
Emulations Between QSM, BSP and LogP:

A Framework for General-Purpose Parallel Algorithm Design∗

Vijaya Ramachandran† Brian Grayson‡ Michael Dahlin§

March 29, 2003

∗This work was supported in part by an NSF CISE grant (CDA-9624082), and grants from Intel, Novell, and

Sun. A summary of this work appears in Proc. 1999 ACM-SIAM Symp. on Discrete Algorithms (SODA’99).
†Dept. of Computer Sciences, Univ. of Texas, Austin, TX 78712. Email: vlr@cs.utexas.edu. Also

supported in part by NSF grant CCR-9988160.
‡Motorola Somerset Design Center, Austin TX 78729. Email: Brian.Grayson@motorola.com. Also sup-

ported in part by an NSF Graduate Fellowship.
§Dept. of Computer Sciences, Univ. of Texas, Austin, TX 78712. Email: dahlin@cs.utexas.edu. Also

supported in part by NSF CAREER grant 9733842.

1

Proposed Running Head: “Emulations Between QSM, BSP and LogP”

Contact Author:

Vijaya Ramachandran

Department of Computer Sciences

The University of Texas at Austin

Austin, TX 78712

Phone: (512) 471-9554.

Fax: (512)471-8885.

Email: vlr@cs.utexas.edu

Abstract

We present work-preserving emulations with small slowdown between LogP and two

other parallel models: BSP and QSM. In conjunction with earlier work-preserving emula-

tions between QSM and BSP, these results establish a close correspondence between these

three general-purpose parallel models. Our results also correct and improve on results re-

ported earlier on emulations between BSP and LogP. In particular we shed new light on

the relative power of stalling and nonstalling LogP models.

The QSM is a shared-memory model with only two parameters – p, the number of pro-

cessors, and g, a bandwidth parameter. The simplicity of the QSM parameters makes QSM

a convenient model for parallel algorithm design, and simple work-preserving emulations of

QSM on BSP and QSM on LogP show that algorithms designed for the QSM will also map

quite well to these other models. The simplicity and generality of QSM present a strong

case for the use of QSM as the model of choice for parallel algorithm design.

We present QSM algorithms for three basic problems – prefix sums, sample sort and

list ranking. We show that these algorithms are optimal in terms of both the total work

performed and the number of ‘phases’ for input sizes of practical interest. For prefix sums,

we present a matching lower bound that shows that our algorithm to be optimal over

the complete range of these parameters. We then examine the predicted and simulated

performance of these algorithms. These results suggest that QSM analysis will predict

algorithm performance quite accurately for problem sizes that arise in practice.

Key Words: Emulations; general-purpose parallel models; BSP; LogP; QSM; parallel

algorithm design; prefix sums; sample sort; list ranking.

2

1 Introduction

There is a vast amount of literature on parallel algorithms for various problems. However,

algorithms developed using traditional approaches such as PRAM or fixed-interconnect net-

works do not map well to real machines. In recent years several general-purpose parallel models

have been proposed – BSP [25], LogP [6], QSM and s-QSM [11]. These models attempt to

capture the key features of real machines while retaining a reasonably high-level programming

abstraction. Of these models, the QSM and s-QSM models are the simplest for two reasons:

each has only 2 parameters, and each is shared-memory (shared-memory models are generally

more convenient than message passing for developing parallel algorithms).

There are both practical and algorithmic reasons for developing a general model for parallel

algorithm design.

• On the practical side, the long term goal is to be able to replace hand tuning with au-

tomated methods for larger fractions of programs. The argument here is similar to the

argument of hand-tuned assembly v. compiled code. The goal is to reach a similar point:

where automatic methods can do as well as or better than the average programmer.

As parallel programming becomes more and more common – a decade ago parallel su-

percomputers were rare, today Beowulf clusters are within the reach of moderate-sized

organizations, tomorrow most chips on individual desktops may have parallel cores – we

expect parallel programming to become more mainstream (or to be cynical, the expertise

of an average programmer to fall) and for higher-level programming techniques to become

increasingly important.

• On the algorithmic side it is important to identify the simplest programming models that

expose the right system and algorithmic properties. Giving algorithm designers a simpler

model, we think, makes it easier for them to focus on the underlying idea without being

distracted by less fundamental concerns.

In this paper we first provide two strong justifications for utilizing the QSM models for

developing general-purpose parallel algorithms:

1. We present work-preserving emulations with only modest (polylog) slowdown between

the LogP model and the other 3 models. (Work-preserving emulations between BSP,

QSM and s-QSM were presented earlier in [11] (see also [21]).) An emulation is work-

preserving if the processor-time bound on the emulating machine is the same as that on

the machine being emulated, to within a constant factor. The slowdown of the emulation

is the ratio of the number of processors on the emulated machine to the number on the

emulating machine. Typically, the emulating machine has a somewhat smaller number of

processors and takes proportionately longer to execute. For many situations of practical

interest, both the original algorithm and the emulation would be mapped to an even

smaller number of physical processors and thus would run within the same time bound

to within a constant factor.

3

Our results indicate that the four models are more or less interchangeable for the pur-

pose of algorithm design. The only mis-match we have is between the ‘stalling’ and

‘nonstalling’ LogP models. Here we show that an earlier result claimed in [3] is erro-

neous by giving a counterexample to their claim. (The journal version [4] of paper [3]

corrects this error, attributing the correction to the first author of our paper, and citing

the conference version [22] of our paper.)

2. The emulations of s-QSM and QSM on the other models are quite simple. Conversely, the

reverse emulations – of BSP and LogP on shared-memory – are more involved. The dif-

ference is mainly due to the ‘message-passing’ versus ‘shared-memory’ modes of accessing

memory. Although message passing can easily emulate shared memory, the known work-

preserving emulations for the reverse require sorting as well as ‘multiple compaction.’

Hence, although such emulations are efficient since they are work-preserving with only

logarithmic slowdown, the algorithms thus derived are fairly complicated.

Since both message-passing and shared-memory are widely-used in practice, we suggest

that a high-level general-purpose model should be one that can be simply and efficiently im-

plemented on both message-passing and shared-memory systems. The QSM and s-QSM have

this feature. Additionally, these two models have a smaller number of parameters than LogP

or BSP, and they do not have to keep track of the distributed memory layout.

To facilitate using QSM or s-QSM for designing general-purpose parallel algorithms, we

develop a suitable cost metric for such algorithms and evaluate several algorithms both ana-

lytically and experimentally against this metric. The metric asks algorithms to (1) minimize

work (where ‘work’ is defined in the next section), (2) minimize the number of ‘phases’ (defined

in the next section), and (3) maximize parallelism, subject to the above requirements. In the

rest of the paper we present QSM algorithms for three basic problems: prefix sums, sample

sort, and list ranking, and we show that they have provably good behaviour under this metric.

Finally we describe simulation results for these algorithms that indicate that the difference

between the QSM and BSP cost metrics is small for these algorithms for reasonable problem

sizes.

A popular model for parallel algorithm design is the PRAM (see, e.g., [17]). We do not dis-

cuss the PRAM in this paper since it does not fall within the frame-work of a ‘general-purpose

model’ for parallel algorithm design in view of the fact that it ignores all communication costs.

However, the QSM and s-QSM can be viewed as realistic versions of the PRAM. Extensive

discussions on the relation between the PRAM model and the QSM model can be found in

[8, 11, 21].

The rest of this paper is organized as follows. Section 2 provides background on the models

examined in this paper and Section 3 presents our emulation results. Section 4 presents a

cost metric for QSM and describes and analyzes some basic algorithms under this metric.

Section 5 describes experimental results for the three algorithms and Section 6 summarizes our

conclusions.

4

2 General-purpose Parallel Models

In this section, we briefly review the BSP, LogP, and QSM models.

BSP Model. The Bulk-Synchronous Parallel (BSP) model [25] consists of p processor/memory

components that communicate by sending point-to-point messages. The interconnection net-

work supporting this communication is characterized by a bandwidth parameter g and a latency

parameter L. A BSP computation consists of a sequence of “supersteps” separated by bulk

synchronizations. In each superstep the processors can perform local computations and send

and receive a set of messages. Messages are sent in a pipelined fashion, and messages sent in

one superstep will arrive prior to the start of the next superstep. It is assumed that in each

superstep messages are sent by a processor based on its state at the start of the superstep.

The time charged for a superstep is calculated as follows. Let wi be the amount of local

work performed by processor i in a given superstep and let si (ri) be the number of messages

sent (received) in the superstep by processor i. Let hs = maxp
i=1 si, hr = maxp

i=1 ri, and

w = maxp
i=1 wi. Let h = max(hs, hr); h is the maximum number of messages sent or received

by any processor in the superstep, and the BSP is said to route an h-relation in this superstep.

The cost, T , of the superstep is defined to be T = max(w, g · h, L). The time taken by a BSP

algorithm is the sum of the costs of the individual supersteps in the algorithm.

The work performed by the computation is the processor-time product.

LogP Model. The LogP model [6] consists of p processor/memory components communi-

cating with point-to-point messages. It has the following parameters.

