
Feres: Flexible and Efficient Replica Synchronization For Diverse
Environments

Jiandan Zheng† Nalini Belaramani∗ Mike Dahlin∗
∗University of Texas at Austin †Amazon Inc.

Abstract:
This paper presents Feres, a peer-to-peer data synchro-

nization protocol that can be used to construct new, flexible
distributed file systems that share data across collections of
devices with limited, varying, or intermittent connectivity.
The amount of flexibility provided by Feres is not matched
by existing protocols. In particular, Feres allows any device
to synchronize any subset of data with any other node, pro-
vides options to chose either data or meta-data and log-based
or state-based synchronization, detects conflicts and supports
application specific commit policies without require rollback.
In addition, the overheads associated with Feres are reason-
able.

Because Feres is flexible, it can send the right data via the
right network paths and dramatically outperform less flexible
traditional client-server or server-replication protocols – we
observe up to 15 times speedup for one scenario. At the same
time, Feres is more efficient than existing similarly flexible
protocols like PRACTI – we observe order of magnitude of
bandwidth savings in some experiments.

1 Introduction
This paper addresses a simple question: How can a repli-
cation protocol support the diverse needs of personal and
mobile storage environments? Users are increasingly stor-
ing and accessing data from a large collection of devices
with vastly different network capabilities including laptops,
phones, eBooks, media-players, set-top boxes. The key chal-
lenge for file systems targeting personal and mobile environ-
ments is the diversity the environment presents in terms of de-
vice mobility, connectivity, storage capacities and application
needs in terms of consistency, performance and availability.

Our vision is to construct a single replication protocol
that meets these needs. In contrast, past approaches [Guy
et al., 1998] [Karypidis and Lalis, 2006] [Kistler and Satya-
narayanan, 1992] [Mazzola et al., 2003] have built different
protocols that embed different trade-offs in their mechanisms
making them suitable for only a subset of applications. The
benefit of having a single flexible protocol is threefold: First,
a flexible protocol simplifies development since systems can
be quickly constructed for a target environment by picking
suitable protocol options. Second, systems can take advan-
tage of the flexibility to adapt to changing workloads and net-
work environment. Third, building a replication system over
flexible mechanisms makes it possible to implement differ-
ent synchronization policies for different subsets of data or at
different times.

The key challenge is that such a protocol must have suffi-
cient flexibility and efficiency. In particular, the protocol must
support the following features:
• Partial replication: Every device may store different sub-

sets of data, either due to storage limitations or user pref-
erence. The protocol must allow any device to store any
subsets of data.

• Wide range of consistency semantics: Different applica-
tions have different consistency requirements. The proto-
col should allow applications that require strong consis-
tency guarantees to provide them, whereas others should
not have to pay the availability or performance costs of the
consistency guarantees they do not need.

• Arbitrary synchronization topologies: It is often necessary
that a device be able to synchronize with a nearby peer
when connectivity to the server is limited. The protocol
should allow any device to carry out synchronization with
any other node.

• Various synchronization options: Every replication system
may have different synchronization requirements. The pro-
tocol must provide sufficient options so that policies im-
plement synchronization schemes with the best tradeoffs
including the separation of data and meta-data paths, log-
based and state-based synchronization, and dynamic syn-
chronization establishment.

• Incremental progress: Network interruptions may be com-
mon. The protocol must ensure synchronization makes
progress despite network disruptions.

• Conflict detection: Due to network partitions, a data item
may be concurrently updated at multiple devices. The pro-
tocol must detect the conflicts so that applications can in-
voke appropriate resolution mechanisms.

• Low overheads: Network and resource limited devices are
common in this environment. The flexible protocol should
be competitive with non-flexible, hand-crafted protocols.
No existing protocol satisfies the set of features listed

above. PRACTI [Belaramani et al., 2006] shares similar
goals but is not sufficiently flexible: it does not support con-
flict detection for state-based synchronization; it cannot ef-
ficiently support protocols that require establishing dynamic
fine-grained synchronization; and it does not support certain
consistency semantics well because it does not differentiate
between tentative and committed writes.

This paper presents Feres, a new data synchronization pro-
tocol that provides system designers with this wide range

1

of synchronization options at reasonable costs. In order to
do this, Feres draws on some ideas from past protocols and
then introduces three key new ideas. As in some past proto-
cols, Feres uses peer-to-peer synchronization [Petersen et al.,
1997, Sobti et al., 2004, Guy et al., 1990, 1998, Saito et al.,
2002] via log exchange [Petersen et al., 1997] and state ex-
change [Novik et al., 2006], separation of invalidations and
bodies [Belaramani et al., 2006, Kistler and Satyanarayanan,
1992], causal propagation of updates [Petersen et al., 1997,
Belaramani et al., 2006] and summarization of unwanted
meta-data [Belaramani et al., 2006] But, to meet the needs
of this environment, Feres introduces the following new tech-
niques:
• Fine-grained multiplexing of synchronization requests. If

two nodes have a synchronization stream established, any
new synchronization request is multiplexed on the same
stream. Previous peer-to-peer protocols [Belaramani et al.,
2006, Petersen et al., 1997] establish a new synchroniza-
tion stream for each synchronization request between two
nodes leading to inefficiencies. Multiplexing synchroniza-
tion requests on a single stream enables efficient imple-
mentation of common replication techniques such as de-
mand caching and callbacks.

• Dependency summary vector scheme for conflict detection:
Some previous protocols only detect conflicts for either
state-based [Malkhi et al., 2007, Novik et al., 2006] or log-
based synchronization [Belaramani et al., 2006, Petersen
et al., 1997]. Feres introduces a dependency summary vec-
tor (DSV) scheme that detects conflicts for both state-based
and log-based synchronization. In addition, it uses con-
sistency meta-data already maintained for synchronization
and as a result does not incur any extra bandwidth or stor-
age overhead despite network disruptions.

