
Dual-Quorum Replication for Edge Services

Lei Gao, Mike Dahlin, Jiandan Zheng, Lorenzo Alvisi

The University of Texas at Austin

Arun Iyengar

IBM T.J. Watson Research Center

Abstract

This paper introduces dual-quorum replication, a novel data replication algorithm designed to support Internet

edge services. Dual-quorum replication combines volume leases and quorum based techniques in order to

achieve excellent availability, response time, and consistency for read/write objects when the references to each

object (a) tend not to exhibit high concurrency across multiple nodes and (b) tend to exhibit bursts of read-

dominated or write-dominated behavior. Through both analytical and experimental evaluation of a prototype,

we show that the dual-quorum protocol can (for the workloadsof interest) approach the excellent performance

and availability of Read-One/Write-All-Asynchronously (ROWA-A) epidemic algorithms without suffering the

weak consistency guarantees and resulting design complexity inherent in ROWA-A systems.

1 Introduction

This paper introduces dual-quorum replication, a novel data replication algorithm motivated by the desire to

support data replication for edge services [1, 3, 10, 29]. AsFigure 1 illustrates, the Internet edge service model

attempts to improve service availability and latency by allowing clients to access the closest available edge

servers rather than a centralized server (or a centralized server cluster). But as Figure 1 also indicates, in order

to provide a single service from multiple locations, service logic (code) replicated on all edge servers must

access a collection of shared data. Thus, support for data replication is a key problem in realizing the promise

of Internet edge services.

By exploiting object-specific workload characteristics, we seek to design a data replication system for edge

services that offers good trade-offs among availability, consistency, and response time. Although it is prov-

ably impossible to provide simultaneously optimal consistency, optimal availability, and optimal performance

for general-casewide-area-network replication [5, 17], we can, perhaps, provide nearly optimal behavior for

specific objectsby taking advantage of a given application’s workload characteristics. For example, our previ-

ous studies show how to provide nearly optimal replication for information disseminationapplications such as

1

…WAN

Central
Server

DB

DB

Shared Data

DB

Service
Logic

Edge Server

Service
Logic

Service
Logic

Client

Client

Client

Client

Figure 1:Internet edge service architecture

news [21] ande-commerceapplications such as TPC-W [10]. In particular, we developed customized consis-

tency protocols for three categories of objects: (1) single-writer, multi-reader objects like product descriptions

and prices; (2) multi-writer, single-reader objects like lists of orders; and (3) commutative-write, approximate-

read objects like the current inventory count of each product.

However, a key limitation of our previous efforts to supportedge services was our decision to use weak

consistency—and thereby introduce considerable complexity—for a fourth category of objects: multi-writer,

multi-reader objects such as per-customerprofile information (e.g., name, account number, recent orders, credit

card number, and address.) We, like several other systems [24, 26, 32], made use of a Read-One, Write-All-

Asynchronously (ROWA-A) protocol based on local reads and asynchronous epidemic propagation of writes.

ROWA-A protocols provide excellent read performance and availability; and although ROWA-A protocols

allow applications to observe inconsistencies between reads and writes, such inconsistencies should be rare

because multi-reader, multi-writer shared objects often have workloads with low concurrency to any given

object. For example, in our edge-server TPC-W application,reads and writes to a given customer’s profile

typically come from just one edge server for some interval oftime, until the customer is redirected to a different

server. Unfortunately, although inconsistencies are rarefor the workloads of interest, these rare cases introduce

considerable complexity into the design, because all casesmust be handled no matter how rare they are and

because reasoning about corner cases in consistency protocols is complex. Furthermore, because reads can

always complete locally, these protocols provide no worst-case bound on staleness, i.e., it is possible for a read

to return stale data arbitrarily long after a write, which can be unacceptable for some applications.

By introducing dual-quorum replication, this paper provides the key missing piece to achieve highly-

available, low-latency, and consistent data replication for a range of edge services. In particular, dual-quorum

replication optimizes these properties for data elements that can be both read and written from many locations,

but whose reads and writes exhibit locality in two dimensions: (1) at any given time access to a given element

tends to come from a single node and (2) reads tend to be followed by other reads and writes tend to be followed

by other writes. For other workloads, our algorithm continues to provide regular consistency semantics [16],

but its performance and availability may degrade.

2

Our dual-quorum replication protocol combines ideas from volume leases [30] and quorum based tech-

niques [11, 12]. The protocol employs two quorum systems, aninput quorum system (IQS) and an output

quorum system (OQS). Clients send their writes to theIQS and they read from theOQS. The two quorum

systems communicate with each other when necessary to synchronize the state of replicated objects. By using

two quorum systems, we are able to optimize construction of theOQS’s read quorums to provide low latency

and high availability for reads while optimizing construction of the IQS’s write quorums to provide modest

overhead and high availability for writes. In particular,OQSnodes cache data from theIQS servers using a

quorum-based generalization of Yin et al.’s volume lease protocol [30], which invalidates individual cached

objects as they are updated. The protocol uses short-duration volume leases to allow writes to complete despite

network partitions and aggregates these leases across large numbers of objects in a volume to amortize the cost

of renewing short leases. Using our dual-quorum protocol, workloads with large numbers of repeated reads (or

writes) perform well because reads (or writes) can often be supplied by a read-optimizedOQSread quorum (or

write-optimizedIQSwrite quorum) without requiring communication with theIQS(or OQS).

Through both analytical and experimental evaluations, we compare the availability, response time, commu-

nication overhead, and consistency guarantees of the dual-quorum protocol against other popular replication

protocols: the synchronous and asynchronous Read-One/Write-All (ROWA) protocol family,1 majority quo-

rums, and grid quorums [7]. For the important special case ofsingle-nodeOQSread quorums, average read

response time can approach a node’s local read time, making the read performance of this approach competitive

with ROWA-A epidemic algorithms such as Bayou [26]. But, thedual quorum approach avoids suffering the

weak consistency guarantees and resulting complexity inherent in ROWA-A designs. Additionally, the analyt-

ical evaluations show that the overall availability of the dual-quorum protocol is competitive with the majority

quorum protocol for the targeted workloads. Finally, for the targeted workloads, the communication overheads

of this approach are comparable with existing approaches. However, in the worst-case scenario in which the

workload consists of only interleaved reads and writes, thedual-quorum protocol requires significantly more

message exchanges than traditional quorum protocols to coordinate internal nodes.

The main contribution of this paper is to introduce the dual-quorum algorithm, a novel data replication

algorithm targeted to a key workload for Internet edge service environments. Note that although our work is

motivated by a specific replication scenario, we speculate that it will be more generally useful. In particular, we

believe that it may not be uncommon for systems that can, in principle, have any node read or write any item of

data to, in practice, experience sufficient locality to benefit from our approach.

