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Abstract

This paper introduces dual-quorum replication, a noved daplication algorithm designed to support Internet
edge services. Dual-quorum replication combines volurasde and quorum based techniques in order to
achieve excellent availability, response time, and comiscy for read/write objects when the references to each
object (a) tend not to exhibit high concurrency across migtnodes and (b) tend to exhibit bursts of read-
dominated or write-dominated behavior. Through both ai@land experimental evaluation of a prototype,
we show that the dual-quorum protocol can (for the worklozfdaterest) approach the excellent performance
and availability of Read-One/Write-All-AsynchronousRQWA-A) epidemic algorithms without suffering the

weak consistency guarantees and resulting design corhpiekierent in ROWA-A systems.

1 Introduction

This paper introduces dual-quorum replication, a noveh daplication algorithm motivated by the desire to
support data replication for edge services [1, 3, 10, 29]Fisire 1 illustrates, the Internet edge service model
attempts to improve service availability and latency bywihg clients to access the closest available edge
servers rather than a centralized server (or a centraleegiscluster). But as Figure 1 also indicates, in order
to provide a single service from multiple locations, seeviogic (code) replicated on all edge servers must
access a collection of shared data. Thus, support for daliaation is a key problem in realizing the promise
of Internet edge services.

By exploiting object-specific workload characteristicg seek to design a data replication system for edge
services that offers good trade-offs among availabilibnsistency, and response time. Although it is prov-
ably impossible to provide simultaneously optimal corsisly, optimal availability, and optimal performance
for general-casavide-area-network replication [5, 17], we can, perhapseyigle nearly optimal behavior for
specific objectdy taking advantage of a given application’s workload cbindstics. For example, our previ-

ous studies show how to provide nearly optimal replicatmmirfformation disseminatioapplications such as
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news [21] ance-commercapplications such as TPC-W [10]. In particular, we devetbpastomized consis-
tency protocols for three categories of objects: (1) sivgliger, multi-reader objects like product descriptions
and prices; (2) multi-writer, single-reader objects lilstd of orders; and (3) commutative-write, approximate-
read objects like the current inventory count of each praduc

However, a key limitation of our previous efforts to suppedge services was our decision to use weak
consistency—and thereby introduce considerable contglextor a fourth category of objects: multi-writer,
multi-reader objects such as per-custoprefile information (e.g., name, account number, recent ordeesljtcr
card number, and address.) We, like several other systefn2§2 32], made use of a Read-One, Write-All-
Asynchronously (ROWA-A) protocol based on local reads asyhahronous epidemic propagation of writes.
ROWA-A protocols provide excellent read performance andilability; and although ROWA-A protocols
allow applications to observe inconsistencies betweedsraad writes, such inconsistencies should be rare
because multi-reader, multi-writer shared objects oftamehworkloads with low concurrency to any given
object. For example, in our edge-server TPC-W applicatieads and writes to a given customer’s profile
typically come from just one edge server for some intervaino€, until the customer is redirected to a different
server. Unfortunately, although inconsistencies arefarthe workloads of interest, these rare cases introduce
considerable complexity into the design, because all casest be handled no matter how rare they are and
because reasoning about corner cases in consistency @sotecomplex. Furthermore, because reads can
always complete locally, these protocols provide no woeste bound on staleness, i.e., it is possible for a read
to return stale data arbitrarily long after a write, whiclm ¢ unacceptable for some applications.

By introducing dual-quorum replication, this paper pr@sdihe key missing piece to achieve highly-
available, low-latency, and consistent data replicatmref range of edge services. In particular, dual-quorum
replication optimizes these properties for data elemdratisdan be both read and written from many locations,
but whose reads and writes exhibit locality in two dimensiafl) at any given time access to a given element
tends to come from a single node and (2) reads tend to be fedldoy other reads and writes tend to be followed
by other writes. For other workloads, our algorithm congéisio provide regular consistency semantics [16],

but its performance and availability may degrade.



Our dual-quorum replication protocol combines ideas frastume leases [30] and quorum based tech-
niques [11, 12]. The protocol employs two quorum systemsnpat quorum systemiQS) and an output
quorum system@Q9. Clients send their writes to th€S and they read from th®QS The two quorum
systems communicate with each other when necessary toreyrioh the state of replicated objects. By using
two quorum systems, we are able to optimize constructioh@®QSs read quorums to provide low latency
and high availability for reads while optimizing constiioct of the IQSs write quorums to provide modest
overhead and high availability for writes. In particul@QSnodes cache data from th@S servers using a
guorum-based generalization of Yin et al.'s volume leas#qgmol [30], which invalidates individual cached
objects as they are updated. The protocol uses short-dnrailume leases to allow writes to complete despite
network partitions and aggregates these leases acrosslangpers of objects in a volume to amortize the cost
of renewing short leases. Using our dual-quorum protocotki@ads with large numbers of repeated reads (or
writes) perform well because reads (or writes) can ofteruippléed by a read-optimizedQSread quorum (or
write-optimizedlQS write quorum) without requiring communication with th@S (or 0QS.