• Flexible commit mechanism: Previous protocols either
do not differentiate between tentative and committed
writes [Belaramani et al., 2006, Novik et al., 2006], or re-
quire roll-back and reordering of writes [Petersen et al.,
1997]. Feres exposes a commit operation that assigns a fi-
nal commit order to writes that is independent of the orig-
inal write-order making it efficient because it does not re-
quire roll-back or reprocessing of already received writes.
In addition, commit information is propagated together
with update information in causal order making it easier
to reason about the implementation of commit policies. As
a result, it is easy for applications that need strong consis-
tency (for e.g., linearizability, serializability) to provide it
over Feres mechanisms.
This paper presents details of Feres and evaluates it under

different synchronization scenarios. Details of how to im-
plement specific replication policies with the Feres mecha-
nisms can be found elsewhere [Belaramani et al., 2008]. We
demonstrate that Feres possesses the flexibility and efficiency
required for mobile environments. Feres is flexible – it is able
to support all the above features. Feres is efficient – its over-

heads are proportional to the data required by a node. When
compared to traditional client-server and server replication
protocols, synchronization with Feres provides up to 15 times
speedup for a significant range of workloads. Feres also pro-
vides several orders of magnitude of bandwidth savings when
compared to PRACTI for common workloads.

2 System Model
In this section, we briefly describe the system model assumed
by Feres.

Objects and time. Data are stored as objects identified by
unique object identifier strings. Sets of objects can be com-
pactly represented as interest sets that impose a hierarchical
structure object IDs. For example, the interest set “/a/*:/b”
includes object IDs with the prefix “/a/” and also includes the
object ID “/b”.

Feres heavily relies on Lamport’s clocks [Lamport, 1978]
and version vectors to keep logical time and consistency in-
formation. Every node maintains a time stamp, lc@n where
lc is a logical counter and n the node identifier. To allow
events to be causally ordered, the time stamp is incremented
whenever a local update occurs and advanced to exceed any
observed event whenever a remote update is received. Every
node also maintains a version vector, currentVV , that indi-
cates all the updates, local or remote, it is aware of.

Whenever an object is updated, the update is divided into
an invalidation and a body. An invalidation contains the ob-
ject ID and the logical time of the update. A body contains
the actual data of the update.

Update log, object store and consistency module Every
node stores local or received invalidations in an update log in
casual order. In order to prevent the log from becoming arbi-
trarily large, the node truncates older portions of the log when
the log hits a locally configurable size limit and maintains a
version vector, omitVV , to keep track of the cut-off time.

The object store stores the latest bodies of objects the node
chooses to replicate along with per-object meta-data used to
ensure consistency of that data (described later).

The consistency module keeps track of other consistency
information in a concise manner by organizing objects into
hierarchical interest sets and storing the information on a
per-interest set basis. Details of the consistency information
maintained is provided in Section 3.2.

3 Synchronization
Synchronization between two nodes is carried out via unidi-
rectional streams that allow Feres to meet all of its design re-
quirements. We present an overview of the protocol followed
by details of the implementation.

3.1 Protocol Overview
Say a node wants to receive updates to a subset of data from
another node. In addition to the updates, it is also neces-
sary to send enough information to give each application the

2

Gap Marker

/z/*

No Multiplexing

ReceiverSender

ReceiverSender

Stream

Start

Inval

/x/2
Gap Marker

/y/*:/z/*

Inval

/x/3

Inval

/x/4

Inval

/x/1

Catchup

End

Inval

/y/1

Gap Marker

/x/*:/z/*
Inval

/y/2
Gap Marker

/z/*

Stream

Start

Inval

/x/2

Gap Marker

/y/*:/z/*

Inval

/x/3
Inval

/x/4

Inval

/x/1
Catchup

Start

Inval

/y/1

Stream

Start

Inval

/y/3

Inval

/y/2

Inval

/y/3

Gap Marker

/y/*:/z/*

Stream SS = /x/*

Stream SS = /y/*

Redundant Information Sent

With Multiplexing

Stream SS = /x/*Catchup for /y/*:

sends missing updates
Stream SS = /x/*:/y/*

Fig. 1: Diagram comparing the messages sent on invalidation streams without and with multiplexing.

flexibility to enforce whatever level of consistency it needs.
Synchronization in Feres tries to keep that information to a
minimum.

Synchronization streams. Suppose all the objects stored in
Node A lie in the interest set, A.IS. Node A knows about all
updates to A.IS up to its current time, A.currentVV . A wants
to receive new updates to A.IS and requests a synchronization
stream from node B.

If node B stores the same objects as A, i.e. A.IS = B.IS,
synchronization is simple. Node B just sends all the updates
it has that occurred from A.currentVV to B.currentVV in
causal order. The updates are sent in causal order because
a causal stream provides flexibility for applications to imple-
ment a wide range of weaker or stronger consistency guar-
antees with little additional overhead. In addition, a causal
stream is incremental, i.e. in case of disconnection, the syn-
chronization can continue where it left off.

Gap markers. Because of partial replication, however, dif-
ferent nodes may store different subsets of data. In other
words, Node B may not store all the objects that Node A
wants. In addition to sending all the updates Node B has to
objects in A.IS, it must warn Node A if there are any causal
gaps – updates that have occurred to objects that Node A
cares about but Node B does not have. Node B sends a gap
marker [Belaramani et al., 2006] in that case. Gap markers
can be seen as a summary of multiple updates. They sum-
marize updates that occurred to a set of objects, targetSet,
between a start time, startVV , and an end time, endVV . Note
that start and end time are partial version vectors rather than
full version vectors.

Gap markers must be sent in two cases. First, the sender,
Node B, does not know about the updates the receiver, Node
A, has asked for. Second, gap markers are sent for updates to
objects Node A did not ask for so that Node A can pass on

the knowledge of the gaps in its information to another node,
Node C, that it synchronizes with in the future. It is this prop-
agation of gap markers to all nodes that allows Feres to simul-
taneously support partial replication, topology independence,
and still support a broad range of consistency semantics.

An update stream consists of a start time, stream.startVV ,
and a causally ordered series of updates and gap markers. Ev-
ery stream is associated with a stream.VV that keeps track of
the logical time progression of the stream.

