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Abstract

Consider a distributed network with nodes arranged in a tree, and edehhawsing a lo-
cal value. We formulate an aggregation problem as the problem of aggrgyalues (e.g.,
summing values) from all nodes to the requesting nodes in the presencées. virhe goal
is to minimize the total number of messages exchanged. The key challengesdafe a
notion of “acceptable” aggregate values, and to design algorithms withpgrémmance that
are guaranteed to produce such values. We formalize the acceptabilggreate values in
terms of certain consistency guarantees similar to traditional consistencysdefieed in the
distributed shared memory literature. The aggregation problem admits aspedtsolutions
that trade off between consistency and performance. The centrsti@ués whether there
exists an algorithm in this spectrum that provides strong performanceaaiapnsistency
guarantees. We propose a lease-based aggregation mechanisnglaatbalgorithms based
on this mechanism in terms of consistency and performance. With regardsswmcy, we
generalize the definitions of strict and causal consistency for the gajgye problem. We
show that any lease-based aggregation algorithm provides strict temmtgisn sequential ex-
ecutions, and causal consistency in concurrent executions. Withdremaerformance, we
propose an online lease-based aggregation algorithm, and show thaggieential execu-
tions, the algorithm is constant-competitive against any offline algorithm toatdes strict
consistency. Our online lease-based aggregation algorithm is pregetiedform of a fully
distributed protocol, and the aforementioned consistency and performesudts are formally
established with respect to this protocol. Thus, we provide a positiveaartevthe central
guestion posed above.
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1 Introduction

Information aggregation is a basic building block in mangéascale distributed applications such
as system management [10, 21], service placement [9, 22]ofihtion [5], grid resource mon-
itoring [7], network monitoring [13], and collecting readjs from sensors [14]. Certain generic
aggregation frameworks [7, 17, 23] proposed for buildingsdistributed applications allow scal-
able information aggregation by forming tree like struesiwith machines as nodes, and by using
an aggregation function at each node to summarize the ifttwmfrom the nodes in the associated
subtree.

Some of the existing aggregation frameworks use strategigsnized for certain workloads.
For example, in MDS-2 [7], the information is aggregatedyomh reads, and no aggregation is
performed on writes. This kind of strategy performs well fatite-dominated workloads, but
suffers from unnecessary latency or imprecision on readhdiated workloads. On the other hand,
Astrolabe [17] employs the other extreme form of strategyvirich, on a write at a node in
the tree, each nodeon the path from: to the root node recomputes the aggregate value for the
subtree rooted at nodg and the new aggregate values are propagated to all the.nduekind of
strategy performs well for read-dominated workloads, laumstimes high bandwidth when applied
to write-dominated workloads. Furthermore, instead of¢h®vo extreme forms of workloads, the
workload may fluctuate and different nodes may exhibit @gtiat different times. Therefore, a
natural question to ask is whether one can design an aggreg#iategy that is adaptive and works
well for varying workloads.

SDIMS [23] proposes a hierarchical aggregation framewoitk & flexible API that allows
applications to control the update propagation, and hetheeaggregation aggressiveness of the
system. Though SDIMS exposes such flexibility to applicejat requires applications to know
the read and write access patterns a priori to choose an@pgiestrategy (see our discussion
on related work for further details). Thus, SDIMS leaves paeroquestion of how to adapt the
aggregation strategy in an online manner as the workloatufites.

In this work, we design an online aggregation algorithm, ahdw that the total number of
messages required to execute a given set of requests i \aittonstant factor of the minimum
number of messages required to execute the requests. Wingizemplete algorithm description
in the abstract protocol notation [11], and also believe ¢l algorithm is practical.

Broader Perspective The ever increasing complexity of developing large-scadtributed
applications motivates a research agenda based on théiaiian of key distributed primitives,
and the design of reusable modules for such primitives. dmpte reuse, these modules should
be “self-tuning”, that is, should provide near optimal penhance under wide range of operating
conditions. As indicated earlier, aggregation is usefumany applications. In this work we
design a distributed protocol for aggregation that pravigeod performance guarantees under any
operating conditions. Our focus on tree networks is nottimgisince many large-scale distributed
applications tend to be hierarchical (tree-like) in natiorescalability. If the network is not a tree,
one can use standard techniques to build a spanning treeextople, in SDIMS [23], nodes
are arranged in a distributed hash table (DHT), and treesdddd in the DHT are used for the
aggregation; these trees are automatically repaired ifetteeof failures. The present work can
be viewed as a case study within the broader research agtndedato above. The techniques
developed here may find application in the design of selirymodules for other primitives.

Problem Formulation. In order to describe our results we next present a briefrgesm



of the problem formulation; see Section 2 for a detailed dpson. We consider a distributed
network with nodes arranged in an unrooted tree and eachhawiag a local value. We formulate
the aggregation problem as the problem of aggregating sdkig., computing min, max, sum, or
average) from all the nodes to the requesting nodes in theepce of writes. The goal is to
minimize the total number of messages exchanged.

The main challenges are to define acceptable aggregatesvalpeesence of concurrent re-
guests, and to design algorithms with good performanceptatuce the acceptable aggregate
values. We define the acceptability of the aggregate valuésrims of certain consistency guar-
antees. There is a spectrum of solutions that trade off ltwensistency and performance. We
introduce a mechanism that uses the concept of leases fagadmpn algorithms. Any aggregation
algorithm that uses this mechanism is called lease-baspegagion algorithm. The notion of a
lease used in our mechanism is a generalization of that ns€DIiMS [23].

Results We evaluate the lease-based aggregation algorithmsms tef consistency and per-
formance. In terms of consistency, we generalize the nstadnstrict and causal consistency,
traditionally defined for distributed shared memory [20, [tlea 6], for the aggregation problem.
We show that any lease-based aggregation algorithm pregitiet consistency for sequential ex-
ecutions, and causal consistency for concurrent exeaution

In terms of performance, we analyze the lease-based dlgwitn the competitive analysis
framework [19]. In this framework, we compare the cost of afine algorithm with respect
to an optimal offline algorithm. An online aggregation algfun executes each request without
any knowledge of the future requests. On the other hand, fineohggregation algorithm has
knowledge of all the requests in advance. An online algorithc-competitivef, for any request
sequence, the costincurred by the online algorithm in executing at most times that incurred
by an optimal offline algorithm.

As is typical in the competitive analysis of distributedaithms [2, 3], we focus on sequential
executions. In this paper we present an online lease-baggdgation algorithrRWW which,
for sequential executions, %competitive against an optimal offline lease-based agdi@my al-
gorithm. We use a potential function argument to show thssilte We also show that the result
is tight by providing a matching lower bound. Further, wewhbat, for sequential executions,
RWW is 5-competitive against an optimal offline algorithm that pd®s strict consistency.

The three main contributions of the work are as follows. tFik& design an online aggregation
algorithm and show that our algorithm achieves good cortipetiatio for sequential executions.
Second, we define the notion of causal consistency for theeggtion problem. Third, we show
that our algorithm satisfies the definition of causal coesisy for concurrent executions.

An interesting highlight of the techniques is the desigrhefaggregation algorithm that effec-
tively reduces the analysis to reasoning about a pair othteigng nodes. This reduction allows
us to formulate a linear program of small size, independttree size, for the analysis.

Related Work. Various aggregation frameworks have been proposed intérature such as
SDIMS [23], Astrolabe [17], and MDS [7]. SDIMS is a hierarchl aggregation framework that
utilizes DHT trees to aggregate values. SDIMS provides abileXAPI that allows applications
to decide how far the updates to the aggregate value due toritess should be propagated. In
particular, SDIMS supportslpdate-loca) Update-all andUpdate-upstrategies. In Update-local
strategy, a write affects only the local value. In Updatesthtegy, on a write, the new aggregate
value is propagated to all the nodes. In Update-up strategg, write, the new aggregate value is
propagated to the root node of the hierarchy. Astrolabe isfanmation management system that
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builds a single logical aggregation tree over a given sebdes. Astrolabe propagates all updates
to the aggregate value due to the writes to all the nodesghafiows all the reads to be satisfied

locally. MDS-2 also forms a spanning tree over all the nodl&3S-2 does not propagate updates
on the writes, and each request for an aggregate value escqlimodes to be contacted.

There are some similarities between our lease-based agigneglgorithm and prior caching
work. Due to the space limitations, here we are describiegrbst relevant work. In CUP [18],
Roussopoulos and Baker proposgeaond-chancalgorithm for caching objects along the routing
path. The algorithm removes a cached object after two caomisecupdates are propagated to
the remote locations due to the writes on that object at theceo The second-chance algorithm
has been evaluated experimentally, and shown to providd gedormance. In the distributed
file allocation [3], Awerbuch et al. consider replicatiogatithm for a general network. In their
algorithm, on a read, the requested object is replicatengatioe path from the destination to the
requesting node. On a write, all copies are deleted excepuirth at the writing node. Awerbuch et
al. showed that their distributed algorithm has poly-ladpanic competitive ratio for the distributed
caching problem against an optimal centralized offline rtligym.

The concept of time-based leases has been proposed inureta maintain consistency be-
tween the cached copy and the source. This kind of leaseseeasapplied in many distributed
applications such as replicated file systems [12] and wehiicg¢8].

Ahamad et al. [1] gave the formal definition of causal comsisy for distributed message
passing system. The key difference between their setup@sdin reading one value compared
to aggregating values from all the nodes.

There are several efforts to deal with numerical error inabgregate value such as [4, 16].
However, in our knowledge, none of these work give a competdnline algorithm for the aggre-
gation problem, and neither of them address the issue ofingdsemantics in concurrent execu-
tions. In [4], Bawa et al. defined semantics for various sdesauch as approximate aggregation
in a faulty environment calledpproximate single-site validityrhey designed algorithms that pro-
vide such semantics, and evaluated their algorithms exgatally. In [16], Olston and Widom
consider one level hierarchy and propose a new class otegjoin system TRAPP that allows user
to control the tradeoff between precision (numerical graod performance in terms of communi-
cation overhead.

Organization. In Section 2 we introduce definitions and aggregation mbstatements. In
Section 3 we give an informal description of our algorithnd analysis. In Section 4 we define the
class of lease-based aggregation algorithms, and establitain properties of such algorithms. In
Section 5 we present our online lease-based aggregatioritalg RWW, and establish bounds
on the competitive ratio dRWW for sequential executions. In Section 6 we define the noti@n o
causally consistent aggregation algorithm, and estatiishany lease-based algorithm, including
RWW, is causally consistent.

2 Preliminaries

Consider a finite set of nodes (i.e., machines) arranged iaeartetworkl” with reliable FIFO
communication channels between neighboring nodes. Welsogyaen an aggregation operator
@ that is commutative, associative, and has an identity eleme For convenience, we write,
r@ydz asd(x, y, z). For the sake of concreteness in this paper, we assume éktcdl value



associated with each node is a real value, and the domainélso real.

The aggregate valueover a set of nodes is defined ascomputed over the local values
of all the nodes in the set. That is, the aggregate value ot af nodes{vy,..., v} is
®(vy.val, . .., vg.val), wherev;.val is the local value of the nodg. Theglobal aggregate values
defined as the aggregate value over the set of all the nodies treeT".

A request is a tuplerfode, op, arg, retval), wherenode is the node where the request is initi-
ated,op is the type of the request, eithesmbine or write, arg is the argument of the request (if
any), andretval is the return value of the request (if any). To execute-de request, an aggrega-
tion algorithm takes the argument of the request and updladscal value at the requesting node.
To execute aombine request, an aggregation algorithm returns a value. Noteahisadefinition
admits the trivial algorithm that returrison anycombine request. We define certain correctness
criteria for aggregation algorithms later in the paper. Roygpeaking, the returned value on a
combine request corresponds to the global aggregate value.

Theaggregation problens to execute a given sequence of requests with the goal afmzing
the total number of messages exchanged among nodes. Foggmgation algorithrd and any
request sequenee we defineC 4 (o) as the total number of messages exchanged among nodes in
executings by .A. An online aggregation algorithtd is c-competitive if for all request sequences
o and an optimal offline aggregation algorittnC 4 (o) < ¢ - Cg(o) [6, Chapter 1].