Through both analytical and experimental evaluations, evefare the availability, response time, commu-
nication overhead, and consistency guarantees of theqiigaitm protocol against other popular replication
protocols: the synchronous and asynchronous Read-OrteMAti(ROWA) protocol family! majority quo-
rums, and grid quorums [7]. For the important special cassargfle-nodeOQSread quorums, average read
response time can approach a node’s local read time, mdiengad performance of this approach competitive
with ROWA-A epidemic algorithms such as Bayou [26]. But, theal quorum approach avoids suffering the
weak consistency guarantees and resulting complexityémtbén ROWA-A designs. Additionally, the analyt-
ical evaluations show that the overall availability of thealquorum protocol is competitive with the majority
quorum protocol for the targeted workloads. Finally, fag thrgeted workloads, the communication overheads
of this approach are comparable with existing approachesveMer, in the worst-case scenario in which the
workload consists of only interleaved reads and writes diled-quorum protocol requires significantly more
message exchanges than traditional quorum protocols tdicade internal nodes.

The main contribution of this paper is to introduce the dwabdrum algorithm, a novel data replication
algorithm targeted to a key workload for Internet edge seré@nvironments. Note that although our work is
motivated by a specific replication scenario, we speculeeit will be more generally useful. In particular, we
believe that it may not be uncommon for systems that can,mntipte, have any node read or write any item of
data to, in practice, experience sufficient locality to Bifieom our approach.

Our paper is organized as follows. Section 2 presents otersysodel and a set of assumptions on which

"Note that ROWA protocols are, in fact, a special case of qugstotocols, but they are often treated separately in thealitire.



our system is built. In Section 3, we present our system’gde¥Ve compare our system with existing ones in
Section 4 with both analytical and experimental evaluatidon Section 5, we discuss related work. Concluding

remarks are presented in Section 6.

2 System Model and Definitions

Our edge service environment consists of a collection otestgver nodes that each play one or more of the
following three roles: (ajront endnodes that handlservice clientrequests from across the Internet, execute
application-specific processing, and acedge server clientsr justclientsto the dual-quorum storage system,;
(b) Output Quorum Systef®Q9 nodes that process client read requests; anbhfe)t Quorum SysteifiQS)
nodes that process client write requests. We assuragueest redirection architecturdnat directs clients to a
good (e.g., nearby, lightly loaded, or available) front edge server; a number of suitable redirection systems
are discussed in the literature [15, 31]. Note that clierdsumaware of the underlying data storage system and
never contact th®@QSor IQSinterfaces directly.

In an edge service environment, servers typically processitve or valuable information, so they must
run on trusted machines such as dedicated servers in adnostiner. We therefore assume a fail-stop model
in which servers may crash but cannot issue incorrect régjoeseplies. The network may delay, duplicate, or
reorder messages. We assume secure communication amagjaratithat if the network corrupts a message,
this corruption is detected by low-level checksums and teesage is silently discarded. Each node can read a
local real-time clock and that there exists a maximum daifemaxDrift between any pair of clocks.

For performance, our system assumes that concurrent raddgraes to a given object by different nodes
are rare. But, for correctness, we must define the system&siency semantics in the presence of concurrent
reads and writes to the same object. The dual quorum desigidpsregular semantics [16]: a readthat is
not concurrent with any write returns the value of the lateste that completed before began and a read
that is concurrent with one or more writes returns one ofi{@Malue of the last write that completed befere
began, or (b) the value of one of the writes concurrent with

For convenience of exposition, we describe interactiorth wiquorum system in terms of a QRPC oper-
ation [18]. replies = QRPC(system, READ /W RITE, request) sendsrequest to a collection of nodes
in the specified quorumystem (e.g., thelQS or OQS). The QRPC call then blocks until a set afplies
constituting the specified quorunRf£AD or W RITFE) on the specifiedystem have been gathered. The
call then returns the set akpliecs that it received. The QRPC operator abstracts away detadglecting

a quorum, retransmissions, and timeouts. In particulfierdnt implementations may choose different ways
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Figure 2:Dual guorum architecture overview. Client reads and wiitese from edge-server clients of the dual-quorum
system not from untrusted services clients.

to select which nodes fromystem to send requests to, and they may select different retrasgmni strate-
gies: our simple implementation always transmits requestise local node if the local node is a member of
system; it then randomly selects a sufficient number of additiorades to form aREAD or W RITE quo-
rum and transmits the request to them; retransmissionsaafete a new randomly selected quorum using an
exponentially-increasing retransmission interval. A enaggressive implementation might send to all nodes in
system and return when the fastest quorum has responded or migktiisich nodes have responded quickly

in the past and first try sending to them.

3 Dual Quorum Protocol Design

This section describes the design of the dual-quorum m&jdic system and the key ideas for achieving our
design goals. The basic idea is to separate the read andguoteim into two quorum systems so that they
can be optimized individually to improve response time aradlability for read-dominated or write-dominated
workloads. The read and write quorums of @®SandIQS can be separately configured in any way desired,
but we would expect one common configuration to be to optimgzal performance by having ti@QSspan
all nodes in the system with a read quorum size of 1 and to get goite availability by having th&€QSspan a
modest number of nodes with any majority of S nodes forming a write quorum. As Figure 2 illustrates, in
the dual quorum system clients retrieve objects fiapc and send object updates@)S. The two quorum
systems conditionally synchronize with each other to nadtirthe consistency of data replicated on them when
processing both reads and writes.

To simplify the discussion, we present the protocol in tvepst First, we will discuss the basic dual-quorum
protocol, a simplified asynchronous protocol, in Sectidn Zhis protocol allows separate optimizations of read

and write quorums, but because it assumes an asynchrongtesnsynodel, a write can block for an arbitrarily
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long period of time. Then, in Section 3.2 we describe how weotuce volume leases to improve write

availability while retaining good read performance.

