ~σ is played are Ekr (~σ) = Ek−1

r (~σ)∪ {p = leaderk :
〈VALUE, k, v〉p /∈ sentkp→r(~σ)} where trivially, E0

r(~σ) =
∅.

For notational simplicity, Fr(~σ) ≡ F∞r (~σ), Xr(~σ) ≡
X∞r (~σ), and Er(~σ) ≡ E∞r (~σ). Let XBYZ

r (~σ) be the set of
Byzantine ex-friends and XNON

r (~σ) be the remaining ex-
friends. Of course, enemies are also considered ex-friends.
The following two lemmas characterize friend and enemy
relationships within Just TRB; they will be useful in later
proofs.

Lemma 9. If players p and q follow Just TRB, then p and q
are friends.

Proof. By definition, for all k > 0, seqkp→q(~σ) ∈ Mk
p→q ,

implying p ∈ Fq(~σ).

Lemma 10. Suppose player p follows the protocol by play-
ing ρp. If p considers q to be an ex-friend, then p eventually
is q′s enemy.

Proof. Since p follows ρp, p does not send messages to
players in shunp. Since q ∈ XNON

p (~σ), we infer that
q ∈ shunp, and thus p does not send a VAL1 message to
q when p is leader. Hence, p ∈ Eq(~σ).

5.3 Safety

When non-Byzantine players follow the protocol, Just
TRB solves the R-TRB problem in a nearly identical way
as D-S TRB. Lemma 9 states that players following the
protocol are friends, so any value message sent from one
non-Byzantine player to another in D-S TRB would also
be sent following Just TRB. While Just TRB uses addi-
tional messages—penances and fillers—these messages do
not change the value of the extracted sets used to actually
deliver a value. Theorem 4 formalizes the above intuition.

Theorem 4. If all non-Byzantine players follow the proto-
col by playing ρ then TRB1-4 hold.

Proof. Since D-S TRB maintains TRB1–4 when all non-
Byzantine players play D-S TRB, it is sufficient to show
that if all non-Byzantine players play Just TRB they deliver
the same value as they would have delivered if playing D-S
TRB. It follows from Lemma 9 that non-Byzantine players
are friends and thus do not shun each other.

A non-Byzantine leader sends exactly one value v to all
non-Byzantine players in round 1 of both protocols. Every
non-Byzantine player thus receives only v in both protocols
and delivers v in round f + 1.

With a Byzantine leader, if any non-Byzantine player de-
livers v broadcast by the leader, then some non-Byzantine
player received any value broadcast by the sender by round
f at the latest (since there are at most f Byzantine play-
ers). Both protocols specify that any non-Byzantine player
forward the first two values received in an instance to other
non-Byzantine players. So at the end of round f+1 all non-
Byzantine players will have received either the same unique
value v, or at least two values, or no value. Non-Byzantine
players all deliver SF in the latter two cases or the unique
value v in the first case.

6 Rationality Analysis
We now prove that the Just TRB protocol is an ex ante

Nash equilibrium. In this section, the level of technical de-
tail increases sharply. Though at times painful, these details
provide the necessary closure to revealing the complete pro-
cess of BAR-tolerant protocol design.

The key insight is that each player p’s utility in the pro-
tocol’s steady state dominates p’s overall utility. Therefore,
the rational strategy is to maximize the steady state utility.
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message content csnd

VALi 〈VALUE, k, v〉leaderk
,s2,...,si−1,r

γ

VAL⊥ 〈VALUE, k,⊥{1,2}〉r γ

PNCt 〈PENANCE, k, t, filler〉r κt

Table 1. Costs and contents of specific messages sent by
player r in instance k.

Definition 5 (Steady State). A game execution with strat-
egy profile ~σ is in the steady state at instance k if and only
if every player makes no more enemies and loses no more
friends in future instances.