We sayT is in quiescent state if (1) there is no pending request atnaale; (2) there is no
message in transit across any edge; and (3) no message istkttte next request is initiated. In
short,T" is in quiescent state if there is no activitydhuntil the next request is initiated.

In a sequential execution of a request, the request istedtien a quiescent state and is com-
pleted wherl" reaches another quiescent state. In a sequential execfittorequest sequenece
every request in o is executed sequentially. In a concurrent execution of agsgsequence, a
new request can be initiated and executed while anotheest@gibeing executed. We refer to the
aggregation problem in which the given request sequenceeisuéed sequentially esequential
aggregation problem

The aggregation functiofiis defined over a set of real values or over a set of write régues
For a setA of real valuest, ..., z,, f(A) is defined asb(zy,...,z,). For a setd of write
requestsy, . . ., qm, f(A) is defined ag (A) = ®(qy.arg, . . ., ¢n.arg).

For any request in a request sequence let A(o, q) be the set of the most recent writes
precedingg in o corresponding to each of the nodes/in We say that an aggregation algorithm
providesstrict consistencyn executingo if any combine requesy in o returnsf(A(o, q)) as the
global aggregate value atnode. Note that this definition of strict consistency for an aggteon
algorithm is a generalization of the traditional definitimirstrict consistency for distributed shared
memory systems (for further details, see [20, Chapter 6]).défene an aggregation algorithm to
beniceif the algorithm provides strict consistency for sequdrei@cutions.

The set of all nodes in tre€ is represented byiodes(T"). For any edgéu,v), removal of
(u,v) yields two treessubtree(u, v) is defined to be one of the trees that contains

For any request sequeneand any ordered pair of neighboring nodesv), we defines (u, v)
as follows: (1)o(u,v) is a subsequence of (2) for anywrite requesy in o such thaty.node is
in subtree(u,v), q is in o(u,v); and (3) for anycombine requesty in o such thatg.node is in
subtree(v,u), qisino(u,v).
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Figure 1. An example tree network.

3 Informal Overview

In this section we present an informal overview of our altjon and analysis.

Recall that on a combine request at a nade returns a value. Roughly speaking, the value
corresponds to the global aggregate value. In order to dptltntacts other nodes and collects
the local values from all the other nodes. Note that we canmime the number of messages by
performing aggregation at intermediate nodes, also edes in-network aggregation.

However, for a combine-dominated workload, one may wishrtaqpagate an updated local
value on a write request to minimize the number of messagesaeged on a combine. On the
other hand, for a write-dominated workload, such propagaténd to be wasteful. In order to
facilitate adaptation of how many messages to send on a c@méguest versus a write request,
we propose a lease mechanism. Here, we illustrate our leaskamism for just two nodesand
v connected by an edge, and a scenario in which combine reqaesinitiated av and write
requests are initiated at It turns out that the other scenario is symmetric. (Seei@edtfor the
complete description of the mechanism.)

If the lease fromu to v is present, then on a write requestiat: propagates the new local value
to v by sending an update message. Hence, in the presence @dbes b combine requestiat
is executed locally. On the other hand, if the lease fioto v is not present, then on a combine
request av, a probe message is sent frento u. As a result, a response message containing the
local value at is sent fromu to v. Further, in this case, a write requestat executed locally.
Note that on a combine-dominated scenario, presence ot#se lis beneficial. However, on a
write-dominated scenario,may receive many updates whilés not initiating any request. In that
casep can break the lease by sending a release message to

In order to make the lease mechanism work for a tree netwoakdesirable way, we enforce
two lease invariants. Consider the tree network in Figurednaesxample. The presence of a lease
on an edge is denoted by a dotted line. To illustrate the fistriant, consider a combine request
g at nodew with leases as in Figure 1(a). During the execution,af sends messages and collects
the local values from all the other nodes. If the lease ftdmu is present, them need not send
any message tb However, this would work only if has leases from ands. Our first invariant
ensures that the lease frarto « is not set unlesshas leases from all the other neighboring nodes.
Second invariant ensures that the lease ftdow can not be broken if. has given a lease to any
other neighboring node, say noden Figure 1(b).

Given this lease mechanism, an aggregation algorithm captdw far an updated value
should be propagated on a write request by setting and Ingddases appropriately. The next
guestion is how to set and break the leases dynamically ip@amal manner. We answer this ques-
tion by providing an online lease-based aggregation a@lyorRWW (see Section 5). Roughly,
RWW works as follows. For an edde:, v), RWW sets the lease from to v during the execu-
tion of a combine request at any nodesirbtree(v, u), and breaks the lease after two consecutive
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write requests at any node mubtree(u,v). Using a potential function argument, we show that
RWW is g-competitive against any offline lease-based algorithms@muential executions. We
also show that this bound is tight by providing lower bounguanents. Further, we show that
RWW is 5-competitive against any offline algorithm that providegstonsistency for sequential
executions.

With respect to consistency guarantees, we show that asg-leased aggregation algorithm
provides strict consistency for sequential executions. déacurrent executions, it is difficult to
provide strict or sequential consistency. Causal consigtenconsidered to be the next weaker
consistency model for the distributed shared memory enwment [20, Chapter 6]. At first, it is
not clear how to generalize the causal consistency defisifior the aggregation problem.

We define the causal consistency for the aggregation pradhehshow that any lease-based al-
gorithm provides causal consistency for concurrent exesi{see Section 6). First, we introduce
a new type of ghost requesisther to associate a combine request with a set of write requests.
The concept of gather requests is similar to the way of aaingia read request with a unique
write request in analyzing distributed shared memory [1, 8&cond, we define causal ordering
among gather and write requests. Third, we extend the leased mechanism by adding ghost
variables and ghost actions. Finally, we use an invarigme gtroof technique to show that any
lease-based algorithm provides causal consistency in t®pss In the first step, we show that a
ghost log maintained at each node, containing gather artd veuests, respects causal ordering
among requests. In the second step, we show that there i®-a@ree correspondence between
gather and combine requests, that is, for each gather reiipges is a combine request and vice-
versa, such that the return value of the combine requesirie 83 aggregation function computed
over the set of write requests returned by the gather request

4 Lease-Based Algorithms

In Section 3 we gave a high level description of an aggregatiechanism based on the concept
of leases. See Figure 2 for the formal description of thishaatsm; the underlined function calls
represent stubs for policy decisions of lease setting aadkimg. Throughout the remainder of
this paper, any aggregation algorithm that uses this mésimsand defines the policy functions is
said to bdease-based

The status of the leases for an edged| is given by two boolean variablestaken|[v] and
u.granted[v]. Nodeu believes that the lease fromto v is set if and only ifu.taken[v] holds. Also,

u believes that the lease fromto v is set if and only ifu.granted[v] holds. The local value at

is stored inu.val. For each neighbaoy; of u, u.aval|v;] represents the aggregate value computed
over the set of nodes isubtree(v;, u). The following kinds of messages are sent by a lease-based
algorithm: probe, response, update, andrelease.

Informally, for any nodeu, a lease from a node to its neighboring node works as fol-
lows. If u.granted[v] holds then, on avrite request at any node isubtree(u,v), u propagates
the new aggregate value tdoy sending arupdate message. To break the lease (that is, to falsify
u.granted|v]), arelease() message is sent fromto . On the other hand, if.granted|v] does not
hold then, on aombine request at any node ifubtree(v, u), aprobe() message is sent fromto
u. As a result, aesponse message is sent fromto v.
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node u

var taken|] : array[vi,...,vg] of boolean;
granted[] : array[vi,...,v] of boolean;
aval[] : arraylvi,...,v;] of real; wal : real;
uaw : set {int}; pndg : set {node};
snt[] : array(vi,...,v] of set {node};

upentr : int; sntupdates : set {{node, int,int}};
init val := 0; uaw := 0; pndg := 0; upcntr := 0;
sntupdates := 0; Vv € nbrs(), taken[v] := false;
granted[v] := false; aval[v] := 0; snt[v] := 0;
begin
true — {combine}
oncombine(u);
foreachv € tkn() do
vaw[v] := 0; od
ifu ¢ pndg —
if nbrs() \ thn() =0 —
return gval();
Onbrs() \ thkn() 0 —
sendprobes(u);
snt[u] :== nbrs() \ thn(); fi fi
true — {write q}
val := q.arg;
if grntd() #0 —
id := newid();
Sforwardupdates(u, id); fi
Orev probe() fromw —
probercvd (w);
foreachv € tkn() \ {w} do
waw(v] := 0; od
ifw ¢ pndg —
if nbrs() \ {tkn() U{w}} =0 —
sendresponse(w);
Onbrs() \ {thn() U {w}} # 0 —
sendprobes(w);
snt[w] := nbrs() \ {thkn() U {w}}; fi fi
Orev response(z, flag) fromw —
responsercvd(flag, w);
aval|w] := x;
taken[w] := flag;
foreach v € pndg do
snt[v] := snt[v] \ {w};
if sntlv] =0 —
pndg := pndg \ {v};
ifv=u—
return gval();
Ov#u—
sendresponse(v); fi fi od
Orcv update(z, id) fromw —

updatercvd (w);
aval[w] := x;
vaw|w] := vaw|w] U id;

if grntd() \ {w} #0 —
nid = newid();
sntupdates := sntupdates U {w, id, nid };
forwardupdates(w, nid);

Ogrntd() \{w} =0 —
forwardrelease(); fi

Orcv release(S) fromw —

releasercvd(w);

granted[w] := false;

onrelease(w, S);

end

procedure sendprobes(node w)
pndg = pndg U {w};

foreach v € nbrs() \ {tkn() U sntprobes() U{w}} do

sendprobe() to v; od

procedure forwardupdates(node w, int id)
foreach v € grntd() \ {w} do
sendupdate(subval(v), id) to v; od

procedure sendresponse(node w)
if (nbrs() \ {tkn() U {w}} =0) —
granted[w] := setlease(w); fi
sendresponse(subval(w), granted[w]) to w;

boolean isgoodforrelease(node w)
return (grntd() \ {w} = 0);

procedure onrelease(node w, set S)
Let id is the smallest id ir5;
foreachv € tkn() \ {w} do
Let A be the set of tuplea in sntupdates
such thatv.node = v anda.sntid > id;
Let 8 be a tuple inA
such thap3.rcvid < a.rcvid, forall ain A;
Let .S’ be the set of ids inaw[v] with ids > B.rcvid;
vaw[v] :== S’;
if isgoodforrelease(v) —
releasepolicy(v); fi od
forwardrelease();

procedure forwardrelease()
foreach v € tkn() do
if isgoodforrelease(v) —
if taken[v] A breaklease(v) —
taken|v] := false;
sendrelease(uaw[v]) to v;
uwaw[v] := 0; fi fi od

int newid()
upentr = upentr + 1;
return upcntr;

real gval()
T = val;
foreach v € nbrs() do
z = f(z, avalv]); od
return z;

real subval(node w)
T = val;
foreach v € nbrs() \ {w} do
z = f(z, aval[v]); od
return z;

set nbrs()

return the set of neighboring nodes
set tkn()

return {v | v € nbrs() A taken[v] = true};
set grntd()

return {v | v € nbrs() A granted[v] = true};
set snitprobes()

return {snt[vi] U - U snt[vg]};

Figure 2: Mechanism for any lease-based algorithm. For tuen, {v,..

neighboring nodes.

., v} is the set of



4.1 Properties of any Lease-Based Algorithm for Sequential Executions

We define dease graph7(() in a quiescent stat@, as a directed graph with nodes as the nodes
in T, and for any edgeu( v) in T' such thatu.granted[v] holds, there is a directed edge, () in
G(Q). For any two distinct nodes andv, we define the:-parent ofv as the parent of in treeT
rooted atu.

Lemma 4.1 For a sequential execution of a request sequence, in angcenm state, for any two
neighboring nodes andv, u.taken|[v] = v.granted|u).