3.1 Dual quorum protocol

In this section, we present the basic dual-quorum protogdirst explaining the behavior of quorums in both
1QS and OQS; then we explain how each node acts in response to eventslan tw achieve the required
guorum-level behavior even in the face of concurrent readsmaites.

0Q S servers hold cached copies of objects that are stordd)shservers. A cached object has two states,
valid or invalid. When the read quorum contains a valid object, a read candeegsed locally. Otherwise,
the read quorum IWQ.S must read the object from a read quorunT@S. To process a write, a write quorum
in 1QS must ensure that no read quorumd).S holds a valid old copy of the object. To this end, the write
qguorum in/@QS sends invalidations to and receives acknowledgments framite quorum inOQ.S.

The key idea is that the OQS alone can often handle reads ari@® alone can often handle writes. If
the workload consists of consecutive reads on an object mgtintervening writes, all subsequent reads to
the same read quorum iDQS can be processed locally. Similarly, a write quorunY @S does not need to
send invalidations t® QS as long as no read quorum @2 S holds a valid old copy of the object. When the
workload consists of consecutive writes to the same obgdictubsequent writes to the same write quorum in
1@QS can suppress their invalidations@) S

In the remainder of this subsection, we detail our protogotescribing the actions taken by individual

nodes that ensure read and write quorums behaviors asluktatiove.

Data structures. Each IQS node maintains the following state for each ohjeétstWrite LC, stores the
logical clock of the last write t@, last Read LC,, stores the value diustWrite LC, from the time of the last
read ofo, lastAckLC, , stores the logical clock contained in the highest invaiafateply from noden for

o, andwalue, stores the value af. Each node in IQS maintains a logical cloklgicalClock whose value

is always at least as large as the node’s largestV rite LC, for any objecto. Each node in OQS maintains
the following per-objecb per-noden state: epoch, ,, indicates the last epoch for which a valid object lease
on o from n was held,logicalClock,,, indicates the highest version number (logical clockpdbr which

an invalidation or update has been received frgrandvalid, , is true if logicalClock, ,, corresponds to an
update (false if it corresponds to an invalidate). Finallyue, stores the update body for the highest logical

clock received in any update messageddmom any node.
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Figure 3:Message passing in the dual-quorum protocol

Object validity. The system maintains the following key invariant: If noglén OQS has from node
in 1QS a valid objecto (j.valid,;) then node: in IQS knows nodej in OQS has a valid object callback
(¢.lastRead LC, > i.lastAckLC, ;).

Clientread. Figure 3(a) shows the message exchange caused by a cliénErean the client’s point of view,
a dual-quorum read is the same as a standard quorum rea?]1tliént sends a read request to hé€) S via
QRPC. After receiving replies from a read quorumdny S, client selects the value with the highest logical
clock

A nodej in OQS that receives a client read request first checks whether lifectois valid. If so,j
returns the object’s locally-stored logical clock and ‘ealulf not, j renews the object by sending object
renewal messages thQS using QRPC. After receiving repliesR from a read quorum @S, j up-
dates its local statev(, s.t.i € R: if R.r,;.lc > logicalClock,;, thenlogicalClock,; = R.r,;.lc and
valid, ; == true). Then,j updatesalue, with the value in the reply with the highest logical clock aetlrn
both the valuevalue, and the highest logical clock to the client. Eab}S server that receives an object
renewal message returns to thé)S servervalue, andlastWrite LC, and then updatekist ReadLC, =

maz(last Read LC,, lastWrite LC,,.

Clientwrite.  Figure 3(b) shows the message exchange caused by a clitst durst like the standard quorum
write protocol [11, 12]clientfirst queries/Q.S using@ RPC to retrieve the highest logical clock from a read
qguorum in/@S. Next,clientadvances the logical clock and embeds it in the write reghesis then sent to
thelQS viaQRPC. The write completes aftelientreceives acknowledgments from a write quorunighs.

An 1QS serveri that receives a client request for the highest logical clotkhe last completed write

responds with its logical clockgicalClock. Wheni receives a client write whose logical clock is larger than
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processLCReadRequest{()

sendMsg (CLIENTLC.READREPLY, logicalClock); 20 processVLRenewal (Volume, Senderj, RequestorTimet, o){
21 expiresy j 1= L + currentTime;
processWriteRequest(Objeat, Value v, LogicalClock lc){ 22 sendMsg (VOLUMERENEWREPLY, delayed,,j , L, epochy j . tv,0);
if (lc > lastWriteLC,){ 23}
value, := v; 24
lastWriteLC, := lc; 25 processVLRenewalAck(Volume , Senderj, LogicalC lc){
/I ensure an OQS write quorum is invalidated 26 /1 remove delayed invals already applied at the sender
while (!isOWQInvalid @ , lc)){ 27 Vk, s.t.invaly ; € delayed, ; {
invalidateOWQé6, lc); // see text for descriptions 28 if (le > invaly, ;.lc){
3 29 delete invaly ;;
sendMsg (CLIENTWRITE.ACK, o, lc); 22 } ¥
32 }
. . . 33
processlnvalAck(ObJecbi Senderj 5 LogicalClock Ic){ 34 processObjRenewal (Objecd){
/! update the last inval ack in the record for the sender 35 /1 update the last read logical clock
lastAckLC, j = ]MAX(laStACkLCO,J"lC); 36 lastReadLC, := lastWriteLCo;
} 37 sendMsg (OBJECRENEW.REPLY , value, , lastWriteLCyp);
38

