End-to-end WAN Service Availability

L%
extended version

Mike Dahlin, Bharat Chandra, Lei Gao, and Amol Nayate
University of Texas at Austin

Abstract

This study seeks to understand how network failures affect the availability of service delivery across
wide area networks and to evaluate classes of techniques for improving end-to-end service avail-
ability. Using several large-scale connectivity traces, we develop a model of network unavailability
that includes key parameters such as failure location and failure duration. We then use trace-based
simulation to evaluate several classes of techniques for coping with network unavailability. We find
that caching alone is seldom effective at insulating services from failures but that the combination
of mobile extension code and prefetching can improve average unavailability by as much as an
order of magnitude for classes of service whose semantics support disconnected operation. We find
that routing-based techniques may provide significant improvements, but that the improvements
of many individual techniques are limited because they do not address all significant categories of
network failures. By combining the techniques we examine, some systems may be able to reduce
average unavailability by as much as one or two orders of magnitude.

keywords: Internet, WWW, availability, overlay routing, disconnected operation, replication,
failure model.

1 Introduction

This study seeks to understand how network failures affect the availability of service delivery
across wide area networks (WANSs) and to evaluate classes of techniques for improving end-to-end
service availability. By providing a quantitative analysis of these techniques, we hope to provide a
framework to help service designers select from and make best use of currently-available techniques.
Further, we seek to evaluate the potential impact on availability from proposed extensions to the
Internet infrastructure such as replication of active objects [2, 4, 9, 18, 37, 39, 46] and overlay
routing [1, 33].

Although several commercial hosting services today advertise 99.99% or 99.999% (“four-9’s”
or “five-9’s”) server availability, providing highly available servers is not sufficient for providing
a highly available service because it is not an end-to-end approach: other types of failures can
prevent users from accessing services. Internet connectivity failures, unfortunately, are not rare.
Paxson [30], for example finds that “significant routing pathologies” prevent selected pairs of hosts
from communicating about 1.5% to 3.3% of the time, and more recent measurements [47] suggest

*This paper is an extended version of an article that will appear in the IEFE/ACM Transactions on Network-
ing, which, itself, is an extended version of the paper that appeared at the Third Useniz Symposium on Internet
Technologies and Systems (USITS01), March 2001.

that availability has not significantly improved since then. In contrast with the 5 minutes per year
of unavailability for a five-9’s system, a typical two-9’s Internet-delivered service will be unavailable
for nearly 15 minutes per day from a typical client.

Although caching can improve file system availability [16, 19], there is reason to be concerned
that caching alone will not significantly improve WAN service availability because much HTTP
traffic is uncachable [11, 45]. This limitation motivates us to study the potential effectiveness of
other techniques such as hoarding [19], push-based content distribution [13, 20], relaxed consistency,
mobile extensions to ship service code to proxies or clients [2, 4, 9, 18, 37, 39, 46|, anycast [3, 12, 46],
and overlay routing [1, 33]. Although the performance benefits of many of these techniques have
been studied, their potential impact on end-to-end availability has not been quantified.

Our analysis faces two challenges. First, we wish to evaluate the potential effectiveness of a
wide range of techniques for a wide range of services. To do this, we abstract away both the
detailed design of the techniques and the semantic requirements of the services. By using these
simplifications, we can determine upper bounds on improvements that different classes of techniques
can yield. To refine these simple bounds, we then explore the sensitivity of the techniques to
parameters representing factors that could limit their effectiveness. The second challenge is that
available studies of WAN unavailability do not quantify several important parameters. To address
this challenge, we analyze connectivity traces to develop a model suitable for evaluating techniques
for coping with unavailability.

This work makes three contributions. First, we develop a WAN connectivity model that includes
average unavailability, the distribution of durations of unavailability events, and the operational
location of network failures. A key finding is that unavailability duration distributions appear
heavy-tailed, which means that long failures account for a significant fraction of failure durations.
Second, we conclude that data-caching-based techniques for improving service availability will likely
have little success, but that the combination of prefetching and shipping mobile extension code to
clients and proxies has the potential to improve average unavailability by over an order of magnitude.
Unfortunately, three factors may significantly limit these gains: (i) compulsory misses to extension
code and state, (ii) capacity misses due to limitations in the number of extensions a client or
proxy can host, and (iii) service-specific semantic requirements that prevent some services from
using these techniques. Finally, we find that routing-based approaches can significantly improve
average unavailability, but that near-client, near-server, and interior network failures all contribute
significantly to average network unavailability, which limits end-to-end improvements from efforts
that address only one type of problem (e.g., multi-hosting a server with multiple ISPs).

The rest of this article proceeds as follows. We first discuss related work in the areas of coping
with network unavailability and modeling Internet failure patterns. We then describe the network
failure model we have developed. Section 4 evaluates classes of techniques for coping with network
failures when delivering Internet services. Finally, Section 5 summarizes our conclusions.

2 Related work

The basic techniques we examine for improving robustness have been studied in other contexts.
In file systems, caching, hoarding, and relaxed consistency can isolate clients from network and
server failures [16, 19, 35]. Odyssey [28] explores using application-specific adaptation to cope with
disconnection by dynamically adjusting service semantics.

In the context of web services, previous studies have examined the performance benefits of
caching [11, 36, 44|, prefetching [10, 29, 22, 31], pushing updates [24, 36], push-based content
distribution [13, 20], server replication [26], mobile code [2, 4, 9, 18, 37, 39], and overlay routing [33],

but the impact on end-to-end service availability of these techniques has not been systematically
quantified.

Systems implementing variations of some of these techniques have been built. The Netscape
Navigator browser supports “off-line” browsing from its cache and and the Microsoft Internet
Explorer Browser supports hoarding. Joseph et al.’s Rover toolkit [18] is designed to support
disconnected operation for mobile clients accessing services. But these techniques have not been
systematically applied to or evaluated for large numbers of services.

Paxson studies IP-level routing pathologies and finds that “major routing pathologies” thwart
IP routing between a given pair of hosts 1.5% to 3.4% of the time [30]. The study focuses on
quantifying the prevalence and diagnosing the causes of IP-level failures. Our analysis builds on
this study by studying these and other traces to determine metrics relevant to end-to-end service
delivery: failure location and the duration of unavailability events.

Labovitz et al. [23] examine route availability by studying routing table update logs. They find
that only 25% to 35% of routes had availability higher than 99.99% and that 10% of routes were
available less than 95% of the time. They find that 60% of failures are repaired in a half hour or less,
and that the remaining failures exhibit a heavy-tailed distribution. These results are qualitatively
consistent with our end-to-end analysis and provide additional evidence that connectivity failures
may significantly reduce WAN service availability.

Zhang et al. [47] study NIMI and traceroute measurements taken during December 1999 and
January 2000. They find that routing availability has neither degraded nor improved significantly
since Paxson’s 1995 study. The focus of this study is on stationarity of network behavior, and it
finds considerable variation in behavior at different network locations, at different times, and on
different time scales.

The study presented here is an extension of an earlier study by the same authors [6].

3 Network unavailability model

We seek to model parameters of network unavailability that most directly affect techniques to
improve availability. This section first defines the key parameters of our model, then describes the
trace workloads we study, then outlines our methodology for analyzing these workloads, and finally
discusses the results of our analysis.

3.1 Definitions

We define several key concepts here drawing on terminology defined in more detail by Trivedi [38].
A service is available to a client when that client can communicate with it. A service is unavailable
to a client when that client cannot communicate with it due to a network or end-host failure. For
each client, a service alternates between being available and unavailable. We term a period of time
when a service is continuously available to a given client an awvailability event and a period of time
when a service is continuously unavailable to a given client an unavailability event.

Suppose a service’s availability events with respect to a client have a sequence of life times Tp,
Ty, Ts, ..., and a service’s unavailability events have a sequence of down times Dy, D1, Do, We
refer to the probability that a lifetime is shorter than ¢ units of time, F(t) = P(T; <= t), as the
time to failure distribution function; we also refer to F(t) as the availability duration distribution.
Then, the system’s mean time to failure is MTTF = [;°(1—F(t))dt from the start of an availability
event. Under similar assumptions, the time to repair distribution function is R(t) = P(D; <=1t),

Traceroute Data Sets

| Data Set | Year | Duration | nhosts | nsamples |

Paxson-1 1994 | 45 days 27 7016
Paxson-1-na | 1994 | 45 days 22 4903
Paxson-2 1995 | 48 days 33 28943
Paxson-2-na | 1995 | 48 days 23 12613
uw-1 1999 | 34 days 36 54391
uw-3 1999 7 days 36 78816
uw-4a 1999 14 days 14 181151
uw-4b-all 1999 | 12 days 38 58488

HTTP Data Sets

Data Set | Year | Duration | nhosts | nsamples |

Bol 2000 | 16 days | 1/194284 | 8142820
Rtp 2000 | 12 days | 1/282830 | 18577435
Squid2 2000 3 days 9/327835 | 23490956

Table 1: Network failure traces. For traceroute traces, nhosts is the number of participating nodes; each
node acted as both a source and a destination. For HTTP traces, nhosts shows {the number of proxy caches
traced}/{the number of servers they contacted.} Nsamples shows the number of attempts to communicate
in each trace.

and the mean time to repair is MTTR = [;°(1— R(t))dt. We also refer to R(t) as the unavailability
duration distribution.

A service’s average availability, Ag,, is the fraction of time when a service is available to an
average client, and a service’s average unavailability, U,,, is the fraction of time when a service is
unavailable to an average client. We also consider request-average availability (or unavailability) —
the fraction of requests in a data set that succeed (or fail) in accessing a service.