Dynamic synchronization. Next, what if Node A decides
that it wants to synchronize more objects? Say Node A al-
ready has a synchronization stream established for A.IS from
Node B and it wants get updates for objects in A.newIS from
the time A.newIS.startVV . A simple approach would be to
establish a new stream for A.newIS. The problem is that a
lot of redundant information will be sent – in order to en-
sure that each stream provides a causally ordered series of
events from stream.startVV , each must include gap markers
for any omitted events and Node A may receive gap markers
for the same updates twice. If Node A creates a large num-
ber of subscriptions, then redundant information is sent on
each stream. This inefficiency prevents existing flexible pro-
tocols, like PRACTI, from meeting our needs. For example,
in PRACTI, to support demand caching with per-object call-
backs [Kistler and Satyanarayanan, 1992] [Nightingale and
Flinn, 2004], each time a client caches a new object, it cre-
ates a new subscription by establishing a new independent
stream from the server.

Feres reduces the overheads of dynamic synchronization
requests by multiplexing requests on to a single stream. Since
updates on the stream are sent in causal order, simply send-
ing updates to A.newIS from the current logical time of the
stream stream.VV will not work because that would not “fix
the gap” that Node A has for A.newIS from A.newIS.startVV

3

to stream.VV . Instead, Node B “pauses” the stream at
stream.VV and sends a catchup stream which includes all
updates for A.newIS from A.newIS.startVV to stream.VV that
node B knows about. After catchup, node B continues send-
ing invalidations for A.IS and A.newIS and gap markers for
everything else starting from stream.VV . Figure 1 illustrates
the multiplexing of the stream.

State-based synchronization. Feres also supports state-
based synchronization by sending a checkpoint of the final
state of objects in an interest set instead of sending an ordered
log of updates. A checkpoint consists of a gap marker for
A.IS from A.stream.startVV and B.currentVV and the latest
meta-data of objects in A.IS updated between stream.startVV
and B.currentVV . In case of a multiplexed catchup stream,
a checkpoint consists of the meta-data of objects in A.newIS
updated between A.newIS.startVV to stream.VV .

Log and checkpoint synchronizations have different trade-
offs. The bandwidth requirement for log synchronization is
always proportional to the number of updates that occurred
to objects in the subscription set. Log synchronization is use-
ful for incrementally and continuously exchanging updates
between pairs of nodes. On the other hand, the bandwidth re-
quirement for checkpoint synchronization is proportional to
the number of objects updated. Hence, for a small frequently
updated subscription set, a checkpoint synchronization might
a better option. Also, a log synchronization is impossible to
execute if the update log has been truncated beyond the start
time of the subscription. i.e. the subscription requires invali-
dations that are older than what is currently stored in the log.
The only option is to fall back on checkpoint synchronization.

Invalidation and body streams. Feres separates meta-data
and data synchronization by having separate invalidation and
body streams. Invalidation streams propagate meta-data of
updates that occurred after startVV in causal order. Body
streams are simply unordered streams of the bodies of up-
dates that occurred after startVV . Ordering body streams is
unnecessary because received bodies are applied to the ob-
ject store only after their corresponding invalidations are re-
ceived. The causality of the invalidation streams is sufficient
to guarantee consistency.

The separation of invalidation and body subscriptions en-
ables meta-data and data to propagate via different paths.
Nodes can choose to receive bodies of the updates they care
about, leading to better bandwidth efficiency. Also, a node
can quickly and cheaply inform other nodes about an update,
via an invalidation, without having to send the entire update.

3.2 Protocol Details
The protocol must allow any peers to exchange any subsets of
data via log or incremental checkpoint. This is done by estab-
lishing multiple subscriptions between nodes. In this section,
we explain the key ideas including subscriptions, state main-
tained in each node, and the processing carried out to update
node state when messages are received.

Messages sent on an invalidation stream
Subscription start SS, startVV
Checkpoint SS, per-obj meta-data, IS gap information
Invalidation objId, offset, length, timeStamp
Gap marker targetSet, startVV, endVV
Catchup start SS, VV
Catchup end VV

Messages sent on an body stream
Body objId, offset, length, timeStamp, data

Fig. 2: Components of different messages sent on subscription
streams.

Subscriptions. A synchronization request is called a sub-
scription and is associated with a subscription set that speci-
fies the set of objects, SS, a node is interested in synchroniz-
ing and a start time, startVV , which indicates that only the
updates that occurred after that time should be sent. Sub-
scriptions between two nodes are multiplexed on a single
update stream. A subscription has two phases: a catchup
phase in which the sender sends all updates to objects in the
subscription set from the start time startVV to the sender’s
currentVV , and a connected phase in which the sender for-
wards any new updates it receives.

For invalidation subscriptions, in the catchup phase, the
subscription can either carry out log-synchronization – with
invalidations and gap markers sent causally over the stream or
checkpoint-synchronization – with a checkpoint of the object
meta-data. In the connected phase, only invalidations and gap
markers are sent. In particular, an invalidations stream can be
made up of the following messages:- a subscription start mes-
sage that includes the subscription start time, startVV , and
the subscription set, SS; a checkpoint of the the sender’s meta-
data for SS; invalidations of updates to objects in SS that the
sender knows about; gap markers of updates out of SS or if
the sender is missing invalidations of updates to SS; and per-
haps a catchup stream, enclosed by catchup start and catchup
end messages, if a new subscription set is multiplexed to the
stream. Figure 3.2 provides details of the messages sent.

A body stream simply consists of bodies of updates that
occurred after the startVV of each subscription multiplexed
on it.

Node state. Every node maintains state to keep track of
its logical time and the consistency of the objects it stores.
Whenever it receives messages over streams, it updates the
consistency state and the object store accordingly In particu-
lar, a node, say Node A, maintains the following state:
• currentVV : Node A maintains a version vector that indi-

cates the latest update it has seen, either via an invalidation
or via a gap marker. This implies that Node A is not aware
of any updates after currentVV .

• stream.VV : For every stream, Node A maintains a logi-
cal time that includes the last record and all the causally
preceding records received on the stream. It implies that
Node A has seen, either via invalidations or gap markers,
all events from the stream.startVV to stream.VV .