Figure 4: 1QS server operations (pseudocode) - Dual quoritmwelume leases

processVLRenewReply (Volume , Senderi, Lease L, Epoche, DI di, 2L ProcessReadRequest(Objeo){

; 22 Il ensure the local object and volume are valid
RequestorTimet
>4 voll o 23 while (!isLocalvValid (0)){
expires, ; ;= MAX (expires, ;,ty,0 + L * (1 — mazDrift)); 24 /1 if not, renew invalid volume or object or both
epochy i := MAX (epochy i, €); 25 validateLocal ) ;
/1 apply delayed invals if exist in the reply 26
vk, s.t.invaly ; € di { 27 /1 once both leases are validated , send reply to cilent
if (invaly ;.lc > logicalClocky, ;){ 28 le:= MAXv;, s.t. value, i:truc(logicalClockoyi);
logicalClocky, ; := invaly ;.lc; 29 sendMsg (CLIENIREAD.REPLY , value, , lc);
validy ; = false; 30
} 31
} 32 processRenewReply(Objeat, Senderi, Epoch epoch, LogicalClock
sendMsg (VOLUMERENEWREPLYACK, v, MAX (di.lc)); lc, ObjectValue value){
33 epoch, ; := MAX (epoch, ;,epoch);
34 if (logicalClock, ; < lc){
processlinval(Objecto, Senderi, LogicalClock lc){ 35 logicalClock,, ; := lc;
Il update the local logic clock and object status 36 valid. ; — tm’w.
if (logicalClock, ; < lc){ 37 ) ot '
logi.calClocko’i = lc; 38 if (valid, ; = true &&
valide,; := false logicClocky ; > MAXyy, 5.4 heros (logicalClock, 1)){
} 39 valuey, := value;
sendMsg (INVALACK, Ic); 40 }
41 }

Figure 5: OQS server operations (pseudocode) - Dual quoritimvalume leases

that associated with the last completed write@n i (lastWriteLC,), i updatedastWrite LC, andvalue,
with those in the write. Then, to ensure that a write quorur@@S is unable to read the old version of the
data,i performs one of the following tasks: (a) if M@Q.S server has renewed since the completion of the
last write, (e.9.Vj, s.t.j € 0OQS, lastReadLC, < lastAckLC, ;), i suppresses invalidations €@QS; (b)
otherwise;j sends invalidations with the logical clock of the write(®d).S using@Q RPC'. The write completes
after receiving invalidation replies from a write quorum4) S, at which point; updatesastAckLC,, ; for all
jinthe@QRPC reply and returns to the client.

An OQS serverj that receives from nodein 1QS an invalidation with a logical clocke, ; comparesc, ;
with logicalClock, ;. If the invalidation has the higher logical clockupdates the local stategical Clock, ; =

le, s andvalid, ; = false). Finally, j sends an invalidation acknowledgment back to



3.2 Dual quorum with volume leases

The basic protocol just described allows one to vary readnaitd quorum sizes independently. However, our
application would benefit from using a read quorum size of thabreads can be serviced locally; any larger
read quorum size introduces a network delay to every readpamddes qualitatively worse read response
time. However, a read quorum size of 1 could lead to unacbéptearite availability because it could require
a write to contact all nodes in the OQS to invalidate cachda. d&e therefore adapt Yin et al.s volume lease
protocol [30] to support very small read quorums in OQS whekaining acceptable availability on writes.

We first describe the quorum-level interactions of the Duab@m with Volume Lease (DQVL) protocol.
We then detail how each node in IQS and OQS acts in order totdffese quorum-level behaviors.

We group objects into collections of objects called volum&s process a read, a read quorum in OQS
must hold both a validolume leas@nd a validobject leasdor some read quorum in 1QS. A lease represents
permission to access some object that expires at some speaifie [13]. When a read quorum already holds
these leases, a read can be processed locally. Othervasedth quorum in OQS must acquire volume and/or
object leases from a read quorum in 1QS.

To process a write of objeetin volumew, a write quorum in IQS must ensure that no read quorum in OQS
holds the leases necessary to read an old version ibfdoes so by (a) sending invalidationsofo nodes in
0OQS (and receiving acknowledgments from them) or (b) waitor the volume lease onto expire at one or
more nodes in OQS and then enqueuing invalidationsasdelayed invalidation§30] that must be processed
before the volume lease is renewed.

The key idea to making this approach work well is that volueeses are of short duration while object
leases are of long duratidriThis combination yields good read response time; nodes i €@ cache objects
locally for a long time, and although they must frequentlgew volume leases, this cost is amortized across
many objects in a volume. This combination also yields godtewesponsiveness and availability: a write can
complete by invalidating nodes caching datavaiting for a (short) volume lease to expire.

A final implementation detail we take from Yin et al. [30] iskhound the size of the list of delayed invalida-
tions for unreachable nodes usiegochs Volume lease renewals are marked with an epoch number, haed w
this epoch number changes, nodes conservatively assumigiedt callbacks have been revoked as described
below.

We now explain details of this protocol by describing théaw each individual node takes in order to

assure that the read and write quorums behave as just debcRiseudo-code for an IQS and OQS node is in

2For simplicity, we will assume infinite-length object leas® callbacks[14] Generalizing to finite-length object leases is straigh
forward and can help optimize space and network costs [9].



