
Online Aggregation over Trees

C. Greg Plaxton, Mitul Tiwari
University of Texas at Austin

Praveen Yalagandula
HP Labs

Abstract

Consider a distributed network with nodes arranged in a tree, and each node having a lo-
cal value. We formulate an aggregation problem as the problem of aggregating values (e.g.,
summing values) from all nodes to the requesting nodes in the presence of writes. The goal
is to minimize the total number of messages exchanged. The key challenges areto define a
notion of “acceptable” aggregate values, and to design algorithms with goodperformance that
are guaranteed to produce such values. We formalize the acceptability of aggregate values in
terms of certain consistency guarantees similar to traditional consistency models defined in the
distributed shared memory literature. The aggregation problem admits a spectrum of solutions
that trade off between consistency and performance. The central question is whether there
exists an algorithm in this spectrum that provides strong performance and good consistency
guarantees. We propose a lease-based aggregation mechanism, and evaluate algorithms based
on this mechanism in terms of consistency and performance. With regard to consistency, we
generalize the definitions of strict and causal consistency for the aggregation problem. We
show that any lease-based aggregation algorithm provides strict consistency in sequential ex-
ecutions, and causal consistency in concurrent executions. With regard to performance, we
propose an online lease-based aggregation algorithm, and show that, forsequential execu-
tions, the algorithm is constant-competitive against any offline algorithm that provides strict
consistency. Our online lease-based aggregation algorithm is presentedin the form of a fully
distributed protocol, and the aforementioned consistency and performanceresults are formally
established with respect to this protocol. Thus, we provide a positive answer to the central
question posed above.

1 Department of Computer Science, University of Texas at Austin, 1 University Station C0500, Austin, Texas
78712–0233.

2 Email: plaxton@cs.utexas.edu. Supported by NSF Grant CCR–0310970 and ANI–0326001.
3 Email: mitult@cs.utexas.edu. Supported by NSF Grant ANI–0326001 and Texas Advanced Technology Program

003658-0608-2003.
4 HP Labs, 1501 Page Mill Rd MS 1181, Palo Alto, California 94304. Email: praveen.yalagandula@hp.com.



1 Introduction

Information aggregation is a basic building block in many large-scale distributed applications such
as system management [10, 21], service placement [9, 22], file location [5], grid resource mon-
itoring [7], network monitoring [13], and collecting readings from sensors [14]. Certain generic
aggregation frameworks [7, 17, 23] proposed for building such distributed applications allow scal-
able information aggregation by forming tree like structures with machines as nodes, and by using
an aggregation function at each node to summarize the information from the nodes in the associated
subtree.

Some of the existing aggregation frameworks use strategiesoptimized for certain workloads.
For example, in MDS-2 [7], the information is aggregated only on reads, and no aggregation is
performed on writes. This kind of strategy performs well forwrite-dominated workloads, but
suffers from unnecessary latency or imprecision on read-dominated workloads. On the other hand,
Astrolabe [17] employs the other extreme form of strategy inwhich, on a write at a nodeu in
the tree, each nodev on the path fromu to the root node recomputes the aggregate value for the
subtree rooted at nodev, and the new aggregate values are propagated to all the nodes. This kind of
strategy performs well for read-dominated workloads, but consumes high bandwidth when applied
to write-dominated workloads. Furthermore, instead of these two extreme forms of workloads, the
workload may fluctuate and different nodes may exhibit activity at different times. Therefore, a
natural question to ask is whether one can design an aggregation strategy that is adaptive and works
well for varying workloads.

SDIMS [23] proposes a hierarchical aggregation framework with a flexible API that allows
applications to control the update propagation, and hence,the aggregation aggressiveness of the
system. Though SDIMS exposes such flexibility to applications, it requires applications to know
the read and write access patterns a priori to choose an appropriate strategy (see our discussion
on related work for further details). Thus, SDIMS leaves an open question of how to adapt the
aggregation strategy in an online manner as the workload fluctuates.

In this work, we design an online aggregation algorithm, andshow that the total number of
messages required to execute a given set of requests is within a constant factor of the minimum
number of messages required to execute the requests. We givethe complete algorithm description
in the abstract protocol notation [11], and also believe that our algorithm is practical.