• IS.noGapVV : For every interest set, Node A maintains a

4

noGapVV that indicates that Node A has seen all updates
and no gaps to the interest set until this time. IS.noGapVV
is maintained in the consistency module. For a particular
interest set IS1, if IS1.noGapVV < currentVV then the in-
terest set is considered gapped – Node A is missing one or
more invalidations that affect IS1 between IS1.noGapVV
and currentVV . Hence, consistency cannot be assured for
reads of objects in IS1.

• ob j.timeStamp: For every object currently stored, Node
A stores the timestamp of the latest invalidation it has re-
ceived for the object.

• ob j.isValid: A flag, stored for every object, that indicates
whether the node stores the body of the latest invalidation
it has received for the object. If the isValid flag is not set,
the object is considered invalid and the consistency cannot
be assured for a read of that object, because the body is
older than the invalidation received.
In fact, causal consistency can be guaranteed for reads to

valid objects in not gapped interest sets. Because the in-
terest set is not gapped, the node is aware of all the causal
updates to the object up to currentVV and the validity im-
plies that the node is actually storing the body of the latest
causal update. Furthermore, causal consistency provides a
baseline over which stronger guarantees like sequential con-
sistency or linearizability can easily be added [Zheng, 2008].
On the other hand, applications that do not require causal con-
sistency have the option of accessing data even from gapped
interest sets.

A checkpoint for a subscription set SS consists of no-
GapVV information for every enclosed interest set, and the
object meta data i.e. (timestamp, isValid) for every object
updated after startVV .

Processing received updates. When a receiver receives
messages on the stream, in addition to updating the log and
the store, the key job for the receiver is to make sure that the
consistency state is correctly updated.

We introduce the concept of “attaching” an interest set to a
stream, so as to eliminate the need for updating IS.noGapVV
every time an invalidation or gap marker is received. An in-
terest set is “attached” to a stream if no gap markers for the in-
terest set have been received on the stream, i.e. IS.noGapVV
includes stream.VV . The consistency module keeps track of
which streams an interest set is attached to by maintaining a
IS.attachedStreams set. If a gap marker, GM is received on
a stream, the GM.targetSet is “detached” from the stream by
explicitly storing its noGapVV in the consistency module.

An invalidation stream is, therefore, processed as de-
scribed in Figure 3.

Processing a body stream is simple. When a node re-
ceives a body, it will check if the body.timeStamp matches
local times stamp for the object, ob j.timeStamp. If there is
a match, it implies that the body corresponds to the latest re-
ceived invalidation for the object and the body is put into the
store. If the body is older than the timestamp, then the body is

discarded. If the body is newer than the timestamp, it implies
that its corresponding invalidation has not been received yet.
Instead of discarding it, the body is stored in a body buffer
and is applied to the store when its corresponding invalida-
tion arrives.

Sending updates. Sender side processing of subscriptions
is simple. For invalidation subscriptions, a sender iterates
through the entries in its log from the subscription start time
stream.startVV to currentVV . Invalidations and gap markers
of updates to objects in stream.SS are sent as is. Invalidations
of object not in stream.SS are summarized into gap markers
before being sent. For checkpoint catch-up, the sender creates
a checkpoint by looking through the object store and consis-
tency module and sends per-object state of objects updated
after stream.startVV and the noGapVV information on the
stream.

When a body subscription is initiated, the sender searches
through the object store and sends bodies of all valid objects
that are in stream.SS and whose timestamp is newer than
stream.startVV . Note that bodies of invalid objects are not
sent because the object store keeps track only of latest times-
tamp per object and once a body has been invalidated, it could
be much older than stream.startVV .

4 Conflict Detection
Conflict detection is an important feature for synchronization
protocols. An object may be independently updated on mul-
tiple nodes leading to diverging versions. Updates are con-
sidered to be in conflict if there is no causal relationship be-
tween these updates. Such conflicts need to be detected so
that appropriate resolution, either automatic or manual, can
be invoked to resolve the differences and achieve eventual
consistency [Kistler and Satyanarayanan, 1992] [Terry et al.,
1995]

To meet these needs while still supporting the flexible
and efficient synchronization described in the previous sec-
tion, Feres introduces a dependency summary vector (DSV)
scheme. DSVs are similar to WinFS’s predecessor vec-
tors [Malkhi and Terry, 2005] but they can detect conflicts
for both log-based and state-based synchronizations and sup-
port the consistency guarantees of Feres’s synchronization
protocol. For efficiency, instead of storing DSVs explicitly
in a new data structure, Feres derives them from the con-
sistency meta-data already stored. Despite network disrup-
tions, the metadata stored and sent during synchronization
does not increase, Section 6 evaluates the overheads of Feres
and demonstrates that Feres performs has overheads equiva-
lent to other state-of-the-art schemes.

Conflict detection is carried out as follows: the derived
DSV of a received update is compared with the derived DSV
of the local version. If no conflict is detected, the received
update is applied, else the conflict flag set and all the infor-
mation is stored in a special file for resolution. Feres provides
mechanisms for conflict detection, but it leaves conflict reso-
lution to application specific policies. For convenience, Feres

5

if received message is a subscription start message, SubStart then
//set up subscription stream:
stream.SS⇐ subStart.SS
stream.VV ⇐ subStart.VV

else if received message is an invalidation, I then
//update log, timing state and per object state:
store I in update log
update stream.VV to include I.timeStamp.
update currentVV to include I.timeStamp.
ob j.timeStamp⇐ I.timeStamp
ob j.isValid⇐ f alse

else if received message is a gap marker, GM then
//update log, timing state and interest set state:
store GM in update log
update stream.VV to include GM.endVV .
update currentVV to include GM.endVV .
check for intersecting set
IIS⇐ stream.SS∩GM.targetSet
if IIS 6= /0 then

// detach IIS from the stream
IIS.noGapVV ⇐ min(IIS.noGapVV,GM.startVV −1)
stream.SS⇐ stream.SS\IIS
remove stream from IIS.attachedStreams

end if
else if received message is a checkpoint, CP then

//apply received meta-data to local structures
for all IS in CP do

update local IS.noGapVV to include CP.IS.noGapVV
end for
for all object metadata in CP do

if CP.ob j.metadata is newer than local.ob j.metada then
update local.ob j.metadata to include CP.ob j.metadata

end if
end for

else if received message is a catchup start message, CStart then
//switch to catchup mode
stream.pendingSS⇐Cstart.SS
stream.pendingVV ⇐Cstart.VV
for all invalidation or gap markers recevied do

process as above, except, update pendingVV instead of stream.VV
end for

else if received messages is a catchup end message, CEnd then
//switch to normal mode
if stream.pendingVV equals or includes stream.VV then

//attach stream.pendingSS to the stream.
stream.SS⇐ stream.SS∪ stream.pendingSS
add stream to consistencyModule.pendingSS.attachedStreams

end if
end if

Fig. 3: Pseudocode for processing invalidation streams.