Figure 4 and Figure 5. Note that client behavior is as befarse-QRPC to issue read and writes to 1QS and

0OQS, respectively.

Data structures. Each node in IQS maintains a real time clagk-rentTime (with bounded drift with re-
spect to the other clocks as described in Section 2) and edogdiocklogicalClock. Each IQS node also
maintains the following per-volume, per-OQS-nodg state: expires, ; which indicates whemw expires at
J, delayed, ; which contains a list of delayed invalidations that must bévered to; beforev is renewed,
andepoch,, ; which indicategj’s current epoch number far. Finally, each IQS node maintains the following
per-objecw state:lastWrite LC, stores the logical clock of the last write &0last Read LC,, stores the value
of lastWriteLC, from the time of the last read of last AckLC, ; stores the logical clock contained in the
highest invalidation reply from nodgfor o, andvalue, stores the value af.

Each node in OQS maintains a bounded-drift real time clagk-entTime. In addition, it maintains the
following per-volumev per-IQS-node state:epoch, ; is the highest epoch number for which a valid volume
lease from was held oy andexpires,, ; is the time when the lease erfrom ¢ will expire. And, it maintains
the following per-object per-IQS-node state:epoch,, ; indicates the last epoch for which a valid object lease
on o from ¢ was held,/ogicalClock,; indicates the highest version number (logical clockp dbr which an
invalidation or update has been received frgmndvalid, ; is true iflogicalClock, ; corresponds to an update
(false if it corresponds to an invalidate). Finallglue, stores the update body for the highest logical clock

received in any update messageddrom any node.

Volume and object validity. The system maintains the following key invariant: If ngdm OQS has from
node: in IQS both a valid volume (expires,; > currentTime) and a valid objecb (epoch,; = epoch, ;
&& walid, ;) then node in 1QS knows nodg in OQS has a valid volume leasexpires, ; > currentT'ime)

and valid object callback¢st Read LC, > last AckLC, ;).

Clientread. As detailed byprocessReadRequesh the pseudo-code, in A nogen OQS processes a client
read of objecb as follows.j must ensure Conditiofi': there exists a read quoruiry in 1QS such thajj holds
both a valid volume lease and valid object lease fiem If C is already true, ther can immediately return
the valuevalue, and the associated logical clod8k A Xv; s+ icrqs(logicalClock, ;).

If C'is not true, thery performs a variation on QRPC. QRPC as defined in Section Zsamdiresends a
request to different nodes until it receives a quorum ofiesplThis variation sendiifferentrequests to different
nodes and processes replies until conditibibecomes true. In particular, for each target nosielected; sends
one of three things: (a) if the volume froithas expired and the object froims invalid, it sends a combined

volume renewal and object read; (b) if just the volume hasregpit sends a volume renewal; or (c) if just the
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object is invalid, it sends an object read. As detailed ingbeudo-codprocessVLRenewReply, j processes
replies to volume renewal requests from IQS naédey applying the delayed invalidations included in the
reply (in the same way as applying normal invalidations asdeed below) and updatingpires, ; as well as
epoch,, ;. To account for worst-case clock driftconservatively setscpires, ; = t,+ L*(1—maxDrift) where

t, is the time thafj sentthe volume lease renewal requesis the volume lease length granted in the reply, and
maxDriftis as defined in Section 2. Finallysends a volume lease renewal acknowledgment (whiiases to
clear its delayed invalidation queue.) As detailed in theug®-codgrocessRenewReply; processes object
renewal replies from by updatingepoch,, ;, logicalClock, ;, andvalid, ;; furthermore, ifvalid, ; is true and
logicalClock, ; exceeds the logical clock of any othetlid logical clock for this object; updatesvalue,,.
The repeated sends and the processing of replies in this QRffion ensure that' eventually becomes true,

at which pointj returnsvalue, and the associated logical clodkdicalClock ) as the result of the read.

O,bmax
On the 1QS side, nodéin IQS processes volume renewal messages for volurfrem nodej as de-
scribed in the pseudo-cogieocessVLRenewal i sends the delayed invalidatiodslayed,, ; and the volume
renewal, containing the epoch numbeioch, ,, and lease lengtiL. 7 then records the volume expiration
time (expires,; = L + currentTime). Wheni receives a volume lease renewal acknowledgment for vol-
ume v and logical clockic from j, as detailed in the pseudo-codmcessVLRenewalAck i clears all de-
layed invalidations with logical clocks up te from delayed, ;. As processObjRenewalindicates, when
in 1QS processes a read of objecirom OQS nodegj, it replies withvalue, andlastWrite LC, and updates
lastReadLC, = lastWriteLC,. Note thatlastReadLC,, lastAckLC, ;, andlastWriteLC, allow i in
IQS to track which nodeg in OQS may hold valid object callbacks. Finally, if dd).S serveri wishes to
garbage collect delayed invalidation state fof advancesgpoch, ; and and deletes the delayed invalidations
delayed, ;. Note that ifj receives from a volume lease with a new epoch, thgmwch, ; # epoch,; for all
o. So all previously valid object leases frommmediately become invalid. Thus, jf misses some object
invalidations fromi when its volume lease frorrhas expired, a volume lease renewal frboan resynchronize
Jj's state by either (a) updatingulid,; with the missing delayed invalidations or (b) advancipgch, ; by

sending a volume renewal with a new epoch number.

