
Eve: Execute-Verify Replication for Multi-Core Servers

Manos Kapritsos∗, Yang Wang∗, Vivien Quema†, Allen Clement‡, Lorenzo Alvisi∗, Mike Dahlin∗
∗University of Texas at Austin †INRIA ‡MPI-SWS

Abstract: This paper presents Eve, a new Execute-
Verify architecture that allows state machine replication
to scale to multi-core servers. Eve departs from the tradi-
tional agree-execute architecture of state machine repli-
cation: replicas first concurrently and nondeterministi-
cally execute requests; then they verify, agree, and con-
verge on the state and the outputs produced by a cor-
rect replica. Eve minimizes divergence through a mixer
stage that applies application-specific rules to organize
requests into batches of requests that are unlikely to in-
terfere. Our evaluation suggests that Eve’s unique ability
to combine execution independence with nondetermin-
ism enables high-performance replication for multi-core
servers while offering tolerance to a wide range of faults,
including elusive concurrency bugs.

1 Introduction
This paper presents Eve, a new Execute-Verify replica-
tion architecture that allows state machine replication to
scale to multi-core servers.

State machine replication is a powerful fault-tolerance
technique [10, 24, 39]. Historically, the essential idea
is for replicas to deterministically process the same se-
quence of requests so that they traverse the same se-
quence of internal states and produce the same sequence
of outputs.

Multi-core servers pose a challenge to this approach.
To take advantage of parallel hardware, modern servers
execute multiple requests in parallel. However, if differ-
ent servers interleave requests’ instructions in different
ways, the servers’ states and outputs may diverge. As a
result, most state machine replication systems implement
sequential execution where a replica finishes executing
one request before beginning to execute the next [10, 25,
27, 40, 45, 51].

At first glance, a promising idea is to leverage re-
cent efforts to enforce deterministic parallel execution.
Unfortunately, existing techniques may require rewriting
applications around new synchronization abstractions [7,
36] or may incur high overheads [14, 15, 47].

The Eve replication architecture allows parallel re-
quest execution with low overhead. Eve does this by
eliminating the requirement that execution be determin-
istic. Instead, Eve allows execution to be internally non-
deterministic, but it speculates that the results of paral-

lel execution (including the system’s important state [37]
and outputs) will match across replicas.

To execute nondeterministically without violating the
safety requirement of replica coordination, Eve turns on
its head the tenet of traditional state machine replica-
tion: traditionally, deterministic replicas first agree on
the order in which requests are to be executed and then
execute them [10, 25, 27, 39, 51]. In Eve, replicas first
speculatively execute requests concurrently and nonde-
terministically; they then verify and agree on the state
and the outputs produced by a correct replica. If repli-
cas diverge, Eve guarantees safety and liveness by rolling
back and sequentially and deterministically re-executing
the requests.

Critical to Eve’s performance are mechanisms that en-
sure that despite nondeterminism, replicas seldom di-
verge, and that, if they do, divergence is efficiently de-
tected and reconciled through state-transfer and fine-
grained rollbacks. Eve minimizes divergence through a
mixer stage that applies application-specific rules to or-
ganize requests into batches of requests that are unlikely
to interfere. Note that if the underlying program is cor-
rect under unreplicated parallel execution, then delaying
agreement until after execution and falling back on se-
quential re-execution guarantees that replication remains
safe and live even if the mixer allows interfering requests
in the same batch.

Eve’s execute-verify architecture also allows us to use
replication to protect against nondeterministic concur-
rency bugs (“Heisenbugs” [19].) Eve thus explores a
region of the design space that falls short of Byzantine
fault tolerance but that strengthens guarantees compared
to standard crash-tolerance. Eve’s robustness stems from
two sources. First, Eve’s mixer reduces the likelihood
of triggering latent concurrency bugs by running only
unlikely-to-interfere requests in parallel [23, 35]. Sec-
ond, Eve’s execute-verify architecture allows it to detect
and recover from cases where concurrency causes execu-
tions to diverge regardless of whether the divergence was
the result of different legal choices by different replicas
or was caused by a Heisenbug.

This paper refines the fundamental assumptions of
state machine replication. For decades, the traditional
view has been that if all replicas execute independently,
then producing the same sequences of outputs to a set
of clients requires them to be deterministic [24, 39]. Eve

1

leverages the observation that although deterministic ex-
ecution of a sequence of inputs is sufficient to produce
identical outputs across replicas, it is not a fundamen-
tal requirement to maintaining execution independence.
The practical consequence of refining our assumptions is
that Eve can use its execute-verify architecture to bring
together nondeterminism and independence to improve
the replication of multi-core servers:

1. Nondeterminism → Eve provides high-performance
replication of multi-core servers. Eve gains perfor-
mance by avoiding the overhead of enforcing deter-
minism. For example, in our experiments with the
TPC-W benchmark, with 16 cores Eve achieves a
7.2x speedup for synchronous, crash-tolerant server-
pair replication, while the original unreplicated server
achieves a 8.8x speedup. Additionally, in our experi-
ments Eve has competitive overheads and better scal-
ability than the Remus primary-backup system [13],
and Eve outperforms DPG [6], a replication system
that handles multi-core servers by ensuring determin-
ism across executions.

2. Independence → Eve masks a wide range of faults.
Eve’s architecture is general, and our prototype sup-
ports tunable fault tolerance [11], retaining state ma-
chine replication’s ability to be configured to tolerate
crash, omission, or Byzantine faults. Notably, even
when an Eve system is configured to tolerate crash
or omission failures, it can also mask some concur-
rency failures. Although we do not claim that our ex-
perimental results are general, we find them promis-
ing: for the TPC-W benchmark running on the H2
database, executing requests in parallel on an unrepli-
cated server triggered a previously undiagnosed con-
currency bug in H2 73 times in a span of 750K re-
quests. Under Eve, our mixer eliminated all manifes-
tations of this bug. Furthermore, when we altered our
mixer to allow batches of conflicting requests, Eve de-
tected and corrected this bug 82% of the times it man-
ifested.

The rest of the paper proceeds as follows
1. Introduction 5. Implementation
2. Related work 6. Evaluation
3. Architecture overview 7. Conclusions
4. Design issues

2 Related Work
The challenge in implementing state machine replication
on multi-core servers is its reliance on replica determin-
ism: even when replicas are allowed to maintain some
nondeterministic internal state, the abstract state they ex-
pose to the outside world must be deterministic [37].

Sources of nondeterminism can in principle be encap-
sulated as clients to the state machine [10, 39]. This

works well when the opportunities for nondeterminism
are relatively few: for instance, in UpRight [11] each ex-
ecution replica receives with each batch of requests for-
warded by the Order stage both a seed for the replica’s
pseudo-number generator and a time-of-day value to be
used, if necessary, while processing the requests. The
increasing ubiquity of multi-core processors, however,
takes the challenge of nondeterminism to a new level:
when nondeterminism is at the scale of individual mem-
ory accesses, it becomes infeasible to model it as a client
to the state machine.

A recent paper suggests that it may be viable to en-
force deterministic concurrency control in transactional
systems [42], but the general case remains hard and, de-
spite their apparent promise, recent efforts to enforce de-
terministic execution of multithreaded programs running
on multi-core are unable to come to the rescue.

The Determinator operating system [2] can enforce
determinism efficiently on multithreaded and multipro-
cess applications, but only if they are written using
new deterministic synchronization abstractions [16, 30].
When it comes to legacy code, the best available option
is to remove nondeterminism by leveraging the recently
proposed Deterministic Process Group (DPG) abstrac-
tion [5, 6]. Unfortunately, the overhead imposed by DPG
is high: for a non-replicated server running Apache, us-
ing DPG results in a four-fold reduction on the through-
put achievable on the same hardware running nondeter-
ministically [6]; when the server is replicated, through-
put is further reduced by another factor of 6.