6

provides a last-writer-wins policy by default. Other resolu-
tion mechanisms can be implemented and plugged into the
protocol.

4.1 Dependency summary vectors
A dependency summary vector (DSV) is a vector associated
with an update that summarizes all the causally preceding up-
dates to the object being updated. It is similar to predecessor
vectors [Malkhi and Terry, 2005]. In particular, a DSV of a
update U ,
• includes the timestamp of all causally preceding updates to

the object.

• may include the timestamp of the current update, U .

• may include the timestamps of updates to other objects.

• excludes any updates that are causally ordered after U .
Note that, there is not necessarily a unique DSV for a

single update. For example, suppose all the causally or-
dered updates on an object are (1@A),(3@A),(10@B). The
two possible DSVs for the the second update (3@A) are
< 1@A,9@B > and < 2@A,6@B > but not < 0@A,9@B >
or < 3@A,10@B > because the former does not include the
first update and the latter does not exclude the third update.

Conflict detection becomes as simple as comparing the
write times and the DSVs for two updates. In order to detect
whether two different updates U1 and U2 to the same object
conflict, we carry out the following comparisons: If U1.ts is
included in U2.dsv, then U1 causally precedes U2, by defini-
tion. Similarly, if U2.ts is included in U2.dsv, then U2 causally
precedes U1. Otherwise, U1 and U2 are marked as conflicts.

4.2 Deriving DSV
It would be inefficient to transmit a DSV with each update
and store a DSV with each object. Feres therefore derives
DSVs from the meta-data already maintained by the synchro-
nization protocol. In order to do that, it ensures that a node
is aware of all the previous updates to the object before it is
updated. Any new update (a local write or a received invalida-
tion) can only be applied if there is no gap in the object update
information (i.e. the enclosing interest set is not gapped).

For a locally stored object, the DSV is equal to the
noGapVV of its enclosing interest set. By definition no-
GapVV of an interest set covers all the causally preceding
updates to the objects in the interest up to that time. Hence,
for an object in the interest set, noGapVV includes all the
causally preceding updates to that object. If the interest set
is not gapped, then the noGapVV and so the DSV is equal to
currentVV .

To determine the DSVs of received invalidations, Feres
takes advantage of the causal property of the stream: For a
received invalidation, the stream has sent all the causally pre-
ceding updates, and any newer updates will not come before
the current received invalidation. streamVV includes all the
current and all causally preceding updates. Hence, the DSV
for invalidations in connected phase is streamVV . For in-
validations received during log synchronization, the DSV is

pendingVV , and for updates received via a checkpoint, the
DSV is the noGapVV received.

Feres detects conflicts by comparing the timestamp and
the DSV of the received invalidation with the locally stored
object timestamp and the noGapVV of the enclosing interest
set.

5 Commit Mechanism
Commit policies are often employed when applications dif-
ferentiate between tentative and committed writes [Petersen
et al., 1997] or when applications need to provide stronger
consistency guarantees [Golding, 1992] [Thomas, 1978].
Commit policies greatly differ from system to system. For
example, Bayou [Petersen et al., 1997] employs a primary
commit protocol in which a single server is responsible for
committing writes. Since the commit order corresponds to
the write order, Bayou’s commit protocol requires repeated
roll-back and reapplication of reordered updates if the writes
arrive out of order. Golding’s algorithm [Golding, 1992] re-
quires heartbeats to be sent to commit updates which avail-
ability when during periods of disconnection.

Feres provides mechanisms that can be used to implement
various commit protocols including primary-commit [Pe-
tersen et al., 1997], Golding’s algorithm [Golding, 1992] and
quorum-based commit [Thomas, 1978]. In particular, Feres
exposes a commit operation that assigns a commit time to a
previous update. The mechanisms provide the flexibility to
allow any node to commit an update. However, we expect that
applications will restrict the nodes that can commit a write.

In addition, commit information is passed along invalida-
tion subscriptions. Therefore, the casual order among com-
mits is maintained. By reading only committed updates, a
node can ensure that its view of the data is consistent with
that of the committing node without the need to roll-back and
re-order writes.

Details. The commit operation takes in object ID, ob jId,
and the time stamp, targetTimeStamp of the update to
be committed. The operation is assigned a commit time,
commitTime, and a commit invalidation is generated. Note
that commit invalidations are propagated along invalidations
subscriptions and summarized into gap markers like any other
invalidation.

The object store maintains the commit information for
each object, including an isCommitted flag and a commit-
Time. When a commit invalidation CI is received, the lo-
cal object timeStamp is compared with CI.targetTimeStamp.
If they match, then the object is committed, i.e. obj.is-
Committed flag is set to true and the obj.commitTime is set
to CI.commitTime. When a checkpoint is generated, the com-
mit information is included in the per-object meta-data.

Implementing primary commit scheme. Consider a pri-
mary commit scheme in a client-server system – clients write
to objects and the server is responsible for committing writes.
In Feres this scheme can be implemented as follows: Every

7

client has subscriptions to and from the server. Whenever a
client writes to an object, an invalidation is propagated to the
server via the invalidation subscription. The server commits
the writes as it receives the invalidations, and the commit in-
validation is propagated back to the client via an invalidation
subscription. An invalidation stream from the server to Node
A will include commit invalidations of Node A’s writes, in-
validations of writes by other nodes followed by, after some
lag, the commit invalidations for those writes.