Client write. A client first determines the highest logical clock of any gbated write by calling IQS’pro-
cessLCReadRequestA nodei in IQS responds to such a call for objediy returning the node'globallogical
clocklogicalClock. A client then issues the actual write of objectAs detailed inprocessWriteRequesin
the pseudo-code, if the write’s logical clock exceeds th#ti®highest write seen so fduitW rite LC,), node

1 stores the write’s logical clock and valuethen ensures that a write quorum in OQS is unable to read the ol

11



version of the data by performing a variation on QRPC thahdsé differently to different nodes depending
on whether their volume and object leases are valid. Ther¢haee cases farto consider for nodg, object
o, and volumev: (a) if « knowso is invalid at;j (e.g.,lastReadLC, < lastAckLC, ;) theni need take no
action for j; (b) otherwise ifo is valid atj but v is invalid at;j (e.g.,expires,; < currentTime) then:
enqueues an invalidation ielayed, ; which will be processed at when it renews its volume; or (c) both
the object and volume are valid (e.fust Read LC, > lastInval LC, ;) thenj sends an object invalidation
containing the write’s logical clock¢stWrite LC,) to j. In this last case, if receives an invalidation from
for objecto with logical clockic, then as the pseudo-codegrocessinvaldescribes;j applies the invalidation:
if the invalidation is the newest information abeutrom i (e.g.,lc > logicalClock, ;) then update the logical
clock and validity information{logicalClock, ; = lc;valid; = false}). Finally, if i receives an invalidation-
acknowledgment fronj for logical clockic, then as the pseudo-codeprocessClientinvalAck describesj

updatesastAckLC, ; = max(lastAckLC, ;, lc).

Correctness Due to space constraints, we omit the proof of correctrieadich proves that the system has
regular semantics [16]. In particular, it shows (1) a read tiat is not concurrent with any writes ofcan
return only the value and logical clock from the completedevof o with the highest logical clock and (2) a
read ofo that is concurrent with one or more writes @tan return only (a) the value and logical clock from
the completed write o with the highest logical clock or (b) the value and logicalal from some concurrent
write of o.

To give intuition for why DQVL providesegular semanticsconsider the invariant: If nodgin OQS has
from node: in 1QS both a valid volume (expires,; > currentTime) and a valid objecb (epoch,; =
epoch,; && walid,;) then nodei in IQS knows nodej in OQS has a valid volume leasexpires, ; >
currentTime) and valid object callbacK¢stRead LC,, > last AckLC, ;). For a read that is not concurrent
with any writes:This invariant is established by havifigenew its volume and (or) objecb fromi. Therefore,

j contains the last completed write/ue, on nodei when; has both a valid volume and a valid object from
nodei. Furthermorej will contain the last completed writenlue, on a write quorumwyg in 1IQS whenj has
both a valid volume and a valid object from a read quorunirq in IQS (becauserq andowq intersects by at
lease one node). Because a client write is performed angiwalue, held onj is actually the last completed
client write in the system. Becaugean not process any client read unless it holds both a validn®v and

a valid objecto from a read quorunirq, j guarantees to always return the valugéue, of the last completed
write in the systemFor a read that is concurrent with some writeAssume that the last completed write has

logical clockicy and a read that is concurrent with some writes with logical clokek..lc, (ic; > lcp) is sent

3The detailed proofis presented in the extended technipatravailable at www.cs.utexas.edu/users/lgao/pageaEuorumTR.pdf.
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to anorgq. If the invariant is established in theq, r returns the value associated witly. Otherwise, therq
will try to establish the invariant by querying ary. Because some writes are being processdd)f, theirg
may return to therq the value associated with any of the logical clacksy...0.lc,,. Meanwhile, soméwq
may send invalidations with logical cloékval.lcy...inval.lc, to theorq as the result of the concurrent writes.
When the maximum logical clock received in the renew rephldgss than that of any invalidations on any
serverj of the org, this server keeps renewing from soimg. As long as those concurrent writes termingte,
will eventually receiven.lc,, (the highest logical clock among all concurrent writesyirsomeirg. Therefore,

r may return the value associated with any of the logical clogk.c,.

4 Evaluation

Through both analytical and experimental evaluations, amapmare the availability, performance, and com-
munication overhead of DQVL against other popular repitcaprotocols. We show that DQVL yields the
read’s performance competitive with ROWA-A epidemic altfons and overall availability competitive with

the majority quorum protocol.

4.1 Analytical models

To help understand our analytical models, we first introdsa®e notation. For a read to complete in DQVL,
a read quorum iOQSmust be available and must hold a volume lease; additignfilyvolume lease must
be acquired, a read quorumIi@S must also be available. When the volume lease is already Weldhave a
read hit When a lease renewal is required, we havezal miss Similarly, for a write to complete in DQVL, a
write quorum inlQS must be available and a write quorum®@Smust be invalidated. So when there exists a
write quorum inOQSwith all its servers holding expired volume leases or invatipies of the object, we have
awrite suppressWhen invalidations must be sent to a write quorun®iS we have awrite thru. In all of the
analyses, we configur&) S as a majority quorum system to provide optimal availab[9] for writes and set
the size of read quorum i@Q.S to one to optimize read performance for edge-server-likeklwads. Future

work will examine a broader range of quorum configurations.