• Latency l: Time taken by network to transmit a message from one processor to another

is at most l.

• Gap g: A processor can send or receive a message no faster than once every g units of

time.

• Capacity constraint: A receiving processor can have no more than dl/ge messages in

transit to it.

• Overhead o: To send or receive a message, a processor spends o units of time to transfer

the message to or from the network interface; during this period of time the processor

cannot perform any other operation.

If the number of messages in transit to a destination processor π is dl/ge, then a processor

that needs to send a message to processor π stalls and does not perform any operation until it

can send the message.

The time taken by a LogP algorithm is the amount of time needed for the computation and

communication to terminate at all processors, assuming each message takes maximum time (l

units) in transit.

The work performed by the computation is the processor-time product.

5

QSM and s-QSM models. The Queuing Shared Memory (QSM) model [11] consists of

p processors, each with its own private memory, that communicate by reading and writing

shared memory. Processors execute a sequence of synchronized phases, each consisting of an

arbitrary interleaving of shared memory reads, shared memory writes, and local computation.

QSM implements a bulk-synchronous programming abstraction in that (i) each processor can

execute several instructions within a phase but the values returned by shared-memory reads

issued in a phase cannot be used in the same phase and (ii) the same shared-memory location

cannot be both read and written in the same phase.

Concurrent reads or writes (but not both) to the same shared-memory location are per-

mitted in a phase. In the case of multiple writers to a location x, an arbitrary write to x

succeeds.

The maximum contention of a QSM phase is the maximum, over all locations x, of the

number of processors reading x or the number of processors writing x. A phase with no reads

or writes is defined to have maximum contention one.

Consider a QSM phase with maximum contention κ. Let mop be the maximum number

of local operations performed by any processor in this phase, and let mrw be the maximum

number of read and write requests to shared memory issued by any processor. Then the time

cost for the phase is max(mop, g · mrw, κ). The time of a QSM algorithm is the sum of the time

costs for its phases. The work of a QSM algorithm is its processor-time product.

The s-QSM (Symmetric QSM) is a QSM in which the time cost for a phase is max(mop, g · mrw, g · κ),

i.e., the gap parameter is applied to the accesses at memory as well as to memory requests

issued at processors.

The particular instance of the QSM model in which the gap parameter, g, equals 1 is the

Queue-Read Queue-Write (QRQW) PRAM model defined in [8].

Note that although the QSM models are shared-memory they explicitly reward careful

data placement since local memory is cheap but it is expensive to access global memory. The

results we present in this paper indicate that once one has accounted for local memory in

the algorithm design, it is not necessary to burden the programmer with more detailed global

memory layout.

3 Emulation Results

The results on work-preserving emulations between models are shown in Table 1 with new

results printed within boxes. In this section we focus on three aspects of these emulations.

First, we develop new, work-preserving emulations of QSM or BSP on LogP; previously known

emulations [3] required sorting and increased both time and work by a logarithmic factor.

Second, we provide new analysis of the known emulation of LogP on BSP [3]; we provide a

counter-example to the claim that this emulation holds for the stalling LogP model, and we

observe that the original non-work-preserving emulation may be trivially extended to be work-

preserving for nonstalling LogP. Third, we discuss the fact that known emulations of message

passing on shared memory require sorting and multiple-compaction, complicating emulations

6

Slowdown of Work-Preserving Emulations

(sublogarithmic factors have been rounded up for ease of display)

Emulated Model Emulating Model

(p processors) BSP LogP (stalling) s-QSM QSM

BSP O(log4 p + (l/g) log2 p) O(d g log p
L

e) O(d g log p
L

e)

LogP (non- O(L/l) (det.)† 1 (det.) O(d g log p
l

e) O(d g log p
l

e)
stalling)

s-QSM O((L/g) + log p) O(log4 p + (l/g) log2 p) 1 (det.)

QSM O((L/g) + g log p) O(log4 p + (l/g) log2 p + g log p) O(g) (det.)

Table 1: All results are randomized and hold whp except those marked as ‘det.’, which are

deterministic emulations. Results in which the LogP model is either the emulated or the em-

ulating machine are new results that appear boxed in the table and are reported in this paper.

(For exact expressions, including sub-logarithmic terms, please see the text of the paper.) The

remaining results are in [11, 21].
†This result is presented in [3] but it is stated there erroneously that it holds for stalling LogP programs. We provide a

counterexample in Claim 3.8 and Theorem 3.9 here.

of BSP or LogP algorithms on shared memory.

We focus on work-preserving emulations. An emulation is work-preserving if the processor-

time bound on the emulating machine is the same as that on the machine being emulated,

to within a constant factor. The ratio of the running time on the emulating machine to

the running time on the emulated machine is the slowdown of the emulation. Typically, the

emulating machine has a smaller number of processors and takes proportionately longer to

execute. For instance, consider the entry in Table 1 for the emulation of s-QSM on BSP. It

states that there is a randomized work-preserving emulation of s-QSM on BSP with a slowdown

of O(L/g + log p). This means that, given a p-processor s-QSM algorithm that runs in time

t (and hence with work w = p · t), the emulation algorithm will map the p-processor s-QSM

algorithm on to a p′-processor BSP, for any p′ ≤ p/((L/g) + log p), to run on the BSP in

time t′ = O(t · (p/p′)) whp in p. Note that if sufficient parallelism exists, for a machine with

p physical processors, one would typically design the BSP algorithm on Θ((L/g) + log p) · p)

or more processors, and then emulate the processors in this BSP algorithm on the p physical

processors. In such a case, the performance of the BSP algorithm on p processors and the

performance of the QSM emulation on p processors would be within a constant factor of each

other. Since large problems are often the ones worth parallelizing, we expect this situation to

be quite common in practice.

Several of the algorithms we present are randomized. We will say that an algorithm runs

in time t whp in n if the probability that the time exceeds t is less than 1/nc, for some constant

7

c > 0.

3.1 Work-Preserving Emulations of QSM and BSP on LogP

We now sketch our results for emulating BSP, QSM and s-QSM on LogP. Our emulation is

randomized, and is work-preserving with polylog slowdown. In the next subsection, we describe

a slightly more complex randomized emulation that uses sorting (with sampling) and which

reduces the slowdown by slightly less than a logarithmic factor.

Fact 3.1 [18] The following two problems can be computed in time O(ld log p
log(l/g)e) on p proces-

sors under the LogP model.

1. Barrier synchronization on the p processors.

2. The sum of p values, stored one per processor.

We will denote the above time to compute barrier synchronization and the sum of p values

on the p-processor LogP by B(p).

Theorem 3.2 Suppose we are given an algorithm to route an h-relation on a p-processor LogP

while satisfying the capacity constraint in time O(g · (h + H(p)) + l), when the value of h is

known in advance. (Here, H(p) is some given function of p.) Then,

1. There is a work-preserving emulation of a p-processor QSM on LogP with slowdown O(g ·
log p + log2 p + (H(p) + B(p)) · log p

log log p) whp in p.

2. There is a work-preserving emulation of a p-processor s-QSM and BSP on LogP with

slowdown O(log2 p + (H(p) + B(p)) · log p
log log p) whp in p.

Proof: We first describe the emulation algorithm, and then prove that it has the stated

performance.

Algorithm for Emulation on LogP:

I. For the QSM emulation we map the QSM (or s-QSM) processors uniformly among the

LogP processors, and we hash the QSM (or s-QSM) memory on the LogP processors so

that each shared-memory location is equally likely to be assigned to any of the LogP

components. For the BSP emulation we map the BSP processors uniformly among the

LogP processors and the associated portions of the distributed memory to the LogP

processors.

II. We route the messages to destination LogP processors for each phase or superstep while

satisfying the capacity constraint as follows:

1. Determine a good upper bound on the value of h.

2. Route the h relation while satisfying the capacity constraint in O(g · (h+H(p))+ l)

time.

3. Execute a barrier synchronization on the LogP processors in O(B(p)) time.

8

maxsend := maximum number of messages to be sent by any LogP processor

m := total number of messages to be sent by all LogP processors

q := 1/m

µ := 1

repeat

pfor each processor do

q := q · log p;

Select each message with probability q and send selected messages to

destination with h = µ · log p;

µ := max. number of messages received by any processor;

rofp

until q ≥ (2 log p)/maxsend or µ ≥ log p

h := max(2µ/q, maxsend)

Figure 1: Algorithm for Step II.1 of the algorithm for emulation on LogP.

To complete the description of the algorithm, we provide in Figure 1 a method for perform-

ing step II.1 in the above algorithm. To estimate h, the maximum number of messages sent

or received by any processor, the algorithm must estimate the maximum number of messages

received by any processor (note that the maximum number of sent messages by any processor,

maxsend, is already known). The algorithm does this by selecting a small random subset of

the messages to be sent and determining their destinations. The size of this subset is gradually

increased until either a good upper bound on the maximum number of messages to be received

by any processor is obtained or this value is determined to be less than maxsend.