Our paper is organized as follows. Section 2 presents our system model and a set of assumptions on which

1Note that ROWA protocols are, in fact, a special case of quorum protocols, but they are often treated separately in the literature.

3

our system is built. In Section 3, we present our system’s design. We compare our system with existing ones in

Section 4 with both analytical and experimental evaluations. In Section 5, we discuss related work. Concluding

remarks are presented in Section 6.

2 System Model and Definitions

Our edge service environment consists of a collection of edge server nodes that each play one or more of the

following three roles: (a)front endnodes that handleservice clientrequests from across the Internet, execute

application-specific processing, and act asedge server clientsor justclientsto the dual-quorum storage system;

(b) Output Quorum System(OQS) nodes that process client read requests; and (c)Input Quorum System(IQS)

nodes that process client write requests. We assume arequest redirection architecturethat directs clients to a

good (e.g., nearby, lightly loaded, or available) front endedge server; a number of suitable redirection systems

are discussed in the literature [15, 31]. Note that clients are unaware of the underlying data storage system and

never contact theOQSor IQS interfaces directly.

In an edge service environment, servers typically process sensitive or valuable information, so they must

run on trusted machines such as dedicated servers in a hosting center. We therefore assume a fail-stop model

in which servers may crash but cannot issue incorrect requests or replies. The network may delay, duplicate, or

reorder messages. We assume secure communication among nodes and that if the network corrupts a message,

this corruption is detected by low-level checksums and the message is silently discarded. Each node can read a

local real-time clock and that there exists a maximum drift ratemaxDriftbetween any pair of clocks.

For performance, our system assumes that concurrent reads and writes to a given object by different nodes

are rare. But, for correctness, we must define the system’s consistency semantics in the presence of concurrent

reads and writes to the same object. The dual quorum design providesregular semantics [16]: a readr that is

not concurrent with any write returns the value of the latestwrite that completed beforer began and a readr

that is concurrent with one or more writes returns one of (a) the value of the last write that completed beforer

began, or (b) the value of one of the writes concurrent withr.

For convenience of exposition, we describe interactions with a quorum system in terms of a QRPC oper-

ation [18]. replies = QRPC(system,READ/WRITE, request) sendsrequest to a collection of nodes

in the specified quorumsystem (e.g., theIQS or OQS). The QRPC call then blocks until a set ofreplies

constituting the specified quorum (READ or WRITE) on the specifiedsystem have been gathered. The

call then returns the set ofreplies that it received. The QRPC operator abstracts away details of selecting

a quorum, retransmissions, and timeouts. In particular, different implementations may choose different ways

4

Quorum
Inval

WQ

RQ

OQS IQS

WQ

RQ

Client Reads

Client Writes

RQ

RQ

Client Reads

Client Reads WQ

Client Writes

WQ

server

Figure 2:Dual quorum architecture overview. Client reads and writescome from edge-server clients of the dual-quorum
system not from untrusted services clients.

to select which nodes fromsystem to send requests to, and they may select different retransmission strate-

gies: our simple implementation always transmits requeststo the local node if the local node is a member of

system; it then randomly selects a sufficient number of additional nodes to form aREAD or WRITE quo-

rum and transmits the request to them; retransmissions are each to a new randomly selected quorum using an

exponentially-increasing retransmission interval. A more aggressive implementation might send to all nodes in

system and return when the fastest quorum has responded or might track which nodes have responded quickly

in the past and first try sending to them.

3 Dual Quorum Protocol Design

This section describes the design of the dual-quorum replication system and the key ideas for achieving our

design goals. The basic idea is to separate the read and writequorum into two quorum systems so that they

can be optimized individually to improve response time and availability for read-dominated or write-dominated

workloads. The read and write quorums of theOQSandIQScan be separately configured in any way desired,

but we would expect one common configuration to be to optimizeread performance by having theOQSspan

all nodes in the system with a read quorum size of 1 and to get good write availability by having theIQSspan a

modest number of nodes with any majority of theIQSnodes forming a write quorum. As Figure 2 illustrates, in

the dual quorum system clients retrieve objects fromIQS and send object updates toOQS. The two quorum

systems conditionally synchronize with each other to maintain the consistency of data replicated on them when

processing both reads and writes.

To simplify the discussion, we present the protocol in two steps. First, we will discuss the basic dual-quorum

protocol, a simplified asynchronous protocol, in Section 3.1. This protocol allows separate optimizations of read

and write quorums, but because it assumes an asynchronous system model, a write can block for an arbitrarily

5

long period of time. Then, in Section 3.2 we describe how we introduce volume leases to improve write

availability while retaining good read performance.

3.1 Dual quorum protocol

In this section, we present the basic dual-quorum protocol by first explaining the behavior of quorums in both

IQS andOQS; then we explain how each node acts in response to events in order to achieve the required

quorum-level behavior even in the face of concurrent reads and writes.

OQS servers hold cached copies of objects that are stored onIQS servers. A cached object has two states,

valid or invalid. When the read quorum contains a valid object, a read can be processed locally. Otherwise,

the read quorum inOQS must read the object from a read quorum inIQS. To process a write, a write quorum

in IQS must ensure that no read quorum inOQS holds a valid old copy of the object. To this end, the write

quorum inIQS sends invalidations to and receives acknowledgments from awrite quorum inOQS.

The key idea is that the OQS alone can often handle reads and the IQS alone can often handle writes. If

the workload consists of consecutive reads on an object withno intervening writes, all subsequent reads to

the same read quorum inOQS can be processed locally. Similarly, a write quorum inIQS does not need to

send invalidations toOQS as long as no read quorum inOQS holds a valid old copy of the object. When the

workload consists of consecutive writes to the same object,all subsequent writes to the same write quorum in

IQS can suppress their invalidations toOQS.

In the remainder of this subsection, we detail our protocol by describing the actions taken by individual

nodes that ensure read and write quorums behaviors as described above.

Data structures. Each IQS node maintains the following state for each objecto: lastWriteLCo stores the

logical clock of the last write too, lastReadLCo stores the value oflastWriteLCo from the time of the last

read ofo, lastAckLCo,n stores the logical clock contained in the highest invalidation reply from noden for

o, andvalueo stores the value ofo. Each node in IQS maintains a logical clocklogicalClock whose value

is always at least as large as the node’s largestlastWriteLCo for any objecto. Each node in OQS maintains

the following per-objecto per-noden state: epocho,n indicates the last epoch for which a valid object lease

on o from n was held,logicalClocko,n indicates the highest version number (logical clock) ofo for which

an invalidation or update has been received fromn, andvalido,n is true if logicalClocko,n corresponds to an

update (false if it corresponds to an invalidate). Finallyvalueo stores the update body for the highest logical

clock received in any update message foro from any node.