Proof. Consider any node in u.nbrs(). Variableu.taken|v] can be set tarue from false only
in Line 3 of T} if the flag in the receivedesponse message isrue. However, while sending the
response message from to u with flag set totrue, v.granted|u] is set totrue in sendresponse().
While sending aelease message from to v, u.taken[v] is falsified inforwardrelease(). How-
ever, on receiving theelease message at, v.granted[u] is falsified in Line 2 ofT. O

Lemma 4.2 For a sequential execution of a request sequence, in angcgie state, for any node
uw and any node in u.nbrs(), if u.granted[v] then, for all nodesv in u.nbrs() \ {v}, u.taken|w]
holds.

Proof. By inspection of codey. granted[v] can be set toérue only in the procedureendresponse().
By inspection of code ofendresponse(), u.granted[v] can be set tarue only if w.nbrs() \
{u.thkn() U {v}} = 0. That is, u.granted[v] can be set tdrue only if, for all nodesw in
w.nbrs() \ {v}, u.taken[w] holds.

Further, by inspection of code, taken|w] is setfalse only in the procedurgorwardrelease().
By inspection of code oforwardrelease(), u.taken[w] can be set tdalse only if, for all nodesv
inu.nbrs() \ {w}, u.granted|v] is false. That is, for any node in w.nbrs(), if u.granted|v] holds
then, for any nodev in w.nbrs() \ {v}, u.taken|w] is not falsified. O

Lemma 4.3 Consider a sequential execution of a request sequenmea lease-based algorithm.
For any combine requesy in o, initiated at nodeu in a quiescent stat@), let A be the set of nodes
v such thatv.granted|[w] does not hold irQ), wherew is theu-parent ofv. In @), for any nodev in
T, if v.pndg = () and for any nodev in v.nbrs(), v.snt[w] = (), then, during the execution ¢f (1)
|A| probe messages are sent, and any neda A receives grobe message from the-parent of
v; (2) |A| response messages are sent; any nodi A sends aresponse message to the-parent
of v; (3) no update or release messages are sent.

Proof. We prove part (1) by induction on the length of the path froto any nodev in A.

Base case (path length. By inspection of code of, probe messages are sent to all nodes
in w.nbrs() \ {u.tkn() U u.sntprobes() U {u}}. Since in the quiescent statg for any nodev in
T and any nodev in v.nbrs(), v.snt[w] = 0, u.sntprobes() = (). Hence, grobe message is sent
to any nodev in w.nbrs() such thatu.taken|v] does not hold. By Lemma 4.1, @, u.taken|v] =
v.granted|u]. Hence, any node in A such that is in u.nbrs() andv.granted|u] does not hold,
receives arobe message from.

Induction hypothesis. Any nodein A such that the length of the path framo v is i receives
a probe message from the-parent ofv.



Induction step. Consider a noden A such that the length of the path fromto v is (i + 1).
Let theu-parent ofv is w. By the definition ofA, v.granted|w] does not hold in). Hence, by
Lemma 4.1 and Lemma 4.2, granted [u-parent ofw] does not hold ir). Thus,w isin A, and by
induction hypothesis receives grobe message from’. By inspection of code df3, w sends a
probe message to any nodé in w.nbrs() such thatv.taken|w’] does not hold. Since.taken|v]
does not hold and the communication channels are reliableceives grobe message fromw,
theu-parent ofv.

From above arguments, during the executiorny @ft least|A| probe messages are sent. By
the inspection of code, any nodein A U {u} does not send anyrobe message to any node in
v.tkn() \ {u-parent ofv}. And so, it is straightforward to see that any neda nodes(T') \ A does
not receive anyrobe message. Hence, during the execution ohly |A| probe messages are sent.

We prove part (2) by reverse induction on the length of thé paim « to any nodey in A. Let
the maximum length of the path fromto any nodev in A bel.

Base case. Consider a nodén A such that the length of the path fromto v is [. By part
(1), v receives aprobe message fromw, the u-parent ofv. In the quiescent stat@, let B be
v.nbrs() \ {v.tkn() U {u-parent ofv}}. By Lemma 4.1,B must bef), otherwise, there would be a
node in A with the length of the path from equal tol + 1. By inspection of code of3, if B is
empty, theny sends back aesponse message ta.

Induction hypothesis. Let any nodein A with the length of path from: equal to:, sends a
response message to the-parent ofo.

Induction step. Consider a noden A such that the length of the path fromto v is i — 1.
Sincev isin A, i — 1 must be greater thah In @, let B bewv.nbrs() \ {v.tkn() U {u-parent ofv}}.

By part (1), v receives agrobe message from the-parent ofv. By given condition, in@,
v.sntprobes() is empty. By inspection of code df;, if B is empty, thenv sends aresponse
message back to theparent ofv. Hence, the induction step succeeds.

Otherwisep sendgrobe messages to each of the nodésinand sets.pndg = {u-parent ofv}
andv.snt[u-parent ofv] = B. Since we are dealing with sequential execution, no nodiaies
any request during the executionfAnd so,v does not initiates any request or receivas-@e
message during the executiongofHencew.pndg < 1.

By Lemma 4.1 and definition ofl, any node inB is also present id. Further, the length of
the path fromu to any node inB is i. Hence, by induction hypothesis, any naden B sends a
response message to. By inspection of code df;, on receiving theesponse message; removes
w from v.snt[u-parent ofv]. If v.snt[u-parent ofv] becomes empty, thensetsv.pndg = ), and
sends aesponse message to the-parent ofv. Hence, the induction step succeeds.

(3) Follows from the inspection of code. O

Lemma 4.4 For any sequential execution of a request sequenée any quiescent state, for any
nodeu, (1) u.pndg = 0; (2) for any nodev in u.nbrs(), u.snt[v] = 0;

Proof. We prove by induction on the number of requests executed.

Base case: Initially, for any nodeg v.pndg = () and for any nodev in v.nbrs(), v.snt[w] = 0.

Induction hypothesis: In the quiescent st@tgust after execution of requests, for any node
v, v.pndg = () and for any nodev in v.nbrs(), v.snt[w] = 0.

Induction step: Consider the executignt 1)st request initiated inQ. If ¢ is awrite request,
then by inspection of code, n@obe or response message are generated. Hence, for any node
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v.pndg and any nodev in v.nbrs(), v.snt[w] are not modified. Therefore, the executior{of 1)st
request preserves the claim of the lemma.

Otherwisey is acombine request, say at. Consider execution af. Let A be the set of nodes
v such thaw. granted|w] does not hold af), wherew = u-parent ofv.

By hypothesis, i), for any nodey, v.pndg = () and for any nodev in v.nbrs(), v.snt[w] = 0.

First, consider any node in nodes(T) \ {A U {u}}. By inspection of code, for any node
v, v.pndg and for any nodev in v.nbrs(), v.snt[w] can be modified only iff} (on acombine
request av), in T3 (on receiving robe message), or iff; (on receiving aesponse message). In
sequential execution of, v does not initiate any request during the executiop @y Lemma 4.3,
during the execution af, any node inA receives arobe message, and onlyl| probe messages
are sent. Hence), does not receive anyrobe message during the executionqfBy definition of
A, u-parent of any node irl is in AU{u}. By Lemma 4.3, during the execution@f| A| response
messages are generated and any nodesends aesponse message to the-parent of the node.
Hence,y does not receive anysponse message during the executiongofHence p.pndg and for
any nodew in v.nbrs(), v.snt[w] remain unchanged, that i, during the execution af.

Second, consider = u. By inspection of code df7, if u.nbrs() \ u.tkn() = (), thenu returns
gual(), and sou.pndg and for any nodev in u.nbrs(), u.snt[w]| remain unchanged, that is, remain
(. Further, by Lemma 4.1 and Lemma 4|2 = (). Hence, from the arguments in the previous
paragraph, induction step succeeds, and the lemma follows.

Otherwise, ifu.nbrs() \ u.tkn() # 0. Then, sincew.sniprobes() = () by induction hypothesis,
u sends @robe message to each of the node in thewsebrs() \ u.tkn(), andu addsu to u.pndg
and setsu.snt[u] = nodes.nbrs() \ w.tkn(). Since in a sequential execution, a new request can
be generated only in a quiescent state, no node generatescmst until; is completed. Hence,
u does not generate any request uatit completed, and by Lemma 4.3,does not receive any
probe message from any node. Therefofe,pndg| < 1. By definition of A, any nodew in
w.nbrs() \ u.tkn() is also inA. By Lemma 4.3,w sends back aesponse message ta.. By
inspection of code of}, on receiving theresponse messagey removesw from u.snt[u]. When
u.sntu] = 0, that is,u has receivedesponse messages from all the nodes to wharhas sent a
probe message, them, setsu.pndg = ), and returngval().

Finally, consider any node in A. By Lemma 4.3 receives arobe message from the-
parent ofv, sayw. Let C bewv.nbrs() \ {v.thkn() U {w}}. By inspection of code df3, if C = 0,
thenv sends aresponse message tav, andv.pndg and for any nodev’ in v.nbrs(), v.snt[w']
remains unchanged, that is, remains

Otherwise, ifC' # (). Then, sincev.sntprobes() = 0, v sends arobe message to each of the
node inC. By inspection of code df}, while sending arobe messages; addsw to v.pndg and
setsv.snt[w] = C. As argued in the preceding paragraph, in a sequential ggaclw.pndg| < 1.
By Lemma 4.3, any node’ in C' sends back &esponse message te. By inspection of code of
Ty, on receiving theresponse messagey removesw’ from v.snt[v]. Whenv.snt[w] = (), that is,

v has receivedesponse messages from all the nodesa@h then,w setsv.pndg = (), and sends a
response message back to.

Hence, after execution @f for any nodev in A, v.pndg = () and for any nodev in v.nbrs(),
v.snt{w] = 0. O

Lemma 4.5 Consider a sequential execution of a request sequermea lease-based algorithm.
For any write requesty in o initiated at nodeu in a quiescent staté), let A be the set of nodes
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in 7" reachable fromu in G(Q). Then, during the execution g¢f (1) any nodev in A receives an
update message from the-parent ofv; (2) |A| update messages are sent; and (3) pbe or
response messages are sent.

Proof. (1) We prove by induction on the length of the path frarto any nodey in A.

Base case (path lengilh). By the inspection of code df;, update messages are sent to all
nodes inu.grntd(). That is, anupdate is sent to any node in A such that the length of the path
fromutovisl.

Induction hypothesis. Any nodein A such that the length of the path franto v is i, receives
anupdate message from the-parent ofv.

Induction step. Consider a nodén A such that the length of the path fromto v is (i + 1).
By induction hypothesis, the-parent ofv, sayw, receives anipdate message. By definition of
A, w.granted|v] holds. By inspection of code df;, w sends anipdate message te. Since the
communication channels are reliableeceives anpdate message fronw, theu-parent ofwv.

(2) From above arguments, at leadt update messages are sent. By the inspection of code,
any nodev in AU {u} does not send anypdate message to any node imnbrs() \ {v.grntd() U
{u-parent ofv}}. And so, it is straightforward to see that any nad@ nodes(T") \ A does not
receive anyupdate message. Hence, during the executiog ofily |A| probe messages are sent.

(3) Follows from the inspection of code. O

Lemma 4.6 For any nodeu, u.granted[v] is set totrue only while sending aesponse message
to v with flag set totrue.

Proof. For any nodeu, u.granted|v] can be set tarue only in sendresponse procedure. By the
inspection of code, the lemma follows. O

Lemma 4.7 For any nodeu, u.granted|v] is set tofalse only on receiving aelease message from
V.

Proof. Follows from the inspection of code. O

Lemma 4.8 Consider a sequential execution of a request sequerinea lease-based algorithm
and any two neighboring nodesand.

1. Let acombine requestq in o(u,v) be initiated in a quiescent stat@. If u.granted[v]
does not hold inQ, then in execution of, (i) a probe message is sent fromto w; (ii) a
response message is sent fromto v; (iii) w.granted[v] can be set téarue while sending the
response message from to u; and (iv) noupdate or release messages are sent. Otherwise,
if w.granted|v] holds, then in execution @f no messages are exchanged betweand .