Because all the writes are committed by the server, the
commit time reflects the server’s view of the data. If the client
only reads committed objects, its view of the data will be con-
sistent with that of the server. Even if a client receives an up-
date directly from another client, it cannot access that update
unless the server has received and committed the update.

6 Evaluation
In this section, we examine the costs and benefits of Feres’s
flexibility. Ideally, the flexibility should come at minimal
costs but yield significant efficiency benefits. We carry out
our investigations by evaluating the three properties of the
protocol as follows:
• Synchronization: We evaluate whether the flexibility of FE

synchronization yields efficiency benefits it promises, and
what cost is paid to support this flexibility.

• Conflict detection: Given that Feres has the flexibility to
detect conflicts in any synchronization scenario, we evalu-
ate overheads associated with conflict detection.

• Commit mechanisms: We evaluate the cost for supporting
the flexible commit mechanisms.
We carry out our investigations on a Feres prototype im-

plemented with Java and BerkelyDB. We demonstrate that
the costs for flexibility are minimal but the efficiency benefits
are significant in many workloads.

6.1 Flexible Synchronization
Feres falls under the class of protocols that support the “PR-
AC-TI” properties. The PRACTI paper has demonstrated that
by sending the right data on the right paths, this class of pro-
tocols can improve availability and achieve orders of magni-
tude more efficiency than client-server and server-replication
protocols for some key workloads. The efficiency stems from
the fact that such protocols do not put any restrictions on how
synchronization should take place. Nodes have the flexibility
to retrieve updates over a fast connection from nearby peers
instead of the server and to choose the data they want to syn-
chronize instead of having to synchronize all objects.

Instead of repeating the same in-depth experiment as
PRACTI, we validate that Feres demonstrates the similar ben-
efits and then evaluate the benefits of Feres’s efficiency by
comparing against PRACTI.

Benefits of topology independence. Client-server or hier-
archical protocols have the restriction that synchronization
only occurs via specific nodes, for example a client can only

 0

 500

 1000

 1500

 2000

 2500

FeresClient-server

R
ea

d
M

is
s

La
te

nc
y(

m
s)

Fig. 4: Comparing read miss latency of client-server protocol with
Feres.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

FeresServer-Replication

D
at

a
tr

an
sf

er
re

d(
K

B
)

Fig. 5: Bandwidth required to synchronize 10 percent of a data set
via server-replication and Feres.

synchronize with a server. Since Feres supports topology
independence, clients can retrieve updates from other peers
based on availability and the cost of doing so. Significant
benefits are achieved if the connection between clients is
faster than the connection to the server or if the server is un-
available.

Figure 4 measures the time it takes to retrieve an object
on a cache miss. For the client-server protocol, the object
is retrieved from the server. However, with Feres the object
is retrieved from a nearby client. The client is connected to
the server via a 1Mb/s 300ms RTT connection, and to other
clients via a 100Mb/s 10ms RTT. As the figure illustrates,
Feres can achieve up to 15 times more efficiency.

Benefits of partial replication. In this experiment, we
compare a Bayou-like server replication protocol with Feres.
Node A stores 500 objects of size 3KB, each of which have
been updated. Node B is only interested in 10 percent of the
data and synchronizes with Node A via the server-replication
protocol and Feres. Figure 5 demonstrates that Feres achieves
significant bandwidth efficiency when compare to the server-
replication protocol because of its support for partial replica-
tion.

Log vs. checkpoint synchronization. Figure 6 compares
the bandwidth cost for log and checkpoint synchronization.
A set of 500 objects were updated uniformly and invalida-
tion subscriptions are established separately for each object
As the figure illustrates, the synchronization cost both options
are proportional to the number of updates when each object
is not updated more than once. Checkpoint synchronization

8

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 0 500 1000 1500 2000

S
ub

sc
rip

tio
n

B
W

 (
B

yt
es

)

Number of updates to 500 objects

Log catchup

CP catchup

Fig. 6: Bandwidth to subscribe to varying number of updates to 500
objects sets for checkpoint and log synchronization.

Coherence-only Feres
Bursty workload (10) 1 1.1
Worst Case 1 2

Fig. 7: Messages per interested update sent by a coherence-only
system and Feres.

does worse because the size of the meta-data sent in a check-
point is slightly larger than a gap marker sent for log synchro-
nization. However, when an object is updated multiple times,
checkpoint catchup outperforms log synchronization.

6.2 Efficient Synchronization
In this section, we evaluate the efficiency of Feres by quan-
tifing the overhead associated with supporting consistency,
comparing it to PRACTI, and evaluating the worst case over-
heads.

Cost of consistency. We first evaluate the cost Feres pays
to support flexible consistency. In particular, we quantify the
cost of sending gap markers in an invalidation stream. Fig-
ure 7 compares the number of messages per update between
a coherence-only system and Feres. In a coherence-only sys-
tem, only updates to objects in the synchronization set are
sent on the stream. On the other hand, Feres also sends gap
markers for updates outside the subscription set. For a bursty
workload, say if 9 out of 10 updates occur to objects in the
subscription set, a gap marker is only sent after nine invalida-
tions. In the worst case workload, Feres sends a gap marker
after every invalidation. Thus, Feres sends at most twice the
number of messages when compared to a coherence only sys-
tem. However, since gap markers are significantly smaller
than actual bodies, the overhead remains within reasonable
bounds.

Feres vs. PRACTI. We compare Feres and PRACTI by
evaluating the efficiency of establishing multiple dynamic
subscription request. PRACTI establishes a separate invalida-
tion stream for each request, whereas Feres multiplexes sub-
scription requests on a single stream. The major cost saving
comes from the reduction of redundant information received
by a node.

A varying number of single-object invalidation subscrip-
tions are established with PRACTI and Feresand the band-

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 2e+06

 0 200 400 600 800 1000 1200 1400

S
yn

c
B

W
 (

B
yt

es
)

Files

Feres

PRACTI

Fig. 8: Bandwidth to subscribe to varying number of single-object
interest sets for Feres and PRACTI.

width cost for subscription establishment was measured. Fig-
ure 8 depicts the differences in bandwidth. Since both
PRACTI and Feresare implemented in Java, the inefficiency
of Java serialization does affect the bandwidth cost. How-
ever, it is not difficult to see that Feres achieves magnitudes
of savings when compared to PRACTI.