Every R-TRB game eventually reaches the steady state
since the set of each player’s enemies is non-decreasing and
the set of each player’s friends is non-increasing. Because
the steady state condition holds for an infinite suffix of TRB
instances, the average utility in the steady state dominates
the average expected utility. We define a player’s average
utility in the steady state as its utility across n consecutive
steady state instances, thereby accounting for the increased
utility that a player receives when it is leader—exactly once
every n instances.

We start the proof by establishing a lower bound on the
utility a player p expects when p obeys Just TRB. We then
consider strategy profiles in which p deviates. Since there
are a large number of possible deviations, we group devia-
tions into equivalence classes; two deviations are equivalent
if they expect to produce the same number of friends and en-
emies in the steady state. Next, we establish upper bounds
on the utility p expects for strategies in each class. Finally,
we show that the lower bound for obeying Just TRB is at
least the upper bound for every equivalence class, thereby
proving that p expects no benefit from unilaterally deviating
and that Just TRB is an ex ante Nash equilibrium.

Similar to our discussion in Section 4.2, we consider
only n > f + 1 and f > 0. We address the corner cases in
a technical report [4].

6.1 Proof Preliminaries

We now define the costs of sending value and penance
messages in Just TRB. Using these costs, we determine the
cost required to maintain a set of friends in the steady state,
which we call the cost of friendship.

Message Costs. Just TRB uses three kinds of messages:
meaningful value (VALi sent in round i), dummy value
(VAL⊥), and penance messages (PNCt where the sender has
t enemies). Table 1 shows the content and costs of these
messages.

Both meaningful and dummy value messages have iden-
tical costs (γ) so as to eliminate incentives for sending one
kind of value message over another. Penance messsages are

more complicated; their cost varies to balance the possible
savings from frivolously losing friends. Players verify the
size of fillers in each penance to ensure that each penance
has the appropriate cost.

A penance message PNCt costs κt, where

κt =

{
(n−t)(t−1)κt−1+2nγ

t(n−t−1) , t ∈ [1, n− 2]
0, otherwise

By making an additional enemy, a player r saves the cost
of sending 2n value messages and trades the (n− t)(t− 1)
PNCt−1 messages for t(n− t− 1) PNCt messages.

Cost of Friendship. There are exactly 3 message patterns
that a player p following ρp could send to another player r:
(a) no messages, (b) two VAL messages, including at least
one during round 2, and (c) no VAL messages during round
2, two VAL messages total, and one PNC message.

The cost of friendship, C(x, y), to a player r with x
friends and y enemies in following ρr is

C(x, y) = x(yκy + 2nγ)

In n instances of TRB, Just TRB specifies that a player r
sends the following messages only to its x friends: (a) two
value messages (costing 2nγ) and (b) a penance message
each time one of the y enemies is leader (costing yκy).

From the definitions of C(x, y) and κy , we derive the
following properties of the cost of friendship: (a) it costs
more to keep the same set of friends while making more
enemies; (b) it costs more to have a player as an enemy than
it does to keep him as a friend; and (c) costs are trivially
minimized by having no friends:

Lemma 11. Let x ∈ [0, n− 1], y ∈ [0, n− x− 2].
(a) x > 0⇒ C(x, y) ≤ C(x, y + 1).
(b) x > 0⇒ C(x, y) ≤ C(x− 1, y + 1).
(c) x = 0⇒ C(x, y) = 0.

One interesting implication of the cost of friendship is that
Byzantine players increase the costs paid by rational players
when they are enemies rather than friends.

6.2 Utility of Playing ρ

To prove that ~ρ is a Nash equilibrium for risk-averse
players, we first place a lower bound on the utility that a
player expects from playing the recommended strategy ~ρ;
in the next section, we show that the lower bound of ~ρ is
no less than an upper bound on the utility a player expects
from unilaterally deviating from ~ρ.

The utility ūr(~ρ) identifies a rational player r’s worst-
case utility when every non-Byzantine player follows ~ρN−B
and the Byzantine players follow arbitrary strategies ~τB ∈
SB. To calculate the worst-case utility of following ~ρ, we
establish a lower bound on r’s benefit and an upper bound
on r’s cost as a function of the friends and enemies of r in
the steady state.
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Benefits. By proving Just TRB is a Byzantine fault-
tolerant TRB protocol in Theorem 4, we can easily assert
in the following Lemma that r receives full benefit when
(~ρN−B, ~τB) is played.