2. Let awrite requesty in o(u, v) be initiated in a quiescent stat@. If u.granted[v] does not
hold in @, then in execution af, no messages are exchanged betweandv. Otherwise,
if w.granted|v] holds in@, then in execution af, (i) an update message is sent fromto v;
(i) a release message from to u can be sent; (iii) on receiving the:lease message at,
u.granted|v] is set tofalse; and (iv) noprobe or response messages are sent.

11



3. Let awrite requesty in o(v,u) be initiated in a quiescent statg. If u.granted[v] holds in
@, then in execution of, a release message can be sent franto u, and on receiving the
release message at, u.granted|v] is set tofalse.

4. In the execution of ambine request ino(v, u), u.granted|v] is not affected.

Proof. Part (1) follows from Lemma 4.3, Lemma 4.4, and 4.6. Part¢fpws from Lemma 4.5,
Lemma 4.7, and the inspection of code. Part (3) follows fraemina 4.7 and the inspection of

code. Part (4) follows from Lemma 4.3, Lemma 4.4, and Lemr6a 4. OJ
u.granted[v] in Q | Requesy in o(u,v) | u.granted[v]in Q" | Cost
false R false 2
false R true 2
false W% false 0
false N false 0
true R true 0
true W false 2
true W true 1
true N false 1
true N true 0

Figure 3: For any two neighboring nodesandv, possible changes in the valuewfjranted|v]
and costs incurred by any lease-based algorithm in exeratip requesi from o (u, v). Here,q is
initiated in the quiescent stag and completed in the quiescent stéte A release message sent
during the execution of arite request i (v, u) is associated with acop (N) request.

Lemma 4.8 is summarized in Figure 3.7&case message sent during the execution afréte
request ins (v, u) is associated with aoop (N) request in this figure.

For any node., we definel; (u), I>(u), andI3(u) as follows. (1)I;(u): For the most recent
write requesy atu, u.val = q.arg; (2) Iz(u): For anyupdate or response messagen from any
neighboring node to u, m.z = f(A), whereA is the set of most recent write requests at each
of the nodes insubtree(v,u); and (3)I3(u): For any quiescent statg and any node in u.tkn(),
u.aval[v] = f(A(v)), whereA(v) is the set of the most recenirite request at each of the nodes
in subtree(v,u). LetI(u) bely(u) A Iy(u) A Is(w).

Lemma 4.9 Consider a sequential execution of a request sequermea lease-based algorithm.
For any nodeu, if I;(u) and I3(u) hold just before anupdate messagen is sent fromu to any
nodev in u.nbrs(), thenm.z = A, whereA is the set of the most receatite requests at each of
the nodes irsubtree(u, v).

Proof. By Lemma 4.2, for any nodein w.nbrs(), if u.granted|v] then, for all nodes in u.nbrs()\
{v}, u.taken|w] holds.

For any nodev in u.nbrs(), let A(w) be the set of the most recentite requests preceding
in o at each of the nodes inubtree(w, u). By I3(u), if u.taken|w] then,u.aval[w] = f(A(w)).
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By the inspection of code, for any noden u.grntd(), anupdate messagen is sent tov with
m.z = u.subval(v). Let{w, ..., w;} beu.nbrs()\ {v} andB be the set of the most recemtite
requests at each on the nodesitbtree(u, v).

m.x = subval(v)
= f(u.val, avallw], ..., aval|wy]
= flq.arg, f(A(w1)), ..., f(A(w)))
= f(B) 1)

In the above equation, the second equality follows from téndion of function subval().
The third equality follows from/;(u) and I3(u). The last equality follows from the fact that
subtree(u,v) = {u} U subtree(wy,u) U - - - U subtree(wy, u). O

Lemma 4.10 Consider a sequential execution of a request sequetyea lease-based algorithm.
For any nodeu, I(u) is an invariant.

Proof.

Initially, there are navrite request at andu.tkn() is empty. Hence/(u) holds.

{I(uw)}T1{I(w)}. I (u), Ir(u), andl3;(u) are not affected.

{I(u)}T2{I(u)}. Let thewrite requesy is initiated in the quiescent staf¢. In execution of
Ty, I (u) is only affected in Line 1. By the inspection of code, Line 1gaeves/; (u). I3(u) is not
affected in execution dfy. If u.grntd() # 0 in the quiescent stat@, thenl,(u) is affected in the
procedureforwardupdates(), invoked in Line4. By Lemma 4.9],(u) is preserved in Lind.

Therefore,[; (u) A Ix(u) A I3(u) is preserved in the execution 6f.

{I(u)}T5{I(u)}. By the inspection of codd; (u) and/;(u) are not affectedl;(u) is affected
only in the procedureendresponse(), invoked in Line6 to send aresponse messagen to w.
However, Line6 is executed only ife.nbrs() \ {u.tkn() U {w}} is empty. Byl3(u), for any node
v in u.nbrs(), if u.takenlv], thenu.aval[v] = f(A), whereA is the set of the most recentrite
requests at each of the nodesimbtree(v, u). As in the proof of Lemma 4.9n.x = f(B), where
B is the set of the most recent-ite requests at each of the nodesirbtree (u, w).

{I(u)}Ty{I(u)}. I (u) is not affected inly. In Ty, I3(u) is affected in Line2 and I5(u) is
affected insendresponse() procedure, invoked in Linél.

In the following, for any nodev’ in u.nbrs(), let B(w’) be the set of the most receatite
requests at each of the nodesirbtree(w, u).

Sincel,(u) holds for the receivedesponse message, after execution of LiBew.aval[w| =
f(B), whereB(w). Hence,/5(u) holds in the execution of Ling.

To argue that/;(u) holds in Linell, we show that just before the execution of Lihk for
each nodev’ in w.nbrs() \ {v}, u.aval|w'] = f(B(w")).

By Lemma 4.3 and Lemma 4.5,rasponse message fromw is received during the execution
of a combine request, say. We can assume thatnode # u, since Linell is executed only if
q.node # u.

From Lemma 4.3y is ¢q.node-parent ofw andv is ¢q.node-parent ofu. Let ¢ be initiated in the
quiescent stat€), and in quiescent statg, let A be the set of nodes nbrs() \ {u.tkn() U {v}}.
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Again by Lemma 4.3, during execution @f u sends arobe message to each of the node in
A and receives aesponse message from each of them. For each the recetwg@nse message
from w, as argued above, after execution of Liyeu.aval[w] = f(B(w)). By the inspection of
code ofT3, while sendingprobe messages; setsu.snt[v] = A. By the inspection of code df;,
on receiving aresponse message from a node, w is removed fromu.snt[v]. Hence, Linell is
executed only when has receivedesponse messages from all the nodesAn Hence, just before
execution ofl 1, for each of the node’ in A, u.aval[w'] = B(w’). By I, for each of the node’
in u.tkn(), u.aval[w'] = B(w'). Hence, just before the execution of Lihg, for each of the node
w' inu.nbrs \ {v}, u.aval[w'] = B(w'). Hence, as in the proof of Lemma 4.9, for th@ponse
messagen sent tov, m.x = f(C'), whereC'is the set of the most recentite requests at each of
the node insubtree(u, v).

{I(uw)}T5{I(w)}. I(u) is not affected in the execution @.

I3(u) is affected only in Line 2. Letd be the set of the most receatite requests at each of
the node insubtree(w, w). By Ir(u), m.x = f(A). After Line 2u.aval[w] = f(A). Hence,l3(u)
is preserved in Line 2.

If u.grntd() # 0 in quiescent stat@, thenl,(u) is affected in the proceduferwardupdates(),
invoked in Line 7. By Lemma 4.9, (u) is preserved in Line 7.

Therefore,[; (u) A Ir(u) A I3(u) is preserved in the execution ©f.

{I(u)}T6{I(u)}. I (u), Ir(u), andl3(u) are not affected. Hencé(u) is preserved. O

Lemma 4.11 Any lease-based aggregation algorithm is nice.

Proof. Follows from Lemma 4.3 and Lemma 4.10. O

From Lemma 4.11 and the definition of a nice aggregation algar we have that any lease-
based aggregation algorithm provides strict consistemeysequential execution.

5 Competitive Analysis Results for Sequential Executions

var It : array(v ...vg] of int; procedure responsercvd(boolean flag, node w)

granted : array(v; ...vy] of boolean;

procedure oncombine()
foreach v € tkn() do
lt[v] := 2; od
procedure probercvd(node w)
foreach v € tkn() \ {w} do
lt[v] :== 2; od
boolean setlease(node w)
lg[w] := true;
return true;

if flag A (taken|w] = false) —
ltlw] :==2; fi
procedure updatercvd(node w)
if (grntd() \ {w} = 0) A ltfw] >0 —
lt[w] := lt{w] — 1; fi
procedure releasepolicy(node v)

lt[v] := maz(0, lt[v] — |uaw[v]|);
procedure releasercvd(node w)
lg[w] := false;

boolean breaklease(node w)
return(ltjw] = 0);

Figure 4: Policy decisions fdRWW

We defineERWW as an online lease-based aggregation algorithm that fsltbe policy deci-
sions shown in Figure 4 for setting or breaking a lease.

Informally, RWW works as follows. For any edge:,v), RWW sets the lease from to v
during the execution of aombine request at any node in thebtree(v, u), and breaks the lease
after two consecutiverite requests at any nodes énbtree(u, v).

14



5.1 Properties ofRWW

For positive integera andb, an online lease-based algorith#nis in the class ofa, b)-algorithms
if, in a sequential execution of any request sequenby A, for any edggu, v), A satisfies the
following condition: (1) ifu.granted|v] is false, then it is set t&rue aftera consecutivecombine
requests i (u, v); and (2) ifu.granted|v] is true, then it is set tdfalse afterb consecutivevrite
requests i (u, v).

For any ordered pair of neighboring nodesand v, we definetype(u, v) messages as the
following kinds of messages exchanged betweesandv: (1) probe messages from to u; (2)
response messages from to v; (3) update messages from to v; and (4)release messages from
v to u. For a lease-based algorithrh and a request sequenee we defineC 4 (o, u,v), as the
number oftype(u, v) messages in execution efby A.

Lemma 5.1 Consider a sequential execution of a request sequethggRW W and any two neigh-
boring nodes: andv. Then, during the execution of any request fiofm, u), u.granted[v] is not
affected.

Proof. First, consider the execution of anymbine request i (v, u). By Lemma 4.3 and Lemma
4.4, noupdate Or release messages are sent. Further,magponse message from to v are sent.
Henceu.granted|v] is not affected during the execution of amymbine request ins (v, u).
Second, consider the execution of amyite request ino(v, u). By Lemma 4.5, ngrobe or
response messages are sent. Further,m@ate message from to v is sent. By the inspection
of code of RWW, a release message fromy to v can sent during execution ofwrite request in
o(u,v). Henceu.granted|v] is not affected during the execution of amyite request irv (v, u). O

Let I,(u) be the following predicate. For any noden w.nbrs(), if u.taken|[v] does not hold
then,u.uawlv] = 0. Otherwise, ifu.grntd()\{v} = 0 then,(u.lt[v]+|u.vaw[v]| = 2)Au.lt[v] > 0;
elseu.lt[v] = 2.

Lemma 5.2 Consider a sequential execution of a request sequend®WbW. For any nodeu,
I4(u) is an invariant.

Proof. Initially, for any nodev in u.nbrs(), u.taken[v] does not hold and.uaw[v] = (.

{Ly(uw)}T1{I4(u)}. For any node in u.tkn(), u.lt[v] is set to2 in oncombine procedure and
w.uawv] is set to in Line 3. Hence,l4(u) is preserved.

{Ly(w) }To{14(u)}. I4(u) is not affected.

{I4(w) }T3{14(u)}. For any node in u.tkn() \ {w}, u.lt[v] is set to2 in probercvd() procedure
andu.uaw[v] is set tof) in Line 3. Hence,l4(u) is preserved.

{Li(w)}Ty{I4(u)}. By Lemma 4.3, aresponse message is received from as a result of an
earlier probe message sent to during execution of aombine request, say. By Lemma 4.3
again, in the quiescent stadein which ¢ is initiated, u.taken|w] does not hold. Hence, if,(u)
holds before execution &f, then,u.uaw[w] is empty.