These definitions describe a binary on/off model of availability: if a service is reachable it is
available; otherwise it is unavailable. An enhancement to the model left as future work is modeling
quality of service. Whereas our simple model tracks periods of complete disconnection, for some
applications, the network has “failed” if the bandwidth falls below a certain level or the latency
rises above some level. A more sophisticated failure model might account for variations in quality
of service as well as the coarse metric of connectivity on which we focus.

3.2 Data sets

Our basic methodology for quantifying availability patterns uses trace data sets that consist of
large numbers of attempts by pairs of nodes to communicate.

We use two types of dataset. First, traceroute data sets consist of multiple traceroute measure-
ments between pairs of nodes participating in the study. Second, HT'TP data sets consist of logs
of HTTP requests through public Squid [42] proxies to web servers. Table 1 summarizes the data
sets we study.

Traceroute data sets. For the traceroute data sets, each traceroute episode comprises a series
of probes from a source to a destination. Each probe is sent with a maximum hopcount; each router
traversed by a probe packet decrements the packet’s hopcount and either forwards the packet to
the next router on the path (if the hopcount is nonzero) or sends a reply to the source of the probe

(if the hopcount is zero). The source sets the maximum hopcount to one for the first probe and
increases this maximum by one after each set of three probes. The source sends a probe after
receiving a reply to the previous probe or after a 5 second timeout, and the traceroute episode ends
after sending a set of three probes with the same hop count when (a) the hopcount exceeds 30 or
(b) the source has received at least one reply from the final destination node.

We treat each traceroute episode as a sample of network connectivity. Following Paxson’s
terminology [30], we classify a traceroute episode as a temporary failure if (a) some packets succeed
in contacting the target and (b) at least six packets in a row are dropped. A temporary failure
thus indicates a connectivity interruption of at least 30 seconds and of not more than 750 seconds
(the longest traceroute episode is 30 hops * 3 probes per hop * 5 seconds per probe). We classify a
traceroute episode as a persistent failure if the traceroute fails to receive a reply from its destination.
Otherwise, we regard the traceroute episode as a successful attempt by the client to communicate
with the server.!

Paxson-1 and Paxson-2 are traceroute measurements taken and originally analyzed by Pax-
son [30]. In Paxson-1 each site executes a traceroute episode with a randomly chosen destination
with an exponential inter-episode interval of 2 hours. The number of sites varies over the course
of the trace up to a maximum of 27 nodes. In Paxson-2, 40% of measurements from a site are to
a randomly chosen target site with exponential inter-episode intervals of 2 hours. The remaining
60% of a sites measurements are sent in “bursts” with the same 2-hour inter-episode interval but
without changing the target from the previous episode.

Paxson-1-na and Paxson-2-na represent the subset of measurements in the Paxson traces that
both begin and end in North America.

uw-1, uw-3, uw-4a, and uw-4b-all are traceroute traces collected by Savage et. al [33] at the
University of Washington. In uw-1, the inter-episode time is a uniform distribution with a mean
of 15 minutes and each measurement is between a random pair of hosts. In uw-3 and uw-4b-all
a random pair of hosts is selected for each measurement using an exponential distribution with a
mean of 9 and 150 seconds, respectively. In uw-4a, every server sends requests to every other server
at the same time; these episodes are scheduled using an exponential distribution with mean of 1000
seconds.

A problem with uw4a is self-interference. Approximately 10 requests are issued by each node
“simultaneously”, which may increase packet losses. To reduce this effect, we filter obvious cases of
self interference: if at least one outbound packet in a burst of requests from a node makes it to its
destination, then we conclude that connectivity from that node to the Internet is available at the
time of the burst. If any other traceroute during the burst fails to make it beyond the source node
subnet or the “bottleneck” routers that are traversed on all successful outbound requests from that
node, we conclude that traceroute was a victim of self-interference and discard it from the trace
set. We use a similar procedure to filter bursts of inbound traceroutes to destinations. Overall, we
delete 1.6% of the requests from uw4a due to self-interference.

HTTP data sets. The HTTP data sets are traces of HT'TP requests issued by HT'TP proxies
to HTTP servers. We post-process the trace to extract successful and unsuccessful attempts by
the proxies to communicate with servers. We first filter the trace to remove the 22.6% of requests
satisfied locally (e.g., a cache hit) or indirectly (e.g., via a sibling cache). = We then filter all
TCP_REFRESH_MISS requests from the trace because such requests fail a disproportionate fraction

'In the Paxson data sets, several traceroute end hosts are connected to the Internet via intermittent ISDN lines [30].
For those hosts, we treat at traceroute that succeeds in communicating with the last consistently reachable hop as if
it has succeeded in reaching the end host.

of the time (80% to 90% of the TCP_REFRESH MISS requests fail in most of the traces.) We
ignore requests with reply code 400 or 500 (which account for 0.37% of all replies) because it is
ambiguous whether connections were successful in these cases. We then count requests with code
504 (“Gateway time out”) as failed connections, and we count the remaining requests as successful
network connections from the proxy to the server.

As indicated in Table 1, we use three sets of HT'TP traces. Bol, Rtp, and Squid2 are traces
of HTTP requests taken at proxy caches that are part of the Squid cache hierarchy [42]. Bol and
Rtp are from individual proxies, and Squid2 combines requests from nine proxies.

Limitations. There are potential biases in our study resulting from limitations of our data sets.

First, the hosts and network paths that we trace may not be representative of typical Internet
connectivity. Several of our traceroute data sets were collected by Paxson, and he argues that the
interior nodes measured may be representative of typical routes but that the end-hosts may not
be [30]. Other traceroute data sets were gathered by Savage et. al [33] from sites selected for
convenience. Although our HTTP traces are sent to a collection of servers dominated by publicly-
available HTTP servers, requests are sent from regional Squid proxies. These Squid proxies may
be unusual sources both in terms of their network connectivity and in terms of the user community
they serve.

Second, although we seek to develop end-to-end failure models, our data sets are not, strictly
speaking, end-to-end. In particular, the traceroute data sets track failures at the IP level but
omit higher-level protocol failures such as DNS failures. Although the HTTP data sets do include
DNS failures, the logs do not include enough information to distinguish them from certain other
application-level errors that can occur when end-to-end network connectivity is present; thus, we
also omit DNS failures from the HT'TP analysis. Finally, because traceroute server machines’ failure
patterns may not be representative of those of HTTP server machines, we filter out “end-host”
failures from the traceroute data sets. These factors mean that we may underestimate end-to-end
failure rates.

Third, our data sets may under-report the number of failures that happen near the source node
of a request. In both the HT'TP and traceroute data sets, network disruptions near the intended
source of a measurement may prevent requests from being issued during these periods when they
are more likely than average to fail. We partially compensate by focusing on the near-destination
failures as representative of stub failures.

3.3 Analysis

Using these data sets, we examine average unavailability Uy, the failure event duration distribution
D(t), and the availability event duration distribution F'(¢). We also study the location of failures,
which we define below.

3.3.1 Average availability and unavailability

We use the request-average availability and unavailability from our traceroute data sets as our
primary estimate of (time-)average availability and unavailability. The traceroute data sets (except
uw-1) use exponentially-distributed random inter-measurement times. By the PASTA (Poisson
Arrivals See Time Average) principle [43], the fraction of requests that fail in the traceroute traces
should correspond to the fraction of time the network is down (neglecting the source failure sampling
bias listed above).

| Temp | Perst | Total |

Paxsonl 1.3% 0.43% 1.7%
Paxsonl-na | 1.4% 0.48% 1.9%
Paxson2 1.7% 0.19% 1.9%
Paxson2-na | 0.60% | 0.072% | 0.7%
uwl NA 0.15% NA
uw3 NA 0.027% NA
uwda NA 0.61% NA
uw4b-all NA 0.0047% NA
Bol 7.4%
Rtp 1.5%
Squid2 1.1%

Table 2: Fraction of requests that fail.

| | Temp | Perst | Total |

Paxsonl (12+052)% | (0.32+0.15)% | (L5 +0.58)%
Paxsonl-na | (1.2+0.55)% | (0.32+0.15)% | (1.6 =+ 0.58)%
()%
)%

Paxson2 1.84+0.27)% | (0.28 +0.17 (2.0 +0.36)%
Paxson2-na | (0.79 £ 0.30)% | (0.21 % 0.25 (1.0 +0.52)%

Table 3: 90-percent confidence intervals on average daily unavailability for Paxson data sets.

For completeness, we also report the request-average unavailability for the HT'TP data sets.
The HT'TP data sets sample availability according to the request pattern from clients, and therefore
the samples reflect the request-average behavior of the system. Unfortunately, this request-average
behavior may differ from the time-average behavior of the system because the state of the network
may affect whether a trace sample is taken or not. For one example, if a user’s first request to a
server fails, it is unlikely the user will send additional requests to the server in the near future;
such an effect could cause request-average unavailability to understate time-average unavailability.
For another example, if networks are more likely to fail during periods of heavy load, then excess
samples may be taken during periods during which requests are unusually likely to fail; such an
effect could cause request-average unavailability to exceed time-average unavailability.

As Table 2 shows, for the Paxson data sets, we find that “temporary” failures (where connec-
tivity is interrupted for at least 30 seconds during a traceroute episode but where the traceroute
episode eventually succeeds in contacting its target) cause unavailability during 0.6% to 1.7% of
the episodes, and “persistent” failures (where the traceroute fails to reach its destination) cause un-
availability for 0.07% to 0.48% of the episodes. Combining these failures, the average unavailability
of these traces ranges from 0.7% to 1.9%.