Claim 3.3 The algorithm for Step II.1 runs in time O(g log2 p+(H(p)+B(p))·(log p)/ log log p)

whp, and whp it returns a value for h that is (i) an upper bound on the correct value of h, and

(ii) within a factor of 2 of the correct value of h.

Proof: The correctness of the algorithm follows from the following observations, which can

be derived using Chernoff bounds:

1. If µ ≥ log p after some iteration of the repeat loop, then whp, the LogP processor that

receives µ messages in that iteration has at least µ/(2q) messages being sent to it in that

phase/superstep, and no LogP processor has more than 2µ/q messages sent to it in that

phase/superstep.

2. If µ < log p at the end of an iteration in which q ≥ (2 log p)/maxsend then whp the

maximum number of messages received by any LogP processor in this phase/superstep is less

than maxsend.

3. In each iteration, whp the total number of messages sent does not exceed the value used

for h in that iteration, hence the number of messages sent or received by any processor in that

iteration does not exceed the value used for h.

For the time taken by the algorithm we note that maxsend ≥ m/p, hence the while loop

is executed O(log p/ log log p) times. Each iteration takes time O(g max(µ,maxsend · q) + g ·

9

H(p) + l) whp to route the h-relation, and time O(B(p)) to compute µ and perform a barrier

synchronization. Hence each iteration takes time O(g · (µ + maxsend · q + H(p) + B(p))) since

l < B(p). Since the while loop terminates when µ ≥ log p or maxsend · q ≥ 2 log p, and q

is increased by a factor of log p in each iteration, the overall time taken by the algorithm is

O(g log2 p + g · (log p/ log log p)(H(p) + B(p))).

Finally, to complete the proof of Theorem 3.2 we need to show that the emulation algorithm is

work-preserving for each of the three models. Let τ = log2 p+(H(p)+B(p)) · (log p)/ log log p.

If p′ ≤ p/τ then the time taken by the emulation algorithm to execute steps II.1 and II.3 is

O(g · τ), and hence the work performed in executing these two steps is O(g · τ · p ′) = O(g · p).

Since any phase or superstep of the emulated machine must perform work ≥ g · p, steps II.1

and II.3 of the emulation algorithm are executed in a work-preserving manner on a LogP with

p′ or fewer processors.

For step II.2, we consider each emulated model in turn. For the BSP we note that if we

map the p BSP processors evenly among p′ LogP processors, where p′ ≤ p/τ , then a BSP

superstep that takes time c+ gh+L will be emulated in time O((p/p′) · (c+ gh)+ l) on a LogP

with p′ processors and hence is work-preserving. (We assume that l ≤ L since L includes the

cost of synchronization.)

Next consider a phase on a p processor s-QSM in which h is the larger of (a) the maximum

number of reads/writes by a processor and (b) the maximum queue-length at a memory loca-

tion. If we hash the shared memory of the QSM on the distributed memory of a p′-processor

LogP, and map the p s-QSM processors evenly among the p′ LogP processors, then by the

probabilistic analysis in [11], the number of messages sent or received by any of the p ′ LogP

processors is O(h · (p/p′)) whp in p, if p′ ≤ p/ log p. Hence the memory accesses can be per-

formed in time T = O(g · h · (p/p′)) whp in p, once the value of h is determined. This is

work-preserving since T · p′ = O(g · h · p).

Similarly, we can obtain the desired result for QSM by using the result in [11] that the

mapping of QSM on a distributed memory machine results in the number of messages sent or

received by any of the p′ LogP processors being O(h · (p/p′)) whp in p, if p′ ≤ p/g log p.

Corollary 3.4 (to Theorem 3.2)

1. There is a work-preserving emulation of a p-processor QSM on LogP with slowdown O(g ·
log p + log4 p + l/g

log(l/g) ·
log2 p

log log p) whp in p.

2. There is a work-preserving emulation of a p-processor s-QSM and BSP on LogP with

slowdown O(log4 p + l/g
log(l/g) ·

log2 p
log log p) whp in p.

Proof: The corollary follows from Theorem 3.2 using the algorithm in [18] for barrier syn-

chronization on p-processor LogP that runs in time O(ld log p
log(l/g)e), and the algorithm in [1] for

routing an h-relation on a p-processor LogP in O(g(h + log3 p · log log p) + l) whp in p.

10

1. Compute s := maximum number of messages to be sent by any processor.

2. q := 1/(log p)

3. pfor each processor do select each message with probability q rofp

4. Sort the selected messages by destination processor ID (in O(g · s + l log p) time).

5. Compute the number of samples ni destined for the ith LogP processor, for each i,

by computing prefix sums on the sorted array (in time O(ld log p
log(l/g)

e)).
6. pfor each processor i do

compute an upper bound on the number of messages to be received as ri := (ni + 1) · log p

rofp

7. h := max(log2 p, s, maxi ri)

Figure 2: Faster algorithm for Step II.1 of algorithm for emulation on LogP.

3.1.1 A Faster Emulation of BSP and QSM on LogP

For completeness, we describe a faster method for Step II.1 of the emulation algorithm given

in the previous section. Since the algorithm given in this section uses sorting, it is not quite

as simple to implement as the algorithm for Step II.1 given in Figure 1, although it is simpler

to describe and analyze.

Claim 3.5 The algorithm given in Figure 2 for Step II.1 determines an upper bound on the

value of h whp in time O(gh + l log p). If h ≥ log2 p then the algorithm determines the correct

value of h to within a constant factor whp.

Proof: The result follows from the O((gr+ l) log p) running time of the AKS sorting algorithm

on the LogP [2, 3], when r · p keys in the range [1..p] are distributed evenly across the p

processors. (If the keys are not evenly distributed across the processors, they can be distributed

evenly at an additional cost of O(gh+ l) time, where h is the maximum number of keys at any

processor.)

The number of elements selected in step 3 is m/ log p whp, where m is the total number

of messages to be sent. Hence the number of elements to be sorted is (m/(p log p)) · p, which

is O((s/ log p) · p). Hence the time needed to execute step 4 is O(g · s + l log p) whp. The

remaining steps can be performed within this time bound in a straightforward manner.

Let mi be the number of messages to be received by processor Pi. In step 3 of the algorithm

in Figure 2, for each processor Pi for which mi = Ω(log2 p), θ(mi/ log p) messages are selected

whp (by a Chernoff bound). Hence (again by a Chernoff bound) it follows that the upper

bound computed in step 6 for processor Pi is equal to mi to within a constant factor, and

hence the overall upper bound computed in step 7 is correct to within a constant factor. If

no processor is the destination of more than log2 p messages, then clearly the upper bound

computed in step 7 is correct (although it may not be tight).

Theorem 3.6 1. There is a work-preserving emulation of a p-processor QSM on LogP with

slowdown O(log3 p · log log p + (g + (l/g)) · log p) whp in p.

11

2. There is a work-preserving emulation of p-processor s-QSM and BSP on LogP with slowdown

O(log3 p · log log p + (l/g) log p) whp in P .

3.2 Emulation of LogP on BSP

If a LogP program is non-stalling then it can be emulated in a work-preserving manner on

BSP with slowdown O(L/l) by dividing the LogP computation into blocks of computations of

length l, and emulating each block in two BSP supersteps of time L each. This emulation is

presented in [3] as an emulation where both the time and work increases by a factor of L/l.

In the following theorem we pin down some of the details of the emulation not specified in [3],

and we also make the emulation work-preserving.

Theorem 3.7 There is a deterministic work-preserving emulation of a p-processor non-stalling

LogP on BSP with slowdown O(L/l).

Proof: We map the LogP processors evenly among the BSP processors. Each BSP processor

then emulates the L/l LogP processors assigned to it as follows.

• Divide the LogP computation into blocks of computation of length l.

• Emulate the steps performed by each LogP processor in this block of computation.

In the LogP cost measure the time taken is computed assuming that each message takes

exactly l units of time to reach its destination. We show that we can perform the BSP

computation in accordance with this measure. Since each block of LogP computation is of

length l, messages sent within a block will arrive at their destination in the next block. In

the BSP emulation each BSP processor tags each message sent with the LogP step in which

it was sent. At the start of emulating a LogP block the BSP processor examines the messages

received from the previous block, and sorts them by their tags in O(L) time using integer sort.

It then processes the received messages in the sorted order. Hence the BSP emulation executes

the LogP steps at each processor in the same order as the execution under which LogP running

time was measured.

Let us compute the time cost of emulating one block of LogP computation. on a (l/L) · p-

processor BSP. The total amount of local computation at each BSP processor is ≤ (L/l) ·l = L.

Each BSP processor sends ≤ (L/l) · (l/g) = L/g messages to other processors. Since the

LogP computation is non-stalling, each BSP processor receives at most (L/l) · (l/g) = L/g

messages. Hence the time cost of this computation on the BSP is O(L) and the work is

O(p · L · (l/L)) = O(p · l). Hence each block of LogP computation is emulated on the BSP in

a work-preserving manner with slowdown O(L/l).