If flag is true then,u.lt[w] is set to2 in responsercvd() procedure, and.taken|w] is set to
true in Line 3. Sinceu.uaw[w] remains empty/,(«) holds after execution df}.

{I4(u)}T5{14(u)}. By Lemma 4.5 and 4.1, receives anpdate message from iff u.taken|w]
holds.
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If w.grntd()\{w} = 0 then,u.lt[w] is decremented byin updatercvd() procedure. Otherwise,
u.lt{w] is not affected. In Ling, |uaw[w]| is incremented by. Hence, ifu.lt[w] remains greater
thanO, thenl,(u) is preserved.

If u.lt]w] is decremented tdthen, arelease message is senttoin forwardrelease() procedure
invoked in Line9. In forwardrelease() procedureyu.taken|w] is set tofalse, andu.uaw[w] is set
to (). Hence,l,(u) is preserved.

{I4(u)}Ts{14(u)}. Fix v to be an arbitrary node ia.nbrs() \ {w}.

By the inspection of code, if.grntd() \ {v} # 0 then,u.it[v] is not affected. Hencd(u) is
preserved in execution @f.

Now we argue that, if..grntd() \ {v} = 0, then alsdl,(u) is preserved.

First, we argue thatS| = 2. By the inspection of code, elease message from node to
w is sent only inforwardrelease() procedure containing.uaw(u]. Since anyrelease message is
sent only ifw.breaklease(u) returnstrue, w.lt[u] is 0 while sendingrelease message. Sinch (u)
holds before execution df;, |S| = 2.

Second, we argue that imrelease() procedure, the number of tuplesin sntupdates with
a.sntid greater or equal to the smallest in S is at most2. From the inspection of code, (1)
identifiers of all receivedpdate messages at nodefrom u are added tw. uaw[u]; (2) identifiers
of sentupdate messages from are always incremented; (3) an identifier is not removed filoen
middle inw.uaw]u|, that is, identifiers inv.uaw[u] are contiguous; and (4) on receiving emlate
message, identifier of the forwardegdate message to node is added tosntupdates. Hence,S
contains identifiers of last twapdate messages sent io from , that is,S contains two highest
identifiers ofupdate messages sent t0. SinceS may contain identifiers corresponding to the
update messages due torite requests at;, the number of tuples in sntupdates with a.sntid
greater or equal to the smallest id$ns at most.

Third, because of above argumenitd| is at most2, where A is as defined ironrelease()
procedure.

Fourth, we argue thgts’| is at most2. Identifiers of the receive@pdate messages are in
increasing order. Before receiving thelecase messagew.granted|w] holds. On receiving an
update message from, identifier of the receivedipdate message is added touaw(v]. Since
u.granted|w] holds, on receiving anpdate with id, anupdate message is sent to with nid, and
atuple{v, id, nid} is addedsntupdates. Hence, the size of the set of identifiersiniaw[v] (i.e.,
|S’]) with identifiers> [.rcvid, whereg is as defined inrelease() procedure, is at most

Finally, we argue thalu.uaw(v]| 4+ u.lt[v] = 2. Since before receiving thelease message,
u.granted|w] and,(u) hold, u.lt[v] = 2 before the invocation ofeleasepolicy. In releasepolicy,
w.lt[v] is set tou.lt[v] — |u.uaw[v]|. Hence, after execution efleasepolicy, |u.uaw[v]| 4+ u.lt[v] =
2.

If u.lt[v] becomed) then, inforwardrelease() procedurey.tkn[v] is setfalse, u.uaw(v] is set
to (), and arelease message is sent to

Hence,l,(u) is preserved in execution @. O

Lemma 5.3 Consider a sequential execution of a request sequethggRW W and any two neigh-
boring nodes: andwv. (1) In the quiescent state after execution of any.bine request ino (u, v),
u.granted|v] holds. (2) In the quiescent state after execution of two aartsee write requests in
o(u,v), u.granted[v] does not hold.
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Proof. (1) Let the thecombine requesy; is initiated in the quiescent stat@and completed in the
quiescent state’.

If u.granted[v] in Q, then notype(u, v) messages are sent during the execution, @nd so
u.granted|v] holds in@'.

Otherwise, ifu.granted[v] does not hold irQ), then by Lemma 4.3, during the executiongof
a probe message is sent fromto v and aresponse message is sent fromto v. By inspection
of code ofsendresponse, RWW's function setlease is invoked. By inspection of code &{WW,
setlease always returngrue, and sou.granted[v] is set totrue. Hence, after execution af,
u.granted|v] holds.

(2) Let the two consecutiverite requests are; andgs,, initiated in quiescent staté€g and )’
respectively. Let, is completed in the quiescent st&pé.

By Lemma 4.5, ifu. granted[v] does not hold i), then during the execution of, notype(u, v)
messages are exchanged betweamdv. Hence,u.granted[v] is not affected and remairfalse
in Q" and@”.

Otherwise, ifu.granted[v] in @, then without loss of generality we can assume that the stque
precedingy in o(u,v) iS acombine requesy,.

Since, by Lemma 5.1, any requestdtiv, u) does not affect.granted[v], without loss of
generality we can also assume that there are no requegt.in) such that the request lies between
g1 andgs in .

By part (1), in@, there is a path from to ¢.node (sayw) in the lease grapfi (). Further, in@,
w.uaw[u-parent ofw] is empty andv.lt[u-parent ofw] is 0. By Lemma 4.5y receives anpdate
message during the executiongf By the inspection of code df, w.taken[u-parent ofw] holds
in Q'. Hence, by Lemma 4.2 and Lemma 4ulgranted[v] holds inQ’.

It is sufficient to show that during the executiong@f a release message is sent fromto u,
falsifying u.granted|v].

Let A be the set of reachable nodes in the lease g€é&h() from « following the edg€u, v).

Letid(q;,w) be theid of the update message received atduring the execution af;.

First, we show that the following properties hold. kixo be an arbitrary node id. (1) Node
w receives anpdate message during the executionf (2) In quiescent stat@’, w.uaw [u-parent ofw]
containsid(q;, w). (3) In quiescent stat@’, if w.grntd()\{u-parent ofw} is empty,|w.uvaw[u-parent ofw]| =
1 andw.lt[u-parent ofw] = 1.

(1) By Lemma 4.5, n@robe or response messages are sent during the executiop oBy the
inspection of code, an edge is added in the lease graph orilly semding and receiving@&sponse
message. Hence, if an edge is present in the lease gf@ph, then the edge is also present in the
lease grapliZ(@). Hence, by Lemma 4.5, each nodeArreceives anipdate message during the
execution ofy;.

(2) From (1) and Lemma 4.5y receives ampdate message from-parent ofw. From the
inspection of code of 5, id(q;, w) is added tow.uaw[u-parent ofw]. In quiescent)’, since the
identifiers ofupdate messages sent from theparent ofw to w are in increasing order ang
is the latestwrite request,id(q;,w) is the highest identifier inv.uaw|[u-parent ofw|. Hence,
w.uaw[u-parent ofw] containsid(q;, w).

(3) Without loss of generality assume thatgrntd() \ {u-parent ofw} is empty. By (2), in
quiescent stat@’, |w.uaw|u-parent ofw]| > 0.

By the inspection of codey. [t [u-parent ofw] > 0. Hence, by Lemma 5.2y.uaw [u-parent ofw]| <
2.
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By contradiction, we show théw. uaw[u-parent ofw|| # 2. Assume thalw. uaw [u-parent ofw|| =
2in Q'. By Lemma 5.2 and the inspection of codelgfandTs, if w.grntd() \ {u-parent ofw} is
empty andw.uaw|u-parent ofw|| = 2, thenw.lt[u-parent ofw] is 0 in Q'. Hence,w must send a
release message to the-parent ofw and setw.taken[u-parent ofw] to false during the execution
of ¢;. Butw isin A, hence, contradiction.

Therefore|w.uaw|u-parent ofw|| = 1, and by Lemma 5.2, (3) follows.

Second, We show the desired result by showing that every madeA, includingv, sends a
release message ta-parent ofw containing{id(q, w), id (g2, w)}.

We prove this claim by reverse induction on the length of thid iromw to any node inA. Let
the maximum length of the path fromto any node inA be|.

Base case. Consider a nadén A such that the length of the path franto w is [. By definition
of A, w.grntd() \ {u-parent ofw} is empty. By Claim 2 and Claim 3y.uaw[u-parent ofw] =
{id(q1,w)} andw.lt[u-parent ofw] = 1.

By Lemma 4.1 and Lemma 4.2, is reachable frong,.node in the lease grapt'(Q)’). Hence,
by Lemma 4.5, during the execution @f, w receives anipdate message from the-parent ofw.

By inspection of code of’;, updatercvd() function of RWW is invoked. Inupdatercvd(),
w.lt[u-parent ofw] is set ta). By inspection of code df;, forwardrelease() procedure is invoked.
By inspection of code oRWW, breaklease() returnstrue. Hence,w.granted|u-parent ofw] is
set tofalse and arelease message is sent to theparent ofw containing{id(q;, w), id(gz, w)}.

Induction hypothesis. Let any nodein A with the length of the path from to w is i, where
i > 1, sends aelease message to the-parent ofw containing{id(q;, w), id(gz, w)}.

Induction step. Consider a nodein A such that the length of the path fromto w is i — 1.
As argued in the base case, during the executiof,0fv receives anipdate message from the
u-parent ofw.

By property (2) and above argumenisuaw|[u-parent ofw] containsid(q;, w) andid(gs, w).

By induction hypothesis, for each nodéin w.nbrs() such thatw is u-parent ofw’, w receives
arelease message from’.

By the inspection of the code @f;, after receiving aelease message from all the nodes
such thatw.granted[w'] in @', w setsw.lt[u-parent ofw] to 0, and sends &lecase message to
u-parent ofw containing{id (¢, w), id(ga, w)}.

Therefore, during the execution@f, arelease message is sent fromto v, falsifying u. granted|[v].
O

Lemma 5.4 The algorithmRWW is a (1, 2)-algorithm.

Proof. Follows from Lemma 5.3. O

Lemma 5.5 Consider a sequential execution of any request sequehgeRWW. For any quies-
cent statg, and for any ordered pair of neighboring nodes v), Frww (u, v) is greater thar)
if and only ifu.granted[v] holds.

Proof. Follows from Lemma 5.1 and Lemma 5.3. O
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Figure 5: States and state transitions for any pair of ngdes in executing requests froai(u, v)
(defined in Lemma 5.8).

5.2 Competitive Ratio of RWW

In this section we show th&WW is g-competitive against an optimal offline lease-based algo-
rithm OPT for the sequential aggregation problem (see Theorem 1).|¥deshow thaRWW is
5-competitive against a nice optimal offline algorithm foe equential aggregation problem (see
Theorem 2). Further, we show that, for any lease-based gafjwe algorithmA, there exist a
request sequeneeand an offline algorithm such that, in a sequential execudfen the cost of4

is at least times that of the offline algorithm (see Theorem 3).

Lemma 5.6 In a sequential execution of any request sequender any two neighboring nodes
uwandv, Crww (0, u,v) = Crww (o (u,v), u, v).

Proof. Follows from Lemma 4.8 and Lemma 5.1. O

Lemma 5.7 Consider a sequential execution of a request sequerimea lease-based algorithm
A. For any two neighboring nodes and v, the total number of messages exchanged between
andv in executings is the sum o4 (o, u, v) andC 4(o, v, u).

Proof. Follows from the definitions of’ 4 (o, u, v) andC 4(o, v, u). O

Consider a sequential execution of an arbitrary requesesegu by RWW. For any quiescent
state(), and for any ordered pair of neighboring nodesv), we define the configuration BWW,
denotedFrww (u, v), as follows: (1) ifQ is the initial quiescent state, théfxww (u, v) is 0; (2) if
the last completed requestdttu, v) is acombine request, thedrww (u, v) is 2; (3) if the last two
completed requests in(u, v) are acombine request followed by arite request, thetdrww (u, v)
is 1; (4) if the last two completed requestsd(u, v) arewrite requests, thefrww (u, v) is 0.