One alternative is to use a replication technique other
than state machine replication. Semi-active replica-
tion [33] weakens state machine replication with respect
to both determinism and execution independence: one
replica, the primary, executes nondeterministically and
logs all the nondeterministic actions it performs. All
other replicas then execute by deterministically repro-
ducing the primary’s choices.

In this context, one may hope to be able to leverage
the large body of work on deterministic multiprocessor
replay [1, 15, 26, 31, 32, 38, 47, 49, 50]: while these sys-
tems focus mostly on debugging and security, they work
by recording all nondeterministic events, which can then
be used for replay. The problem, once again, is overhead:
simply recording every memory access is too expensive
to be practical [15]; trading replay accuracy to reduce the
recording overhead [1, 32] no longer ensures that all cor-
rect replicas will produce identical outputs; logging only
synchronization operations [4, 28, 29, 38] is insufficient
for application with data races, a commonplace occur-
rence in real applications. DoublePlay [47] succeeds in
reducing the logging overhead but at the cost of more
than doubling the resources consumed by the primary.
The best match for multi-core replication is Respec [26],

2

which supports online record and replay. Respec and
Eve share some high-level design decisions that reduce
overhead: they both rely on speculation (speculative log-
ging in Respec; speculative execution in Eve) and both
require correct replicas to agree on their final state and
outputs rather than on the detailed execution path that
led them there. Speculating on execution not only al-
lows Eve to tolerate commission failures, which Respec
does not tackle, but involves minimal overhead; Respec
instead must still pay the cost of logging nondeterminis-
tic events, even if speculation helps reduce their number.
As a result, in Respec the execution time of running an
Apache benchmark actually increases as more execution
threads are added.

Vandiver et al. [46] describe a Byzantine-tolerant
semi-active replication scheme for transaction process-
ing database systems. Their system supports concurrent
execution of queries but its scope is limited: it applies
to the subset of transaction processing systems that use
strict two-phase locking (2PL).

In Hypervisor-based fault-tolerance [8] the primary
sends to the backup the result of all the nondeterministic
events it executes. The system assumes that both primary
and backup execute requests sequentially.

Remus [13], a high availability solution for virtual ma-
chines running Xen [3], takes a different approach: it
circumvents the overhead and complexity of explicitly
handling the nondeterminism in multi-core executions by
completely renouncing independent execution in favor of
a primary-backup architecture [9]. In Remus, the backup
does not execute requests, but instead passively absorbs
state updates from the primary: since execution occurs
only at the primary, the costs and difficulty of coordinat-
ing memory accesses are sidestepped. These advantages
however come at a significant price in terms of fault cov-
erage: in Remus, correct replica coordination depends on
strong synchrony assumptions that are hard to enforce in
high-availability deployments, where it may be desirable
to have primary and backup located in different racks or
in different data centers—leaving Remus at the mercy
of the correctness of a switch. Further, Remus can only
tolerate omission failures—all commission failures, in-
cluding common failures such as concurrency bugs, are
beyond its reach. Like Remus, Eve neither tracks nor
eliminates nondeterminism, but it manages to do so with-
out forsaking fault coverage; further, despite its stronger
guarantees, Eve’s performance on a single CPU is com-
parable to Remus’s, and it appears more scalable (see
Section 6) because it can ensure that the states of repli-
cas converge without requiring the transfer of all modi-
fied state.

One of the keys to Eve’s ability to efficiently combine
nondeterminism and independent execution is the use of
the mixer, which allows replicas to execute requests con-

Clients Execution Verification

Mixer

ParallelBatches

Application
logic

Decision?

Rollback

Commit

State transfer

to clients...

to other replicas...

client
requests

Figure 1: Overview of Eve.

currently with low chance of interference. Kotla et al.
[23] use a similar mechanism to improve the throughput
of BFT replication systems. However, since they still as-
sume a traditional agree-execute architecture, the safety
of their system depends on the assumption that the rules
used by the mixer never mistakenly place interfering re-
quests in the same batch: a single unanticipated conflict
can lead to a safety violation.

Agreement can always be viewed as an ensemble of
proposers, accepters, and learners [25], and protocol de-
signers manipulate these stages to optimize for different
goals [22, 44]. For example, both Eve and Zyzzyva [22]
allow speculative execution that precedes completion of
agreement. In these systems, nodes that can be consid-
ered learners (voters at clients in Zyzzyva and verifiers at
servers in Eve) trigger additional agreement phases and
roll-back/reexecution to repair unsuccessful speculation.
However, where Zyzzyva speculates on the order of re-
quests that will be agreed, Eve speculates not only on the
request order and but also on how nondeterministic state
machines will process requests.

3 Architecture overview

The goal of Eve is to replicate servers that run multiple
requests in parallel. To achieve this, we have to rethink
the architecture of replicated systems. Figure 1 shows
an overview of Eve. This design is a departure from the
traditional approach of “agree-execute.” Instead, Eve ex-

3

ecutes requests without reaching agreement on the or-
der [22]. After executing the requests, replicas try to
agree whether they have reached the same state and pro-
duced the same results. If not, they take additional steps
to repair the divergence.

Because our goal is to tolerate nondeterminism in the
execution, correct replicas can execute requests differ-
ently and report different results. Although we were mo-
tivated to allow nondeterminism for performance and al-
though Byzantine fault tolerance was not our primary
goal, our techniques do draw from the BFT literature,
and this convergence has the side effect of strengthening
fault tolerance: Eve protects against concurrency bugs
and can be configured to tolerate Byzantine faults.

In this section we give an overview of the design of
Eve and in Sections 4-5 we describe the challenges and
proposed solutions to efficiently implement this design.

3.1 Basic operation
In the common case, client requests are sent to the cur-
rent primary execution replica, which groups them into
batches and forwards them to all other execution replicas.
Then each replica applies a deterministic, application-
specific mixer on each batch. The mixing process divides
a single batch into a sequence of parallelBatches, such
that each parallelBatch contains requests that the mixer
believes can be executed in parallel. Since the mixer is
deterministic, it results in all replicas having the same
sequence of identical parallelBatches.

Each replica executes the parallelBatches in the given
order. Every parallelBatch is assigned a sequenceNum-
ber i. After executing the ith parallelBatch, a replica
computes a hash of its application state and of the re-
sponses that correspond to requests in that parallelBatch.
This hash, along with the hash for parallelBatch i−1 and
the sequence number (i), constitute a token that is sent to
the verification cluster in order to discern whether the
replicas have diverged from each other.

Prior to verification, a number of things could go
wrong. For example, different nodes may believe
they are the primary and produce and execute different
batches of requests or different execution nodes may pro-
duce different results when nondeterministically execut-
ing the same parallelBatch. Verification provides an end-
to-end check in which nodes agree on the state of the
system before they proceed.

If the verification cluster agrees that all (or sufficiently
many) replicas converged on the same state, then the
execution replicas can commit the results of that paral-
lelBatch, which includes sending the corresponding re-
sponses back to the clients. Any replica that does not
have the agreed upon state can request a state transfer
from the other replicas.

If too few execution nodes converge, the verification

cluster notifies the execution replicas. This notification
includes the sequenceNumber and state hash of a stable,
agreed upon parallelBatch to which they should roll back
as well as the identity of the primary. Two things are
done to ensure progress. First, to guard against concur-
rency conflicts missed by the mixer, execution nodes re-
vert to sequential execution as in standard deterministic
state machine replication [10, 11] until they succeed in
making progress.

Second, to guard against failures of the primary,
the verifiers identify a new primary if progress is too
slow [10, 12]. When this happens, execution nodes dis-
card unexecuted parallelBatches and begin processing
batches from the new primary using the stable check-
point. Clients eventually timeout, learn the new primary,
and resend their requests there.