Broader Perspective. The ever increasing complexity of developing large-scaledistributed
applications motivates a research agenda based on the identification of key distributed primitives,
and the design of reusable modules for such primitives. To promote reuse, these modules should
be “self-tuning”, that is, should provide near optimal performance under wide range of operating
conditions. As indicated earlier, aggregation is useful inmany applications. In this work we
design a distributed protocol for aggregation that provides good performance guarantees under any
operating conditions. Our focus on tree networks is not limiting since many large-scale distributed
applications tend to be hierarchical (tree-like) in naturefor scalability. If the network is not a tree,
one can use standard techniques to build a spanning tree. Forexample, in SDIMS [23], nodes
are arranged in a distributed hash table (DHT), and trees embedded in the DHT are used for the
aggregation; these trees are automatically repaired in theface of failures. The present work can
be viewed as a case study within the broader research agenda alluded to above. The techniques
developed here may find application in the design of self-tuning modules for other primitives.

Problem Formulation. In order to describe our results we next present a brief description

1



of the problem formulation; see Section 2 for a detailed description. We consider a distributed
network with nodes arranged in an unrooted tree and each nodehaving a local value. We formulate
the aggregation problem as the problem of aggregating values (e.g., computing min, max, sum, or
average) from all the nodes to the requesting nodes in the presence of writes. The goal is to
minimize the total number of messages exchanged.

The main challenges are to define acceptable aggregate values in presence of concurrent re-
quests, and to design algorithms with good performance thatproduce the acceptable aggregate
values. We define the acceptability of the aggregate values in terms of certain consistency guar-
antees. There is a spectrum of solutions that trade off between consistency and performance. We
introduce a mechanism that uses the concept of leases for aggregation algorithms. Any aggregation
algorithm that uses this mechanism is called lease-based aggregation algorithm. The notion of a
lease used in our mechanism is a generalization of that used in SDIMS [23].

Results. We evaluate the lease-based aggregation algorithms in terms of consistency and per-
formance. In terms of consistency, we generalize the notions of strict and causal consistency,
traditionally defined for distributed shared memory [20, Chapter 6], for the aggregation problem.
We show that any lease-based aggregation algorithm provides strict consistency for sequential ex-
ecutions, and causal consistency for concurrent executions.

In terms of performance, we analyze the lease-based algorithms in the competitive analysis
framework [19]. In this framework, we compare the cost of an online algorithm with respect
to an optimal offline algorithm. An online aggregation algorithm executes each request without
any knowledge of the future requests. On the other hand, an offline aggregation algorithm has
knowledge of all the requests in advance. An online algorithm is c-competitiveif, for any request
sequenceσ, the cost incurred by the online algorithm in executingσ is at mostc times that incurred
by an optimal offline algorithm.

As is typical in the competitive analysis of distributed algorithms [2, 3], we focus on sequential
executions. In this paper we present an online lease-based aggregation algorithmRWW which,
for sequential executions, is5

2
-competitive against an optimal offline lease-based aggregation al-

gorithm. We use a potential function argument to show this result. We also show that the result
is tight by providing a matching lower bound. Further, we show that, for sequential executions,
RWW is 5-competitive against an optimal offline algorithm that provides strict consistency.

The three main contributions of the work are as follows. First, we design an online aggregation
algorithm and show that our algorithm achieves good competitive ratio for sequential executions.
Second, we define the notion of causal consistency for the aggregation problem. Third, we show
that our algorithm satisfies the definition of causal consistency for concurrent executions.

An interesting highlight of the techniques is the design of the aggregation algorithm that effec-
tively reduces the analysis to reasoning about a pair of neighboring nodes. This reduction allows
us to formulate a linear program of small size, independent of tree size, for the analysis.

Related Work. Various aggregation frameworks have been proposed in the literature such as
SDIMS [23], Astrolabe [17], and MDS [7]. SDIMS is a hierarchical aggregation framework that
utilizes DHT trees to aggregate values. SDIMS provides a flexible API that allows applications
to decide how far the updates to the aggregate value due to thewrites should be propagated. In
particular, SDIMS supportsUpdate-local, Update-all, andUpdate-upstrategies. In Update-local
strategy, a write affects only the local value. In Update-all strategy, on a write, the new aggregate
value is propagated to all the nodes. In Update-up strategy,on a write, the new aggregate value is
propagated to the root node of the hierarchy. Astrolabe is aninformation management system that

2



builds a single logical aggregation tree over a given set of nodes. Astrolabe propagates all updates
to the aggregate value due to the writes to all the nodes, hence, allows all the reads to be satisfied
locally. MDS-2 also forms a spanning tree over all the nodes.MDS-2 does not propagate updates
on the writes, and each request for an aggregate value requires all nodes to be contacted.