For any quiescent statg and ordered pair of neighboring nodes v), we define the configu-
ration of OPT Fopr(u,v) to bel if u.granted[v] holds; otherwise).

Lemma 5.8 Consider a sequential execution of a request sequenogRWW and OPT. For
any two neighboring nodesandv, Crww (o, u, v) is at moslg timesCopr (o, u,v).
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Proof. Once a requesi in ¢ is initiated in a quiescent state, without loss of generalite
assume thaRWW executeg, and therOPT executes.

We construct a new request sequen@e, v) from o (u, v) as follows: (1) insert aoop request
in the beginning and at the end ofwu, v); and (2) insert awoop request between every pair of
successive requestsdfiu, v).

In the rest of the proof, first, for boRWW andOPT, we argue that we can charge each of the
type(u, v) messages to a requestdf{u, v). Then, to prove the lemma, we use potential function
arguments to show thétgww (o' (u, v), u,v) is at moslg timesCopr (0o’ (u,v),u,v).

For RWW, from Lemma 5.6, we have, grww (o, u,v) = Crww(o(u,v),u,v). For RWW,
we do not charge any message taa@p request ino’(u,v). Hence, we haveCrww (o, u,v) =
Crww (0’ (u,v), u,v).

ForOPT, from lemma 4.3, during the execution ot@nbine request ins (v, u), Notype(u, v)
messages are sent. Also from Lemma 4.5 and part 3 of LemmaldriBig the execution of a
write request ino(v,u) by OPT, only arelease message fromv to « can be sent. Consider a
type(u, v) release messagen sent during the execution ofarite request; in o(v, u) by OPT.

On receivingm, u.granted[v] is falsified. From Lemma 4.5, Lemma 4.3, Lemma 4.6, and part 3
and 4 of Lemma 4.8y.granted[v] is not set tatrue before executing anothepmbine request in
o(u,v). Hence, at most ongype(u, v) release message can be associated withoap request.
Thus, we can associate allpe(u, v) messages with a requestdaf{u, v).

Therefore, we can restrict our attention to messages semteiouting requests o' (u, v) in
comparingCrww (o, u, v) andCopr (o, u,v).

For the ordered paifu, v), in Figure 5, we show a state diagram depicting possible gdsn
in Frww (v, v) and Fopr(u,v) in executing a request froml (u, v). In the state diagram, a state
labeledS(z, y) represent a state of the algorithms in whi€her(u, v) is z and Fryw (u, v) iS y.
Observe that the changeshiww (u, v) in executing a request is deterministic as specified by the
algorithm in Figure 4. On the other hand, the changeljpr(u, v) in executing a request is not
known in advance. Hence, more than one possible chang@seif(u, v) in executing a request
are depicted by non-deterministic state transitions. Rétat the cost of processing a request in a
particular configuration for any lease-based algorithmvemin Figure 3.

We define a potential functiof®(z,y) as a mapping from a state(z,y) to a positive real
number. The amortized cost of any transition is defined astime of the change in potential
A(®) and the cost oORWW in the transition. For any transition, we write that the atized
cost is at most times the cost 0OPT in the transition, where is a constant factor. We solve
these inequalities by formulating a linear program with &jective function to minimize: (see
Figure 6). By solving the linear program, we get g ®(0,0) = 0, ®(0,1) = 2, $(0,2) = 3,
$(1,0) = 2,®(1,1) = 2, andP(1,2) = 3.

Hence, for any state transition due to the execution of aggtgurom o’(u, v), the amortized
cost is at mosg times the cost 0OPT in the execution of;. Recall that, in the initial quiescent
state, Frww (u, v) and Fopr(u,v) are0, and the potential for any state is non-negative. There-
fore, in execution of’(u,v), the total cost oRWW is at most2 times that ofOPT. That is,
Crww (0, u, v) is at most timesCopr (0, u,v). O

Theorem 1 Algorithm RWW is g-competitive with respect to any lease-based algorithmtier t
sequential aggregation problem.
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Proof. From Lemma 5.8, in a sequential execution of a request sequeifor any two neighbor-
ing nodes; andv, Crww (0, u, v) is at mosi% timesCopr (o, u,v). By symmetryCrww (o, v, u) is

at most2 timesCopr (o, v, u). Hence, the total number of messages exchanged betwaeay in
execution o by RWW is at most times that ofOPT. Summing over all the pairs of neighboring
nodes, we get thatrww (o) is at mosts timesCopr (o). Hence, the theorem follows. O

Theorem 2 AlgorithmRWW is 5-competitive with respect to any nice algorithm for the sedjaé
aggregation problem.

Proof sketch. Let OPTy be the optimal nice algorithm for the sequential aggregapimblem.
Consider any pair of neighboring nodés v). We compare the cost @WW and OPTy in
executing request sequeneds, v) ando (v, u) separately.

First, consider the execution of requestsrin, v). We define arepochas follows. The first
epoch starts at the beginning of the request sequence. Ahepas with avrite to combine tran-
sition ino(u, v), and a new epoch starts at the same instant. By the definitiamizie algorithm,
OPTy provides strict consistency for the sequential executimblem. HenceOPTy sends at
least one message in the any epoch. We are able to show tregtdrghmRWW sends at most
5 messages in any epoch (follows from Lemma 5.3). Summing aéhe epochs, we get that
the cost ofRWW in executingo (u, v) is at mosts times that ofOPTy. By symmetry, the cost
of RWW in executingo (v, ) is at mosts times that ofOPTy. By summing over all the pair of
neighboring nodes, the desired result follows. O

Theorem 3 For any lease-based algorithid, there exist a request sequenceand an offline
algorithm such that the cost in executings is at Ieast% times that of the offline algorithm.

Proof sketch. We give an adversarial request generating argument tolskieécdesired result.
Consider an example of a tree consisting of just two nadesd v such that there is an edge
between: andv. The adversarial request generating algorith\V is as follows. The algorithm
ADV generates combine requests ab such that there is a lease framto v after execution of
a-th request. And thenADV generate$ write requests at. such that there is no lease fram
to v after execution ob-th request. Using potential function arguments, we canvghat, for a
sufficient long request sequeneegenerated byADV, the cost ofA in executingo is at Ieastg
times that of an optimal offline algorithm, which is tailoredthe request sequenge O

6 Consistency Results for Concurrent Executions

In this section we generalize the traditional definition atisal consistency [1] for the aggrega-
tion problem, and show that any lease-based aggregatiamitalg is causally consistent. As

mentioned earlier, the key difference between the setug]imifid ours is in reading one value
compared to aggregating values from all the nodes. Seeoc8etfior an informal discussion on

this section.
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6.1 Definitions

Request For the convenience of the analysis of this section, weneltiee definition of a request
from Section 2 as follows. A requegts a tuple (ode, op, arg, retval, index), where (L)node is
the node where the request is initiated; ¢2)is the type of of the requestpmbine, gather, or
write; (3) arg is the argument of the request (if any); (#4}val is the return value of the request (if
any); and (S)indez is the number of requests that are generatedmaile and completed beforg
is completed.

An aggregation algorithm executegite and combine requests as described in Section 2. To
execute gather request, an aggregation algorithm returns alsettpairs of the form(node, index)
such that (1) for each nodein T, there is a tupl¢u, i) in A, wherei > —1; (2) for any tuple(u, )
in A, if ¢ > 0, then there is avrite request such thay.node = u andg.indez = i; and (3)|A| is
equal to the number of nodesTn

Miscellaneous For the convenience of analysis of this section, we extbeddefinition of
function f from Section 2 as follows. In the extended definitigrgan also take a set of pairs
of the form(node, index) as an argument, anfd A) = f(B), whereB is a set ofwrite requests
such that for any tupléu, i) in A with ¢ > 0, there is awrite requesy; in B with ¢.node = v and
q.index = 1.

A combine-writesequence (set) is a sequence (set) of requests contairlyngmombine and
write requests. Ayather-writesequence (set) is a sequence (set) of requests contaiyngnoher
andwrite requests. Lefl be a set of requests. Themuned (A, u) is a subset ofd such that, for
any requesy in A, g isin pruned (A, u) if and only if g.op = write or ¢.node = u.

For any sequence of requestsaand any request in S, we definerecentwrites(S, q) as a set
of pairs such that the size efcentwrites(S, q) is equal to the number of nodesTh and for any
nodeu in T": (1) if ¢’ is the most recentrite request at, precedingy in .S, then(u, ¢’.index) isin
recentwrites(S, q); (2) if there is nowrite request at. precedingy in .S, in which case(u, —1) is
in recentwrites(.S, q).

Let A be a gather-write set, arttlbe a linear sequence of all the requestd imThen,S'is called
aserializationof A if and only if, for anygather requesy in S, g.retval = recentwrites(S, q).

For any two request sequeneeandr, ¢ — 7 is defined to be the subsequence aontaining
all the requests in o such thay is not present inr. For any two request sequenceeandr, 0.7 is
defined to ber appended by.

Compatibility . Letg; be acombine or write request and, be agather or write request. Then,
¢1 andg, arecompatibleif and only if (1) g1.0p = write andg; = ¢; or (2) ¢1.0p = combine,
q2-0p = gather, q;.retval = f(qq.retval), and thenode, arg, andindex fields are equal fog; and
g2. A combine-write sequence and a gather-write sequenceare compatible if and only if (1)
o andr are of equal length; and (2) for all indicésco (i) and (i) are compatible. Let be a
combine-write set an® be a gather-write set. Ther, and B are compatible if and only if for
any nodeu in 7', there exists a linear sequengef all the requests ipruned(A, ), and a linear
sequence’ of all the requests ipruned(B,w) such thatS and.S’ are compatible.

Causal Consistency We definecausal ordering(~+) among any two requests andg, in a

gather-write execution-historyt as follows. Firsty, R g2 if and only if (1) g;.node = go.node
and ¢;.index < qg.index; or (2) ¢; IS a write requesty, is a gather request, andy, returns

(q1.node, q;.index) in go.retval. Second,q ) ¢ if and only if there exists a requegt such
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thatg, ~ ¢’ > 2. Finally, ¢; ~» ¢ if and only if there exists ahsuch thaty; ~ ¢,.

The execution-history of an aggregation algorithm is defiae the set of all requests executed
by the algorithm. A gather-write execution-historyis causally consistenif and only if, for
any nodeu in T', there exists a serializatiofi of pruned(A,u) such thatS respects the causal
ordering~» among all the requests imruned(A,u). A combine-write execution-historyl is
causally consistent if and only if there exists a gathetengkecution-history3 such thatd and B
are compatible an@ is causally consistent.

6.2 Algorithm

In Figure 7, we present the mechanism for any lease-basedgajmpn algorithm witlghost ac-
tions(in the curly braces). The ghost actions are presented éocghvenience of analysis.

For any nodeu, u.log is a ghost variable. For any node u.wlog is a subsequence aflog
containing all thewrite requests in:.log.

Initially, for any nodeu, u.val := 0, u.uaw := (), u.pndg := 0, w.upcntr := 0, u.sntupdates :=
(). For each node in u.nbrs(), u.taken[v] := false, u.granted[v] := false, u.aval[v] := 0,
u.snt[v] := (), andu.log is empty.

Functionrequest(combine) generates and returnsambine request;’” as follows. ¢'.node =
u, ¢'.op = combine, ¢'.arg = 0, ¢'.retval = gval(), andq’.indez is 1 plus the number of com-
pleted requests at Functionrequest(write, q) generates and returnswite request’ as follows.
¢ .node = u, ¢'.op = write, ¢'.arg = q.arg, ¢ .retval = 0, andq’.indez is 1 plus the number of
completed requests at

6.3 Analysis

For each node: in 7', we construct a gather-write sequencewlog from u.log as follows: (1)
if u.log(i) is a write request theni.gwlog(i) = w.log(i); (2) if u.log(i) is a combineg; then,
u.gwlog(i) is agather gz such thay,.node = ¢y.node, qz.0p = gather, qz.index = ¢, .index, and
qa.retval = recentwrites(u.log, q1).