The internals of the verification stage closely resem-
ble agreement in previous replication systems [10, 11, 25,
40, 48], and we omit the details. It should be noted that
in previous designs where agreement precedes execution,
separating agreement and execution raises an issue: the
system must ensure agreement on each execution check-
point, but there are not enough execution nodes to run
any agreement protocol. In such systems, the solution is
to add an additional “upstream” flow where hashes of ex-
ecution checkpoints are fed back through the agreement
nodes [11, 48]. Eve avoids this complexity: agreement
always follows execution and naturally covers all earlier
phases (e.g., request ordering, responses, and execution
checkpoints.)

4 Design Issues

4.1 Configurations
We primarily target asynchronous environments where
the network can arbitrarily delay, reorder, or lose mes-
sages without imperiling safety. For liveness, we require
the existence of synchronous intervals during which the
network is well behaved and messages sent between two
correct nodes are received and processed with bounded
delay. Because synchronous primary-backup with reli-
able links is a practically interesting configuration [13],
we also evaluate Eve in a server-pair configuration that—
like primary-backup [9]—relies on timing assumptions
for both safety and liveness.

Our primary focus is on tolerating omission failures.
However, our design is general. We target systems that
are live, i.e. provide a response to client requests, despite
up to u arbitrary failures. We ensure that all responses
accepted by correct clients are correct despite up to r
commission failures and any number of omission fail-
ures [11]. Commission failures include all failures that
are not omission failures, and the union of omission and
commission failures are Byzantine failures. Note, how-

4

General Omission-only BFT
(r=0) (u=r=f)

Nexec u+max(u,r)+1 2u+1 2f+1
Nveri f y 2u+ r+1 2u+1 3f+1

Figure 2: Configurations for asynchronous replication

ever, that we assume that failures do not break crypto-
graphic primitives; i.e., a faulty node can never produce
a correct node’s signature or MAC.

Figure 2 summarizes the minimum number of execu-
tion and verification replicas required for various config-
urations in an asynchronous environment. The omission-
only column shows the standard number of replicas
needed to remain safe and live despite u omission fail-
ures, assuming no commission failures. Note that when
Eve is configured this way, it also tolerates concurrency
failures (Section 4.2.) For completeness, we include the
BFT column, which shows the number of replicas needed
to remain safe and live despite f arbitrary failures.

4.1.1 Synchronous process pair

Synchronous 2-node replication is the minimal system
able to tolerate 1 crash failure. It requires a reliable syn-
chronous network for safety and liveness [9]. To guar-
antee liveness, if one node crashes, the other becomes
solely responsible for processing requests and clients
must accept that node’s responses. For safety, we must
ensure that there is only one primary at a time.

This safety property is commonly enforced by engi-
neering a monitor process on each node, along with con-
servative timeouts and a simple, highly reliable network
(e.g., a dedicated direct link). Rather than build our own
monitor, we use ZooKeeper [21] to ensure that across all
clients and servers, at most one server is considered to be
the primary (assuming ZooKeeper’s synchrony assump-
tions hold).

To run Eve, the primary selects a set of requests to
be in batch i and sends the batch to the secondary. The
primary and the secondary then apply the mixer to the re-
quests and execute the resulting parallelBatches. Follow-
ing execution of a parallelBatch, the secondary computes
a hash of the state that was updated during that parallel-
Batch and sends this hash to the primary. The primary
detects divergence by checking the hash of the secondary
against its own state update. If these two match, the pri-
mary responds to the client. Otherwise, the primary rolls
back its state and reexecutes sequentially and orders the
secondary to do the same. If the secondary fails to pro-
vide a hash within a timeout, because of a crash or a con-
currency bug, then the primary times out and issues a
rollback, as above. If a replica has crashed, this failure
is eventually detected by ZooKeeper and the remaining
node assumes the responsibility of executing the requests
by itself. When the crashed node recovers, the primary

brings it up to date by initiating a state transfer and starts
operating again in the primary-secondary mode.

4.2 Tolerating Heisenbugs
Eve’s mixer and nondeterministic, replicated parallel ex-
ecution provide opportunities to mask some concurrency
failures. The basic ideas are simple.

For the mixer, our intuition is that systems that avoid
executing requests that appear likely to access the same
data will also tend to avoid triggering Heisenbugs. The
effectiveness of the mixer will depend on the chosen
application-specific rules and on details of the applica-
tion and workload.

For detection and correction via nondeterministic,
replicated parallel execution, we speculate that at least
some Heisenbugs depend on the interleavings of requests
and threads and that reexecuting requests in a differ-
ent way may sometimes avoid them. This is not a new
idea [18, 19].

Concurrency failures. We define a concurrency failure
as follows:

concurrency failure—a failure that can manifest
during parallel execution but not during sequential
execution.

Concurrency failures are a subset of Byzantine fail-
ures. Concurrency failures include both omission fail-
ures (e.g., a node could get stuck) and commission fail-
ures (e.g., a node could produce an incorrect output or
transition to an incorrect state.) However, concurrency
failures have an important property that cannot be as-
sumed to hold in general for Byzantine failures: con-
currency failures are easy to repair. If a system detects
a concurrency failure, it can repair it via rollback and se-
quential reexecution.

Not all divergences among replicas are concurrency
failures; systems can have legal nondeterminism. A di-
vergence is a concurrency failure only if the resulting
output or state is “illegal.” Of course, Eve doesn’t know
if a divergence is simple nondeterminism that would be
“legal” on a single node or a concurrency failure that
would be “illegal” on a single node. This informality
is OK. Eve resolves both types of divergence in the same
way, so we do not need to draw a more precise line be-
tween these two cases.

Conversely, not all concurrency failures result in di-
vergence. As in any system that uses redundancy to mask
failures, Eve is vulnerable to correlated failures and can-
not mask concurrency failures if all nodes fail in exactly
the same way.

This said, Eve’s departure from traditional state ma-
chine replication architectures helps here. Eve’s mixing
stage identifies requests that should not interfere, and dif-
ferent Eve replicas may schedule the parallel execution

5

Asynchronous Synchronous
Execution replicas n = 2u+1 n = u+1
Concurrency failures tolerated

Always (worst case) u 0
During good intervals n-1 n-1

Figure 3: Number of concurrency failures tolerated by
Eve when configured to tolerate a desired number of
omission failures u.

of these requests differently to introduce diversity among
replicas and reduce the likelihood that a concurrency bug
manifests in exactly the same way at all nodes. Below,
we bound the number of concurrency failures that Eve
is guaranteed to tolerate, and in Section 6.4 we evalu-
ate Eve’s effectiveness at masking concurrency failures
in one case study.

Also note that not all Heisenbugs are concurrency fail-
ures [19]. Although this section is called Tolerating
Heisenbugs, we only claim that Eve can tolerate some
manifestations of Heisenbugs, not all of them.

Finally note that we restrict our attention to concur-
rency failures by the state machine being replicated, and
we assume that the Eve infrastructure is not subject to
concurrency failures (though it is subject to other fail-
ures.) For example, we assume that if the only failure in
a system is a concurrency failure, Eve can always roll the
state machine back and reexecute requests.

How many concurrency failures can Eve tolerate? As
noted in Section 4.1, Eve can be configured to toler-
ate Byzantine failures. Since the Byzantine model cov-
ers any failure, clearly Eve can be configured to tolerate
some number of concurrency failures.

However, we expect it to be more common to config-
ure systems for omission fault tolerance than for Byzan-
tine fault tolerance, and Eve can provide protection in
these cases as Figure 3 indicates. This figure and the
remainder of this subsection assume that the system is
not configured with extra redundancy to protect safety
against commission failures (i.e., r = 0.)