Lemma 12. If all non-Byzantine players follow the protocol
by playing ρ and at most f Byzantine players deviate in
an arbitrary fashion, then non-Byzantine player r receives
benefit β+n$ during n consecutive steady state instances.

Costs. The next Lemma bounds the maximum cost with
respect to the cost of friendship in the steady state when
rational players follow ~ρ. It is important to note that Byzan-
tine players maximize costs by being enemies, rather than
friends, of rational players.

Lemma 13. Let n > f + 1 and f > 0. If all non-Byzantine
players follow the protocol by playing ρ and the Byzan-
tine players deviate arbitrarily, then the worst case expected
cost for non-Byzantine player r is at most C(n− f − 1, f).

Proof. It follows from Lemma 9 that |Fr(~ϕ)| ≥ n− f − 1
and |Er(~ϕ)| ≤ f . It follows from Lemma 11 that C(x, y)
is maximized when y = f . Since C(x, y) is defined for ρ,
costsr(~ϕ) ≤ C(n− f − 1, f).

Utility. Using the bounds on steady state benefit and cost
we provide a lower bound on utility.

Lemma 14. Let n > f + 1 and f > 0. If all non-Byzantine
players follow the protocol by playing ρ and there are at
most f Byzantine players, then the expected utility for risk
averse player r is at least (β+n$)−C(n−f−1,f)

n

Proof. The utility under the risk-averse rational model de-
pends upon the worst-case average expected utility. Let
~ϕ = (~ρN−B, ~τB), ∀B ⊆ N , |B| ≤ f . The average ex-
pected utility for any r ∈ N − B is determined by the
costs and benefits of the steady state, leading to ûr(~ϕ) =
benefits

r
(~ϕ)−costsr(~ϕ)

n . Substituting according to Lem-
mas 12 and 13, we obtain ūr(~ϕ) ≥ (β+n$)−C(n−f−1,f)

n
for any Byzantine behavior.

6.3 Utility of Deviating

We now show that there exists a spiteful strategy for
Byzantine players to follow that places an upper bound on
a rational player r’s average expected utility, irrespective
of r’s unilateral deviation. This upper bound matches the
lower bound for ūr(~ρ) and demonstrates that Just TRB is a
Nash equilibrium for risk-averse players.

We define the spiteful strategy ~ς rB such that Byzantine
players follow ~ρB, but collude against r by inserting r into
shunq for all q ∈ B. Since spiteful players shun r, they are
by definition enemies of r:

Lemma 15. If all Byzantine players follow the spiteful
strategy against non-Byzantine player r then all Byzantine
players are in the enemy set of r.

Benefits. We derive an upper bound on the benefit of any
unilateral deviation by r using the benefits for ΓTRB:

Lemma 16. For any strategy followed by non-Byzantine
player r, if there are at most f Byzantine players then the
benefits received by r are at most β + n$.

A tighter bound can be obtained for the special case of
deviations that result in r having no friends.

Lemma 17. Let n ≥ f + 1 and f > 0. If non-Byzantine
player r has no friends and all Byzantine players play the
spiteful strategy against r, then r obtains benefit at most $.

Proof. Without friends, r cannot learn the values proposed
by other players and must deliver SF, which clearly can vi-
olate TRB3, resulting in no benefit to r. However, when
r is leader, r can trivially guarantee TRB3 and obtain $
by delivering SF. All other non-Byzantine players will also
deliver SF because they receive no value messages from r
because r shuns all players since |Fr(~o)| = 0.

Costs. We next derive a lower bound on r’s cost when f
Byzantine players follow the spiteful strategy and r pursues
any unilateral deviation. For deviations that maintain a non-
zero number of friends, the following Lemma bounds the
minimum cost of deviation:

Lemma 18. Let n ≥ f+1 and f > 0. If there are at most f
Byzantine players and r has e < n−1 enemies in the steady
state, then r expects costs of at least C(n− f − 1, f).