Availability Figure 6 (a) and (b) illustrate the unavailability of DQVLéamparison with other protocols in
log scale. The unavailability is computed Bs- availability (av). An unavailability of10~¢ corresponds to
the availability ofi 9’s. Our simple model assumes the failure probabijlity 0.01 and that failures (including

server crashes and network failures) are independent.
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The availability of bothread hitandread missare min(avo,q, avirq). The availability of bothwrite thru
and write suppressare min(avirq, avig). Therefore, the availability of DQVL isiwpovr = (1 — w) *
MiAn(aVorq, Airq) + W * MIN(AVjg, AVirq). 4

Figure 6 (a) illustrates the systems’ unavailability as \eenthe write ratio and fix the number of replicas
to 15. The key result is that DQVL's availability tracks thatthe majority quorum. Note that the DQVL's
availability measurement is pessimistic because a reagromeed without contacting any read quorum in 1QS
if the read quorum in OQS holds valid volume and object leatdes effect may mask some failures that are
shorter than the volume lease duration. ROWAA protocol shtive best availability which increases with
the number of replicas in the system. But, the cost of ROWA¥gh availability is that the system has to
manage conflict detection and resolution and it may not be &bprovide worst case staleness guarantees
during network partitions.

Figure 6 (b) illustrates systems’ unavailability as we virg number of replicas and fix the write ratio
at 25%. It shows that the unavailability of DQVL has similahlavior as the majority quorum system and is
lower by a factor which is determined by the write ratio, asveh in (a). ROWAA protocol has the lowest

unavailability which decreases as the number of replicazases.

Response time In this subsection we analyze the response time of DQVL arkkrnamparisons with other
popular protocols in the context of the edge service enwimt where every client connects to a closest edge
server via a fast connection, e.g. a LAN-like connectian, with 6 ms RTT. All edge servers connect to each
other through an overlay networéyeriay, with RTT delays of 80 ms. For a client to connect to servehgiot

than its closest edge server, it has to go through a WAN-ld@nection,wan, with 86 ms RTT. Our model

“The detailed analysis is presented in the extended tedhefuart available at www.cs.utexas.edu/users/Igaokségieal QuorumTR. pdf.
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Figure 7:Average response time
calculates the average response timeap, * (1 — w) + resp,, * w. Because of space constraints, we omit
the detailed derivation ofesp, andresp,, for DQVL.*

Average response times of various protocols are illusiraeté-igure 7 where we plot the average response
times while varying the write ratio and fix the number of reps to 15. DQVL provides the best case response
time when workloads consist of onhgad hitsand write suppressesAs indicated by the third curve from
the bottom, DQVLread hitsyield performance competitive with ROWA-A epidemic algbms against read-
dominated workloads because they only need to communidétethre closest server. DQVL has the worst
case response time against workloads consisting of a lamgeer ofread misseandwrite thrus DQVL read
missesandwrite thrusrequire communication with distant servers similar to tebdviors of both majority and
grid quorum operations. Therefore, they all experiencevdiedelays. Furthermore, because writes in quorum
systems (including DQVL) require ongantrip to retrieve the highest timestamp and another to perfibre
actual write, their response time is twice as much as that@NRA. write thrusrequire an additionalvan
trip to invalidate a write quorum i®WQS. At 50% write ratio, when DQVL has the maximum amounigfte

thrus, the overall response time of DQVL reaches its worst casedisdted by the top most curve.

Communication overhead This section analyzes DQVL's communication overhead im#eof the number
of message exchanges required in processing a client tedoesmplify the model, the study assumes weights
of all message types are equal. Due to space constraintsnitvéhe detailed discussion on the communication
overhead model for DQVE.

Figure 8 shows the average number of messages requiredcesgra client request in log scale as we vary
the write ratio and fix the number of replicas at 15 in (a) ang ¥lae number of replicas and fix the write ratio
at 25% in (b).

In the worst case, DQVL can have high communication overlasaiflustrated by the top most curve in
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Figure 8:Communication overhead

(a). Because in the worst case, most readsead missesand most writes arevrite thrus Such situations
occur when the workload consists of interleaved reads andswwn the same object. A read following a write
always require®) QS to renew from a read quorum QS and a write following a read always requirb@.S

to invalidate a write quorum i®Q.S. When the write ratio is at 50% in this case, every read ieterts with a
write and DQVL yields the worst communication overhead.

However, DQVL's overhead should be comparable to otheragmires in practice. First, workloads that
DQVL is designed to face are dominated by reads. Conseaaads are likely to benefit from having objects
cached on OQS servers, i.e. the target workloads have arlargber ofread hits As indicated by the second
curve from bottom in (b), DQVL's overhead is close to ROWA whibere is a large number ofad hits.
Second, the design of DQVL allows us to vary the OQS size ta neael performance goals while varying the
IQS size to balance overhead vs. availability goals. Therscurve from the top in (b) shows that once we
fix IQS at a moderate size (5 in this case) while letting the G@8 grow, the communication overhead yield

by DQVL is at the same level as the majority quorum withouuiggg manyread hitsin the workload.

4.2 Experimental evaluation

We have developed replication prototypes for DQVL, mayogtiorum, and ROWA protocols. All the proto-
types are built in Java and run on eight Emulab nodes. In cuofype experiment, we set the “lan” delay
between a client and its closest edge server to 8 ms. The “delay between the client and other edge servers
is 86 ms. And the network delay among edge servers is 80 ms.