We find similar patterns for the uw and HTTP traces. For the uw data, unavailability due
to persistent failures occurs on 0.0047% to 0.59% of the traceroute episodes; temporary failures
are, unfortunately, not included in the uw data sets. The Rtp and Squid2 traces’ request-average
unavailability are similar to the overall traceroute request-average unavailability — 1.5% and 1.1%.
The Bol trace shows worse request-average unavailability, and we note that the component traces of
the Squid2 data set show considerable variability, with individual proxies exhibiting request-average
unavailability of 0.37%, 0.5%, 0.67%, 0.85%, 1.2%, 1.6%, 1.8%, 3.6%, and 6.8%.

If we assume that each day’s failures are independent and that the overall system changes
little over the time a data set is collected, then we can consider each day of a data set as a
separate experiment that estimates average daily unavailability, and we can estimate how likely

Successful Failed Failed Failed Successful

Probe Probe Probe Probe Probe
‘ Failure ‘ ‘ Failure ‘
‘ Failure ‘
‘ Failure ‘

Figure 1: Illustration of ambiguity in unavailability event duration from probe samples.

it is that the sample-average average daily unavailability is close to the system’s actual average
daily unavailability. Unfortunately, the central limit theorem only allows us to calculate confidence
intervals for samples of size greater than about 30 [17]. Thus, we examine only the Paxson data
sets that exceed 30 days. Table 3 summarizes the 90% confidence intervals for the average daily
unavailability due to temporary failures, persistent failures, and all failures.

Overall, the data suggest that typically 0.5% to 2% of requests fail to communicate with their
server but that some proxies differ considerably from this typical behavior and see request-average
unavailability as low as 0.36% or as high as 7% in our data sets. Based on the traceroute data sets,
it appears likely that average daily average unavailability exceeds 0.5% but is less than 2.4% for
the systems studied.

3.3.2 Duration of unavailability

We use the discrete connectivity probes in the trace to estimate the duration of periods of continuous
unavailability. As Figure 1 illustrates, the relatively low sampling rate at some locations and data
sets can lead to two ambiguities for estimating the duration of an unavailability event. First,
the samples shown could either be from one long unavailability event or two (or more) short
unavailability events. Second, the beginning of the unavailability event could have occurred soon
before the first probe that failed or soon after the last probe that succeeded; there is a similar
ambiguity for the ending time. For our analysis, we assume that any series of unsuccessful requests
without an intervening successful one represents a single unavailability event, and we use the data
to provide both upper and lower bounds on the duration of each such event. An area for future
work is developing data sets that provide better unavailability event duration information.

Our analysis draws on both the HTTP and traceroute data sets. Neither data set is ideal for
our purpose, but the limitations of the different traces are of different types. The HT'TP data set
provides a large number of probes with relatively short spacing in time, which limits the duration
ambiguities listed above. Unfortunately, the HTTP probes may not be sent with regularity, so the
frequency with which HTTP probes encounter unavailability events of a given duration may not
track the prevalence of events of that duration. On the other hand, the traceroute data sets’ probes
are Poisson distributed, so they are likely to sample unavailability events of a given duration
in proportion to their contribution to overall unavailability time. Unfortunately, the traceroute
data sets have large average inter-sample intervals, so duration ambiguities limit the precision of
traceroute measurements of unavailability event duration.

As described above, we group consecutive failed connectivity probes into unavailability events.
For each event, we count the number of unsuccessful probes encompassed by the event, and we
determine the upper and lower bounds on the durations of the event. We then generate a count of
unsuccessful probes that encounter unavailability events of any given duration.

)= 11865[86—,
= 1-14.79t

R()
Fraction of Events HTTP-LB: *-.80
\’/\F action of Events HTTP-UB

08

06

Fraction

" Fraction of Probes HTTP-UB

Fraction of Probes
HTTP-

02

I I
10 100 1000 10000 100000 le+06
Failure Duration (s)

Figure 2: Cumulative distribution of the fraction of failed probes encountering unavailability events lasting
(t) or fewer seconds (for ¢t > 30) and the estimated unavailability event duration cumulative distribution
function R(t) for unavailability events lasting at least 30 seconds in the combined HT'TP data sets.

The two right lines of Figure 2 show the fraction of probes that sample unavailability events
of duration ¢ seconds or shorter in the combined HTTP data set excluding unavailability events
shorter than 30 seconds. Qur rationale for only looking at 30 seconds or longer unavailability events
is that short periods of unavailability may be better handled by transport-level retransmission than
the more aggressive techniques we explore. Excluded sub-30-second events account for 28.8% of the
failed probes and 70.7% of the sampled unavailability events for the lower bound list of durations;
they account for 6.5% of the probes and 31.7% of the sampled events for the upper bound list.

Note that we are more likely to sample a long failure event than a short one. If we assume that
probes are uncorrelated with failure durations and that the expected number of probes encompassed
by a randomly selected unavailability event is proportional to the duration of the unavailability
event, then the time to repair cumulative distribution function R(t), which specifies the probability
that an unavailability event selected uniformly at random takes ¢t or fewer seconds to be repaired, is
simply a cumulative histogram of these probe counts weighted by the inverse of each count’s failure
duration and normalized to make the total probability equal one. The two left lines in Figure 2
are calculated in this manner and represent an estimate of the cumulative distribution function of
the duration of failure events lasting longer than 30 seconds for the environment sampled by the
combined HTTP data sets.

The time to repair distribution R(¢) for unavailability events lasting longer than 30 seconds
appears well modeled by equations of the form R(t) = 1 — At®. Using Dataplot’s [27] modified
Levenberg-Marquardt best fit algorithm, we find Rpp(t) = 1 — 18.65¢t %% and Ryp(t) = 1 —
14.79t 980 are the best fits for the lower-bound and upper-bound data, respectively.

Visual inspection suggests that these equations are excellent approximations of the data. Un-
fortunately, because of the transformation used to convert the fractions of samples to fractions of
events, we cannot apply standard goodness-of-fit hypothesis testing techniques such as the Chi-
Square goodness of fit test or Anderson-Darling goodness of fit test [8] to these distributions. How-
ever, to put these fits in perspective, several observations are worth noting. First, the maximum
positive and negative differences from the data to the fitted lines are Dz'B = .029, D 5 = .003,
D;B = .007, and Dy;5 = .031. Second, the maximum difference between the lower bound and
upper bound data are D5 ;5 = .038 and D; 5 ;5 = 0. Thus, the inaccuracy of fitting these
equations to these data are similar in scale to the sampling ambiguity in the underlying data.
Third, the large number of samples in the original untransformed data set reduces the amount of

Traceroute-UB e
HTTP-LB>/ " r1p.U

08 ?
| Traceroute-LB

5A-(1000/x)*.85) _:

06

Fraction of Events

i
02/

0 L L
1000 10000 100000 1le+06
Failure Duration (s)

Figure 3: Cumulative probability function of the duration of failure events lasting longer than 1000 seconds.
The x axis is the duration and the y axis is the probability that an unavailability event will have less than
the specified duration.

variation we would expect between the sample distribution of durations and the sampled environ-
ment’s true underlying distribution of durations. Thus, even relatively small deviations between
the fitted equations and the data may indicate that the equations do not completely describe the
environment or that the sampling ambiguities noted above have introduced significant noise in the
measurements.

Fourth, the traceroute data sets appear to exhibit similar unavailability-duration behavior to
the HTTP data sets despite the differing limitations of the sampling techniques. For these data,
the long inter-probe times make it difficult to precisely characterize the duration of short persistent
failures. Figure 3 therefore compares the duration of long unavailability events — 1000 seconds or
more — between the traceroute and HTTP data sets. For clarity, we combine all of the traceroute
unavailability events into one data set and all of the HT'TP unavailability events into another one
and show the upper and lower bounds of the cumulative distribution function for each. Note that
the traceroute lower bound line is to the right of the upper bound line for much of the range because
the two lines track different sets of data once the sub-1000-second events are excluded.

Based on the data in Figures 2 and 3, it appears that the duration of 30+-second HTTP and
10004-second traceroute unavailability events display cumulative distribution functions of the form
D(t) =1— (k/t)* with a ~ 0.85. This function corresponds to a heavy-tailed distribution typified
by a significant number of long unavailability events, decreasing recovery rate, large variance, and
high mean [14]. In particular this function corresponds to a Pareto distribution, which has an
undefined mean and variance. Both data sets appear consistent with this behavior; however, it
should be noted that the ambiguities in the data sets prevent us from conclusively stating that the
equation models the underlying recovery process.

Besides looking at the fraction of unavailability events of a given duration, we also look at
the fraction of unavailability time stemming from unavailability events of a given duration. The
unavailability time distribution is simply the unavailability event duration distribution weighted
by the duration of each event and normalized to a total probability of one; it is thus equivalent
to the sample-weighted distribution, which is indicated by two lines on the right in Figure 2.
Figure 2 suggests that although long unavailability events are rare (indicated by two left lines),
they contribute a significant fraction of Internet unavailability time (indicated by two right lines).

As noted above, the traceroute and HT'TP data sets each have significant limitations for the
purposes of modeling unavailability event duration: the HTTP data sets may contain sampling-

10

08

06

F—traceroute-short

04 ,i—iraceroute-long —

Fraction of Successful Probes

?pmprUB
02 " traceroute-UB

e i
10 100 1000 10000 100000 le+06 le+07
Avail Duration (s)

Figure 4: Fraction of successful probes encountering availability events of duration ¢.

interval biases, while the traceroute data sets’ sparse sampling interval leaves uncertainty about
the duration of individual events. Despite these limitations, the data sets appear qualitatively
consistent with one another, which suggests that the results are not anomalous.