6

read_msg
cl

ie
nt

R
ea

d(
…

)

pr
oc

es
sR

ea
dR

eq
ue

st
(…

)

pr
oc

es
sR

en
ew

al
(…

)renewal_msg

renewal_reply

read_reply

T
im

e
P

ro
gr

es
si

on

client OQS node IQS node

Conditional

renreal_reply_ack

write_msg

cl
ie

nt
W

rit
e(

…
)

pr
oc

es
sW

ri
te

R
eq

ue
st

(…
)

pr
oc

es
sI

nv
al

(…
)

inval_msg

inval_ack

Write_ack T
im

e
P

ro
gr

es
si

on

clientIQS nodeOQS node

Conditional

read_ts

reply_ts

(a) Message passing in client reads (b) Message passing in client writes

Figure 3:Message passing in the dual-quorum protocol

Object validity. The system maintains the following key invariant: If nodej in OQS has from nodei

in IQS a valid objecto (j.valido,i) then nodei in IQS knows nodej in OQS has a valid object callback

(i.lastReadLCo > i.lastAckLCo,j).

Client read. Figure 3(a) shows the message exchange caused by a client read. From the client’s point of view,

a dual-quorum read is the same as a standard quorum read [11, 12]. clientsends a read request to theOQS via

QRPC. After receiving replies from a read quorum inOQS, client selects the value with the highest logical

clock

A node j in OQS that receives a client read request first checks whether the object is valid. If so,j

returns the object’s locally-stored logical clock and value. If not, j renews the object by sending object

renewal messages toIQS using QRPC. After receiving repliesR from a read quorum inIQS, j up-

dates its local state (∀i, s.t. i ∈ R: if R.ro,i.lc ≥ logicalClocko,i, then logicalClocko,i := R.ro,i.lc and

valido,i := true). Then,j updatesvalueo with the value in the reply with the highest logical clock andreturn

both the valuevalueo and the highest logical clock to the client. EachIQS server that receives an object

renewal message returns to theOQS servervalueo and lastWriteLCo and then updateslastReadLCo =

max(lastReadLCo, lastWriteLCo.

Client write. Figure 3(b) shows the message exchange caused by a client write. Just like the standard quorum

write protocol [11, 12],client first queriesIQS usingQRPC to retrieve the highest logical clock from a read

quorum inIQS. Next,client advances the logical clock and embeds it in the write requestthat is then sent to

theIQS via QRPC. The write completes afterclient receives acknowledgments from a write quorum inIQS.

An IQS serveri that receives a client request for the highest logical clockof the last completed write

responds with its logical clocklogicalClock. Wheni receives a client write whose logical clock is larger than

7

1 processLCReadRequest (){
2 sendMsg (CLIENTLC READ REPLY , logicalClock) ;
3 }
4
5 p r o c es sW r i t e Re q u es t (O b jec to , Va lue v , Lo g i ca lC l ock lc){
6 i f (lc > lastWriteLCo){
7 valueo := v ;
8 lastWriteLCo := lc ;
9 / / en su r e an OQS w r i t e quorum i s i n v a l i d a t e d

10 whi le (! isOWQInval id (o , lc)){
11 inva l idateOWQ (o , lc) ; / / see t e x t f o r d e s c r i p t i o n s
12 }
13 }
14 sendMsg (CLIENTWRITE ACK , o , lc) ;
15 }
16
17 p r o ces s I n v a l A ck (Ob j ec to , Sender j , Lo g i ca lC l ock lc){
18 / / up d at e t h e l a s t i n v a l ack i n t h e r e co r d f o r t h e sen d e r
19 lastAckLCo,j := MAX(lastAckLCo,j , lc) ;
20 }

20 processVLRenewal (Volumev , Sender j , RequestorT imetv,0){
21 expiresv,j := L + currentT ime ;
22 sendMsg (VOLUMERENEWREPLY , delayedv,j , L , epochv,j , tv,0) ;
23 }
24
25 processVLRenewalAck (Volumev , Sender j , Logica lC lc){
26 / / remove d e l ayed i n v a l s a l r e a d y a p p l i e d a t t h e s en d e r
27 ∀k, s.t. invalk,j ∈ delayedv,j {

28 i f (lc ≥ invalk,j .lc){
29 d e l e t e invalk,j ;
30 }
31 }
32 }
33
34 processObjRenewal (O b j ec to){
35 / / u pd a te t h e l a s t r ead l o g i c a l c l o ck
36 lastReadLCo := lastWriteLCo ;
37 sendMsg (OBJECTRENEW REPLY , valueo , lastWriteLCo) ;
38 }

Figure 4: IQS server operations (pseudocode) - Dual quorum with volume leases

1 processVLRenewReply (Volumev , Sender i , Lease L , Epoch e , DI di ,
Requesto rT imetv,0){

2 expiresv,i := MAX(expiresv,i, tv,0 + L ∗ (1 − maxDrift)) ;
3 epochv,i := MAX(epochv,i, e) ;
4 / / ap p ly d e l ay ed i n v a l s i f e x i s t i n t h e r e p l y
5 ∀k, s.t. invalk,i ∈ di {

6 i f (invalk,i.lc > logicalClockk,i){
7 logicalClockk,i := invalk,i.lc ;
8 validk,i := false ;
9 }

10 }
11 sendMsg (VOLUMERENEWREPLY ACK , v , MAX(di.lc)) ;
12 }
13
14 p r o c e s s I n v a l (O b j ec to , Sender i , Lo g i ca lC l ock lc){
15 / / up d at e t h e l o c a l l o g i c c lo ck and o b j e c t s t a t u s
16 i f (logicalClocko,i < lc){
17 logicalClocko,i := lc ;
18 valido,i := false

19 }
20 sendMsg (INVALACK , l c) ;
21 }

21 pr ocessReadReq ues t (Ob jec to){
22 / / en su r e t h e l o c a l o b j e c t and volume a r e v a l i d
23 w h i l e (! i s L o ca l V a l i d (o)){
24 / / i f not , renew i n v a l i d volume or o b j e c t o r bo th
25 v a l i d a t e L o c a l (o) ;
26 }
27 / / once both l e a s e s a r e v a l i d a t e d , send r e p l y t o c i l e n t
28 lc := MAX∀i, s.t. valueo,i=true(logicalClocko,i) ;

29 sendMsg (CLIENTREAD REPLY , valueo , lc) ;
30 }
31
32 processRenewReply (O b j ec to , Sender i , Epoch epoch , Log i ca l C lo ck

lc , O b jec t Va l ue value){
33 epocho,i := MAX(epocho,i, epoch) ;
34 i f (logicalClocko,i ≤ lc){
35 logicalClocko,i := lc ;
36 valido,i := true ;
37 }
38 i f (valido,i = true &&

logicClocko,i ≥ MAX∀k, s.t. k∈IQS(logicalClocko,k)){
39 valueo := value ;
40 }
41 }

Figure 5: OQS server operations (pseudocode) - Dual quorum with volume leases

that associated with the last completed write ofo on i (lastWriteLCo), i updateslastWriteLCo andvalueo

with those in the write. Then, to ensure that a write quorum inOQS is unable to read the old version of the

data,i performs one of the following tasks: (a) if noOQS server has renewed since the completion of the

last write, (e.g.∀j, s.t. j ∈ OQS, lastReadLCo < lastAckLCo,j), i suppresses invalidations toOQS; (b)

otherwise,i sends invalidations with the logical clock of the write toOQS usingQRPC. The write completes

after receiving invalidation replies from a write quorum inOQS, at which pointi updateslastAckLCo,j for all

j in theQRPC reply and returns to the client.