Through our prototype experiment, we demonstrate that tla-guorum protocol is highly suitable for

managing replicated data with the workload charactessticthe TPC-W profile object, i.e. a workload

STPC-W is a transaction processing benchmark for the web [8].
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Figure 9:Experimental results - average response time

with a low update rate and strong access locality. Access#set profile object consist of 95% reads on a
customer’s purchase history, credit information, and eslskes and 5% writes on a customer’s shipping address
when processing an online purchase. When the profile iscegpti on edge servers, a customer is routed to the

closest edge server to access its profile information.

Write ratio  The dual-quorum protocol provides excellent performamcenorkloads with low write ratios.
Figure 9 (a) illustrates the average response time of theqiiaum system with eight replicas. Similar to our
analytical result, the response time of the dual-quoruntesyss competitive with that of the ROWA protocol
family when the write ratio is below 20%. Furthermore, at 5%tewate, the write rate of the TPC-W profile
object, the average response time of the dual-quorum mbis&1l ms® which is about twice as much as
that of the ROWA and one sixth of that of the majority quorumstsyn. The low response times of both the
dual-quorum and ROWA are due to the fact that reads are peeftbonly on the closest edge server which has

8 ms network delay.

Access locality In this experiment, we fix the write ratio to 5% as specifiedtfer TPC-W profile object and
the total number of replicas to eight. The system has 10 vetuamd 10 objects under each volume. The client
has a 95% probability of accessing the objects in the samenalnd a 5% chance of accessing objects in
other volumes. Under normal circumstances, a client ahgays connected to the same closest server. But the
unavailability of the closest server or the geographicav@neent of the client can sometimes result in a client
being routed to other edge servers. The response time fee leads will be higher than the normal response
time experienced when reading from the closest server sedhe probability of a read hit is lower.

Figure 9 (b) illustrate the average response time of DQVL avary the percentage of client requests sent

®Response times of all prototypes are higher than the uridgnhetwork delays due to experimental errors and un-tuoeé.c
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to its closest edge server. When the access locality is ads sent to DQVL are often routed to distant servers
resulting in high response time. As the access localityeiases, reads are more likely to land on the client’s
closest server where target objects are usually valid Ssonpesnce is good. The majority quorum system is

not affected by the access locality since clients alwayd segir requests to a quorum of servers.

5 Related Work

In read-one/write-all (ROWA) protocol the “read-one” pesty yields excellent read availability and response
time. But this protocol has limited write availability angsponse time because writes can not complete if any of
the replicas are unavailable. Protocols with the readvanitetall-asynch property (ROWA-A) [20, 24, 25] yield
better write availability and response time by allowingtesito be propagated to other replicas asynchronously.
But they are only suitable for weakly consistent replicatiiecause they can not guarantee that reads will
always return the data modified by the latest completed wiétevariation of ROWA-A [4] performs writes
synchronously on the available replicas to provide bettesistency, but its write latency is worse.

The primary-backup (or primary-copy) model [2] can toleragtwork partitions by only allowing the par-
tition with the primary server to perform writes. Howeveethrimary server becomes the bottleneck when it
can not meet required levels of availability and perforreanGroup-communication based techniques, such
as extended virtual synchrony [19], enable the election éw primary by actively propagating updates to
all group members and constantly running membership potgdo maintain the correct memberships. The
new primary can be selected from active members and the et@rthe primary is also broadcast to all active
members as well. This class of techniques has degradedpearioce in WANs because the membership proto-
col may always need to run to constantly include/excludagereplicas when they are mistakenly considered
as crashed/recovered due to slow WAN links. In additionpaihary-server based protocols are inflexibly in
favor of reads’ availability and performance.

Quorum based protocols [11, 12, 22, 27] can tolerate netwarktions as long as connected replicas can
form a quorum to process reads/writes. However, the readponse time and availability of most quorum sys-
tems are worse than those of ROWAA or primary-backup baseqols because reads usually need to query
a larger set of servers. Quorum based protocols may not Iraldlesto handle a read-dominated workload, e.g.
a workload from interactive online applications.

Some quorum based techniques use light-weight nodes, swgioats [28] to help form quorums for pro-
cessing requests. When propagating a write, a replica emlgssto these nodes the timestamp and object ID of

the write. Our dual-quorum invalidation protocol sharessittea in terms of replacing writes with invalidations
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when propagating to some replicas. But our use of invabaatialso allows us to reduce the future message
propagation to other replicas.

The traditional cache invalidation protocols [13, 30] arearily used in the client-server model where the
single server hosts the objects and clients keep cacheesofiiose protocols assume that an object always has

a home location that can grant leases to cached copies,idgirlgle centralized server may hurt availability.

6 Conclusion

This paper presents dual-quorum replication, a novel dgilcation algorithm designed to support Internet
edge services. Through both analytical and experimentluations, we demonstrate that this replication
protocol offers nearly ideal trade-offs among high avaliahgood performance, and strong consistency.
Several important issues will be addressed in our futur&kwibmwill be interesting to configure both 1QS
and OQS to optimize other metrics. For example, we can caefitdne read quorum size in OQS to be larger
than one to avoid timeouts on invalidations. We can also gardi QS as a grid quorum system [6] to reduce
the overall system load. We are also interested in modifiAi@y/L to provide different consistency semantics

(e.g. atomic semantics [16]) and comparing the cost diffeze
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