3.3.3 Duration of availability events

Unfortunately, the data do not allow us to precisely characterize the distributions of the durations
of availablity events. It is difficult to place an upper bound on failure event durations because
more than 75% of successful probes in the HTTP data sets and more than 83% of successful
probes in the traceroute data sets encounter availability events that may span the beginning or
end of the trace. Furthermore, it is difficult to place a lower bound on failure event durations
because the coarse-grained sampling in our traces may entirely miss some failure events. This
sampling ambiguity seems likely to be more of a problem in estimating availabilty event duration
than in estimating unavailability event duration because we expect most unavailability events to
be considerably shorter than most availability events.

Figure 4 shows the cumulative distribution of the fraction of successful probe samples that
encountered availability events of length ¢ or shorter. We show data for the combined traceroute
data sets and for a HTTP data set that combines the bol and rtp traces.2 For the upper bound
lines (traceroute-UB and bolrtp-UB), we assume that each series of consecutive successful probes
represents a single availability event. We also assume that the availability event begins just after
the last unsuccessful probe before the event and ends just before the first unsuccessful probe after
the event; if there is no unsuccessful probe to bound the event (i.e., if the event spans the beginning
or end of the trace), we assign the event an infinite duration as its upper bound. For the finite
long lines (traceroute-long and bolrtp-long), we use the same assumptions as for the upper bound
lines but exclude unbounded events. Finally, for the finite short lines (traceroute-short and bolrtp-
short), we assume that each series of consecutive successful probes represents a single availability
event, that the availability event begins just before the first successful probe of the event and ends
just after the last successful probe of the event; we exclude unbounded events from this line. Due
to sampling ambiguity problem listed above, we do not attempt to estimate a lower bound. As
indicated by the figure, the data leave considerable ambiguity about availability event duration
distributions.

2The squid2 data set exceeded the memory capacity of our analysis machines for this set of experiments.

11

100%
80% |-
g 60% |- Near-Dest
=
w 40% -
Z
'z 20% |- In-Middle
o
i3 0% Near-Source
0

paxsonl

paxsonl-na

paxson2

paxson2-na
uw

uw3

uw4a

uw4b-all

Figure 5: Location of disconnections. The segments of each bar show the fractions of failed samples
encountering disconnections that occur at specified locations.

3.3.4 Failure location

Failure location is important because it influences the effectiveness of routing-based strategies. We
use a simple model that classifies failures into three operationally significant categories — “near-
source,” “in-middle,” and “near-destination.” Near-source failures represent failures of the client
stub network that disconnect a source machine or source subnet from the rest of the Internet. Near-
destination failures have a similar effect on destinations. In-middle failures represent connectivity
failures in the middle of the network that prevent a pair of nodes from contacting one another (on
the default route), but where both nodes are able to contact a significant fraction of the remaining
nodes on the Internet. We also use the term “stub failures” to refer to the combined near-source
and near-destination categories.

This location model is admittedly simplistic. Most notably, it represents in-middle failures
as the interruption of connectivity between a single pair of nodes that does not affect any other
pairs’ ability to communicate. In reality failures in the middle of the Internet infrastructure will
typically affect more than one pair of nodes [23]. Thus, groups of such middle failures are likely to be
correlated, and the correlation will depend on details of network topology that would be complex to
model. However, we believe that our simple model provides a reasonable first-order approximation
for evaluating routing based techniques: an in-middle failure represents the case where both the
source and destination can connect to a nontrivial fraction of the Internet but cannot connect to
each other by the default route. Assuming that the core Internet is not partitioned, routing-based
techniques are likely to be able to find an alternate route between the nodes in such a situation.

We focus on the traceroute data sets because they include hop-by-hop routing information,
and we use the following heuristics to classify failures into the near-source, in-middle, and near-
destination categories. We define the source bottleneck set as the set of routers that are visited by
all successful outgoing requests from a node and the source subnet set as the set of routers whose
IP addresses match the source node’s in the top 24 bits. We define the destination bottleneck and
subnet sets similarly. A failed request is classified as a near-source failure if (a) the request only
succeeds in reaching nodes in the source bottleneck set or source subnet set or (b) two or more
successive requests from the same source to different destinations fail. We use a similar definition
for the near-destination failures. We classify all remaining failures as in-middle failures.

Figure 5 summarizes the fraction of samples that encounter persistent disconnections and are
classified as near-source, near-destination, or in-middle by these criteria.

12

Parameter | Default value | Comment

Average Uav = 1.25% (> 30sec.) | Request-average uavailability varies
unavailability from .4% to 7.4% in different data sets
Time to R(t) =1—19t *% Appears heavy-tailed. Truncated Pareto
recover MTTR = 609 sec. (max 500,000) used to give finite MTTR.
Time to F(t)y=1- e T Data ambiguous.
failure MTTF = 48111 sec. Exponential distribution assumed.
Location Sre: 25% All locations significant.

Mid: 50% Ratio varies across traces.

Dest: 25%

Table 4: Default parameters for the synthetic unavailability model.

As noted earlier, the methodology used for gathering the traces may tend to undersample
during periods when the network near the intended source of the measurement is malfunctioning.
As one might therefore expect, the near-destination average unavailability rate is higher than the
near-source average unavailability rate in most of the data sets. Given that for these data sets
the source and destination nodes were selected from the same collection of traceroute hosts, we
speculate that the near-destination unavailability rates reported above are more representative of
the stub network disconnection rate than the near-source rates.

Overall, we observe that both stub network and interior disconnections contribute significantly
to unavailability but that the relative prevalence of interior compared to stub failures varies across
traces. A Chi-square test of the frequencies [34] fails to support the null hypothesis that all 8
traces exhibit the same ratio of stub to middle disconnections at even the 1% confidence level,
suggesting that the environments measured by the traces do in fact differ [47]. Qualitatively,
Paxson2, Paxson2-na, and uw3 appear dominated by interior disconnections; Paxsonl, Paxsonl-
na, and uwl have similar amounts of interior compared to stub disconnections; and the other traces
are dominated by stub disconnections.

3.4 Synthetic model

Based on the analysis above, we develop a simple synthetic unavailability model that we use to
evaluate end-to-end strategies for masking network unavailability in our experiments in Section 4.
Table 4 summarizes key parameters for our model.

Because the Paxson traceroute data sets are Poisson distributed and include both “temporary”
and “persistent” disconnections, we draw on them to set our default average unavailability for
the simulations in in Section 4, where we use a default average unavailability of 1.25%. This
means that a given pair of nodes is unable to communicate 1.25% of the time due to network
failures lasting 30 seconds or longer. In our above analysis of the trace data sets, we find that the
average unavailability rate can vary significantly, so our experiments also vary the average network
unavailability to evaluate the sensitivity of our results to this parameter.

Our analysis in Section 3.3.2 suggests that unavailability event durations for events lasting
longer than 30 seconds are well modeled by R(t) = 1 — 19t7985, The average duration of this
Pareto function is unbounded. For our simulations, we use this function but in order to ensure a
finite mean duration and to allow us to calculate a MTTF, we truncate the distribution at 500,000
seconds. This truncated Pareto distribution has a MTTR, of 609 seconds.

As noted in Section 3.3.3, our analysis of the data do not provide tight bounds on F(t), the time
to failure distribution function. In order to make the MTTF consistent with the average unavail-

13

ability and MTTR selected above, we use the equation Ag,, = %, which lets us derive

MTTF = 48111 seconds. Because we do not have good data about the distribution of F(t), for
simplicity we assume that failures arrive independently with exponentially-distributed interarrival
times. Testing this assumption with better availability episode duration data is important future
work.

Our analysis of disconnection location suggests that both stub and in-middle disconnections con-
tribute significantly to overall unavailability. However, our analysis also finds significantly different
fractions of different categories of unavailability events. For the experiments where disconnection
location is considered (Sections 4.2 and 4.3), we assume a default ratio of near-source to in-middle
to near-dest disconnections of 1:2:1, and we discuss the sensitivity of the results as we vary these
ratios.

4 Masking network unavailability

This section studies two classes of techniques for improving end-to-end service availability by mask-
ing network unavailability. Client-independence techniques — such as data caching, prefetching, and
mobile code — provide a (possibly degraded) version of a service using local resources when the re-
mote server cannot be contacted. Routing and connectivity techniques use alternate network paths
to route around failures.

These experiments focus on two goals. First, they seek to quantify the potential effectiveness
of these techniques at improving service availability. In order to provide information about a broad
range of techniques, our experiments abstract away implementation details and thus provide an
upper bound on the techniques’ effectiveness. The second goal of our experiments, therefore, is to
understand what factors may limit specific instantiations of these techniques and to quantify their
impact.

Although this paper focuses on service-level techniques for improving availability, researchers
will certainly work to improve availability at the hardware and transport layers as well. Indeed,
achieving the goal of four- or five-nine services will likely require advances at all layers. So, in
addition to the experiments described above, we assess the sensitivity of our results to changes in
the availability of the underlying infrastructure.

4.1 Client independence

A range of client independence techniques are available.

1. Caching. Caching hides network and server failures by serving requests from a nearby cache
rather than a distant server [16]. Most web clients today include some form of caching.

2. Relaxed consistency and push-updates. Relaxed consistency can improve availability by
allowing caches to serve potentially stale data during failures rather than requiring the cache
to use (unavailable) current data. Alternately, under a push-updates protocol [24, 36], servers
may update cached copies before clients issue reads requesting the new versions. Push-updates
thus improves the chance that a cache will contain current data during a disconnection.