An OQS serverj that receives from nodei in IQS an invalidation with a logical clocklco,i compareslco,i

with logicalClocko,i. If the invalidation has the higher logical clock,j updates the local state (logicalClocko,i =

lco,i andvalido,i = false). Finally, j sends an invalidation acknowledgment back toi.

8

3.2 Dual quorum with volume leases

The basic protocol just described allows one to vary read andwrite quorum sizes independently. However, our

application would benefit from using a read quorum size of 1 sothat reads can be serviced locally; any larger

read quorum size introduces a network delay to every read andprovides qualitatively worse read response

time. However, a read quorum size of 1 could lead to unacceptable write availability because it could require

a write to contact all nodes in the OQS to invalidate cached data. We therefore adapt Yin et al.’s volume lease

protocol [30] to support very small read quorums in OQS whileretaining acceptable availability on writes.

We first describe the quorum-level interactions of the Dual Quorum with Volume Lease (DQVL) protocol.

We then detail how each node in IQS and OQS acts in order to affect these quorum-level behaviors.

We group objects into collections of objects called volumes. To process a read, a read quorum in OQS

must hold both a validvolume leaseand a validobject leasefor some read quorum in IQS. A lease represents

permission to access some object that expires at some specified time [13]. When a read quorum already holds

these leases, a read can be processed locally. Otherwise, the read quorum in OQS must acquire volume and/or

object leases from a read quorum in IQS.

To process a write of objecto in volumev, a write quorum in IQS must ensure that no read quorum in OQS

holds the leases necessary to read an old version ofo. It does so by (a) sending invalidations ofo to nodes in

OQS (and receiving acknowledgments from them) or (b) waiting for the volume lease onv to expire at one or

more nodes in OQS and then enqueuing invalidations ofo asdelayed invalidations[30] that must be processed

before the volume lease is renewed.

The key idea to making this approach work well is that volume leases are of short duration while object

leases are of long duration.2 This combination yields good read response time; nodes in OQS can cache objects

locally for a long time, and although they must frequently renew volume leases, this cost is amortized across

many objects in a volume. This combination also yields good write responsiveness and availability: a write can

complete by invalidating nodes caching dataor waiting for a (short) volume lease to expire.

A final implementation detail we take from Yin et al. [30] is tobound the size of the list of delayed invalida-

tions for unreachable nodes usingepochs. Volume lease renewals are marked with an epoch number, and when

this epoch number changes, nodes conservatively assume allobject callbacks have been revoked as described

below.

We now explain details of this protocol by describing the actions each individual node takes in order to

assure that the read and write quorums behave as just described. Pseudo-code for an IQS and OQS node is in

2For simplicity, we will assume infinite-length object leases orcallbacks[14] Generalizing to finite-length object leases is straight-
forward and can help optimize space and network costs [9].

9

Figure 4 and Figure 5. Note that client behavior is as before—use QRPC to issue read and writes to IQS and

OQS, respectively.

Data structures. Each node in IQS maintains a real time clockcurrentT ime (with bounded drift with re-

spect to the other clocks as described in Section 2) and a logical clock logicalClock. Each IQS node also

maintains the following per-volumev, per-OQS-nodej state: expiresv,j which indicates whenv expires at

j, delayedv,j which contains a list of delayed invalidations that must be delivered toj beforev is renewed,

andepochv,j which indicatesj’s current epoch number forv. Finally, each IQS node maintains the following

per-objecto state:lastWriteLCo stores the logical clock of the last write too, lastReadLCo stores the value

of lastWriteLCo from the time of the last read ofo, lastAckLCo,j stores the logical clock contained in the

highest invalidation reply from nodej for o, andvalueo stores the value ofo.

Each node in OQS maintains a bounded-drift real time clockcurrentT ime. In addition, it maintains the

following per-volumev per-IQS-nodei state:epochv,i is the highest epoch number for which a valid volume

lease fromi was held onv andexpiresv,i is the time when the lease onv from i will expire. And, it maintains

the following per-objecto per-IQS-nodei state:epocho,i indicates the last epoch for which a valid object lease

on o from i was held,logicalClocko,i indicates the highest version number (logical clock) ofo for which an

invalidation or update has been received fromi, andvalido,i is true if logicalClocko,i corresponds to an update

(false if it corresponds to an invalidate). Finallyvalueo stores the update body for the highest logical clock

received in any update message foro from any node.

Volume and object validity. The system maintains the following key invariant: If nodej in OQS has from

nodei in IQS both a valid volumev (expiresv,i > currentT ime) and a valid objecto (epochv,i = epocho,i

&& valido,i) then nodei in IQS knows nodej in OQS has a valid volume lease (expiresv,j > currentT ime)

and valid object callback (lastReadLCo > lastAckLCo,j).

Client read. As detailed byprocessReadRequestin the pseudo-code, in A nodej in OQS processes a client

read of objecto as follows.j must ensure ConditionC: there exists a read quorumirq in IQS such thatj holds

both a valid volume lease and valid object lease fromirq. If C is already true, thenj can immediately return

the valuevalueo and the associated logical clockMAX∀i, s.t. i∈IQS(logicalClocko,i).