For each node in T', we constructi.log’ andu. gwlog’ from u.log andu.gwlog as follows. First,
initialize u.log’ to u.log, andu.gwlog’ to u.gwlog. Then, for each node in T exceptu repeat the
following steps: (1u.log" = w.log".(v.wlog—wu.log"); (2) u.gqwlog’ = u.gqwlog’.(v.wlog—u.gwlog").

For any set of noded and a request sequeneerecent(A, o) returns a set ofA| pairs such
that, for any node. € A: (1) if ¢’ is the most recenbrite request at. in o, then(u, ¢'.index) is in
recent(o, q); (2) if there is nowrite request ati in o, then(u, —1) is in recent (.S, q).

For a set of noded, a real valuer, and a request sequeneewe definecorresponds(A, x, o)
to betrue if and only if z = f(recent(A, 0)).

For a set of nodesl and a request sequenegeprojectwrites(A, o) returns the sub-sequence
of o containing all thewrite requests at any node .

For request sequencesandr, prefiz(o, 7) is defined to berue if and only if 7 is a prefix of
o. Remark: An empty sequence is considered prefix of any other requgstsee.

Lemma 6.1 For any update or response messagen from any node to any neighboring node,
let S be thev.wlog after m has been sent. Themefiz (.S, m.wlog) holds.
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node u

var taken : array[vi ...vy] of boolean;
granted : arraylv; ...vy] of boolean;
aval : array[vi ...vg] of real; wal : real,
uaw : set {int}; pndg : set {node};
snt[] : array(vi,...,v] of set {node};
upentr : int; sntupdates : set {{node, int,int}};
begin
true — {combine q}
oncombine(u);
foreachv € tkn() do
waw(v] := 0; od

ifu ¢ pndg —
if nbrs() \ thn() =0 —
{appendrequest(combine) t0 log};
return gval();
Onbrs() \ tkn() # 0 —
sendprobes(u);
snt[u] :== nbrs() \ thn(); fi fi
true — {write ¢}
val := q.arg; {appendrequest(write, q) to log}
if grntd() #0 —
id := newid();
Sforwardupdates(u, id); i
Orev probe() fromw —
probercvd (w);
foreachv € tkn() \ {w} do
uaw[v] := 0; od
ifw ¢ pndg —
if nbrs() \ {tkn() U {w}} =0 —
sendresponse(w);
Dnbrs() \ {thn() U {w}} £ 0 —
sendprobes(w);
snt[w] := nbrs() \ {tkn() U {w}}; i fi
Orev response(z, flag) fromw —
{rcv response(wlogw, flag) fromw} —
responsercvd(flag, w);
aval|w] := z; {log := log.(wlogw — log)};
taken|w] := flag;
foreach v € pndg do
sntv] := snt[v] \ {w};
if sntfv] =0 —
pndg = pndg \ {v};
ifv=u—
{appendrequest(combine) to log};
return gval();
Ov#u—
sendresponse(v); fi fi od
Orcv update(z, id) fromw —
{rcv update(wlogy, id) fromw } —
updatercvd (w);
aval|w] := x; {log := log.(wlogw — log)};
vaw([w] := vawlw] U id;
if grntd() \ {w} # 0 —
nid = newid();
sntupdates := sntupdates U {w, id, nid };
forwardupdates(w, nid);
O gratd() \ {w} = 0 —
forwardrelease(); fi
Orev release(S) fromw —
releasercvd(w);
granted[w] := false;
onrelease(w, S);
end

Figure 7: Mechanism for any lease-based algorithm with glaasions.

{Ul,..

., v } is the set of neighboring nodes.

procedure sendprobes(node w)
pndg := pndg U {w};
foreach v € nbrs() \ {tkn() U snt U{w}} do
sendprobe() to v; od

procedure forwardupdates(node w, int id)
foreach v € grntd() \ {w} do
sendupdate(subval(v), id) to v;
{sendupdate(wlog, id) tov}; od

procedure sendresponse(node w)
if (nbrs() \ {tkn() U {w}} =0) —
granted[w] := setlease(w); fi
sendresponse(subval(w), granted[w]) t0 w;
{sendresponse(wlog, granted[w]) tow; }

boolean isgoodforrelease(node w)
return (grntd() \ {w} = 0);

procedure onrelease(node w, set S)
Let id is the smallest id ir5;
foreach v € tkn() \ {w} do
Let A be the set of tuplea in sntupdates
such thatv.node = v anda.sntid > id;
Let 3 be a tuple inA
such tha3.rcvid < a.rcvid, forall ain A;
Let S’ be the set of ids inaw[v] with ids > B.rcvid;
vaw(v] := 8’;
if isgoodforrelease(v) —
releasepolicy(v); fi od
forwardrelease();

procedure forwardrelease()
foreach v € tkn() do
if isgoodforrelease(v) —
if taken|v] A breaklease(v) —
taken|v] := false;
sendrelease(uaw(v]) tov;
uvaw[v] := 0; fi fi od

int newid()
upcentr := upentr + 1;
return upcntr;

real gval()
T = val;
foreach v € nbrs() do
z = f(z, aval[v]); od
return z;

real subval(node w)
T := val;
foreach v € nbrs() \ {w} do
z = f(z, avalv]); od
return z;

set nbrs()

return the set of neighboring nodes
set thkn()

return {v | v € nbrs() A taken[v] = true};
set grntd()

return {v | v € nbrs() A granted[v] = true};
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Proof. By the inspection of code/¢rwardupdates() andsendresponse()), m.wlog = v.wlog when
m IS being sent. Since.wlog grows only at the end, the lemma follows. 0J

Lemma 6.2 For any twoupdate or response messagesy; andm, from a nodev to any neighbor-
ing nodeu such thatm, is sent aftenn,, prefiz(msy.wlog, my.wlog) holds.

Proof. By Lemma 6.1,m;.wlog is a prefix ofv.wlog after m; has been sent. By the inspection of
code (orwardupdates() andsendresponse()), my.wlog = v.wlog whenm is being sent. Hence,
the lemma follows. O

Lemma 6.3 Just before the execution ©f (75) at u, on receiving aresponse message (anpdate
message)n sent fromu, let o be projectwrites(A, m.wlog) and 7 be projectwrites(A,u.log),
whereA = subtree(v, u). Then, (Lprefiz (o, 7) holds; (2) projectwrites(nodes(T') \ A, m.wlog —
u.log) is an empty set.

Proof. (1) We prove by induction on the number@idate or response messages from to w.

Base case. Since granted[u] does not hold initially, the first message of our interest is a
response messagen. Sinceu receives anywrite requests inA only fromv, 7 is empty. Hence,
prefiz(o, ) holds.

Induction step. Since communication channels are FIRRO; 1)st update or response mes-
sagem reachesu after nth messagen’. By induction hypothesis, just before receiving,
projectwrites(A, u.log) is prefix of projectwrites(A, m'.wlog). In line 2 of T, (Ts), u.log =
u.log.(m’.wlog — u.log), that is, all thewrite requests inm’.wlog not present irnu.log are ap-
pended tau.log. Hence,projectwrites(A, u.log) = projectwrites(A, m’.wlog) after execution of
Line 2 of T}, (T5).

By Lemma 6.2/n.wlog is a prefix ofm.wlog. Hence, just before receiving, projectwrites(A, u.log)
is a prefix ofprojectwrites( A, m.wlog).

(2) Let B benodes(T)\A. By Lemma 6.1, Lemma 6.2, and part (1), at any instanfectwrites(B, v.log)
is a prefix ofprojectwrites(B, u.log). By Lemma 6.1m.wlog is a prefix ofv.wlog afterm has been
sent. Hence, just before receiving projectwrites(B, m.wlog) is a prefix ofprojectwrites( B, u.log).
Therefore projectwrites(B, m.wlog — u.log) is empty. O

For any nodeu, (1) I1(u): corresponds(A,u.gval(),u.log), where A is the set of all nodes
in T (2) I(u): for any update or response messagen from u to any nodev in u.nbrs(),
corresponds(A, m.x, m.wlog), where A is the set of all nodes iRubtree(u,v); and (3)I3(u):
for any nodev in u.nbrs(), corresponds(A,u.aval[v],u.log), whereA is the set of all nodes in
subtree(v,u). LetI(u) bel;(u) A Iy(u) A I3(u).

Lemma 6.4 For any nodeu, if I;(u) and I3(u) hold just before arupdate or a response mes-
sagem is sent fromu to a nodev in u.nbrs(), then corresponds(A, m.x, m.wlog), whereA =
subtree(u, v).

Proof. Initially, u.val is 0 andu.log is empty. Hence, initially,

wval = f(recent({u},u.log)) (2)
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The only line of code that modifiesval is Line 1 of 5. This line preserves equation 2. Hence,
equation 2 holds just before sending anylate or response message.
In the following equation, lefv, ..., vx} = u.nbrs() \ {v} andsS; = subtree(v;, u)

m.x = wu.subval(v)
= f(u.val,u.aval[vq], ..., u.aval[vg))
= f(f(recentwrites({u}, u.log)), f (recent(Sy, u.log)), ..., f(recent(Sk,u.log)))
= f(recent({u} U Sy U---USk),u.log)
= f(recent(A,u.log))

= f(recent(A, m.wlog)) 3

In the above equation, the first equality follows from theoaithm. The second equality fol-
lows from the definition ofsubval(v). The third equality follows fronV; and equation 2. The
fourth and fifth equalities follows from the fact that}, Sy, . .., Sy are disjoint sets of nodes and
their union issubtree(T,u,v). The last equality follows from the fact that.wlog = wlog and
recent(A, log) = recent(A, wlog).

Hence, the lemma follows. O

Lemma 6.5 For any nodeu, I(u) is an invariant.

Proof. Initially, for any nodeu, u.gval() is 0 andw.log is empty. Hence[;(u) holds. There
are noupdate or response messages. Hencé,(u) holds. For any node in w.nbrs(), u.aval[v] is
0 andu.log is empty. Hencels(u) holds.

{I(uw)}T1{I(u)}. Inthe execution of}, for any node in u.nbrs(), u.aval[v] andu.val remain
unchanged. Napdate or response messages are generated in executioih;ofNo write request
is added tau.log. Hence,l; (u), I>(u), andls(u) are not affected in execution @f.

{I(u)}T>{I(u)}. Inthe execution of, only part of the code affecting (u) is the linel. Note
that Line1 does not affecf,(u) and3(u). In the following equation, lefvy, ..., v} = u.nbrs()
andsS; = subtree(T, v;, u).

f(u.aval[vy], ... u.avallvg]) = f(f(recent(S1,u.log)),. .., f(recent(Sk, u.log)))
= f(recent(Sy,u.log) U --- U recent (S, u.log))
= f(recent(S;U---U Sk, u.log)
= f(recent(nodes(T) \ {u},u.log)) 4)
In the above equation, the first equality follows frdpiu). The second equality follows from
the fact thatSy, . . . , Sy are disjoint sets of nodes.

Let ¢ be thewrite request appended tolog in Line 1. After Line 1, val is g.arg, and{q} is
recent({u}, log). Hence, after Lind,

wwval = f(recent({u},u.log)) (5)

Therefore, after Ling,
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u.gval() w.val, u.aval[v,], . .., u.aval[vg))

w.val, f(u.aval[vq], . .., u.aval[vg]))

I
I

= f(f(recent({u},u.log)), f(recent(nodes(T) \ {u}, u.log))
f(recent({u},u.log) U recent(nodes(T') \ {u}, u.log))

= f(recent(nodes(T),u.log)) (6)

In the above equation, the first equality follows from the wmiébn of u.gval(). The second
equality follows from the associativity property of The third equality follows from the equations
4 and 5.

Hence, corresponds(nodes(T), u.gval(), u.log) holds after linel. That is, ;(u) holds after
Line 1. Therefore, for each line of the codelnif ;(u) A I>(u) A I3(u) holds before the execution
of the line then/; (u) holds after the execution of the line.

In the execution off;, the only part of the code affecting(«) is the invocation of procedure
forwardupdates() in Line 4. By Lemma 6.4,/5(u) holds after Linel. Therefore, for each line of
the code inly if I;(u) A Is(u) A I3(u) holds before the execution of the line th&ifu) holds after
the execution of the line.