3. Prefetching. Prefetching brings objects close to a client before the client accesses them.
Hoarding, a form of prefetching in which a user identifies groups of objects to fetch, is
effective for disconnected operation in file systems [19], and the Microsoft Internet Explorer
browser implements a hoarding option for web pages. Server push [13, 20, 41] such as the

14

[Workload | Date | Clients | Servers | Sessions |

Squid-P | 3/28/00-4/03/00 1 131193 | 1557875
Squid-C | 3/28/00 107 52526 | 403235
BU-P 1/17/95-5/17/95 1 4614 56789
BU-C 1/17/95-5/17/95 33 4614 68949

Table 5: Web access trace parameters.

content distribution networks becoming commercially available can be thought of as a form of
server-directed prefetching. Note that prefetching is more aggressive than the “push update”
approach described in the previous paragraph. “Push update” only distributes new versions
of objects that have already been referenced by a cache, while prefetching can distribute
unreferenced objects in order to avoid compulsory misses.

4. Replication of active objects. Several researchers have proposed systems in which ac-
tive service objects may be cached or replicated and then executed [2, 4, 9, 18, 37, 39].
These techniques may provide ways to extend the benefits of caching, relaxed consistency
(or “application-specific adaptation” [28]), and prefetching to the significant fraction of web
services that are not cachable [11, 45].

This set of experiments examines the potential effectiveness of using these client independence
techniques to improve robustness of Internet services by transforming failed sessions that are in-
terrupted by network disconnections into degraded sessions that are served by the cache or by
downloaded mobile extensions. Clearly, the relative advantage of degraded sessions over failed ses-
sions will vary from service to service: some services can provide full service while disconnected,
others can provide tolerable service across short disconnections, and still others require continuous
on-line communication with a remote site to be effective. To cope with this wide range of service
behaviors, this experiment does not attempt to quantify the benefit of degraded service over failed
service; instead it seeks to quantify how often services have the option to use caching, relaxed con-
sistency, prefetching, or mobile extensions to improve their robustness to network disconnections.

Workload and methodology. In addition to the availability model described in Section 3, the
simulator uses two sets of web service access traces to represent Internet service access patterns.
Table 5 summarizes key parameters for these traces. We examine both the Bol Squid trace de-
scribed earlier and a four-month trace taken at clients at Boston University [7]. This trace is old,
but it includes client cache hits, and the client-ID mappings are not changed over the trace period.
We examine both traces from the point of view of a proxy shared by all clients in the trace (Squid-P
and BU-P) and from the point of view of individual client machines (Squid-C and BU-C) with no
shared proxy. Because the Squid traces change the client-ID mappings daily, we only look at the
first day of the Squid-C trace.

For our simulations, we post-process the traces to group individual accesses into sessions. We
define a session as a set of accesses from a client (-C traces) or proxy (-P traces) to a single server
in which the maximum gap between successive requests is 60 seconds. Our figure of merit for
availability is the fraction of sessions that complete without interruption.

Our simulator tracks the references to objects in the traces and uses trace information to classify
the objects as cachable or uncachable and to identify when objects change. It assumes that each
simulated client (-C traces) or proxy (-P traces) has an infinite cache that stores all objects accessed
previously in the simulation.

To evaluate prefetching techniques and mobile code as a class without knowing the details of
each service, we use the simulation parameter install_time to represent the amount of time from

15

the first access by a client or proxy to a service until the service has downloaded sufficient state or
programs or both to the cache to cope with network disconnections. Our default install_time is 100
seconds. During the install_time, clients and proxies must access the service from demand-cached
data or via the origin server.

If the network remains up during an entire session, the simulator classifies the session as No
Failure. For sessions in which the network is unavailable for part or all of the session, the simulator
examines the objects referenced in the session and classifies the session as follows: Cache Hit if all
requests are for fresh cached web objects; Stale Hit if all requests are for demand-cached web objects
and if some of those objects require updates from the server; Hoardable Degraded if the install_time
for the service has completed before the network unavailability event begins and all requests are for
cachable objects but some miss; Dynamic Degraded if the install_time has completed before the
beginning of the network unavailability event but not all session data are cachable; and Fail if the
install_time has not completed at beginning of the network unavailability event and either some
data are not cachable or some data are cache misses.

For these experiments, we set the failure-location distribution to make all failures “in-middle”
failures, and we conduct five trials with different random seeds for the network unavailability
model and graph the mean and standard deviation of results. We describe improvements to service

unavailability in terms analogous to the common definition of “speedup” [15]: improvement =
Uavorig
Uavpew *

Results. First, we examine the effectiveness of these general techniques as well as the extent
that installation time limits improvements. The y-axis of Figure 6 shows the fraction of sessions
classified in the categories listed above on a logarithmic scale so that equal intervals reflect equal
improvements to average unavailability. The z-axis shows the install time for each service also
using a log scale, and each graph shows these results for a different workload. When installation
times are short, the combined effect of all techniques is to improve average unavailability by at
most factors of 14.4 (Squid-P), 15.4 (BU-P), 2.7 (Squid-C) and 5.22 (BU-C) for the four workloads
compared to the average unavailability that would be encountered if each request were sent to the
origin server.

The improvements available from caching alone appear small (improvements to average un-
availability of 1.1, 1.6, 1.1, and 1.4 for caching and of 1.1, 1.6, 1.1, and 1.4 for caching plus relaxed
consistency or push-updates). Note that the Squid workload’s lower-level caches may hide sessions
that only reference cached data, causing us to understate the benefits of caching alone. Con-
versely, the BU trace are not filtered by caches, but they are old and may reflect a workload that
is unrealistically easy to cache. It seems likely that caching’s benefits lie between these values.

In contrast with caching alone, aggressive prefetching plus caching may achieve significant
improvements for those services where prefetching is feasible; the simulations indicate upper bounds
of 3.0, 6.2, 1.8, and 4.0 for this combination.

The only limiting factor to active object replication in this model is our assumption that each
service requires different extension code and data, and that extensions cannot be downloaded until
a service is first accessed. Under these assumptions, improvements to average unavailability are
limited to about an order of magnitude for these traces because if the network is down when a
service is first accessed or during the first install time of accesses, no code and data are available
to mask the failure. These “compulsory misses” also limit the prefetching line in these graphs. If
compulsory misses and initialization times are ignored — or if a longer trace were used to reduce
compulsory misses — prefetching could provide improvements in average unavailability of at most
3.7, 9.7, 4.7, and 12.2 and replication of active objects and their data could, in principle, provide

16

0.1 0.1
No Failure Sessions No Failure Sessions
Cache Hit Sessions
@ e = 2] f icache Hit Sessigns f
S 0.01 _ » E| 5 0.01 : 7 : : :
5 Stale Hit Sessions Hoardable Degfaded Sessions ? Stale Hit Sessions ¥ B
7]
% U RSN SRS % Hoardable Degraded Sessions
u— ; i u— ; 5
5 Dynamic Degraded Sessions 5 Dyriamic Degraded Sessions ~
3 i 3 IR e |
S ooty 1 1 S oo01}0— — F—t— :]
L & IS 4
Failed Sessions
Failed Sessions
0.0001 L L L L 0.0001 L L L L
1 10 100 1000 10000 100000 1 10 100 1000 10000 100000
State Install Time (s) State Install Time (s)
(a) Squid-P (b) BU-P
0.1 01
No Failure Sessions
No Failuré Sessions
1%} %)
c c
E=] R=l
7 7]
g Cache Hit Sessions 3 E % E T
0 2 L LCache Hit Sessiéns L
S 0.01 - sz g i § o 5 0.01 = % & %
g Stale Hit Sessions Hoardable Deg}aded Sessions R S Stale Hit Sessions
B B S R B Hoardable Degraded Sessions
§ % Dynamic Degraded Sessions § g
- 7 Bynamic Degraded Spssions ————F———————1
Falled Sessions Failed éessions
i ‘
0.001 L L L L 0.001 L L L L
1 10 10000 100000 1 10 10000 100000

100 1000 100 1000
Service Install Time (s) Service Install Time (s)
(c) Squid-C (d) BU-C
Figure 6: Session result v. state installation time. Each region between two lines represents the fraction of
sessions that can be handled by the specified technique.

at least degraded service up to 100% of the time.

The available benefits fall gradually as installation time increases and compulsory misses become
more expensive. At a 10,000 second installation time the upper bound on availability improvements
are 11.0, 11.1, 2.0, and 4.2 for the four workloads. This result is promising: it suggests that services
that need to download significant amounts of state to provide acceptable disconnected service may
have the opportunity to do so.

Next, we examine the sensitivity of our results to the underlying average network unavailabil-
ity. Figure 7 shows session results as we vary average network unavailability by reducing the time
between failures and leaving the unavailability duration distribution unchanged. The results for all
four system configurations/workloads are qualitatively similar. In particular, these data suggest
the improvement in session average unavailability provided by caching, prefetching, and replica-
tion of active objects are relatively insensitive to the underlying network unavailability patterns
between average network unavailability probabilities of .0125% and 12.5%. At average network
unavailabilities below that, the traces are so short that relatively few failure events occur, and our
results have too much variance to reach definitive conclusions.