If C is not true, thenj performs a variation on QRPC. QRPC as defined in Section 2 sends and resends a

request to different nodes until it receives a quorum of replies. This variation sendsdifferentrequests to different

nodes and processes replies until conditionC becomes true. In particular, for each target nodei selected,j sends

one of three things: (a) if the volume fromi has expired and the object fromi is invalid, it sends a combined

volume renewal and object read; (b) if just the volume has expired, it sends a volume renewal; or (c) if just the

10

object is invalid, it sends an object read. As detailed in thepseudo-codeprocessVLRenewReply, j processes

replies to volume renewal requests from IQS nodei by applying the delayed invalidations included in the

reply (in the same way as applying normal invalidations as described below) and updatingexpiresv,i as well as

epochv,i. To account for worst-case clock drift,j conservatively setsexpiresv,i = to+L∗(1−maxDrift) where

to is the time thatj sentthe volume lease renewal request,L is the volume lease length granted in the reply, and

maxDrift is as defined in Section 2. Finally,j sendsi a volume lease renewal acknowledgment (whichi uses to

clear its delayed invalidation queue.) As detailed in the pseudo-codeprocessRenewReply, j processes object

renewal replies fromi by updatingepocho,i, logicalClocko,i, andvalido,i; furthermore, ifvalido,i is true and

logicalClocko,i exceeds the logical clock of any othervalid logical clock for this object,j updatesvalueo.

The repeated sends and the processing of replies in this QRPCvariation ensure thatC eventually becomes true,

at which pointj returnsvalueo and the associated logical clock (logicalClocko,imax) as the result of the read.

On the IQS side, nodei in IQS processes volume renewal messages for volumev from nodej as de-

scribed in the pseudo-codeprocessVLRenewal: i sends the delayed invalidationsdelayedv,j and the volume

renewal, containing the epoch numberepochv,n and lease lengthL. i then records the volume expiration

time (expiresv,j = L + currentT ime). Wheni receives a volume lease renewal acknowledgment for vol-

umev and logical clocklc from j, as detailed in the pseudo-codeprocessVLRenewalAck, i clears all de-

layed invalidations with logical clocks up tolc from delayedv,j . As processObjRenewalindicates, wheni

in IQS processes a read of objecto from OQS nodej, it replies withvalueo andlastWriteLCo and updates

lastReadLCo = lastWriteLCo. Note thatlastReadLCo, lastAckLCo,j, and lastWriteLCo allow i in

IQS to track which nodesj in OQS may hold valid object callbacks. Finally, if anIQS serveri wishes to

garbage collect delayed invalidation state forj, i advancesepochv,j and and deletes the delayed invalidations

delayedv,j . Note that ifj receives fromi a volume lease with a new epoch, thenepochv,i 6= epocho,i for all

o. So all previously valid object leases fromi immediately become invalid. Thus, ifj misses some object

invalidations fromi when its volume lease fromi has expired, a volume lease renewal fromi can resynchronize

j’s state by either (a) updatingvalido,i with the missing delayed invalidations or (b) advancingepochv,i by

sending a volume renewal with a new epoch number.

Client write. A client first determines the highest logical clock of any completed write by calling IQS’spro-

cessLCReadRequest. A nodei in IQS responds to such a call for objecto by returning the node’sglobal logical

clock logicalClock. A client then issues the actual write of objecto. As detailed inprocessWriteRequestin

the pseudo-code, if the write’s logical clock exceeds that of the highest write seen so far (lastWriteLCo), node

i stores the write’s logical clock and value.i then ensures that a write quorum in OQS is unable to read the old

11

version of the data by performing a variation on QRPC that “sends” differently to different nodes depending

on whether their volume and object leases are valid. There are three cases fori to consider for nodej, object

o, and volumev: (a) if i knowso is invalid atj (e.g., lastReadLCo < lastAckLCo,j) theni need take no

action for j; (b) otherwise ifo is valid at j but v is invalid at j (e.g.,expiresv,j < currentT ime) then i

enqueues an invalidation indelayedv,j which will be processed atj when it renews its volume; or (c) both

the object and volume are valid (e.g.,lastReadLCo > lastInvalLCo,j) thenj sends an object invalidation

containing the write’s logical clock (lastWriteLCo) to j. In this last case, ifj receives an invalidation fromi

for objecto with logical clocklc, then as the pseudo-code inprocessInvaldescribes,j applies the invalidation:

if the invalidation is the newest information abouto from i (e.g.,lc > logicalClocko,i) then update the logical

clock and validity information ({logicalClocko,i = lc; validi = false}). Finally, if i receives an invalidation-

acknowledgment fromj for logical clocklc, then as the pseudo-code inprocessClientInvalAck describes,i

updateslastAckLCo,j = max(lastAckLCo,j, lc).

Correctness Due to space constraints, we omit the proof of correctness,3 which proves that the system has

regular semantics [16]. In particular, it shows (1) a read ofo that is not concurrent with any writes ofo can

return only the value and logical clock from the completed write of o with the highest logical clock and (2) a

read ofo that is concurrent with one or more writes ofo can return only (a) the value and logical clock from

the completed write ofo with the highest logical clock or (b) the value and logical clock from some concurrent

write of o.

To give intuition for why DQVL providesregular semantics, consider the invariant: If nodej in OQS has

from nodei in IQS both a valid volumev (expiresv,i > currentT ime) and a valid objecto (epochv,i =

epocho,i && valido,i) then nodei in IQS knows nodej in OQS has a valid volume lease (expiresv,j >

currentT ime) and valid object callback (lastReadLCo > lastAckLCo,j). For a read that is not concurrent

with any writes:This invariant is established by havingj renew its volumev and (or) objecto from i. Therefore,

j contains the last completed writevalueo on nodei whenj has both a valid volumev and a valid objecto from

nodei. Furthermore,j will contain the last completed writevalueo on a write quorumiwq in IQS whenj has

both a valid volumev and a valid objecto from a read quorumirq in IQS (becauseorq andowq intersects by at

lease one node). Because a client write is performed on aniwq, valueo held onj is actually the last completed

client write in the system. Becausej can not process any client read unless it holds both a valid volumev and

a valid objecto from a read quorumirq, j guarantees to always return the valuevalueo of the last completed

write in the system.For a read that is concurrent with some writes:Assume that the last completed write has

logical clocklc0 and a readr that is concurrent with some writes with logical clocklc1...lcn (lct > lc0) is sent

3The detailed proof is presented in the extended technical report available at www.cs.utexas.edu/users/lgao/papers/dualQuorumTR.pdf.

12

to anorq. If the invariant is established in theorq, r returns the value associated withlc0. Otherwise, theorq

will try to establish the invariant by querying anirq. Because some writes are being processed inIQS, theirq

may return to theorq the value associated with any of the logical clocko.lc0...o.lcn. Meanwhile, someiwq

may send invalidations with logical clockinval.lc0...inval.lcn to theorq as the result of the concurrent writes.

When the maximum logical clock received in the renew repliesis less than that of any invalidations on any

serverj of theorq, this server keeps renewing from someirq. As long as those concurrent writes terminate,j

will eventually receiveo.lcn (the highest logical clock among all concurrent writes) from someirq. Therefore,

r may return the value associated with any of the logical clocklc0...lcn.