In T3, I3(u) is not affected.

{I(u)}T5{I(w)}. I,(u) andI3(u) are not affected in the execution @§. Only part of the
code that affectd,(u) is the invocation of procedurgndresponse() in Line 6. By Lemma 6.4,
I, (node) holds after lines.

{I(uw)}T4{I(u)}. Only lines that affect (u) are Line2 and Linel2. Line 2 does not affect
I (u), but affects/; (u) and3(u) since the line modifies. aval[w] andu.log. First we show that
I3(u) is preserved in Ling, and so/; (u) is also preserved.

Let m be theresponse message received antbe subtree(w, ). By part (1) of Lemma 6.3,
after the execution of Lin2, u.aval[w] = m.x andrecent(A, u.log) = recent(A, m.wlog). Hence,
by Ir(u), u.aval|w] = f(recent(A, u.log)).

By part (2) of Lemma 6.3, for alb in u.nbrs() \ {w}, recent(B, u.log) is not affected, where
B = subtree(v,u), and so,corresponds(B,u.aval|v], u.log) remains unchanged. Hence, along
with the arguments in the preceding paragralgfw) is preserved in Lin&, and so, preserved in
the execution of;.

By part (2) of Lemma 6.3ecent ({u}, u.log) is not affected. Thereford; (u) is also preserved
in Line 2, and so, preserved in the executior/of

Line 12 only affects/y(u). By Lemma 6.4 ]5(u) holds in Linel2.

Therefore,[; (u) A Ir(u) A I3(u) is preserved in the execution 6f.

{I(u)}T5{I(u)}. Only lines that affect/ (u) are Line2 and Line7. Line 2 does not affect
I>(u), but affectsl; (u) andl;(u). Line 7 affects onlyls(u).

By part (2) of Lemma 6.3recent({u},u.log) is not affected in Line. Therefore,l;(u) is
preserved in Lin€, and so, preserved in the executioref

Let m be theupdate message received anbe subtree(w, u). By part (1) of Lemma 6.3, after
the execution of Lin&, u.aval[w] = m.x andrecent(A, u.log) = recent(A, m.wlog). Hence, by
I(u), u.aval[w] = f(recent(A, u.log)).

By part (2) of Lemma 6.3, for all nodesin w.nbrs() \ {w}, recent(B, u.log) is not affected,
whereB = subtree(v,u), and so,corresponds(B, u.aval[v], u.log) remains unchanged. Hence,
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along with the arguments in the preceding paragragh,) is preserved in Line, and so, preserved
in the execution of ;.

Line 7 affects onlyl,(u). By Lemma 6.4/5(u) holds in Line.

Therefore,[; (u) A Ir(u) A I3(u) is preserved in the execution 6f.

{I(u)}Ts{I(u)}. In the execution ofy, I;(u), Io(u), andl3(u) are not affected. Hencé(w)
is preserved in the execution 6. O

For a request sequeneeand a requesi, index (o, q) returns the index of in o if present,
otherwise, returns-1. For any request sequeneeand requestg, andqg, in o, precedes(o, q1, ¢2)
is defined to berue if and only if index (o, 1) < index(o, qa).

Lemma 6.6 Let ¢g; and ¢, be anygather or write requests such thaf;.node = ¢;.node and

¢1.index < go.index. Theng, andg, belong tag;.node. gwlog, andprecedes(q,.node.gwlog, g1, g2)
holds.

Proof. From given conditiong; and ¢, belong tog;.node.log and precedes(q;.node.log, q1, q2).
By the construction ofwlog, the lemma follows. O

Lemma 6.7 Letu andwv be distinct nodes and let and ¢, be write requests iny.gwlog such that
¢2.node = v, precedes(v.qwlog, q1, q2), and g, belongs tou.gwlog. Then,q; belongs tou.gwlog
and precedes(u.gqwlog, q1, qz).

Proof. By induction on the length of path fromto «, say!.

Base case.l = 1, that is,u andv are neighboring nodes. Letreceivesy, in an update
or a response messagen, that is, ¢; belongs tom.wlog and ¢, does not belong ta.log just
before receivingn. By the inspection of coden.wlog = v.wlog. Hence, just beforen is sent,
¢z belongs tov.log. Sinceprecedes(v.log, q1,q2), precedes(m.wlog, q1,q2). If 1 is in u.log just
before receivingn, then on receivingn, ¢, belongs tou.log, and so,precedes(u.gwlog, q1, q2)
holds. Otherwise, on receiving, u.log = u.log.(u.log—m.wlog, ), and soprecedes(u.log, q1, q2)
holds. Hence, by construction ofgwlog, precedes(u.gwlog, g1, q2) holds.

Induction hypothesis. For somgsuch that = i, ¢; belongs ta.. gwlog andprecedes(u.gwlog, q1, qz)-

Induction step. Considér= i + 1. Letw be the node such that belongs tou.nbrs() andv
belongs tasubtree(T,w, u). Letu receivesy, from w in anupdate or aresponse messagen. By
the inspection of codey, belongs tow.log, and so, by construction af.qwlog, ¢ also belongs
to w.gwlog. By induction hypothesis and by constructionwofqwlog, ¢; belongs tow.log and
precedes(w.log, q1, q2) holds whenm is sent. Sincen.wlog = w.wlog whenm is sentg; belongs
to m.wlog andprecedes(m.log, ¢1, q2) holds. As in the base case, regardless of whethbelongs
to u.log just before receivingn, ¢; belongs tou.log and precedes(u.log, ¢1,g2) On receivingm.
Hence, by construction of. gwlog, precedes(u.gwlog, g1, g2) holds. O

Lemma 6.8 Letq; and g, be gather requests such that .node # ¢;.node, and for integer > 1,
q1 ~ ¢2. Then, there is avrite requesty such thaty.node = ¢,.node and for integerj, ¢; <~
¢ “4 qo, wherei > j > 1.
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Proof. By contradiction. Assume that there is no suetite request at;;.node. Let ¢ SRR

q SR q" RRENNICR g2 such thaty” is the first request in this chain that is notgatnode. That is,
in this chain,qy, ..., ¢ are atg.node. We can find such a requesgt’] sincegs.node # ¢;.node.

By causal ordering%) definition, ¢’ R ¢" if and only if ¢’ is awrite request and” is a gather
request. Hence, the contradiction. Therefore, the lemihanfs. O

Lemma 6.9 For any nodeu and: = 1,2, let¢; be a request such thég,.op = write) V (g;.op =
gather A g;.node = w). Further assume that; ~» ¢, andg, belongs tou.gwlog. Then,g; belongs
to u.gwlog and precedes(u.gwlog, q1, g2) holds.

Proof. By definition,q; ~~ ¢» if and only if there existg such that; NS q2. We prove the lemma
by induction oni.

Base casei = 1, that is,q; > ¢2. There are two cases SR g2 by rule (1) or by rule(2).

First caseq, > ¢ by rule (1), that is,q;.node = go.node andq,.index < gs.index. There are
two cases(a) u = ¢.node; (b) u # q1.node. Case(a), thatis,u = ¢;.node. By lemma 6.6¢; and
¢z belong tou.gwlog, andprecedes(u.gwlog, q1, ¢2) holds. Caséb), that is,u # ¢;.node. Letv be
¢1.node. By lemma 6.6 precedes(v.gwlog, q1, g2) holds. Since: # v, ¢; andg, arewrite requests.
Sinceq, belongs tau.gwlog, by lemma 6.7¢; is in u.gwlog andprecedes(u.gwlog, q1, g2) holds.

Second casej, N q2 by rule (2), that is, ¢; is a write request andy, is a gather request
such thatg, returns(q;.node, q;.index) in gs.retval. Sinceqy returns(q;.node, q;.index), ¢
is in u.log and precedes(u.log, q1,q2) holds. By construction ofi.gwlog, ¢, is in u.gwlog and
precedes(u.gwlog, q1, q2) holds.

Induction step:q; ~+ ¢ > ¢2. Consider the two cases, (1).op = write) V (¢'.op =
gather A ¢'.node = u), and (2)(¢'.op = gather A ¢'.node # u).

Case (1), that iSiq’.op = write) V (¢'.op = gather A ¢'.node = u). By induction hypothesis,
¢’ belongs tau.gwlog, precedes(u.gwlog, ¢', g2) holds. Also by induction hypothesig, belongs to
u.gwlog, precedes(u.qwlog, q1, q') holds. Hencey, belongs ta:. gwlog, andprecedes(u.gwlog, g1, g2)
holds.

Case (2), that is(q’.op = gather A ¢'.node # u). Letq'.node bev. Sinceq'.op = gather,

q R g2 could only be by rule (1), that igp.node = v andq’.index < qg.index. Sincev # u,
¢2 must be awrite request. By Lemma 6.@yecedes(v.gwlog, ¢, ¢2) holds. Now consider the two
possible cases faf;, (8) ¢1.0p = write, and (b)q,.op = gather A qi1.node = u. Case (a), that
iS, ¢1.0p = write. By induction hypothesisy; belongs tov.gwlog and precedes(v.gwlog, q1,q')
holds. From above;; andg, belong tov.gwlog and precedes(v.gwlog, q1, q2). By lemma 6.7 g,
belongs tau. gwlog andprecedes(u.gwlog, q1, q2).

Case (b), that isq;.op = gather A qi.node = u. Sincegq;.node # ¢ .node, ¢ SR q,
and ¢, and ¢ are gather requests; must be greater thah. By Lemma 6.8, there is arite
requesty” such thaty”.node = uw andq ~~ ¢" 3 ¢, for somej,i > j > 1. By induc-
tion hypothesisg” belongs tov.gwlog and precedes(v.gwlog, q”, ¢') holds. Hence, from above,
precedes(v.gwlog, q”, q2) holds. Sincey” and ¢, are write requestsg,.node = v, g» belongs

to u.gwlog, and precedes(v.gwlog, q”, ¢2) holds, by Lemma 6.7precedes(u.gwlog, q”, q2) holds.
From above,” belongs tou.gwlog andq; ~~ ¢’ for somej > 1. Hence, by induction hy-
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pothesis precedes(u.gwlog, ¢, ¢") holds. From above, it follows thag; belongs tou.gwlog and
precedes(u.qwlog, q1, q2) holds. O

Lemma 6.10 For any nodeu, u.gwlog’ respects the causal ordering among requests. jiwlog’.

Proof. We prove this lemma by induction on the number of iteratiamghie construction of
u.qwlog’. For the base case, by Lemma 6:Qgwlog respects the causal ordering among re-
quests inu.gwlog. In each iteration in the construction, the additional e=is are added at the
end ofu.gwlog’. By Lemma 6.9 again, this step preserves the causal ordamogg@requests in
u.qwlog’. O

Lemma 6.11 For any nodeu, u.log’ andu.gwlog’ are compatible.

Proof. We prove this lemma by induction on the number of iterationthe construction of..log’
andu.gwlog’. For the base case, by Lemma 6:5p¢ andu.gwlog are compatible. In each iteration
of the construction, by the base case and the induction hgpi®, additional requests appended to
both the request sequences are mutually compatible. Heriag,andu. gwlog’ are compatible]

Theorem 4 Let setA be the execution-history of any lease-based algorithrithen,A is causally
consistent.

Proof. Consider any node in T'. By constructionu.gwlog’ is a serialization of all the requests
in u.gwlog’. From this observation and Lemma 6.10qwlog’ is causally consistent. By construc-
tion, u.log’ contains all the requests pruned(A,w). By Lemma 6.11u.log" andu.gwlog’ are
compatible. Hence, by definition is causally consistent. O

7 Discussion

What we have done in this paper is a useful case study in thgrdasd analysis of self-tuning
distributed algorithm for an important key primitive. Atthgh we have focussed on fault-free
case, we can extend some of our results to faulty environnespecially with respect to causal
consistency, by keeping track of time-stamps with writes.

An open problem for future research is to design a self-yiailgorithm for the approximate
aggregation problem, where one allows a certain numericat &1 the aggregate value, and ana-
lyze the algorithm in competitive analysis framework.
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