The analysis in [3] erroneously states that the L/l performance bound holds for stalling

LogP computations. We now show a simple example of a stalling LogP computation whose

execution time squares when emulated in the above manner on the BSP.

The LogP computation is shown in Figure 3. The following Claim shows that this compu-

tation cannot be mapped on to the BSP with constant slowdown.

12

Claim 3.8 The LogP computation shown in Figure 3 takes time O(r · l + g · q). When mapped

on to the BSP this computation takes time Ω(r · (L + g · q)).

Proof: We note the following about the computation in Figure 3:

(i) At time (i − 1) · l + g, all processors in the ith group send a message to processor Pi,

1 ≤ i ≤ r. This is a stalling send if q > l/g. Processor Pi then receives all messages at time

i · l + g · q.
(ii) The computation terminates at time r · l+ g · q when Pr receives all messages sent to it.

On a BSP we note that the computation in Figure 3 must be executed in r phases (or

supersteps) since a processor in groups 2 to r can send its message(s) only after it has received

a message from a processor in group (i−1). In a BSP computation any send based on a message

received in the current phase cannot be executed in the same phase. Hence the computation

requires r phases. In each phase there are q messages received by some processor (by processor

Pi in phase i). Hence this computation takes time Ω(r · (L + g · q)), which is Ω(r ·L + r · g · q)
time. Thus the slowdown of this emulation is Ω(r·L+r·g·q

r·l+g·q).

Note that the parameter o does not appear in the cost of the LogP computation since there

is no local computation in this program.

The above claim leads to the following theorem.

Theorem 3.9 Consider the deterministic emulation of nonstalling LogP on BSP.

a. Any deterministic step-by-step emulation of LogP on BSP can have arbitrarily large

slowdown.

b. There is no deterministic step-by-step emulation of stalling LogP on BSP that is work-

preserving.

Proof: For part a, consider the computation given in the proof of Claim 3.8. If r is any

non-constant function with r · l = o(g · q) and l ≤ L, then the slowdown of this emulation is

Θ(r) and is not dependent on the ratio L/l. We can assume that l ≤ L since l accounts only

for latency while L accounts for both latency and global synchronization cost. Thus to obtain

a slowdown of S, we choose, e.g., r = S and q = S · l2/g. Since all that was assumed of the

emulation is that it is step-by-step, i.e., each step of a LogP processor is executed by some

BSP processor in the same manner as prescribed by the LogP computation, the result follows.

For part b, suppose there is a work-preserving emulation of stalling LogP on BSP with

slowdown τ . Then consider the emulation on BSP of the LogP computation in Figure 3 with

r = ω(τ) and with r ·l = o(g ·q) and l ≤ L. Then the work performed by the LogP computation

is Θ(g · q · p) while the work performed by the emulating BSP computation is Θ(r · g · q · p/τ),

which is ω(g · q · p). Hence the emulation is not work-preserving.

3.3 Emulation of LogP on QSM

In this section we consider the emulation of LogP on QSM. For this emulation we assume that

the input is distributed across the local memories of the QSM processors in order to conform

13

Configuration. LogP with p = r · (q + 1) processors, grouped into

r groups of q processors, and one group of r processors.

For 1 ≤ i ≤ r, the jth processor in the ith group is denoted by pi,j .

The processors in the group with r processors are labeled Pj , 1 ≤ j ≤ r.

// initial step:

pfor 1 ≤ j ≤ r processor p1,j executes the following two steps in sequence:

a. send a message to processor p2,j

b. send a message to processor P1.

rofp

pfor 2 ≤ i ≤ r

pfor 1 ≤ j ≤ q do

if processor pi,j receives a message from processor p(i−1),j then it executes the

following two steps in sequence:

a. sends a message to processor p(i+1),j (if i 6= r)

b. sends a message to processor Pi.

rofp

rofp

Figure 3: A stalling LogP computation whose execution time can increase by more than L/l

when emulated on a BSP with same number of processors.

to the input distribution for the LogP computation. Alternatively one can add the term ng/p

to the time bound for the QSM algorithm to take into account the time needed to distribute

the input located in global memory across the private memories of the QSM processors. We

prefer the former method, since it is meaningful to evaluate the computation time on a QSM

in which the input is distributed across the local processors of the QSM – as, for instance, in

an intermediate stage of the large computation, where values already reside within the local

memories of the QSM, and where the result of a computation executed on these values will be

used locally by these processors later in the computation.

As in the case of the emulations seen earlier, we map the LogP processors uniformly among

the QSM processors in the emulating machine, and we assign to the local memory of each QSM

processor the input values that were assigned to the LogP processors emulated by it. We can

then emulate LogP on a QSM or s-QSM with slowdown O(d g log p
l e) whp as follows:

I. Divide the LogP computation into blocks of size l

II. Emulate each block in O(d g log p
l e) time in two QSM phases as follows, using the shared

memory of the QSM (or s-QSM) only to realize the h-relation routing performed by the

LogP in each block of computation.

Each QSM (or s-QSM) processor copies into its private memory the messages that were

sent in the current superstep to the local memory of the LogP processors mapped to it

using the method of [11] to emulate BSP on QSM, which we summarize below.

1. Compute M , the total number of messages to be sent by all processors in this phase.

14

Use the shared memory to estimate the number of messages being sent to each group

of log3 M destination processors as follows:

Sample the messages with probability 1/ log3 M , sort the sample, thereby obtaining

the counts of the number of sample elements being sent to each group of log3 M

destination processors; then estimate an upper bound on the number being sent to

the ith group as c · max(ki, 1) · log3 M), where ki is the number of sample elements

being sent to the ith group, and c is a suitable constant.

2. Processors that need to send a message to a processor in a given group use a queue-

read to determine the estimate on the number of messages being sent to the ith group

and then place their messages in an array of this size using a multiple compaction

algorithm.

3. Perform a stable sort (by destination processor ID) on the elements being sent to a

given group, thereby grouping together the elements being sent to each processor.

4. Finally each processor reads the elements being sent to it from the grouping per-

formed in the above step.

Theorem 3.10 A non-stalling LogP computation can be emulated on the QSM or s-QSM in

a work-preserving manner whp with slowdown O(d g log p
l e), assuming that the input to the LogP

computation is distributed uniformly among the local memories of the QSM processors.

3.4 Discussion

We have presented work-preserving emulations between LogP and the other three models —

QSM, s-QSM and BSP. (Work-preserving emulations between QSM, s-QSM and BSP were

presented earlier in [11], see also [21].) Overall these results indicate that these models are

essentially interchangeable for the purpose of algorithm design since each can emulate the

others in a work-preserving manner with only a small slowdown.

A couple of features about our emulations are worth further discussion.

1. Stalling versus non-stalling LogP. The one mis-match we have in our emulations

is between stalling and non-stalling LogP. Here we showed that there is a simple, de-

terministic, work-preserving emulation of non-stalling LogP on BSP, but there is no

deterministic step-by-step emulation of stalling LogP on BSP that is work-preserving.

This is in contrast to an incorrect inference made in [3] that LogP is essentially equivalent

to BSP.

Our counterexample that shows the negative result on emulating stalling LogP on BSP

indicates that the stalling LogP gives processors an automatic scheduling feature. This

does not appear to mirror the behavior of real parallel systems, and seems to indicate

that the modeling of stalling should be done more carefully in order to be reflective of

real machines.

15

2. Emulating message-passing on shared-memory and vice versa. The algorithms

we have given for emulating a distributed memory model, LogP or BSP, on shared-

memory are rather involved due to the use of sorting and multiple compaction. On the

other hand the shared-memory models, QSM and s-QSM, have simple emulations on

BSP and LogP.

The reason for the complications in our BSP/LogP emulation on shared-memory is the

need to map a message-passing interface on to a shared-memory environment. Since

both message-passing and shared-memory are widely used in practice, we suggest that a

high-level general-purpose model should be one that maps on to both in a simple way.

We have shown that QSM and s-QSM give us this feature. Additionally, they have a

smaller number of parameters, and do not have to keep track of the layout of data across

shared memory.

Since the QSM and s-QSM have fewer parameters than the BSP or LogP, and they are

shared-memory, for the rest of this paper we use these two models as our basic models. We

analyze algorithms using the s-QSM cost metric, as the symmetry between processor requests

and memory accesses in the s-QSM model leads to simpler analyses, and also helps achieve a

clean separation between the cost for local computation and cost for communication. Since

any s-QSM algorithm runs within the same time and work bounds on the QSM, our upper

bounds are valid on both models.

4 Basic QSM Algorithms

To support using QSM or s-QSM for designing general-purpose parallel algorithms, we develop

a suitable cost metric for such algorithms. We then present simple QSM algorithms for prefix

sums, sample sort and list ranking; all three algorithms are adaptations of well-known PRAM

algorithms suitably modified to optimize for our cost measure. In the next section we present

some experimental analysis and data on simulations using parallel code we wrote for these

algorithms.

4.1 Cost Measures for a QSM Computation

Our cost metric for a QSM algorithm seeks to

1. minimize the work performed by the algorithm,

2. minimize the number of phases in the algorithm, and

3. maximize parallelism, subject to the requirements (1) and (2).