4 Evaluation

Through both analytical and experimental evaluations, we compare the availability, performance, and com-

munication overhead of DQVL against other popular replication protocols. We show that DQVL yields the

read’s performance competitive with ROWA-A epidemic algorithms and overall availability competitive with

the majority quorum protocol.

4.1 Analytical models

To help understand our analytical models, we first introducesome notation. For a read to complete in DQVL,

a read quorum inOQSmust be available and must hold a volume lease; additionally, if a volume lease must

be acquired, a read quorum inIQSmust also be available. When the volume lease is already held, we have a

read hit. When a lease renewal is required, we have aread miss. Similarly, for a write to complete in DQVL, a

write quorum inIQSmust be available and a write quorum inOQSmust be invalidated. So when there exists a

write quorum inOQSwith all its servers holding expired volume leases or invalid copies of the object, we have

awrite suppress. When invalidations must be sent to a write quorum ofOQS, we have awrite thru. In all of the

analyses, we configureIQS as a majority quorum system to provide optimal availability[23] for writes and set

the size of read quorum inOQS to one to optimize read performance for edge-server-like workloads. Future

work will examine a broader range of quorum configurations.

Availability Figure 6 (a) and (b) illustrate the unavailability of DQVL incomparison with other protocols in

log scale. The unavailability is computed as1 − availability (av). An unavailability of10−i corresponds to

the availability ofi 9’s. Our simple model assumes the failure probabilityp = 0.01 and that failures (including

server crashes and network failures) are independent.

13

1e-18

1e-16

1e-14

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1

0 0.2 0.4 0.6 0.8 1

U
na

va
ila

bi
lit

y

Write Ratio

ROWA

ROWAA

Grid

Majority
Dual Quorum

ROWA
ROWAA
Majority

Grid
Dual-quorum-worst

1e-16

1e-14

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1

1 2 3 4 5 6 7 8

U
na

va
ila

bi
lit

y

Number of Replicas

ROWA

Grid

Majority

Dual Quorum

ROWAA

(a) System unavailability with respect to the write ratio (b) System unavailability with respect to the number of replicas

Figure 6:System unavailability

The availability of bothread hit andread missaremin(avorq, avirq). The availability of bothwrite thru

and write suppressare min(avirq, aviwq). Therefore, the availability of DQVL isavDQV L = (1 − w) ∗

min(avorq, avirq) + w ∗ min(aviwq, avirq). 4

Figure 6 (a) illustrates the systems’ unavailability as we vary the write ratio and fix the number of replicas

to 15. The key result is that DQVL’s availability tracks thatof the majority quorum. Note that the DQVL’s

availability measurement is pessimistic because a read canproceed without contacting any read quorum in IQS

if the read quorum in OQS holds valid volume and object leases; this effect may mask some failures that are

shorter than the volume lease duration. ROWAA protocol shows the best availability which increases with

the number of replicas in the system. But, the cost of ROWAA’shigh availability is that the system has to

manage conflict detection and resolution and it may not be able to provide worst case staleness guarantees

during network partitions.

Figure 6 (b) illustrates systems’ unavailability as we varythe number of replicas and fix the write ratio

at 25%. It shows that the unavailability of DQVL has similar behavior as the majority quorum system and is

lower by a factor which is determined by the write ratio, as shown in (a). ROWAA protocol has the lowest

unavailability which decreases as the number of replicas increases.

Response time In this subsection we analyze the response time of DQVL and make comparisons with other

popular protocols in the context of the edge service environment where every client connects to a closest edge

server via a fast connection, e.g. a LAN-like connection,lan, with 6 ms RTT. All edge servers connect to each

other through an overlay network,overlay, with RTT delays of 80 ms. For a client to connect to servers other

than its closest edge server, it has to go through a WAN-like connection,wan, with 86 ms RTT. Our model

4The detailed analysis is presented in the extended technical report available at www.cs.utexas.edu/users/lgao/papers/dualQuorumTR.pdf.

14

0

20

40

60

80

100

120

140

160

180

0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 R
es

po
ns

e
T

im
e(

m
s)

Write Ratio

Dual-Quorum-Worst
Grid & Majority

Dual-Quorum-Best
ROWA

ROWAA

Figure 7:Average response time

calculates the average response time asrespr ∗ (1 − w) + respw ∗ w. Because of space constraints, we omit

the detailed derivation ofrespr andrespw for DQVL.4

Average response times of various protocols are illustrated in Figure 7 where we plot the average response

times while varying the write ratio and fix the number of replicas to 15. DQVL provides the best case response

time when workloads consist of onlyread hitsandwrite suppresses. As indicated by the third curve from

the bottom, DQVLread hitsyield performance competitive with ROWA-A epidemic algorithms against read-

dominated workloads because they only need to communicate with the closest server. DQVL has the worst

case response time against workloads consisting of a large number ofread missesandwrite thrus. DQVL read

missesandwrite thrusrequire communication with distant servers similar to the behaviors of both majority and

grid quorum operations. Therefore, they all experience thewandelays. Furthermore, because writes in quorum

systems (including DQVL) require onewan trip to retrieve the highest timestamp and another to perform the

actual write, their response time is twice as much as that of ROWAA. write thrus require an additionalwan

trip to invalidate a write quorum inOQS. At 50% write ratio, when DQVL has the maximum amount ofwrite

thrus, the overall response time of DQVL reaches its worst case as indicated by the top most curve.

Communication overhead This section analyzes DQVL’s communication overhead in terms of the number

of message exchanges required in processing a client request. To simplify the model, the study assumes weights

of all message types are equal. Due to space constraints, we omit the detailed discussion on the communication

overhead model for DQVL.4

Figure 8 shows the average number of messages required to process a client request in log scale as we vary

the write ratio and fix the number of replicas at 15 in (a) and vary the number of replicas and fix the write ratio

at 25% in (b).

In the worst case, DQVL can have high communication overheadas illustrated by the top most curve in

15

1

10

100

1000

0 0.2 0.4 0.6 0.8 1A
ve

ra
ge

 N
um

be
r

of
 M

es
sa

ge
 E

xc
ha

ng
es

 p
er

 R
eq

ue
st

Write Ratio

Dual-Quorum-Worst

Majority
Dual-Quorum-Best

ROWA

Grid

1

10

100

1000

5 10 15 20 25 30 35 40 45 50A
ve

ra
ge

 N
um

be
r

of
 M

es
sa

ge
 E

xc
ha

ng
es

 p
er

 R
eq

ue
st

Number of Replicas

Dual-Quorum-Worst

Majority

Grid

Dual-Quorum-Best
ROWA

Dual-Quorum-Worst (|IQS|=5)

(a) varying write ratio (b) varying the number of replicas

Figure 8:Communication overhead

(a). Because in the worst case, most reads areread missesand most writes arewrite thrus. Such situations

occur when the workload consists of interleaved reads and writes on the same object. A read following a write

always requiresOQS to renew from a read quorum inIQS and a write following a read always requiresIQS

to invalidate a write quorum inOQS. When the write ratio is at 50% in this case, every read interleaves with a

write and DQVL yields the worst communication overhead.