In the asynchronous case, the verifier must always
wait for at least u+1 responses from the 2u+1 execu-
tion nodes.1 If any of these u+1 responses differ, Eve
rolls back and sequentially reexecutes the parallelBatch.
Thus, Eve is guaranteed to detect and correct u concur-
rency failures. Of course, even if all u+1 responding ex-
ecution nodes suffer concurrency failures, Eve could get
lucky and have them fail in different ways, triggering a
rollback, but Eve can only guarantee that it masks con-
currency failures when at least one of the u+1 responses
is correct.

If, instead, a synchronous model is assumed, fewer ex-

1It has to wait for u+1 because u nodes could be slow but correct
and then u of the nodes that did respond could crash, leaving just 1
node able to continue with the current state.

ecution replicas are needed because it is possible to iden-
tify failed nodes by their silence. This reduces replication
costs, but it also reduces the “spare” redundancy that we
exploited in the asynchronous case. In particular, under
a synchronous model, the system can sometimes operate
with only a single active execution node, and thus Eve
cannot always promise to correct even a single concur-
rency failure. Nonetheless, Eve still provides substantial
protection to synchronous configurations.

Extra protection during good intervals. During “good
intervals” when all nodes and the network are working
well, there is spare redundancy that Eve uses to boost its
“best effort” protection to tolerate concurrency bugs at
n-1 execution replicas in both the synchronous and asyn-
chronous cases.

For example, in the synchronous process-pair case,
when both execution nodes are alive, the primary re-
ceives both execution responses, and if they don’t match,
it orders a rollback and sequential replay. Thus, the
synchronous process-pair configuration masks one-node
concurrency failures when both nodes are functioning.
We expect this to be the dominant common case.

More generally, during a good interval Eve may transi-
tion to extra protection mode that masks n-1 concurrency
failures for the remainder of the good interval.

In a good interval, no faults or timeouts occur except
those caused by a concurrency failures. Thus, during the
interval all nodes are either correct or suffer concurrency
failures, and correct nodes and the network are timely.

When Eve is in extra protection mode (EPM), after the
verifiers receive the minimum number of execution re-
sponses necessary for progress, they continue to wait for
up to a short timeout to receive all n responses. If the ver-
ifiers receive all n matching responses, they commit the
response. Otherwise, they order a roll-back and sequen-
tial replay. Then, if they receive n matching responses
within a short timeout, they commit the response and re-
main in EPM. Conversely, if sequential reexecution does
not produce n matching and timely responses, they sus-
pect a non-concurrency failure and exit EPM.

Notice that as long as Eve remains in EPM, safety is
assured even if n− 1 execution nodes suffer a concur-
rency failure (or any other failure) for a parallelBatch.
Also notice that EPM does not affect liveness, since re-
peated rollbacks cause Eve to exit EPM. Finally notice
that during a good interval, once Eve enters EPM, it stays
there until the good interval ends (e.g., due to a non-
concurrency node failure or network timeout.)

The difference between the synchronous and asyn-
chronous case is how nodes make a decision to enter
EPM. In the synchronous case, the decision is easy be-
cause the current primary always knows which replicas
are alive, and it always receives responses from all live

6

replicas. In the asynchronous case, Eve enters EPM after
executing k consecutive batches for which all n execution
replicas provided matching, timely responses.

4.3 Mixer design
Nondeterministic parallel execution will only be produc-
tive if divergence is rare. Eve therefore uses a mixer to
identify requests that may usefully be executed in paral-
lel. Such a mixer must have low false negative and false
positive rates. False negatives will cause conflicting re-
quests to be executed in parallel, creating the potential
for divergence and rollback. False positives will cause
requests that could have been successfully executed in
parallel to be serialized, reducing the parallelism of the
execution. Note however that Eve remains safe and live
independent of the false negative and false positive rate
of the mixer. A good mixer is just a performance opti-
mization (although an important one).

The mixer is by nature application-specific. The basic
idea is to parse each request and predict what parts of the
state it will access. Depending on the application this can
vary from single application objects and file system files
to high-level abstractions such as database rows or tables.
After getting a prediction for each request the mixer sim-
ply avoids putting two conflicting requests in the same
parallelBatch. Two requests conflict when they access
the same object in a read/write or write/write manner.

We expect that a good mixer can be written for most
application and workloads. Although implementing a
perfect mixer might prove tricky for some cases, a mixer
that is allowed to misclassify requests occasionally is
much easier to achieve. Moreover, we can use feedback
from the system to improve the mixer over time (e.g. by
logging parallelBatches that caused rollbacks). In our
experience with the H2 Database Engine and the TPC-W
workload, we observe that the mixer can be inferred from
the tables that each transaction accesses. As demon-
strated in section 6, we achieve good parallelism (accept-
ably few false positives) and do not observe any rollbacks
(few or no false negatives). Kotla et al. [23] also report
that they were able to implement conflict avoidance fil-
ters with good parallelism.

5 Implementing state management
Moving from an agree-execute architecture to an
execute-verify one puts pressure on the implementation
of state checkpointing, comparison, rollback, and trans-
fer. For example, in Eve, after executing a parallelBatch
we have to compute a hash of a new checkpoint before
we respond to the clients. In contrast, traditional ap-
proaches only need to agree on the order of requests be-
fore responding to the clients. In these systems check-
points are created and compared less often (e.g. when
garbage collecting the request log).

At a high level our approach is straightforward—we
store the state using a copy-on-write Merkle tree to pro-
vide both efficient state comparison and fine grained
checkpointing and rollback.

Our implementation uses two ideas from BASE [37].
First, it includes only the subset of state that determines
the operation of the state machine. We omit temporary
state, like an IP address or a TCP connection, which can
vary across different nodes but has no semantic effect on
abstract state or outputs. Second, it provides an abstrac-
tion wrapper on some objects to mask variations across
different replicas.

Compared to BASE, three sets of issues arise: main-
taining a deterministic Merkle tree structure under paral-
lel execution, parallel hash generation, and Java language
and runtime issues.

5.1 Deterministic Merkle trees

To generate the same checksum for equivalent states, dif-
ferent replicas must put equivalent objects at the same
location in the Merkle tree. In single-threaded execution,
determinism can be achieved easily by adding an object
to the tree when it is created. Determinism is more chal-
lenging in multithreaded execution when objects can be
created concurrently.

There are two intuitive ways to solve the problem. The
first option is to make memory allocation synchronized
and deterministic, but this negates efforts toward con-
current memory allocation [17, 41]. Furthermore, it is
unnecessary, since the allocation order usually does not
fundamentally affect replica equivalence. Second, an ID
could be generated based on object content, and this ID
might be used to determine an object’s location in the
tree; this approach does not work, since many objects
have the same content, especially at creation time.

Our solution is to defer adding newly created objects
to the Merkle tree until the end of the batch. Eve scans
existing modified objects, and if one contains a reference
to an object not in the tree, it adds that object into the next
empty slot in the tree. After that Eve iteratively repeats
the process for all newly added objects.

The scanning is deterministic for two reasons: First,
existing objects are already put at deterministic locations
in the tree. Second, for a single object, Eve can iterate all
its references in a deterministic order. Usually, we can
use the order that references are defined in a class. There
are some problems with special classes, like Hashtable,
and we will discuss them in Section 5.3.2.

Note that scanning new objects is single-threaded. We
have not attempted to parallelize it, because it is much
less expensive than hash generation, which we do paral-
lelize.

7

5.2 Generating Merkle hashes in parallel
For scalability, the Merkle tree must generate its check-
sum in parallel. Eve’s approach is as follows: First, when
an object is updated, the path from the object to the root
of the tree is marked as dirty. At the end of a batch, Eve
divides the whole tree into a number of subtrees and as-
signs each subtree with dirty nodes to a thread. Then
each thread calculates its subtree’s new hash, using the
dirty bit to avoid unchanged branches. Finally, after all
worker threads finish, the main thread collects all hashes
from different subtrees and generates a global hash.