The experiments above suggest that to significantly improve overall service availability, services
may need to resort to prefetching and mobile extensions rather than relying on caching alone.
Unfortunately, these techniques can dramatically increase the demand for resources at a client,

17

01} 4 -
No Failure Sessions 01p No Failure Sessions e |
® 0.01 | 4 P
5 5 0.01 |- 4
2 2
K 0.001 | Cache Hit Sessions: k!]
n 0
5 Stale Hit St - = . s 0.001 - Stale Hit Ses:
© ale it Sessions “--Hoardable Degraded Sessions o
§ oooo1f 1 5
IS “-Dynamic Degraded Sessions S 00001 - = . . i
[. L Dynamic Degraded Sessions
1e-05 Hf 4
16-06 |- Failed Sessions 1 105 b Failed Sessions 1
1e-07 L L L L 1e-06 L L L L
1e-05 0.0001 0.001 0.01 0.1 1 1e-05 0.0001 0.001 0.01 0.1 1
Average Network Unavailability Average Network Unavailability
(a) Squid-P (b) BU-P
0.1 » 1
No Failure Sessions
0l No Failure Sessions |
0.01 | 4
2 2
5 5 0.01 |- 4
% 0.001 | Cache Hit Sessions-~.__ B ﬁ
o]]
n 0
S Stale Hit Sessions---. = 0.001 | .
g .- Hoardable Degraded Sessions g ---Hoardable Degraded Sessions
S
= 0.0001 | | S
] 8
< T 0.0001 |- . . ’ 4
[- Dynamic Degraded Sessions L Dynamic Degraded Sessions
1e-05 [~ : ! 7 o
Failed Sessions 1e-05 Failed Sessions 1
1e-06 L L L 1e-06 L L L
1e-05 0.0001 0.001 0.01 0.1 1 1e-05 0.0001 0.001 0.01 0.1 1
Average Network Unavailability Average Network Unavailability
(c) Squid-C (d) BU-C

Figure 7: Session results as average network unavailability varies. Each region between two lines represents
the fraction of sessions that can be handled by the specified technique.

proxy, or network. A key limiting factor, therefore, may be how many resources a cache can devote
to each hosted service and how many services a cache can simultaneously host. Figure 8 shows
session results when the simulated clients and proxies maintain only a finite number of local copies
of prefetched services and mobile extensions with MFU policy to evict the rest; results for LRU
replacement and exponentially decaying average MFU are similar but not shown. Graphs (a) and
(b) show configurations for proxies shared by all clients in the trace; graphs (c) and (d) show per-
client configurations. For all four workloads the results are qualitatively similar, but the cache size
needed for full benefits is larger for the Squid-P workload and smaller for the Squid-C and BU-C
workloads due to the differing number of services accessed by each of these workloads.

Then, we evaluate the sensitivity of different services to different client-independence techniques.
In the previous set of experiments, we average across all web services to evaluate their availability
improvements after applying unavailability masking techniques. We now explore the benefit that
different individual services could receive. Figure 9 shows the cumulative distribution function
of average unavailability improvements for the individual servers in the BU trace. We run our
experiment 50 times with different random seeds for the failure model and track average session
unavailability for each server across the runs. Each line shows the cumulative distribution of the
fraction of services that receive at least the unavailability improvement indicated by the z-axis
value. Note that the histograms for the different techniques were computed separately so that the

18

0.1 0.1 T T
No Failure Sessions No Failure Sessions
Cache Hit Sessions----, Cache Hit Sessions------,
. . B Stale Hit Sessions---- R
Stale Hit Sessions-------. .
5 0.01 | ! 5 0.01 §r—- s # # #
o} Hoardable Degraded Sessions----" o)
2] 0 T -
kS ‘5 Hqardable Degraded Sessions----- o A %
c c 3
(s} . . < (<]
b5 Dynamic Degraded Sessions------ B >
S o001 | S o001 | Dynamic Degraded Sessions—---- 1 + 5
L IS
Failed Sessions ; .
Failed Sessions
0.0001 L L L L L 0.0001 L L L L L
1 10 100 1000 10000 100000 1e+06 1 10 100 1000 10000 100000 1e+06
Number of Services Replicated Number of Services Replicated
(a) Squid-P (b) BU-P
0.1 01
No Failure Sessions No Failure Sessions
2 2
S Cache Hit Sessions---. S Cache Hit Sessions---.
7 : 7] .
7 7]
$ Stale Hit Sessions--- & i % T } o E o
s 0.01 - 5 0.01 ? - - & -~ & &
c c Stale Hit Sessions--
(s} (<]
3 Hoardable Degraded Sessiol B Hoardable Degraded Sessions
S) o
'R Dynamic Degraded e [
Dynamic Degraded Sessions ! 1 !
Failed Sessions
Failed Sessions
0.001 L L L L L 0.001 L L L L L
1 10 100 1000 10000 100000 1e+06 1 10 100 1000 10000 100000 1e+06
Number of Services Replicated Number of Services Replicated
(c) Squid-C (d) BU-C

Figure 8: Session average unavailability v. number of cached service extensions. Each region between two
lines represents the fraction of sessions that can be handled by the specified technique.

collection of machines at, say, the 90-percentile of cache improvement may be a different set of
machines than at the 90-percentile of prefetching improvement.

In these traces, the bottom 15-25% of services receive little or no benefit from client indepen-
dence techniques, about 50% improve by a factor between 1 and 10, and 10-20% receive improve-
ments over a factor of 10. Furthermore, although caching alone generally provides little improve-
ment, there are a few services for which caching can improve average unavailability by more than
a factor of 2.

The primary factor determining the improvements provided to a service by the replication of
active objects strategy is the popularity of the service. Services that are visited more often are
proportionally less likely to suffer a compulsory miss during a network failure. This relationship is
shown in graphs (c) and (d) in Figure 9, which overlays the number of visits in our trace to the
service corresponding to the x-axis bucket.

Finally, we examine the maximum duration requirements for client-independent techniques
to improve service availability to different degrees. Figure 10 shows the service improvement as
we increase the maximum disconnection time that client-independent techniques support. For
both proxy traces (Squid-P and BU-P), we see one order of magnitude improvement at 10,000 to
100,000 seconds. This means that in order to improve average service unavailability by an order of
magnitude, the system must mask some failures lasting tens of thousands of seconds.

19

10000 10000

. 1000 | a . 1000 4
< f =
) 9]
= £
) 9]
> >
o <]
<4 2
S /i = i
E 100} i E 100} jia
z2 I it with Active Object: ‘ 2 | t with Active Object: /
= mprovement wi ctive Object s = mprovement with Active Object i
a v T~ o : \ ;
< Improvement with Prefetch: © Improvement with Prefetch J
< 10 b 4 < 10
Improvement with Cacl o 'Improvemem with C;
1 L Ea 1 L L T L L L 1 L L - L L L L L L
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Fraction of Services Fraction of Services
(a) BU-P (b) BU-C
10000 10000
1000 | .~ 1000 p 4
=4 c
))
= £
) 9]
> >
o <]
<4 2
=% =3 4
E 100f E 100} g
> >
= = Improvement with Active Object
c_'?s E Improvement with Prefetch:
= =
Z z ALt
< 10p < 0F sl “‘Hw“!‘i ;L
1 Fol L il SR
‘ i l‘L(\Xl',‘I,nIF il “§‘1 i
i i ' !
1 L BN inbrovepéntt with ¢
itth i I
0 10 0 10 20 70 100
Fraction of Services Fraction of Services
(c) BU-P-checksum (d) BU-C-checksum

Figure 9: Availability improvement v. fraction of services.

These experiments suggest that to take full advantage of client independence for improving
availability, client and proxy virtual machines must be scalable to handle hundreds or thousands of
simultaneously downloaded extensions in order to replicate a significant fraction of accessed sites.
Furthermore, some of the services may require large amounts of system resources to mask long
failures. We examine the resource management challenges posed by such a workload in a separate
study [5, 40].

4.2 Network routing

In this section, we evaluate strategies that route around network failures. To simplify the analysis,
we classify strategies into two broad categories: (1) network re-routing and (2) server replication
and selection. The following discussion states the type of failures masked by each strategy, how
we model the strategies in our experiments, and the service availability improvements that the
strategies yield.

1. Re-routing. Techniques of this category still send requests to the service’s origin server,
but they may use alternate routes when failures occur. Examples of re-routing techniques
include dynamic routing [21] and overlay networks [33, 1]. In the terminology of this paper,
these techniques address in-middle failures, but will be ineffective against near-source and
near-destination failures.

20

0.1

No Failure Sessions

Cache Hit Sessions
Stale Hit Sessions .

Fraction of Sessions

Hoardable Degréded Sessions
Dynamic Degraded Sessions

Failed Sessions

.
100 1000 10000 100000
Maximum tolerable time

(b) BU-P

No Failure Sessions
Cache Hit Sessions
8 Stale Hit Sessions
E=] h
7
7
O g
& |
s 0oL
c
2
S
|5}
©
<
L
Hoardable Degré{ded Sessions
Dynamic Degradel:‘i'Sessions
Failed Sessions
0.001 L L L L
10 100 1000 10000 100000
Maximum tolerable time
(a) Squid-P
No Failure Sessions
1%}
g Stale Hit Sessions Cache Hit Sessions
@ 001
o}
n
—
S}
c
2
S
|5}
© E
Hoardable Degraded Sessions
Dynamic Degraded Sessions
Failed Sessions
0.001 L L

No Failure Sessions

Cache Hit Sessions

Stale Hit Sessions

Fraction of Sessions

Hoardable Degr‘aded Sessions

Dynamic Degraded Sessions
Failed Sessions

. .
10 100 1000 10000 100000
Maximum tolerable time

(c) Squid-C

.
100 1000 10000 100000
Maximum tolerable time

(d) BU-C

Figure 10: Session average unavailability v. maximum masking time required. Each region between two
lines represents the fraction of sessions that can be handled by the specified technique.