However, DQVL’s overhead should be comparable to other approaches in practice. First, workloads that

DQVL is designed to face are dominated by reads. Consecutivereads are likely to benefit from having objects

cached on OQS servers, i.e. the target workloads have a largenumber ofread hits. As indicated by the second

curve from bottom in (b), DQVL’s overhead is close to ROWA when there is a large number ofread hits.

Second, the design of DQVL allows us to vary the OQS size to meet read performance goals while varying the

IQS size to balance overhead vs. availability goals. The second curve from the top in (b) shows that once we

fix IQS at a moderate size (5 in this case) while letting the OQSsize grow, the communication overhead yield

by DQVL is at the same level as the majority quorum without requiring manyread hitsin the workload.

4.2 Experimental evaluation

We have developed replication prototypes for DQVL, majority quorum, and ROWA protocols. All the proto-

types are built in Java and run on eight Emulab nodes. In our prototype experiment, we set the “lan” delay

between a client and its closest edge server to 8 ms. The “wan”delay between the client and other edge servers

is 86 ms. And the network delay among edge servers is 80 ms.

Through our prototype experiment, we demonstrate that the dual-quorum protocol is highly suitable for

managing replicated data with the workload characteristics of the TPC-W5 profile object, i.e. a workload

5TPC-W is a transaction processing benchmark for the web [8].

16

0

50

100

150

200

250

0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 R
es

po
ns

e
T

im
e(

m
s)

Write Ratio

Majority

Dual-Quorum

ROWA

0

20

40

60

80

100

120

140

160

180

0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 R
es

po
ns

e
T

im
e(

m
s)

Local Access Rate

Dual-Quorum

Majority

ROWA

Dual-quorum
Majority
ROWA

0

20

40

60

80

100

120

140

160

180

0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 R
es

po
ns

e
T

im
e(

m
s)

Local Access Rate

Dual-Quorum

Majority

ROWA

Dual-quorum
Majority
ROWA

(a) Average response time vs. write ratio (b) Average response time vs. local access rate

Figure 9:Experimental results - average response time

with a low update rate and strong access locality. Accesses to the profile object consist of 95% reads on a

customer’s purchase history, credit information, and addresses and 5% writes on a customer’s shipping address

when processing an online purchase. When the profile is replicated on edge servers, a customer is routed to the

closest edge server to access its profile information.

Write ratio The dual-quorum protocol provides excellent performance for workloads with low write ratios.

Figure 9 (a) illustrates the average response time of the dual-quorum system with eight replicas. Similar to our

analytical result, the response time of the dual-quorum system is competitive with that of the ROWA protocol

family when the write ratio is below 20%. Furthermore, at 5% write rate, the write rate of the TPC-W profile

object, the average response time of the dual-quorum protocol is 41 ms,6 which is about twice as much as

that of the ROWA and one sixth of that of the majority quorum system. The low response times of both the

dual-quorum and ROWA are due to the fact that reads are performed only on the closest edge server which has

8 ms network delay.

Access locality In this experiment, we fix the write ratio to 5% as specified forthe TPC-W profile object and

the total number of replicas to eight. The system has 10 volumes and 10 objects under each volume. The client

has a 95% probability of accessing the objects in the same volume and a 5% chance of accessing objects in

other volumes. Under normal circumstances, a client alwaysgets connected to the same closest server. But the

unavailability of the closest server or the geographical movement of the client can sometimes result in a client

being routed to other edge servers. The response time for those reads will be higher than the normal response

time experienced when reading from the closest server because the probability of a read hit is lower.

Figure 9 (b) illustrate the average response time of DQVL as we vary the percentage of client requests sent

6Response times of all prototypes are higher than the underlying network delays due to experimental errors and un-tuned code.

17

to its closest edge server. When the access locality is low, reads sent to DQVL are often routed to distant servers

resulting in high response time. As the access locality increases, reads are more likely to land on the client’s

closest server where target objects are usually valid so performance is good. The majority quorum system is

not affected by the access locality since clients always send their requests to a quorum of servers.

5 Related Work

In read-one/write-all (ROWA) protocol the “read-one” property yields excellent read availability and response

time. But this protocol has limited write availability and response time because writes can not complete if any of

the replicas are unavailable. Protocols with the read-one/write-all-asynch property (ROWA-A) [20, 24, 25] yield

better write availability and response time by allowing writes to be propagated to other replicas asynchronously.

But they are only suitable for weakly consistent replication because they can not guarantee that reads will

always return the data modified by the latest completed write. A variation of ROWA-A [4] performs writes

synchronously on the available replicas to provide better consistency, but its write latency is worse.

The primary-backup (or primary-copy) model [2] can tolerate network partitions by only allowing the par-

tition with the primary server to perform writes. However the primary server becomes the bottleneck when it

can not meet required levels of availability and performance. Group-communication based techniques, such

as extended virtual synchrony [19], enable the election of anew primary by actively propagating updates to

all group members and constantly running membership protocols to maintain the correct memberships. The

new primary can be selected from active members and the change of the primary is also broadcast to all active

members as well. This class of techniques has degraded performance in WANs because the membership proto-

col may always need to run to constantly include/exclude certain replicas when they are mistakenly considered

as crashed/recovered due to slow WAN links. In addition, allprimary-server based protocols are inflexibly in

favor of reads’ availability and performance.

Quorum based protocols [11, 12, 22, 27] can tolerate networkpartitions as long as connected replicas can

form a quorum to process reads/writes. However, the reads’ response time and availability of most quorum sys-

tems are worse than those of ROWAA or primary-backup based protocols because reads usually need to query

a larger set of servers. Quorum based protocols may not be desirable to handle a read-dominated workload, e.g.

a workload from interactive online applications.

Some quorum based techniques use light-weight nodes, such as ghosts [28] to help form quorums for pro-

cessing requests. When propagating a write, a replica only sends to these nodes the timestamp and object ID of

the write. Our dual-quorum invalidation protocol shares the idea in terms of replacing writes with invalidations

18

when propagating to some replicas. But our use of invalidations also allows us to reduce the future message

propagation to other replicas.

The traditional cache invalidation protocols [13, 30] are primarily used in the client-server model where the

single server hosts the objects and clients keep cached copies. Those protocols assume that an object always has

a home location that can grant leases to cached copies, but this single centralized server may hurt availability.