5.3 Java Language & Runtime
Our prototype is implemented in Java. Java provides us
with important features that help us implement the pre-
vious deterministic scanning algorithm, but it also raises
several challenges: First, some of its basic data struc-
tures, like Hashtables, can be equivalent but have differ-
ent internal states. Putting them directly into the Merkle
tree will of course yield spurious diverged checksums.
Our solution is to provide wrappers for certain classes to
abstract away differences across machines [37]. Second,
as long as the Merkle tree holds a reference to an object,
this object is not eligible for Java’s automatic garbage
collection (GC); our solution is to periodically perform a
Merkle-tree-level garbage collection.

5.3.1 Java Benefits

Our state management system is based on objects and a
typed programming language, Java, instead of on mem-
ory bytes. This gives us several benefits. First, it’s easy
to differentiate references from other data, which simpli-
fies scanning for new objects to add to the tree. When
generating a checksum for an object, it also allows us to
replace a nondeterministic memory address by its deter-
ministic location in the tree, which eliminates the prob-
lem of nondeterministic memory allocation. Second,
Java provides protection against certain kinds of bugs,
such as buffer overflow. This makes Eve’s runtime sys-
tem more likely to survive concurrency bugs.

5.3.2 Data structure abstraction

This problem comes from standard set-like data struc-
tures in Java. Those data structures, including
HashTable, HashSet, etc. are widely used in real ap-
plications. According to the definition of Set, two sets
are equivalent if all their elements are equivalent, inde-
pendent of their order. However, if we check the im-
plementation of these data structures, few of them are
order oblivious under concurrent executions. For exam-
ple, a Hashtable implemented using buckets is sensitive
to adding order if added objects fall into the same bucket.
For this kind of data structures, if we use the naive ap-
proach, two equivalent Sets will be identified as diverged.
Rollback and safe reexecution could fix this, but since

these data structures are used so widely and frequently,
we do not want them to cause frequent rollbacks.

Eve creates a wrapper for Set-like data structures:
when a checksum is needed, the wrapper creates a de-
terministic list of all its elements, completely ignoring
the internal data structure. When an iteration is needed,
the wrapper also provides that deterministic iterator. The
wrapper sorts the Set elements to achieve deterministic
order. For some data structures, a specialized wrapper
could achieve better performance. For example, for a
bucket-based hashtable, we could sort inside each bucket
instead of sorting all elements. Note that it’s possible that
elements are not sortable. This case also requires a spe-
cialized wrapper. Eve uses the request ID plus the num-
ber of objects added by the request to order such objects.
Our experience with applications has been that most Set-
like data structures use sortable values as keys, like In-
teger, Long, String, etc. Even more complex data types
usually have a primitive identifier, which can be used to
sort. Thanks to the well-defined Java interface, we only
need to create two general purpose wrappers: one for Set
and one for Map. In Java, almost all Set-like data struc-
tures implement one of these two interfaces.
5.3.3 Automatic garbage collection

One of the most important features of the Java Virtual
Machine (JVM) is garbage collection (GC), in which the
JVM can deallocate an object if it is not reachable from
any root object. However, GC cannot collect an object
if the Merkle tree always holds a reference to that ob-
ject. Requiring the programmer to remove the object
from the tree manually is a solution, but this eliminates
the benefits of automatic GC. Our solution is to period-
ically perform a Merkle-tree-level GC. We use a mark
and sweep algorithm, similar to JVM’s GC: start scan-
ning from some root objects and scan their references
recursively. If some objects are not touched during this
scan, they can be removed from the tree. From our expe-
rience with the applications, objects in the tree typically
have a long lifetime, since they are “important” objects,
so the Merkle-tree-level GC can be performed less fre-
quently than JVM’s GC.

6 Evaluation
In our evaluation, we try to answer the following ques-
tions:
• What is the throughput gain that Eve provides com-

pared to a traditional sequential execution approach?

• How do Eve’s overheads compare to those of unrepli-
cated multithreaded execution and to alternative repli-
cation approaches?

• How is Eve’s performance affected by the mixer and
by other workload characteristics?

8

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
hr

ou
gh

pu
t (

re
qu

es
ts

/s
ec

)

execution threads

Throughput scalability

sequential replicated
unreplicated

unsafe replicated
Eve

Figure 4: This graph shows the throughput of a) a se-
quential unreplicated server b) a multithreaded unrepli-
cated server c) an unsafe replicated server (requests ex-
ecuted in parallel, but no verification performed) and d)
an Eve replicated multithreaded server. The replicated
experiments use a server-pair configuration on 16-core
machines. The servers run the TPC-W browsing work-
load on the H2 Database Engine.

• How well can Eve mask concurrency bugs?
We address these questions by using a simple key-

value store application, the H2 Database Engine, and the
Apache Web Server. We use the key-value store applica-
tion to perform microbenchmark measurements of Eve’s
sensitivity to various parameters. Specifically, we vary
the amount of execution time required per request, the
size of the application objects and the accuracy of our
mixer, both in terms of false positives and false nega-
tives. For the H2 Database Engine we use 3 TPC-W
workloads. For brevity, we will present the results of
the browsing workload, which has more opportunities for
concurrency.

Note that our prototype omits some of the features
described above. Specifically, although we implement
the extra protection mode (EPM) optimization from Sec-
tion 4.2 for synchronous server-pair replication, we do
not implement it for our asynchronous configurations.
Also, our current implementation does not handle ap-
plications that include objects for which Java’s finalize
method modifies state that needs to be consistent across
replicas.

We run our experiments on an Emulab testbed with
24x 4-core Intel Xeon @2.4GHz, 3x 8-core Intel Xeon
@2.66GHz, and 2x 16-core Intel Xeon @1.6GHz, con-
nected with a 1Gb Ethernet. The 2 16-core machines
are only enough to support our server-pair experiments.
Therefore, our asynchronous replication experiments run
on 8-core machines. For the asynchronous configuration
we use 3 execution and 4 verifier nodes, which is suffi-
cient to tolerate 1 arbitrary fault (u = 1, r = 1).

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1 2 3 4 5 6 7 8

T
hr

ou
gh

pu
t (

re
qu

es
ts

/s
ec

)

execution threads

Throughput scalability

sequential replicated
unreplicated

unsafe replicated
Eve

Figure 5: This graph shows the throughput of a) a se-
quential unreplicated server b) a multithreaded unrepli-
cated server c) an unsafe replicated server (requests ex-
ecuted in parallel, but no verification performed) and d)
an Eve replicated multithreaded server. The replicated
experiments use an asynchronous configuration (3-way
replication) on 8-core machines. The servers run the
TPC-W browsing workload on the H2 Database Engine.

6.1 H2 Database with TPC-W
Figures 4 demonstrates the performance of Eve for
the H2 Database Engine [20] with the TPC-W work-
load [43], for a synchronous server-pair configuration
with 2 execution nodes. We observe that with 16 execu-
tion threads, Eve achieves a speedup of 7.2x, compared
to the sequential execution that previous state machine
replication systems have used. That compares favorably
with the 8.8x speedup that is achieved by an unreplicated
server using 16 cores.

For reference, we also measure the performance of an
unsafe multithreaded replicated system that executes re-
quests in parallel but that omits Eve’s correctness checks.
The performance of this system is close to that of the un-
replicated server. Note, however, that this arrangement
is not only unsafe in theory but also in practice. We find
that the value produced for a given request frequently dif-
fers between the primary and secondary. To complete the
benchmark, we only send the primary’s answers to the
clients.

Figures 5 demonstrates the performance for a similar
experiment, only this time in an asynchonous replication
setting with 3 execution servers. We observe a simi-
lar scalability pattern for this figure. Note that in this
experiment we use 8-core machines and that each core
of our 8-core machines is faster than the cores of our
16-core machines, so the y-axis is shifted. At 8 cores,
Eve’s speedup compared to the single-threaded unrepli-
cated server is 4.4x, while the multithreaded unreplicated
server has a speedup of 5.6x.