2. Server replication and selection. This category of techniques directs requests to replicas
of the origin servers when the origin servers are unreachable. Several file systems [32] and
databases [25] provide replicated servers to handle failures in distributed environments. In
the context of the Web, mirror sites with “manual failover”, as well as replicated servers
with anycast [3, 12, 46] can support server replication. This class of techniques can resolve
near-destination and in-middle failures but is ineffective against near-source failures.

As in our analysis of client independence techniques, we abstract implementation details of
routing-based techniques and focus on bounding improvements that they may provide. Several
factors may limit these improvements in practice. For re-routing strategies, overheads include the
failure detection time and route switching time. For server replication and selection, there are costs
to maintain extra replicas and overheads to select alternative servers. These overheads vary for dif-
ferent implementations and may vary for different services (e.g. depending on failures, consistency,
and semantics). Therefore, as with client-independence techniques, clients may experience sessions
handled by re-routing or server replication as “degraded” with the significance of the deterioration
varying on a service-by-service and implementation-by-implementation basis.

21

1 1
o1l i 01 No Failure Sessions K
. No Failure Sessions
" 001 Re-Rgutmg Sessions ¥ Sl . 4
2 oolb Re-Routing Sessions | 5 -
2 " ' g 3
? S o001}]
5 0001 f 1 S : 1 Server Replication and Selection Sessions
< < - & 00001 | L E
Z _—Server Replication and Selection Sessions % | - g
S 00001 |7 |] T ;i N Failed Seksions
L | t 1e-05 |- I 4
I 7 | '
| - Failed Sessions 1
1e-05 -t 4 1e-06 . 4
| s X
‘ i
L |
¥ 1
| 1e-07 L
1e-06 L . L L 1e-05 0.0001 0.001 0.01 0.1 1
1e-05 0.0001 0.001 001 01 1 Average Network Unavailability
Average Network Unavailability 9
(a) Squid-P (b) BU-P
1 1
01k . . 4 01p No Failure Sessions K
: No Failure Sessions a
¥
" . 001 Re-Rgutmg Sessions ; 4
c 001 - Re-Routing Sessions] 2 -
E=] . R=l
I 4 0.001 |- s B
%] 7] -
S5 0.001 7 ‘S .~~~ Berver Replication and Selection Sessions
S S o.0001 | R
= E=] S
e & 1 A
T 0.0001 [P B T 1 P Failed Sessions
X " 1e-05 -1 IR B
A .
- .Server Replication and Selection Sessions
105t L : Failed Sessions 3 1e-06 —)i(k!
1006 L ‘ Jr L ‘ ‘ 1oo7 LI ‘ ‘ ‘ ‘
1e-05 0.0001 0.001 0.01 0.1 1 1e-05 0.0001 0.001 0.01 0.1 1
Average Network Unavailability Average Network Unavailability
(c) Squid-C (d) BU-C

Figure 11: Session average unavailability v. network average unavailability. Each region between two lines
represents the fraction of sessions that can be handled by the specified technique.

Workload and methodology. We use the same workloads and similar methodology as for
the client-independence experiments. We group requests into sessions and classify each network
disconnection by its location: near-source, in-middle, or near-destination. We run each experiment
25 times and plot the mean with 90% confidence intervals.

Results. In our first set of experiments, we vary the fraction of disconnections in each location
category. These graphs are omitted due to space limits. Across a wide range of ratios, the findings
are as expected: the fraction of unavailability events that each class of techniques can mask varies
in proportion to the fraction of disconnections assigned to a particular location category. For
example, when in-middle disconnections account for 50% of all disconnections, techniques that
mask in-middle disconnections but not others can improve average unavailability by about a factor
of two.

Given that the traces exhibit significant fractions of failures at each location, Amdahl’s Law
limits improvements from routing based strategies that do not address failures in all three locations.
More study is needed to quantify the prevalence of near-source disconnections precisely, but the
preliminary result of our study suggests that near-source failures account for at least 10%-20%
of disconnections, probably limiting routing-based techniques to less than an order of magnitude
improvement. As noted above, our methodology is likely to underestimate near-source failures.

22

1 1
01f No Failure Sessions Cache Hit Sessions 1 01 No Failure Sessions Cache Hit Sessions 1
Stale Hit Sessions B & Stale Hit Sessions
” 0.01 | Hoardable Degraded Sessions | " 0.01 | Hoardable Degraded Sessions 4
g 5
E=] 2
7 7]
Qo001 b 1 & O>00|13 fnamic Degraged S]
0 Dynamic Degraded Sessions & — fnamic Degraged = - Ny
5 * S) b r Replication and| Selection Sessjons
T . s P c []
S 00001 F7 L L Lo] § oooip) ’
k3] i : - 8 = " Failed Sebsions
[Servéf Replication and Selection Sessfons T //’/
L e 1e-05 [l - B
1e-05 fi-~ B
| - Failed Sessions EL
L . . 1e-06 | Re:Routing Sessions 4
1e-06 |- e-Routing Sessions B ‘
e 1oo7 LI ‘ ‘ ‘ ‘
1e-07 - - . - 1e-05 0.0001 0.001 0.01 0.1 1
1e:05 0.0001 0.001 001 01 L Average Network Unavailabilit
Average Network Unavailability 9 Y
(a) Squid-P (b) BU-P
1 1
01 No Failure Sessions Cache Hit Sessions E 01 No Failure Sessions Cache Hit Sessions E
Stale Hit Sessions Stale Hit Sessions
» 0.01 |- Hoardable Degraded Sessions 4 " 0.01 | Hoardable Degraded Sessions 4
c c
E=] R=l
2 2
4 0.001 4 o 0.001 4
0 Dytnamic Degraded Sessions 7 2 Dynamic Degraded Sessions -
k<] i Servg ‘Replication and| Selection Sessjons ‘G a\ r Replication and Selection Sessjons
S o.0001 b R S o.0001 | 4 R
= =]
o Q . :
[© Failed Sessions
w 1e-05 | e B v 1e-05 | B
p Failed Sessions g
1e-06 |- e-Routing Sessions B 1e-06 1 Re-Routing Sessijons B
1e-07 L L L 1e-07 L L L L
1e-05 0.0001 0.001 0.01 0.1 1 1e-05 0.0001 0.001 0.01 0.1 1
Average Network Unavailability Average Network Unavailability
(c) Squid-C (d) BU-C

Figure 12: Session average unavailability v. network average unavailability (combined techniques). Each
region between two lines represents the fraction of sessions that can be handled by the specified technique.

Figure 11 shows the sensitivity of these results as we vary average network unavailability.
As with the client-independence strategies, the relative improvements to average unavailability
provided by these techniques remains stable over a wide range of underlying average network
availabilities.

4.3 Combined Techniques

Client-independence techniques are limited by compulsory misses and installation time, and re-
routing techniques are limited by near-source failures. Because these techniques fail in different
circumstances, they may be combined to reduce average system unavailability.

For example, Figure 12 shows session average unavailability under a combined scheme in which
network unavailability is masked by caching, prefetching, and active objects and in which prefetch-
ing and installation of active objects use anycast to access replicated servers. This combined
approach thus masks all failures except near-source failures during prefetching or active object
installation time. Figure 6 suggests that these results will be relatively insensitive to increases in
install_time. Overall improvements in BU-P for this combined scheme are factors of 117, 100, 18.2,
and 24.5 for average network unavailability probabilities of 0.0125%, 0.125%, 1.256%, and 12.5%,
respectively. This relatively wide improvement range appears to be due to experimental variation

23

magnified by the small number of unavailability events observed in the simulations. The graphs
show qualitatively similar results for the other workloads.

5 Conclusions

Although Internet services can deploy highly available servers, deploying highly available services
remains problematic due to connectivity failures. A typical client may not be able to reach a typical
server for 15 minutes per day.

In this paper, we develop a network unavailability model and an evaluation strategy for studying
broad classes of techniques for coping with connectivity failures.

These experiments suggest that end-to-end techniques have the potential to significantly im-
prove WAN service availability. Although the gains from traditional caching appear limited, the
potential gains from more aggressive techniques — such as prefetching, content distribution, and
replication of active objects — appear substantial, at least for those services whose semantics allow
for disconnected operation and whose data footprints are small enough for replication. Quantifying
the fraction of services that meet these requirements is an important topic for future work, as is
developing a scalable extensible proxy design that can host hundreds or thousands of downloaded
extensions [5].

We speculate that for most services, the path to high end-to-end availability most likely runs
through a combination of approaches. For example, routing-based techniques might be used to
reduce the impact of “compulsory” misses on mobile extensions while mobile extensions might be
used to mask network failure classes not addressed by a particular routing strategy.

Acknowledgments

We thank the anonymous Transactions on Networking reviewers for their helpful comments, par-
ticularly concerning the discussion of the availability models.

We thank the National Laboratory for Applied Network Research (NLANR) for making the
Squid access logs available under National Science Foundation grants NCR-9616602 and NCR-
9521745, the Oceans research group for making the BU traces available, the University of Wash-
ington Detour research group for making the uw traces available, and Vern Paxson for making the
Paxson traces available.

This work was supported in part by an NSF CISE grant (CDA-9624082), the Texas Advanced
Technology Program, the Texas Advanced Research Program, and grants from Cisco, IBM, Novell,
and Tivoli. Dahlin was also supported by an NSF CAREER award (CCR-9733842) and an Alfred
P. Sloan Research Fellowship.