The work w(n) of a parallel algorithm for a given problem is the processor-time product

for inputs of size n. There are two general lower bounds for the work performed by a QSM

algorithm: First, the work is at least as large as the best sequential running time of any

16

algorithm for the problem; and second, if the input is in shared-memory and the output is to

be written into shared-memory, the work is at least g · n, where n is the size of the input [11].

The maximum parallelism of an algorithm with work w(n) is the smallest running time t(n)

achievable by the algorithm while performing w(n) work. As for a PRAM algorithm, maximum

parallelism is a meaningful measure for a QSM or s-QSM algorithm, since these algorithms can

always be slowed down (by using a smaller number of processors) while performing the same

work [11].

The motivation for the new second metric on minimizing number of phases is the following.

One major simplification made by QSM is that it does not incorporate an explicit charge for

latency or the synchronization cost at the end of each phase. The total time spent on synchro-

nizations is proportional to the number of phases in the QSM algorithm. Hence minimizing

the number of phases in a QSM algorithm minimizes the hidden overhead due to synchroniza-

tion. In particular it is desirable to obtain an algorithm for which the number of phases is

independent of the input size n as n becomes large. All of the algorithms we present have this

feature.

Related work on minimizing the number of phases (or supersteps) using the notion of

rounds is reported in [13] for sorting and in [5] for graph problems. Several lower bounds for

the number of rounds needed for basic problems on the QSM and BSP are presented in [20].

A ‘round’ is a phase or superstep that performs linear work (O(gn/p) time on s-QSM, and

O(gn/p + L) time on BSP). Any linear-work algorithm must compute in rounds, hence this

is a useful measure for lower bounds on the number of phases (or supersteps) needed for a

given problem. On the other hand, a computation that proceeds in rounds need not lead to

a linear work algorithm if the number of rounds in the algorithm is non-constant. In fact, all

of the algorithms presented in [5] perform superlinear work. The algorithm in [13] performs

superlinear communication when the number of processors is large.

In contrast to the cost metric that uses the notion of rounds, in this paper we seek algorithms

that perform optimal work and communication and additionally compute in a small number

of phases.

Our metric does not consider providing good performance for tiny problem sizes to be a

primary consideration. This is because our emphasis is on simple algorithms that can be used

in practice. This encourages us to focus on algorithms for the case when the input size is, say,

at least quadratic in the number of processors, since the input sizes for which we would use a

parallel machine for the problems we study would normally be at least as large, if not larger.

The pay-off we get for considering this moderate level of parallelism is that our algorithms are

quite simple. Oru algorithm for sample sort is inspired by, and fits this frame-work. However,

our algorithms for prefix sums and list ranking achieve a much higher level of parallelism.

In fact, we prove that our prefix sums algorithm is optimal for the complete range of values

for parameters that lead to linear-work algorithms, and it differs from earlier prefix sums

algorithms for the case when p is very close to n/ log n, i.e, for the highly parallel case. But it

should be noted that this is achieved with a simple algorithm that is easily implementable in

practice. In short, our goal in developing all three algorithms was to obtain effective algorithms

17

for moderate levels of parallelism. Discussion of simulation results in the next section support

our belief that we can simplify QSM algorithms without hurting performance for practical

problems.

As noted in the section describing our emulation of LogP on QSM, it is meaningful to

consider computations in which the input and output remain distributed uniformly across the

local memories of the QSM processors. This would correspond, for instance, to a situation

where the computation under consideration is part of a more complex computation. In such a

case a QSM processor would not need to write back the computed values into shared-memory

if these values will be used only by this processor in later computations. Our simple prefix

sums algorithm (given in Figure 5) has an improved performance under this assumption of

distributed input and output. In the other algorithms we present, the savings gained by this

configuration is no more than a constant factor. However, we will come back to this point

in the next section where we present experimental results. There we pin down the constant

factors for the running time, based on the distributed input environment that we used to run

our algorithms.

4.2 Prefix Sums Algorithm

The prefix sums algorithm is given in Figure 4. We analyze its performance in the following

claim, and in the next claim, we show that its performance is optimal whenever p ≤ n/ log n.

(Note the parameter φ in this algorithm, which distinguishes it from all other known algorithms

for prefix sums. This parameter becomes relevant only when the value of p is close to n/ log n.)

Claim 4.1 The algorithm in Figure 4 computes the prefix sums of array A[1..n], and runs

in O(gn/p) time (and hence O(gn) work) and O(φ) phases when p ≤ n/ log n on QSM and

s-QSM.

Proof: Let t be the number of iterations of the repeat loop. Then t = log p/ log r, i.e.,

t = log p
log(n/p)−log φ .

We have log(n/p) = log log n + log f(n) and log φ = log log n − log log f(n), hence t =

Θ(log p
log log n+log f(n)−log log n+log log f(n)) = Θ(log p

log f(n)) = O(φ).

The algorithm performs each iteration of the repeat loop in one phase, hence the number

of phases in the algorithm is 2t + 1, which is O(φ).

The time taken by each iteration of the repeat loop is O(g · r), hence the overall running

time of the repeat loop is O(t · g · r), which is O(g · φ · (n/p) · (1/φ)) = O(g · (n/p)). The first

pfor loop takes O(gn/p) time, and hence the overall running time of the algorithm is O(gn/p),

and the work performed by the algorithm is O(gn). When r = O(1), the time taken by the

algorithm is O(g log n), hence the algorithm performs O(g ·n) work as long as p = O(n/ log n).

Note that this algorithm runs in a constant number of rounds if p = O(nc), for some

constant c < 1. In the following claim we show that this algorithm uses an optimal number

of phases over the entire range of values for p (i.e., 1 ≤ p ≤ n/ log n) for which a prefix-sums

algorithm with O(gn) work is possible.

18

Input. Array A[1..n] to a p-processor QSM.

// Preprocess to reduce size to p:

pfor 1 ≤ i ≤ p do

processor pi reads the ith block of n/p elements from array

A, computes local prefix sums, and stores the sum in B[i].

rofp

// Main loop

Let f(n) = n
p log n

φ := log n
log f(n)

r := (n/p) · (1/φ)

k := p

repeat

pfor 1 ≤ i ≤ dk/re do

processor i reads the ith block of dre elements from array B,

computes local prefix sums, and stores the sum in B[i]

k := dk/re
rofp

until k = 1

The processors perform a corresponding sequence of ‘expansion’ steps in which the correct

prefix sum value is computed for each position once the correct offset is supplied to it.

Figure 4: Prefix sums algorithm.

Claim 4.2 The algorithm in Figure 4 computes the prefix sums of array A[1..n] on s-QSM

with optimal O(gn) work and in optimal number of phases whenever p ≤ n/ log n.

Proof: The bound on the work performed is O(g ·n) when p ≤ n/ log n. This is seen to be the

best possible (for either the QSM or the s-QSM) through a simple lower bound given in [11].

We need to show that the upper bound given in Claim 4.1 for the number of phases

is optimal for s-QSM. If n/p ≥ log1+ε n then the optimality follows from a lower bound of

Ω(log n/ log(n/p)) given in [20] for the number of phases needed to compute the OR of n bits

on s-QSM when constrained to perform O(g · (n/p)) communication per phase. Note that

log n/ log f(n) = Θ(log n/ log(n/p)) when n/p ≥ log1+ε n.

We now strengthen the above lower bound to show that for computing parity and prefix

sums, the number of phases needed is Ω(log n
log f(n)), where f(n) = n/(p log n). In [20] it is shown

that if an s-QSM computes the parity of n bits in l phases while performing g·T communication,

then
l

∏

j=1

(6τj) ≥ n

where g · τj is the time taken for communication in the jth phase. Since
∑l

j=1 τj = T , the

above product is maximized when the τj’s are all equal, and equal to T/l. Hence we have

(6T/l)l ≥ n, i.e., l = Ω(log n
log T−log l).

We have T = n/p = log n · f(n), hence l = Ω(log n
log log n+log f(n)−log l). Solving for l we find

that l = Ω(log n
log f(n)), giving us the desired matching lower bound (since computing prefix sums

19

Input. Array A[1..n] to a p-processor QSM, p ≤ √
n.

pfor 1 ≤ i ≤ p do

processor pi reads the ith block of n/p elements from array A,

computes local prefix sums, and stores the sum in locations S[i, j], i + 1 ≤ j ≤ p

rofp

pfor 1 ≤ i ≤ p do

processor pi reads all entries in subarray S[1..i − 1, i], computes

the sum of the elements in the subarray, adds this offset to its

local prefix sums, and stores the computed prefix sums in locations

(i − 1) · (n/p) + 1 through i · n/p in output array B

rofp

Figure 5: Simple prefix sums algorithm for p ≤ √
n.

on an n-array is at least as hard as computing parity of n bits).

Broadcasting. We note that the above algorithm can be run in reverse to broadcast a value

to p processors to obtain the same bounds if O(gn/p) time is allowed per phase.