Worst-case overheads. We evaluate the worst-case over-
heads for Feres. For every object, in addition to the data,
Feres stores a write time stamp, a commit time stamp, a valid
flag and a commit flag. Feres also maintains a version vector,
noGapVV , for every interest set in the consistency module.
In the worst case, every interest set only covers a single ob-
ject, hence the worst-case storage overhead is O(N×R) for
N objects with R-element version vector per object.

Consider a subscription established between two nodes
for a subscription set SS with s objects. Say, p updates oc-
curred before the subscription was established and q updates
occurred until the subscription is disconnected.

An invalidation subscription with log synchronization will
send a start version vector, p invalidations during catchup and
q in the connected phase and the number of gap markers de-
pending on workload. Gap markers store partial version vec-
tors. Hence if a gap maker summarizes K updates, it has at
most min(R,k) elements. In the worst case, on an invalida-
tion subscription, there is a gap marker between every two
updates, and hence the overhead is O((p+q)×R).

With checkpoint synchronization, the sender sends per-
object meta-data for updated objects and noGapVV s for ev-
ery interest set in SS during catchup. In the connected phase,
q invalidation are sent. In the worst case, the checkpoint in-
cludes meta-data and a noGapVV for every object in SS and
there is a gap marker after every invalidation in the connected
phase. The worst-case overhead O((s+q)×R).

A body subscription, during catchup, includes the latest
bodies of updated objects in SS and in the connected phase
bodies of all updates to SS. Every body is sent with its times-
tamp. In the worst case, all object in the SS are sent. Hence,
the overhead is O(s+q).

9

Version vectors PVE Vector sets Feres
log sync checkpoint sync

Storage lower bound O(N×R) O(N +R) O(N +R) O(N + k×R) O(N + k×R)
Storage upper bound O(N×R) unbounded O(N×R) O(N + k×R) O(N + k×R)
Network lower bound O(p×R) O(p+R) O(p+R) O(p+R) O(p+R)
Network upper bound O(p×R) unbounded O(N×R) O(p×R) O(N×R)

Fig. 9: Storage and network overheads under network disruptions for a node with N objects, p recent updates and R-element version vectors.
For Feres, the node stores k interest sets.

6.3 Cost for conflict detection and commit
For conflict detection, Feres utilizes the consistency informa-
tion already maintained and hence exerts no extra overhead.
However, for several conflict-detection schemes, the amount
of book-keeping information increases with network disrup-
tions. For Feres, the book-keeping information remains the
same because the number of interest sets a node maintains
is not affected by disruptions. Hence, for k interest sets, the
storage overhead is O(N + k×R). If invalidations subscrip-
tions are disrupted, they simply re-start where they left off
incurring extra version vector overhead due to the resending
of subscription start time. Hence, in the worst case, for log
synchronization, there is a version vector overhead per update
sent and for checkpoint synchronization, there is a version
vector overhead per object sent.

Given the amount of flexibility that Feres supports, the
conflict detection costs are reasonable, see Figure 6.3. In fact,
the overheads of conflict detection is comparable to existing
state-of-the-art approaches that do not provide such flexibil-
ity.

Despite the flexibility afforded by the commit mechanism,
the overheads is minimal. For every commit, one commit
invalidation is generated which contains two time stamps.
Therefore, the overhead is O(1) per commit. For N objects, a
commit time stamp is stored per object, so the storage over-
head of O(1) per object.

7 Related Work
What sets Feres apart from other synchronization protocols
is that Feres is a peer-to-peer protocol that supports partial
replication, is able to provide consistency guarantees, and
provides flexible synchronization options.

Client-server-based [Kistler and Satyanarayanan, 1992]
and hierarchy-based [Demmer et al., 2008] protocols have
limited use in mobile environments because they do not sup-
port arbitrary synchronization topologies.

Existing peer-to-peer synchronization protocols support
arbitrary synchronization topologies but they fall short of pro-
viding other requirements. For example, Bayou [Petersen
et al., 1997], one of the most influential peer-to-peer proto-
cols in the literature, often cannot be applied in such environ-
ments because it does not support partial replication of data.
Peer-to-peer protocols that support partial replication such as
WinFS [Novik et al., 2006], Rumor [Guy et al., 1998], Fi-
cus[Guy et al., 1990], Pangaea [Saito et al., 2002], give up
on cross-object consistency and only support single object

coherence. Some of them support only state-based or log-
based synchronization, making them less flexible switch to
the scheme with better tradeoffs for different scenarios. Some
systems, targeting personal environments, employ peer-to-
peer communication as a conduit to a repository, such as
Footloose [Mazzola et al., 2003] and OmniStore [Karypidis
and Lalis, 2006], or to improve performance and availabil-
ity [N.Tolia et al., 2004], rather than for data synchronization.

Segank [Sobti et al., 2004], a mobile storage system, sup-
ports partial replication with peer-to-peer synchronization
and consistency guarantees. However, it requires users to
always carry with them a device that holds the latest meta-
data. It employs a multi-cast like solution to request and lo-
cate data, which could lead to high network costs.

PRACTI [Belaramani et al., 2006] is another peer-to-peer
synchronization protocol that resembles Feres. PRACTI uses
imprecise invalidations to propagate consistency information
in same way as Feres uses gap markers. However, it uses pre-
vious time stamps for conflict detection which do not work
well for checkpoint-synchronization. Feres provides better
efficiency of dynamic synchronization request, a conflict de-
tection scheme that supports synchronization flexibility, and
flexible commit policies.

There are three main approaches for conflict detection:
previous stamps [Gray et al., 1996, Belaramani et al., 2006],
hash histories [Kang et al., 2003], and version vectors [Guy
et al., 1998] [Kistler and Satyanarayanan, 1992] [Mazzola
et al., 2003] [Nightingale and Flinn, 2004] [Reiher et al.,
1994] [Walker et al., 1983][Saito et al., 2002]. Both previous
stamps and hash histories impose per-update storage over-
head and might have false negatives under certain scenarios.
Version vectors can accurately detect conflicts but impose a
one vector per object overhead which is prohibitive when the
number of replicas is large.