In both configurations and across all runs and for all

9

 0

 2

 4

 6

 8

 10

 12

 14

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
hr

ou
gh

pu
t s

ca
lin

g

execution threads

CPU demand

10ms
1ms

0.1ms

Figure 6: This graph shows the impact of CPU demand
per request on Eve’s throughput scalability. The work-
loads are 10ms, 1ms, and 0.1ms of CPU time per request.
The servers run our key-value store application with a
server-pair configuration on 16-core machines. The ap-
plication object size is 1KB.

 0

 2

 4

 6

 8

 10

 12

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
hr

ou
gh

pu
t s

ca
lin

g

execution threads

Object size

10B
1KB

10KB

Figure 7: This graph shows the impact of application ob-
ject size on Eve’s throughput scalability. Object sizes are
10bytes, 1KB, and 10KB. The servers run our key-value
store application with a server-pair configuration on 16-
core machines. The CPU time per request is 1ms.

data points, Eve never needs to roll back. This indi-
cates that our simple mixer never parallelized requests
it should have serialized. At the same time, the good
speedup indicates that it was adequately aggressive in
identifying opportunities for parallelism.

6.2 Microbenchmarks

In this section, we report on how various parameters af-
fect Eve’s performance. Due to lack of space, we only
show the graphs for the server-pair configuration; the re-
sults for asynchronous replication are similar. Unless
varied by a particular experiment, the default workload
incurs 1ms of execution time per request and the appli-

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0.01 0.1 1 10

T
hr

ou
gh

pu
t (

re
qu

es
ts

/s
ec

)

Conflict % (log)

False negatives

single-threaded
0% FN

0.01% FN
0.1% FN

1% FN
2% FN

10% FN

Figure 8: This graph shows the impact of conflict chance
and false negative rate on Eve’s throughput. We vary the
conflict chance from 0.01% to 10% and the false negative
rate from 0% to 10%. The servers run our key-value store
application with a server-pair configuration on 16-core
machines. Application object size is 1KB and the CPU
time per request is 1ms.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0.01 0.1 1 10

T
hr

ou
gh

pu
t (

re
qu

es
ts

/s
ec

)

Conflict % (log)

False positives

single-threaded
0% FP
1% FP

10% FP
25% FP
50% FP

100% FP

Figure 9: This graph shows the impact of conflict chance
and false positive rate on Eve’s throughput. We vary the
conflict chance from 0.01% to 10% and the false positive
rate from 0% to 100%. The servers run our key-value
store application with a server-pair configuration on 16-
core machines. Application object size is 1KB and CPU
time per request is 1ms.

cation object size is 1KB.
Figure 6 shows the impact of varying the CPU de-

mand of the workload. We observe that heavier work-
loads (10ms of execution time per request) scale well,
up to a 12.5x on 16 cores compared to sequential execu-
tion. As the workload gets lighter, the effect of our over-
head becomes more pronounced. Speedups fall to 10x
for 1ms/request and to 3.3x for 0.1ms/request. The 3.3x
scaling is partially an artifact of our inability to fully load
the server when requests are light. In our workload gen-
erator, clients have 1 outstanding request at a time, thus

10

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 20 40 60 80 100 120 140 160

T
hr

ou
gh

pu
t (

re
qu

es
ts

/s
ec

)

Time (seconds)

Crash and recovery

Figure 10: This graph shows the impact of node crash
and recovery on throughput for an Eve server-pair con-
figuration on 16-core machines.

requiring a high number of clients to saturate the server;
this causes our server to run out of sockets. We measure
our server CPU utilization during this experiment to be
about 30%.

In the graph, we plot throughput scalability, so that
trends across workloads are apparent. The absolute peak
throughputs in requests per second are 25.2K, 10.0K,
1242 for the 0.1ms, 1ms, 10ms lines, respectively.

The next experiment explores the impact of the appli-
cation object size on the system throughput. We expect
larger objects to decrease the performance, since calcu-
lating the hashes of these objects will become the bot-
tleneck. We run the experiment using object sizes of
10 bytes, 1 KB, and 10 KB, respectively, with 1ms of
processing time per request in all cases. Figure 7 shows
the results. In this graph, we plot scalability rather than
throughput to better indicate the trends across workloads.
The absolute peak throughput values in requests per sec-
ond are 10.0K, 10.0K, 5.6K for the 10byte, 1KB, 10KB
lines, respectively.

Next, we evaluate the sensitivity of Eve to inaccuracy
in the mixer. Specifically, we want to explore the limits
of tolerance to false negatives (misclassifying conflicting
requests as non-conflicting) and false positives (misclas-
sifying non-conflicting requests as conflicting). The ef-
fect of these parameters is measured as a function of the
pairwise conflict chance; the chance that 2 requests have
a conflict. In practice, we achieve this by having each
request modify 1 object and then varying the number of
application objects. For example, to produce a 1% con-
flict chance, we create 100 objects. Similarly, a 1% false
negative rate means that each pair of conflicting requests
has a 1% chance of being classified as non-conflicting.

Figure 8 shows the effect of false negatives on
throughput. First notice that, even for 0% false negatives,
the throughput drops as the pairwise conflict chance in-

creases due to the decrease of available parallelism. For
example, if a batch has 100 requests and each request has
a 10% chance of conflicting with each other request, then
a perfect mixer is likely to divide the batch into about 10
parallelBatches, each with about 10 requests.

When we add false negatives, we add rollbacks, and
the number of rollbacks increases with both the under-
lying conflict rate and the false negative rate. Notice
that the impact builds more quickly than one might ex-
pect because there is essentially a birthday “paradox”—if
we have a 1% conflict rate and a 1% false negative rate,
then the probability that any pair of conflicting requests
is misclassified is 1 in 10000. But in a batch of 100 re-
quests, each of these requests has about a 1% chance of
being party to a conflict, which means there is about a
39% chance that a batch of 100 requests contains an un-
detected conflict. Furthermore, with a 1% conflict rate,
the batch will be divided into only a few parallelBatches,
so there is a good chance that conflicting requests will
land in the same parallelBatch. In fact, in this case we
measure 1 rollback per 7 parallelBatches executed. De-
spite this high conflict rate and this high number of roll-
backs, Eve achieves a speedup of 2.6x compared to se-
quential execution.

Figure 9 shows the effect of false positives on through-
put. As expected, increased false positive ratios can lead
to lower throughput, but the effect is not as significant
as for false negatives. The reason is simple: false posi-
tives reduce the opportunities for parallel execution, but
beyond that they don’t incur any additional overhead.

From these experiments, we conclude that Eve does
require a good mixer to achieve good performance. This
requirement does not particularly worry us. We found it
easy to build a mixer that (to the best of our knowledge)
detects all conflicts and still allows for a good amount of
parallelism. Others have had similar experience [23]. Al-
though creating perfect mixers may be difficult in some
cases, we speculate that it will often be feasible to con-
struct mixers with the low false negative rates and modest
false positive rates needed by Eve.

6.3 Failure and recovery

In Figure 10, we demonstrate Eve’s ability to mask and
recover from failures. In the server-pair configurations
we run an experiment where we kill the primary node n1
at t = 30 seconds and recover it at t = 60 seconds (by
which time the secondary n2 has become the new pri-
mary). We then kill the new secondary (n1) at t = 90
seconds and recover it at t = 120 seconds. We present
the throughput over time. We observe that the through-
put drops to zero after the first failure until the backup
realizes that the primary is dead. It then assumes the role
of the primary and starts processing requests. Note that
the throughput during this period is higher because the

11

Group all 1% FN 0.5% FN 0.1% FN Default Mixer
Times bug manifested 73 51 29 4 0
Fixed with rollback 60 38 18 3 0
All identical 13 13 11 1 0
Throughput 1104 1233 1240 1299 1322

Figure 11: Effectiveness of Eve in masking concurrency bugs when various mixers are used.