Finally we note that the QSM algorithm for prefix sums is extremely simple when p ≤ √
n,

which is the situation that typically arises in practice. This algorithm is shown in Figure 5.

It is straightforward to see that this algorithm computes the result in O(g · n/p) time and

two phases. The process of writing and then reading locations in the array S[i, j] is a simple

method of broadcasting p values to all processors.

Theorem 4.3 The simple prefix sums algorithm runs in O(gn/p) time and in two phases when

p ≤ √
n.

If the input and output are to be distributed uniformly among the local memories of the

processors, then the simple prefix sums algorithm runs in O(g · p) time when p ≤ √
n.

4.3 Sample Sort Algorithm

Figure 6 shows the QSM sample sort algorithm. We assume that p ≤
√

n
log n ; in other words,

there is a significant amount of work for each processor to do.

This algorithm is based on the standard sample sort algorithm that uses ‘over-sampling’ and

then picks pivots evenly from the chosen samples arranged in sorted order [7, 16, 23, 24, 12, 10].

Theorem 4.4 The algorithm in Figure 6 sorts the input array while performing optimal work

(O(g · n + n log n)), optimal communication (O(g · n)), in O(1) phases whp when the number

of processors p = O(
√

n
log n).

Proof: The algorithm selects cp log n random samples in step 1. In step 2 these samples are

read by each processor, then sorted, and p−1 evenly-spaced samples are chosen as the ‘pivots’.

The pivots divide the input values into p buckets, where the ith bucket consists of elements

20

Input. Array A[1..n] to a p-processor QSM, p ≤
√

n/ log n.

1. pfor 1 ≤ i ≤ p do

a. The ith processor pi reads the ith block of n/p elements from the input array;

b. pi selects c log n random elements from its block of elements and writes p copies

of these selected elements in locations S[1..c · p log n, i]

rofp

2. pfor 1 ≤ i ≤ p processor pi performs the following steps

a. Processor pi reads the values of the samples from locations S[i, j · c log n + i],

0 ≤ j ≤ (p − 1)

b. pi sorts the cp log n samples, and picks every c log nth element as a pivot;

c. pi groups its local n/p elements from the input array into groups depending on the

bucket into which they fall with respect to the pivots.

d. For 1 ≤ j ≤ p

write back the elements in the jth bucket into a block in an array meant for

all elements in the jth bucket. (This requires a global prefix sums calculation

to determine the location of the block within the array in which to write the

elements in bucket j from the ith processor.

The same computation gives the locations needed for the writes in step 3.)

rofp

3. pfor 1 ≤ i ≤ p do

Processor pi reads the elements in the ith bucket, sorts them

and writes the sorted values in the corresponding positions in the output array.

rofp

Figure 6: Sample sort algorithm.

21

whose values lie between the (i − 1)st pivot and the ith pivot in sorted order (assuming the

0th pivot has value −∞ and the pth pivot has value ∞. The elements in the ith bucket are

locally sorted by the processor pi and then written in sorted order in the output array. Hence

the algorithm correctly sorts the input array.

We now analyze the running time of the algorithm with p processors, p ≤
√

n/ log n. Steps

1a and 2d take O(gn/p) time, and steps 1b and 2a take time O(gp log(n/p)) = O(gn/p), since

p ≤
√

n/ log n. Step 2b takes time O(p log n log(p log n)) = O((n/p) log(n/p)), and step 2c

takes time O((n/p) · log p) if binary search on the pivots is used to assign each element to its

bucket. Step 3 takes time O(B log B + gB), where B is the size of the largest bucket.

We now obtain a bound on the size of the largest bucket B.

Consider the input elements arranged in sorted order in a sequence S. Consider an interval

I of size s = αn/p on S, for a suitable constant α > 1. In the following we obtain a high

probability bound on the number of samples in any interval of size s.

Let Yi,j, 1 ≤ i ≤ c log n, 1 ≤ j ≤ p, be a random variable that is 1 if the ith sample of the jth

processor lies in I, and is zero otherwise.

Pr[Yi,j = 1] = sj · p/n, for 1 ≤ i ≤ c log n, where sj is the number of elements in I that are

from processor pj’s block of n/p elements.

Let Y =
∑c log n

i=1

∑p
j=1 Yi,j. Note that Y is the number of samples in I.

E[Y] = c log n
∑p

j=1 sj · (p/n) = (s · c · p · log n)/n

Hence E[Y] = αc log n.

By Hoeffding’s inequality, Pr[Y ≤ k] ≤ Pr[X ≤ k], for k < αc log n, where X is the sum

of pc log n 0-1 independent random variables, with probability of success equal to s/n for all

of these random variables.

E[X] = cα log n.

By a Chernoff bound, Pr(X ≤ c log n) ≤ e−
c·(α−1)2 ln n

2α ln 2 = n−c(α−1)2/(2α ln 2),

i.e., Pr(Y ≤ c log n) ≤ n−c(α−1)2/(2α ln 2).

Let ai be the position of the ci log nth sample in the sorted sequence S, 1 ≤ i ≤ p− 2. Let

Bi be the interval of size αn/p on sequence S starting at ai, 1 ≤ i ≤ p − 2. Let B0 be the

interval of size αn/p starting at the first element of S and let Bp−1 be the interval of size αn/p

ending at the last element of S.

The probability that any of the intervals Bi, 0 ≤ i ≤ p − 1 has less than c log n samples is no

more than

p ·n−c(α−1)2/(2α ln 2), which is O(1/nr), r > 0, for a suitable choice of α and c. Hence whp every

bucket has no more than αn/p elements.

Thus whp, step 3 takes time O((n/p) log n + gn/p), and thus the overall running time of

the algorithm is O(g · (n/p) + (n log n)/p), which is optimal.

There are 6 phases in the algorithm – one each for steps 1a, 1b, 2a, 2d, 3, and 4.

4.4 List Ranking Algorithm

Figure 7 summarizes the list ranking algorithm.

22

Input. Successor array S[1..n] to a p-processor QSM, p ≤
√

n/ log n.

1. Each processor reads a block of n/p of the input successor array.

2. for c log p iterations do

pfor 1 ≤ i ≤ p do

a. Processor pi generates a random bit for each element in its local sublist.

b. pi ‘eliminates’ each local active element for which its random bit

is a 0 and its successor random bit is a 1.

c. pi compacts its local sublist by removing the eliminated elements using

an ‘indirection’ array.

rofp

rof

3. All processors send their current sublist to processor 0, which then ranks the current elements sequentially.

4. All processors perform a sequence of ‘expansion’ steps corresponding to step 2 in which

the correct list rank is computed for each element once the correct offset is supplied to it.

Figure 7: List ranking algorithm.

Theorem 4.5 The List Ranking algorithm runs with optimal work and optimal communication

(O(gn/p) for both), and in O(log p) phases whp when the number of processors p = O(n/ log n).

Proof: We first consider the case when p = o(nε). Consider a given iteration of the pfor loop.

Let r be the number of elements in a given processor P , and let r = re + ro, where re denotes

the number of elements at even distance, and ro denotes the number at odd distance from the

end of the current linked list.

Let Xe be a random variable denoting the number of elements at even distance from the

end of the list in processor P that are eliminated in this iteration of the pfor loop. Let Xo

be the corresponding random variable for elements at odd distance from the end of the linked

list. The random variables Xe and Xo are binomially distributed r.v.’s with E[Xe] = re/4 and

E[Xo] = ro/4.

By a Chernoff bound,

Pr(Xe ≤ (1 − β) · re/4) ≤ e−β2·re/8 and Pr(Xo ≤ (1 − β) · ro/4) ≤ e−β2·ro/8

Hence, since either re or ro is at least r/2, with exponentially high probability in r, at least

(1 − β)/8 of the elements in P are eliminated in this iteration.

If p = o(nε), for any ε > 0, then n/p2 = Ω(nb), for some constant b > 0. Hence, in every

iteration of the pfor loop, either at least (1 − β)/8 of the elements are eliminated at each

processor with exponentially high probability, or the number of elements remaining at the

processor is o(n/p). Hence, after c log p iterations, the number of elements remaining in the

linked list is ≤ (1 − β)/4)c log p · n with exponentially high probability. With a suitable choice

of c this number of elements remaining can be made ≤ n/p.

By the above analysis the number of elements eliminated at any given processor is geo-

metrically decreasing from iteration to iteration. Hence the total time for step 2 (and hence

for step 4) is O(gn/p). At the end of step 2 the number of elements is reduced to O(n/p)

23

(with exponentially high probability), hence the time for step 3 is O(gn/p). Hence the overall

running time of the algorithm is O(gn/p). The number of phases is O(log p), since there is a

constant number of phases in each iteration of step 2.

If p = Ω(nε), we can use a standard analysis of randomized list ranking to show that all

elements at a processor are eliminated in O(log n) = O(log p) time whp. In this case, for a

suitable choice of c, the length of the list is reduced to 1 at the end of step 2, and step 3 is not

required (although one might still use step 3 for improved performance).

