Operating System Support for Massive Replication

Arun Venkataramani

Ravi Kokku Mike Dahlin

{arun,rkoku,dahlin} @cs.utexas.edu
Computer Sciences, The University of Texas at Austin, USA

1 Introduction

The increasing number of devices used by each user
to access data and services and the increasing importance
of the data and services available electronically both fa-
vor “access-anywhere” network-delivered services. Unfor-
tunately, making such services highly available is difficult.
For example, even though end servers or service hosting
sites advertise an availability of “four nines” (99.99%) or
“five nines” (99.999%), the end-to-end service availability
(as perceived by clients) is typically limited to two nines
because of poor wide area network availability [6]. More-
over, although network bandwidths are improving quickly,
network latencies are much more difficult to improve in
wide area networks, which limits performance for access-
anywhere services if those services are delivered from a sin-
gle location.

This paper first argues that operating systems should pro-
vide support for massive replication of data and services. In
particular, we argue that (1) technology trends favor “wast-
ing” surprisingly large amounts of bandwidth and storage
in order to improve availability or latency and (2) system
support for massive replication is needed to realize these
benefits because hand-tuning by engineers will not work.

This paper then outlines areas where operating system
support can facilitate massive replication. We conclude that
although a number of useful building blocks exist — par-
ticularly in the area of end-host resource management —
additional work is needed to develop scalable end-to-end
network support for massive replication, to develop client
or edge-server support for simultaneously hosting large
numbers of applications with essentially unlimited resource
demands, and for developing end-to-end abstractions that
make programming massive replication applications sim-

ple.

This work was supported in part by Tivoli Software, IBM Software
Group and the Texas Advanced Technology Program through Faculty
Partnership Awards. Dahlin was aso supported by an NSF CAREER
award(CCR-9733842) and and Alfred P. Sloan Fellowship.

Interval Number Interval Number

(@) (b)

Figure 1. Server loads averaged over (a) 1-
second and (b) 1-minute time scales for the
IBM sporting event workload.

2 Casefor Operating System Support

Operating system support for massive replication is mo-
tivated by two factors. First, technology trends suggest that
massive replication will be an important building block for
a wide range of services. Second, these same trends sug-
gest that it will be difficult to successfully hand-tune appli-
cations that use massive replication.

Moving and storing electrons is extremely cheap, so
it can make sense to “waste” many electrons to improve
human-perceived availability and latency. In particular, the
rapidly falling cost of network bandwidth [5, 14] and disk
storage [8] — each improving at nearly 100% per year — may
call for more aggressive replication than intuition might first
suggest. Gray and Shenoy [10] describe a back of the enve-
lope analysis that compares the dollar value of caching data
versus the dollar cost of waiting while the data are refetched
at some time in the future [10]; Chandra et. al [6] extend
this model to consider prefetching and conclude that using
an assumption similar to Gray and Shenoy’s estimates of
network and disk costs in the year 2000, a system may be
economically justified in prefetching an object even if there
is only a 1% chance that that object will ever be used. In his
Master’s thesis [5], Chandra argues that even more aggres-
sive replication could be justified in the future given disk
and network cost trends and given the desire to improve
end-to-end availability not just performance.

Care should be taken in interpreting these results. If ev-
eryone started prefetching this aggressively tomorrow, the
Internet would likely be overwhelmed. One way of viewing
this calculation is that it suggests that economic incentives
may exist to grow network capacity over time to accommo-
date increasingly aggressive prefetching.

A second technology factor that favors massive replica-
tion is the burstiness of demand workloads. Figure 1, from
Chandra’s thesis, shows the request load on an IBM server
hosting a major sporting event during 1998 averaged over
1-second and 1-minute intervals. Server loads are bursty at
many time scales with significant differences between peak
and trough loads. Similar patterns have been noted else-
where [7]. This burstiness suggests that systems are likely
to be built with considerable spare capacity in order to ac-
commodate bursts of load; this spare capacity can often be
used to support aggressive replication. Conversely, systems
built with the capacity to support aggressive replication will
also benefit from an increased ability to handle large bursts
of load.