 0

 0.2

 0.4

 0.6

 0.8

 1

SELECT (primary)

SELECT (non-primary)

UPDATE (primary)

UPDATE (non-primary)

JOIN (primary)

JOIN (non-primary)

Th
ro

ug
hp

ut
 (n

or
m

al
iz

ed
)

Remus and Eve throughput

Xen
Xen/Remus

Xen/Eve

Figure 12: This graph shows the throughput of Remus
and Eve normalized against that of an unreplicated H2
Database Engine, running on Xen with 1 virtual CPU.
The various workloads are: SELECT, UPDATE and
JOIN on primary and non-primary key. Both systems
use a 2-node configuration.

new primary knows that the other node is crashed and
does not have to send any messages to it. At t = 60, the
first node recovers. Again, the throughput drops to zero
for a short span while the primary catches up the newly
recovered node. Then the throughput returns to its origi-
nal value. The process repeats when n1 crashes again at
t = 90 seconds and recovers at t = 120 seconds. When
the secondary fails, the primary has to wait until it learns
that the secondary is dead, before it resumes operation in
single-node mode.

6.4 Concurrency failures
In this section, we evaluate Eve’s ability to mask concur-
rency failures. We configure the system as server-pair
with 16 execution threads and run the TPC-W brows-
ing workload on the H2 Database Engine with various
mixers. H2 has a previously undiagnosed concurrency
bug in which a row counter is not incremented prop-
erly when multiple requests access the same table in
read uncommitted mode. Our standard mixer completely
masks this bug because it does not let requests that mod-
ify the same table execute in parallel. By introducing less
accurate mixers we can explore how well Eve’s second
line of defense—parallel nondeterministic execution—
works in masking this bug.

We report the number of times that the bug manifested

 0
 20
 40
 60
 80

 100
 120
 140
 160

SELECT (primary)

SELECT (non-primary)

UPDATE (primary)

UPDATE (non-primary)

JOIN (primary)

JOIN (non-primary)

Ba
nd

wi
dt

h
us

ed
 (M

B/
se

c)

Remus and Eve bandwidth

Network capacity

61M

7.4M

125M

26M

63M

7.2M
86K 8.4K 8K 7.4K 57K 16K

Xen/Remus
Xen/Eve

Figure 13: This graph shows the bandwidth utilization
of Remus and Eve running the H2 Database Engine on
Xen with 1 virtual CPU. The various workloads are: SE-
LECT, UPDATE and JOIN on primary and non-primary
key. Both systems use a 2-node configuration.

in one or both replicas. When the bug manifests only in
one replica, Eve detects that the replicas have diverged
and repairs the damage by rolling back and reexecuting
sequentially. If the bug happens to manifest in both repli-
cas in the same way, Eve will not detect it. Table 11
summarizes our results.

The first column shows the results when there is a triv-
ial aggressive mixer that places all requests of batch i in
the same parallelBatch. In this case, all requests that ar-
rive together in a batch are allowed to execute in parallel.
Naturally, this case has the highest number of bug man-
ifestations. We observe that even when the mixer does
no filtering at all, Eve masks 82% of the instances where
the bug manifests. In the remaining 18% of the cases,
the bug manifested in the same way in both replicas and
was not corrected by Eve. In columns 2 through 4, we
introduce mixers with high rates of false negatives. This
results in fewer manifestations of the bug, with Eve still
masking the majority of those manifestations. In the fifth
column, we show results for our default mixer, which (to
the best of our knowledge) does not introduce false neg-
atives. In this case, the bug does not manifest at all.

Although we do not claim that these results are gen-
eral, we find them promising.

12

6.5 Other approaches
Remus [13] is a passive replication system that uses Vir-
tual Machines (VMs) to frequently send state updates
from the primary to the backup. An advantage of this ap-
proach is that it is simple and requires no modifications to
the application. A drawback of this approach is that it ag-
gressively utilizes network resources to keep the backup
consistent with the primary. The issue is aggravated by
two properties of Remus. First, Remus does not make
fine-grain distinctions between state that is required for
the state machine and temporary state, thus sending more
pages than those required for replication. Second, Re-
mus operates on the VM level, which forces it to send
entire pages, rather than just the modified objects. Also,
because of Remus’s passive replication, primary-backup
approach, it tolerates a narrower range of faults than Eve.

The Remus paper [13] reports numbers only for 1
CPU, and in all our experiments it crashed with more
CPUs than that. Remus developers report that Remus
can run with 2 CPUs [34]. Also, in our experiments Re-
mus would cause the network of the guest OS to become
unresponsive, so we disabled the network and had the
server read the workload from a local trace file, which
greatly reduces the overhead of Remus. Also, Remus
consistently crashes when we attempt to run the TPC-
W workload. We therefore report on microbenchmark
workloads with specific SQL queries taken from TPC-W.
For fair comparison, we run Eve itself on Xen, to incor-
porate any overheads Xen itself may incur.

In Figure 12 we plot the throughput of Remus and
Eve normalized against the throughput achieved by an
unreplicated H2 Database Engine, running on Xen with
1 virtual CPU. Figure 13 shows the corresponding band-
width utilizations. In this figure, the reason Eve results
do not register next to Remus’s bandwidth utilization is
that Eve uses about 3 orders of magnitude less band-
width.

With 1 CPU, Eve’s performance is competitive with
Remus’s, and both impose moderate overheads com-
pared to an unreplicated Xen server. We again note that
supplying requests from a local trace rather than network
clients, clearly gives Remus an advantage in this experi-
ment.

Although we could not perform a direct comparison
with multiple CPUs, Remus’s heavy use of the network
to transfer modified pages from the primary to the replica
appears to limit its scalability. As Figure 13 indicates,
Eve uses drastically less network bandwidth, because it
transfers hashes of its state, rather than the state itself.
Note that hash computation is not only faster than net-
work transfer, but also parallelizable across CPUs.

The next experiment compares Eve’s throughput to
that reported by DPG [6]. We run the Apache Web
Server, using a workload of 10KB static pages. We mea-

 0

 2000

 4000

 6000

 8000

 10000

Original Apache

single node

DPG single node

DPG replicated

Original Apache

single node

Eve replicated

T
hr

ou
gh

pu
t (

re
qu

es
ts

/s
ec

)

DPG reported results

Throughput of DPG and Eve

Eve measured results

Figure 14: This graph shows the report throughput of
DPG (single node and replicated) and Eve (replicated)
compared to an original Apache Web Server with a work-
load of 10KB static pages.

sure the throughput of the original Apache server and
that of a server-pair Eve configuration. Figure 14 shows
the results of our experiment, as well as the results re-
ported for DPG on comparable hardware [6]. We observe
that the original Apache achieves the same throughput in
both cases. DPG incurs a 4x slowdown in order to make
a single Apache server deterministic, with a throughput
of 2.4K requests per second; when the server is repli-
cated, throughput is further reduced by another factor of
6 to 372 requests per second. In contrast, Eve achieves a
throughput of 7.4K requests per second for the replicated
Apache server.

7 Conclusion
Eve is a new Execute-Verify architecture that allows state
machine replication to scale to multi-core servers. Eve
accomplishes this by revisiting fundamental assump-
tions. Where the traditional view has been that state
machines’ independent executions must be deterministic,
Eve demonstrates that nondeterministic execution can be
used by employing an execute-verify architecture along
with a mixer that reduces misspeculation. The practical
consequence of refining our assumptions is that Eve uses
its execute-verify architecture to bring together nonde-
terminism and independence to improve the performance
and fault tolerance of replicated multi-core servers.