5 Experimental Results

We investigated the performance of the prefix sums, sample sort and list ranking algorithms

on Armadillo [14], which is a simulated architecture with parameterizable configurations and

cycle-by-cycle profiling and accuracy. The simulator was set to parameters for a state-of-the-art

machine. In this section we describe the results we obtained by simulating our three algorithms

on an eight-processor machine. Results for a 16-processor machine, as well as results of other

experiments and conclusions derived from them can be found in [15]. A detailed description

of the experimental set-up can be found there as well. (Those experiments were performed

on a simulator in order to evaluate the effect of varying parameters of the parallel machine

such as latency and overhead and the effectiveness of the QSM model and the BSP model in

predicting performance of algorithms.)

The results of the experiments indicate that the QSM predictions come close to the observed

values for fairly small problem sizes and that they become more accurate as problem sizes

increase. We also found that the looseness of bounds obtained using standard techniques of

algorithm analysis for nonoblivious algorithms and standard tools for analyzing randomized

algorithms are often larger than the errors introduced by QSM’s simplified network model.

This was certainly the case for both sample sort and list ranking.

5.1 General Comments

The graphs for the three algorithms are given in Figures 8, 9, 10. Each of our graphs shows

the measured results of running one of the three algorithms, and compares the measured

communication time to the communication time predicted by QSM. As a comparison, we

also plot the communication time for the same algorithm as would be predicted by the more

detailed BSP model. We do not include predictions of the LogP model since they would be

almost identical to the predictions of the BSP model for the three algorithms we consider.

Our analysis focuses on communication performance – excluding CPU time – for two rea-

sons. First, all models examined here model CPU performance in the same way, so comparisons

of predictions of CPU performance are not interesting. Second, exact CPU time calculations

depend on low level parameters that are beyond the scope of the QSM and BSP models. How-

ever, for completeness the graphs also show the total measured time taken by the computation.

The architecture we simulated was that of a distributed-memory multiprocessor, and thus

24

0

1

2

3

4

5

6

7

0 50000 100000 150000 200000 250000 300000 350000 400000

m
ill

io
ns

 o
f

cy
cl

es

problem size

Parallel Prefix for 8 processors

Total running time

Communication
BSP estimate

QSM estimate

(a) Total running time and communication time.

0

0.05

0.1

0.15

0.2

0 50000 100000 150000 200000 250000 300000 350000 400000

m
ill

io
ns

 o
f

cy
cl

es

problem size

Parallel Prefix for 8 processors

Communication

BSP estimate

QSM estimate

(b) Communication time.

Figure 8: Measured and predicted performance for the prefix sums algorithm on 8 processors.

25

0

10

20

30

40

50

60

70

0 50000 100000 150000 200000 250000 300000

m
ill

io
ns

 o
f

cy
cl

es

problem size

Sample Sort for 8 processors

Total running time

QSM WHP bound
communication

BSP estimate
QSM estimate

QSM best-case

(a) Total running time and communication time.

0

2

4

6

8

10

12

14

16

0 50000 100000 150000 200000 250000 300000

m
ill

io
ns

 o
f

cy
cl

es

problem size

Sample Sort for 8 processors

QSM WHP bound

communication

BSP estimate

QSM estimate

QSM best-case

(b) Communication time.

Figure 9: Measured and predicted performance for the sample sort algorithm on 8 processors.

26

0

50

100

150

200

250

300

0 20000 40000 60000 80000 100000

m
ill

io
ns

 o
f

cy
cl

es

problem size

List Rank for 8 processors

Total running time

QSM WHP bound

communication
BSP estimate

QSM estimate

QSM best-case

(a) Total running time and communication time.

0

50

100

150

200

250

300

0 20000 40000 60000 80000 100000

m
ill

io
ns

 o
f

cy
cl

es

problem size

List Rank for 8 processors

QSM WHP bound

communication
BSP estimate

QSM estimate

QSM best-case

(b) Communication time.

Figure 10: Measured and predicted performance for the list ranking algorithm on 8 processors.

27

the input and the output was distributed uniformly across the processors. Hence in analyzing

the algorithms we excluded the initial cost of reading the input from shared-memory and the

final cost of writing the output into shared-memory. As discussed earlier, such an analysis is

meaningful in the context of a shared-memory model since it would correspond, for instance, to

a situation where the computation under consideration is part of a more complex computation

and the input/output is available at the local memories of the appropriate processors. The

algorithms were simulated on 4, 8 and 16 processors.

We plotted several computed and measured costs as listed below:

1. ‘Communication’ is the measured cost of the communication performed by the algorithm,

measured in cycles.

2. ‘QSM best-case’ represents the ideal performance of each of the randomized algorithms.

It uses the QSM analysis but assumes no skew in the performance of the randomized

steps.

3. ‘QSM WHP bound’ represents the performance of each of the randomized algorithms

that we can guarantee with probability at least 0.9 using Chernoff bound analysis.

4. The ‘QSM estimate’ line is a plot of the measured maximum number of communica-

tion operations at any processor multiplied by the gap parameter. (Since none of the

algorithms we implemented had queue contention at memory locations, this correctly

measures the communication cost as modeled by QSM.) It accounts for the actual skew

encountered during the runs. For the prefix sums algorithm the ‘QSM estimate’ line

also gives ‘QSM best case’ since the algorithm is deterministic and oblivious. For the

randomized algorithms, this line plots the QSM prediction without the inaccuracy that

is incurred when working with loose analytical bounds on the amount of communication.

5. The ‘BSP estimate’ line is similar to ‘QSM estimate’, except that there is an additional

term to account for the latency parameter.

6. ‘Total running time’ is the measured cost of the total running time of the algorithm,

measured in cycles. We include this for completeness.

5.2 Discussion

For all three algorithms, we found that ‘QSM estimate’ tracks communication performance well

when the input size is reasonable large. The input sizes for which we simulated the algorithms

are fairly small due to the CPU-intensive computation of the step-by-step simulation performed

by Armadillo. Modern parallel architectures typically give each processor many megabytes of

memory, so problems of practical interest are likely to be even larger than those presented

here.

As expected, the communication cost for the prefix sums algorithm is negligible compared

to the total computation cost as n becomes large. QSM (and to a lesser extent BSP) both

28

underestimate the communication cost by a large amount, but since the communication cost is

very small anyway, this does not appear to be a significant factor. The possible cause for this

discrepancy between the predicted and measured communication costs is discussed in [15].

As expected, for both sample sort and list ranking the lines for ‘QSM best-case’ and ‘QSM

WHP bound’ envelope the line for actual measured communication except for tiny problem

sizes (when latency dominates the computation cost). For both algorithms the ‘QSM estimate’

line is quite close to the ‘communication’ line, indicating that QSM models communication

quite effectively when an accurate bound is available for the number of memory accesses

performed by the processors. For instance with 8 processors, ‘QSM estimate’ is within 20% of

‘communication’ for sample sort when the input size is larger than 40,000, and is within 5%

of ‘communication’ for list ranking when input size is larger than 20,000. The ‘BSP estimate’

lines are very close to the ‘QSM estimate’ lines for both algorithms.

For both sample sort and list ranking the ‘QSM WHP’ line gives a very conservative bound,

and lies significantly above the line for ‘communication.’ This is to be expected, since the

‘communication’ line represents the average of ten runs while the ‘QSM WHP’ line guarantees

the bound for at least 90% of the runs. Further, the bounds were computed using Chernoff

bounds, and hence are not tight. It should be noted that the fairly large gap between the

‘communication’ and the ‘QSM WHP bound’ lines is mainly due to the looseness of the bounds

we obtained on the number of memory accesses performed by the randomized algorithms, and

not due to inaccuracy in the QSM communication model. As noted above, the ‘QSM estimate’

line which gives the QSM prediction based on the measured number of memory accesses is

quite close to the ‘communication’ line.

Overall these graphs show that QSM models communication quite effectively for these

algorithms, for the range of input sizes that one would expect to see in practice. We also note

that the additional level of detail in the BSP model has little impact on the ability to predict

communication costs for the algorithms we studied, as compared to the QSM.

6 Conclusions

This paper has examined the use of QSM as a general-purpose model for parallel algorithm

design. QSM is especially suited to be such a model because of the following.

1. It is shared-memory, which makes it convenient for the algorithm designer to use.

2. It has a small number of parameters (namely, p, the number of processors, and g the gap

parameter).

3. We have presented simple work-preserving emulations of QSM on other popular models

for parallel computation. Thus an algorithm designed on the QSM will map on to these

other models effectively.

To facilitate using QSM for designing general-purpose parallel algorithms, we have devel-

oped a suitable cost metric for such algorithms and we have evaluated algorithms for some

29

fundamental problems both analytically and experimentally against this metric. These results

indicate that the QSM metric is quite accurate for problem sizes that arise in practice.

References

[1] M. Adler, J. Byer, R. M. Karp, Scheduling parallel communication: The h-relation

problem. In Proc. MFCS, 1995.

[2] M. Ajtai, J. Komlos, E. Szemeredi, An O(n log n) sorting network. In Proc. ACM

STOC, pp. 1–9, 1983.