Proof. Lemmas 15 and 10 imply that Xr(~o) = Er(~o) so
that a player is either a friend or enemy. If every player
is counted by x or y, Lemma 11 rule (b) then states that
C(x, y) is minimized for min(x). Given the lower bound of
|Er(~o)| determined by |B| = f , minimal costs are attained
for C(n− f − 1, f).

For deviations by player r described by ~o that maintain
no friends (Fr(~o) = ∅), we note that r is not required to
send any messages so that trivially, costsr(~o) ≥ 0.

Utility. Using the bounds on benefit and cost in the steady
state, we prove an upper bound on r’s utility.

Lemma 19. Let n > f + 1 and f > 0. If there are at most
f Byzantine players, then the expected utility for risk averse
player r is at most max{ (β+n$)−C(n−f−1,f)

n , $n }.

Proof. To find the utility under the risk-averse rational
model, we find the worst-case average expected utility. For
all B ⊆ N − {r}, |B| = f , let ~o = (~ρN−B−{r}, σr, ~ς rB ).
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The average expected utility for any r ∈ N − B is deter-
mined by the costs and benefits of the steady state, leading

to ūr(~o) = benefits
r
(~o)−costsr(~o)

n .
Consider first the case where |Er(~o)| < n−1. It follows

from Lemma 18 that costsr(~o) ≥ C(n − f − 1, f). Fi-
nally, ūr(~o) ≤ (β+n$)−C(n−f−1,f)

n using the upper bound
on benefits provided by Lemma 16.

Assume |Er(~o)| = n−1. It follows from Lemma 17 that
benefitsr(~o) ≤ $ and as argued above, that costsr(~o) ≥ 0.
Hence, ūr(~o) ≤ $

n .

6.4 Just TRB Is a Nash Equilibrium

We prove that ~ρ is a Nash Equilibrium using the bounds
on utility proved in the previous sections. In the presence
of Byzantine behavior, we show that the minimum expected
utility of executing Just TRB is the maximum expected util-
ity of any unilateral deviation strategy profile.

Theorem 5. Let n > f + 1 and f > 0. The Just TRB
protocol is a Nash equilibrium for risk averse players if β+
(n− 1)$ ≥ C(n− f − 1, f).

Proof. It suffices to show ∀r ∈ N ,∀σr ∈ Sr,
ūr(~ρ) ≥ ūr(~ρN−{r}, σr). It follows from Lemma 14
that ūr(~ρ) ≥ β+n$−C(n−f−1,f)

n and from Lemma 19
that ūr(~ρN−{r}, σr) ≤ max{β+n$−C(n−f−1,f)

n , $n }. By
our assumption that β + (n − 1)$ ≥ C(n − f − 1, f),
ūr(~ρ) ≥ ūr(~ρN−{r}, σr), completing the proof.

Theorem 5 is useful to discuss the assumption of game
theory that the game should be worth playing when every-
one cooperates. A sufficient condition for playing the Just
TRB game is that a player expects the benefits of running
the protocol (successful agreements and proposals) to ex-
ceed the cost of doing so (messages). To meet this condi-
tion for risk-averse players, Theorem 5 provides a precise
requirement on the costs and benefits: β + (n − 1)$ ≥
C(n− f − 1, f).

7 Conclusion

We have taken the classic synchronous R-TRB problem
and examined it in the presence of rational players. We have
seen that BFT protocols, even when optimal, are not neces-
sarily resilient to rational behavior. We introduce a novel
protocol that solves the synchronous R-TRB problem in the
presence of both Byzantine and rational players and pre-
sented a detailed analysis of that protocol. The Just TRB
protocol and analysis is limited by our assumptions on ra-
tional players. Changes in the sources of cost and/or ben-
efits or the expectations rational players place on Byzan-
tine players will fundamentally change the analysis and may
leave our protocol short of tolerating both Byzantine and ra-
tional participants.
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