Given these technology and workload trends, it seems
likely that large numbers of applications will seek to make
use of aggressive replication to improve availability or per-
formance or both. For example, content distribution net-
works may wish to send updates to replicas before the new
versions of objects are requested by clients [20]; multi-
replica file systems may wish to immediately propagate all
updates to maximize availability and consistency [21]; peer-
to-peer systems may wish to replicate directory informa-
tion [17] or data [20] to multiple replicas; systems support-
ing mobile clients may wish to replicate portions of file sys-
tems or databases to many client machines for disconnected
access [12, 16]; and WAN enterprise servers or third-party
file service providers [2] may wish to replicate the contents
of file systems to geographically-distributed installations to
provide the availability and responsiveness of local file sys-
tems while providing the global consistency of a WAN file
system.

Although the opportunity for aggressive replication ex-
ists, it will be difficult for applications to take advan-
tage of massive replication without end-to-end system sup-
port. A well-known problem with prefetching is that it
consumes more resources than demand replication because
some prefetched data is not used. Both self-interference —
a prefetching application should ensure that its prefetch re-
quests do not interfere with its demand requests — and cross-
interference — prefetch requests should not interfere with
other applications’ demand requests — should be minimized.

Most often, this problem is addressed by hand tuning.
For example, many prefetching algorithms estimate the
probability that an object will be used, and then prefetch ob-
jects whose probability of use exceeds a threshold [9, 20].

Unfortunately, hand tuning seems unlikely to work for
WAN massive replication.

e First, as noted above, intuition may be a poor guide
for balancing the benefits and costs of prefetching. For
example, Duchamp [9] selects a prefetch threshold of
25% as a reasonable balance between wasted band-
width and latency reduction; the analysis discussed
above suggests that this threshold may be far too con-
servative in many environments.

e Second, because of network cost and disk storage cost
technology trends, the break-even point for prefetching
will change significantly from year to year.

e Third, because of bursty workloads, the spare capac-
ity available at a given point in time will change from
second to second or minute to minute.

e Fourth, the complexity of hand tuning, and the lack
of end-to-end support to ensure that prefetching re-
quests do not interfere with demand requests discour-
ages deployment of aggressive replication applications
by (a) making the implementation of such systems
more complex or fragile or both and (b) forcing con-
scientious application writers to be extremely cautious
in their designs.

We believe that system support for massive replication
should encourage development and deployment of appli-
cations that use massive replication to improve availability
and performance. In particular, such support would allow
simple applications that just state what they wish to repli-
cate; the underlying system should be “self-tuning” and
replicate as much as can be done without interfering with
demand requests.

3 OSSupport for Massive Replication

In this section we introduce a technique that allows us to
allocate network resources in a manner such that a flow can
be transmitted across the network without interfering with
the flows already present. Thus, if there is spare capacity
in the network, such flows can be efficiently transmitted,;
if not, the network will automatically ensure minimal self
and cross-intereference with other flows. We then discuss
resource management issues at the end-stations to minimize
interference between competing applications.

3.1 Network

Aggressively replicating and maintaining copies of data
across the Internet can potentially consume virtually un-
bounded amounts of network bandwidth and interfere with
existing applications. Since the network is a shared re-
source, it is essential to ensure minimal interference. How-
ever, a key question is whether network resource manage-
ment be done in the network or at the end? One one hand

0.1

Vegas-Nice ——
Router Prio ----x----
Reno -
Vegas & &
0.01 Vegas-0 -—#-- o -4
S -
(5] L
<2 /
™~ -
& 0.001 ¢ g
=4
]
©
- o s
. I
0.0001 B:zomocos L B e
1le-05 L
1 10 100

Num BG flows
(a) Foreground latency vs. number of background flows

90000

80000

*u
a

70000

@
X 60000
El 3
& 50000 F
S 40000 *
=
=
» 30000 |
@
20000 Vegas-Nice —+—
Router Prio ----%----
Reno -
10000 Vegas —m
Vegas-0 --=--
0 .
1 10 100

Num BG flows

(b) Background throughput vs. number of background flows

Figure 2. Performance comparison of Reno, Router Prioritization, Nice and Vegas

simple prioritization schemes implemented at the routers
such as the ones proposed for DiffServ [1] can easily pre-
vent low priority flows from interfering with high priority
flows. Unfortunately, there are practical hurdles to the im-
mediate widespread deployability of such schemes.