[3] G. Bilardi, K. T. Herley, A. Pietracaprina, G. Pucci, P. Spirakis. BSP vs LogP. In

Proc. ACM SPAA, pp. 25–32, 1996.

[4] G. Bilardi, K. T. Herley, A. Pietracaprina, G. Pucci, P. Spirakis. BSP vs LogP.

Algorithmica, vol. 24, 1999. pp. 405-422.

[5] E. Caceres, F. Dehne, A. Ferreira, P. Flocchini, I. Rieping, A. Roncato, N. Santoro,

and S. W. Song. Efficient parallel graph algorithms for coarse grained multicomputers

and BSP. In Proc. ICALP, LNCS 1256, pp. 390-400, 1997.

[6] D. Culler, R. Karp, D. Patterson, A. Sahay, K.E. Schauser, E. Santos, R. Subramonian,

and T. von Eicken. LogP: Towards a realistic model of parallel computation. In Proc.

4th ACM SIGPLAN Symp. on Principles and Practices of Parallel Programming, pages

1–12, May 1993.

[7] W. D. Frazer and A. C. McKellar. Samplesort: A sampling approach to minimal

storage tree sorting. Journal of the ACM, vol. 17, no. 3, 1970, pp. 496-507.

[8] P. B. Gibbons, Y. Matias, and V. Ramachandran. The Queue-Read Queue-Write

PRAM model: Accounting for contention in parallel algorithms. SIAM Journal on

Computing, vol. 28, no. 2, 1999, pp. 733-769.

[9] P. B. Gibbons, Y. Matias, and V. Ramachandran. Efficient low-contention parallel

algorithms. Journal of Computer and System Sciences, 53(3):417–442, 1996. (Special

issue of papers from 1994 ACM SPAA.)

[10] P.B. Gibbons, Y. Matias, and V. Ramachandran. The queue-read queue-write asyn-

chronous PRAM model. Theoretical Computer Science, vol. 196, 1998, pp. 3-29.

[11] P. B. Gibbons, Y. Matias, and V. Ramachandran. Can a shared-memory model serve

as a bridging model for parallel computation? In Theory of Computing Systems, vol.

32, 1999, pp. 327-359. (Special issue of papers from 1997 ACM SPAA.)

[12] A.V. Gerbessiotis and L.G. Valiant. Direct bulk-synchronous algorithms. J. Parallel

and Distributed Computing, 22:251-267, 1994.

30

[13] M. Goodrich. Communication-efficient parallel sorting. In Proc. ACM STOC, pp.

247–256, 1996.

[14] B. Grayson. Armadillo: A High-Performance Processor Simulator. Masters thesis,

ECE, UT-Austin, 1996.

[15] B. Grayson, M. Dahlin, V. Ramachandran, Experimental evaluation of QSM: A simple

shared-memory model. In Proc. IPPS-SPDP’99, pp. 130-137. (see also TR98-21, Dept.

of Computer Science, UT-Austin, 1998).

[16] J.S. Huang and Y.C. Chow. Parallel sorting and data partitioning by sampling. Proc.

7th IEEE Intl. Computer Software and Applications Conference, pp. 627-631, 1983.

[17] R. M. Karp and V. Ramachandran. Parallel algorithms for shared-memory machines.

In J. van Leeuwen, editor, Handbook of Theoretical Computer Science, Volume A, pages

869–941. Elsevier Science Publishers B.V., Amsterdam, The Netherlands, 1990.

[18] R. Karp, A. Sahay, E. Santos, and K.E. Schauser, Optimal broadcast and summation

in the LogP model, In Proc. 5th ACM SPAA, 142–153, June-July 1993.

[19] K. Kennedy. A research agenda for high performance computing software. In Devel-

oping a Computer Science Agenda for High-Performance Computing, pages 106–109.

ACM Press, 1994.

[20] P. D. MacKenzie and V. Ramachandran. Computational bounds for fundamental

problems on general-purpose parallel models. In Proc. 10th ACM SPAA, June-July

1998, pp. 152-163.

[21] V. Ramachandran. A general purpose shared-memory model for parallel computation.

In Algorithms for Parallel Processing, Volume 105, IMA Volumes in Mathematics and

its Applications, Springer-Verlag, 1999, pp. 1-17.

[22] V. Ramachandran, B. Grayson, M. Dahlin. Emulations between QSM, BSP and LogP:

A framework for general-purpose parallel algorithm design. Proc. ACM-SIAM Symp.

on Discrete Algorithms (SODA), 1999.

[23] R. Reischuk. Probabilistic parallel algorithms for sorting and selection. SIAM Jour.

Computing, 14:396-409, 1985.

[24] H. Shi and J. Schaeffer. Parallel sorting by regular sampling. J. Parallel and Distributed

Computing, 14:382-372, 1992.

[25] L. G. Valiant. A bridging model for parallel computation. Communications of the

ACM, 33(8):103–111, 1990.

31

Biographies

Vijaya Ramachandran is Professor of Computer Sciences at the University of Texas at

Austin. She received her Ph.D. from Princeton University in 1983. Her primary research

interests are in the theory and evaluation of algorithms and parallel computation. She is

Area Editor for Parallel Algorithms for the Journal of the ACM and serves on the Editorial

Boards of SIAM Journal on Computing, SIAM Journal on Discrete Mathematics, and Journal

of Algorithms.

Brian Grayson Brian Grayson received his PhD in Electrical and Computer Engineering

from The University of Texas at Austin in 1999. He is currently employed by Motorola in

Austin, Texas. His interests include performance modelling and analysis of microprocessor

microarchitecture.

Mike Dahlin Mike Dahlin is an Associate Professor in the Department of Computer Sciences

at the University of Texas at Austin. His work focuses on large scale distributed systems.

Dr. Dahlin received his PhD from the University of California at Berkeley in 1996, the NSF

CAREER award in 1998, and the Sloan Research Fellowship in 2000.

32

Parameter Setting

Functional Units 4 int/4 FPU/2 load-store

Functional Unit Latency 1/1/1 cycle

Architectural Registers 32

Rename Registers unlimited

Instruction Issue Window 64

Max. Instructions Issued per Cycle 4

L1 Cache Size 8KB 2-way

L1 Hit Time 1 cycle

L2 Cache Size 256KB 8-way

L2 Hit Time 3 cycles

L2 Miss Time 3 + 7 cycles

Branch Prediction Table 64K entries, 8-bit history

Subroutine Link Register Stack unlimited

Clock frequency 400 Mhz

Table 2: Architectural parameters for each node in multiprocessor.

APPENDIX: Description of the Experimental Set-up
The Armadillo multiprocessor simulator [14] was used for the simulation of a distributed

memory multiprocessor. The primary advantage of using a simulator is that it allows us

to easily vary hardware parameters such as network latency and overhead. The core of the

simulator is the processor module, which models a modern superscalar processor with dynamic

branch prediction, rename registers, a large instruction window, and out-of-order execution and

retirement. For this set of experiments, the processor and memory configuration parameters

are set for an advanced processor in 1998, and are not modified further. Table 2 summarizes

these settings.

The simulator supports a message-passing multiprocessor model. The simulator does not

include network contention, but it does include a configurable network latency parameter. In

addition, the overhead of sending and receiving messages is included in the simulation, since

the application must interact with the network interface device’s buffers. Also, the simulator

provides a hardware gap parameter to limit network bandwidth and a per-message network

controller overhead parameter.

We implemented our algorithms using a library that provides a shared memory interface in

which access to remote memory is accomplished with explicit get() and put() library calls.

The library implements these operations using a bulk-synchronous style in which get() and

put() calls merely enqueue requests on the local node. Communication among nodes happens

when the library’s sync() function is called. During a sync(), the system first builds and

distributes a communications plan that indicates how many gets and puts will occur between

each pair of nodes. Based on this plan, nodes exchange data in an order designed to reduce

contention and avoid deadlock. This library runs on top of Armadillo’s high-performance

message-passing library (libmvpplus).

33

Parameter Hardware Observed Performance

Setting (HW + SW)

Gap g (Bandwidth) 3 cycles/byte (133 MB/s) 35 cycles/byte (put), 287 cycles/byte (get)

Per-message Overhead o 400 cycles (1 µs) N/A

Latency l 1600 cycles (4 µs) N/A

Synchronization Barrier L N/A 25500 cycles (16-processors) (64 µs)

Table 3: Raw hardware performance and measured network performance (including hardware

and software) for simulated system.

Our system allows us to set the network’s bandwidth, latency, and per-message overhead.

Table 3 summarizes the default settings for these hardware parameters as well as the observed

performance when we access the network hardware through our shared memory library soft-

ware. Note that the bulk-synchronous software interface does not allow us to measure the

software o and l values directly. The hardware primitives’ performance correspond to values

that could be achieved on a network of workstations (NOW) using a high-performance com-

munications interface such as ‘Active Messages’ and high-performance network hardware such

as ‘Myrinet’. Note that the software overheads are significantly higher because our imple-

mentation copies data through buffers and because significant numbers of bytes sent over the

network represent control information in addition to data payload.

34