This article is an extended version of a paper by the same title, which appeared at the Second
Usenix Symposium on Internet Technologies and Systems, March 2001.

References

[1] D. Andersen, H. Balakrishnan, M. Kaashoek, and R. Morris. Resilient Overlay Networks. In Proceedings of the
Eightteenth ACM Symposium on Operating Systems Principles, 2001.

[2] Network Appliance. Internet content adaptation protocol (icap). DS-2326, June 2000.

[3] S. Bhattacharjee, M. H. Ammar, E. W. Zegura, N. Shah, and Z. Fei. Application Layer Anycasting. In Proc.
IEEE INFOCOM’97, 1997.

[4] P. Cao, J. Zhang, and Kevin Beach. Active Cache: Caching Dynamic Contents on the Web. In Proc. of
Middleware 98, 1998.

24

[10]
[11]
[12)
[13)
[14]
[15]
[16]
17)
[18)
[19]
[20]
[21]
[22]
[23)
[24]
[25]
[26]
[27]

28]

B. Chandra, M. Dahlin, L. Gao, A. Khoja, A. Nayate, A. Razzaq, and A. Sewani. Resource management for
scalable disconnected access to web services. In 10th International World Wide Web Conference, May 2001.

B. Chandra, M. Dahlin, L. Gao, and A. Nayate. End-to-end WAN Service Availability. In Proc. of the Third
USENIX Symposium on Internet Technologies and Systems, 2001.

C. Cunha, A. Bestavros, and M. Crovella. Characteristics of WWW Traces. Technical Report TR-95-010, Boston
University Department of Computer Science, April 1995.

R. D’Agostino and M. Stephens, editors. Goodness-of-Fit Techniques. Marcel Dekker, Inc., 1986.

M. Dahlin, B. Chandra, L. Gao, A. Khoja, A. Nayate, A. Razzaq, and A. Sewani. Using Mobile Extensions
to Support Disconnected Services. Technical Report TR-2000-20, University of Texas at Austin Department of
Computer Sciences, June 2000.

D. Duchamp. Prefetching Hyperlinks. In Proc. of the Second USENIX Symposium on Internet Technologies and
Systems, October 1999.

B. Duska, D. Marwood, and M. Feeley. The Measured Access Characteristics of World-Wide-Web Client Proxy
Caches. In Proc. of the USENIX Symposium on Internet Technologies and Systems, December 1997.

Z. Fei, S. Bhattacharjee, E. Zegura, and M. Ammar. A Novel Server Selection Technique for Improving the
Response Time of a Replicated Service. In Proc. of IEEE Infocom, March 1998.

J. Gwertzman and M. Seltzer. The case for geographical pushcaching. In HOTO0S95, pages 51-55, May 1995.

M. Harchol-Balter. The Effect of Heavy-Tailed Job Size Distributions on Computer System Design. In Proc. of
ASA-IMS Conf. on Applications of Heavy Tailed Distributions in Economics, Engineering and Statistics, June
1999.

J. Hennessy and D. Patterson. Computer Architecture A Quantitative Approach. Morgan Kaufmann Publishers,
Inc., 2nd edition, 1996.

J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satyanarayanan, R. Sidebotham, and M. West. Scale and
Performance in a Distributed File System. ACM Transactions on Computer Systems, 6(1):51-81, February
1988.

R. Jain. The Art of Computer Systems Performance Analysis, chapter 13, pages 179-200. Wiley, 1991.

A. Joseph, A. deLespinasse, J. Tauber, D. Gifford, and M. Kaashoek. Rover: A Toolkit for Mobile Information
Access. In Proc. of the Fifteenth ACMSymposium on Operating Systems Principles, December 1995.

J. Kistler and M. Satyanarayanan. Disconnected Operation in the Coda File System. ACM Transactions on
Computer Systems, 10(1):3-25, February 1992.

M. Korupolu and M. Dahlin. Coordinated Placement and Replacement for Large-Scale Distributed Caches. In
Proc. of the 1999 IEEE Workshop on Internet Applications, June 1999.

K. R. Krishnan, R. Doverspike, and C. Pack. Improved Survivability with MultiLayer Dynamic Routing. IEEE
Communications Magazine, 33(7), July 1995.

T. Kroeger, D. Long, and J. Mogul. Exploring the Bounds of Web Latency Reduction from Caching and
Prefetching. In Proc. of the USENIX Symposium on Internet Technologies and Systems, December 1997.

C. Labovitz, A. Ahuja, and F. Jahanian. Experimental Study of Internet Stability and Backbone Failures. In
FTCS99, June 1999.

D. Li and D. Chariton. Scalable Web Caching of Frequently Updated Objects Using Reliable Multicast. In Proc.
of the Second USENIX Symposium on Internet Technologies and Systems, pages 1-12, Oct 1999.

A. Moissis. SYBASE replication server: A practical architechture for distributing and sharing corporate infor-
mation. Technical report, SYBASE Inc, March 1994.

A. Myers, P. Dinda, and H. Zhang. Performance Characteristics of Mirror Servers on the Internet. In Proc. of
IEEE Infocom, 1999.

National Institute of Standards and Technology. Dataplot Reference Manual. NIST Handbook Number 148, July
2001.

B. Noble, M. Satyanarayanan, D. Narayanan, J. Tilton, J. Flinn, and K. Walker. Agile Application-Aware
Adaptation for Mobility. In Proc. of the Sizteenth ACM Symposium on Operating Systems Principles, October
1997.

25

(29]

(30]
31]
32]
[33]
[34]
[35]
[36]
37]
(38]

(39]

[40]

[41]

42]
[43]
[44]

[45]

[46]

[47]

V. Padmanabhan and J. Mogul. Using Predictive Prefetching to Improve World Wide Web Latency. In Proc.
of the ACM SIGCOMM ’96 Conf. on Applications, Technologies, Architectures, and Protocols for Computer
Communication, pages 22—-36, July 1996.

V. Paxson. Measurements and Analysis of End-to-End Internet Dynamics. PhD thesis, University of California,
Berkeley, April 1997.

J. Pitkow and P. Pirolli. Mining Longest Repeating Subsequences to Predict World Wide Web Surfing. In Proc.
of the Second USENIX Symposium on Internet Technologies and Systems, pages 139-150, Oct 1999.

M. Satyanarayanan, J. Kistler, P. Kumar, M. Okasaki, E. Siegel, and D. Steere. Coda: A highly Available File
System for a Distributed Workstation Environment. IEEE Transactions on Computers, 39(4), April 1990.

S. Savage, A. Collins, E. Hoffman, J. Snell, and T. Anderson. The End-to-end Effects of Internet Path Selection.
In Proc. of ACM SIGCOMM ’99, pages 289-299, September 1999.

G. Snedecor and W. Cochran. Statistical Methods. Iowa State University Press, seventh edition, 1980.

D. Terry, M. Theimer, K. Petersen, A. Demers, M. Spreitzer, and C. Hauser. Managing Update Conflicts in
Bayou, a Weakly Connected Replicated Storage System. In Proc. of the Fifteenth ACMSymposium on Operating
Systems Principles, pages 172-183, December 1995.

R. Tewari, M. Dahlin, H. Vin, and J. Kay. Design Considerations for Distributed Caching on the Internet. In
Proc. of the Nineteenth International Conf. on Distributed Computing Systems, May 1999.

G. Tomlinson, H. Orman, M. Condry, J. Kempf, and D. Farber. Extensible proxy services framework. IETF-Draft
draft-tomlinson-epsfw-00.txt, IETF, July 2000. Expires January 11, 2001.

K. Trivedi. Probability and Statistics with Reliability, Queuing, and Computer Science Applications. Wiley,
second edition, 2002.

A. Vahdat, M. Dahlin, T. Anderson, and A. Aggarwal. Active Naming: Flexible Location and Transport of Wide-
Area Resources. In Proc. of the Second USENIX Symposium on Internet Technologies and Systems, October
1999.

A. Venkataramani, R. Kokku, and M. Dahlin. TCP-Nice: A mechanism for background transfers. In 0SDI02,
December 2002.

A. Venkataramani, P. Yalagandula, R. Kokku, S. Sharif, and M. Dahlin. ”potential costs and benefits of long-
term prefetching for content-distribution”. In Proceedings of the 2001 Web Caching and Content Distribution
Workshop, June 2001.

D. Wessels. Squid Internet Object Cache. http://squid.nlanr.net/Squid/, August 1998.
R. Wolff. Poisson Arrivals See Time Averages. Operations Research, 30(2):223-231, 1982.

A. Wolman, G. Voelker, N. Sharma, N. Cardwell, M. Brown, T. Landray, D. Pinnel, A. Karlin, and H. Levy.
Organization-Based Analysis of Web-Object Sharing and Caching. In Proc. of the Second USENIX Symposium
on Internet Technologies and Systems, October 1999.

A. Wolman, G. Voelker, N. Sharma, N. Cardwell, A. Karlin, and H. Levy. On the scale and performance of
cooperative web proxy caching. In Proc. of the Seventeenth ACM Symposium on Operating Systems Principles,
December 1999.

C. Yoshikawa, B. Chun, P. Eastham, A. Vahdat, T. Anderson, and D. Culler. Using Smart Clients to Build
Scalable Services. In Proc. of the 1997 USENIX Technical Conf., January 1997.

Y. Zhang, V. Paxson, and S. Shenkar. The Stationarity of Internet Path Properties: Routing, Loss, and
Throughput. Technical report, AT&T Center for Internet Research at ICSI, http://www.aciri.org/, May 2000.

26