References
[1] G. Altekar and I. Stoica. ODR: output-deterministic replay for

multicore debugging. In SOSP, 2009.

[2] A. Aviram, S.-C. Weng, S. Hu, and B. Ford. Efficient system-
enforced deterministic parallelism. In OSDI, 2010.

[3] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield. Xen and the Art of
Virtualization. In SOSP, 2003.

13

[4] C. Basile, Z. Kalbarczyk, and R. K. Iyer. Active replication of
multithreaded applications. IEEE TPDS, 2006.

[5] T. Bergan, O. Anderson, J. Devietti, L. Ceze, and D. Grossman.
CoreDet: a compiler and runtime system for deterministic multi-
threaded execution. SIGARCH Comput. Archit. News, 2010.

[6] T. Bergan, N. Hunt, L. Ceze, and S. D. Gribble. Deterministic
process groups in dOS. In OSDI, 2010.

[7] E. D. Berger, T. Yang, T. Liu, and G. Novark. Grace: safe multi-
threaded programming for C/C++. In OOPSLA, 2009.

[8] T. C. Bressoud and F. B. Schneider. Hypervisor-based fault toler-
ance. ACM Trans. Comput. Syst., 1996.

[9] N. Budhiraja, K. Marzullo, F. B. Schneider, and S. Toueg.
Primary-backup protocols: Lower bounds and optimal imple-
mentations. In CDCCA, 1992.

[10] M. Castro and B. Liskov. Practical Byzantine fault tolerance and
proactive recovery. ACM Trans. Comput. Syst., 2002.

[11] A. Clement, M. Kapritsos, S. Lee, Y. Wang, L. Alvisi, M. Dahlin,
and T. Riche. Upright cluster services. In SOSP, 2009.

[12] A. Clement, M. Marchetti, E. Wong, L. Alvisi, and M. Dahlin.
Making Byzantine fault tolerant systems tolerate Byzantine
faults. In NSDI, 2009.

[13] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, and
A. Warfield. Remus: High availability via asynchronous virtual
machine replication. In NSDI, 2008.

[14] J. Devietti, B. Lucia, L. Ceze, and M. Oskin. DMP: deterministic
shared memory multiprocessing. In ASPLOS, 2009.

[15] G. Dunlap, D. Lucchetti, M. Fetterman, and P. Chen. Execution
replay for multiprocessor virtual machines. In VEE, 2008.

[16] S. A. Edwards, N. Vasudevan, and O. Tardieu. Programming
shared memory multiprocessors with deterministic message-
passing concurrency: compiling SHIM to Pthreads. In DATE,
2008.

[17] J. Evans. A scalable concurrent malloc(3) implementation for
FreeBSD, 2006.

[18] P. Fonseca, C. Li, and R. Rodrigues. Finding complex concur-
rency bugs in large multi-threaded applications. In Eurosys, 2011.

[19] J. Gray. Why do computers stop and what can be done about it.
Technical Report 85.7, Tandem Computers, June 1985.

[20] H2. The H2 home page. http://www.h2database.com.

[21] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. Zookeeper: wait-
free coordination for internet-scale systems. In USENIX, 2010.

[22] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong.
Zyzzyva: Speculative Byzantine fault tolerance. In SOSP, 2007.

[23] R. Kotla and M. Dahlin. High throughput Byzantine fault toler-
ance. In DSN, 2004.

[24] L. Lamport. Time, clocks, and the ordering of events in a dis-
tributed system. CACM, 1978.

[25] L. Lamport. The part-time parliament. ACM Trans. Comput.
Syst., 1998.

[26] D. Lee, B. Wester, K. Veeraraghavan, S. Narayanasamy, P. M.
Chen, and J. Flinn. Respec: efficient online multiprocessor replay
via speculation and external determinism. In ASPLOS, 2010.

[27] Y. Mao, F. P. Junqueira, and K. Marzullo. Mencius: building
efficient replicated state machines for WANs. In OSDI, 2008.

[28] J. Napper, L. Alvisi, and H. Vin. A fault-tolerant Java virtual
machine. In DSN, 2003.

[29] M. Olszewski, J. Ansel, and S. Amarasinghe. Kendo: efficient
deterministic multithreading in software. In ASPLOS, 2009.

[30] OpenMP Architecture Review Board. OpenMP application pro-
gram interface version 3.0, May 2008.

[31] J. T. Pablo Montesinos, Luis Ceze. Delorean: Recording and
deterministically replaying shared-memory multiprocessor exe-
cution efficiently. In ISCA, 2008.

[32] S. Park, Y. Zhou, W. Xiong, Z. Yin, R. Kaushik, K. H. Lee, and
S. Lu. PRES: probabilistic replay with execution sketching on
multiprocessor. In SOSP, 2009.

[33] D. Powell, M. Chéréque, and D. Drackley. Fault-tolerance in
Delta-4. ACM OSR, 1991.

[34] S. Rajagopalan. Personal communication.

[35] C. Reis, J. Dunagan, H. Wang, O. Dubrovsky, and S. Esmeir.
BrowserShield: Vulnerability-driven filtering of dynamic HTML.
In OSDI, 2006.

[36] J. Robert L. Bocchino, V. S. Adve, D. Dig, S. V. Adve,
S. Heumann, R. Komuravelli, J. Overbey, P. Simmons, H. Sung,
and M. Vakilian. A type and effect system for deterministic par-
allel Java. In OOPSLA, 2009.

[37] R. Rodrigues, M. Castro, and B. Liskov. BASE: using abstraction
to improve fault tolerance. In SOSP, Oct. 2001.

[38] M. Ronsse and K. De Bosschere. RecPlay: a fully integrated
practical record/replay system. ACM TCS, 1999.

[39] F. B. Schneider. Implementing fault-tolerant services using the
state machine approach: a tutorial. ACM Computing Surveys,
1990.

[40] A. Singh, P. Fonseca, P. Kuznetsov, R. Rodrigues, and P. Mani-
atis. Zeno: Eventually consistent Byzantine-fault tolerance. In
NSDI, 2009.

[41] Sun Microsystems, Inc. Memory management in the Java
HotSpot virtual machine, 2006.

[42] A. Thomson and D. J. Abadi. The case for determinism in
database systems. VLDB, 2010.

[43] Transaction Processing Performance Council. The TPC-W home
page. http://www.tpc.org/tpcw.

[44] R. van Renesse. Refining the way to consensus. In PODC, 2009.

[45] R. van Renesse, K. P. Birman, and S. Maffeis. Horus: A flexible
group communication system. CACM, 1996.

[46] B. Vandiver, H. Balakrishnan, B. Liskov, and S. Madden. Tol-
erating Byzantine faults in transaction processing systems using
commit barrier scheduling. In SOSP, 2007.

[47] K. Veeraraghavan, D. Lee, B. Wester, J. Ouyang, P. Chen,
J. Flinn, and S. Narayanasamy. DoublePlay: parallelizing se-
quential logging and replay. In ASPLOS, page 15, 2011.

[48] T. Wood, R. Singh, A. Venkataramani, P. Shenoy, and E. Cecchet.
ZZ and the art of practical BFT. In Eurosys ’11, 2011.

[49] M. Xu, R. Bodik, and M. D. Hill. A ”flight data recorder” for en-
abling full-system multiprocessor deterministic replay. In ISCA,
2003.

[50] M. Xu, V. Malyugin, J. Sheldon, G. Venkitachalam, and B. Weiss-
man. Retrace: Collecting execution trace with virtual machine
deterministic replay. In MOBS, 2007.

[51] J. Yin, J.-P. Martin, A. Venkataramani, L. Alvisi, and M. Dahlin.
Separating agreement from execution for Byzantine fault tolerant
services. In SOSP, Oct. 2003.

14

	References