Predecessor vectors with exceptions (PVE) [Malkhi and
Terry, 2005] and vector sets [Malkhi et al., 2007] are
variations of the version vectors approach employed by
WinFS [Novik et al., 2006] to reduce the total number of
version vectors maintained and communicated. PVEs can
reach an unbounded size if synchronizations are frequently
disrupted making them unsuitable for environments with in-
termittent connections. Vector sets maintain predecessor vec-
tors for subsets of data and in the worst case, have overheads
equivalent to a simple version vector scheme. Feres’s depen-
dency summary vector scheme (DSV) are similar predecessor
vectors. However, Feres can support conflict detection with
more flexible synchronization policies.

10

8 Conclusion
Feres is a flexible peer-to-peer data synchronization protocol
that can be used to construct new distributed file systems.

Feres’s flexibility and efficiency stems from three key
properties. First, its synchronization mechanism is able to
support synchronization of any subsets of data between any
peers, with support for both log-based and state-based ex-
change. Second, its conflict detection scheme is able to sup-
port synchronization flexibility with minimal overhead and
the performs as well as the current schemes. Third, its flexi-
ble commit mechanisms eliminate reordering and rollback of
writes and enable applications to implement their own com-
mit schemes.

Because of these properties, Feres can be used to build
replication engines in a wide range of environments includ-
ing more demanding environments with mobile devices and
intermittent connections.

References
N. Belaramani, M. Dahlin, L. Gao, A. Nayate, A. Venkatara-
mani, P. Yalagandula, and J. Zheng. PRACTI replication. In
Proc NSDI, May 2006.
N. Belaramani, J. Zheng, A. Nayate, R. Soule, M. Dahlin,
and R. Grimm. PADRE: A Policy Architecture for building
Data REplication systems. Technical Report TR-08-25, U.
of Texas at Austin, May 2008.
M. Demmer, B. Du, and E. Brewer. TierStore: a distributed
storage system for challenged networks. In Proc. FAST,
February 2008.
R. Golding. A weak-consistency architecture for distributed
information services. Computing Systems, 5(4):379–405,
1992.
J. Gray, P.Helland, P. E. O’Neil, and D. Shasha. Dangers of
replication and a solution. In Proc. SIGMOD, pages 173–
182, 1996.
R. Guy, J. Heidemann, W. Mak, T. Page, Gerald J. Popek,
and D. Rothmeier. Implementation of the Ficus Repli-
cated File System. In USENIX Summer Conf., pages 63–71,
June 1990. URL ftp://ftp.cs.ucla.edu/pub/ficus/
usenix_summer_90.ps.gz.
R. Guy, P. Reiher, D. Ratner, M. Gunter, and W. Ma. Rumor:
Mobile data access through optimistic peer-to-peer replica-
tion. In In Workshop on Mobile Data Access, pages 254–
265, 1998.
B. Kang, R. Wilensky, and J. Kubiatowicz. Hash history
approach for reconciling mutual inconsistency in optimistic
replication. In ICDCS, 2003.
A. Karypidis and S. Lalis. Omnistore: A system for ubiq-
uitous personal storage management. In PERCOM, pages
136–147. IEEE CS Press, 2006.
J. Kistler and M. Satyanarayanan. Disconnected Operation
in the Coda File System. ACM TOCS, 10(1):3–25, February
1992.
L. Lamport. Time, clocks, and the ordering of events in a
distributed system. Comm. of the ACM, 21(7), July 1978.

D. Malkhi and D. Terry. Concise version vectors in WinFS.
In Symp. on Distr. Comp. (DISC), 2005.
D. Malkhi, L. Novik, and C. Purcell. P2P Replica Synchro-
nization with Vector Sets. ACM SIGOPS Operating Systems
Review, 41(2):68–74, 2007.
J. Mazzola, P. David, S.Tom, and Y. K. Chen. Footloose: A
case for physical eventual consistency and selective conflict
resolution. In IEE WMCSA, 2003.
E. Nightingale and J. Flinn. Energy-efficiency and storage
flexibility in the blue file system. In Proc. OSDI, December
2004.
L. Novik, I. Hudis, D. Terry, S. Anand, V. Jhaveri, A. Shah,
and Y. Wu. Peer-to-peer replication in winfs. Technical
Report MSR-TR-2006-78, Microsoft Research, June 2006.
N.Tolia, M. Kozuch, and M. Satyanarayanan. Integrating
portable and distributed storage. In Proc. FAST, pages 227–
238, 2004.
K. Petersen, M. Spreitzer, D. Terry, M. Theimer, and A. De-
mers. Flexible Update Propagation for Weakly Consistent
Replication. In SOSP, October 1997.
P. Reiher, J. Heidemann, D. Ratner, G. Skinner, and
G. Popek. Resolving File Conflicts in the Ficus File Sys-
tem. In USENIX Summer Conf., 1994.
Y. Saito, C. Karamanolis, M. Karlsson, and M. Mahalingam.
Taming aggressive replication in the Pangaea wide-area file
system. In Proc. OSDI, December 2002.
S. Sobti, N. Garg, F. Zheng, J. Lai, E. Ziskind, A. Krish-
namurthy, and R. Y. Wang. Segank: a distributed mobile
storage system. In Proc. FAST, pages 239–252. USENIX
Association, 2004.
D. Terry, M. Theimer, K. Petersen, A. Demers, M. Spre-
itzer, and C. Hauser. Managing Update Conflicts in Bayou,
a Weakly Connected Replicated Storage System. In SOSP,
December 1995.
R. Thomas. A Solution to the Concurrency Control Prob-
lem for Multiple-Copy Databases. In Proceedings of the
Sixteenth IEEE Computer Society International Conference,
1978.
B. Walker, G. Popek, R. English, C. Kline, and G. Thiel.
The LOCUS distributed operating system. In SOSP, pages
49–69, October 1983.
J. Zheng. URA: A Universal Data Replication Architecture.
PhD thesis, The University of Texas at Austin, August 2008.

11