6 Conclusion

This paper presents dual-quorum replication, a novel data replication algorithm designed to support Internet

edge services. Through both analytical and experimental evaluations, we demonstrate that this replication

protocol offers nearly ideal trade-offs among high availability, good performance, and strong consistency.

Several important issues will be addressed in our future work. It will be interesting to configure both IQS

and OQS to optimize other metrics. For example, we can configure the read quorum size in OQS to be larger

than one to avoid timeouts on invalidations. We can also configure IQS as a grid quorum system [6] to reduce

the overall system load. We are also interested in modifyingDQVL to provide different consistency semantics

(e.g. atomic semantics [16]) and comparing the cost difference.

References
[1] Inc. Akamai Technologies. Akamai-The Business Internet - A Predictable Platform for Profitable E-Business.

http://www.akamai.com/BusinessInternet/whitepaperbusinessinternet.pdf, 2004.

[2] P. Alsberg and J. Day. A Principle for Resilient Sharing of Distributed Resources. Inthe 2nd Intl. Conference on Software
Engineering, 1976.

[3] A. Awadallah and M. Rosenblum. The vMatrix: A Network of Virtual Machine Monitors for Dynamic Content Distribution.In
7th International Workshop on Web Content Caching and Distribution, August 2002.

[4] P Bernstein, V. Hadzilacos, and N. Goodman.Concurrency Control adn Receivery in Database Systems. Addison Wesley, 1987.

[5] E. Brewer. Lessons from giant-scale services. InIEEE Internet Computing, July/August 2001.

[6] S. Cheung, M. Ahamad, and M. Ammar. The grid protocol: a high performance scheme for maintaining replicated data. In
Proceedings of the Sixth International Conference on Data Engineering, pages 438–445, 1990.

[7] S. Cheung, M. Ahamad, and M. H. Ammar. Optimizing Vote andQuorum Assignments for Reading and Writing Replicated Data.
IEEE Transactions on Knowlegde and Data Engineering, 1(3):387–397, September 1989.

[8] Transaction Processing Performance Council. TPC BENCHMARK W. http://www.tpc.org/tpcw/spec/-tpcwV1.8.pdf, 2002.

[9] V. Duvvuri, P. Shenoy, and R. Tewari. Adaptive Lease: A Strong Consistency Mechanism for the World Wide Web. InProceedings
of IEEE Infocom, March 2000.

[10] L. Gao, M. Dahlin, A. Nayate, J. Zheng, and A. Iyengar. Improving Availability and Performance with Application-Specific Data
Replication.IEEE Transactions on Knowledge and Data Engineering, March 2005.

[11] H. Garcia-Molina and D. Barbara. How to Assign Votes in aDistributed System. InJournal of the ACM 32 (4), 1985.

[12] D. Gifford. Weighted voting for replicated data. InProceedings of the Seventh ACM Symposium on Operating Systems Principles,
December 1979.

[13] C. Gray and D. Cheriton. Leases: An Efficient Fault-Tolerant Mechanism for Distributed File Cache Consistency. InProceedings
of the Twelfth ACM Symposium on Operating Systems Principles, pages 202–210, 1989.

19

[14] J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satyanarayanan, R. Sidebotham, and M. West. Scale and Performance in a
Distributed File System.ACM Transactions on Computer Systems, 6(1):51–81, February 1988.

[15] D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin, and R. Panigrahy. Consistent Hashing and Random Trees: Distributed
Caching Protocols for Relieving Hot Spots on the World Wide Web. InProceedings of the Twenty-ninth ACM Symposium on
Theory of Computing, 1997.

[16] L. Lamport. On interprocess communications.Distributed Computing, pages 77–101, 1986.

[17] R. Lipton and J. Sandberg. PRAM: A Scalable Shared Memory. Technical Report CS-TR-180-88, Princeton, 1988.

[18] D. Malkhi and M. Reiter. An Architecture for SurvivableCoordination in Large Distributed Systems.IEEE Transactions on
Knowledge and Data Engineering, pages 187–202, March 2000.

[19] D. Malki, K. Birman, A. Schiper, and A. Ricciardi. Uniform Actions in Asynchronous Distributed Systems. InACM SIGOPS-
SIGACT, August 1994.

[20] A. Muthitacharoen, R. Morris, T. Gil, and B. Chen. Ivy: Aread/write peer-to-peer file system. InProceedings of the Fifth
Symposium on Operating Systems Design and Implementation, December 2002.

[21] A. Nayate, M. Dahlin, and A. Iyengar. Transparent Information Dissemination. InACM/IFIP/USENIX 5th International Middle-
ware Conference, October 2004.

[22] J. Paris and D. Long. Efficient Dynamic Voting Algorithms. In Int’l Conference on Data Engineering, 1988.

[23] D. Peleg and A.Wool. The Availability of Quorum Systems. In Information and Computation, pages 210–223, 1995.

[24] K. Petersen, M. Spreitzer, D. Terry, M. Theimer, and A. Demers. Flexible Update Propagation for Weakly Consistent Replication.
In Proceedings of the Sixteenth ACM Symposium on Operating Systems Principles, October 1997.

[25] Y. Saito, C. Karamanolis, M. Karlsson, and M. Mahalingam. Taming aggressive replication in the pangaea wide-area file system.
In Proceedings of the Fifth Symposium on Operating Systems Design and Implementation, December 2002.

[26] D. Terry, M. Theimer, K. Petersen, A. Demers, M. Spreitzer, and C. Hauser. Managing Update Conflicts in Bayou, a Weakly
Connected Replicated Storage System. InProceedings of the Fifteenth ACMSymposium on Operating Systems Principles, pages
172–183, December 1995.

[27] R. Thomas. A Majority Consensus Approach to Concurrency Control for Multiple Copy Database. InACM Transactions on
Database Systems, pages 180–209, June 1979.

[28] R. van Renesse and A. Tanenbaum. Voting with Ghosts. InProceedings of the Eighth International Conference on Distributed
Computing Systems, pages 456–462, 1988.

[29] A. Whitaker, M. Shaw, and S. Gribble. Scale and Performance in the Denali Isolation Kernel. InOSDI02, December 2002.

[30] J. Yin, L. Alvisi, M. Dahlin, and C. Lin. Volume Leases toSupport Consistency in Large-Scale Systems.IEEE Transactions on
Knowledge and Data Engineering, February 1999.

[31] C. Yoshikawa, B. Chun, P. Eastham, A. Vahdat, T. Anderson, and D. Culler. Using Smart Clients to Build Scalable Services. In
Proceedings of the 1997 USENIX Technical Conference, January 1997.

[32] H. Yu and A. Vahdat. Design and evaluation of a conit-based continuous consistency model for replicated services.ACM
Transactions on Computer Systems, pages 239–282, August 2002.

20