We examine the other approach to develop an end-to-
end transport protocol that approximates router prioritiza-
tion without actually modifying the routers. We have de-
veloped a new congestion control algorithm, namely TCP
Nice [19] as an end-to-end solution to the problem of mini-
mizing interference. Nice is a simple extension to the TCP
Vegas [4] congestion control protocol. \Vegas uses round
trip time (RTT) to limit the number of packets enqueued
by a flow in the bottleneck router, so it provides a reason-
able basis for conservative end-to-end congestion control.
Unfortunately, Vegas was designed to compete fairly with
TCP-Reno, so using it does not prevent background flows
from interfering with foreground flows. The Nice exten-
sion makes the protocol much more responsive to compet-
ing traffic by adding an additional RTT-based congestion
detection rule and by backing off multiplicatively when this
rule detects congestion.

It is simple to make a protocol that behaves less aggres-
sively than Vegas. The challenge is to meet two conflict-
ing goals. First, background flows should not interfere with
(e.g., increase the latency of) foreground flows. Second,
demanding background flows should be able to consume a
large fraction of the bandwidth not consumed by foreground
flows. Our preliminary simulation based analysis with Nice
suggests that it meets these goals effectively.

The set of graphs in Figure 2 show results of our simula-
tion experiments over a dumbbell-shaped network topology
with one bottleneck link connecting 20 clients and a server.
The workload used for the simulations is a 15 minute trace
of HTTP requests logged by Squid at UC Berkeley and a set
of permanently backlogged background flows.

Figure 2(a) plots the latency of foreground requests as

a function of the number of background flows for a net-
work utilization of 50%, when the background flows use
Reno, RouterPrio, Nice and Vegas respectively. It can be
seen that while Reno causes the latency to blow up by an
order of magnitude because of interference, Nice causes lit-
tle increase in latency compared to router prioritization and
increases gracefully with the number of background flows.
Figure 2(b) shows that the throughput attained by the back-
ground flows gets reduced (almost halved when there is just
one background flow), but is comparable with RouterPrio
as the number of flows increases. However, the lower back-
ground throughput is a reasonable trade-off for the agility
that Nice provides in avoiding interference. Reno and Ve-
gas on the other hand steal bandwidth from the foreground
requests and hence delay them considerably.

In order for the application to be able to specify whether
the data being sent is background or foreground traffic, we
propose to have the transport layer at the sender expose a
suitable API. This functionality can be provided by a light-
weight interference manager just above the transport layer.
The interference manager decides whether to transmit the
data as regular foreground traffic or use Nice with an appro-
priately tuned niceness level. The interface manager may
also aggregate appropriate sets of background requests into
a single flow so as to create constantly backlogged flows.

3.2 End-stations

Two issues complicate dealing with interference at end-
stations — i) end systems should deal with efficient alloca-
tion of multiple resources like CPU, disk and memory. ii)
deployment of large number of services together with ag-
gressive replication by each of them effectively implies near
infinite demand for resources. For example, CDNs have
to deal with thousands of demanding services and mobile
clients that are capable of disconnected services [6], have to
deal with tens or hundreds of services all contending for the
system resources.

With respect to the first problem, many existing tech-

niques can be adopted for efficiently allocating multiple re-
sources such that interference is minimized. Resource con-
tainers [3] allow us to define resource principals appropriate
to the application. Systems such as Qlinux [15] enable the
provision of QoS guarantees with repect to CPU, disk and
network bandwidth.

The second problem, resource management across mul-
tiple services involved in massive replication, is more chal-
lenging. These challenges will affect the design of operat-
ing systems for hosting systems and operating systems for
light-weight clients. The Active Names system has been
adapted to provide fair self-tuning division of resources
across downloaded extension code modules [6]. These tech-
niques could be adapted to partition resources for down-
loaded code at clients, proxies, and hosting centers. Host-
ing systems like Denali [11] focus on providing services
to safely execute many services on a single physical ma-
chine. However, in order to support massive replication,
Denali should also provide scalable multi-resource manage-
ment that prevents demanding applications from interfering
with each other.

4 Policy

Designing massive replication systems also throws up
questions of policy, namely object selection - what to repli-
cate and placement - where to replicate. Our past research
shows that by prefetching objects based on their popular-
ity and lifetimes [20], significant improvements in hit rates
may be obtained. In [13] and [18], we present algorithms to
place objects in a distributed caching system so as to max-
imize hit rates in scenarios constrained by space and band-
width respectively.

In future, we intend to work on developing algorithms to
place objects in more dynamic scenarios where both space
and bandwidth are simultaneous constraints. These algo-
rithms require gathering good statistics of object usage pat-
terns. Statistics should be gathered both on global scale
(across various services to reflect the effects of services on
each other) and on local scale (within a service to measure
the service access patterns). Gathering good statistics forces
us to strike a tradeoff between the precision of measure-
ments and the scalability of the gathering mechanism. We
intend to quantify this tradeoff and study its effects.

5 Conclusion

In this paper we have presented the challenges involved
in providing system support for massive replication and an
overview of their effect on operating system design at the
network, server and edge nodes. We have also presented
TCP Nice, an end-to-end congestion control algorithm op-
timized to support background transfers. We argue that the

design of applications relying on replication can be made
simpler if the underlying operating system provides self-
tuning support for resource management.

References

[1] http://www.ietf.org/html.charters/diffserv-charter.html.

[2] Akamai. Fast internet content delivery with freeflow. In
White Paper, Nov 1999.

[3] G.Banga, P. Druschel, and J.C. Mogul. Resource containers:
A new facility for resource management in server systems. In
OsDl, 1999.

[4] L. Brakmo, S. O’Malley, and L. Peterson. Tcp vegas: New
techniques for congestion detection and avoidance. In Pro-
ceedings of SIGCOMM’94 Conference, 1994.

[5] B. Chandra. Web workloads influencing disconnected ser-
vices access. Master’s thesis, UT Austin, 2001.

[6] B. Chandra, M. Dahlin, L. Gao, A. Khoja, A. Razzag, and
A. Sewani. Resource management for scalable disconnected
access to web services. In WWW10, May 2001.

[7] J. Chase, D. Anderson, P. Thakar, A. Vahdat, and R. Doyle.
Managing Energy and Server Resources in Hosting Centres.
In SOSP 2001.

[8] M. Dahlin. Historical disk storage costs, mar 2002.
http://cs.utexas.edu/~ dahlin/techTrends/data/diskPrices/data.

[9] D. Duchamp. Prefetching Hyperlinks. In Proceedings of the
USITS, October 1999.

[10] J. Gray and P. Shenoy. Rules of Thumb in Data Engineering.
In ”’Proc. 16th Internat. Conference on Data Engineering”,
pages 3-12, 2000.

[11] S. Gribble, A. Whittaker, and M. Shaw. Denali: Lightweight
virtual machines for distributed and networked applications.
Technical Report 02-02-01, Univ. of Washington, 2002.

[12] J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satya-
narayanan, R. Sidebotham, and M. West. Scale and Perfor-
mance in a Distributed File System. ACM Transactions on
Computer Systems, 6(1):51-81, February 1988.

[13] Madhukar Korupolu and Mike Dahlin. Coordinated place-
ment and replacement for large-scale distributed caches. In
Workshop On Internet Applications, June 1999.

[14] A. Odlyzko. Internet growth: Myth and reality, use and
abuse. Journal of COmputer Resource Management, 2001.

[15] V. Sundaram, A. Chandra, P. Goyal, P.J. Shenoy, J. Sahni,
and H.M. Vin. Application performance in the QLinux mul-
timedia operating system. In ACM Multimedia, 2000.

[16] D. Terry, M. Theimer, K. Petersen, A. Demers, M. Spre-
itzer, and C. Hauser. Managing Update Conflicts in Bayou, a
Weakly Connected Replicated Storage System. In Proceed-
ings of SOSP 1995, pages 172-183, December 1995.

[17] R. Tewari, M. Dahlin, H. Vin, and J. Kay. Design Considera-
tions for Distributed Caching on the Internet. In Proceedings
of ICDCS 1999, May 1999.

[18] A. Venkataramani, M. Dahlin, and P. Weidmann. Bandwidth
constrained placement in a WAN. In PODC, Aug 2001.

[19] A. Venkataramani, R. Kokku, and M. Dahlin. System sup-
port for background replication. Technical Report TR-02-30,
UT, Austin Department of Computer Sciences, May 2002.

[20] A. Venkataramani, P. Yalagandula, R. Kokku, S. Sharif,
and M. Dahlin. Potential costs and benefits of long-term
prefetching for content-distribution. In WCW, June 2001.

[21] H.Yuand Amin Vahdat. The Costs and Limits of Availability
for Replicated Services. In Proceedings of SOSP 2001, 2001.