There are some similarities between our lease-based aggregation algorithm and prior caching
work. Due to the space limitations, here we are describing the most relevant work. In CUP [18],
Roussopoulos and Baker propose asecond-chancealgorithm for caching objects along the routing
path. The algorithm removes a cached object after two consecutive updates are propagated to
the remote locations due to the writes on that object at the source. The second-chance algorithm
has been evaluated experimentally, and shown to provide good performance. In the distributed
file allocation [3], Awerbuch et al. consider replication algorithm for a general network. In their
algorithm, on a read, the requested object is replicated along the path from the destination to the
requesting node. On a write, all copies are deleted except the one at the writing node. Awerbuch et
al. showed that their distributed algorithm has poly-logarithmic competitive ratio for the distributed
caching problem against an optimal centralized offline algorithm.

The concept of time-based leases has been proposed in literature to maintain consistency be-
tween the cached copy and the source. This kind of leases has been applied in many distributed
applications such as replicated file systems [12] and web caching [8].

Ahamad et al. [1] gave the formal definition of causal consistency for distributed message
passing system. The key difference between their setup and ours is in reading one value compared
to aggregating values from all the nodes.

There are several efforts to deal with numerical error in theaggregate value such as [4, 16].
However, in our knowledge, none of these work give a competitive online algorithm for the aggre-
gation problem, and neither of them address the issue of ordering semantics in concurrent execu-
tions. In [4], Bawa et al. defined semantics for various scenarios such as approximate aggregation
in a faulty environment calledapproximate single-site validity. They designed algorithms that pro-
vide such semantics, and evaluated their algorithms experimentally. In [16], Olston and Widom
consider one level hierarchy and propose a new class of replication system TRAPP that allows user
to control the tradeoff between precision (numerical error) and performance in terms of communi-
cation overhead.

Organization. In Section 2 we introduce definitions and aggregation problem statements. In
Section 3 we give an informal description of our algorithm and analysis. In Section 4 we define the
class of lease-based aggregation algorithms, and establish certain properties of such algorithms. In
Section 5 we present our online lease-based aggregation algorithm RWW, and establish bounds
on the competitive ratio ofRWW for sequential executions. In Section 6 we define the notion of a
causally consistent aggregation algorithm, and establishthat any lease-based algorithm, including
RWW, is causally consistent.

2 Preliminaries

Consider a finite set of nodes (i.e., machines) arranged in a tree networkT with reliable FIFO
communication channels between neighboring nodes. We are also given an aggregation operator
⊕ that is commutative, associative, and has an identity element 0. For convenience, we write,
x⊕y⊕z as⊕(x, y, z). For the sake of concreteness in this paper, we assume that the local value

3



associated with each node is a real value, and the domain of⊕ is also real.
The aggregate valueover a set of nodes is defined as⊕ computed over the local values

of all the nodes in the set. That is, the aggregate value over aset of nodes{v1, . . . , vk} is
⊕(v1.val , . . . , vk.val), wherevi.val is the local value of the nodevi. Theglobal aggregate valueis
defined as the aggregate value over the set of all the nodes in the treeT .

A request is a tuple (node, op, arg , retval ), wherenode is the node where the request is initi-
ated,op is the type of the request, eithercombine or write, arg is the argument of the request (if
any), andretval is the return value of the request (if any). To execute awrite request, an aggrega-
tion algorithm takes the argument of the request and updatesthe local value at the requesting node.
To execute acombine request, an aggregation algorithm returns a value. Note that this definition
admits the trivial algorithm that returns0 on anycombine request. We define certain correctness
criteria for aggregation algorithms later in the paper. Roughly speaking, the returned value on a
combine request corresponds to the global aggregate value.

Theaggregation problemis to execute a given sequence of requests with the goal of minimizing
the total number of messages exchanged among nodes. For any aggregation algorithmA and any
request sequenceσ, we defineCA(σ) as the total number of messages exchanged among nodes in
executingσ byA. An online aggregation algorithmA is c-competitive if for all request sequences
σ and an optimal offline aggregation algorithmB, CA(σ) ≤ c · CB(σ) [6, Chapter 1].

We sayT is in quiescent state if (1) there is no pending request at anynode; (2) there is no
message in transit across any edge; and (3) no message is sentuntil the next request is initiated. In
short,T is in quiescent state if there is no activity inT until the next request is initiated.

In a sequential execution of a request, the request is initiated in a quiescent state and is com-
pleted whenT reaches another quiescent state. In a sequential executionof a request sequenceσ,
every requestq in σ is executed sequentially. In a concurrent execution of a request sequence, a
new request can be initiated and executed while another request is being executed. We refer to the
aggregation problem in which the given request sequence is executed sequentially assequential
aggregation problem.

The aggregation functionf is defined over a set of real values or over a set of write requests.
For a setA of real valuesx1, . . . , xm, f (A) is defined as⊕(x1, . . . , xm). For a setA of write
requestsq1, . . . , qm, f (A) is defined asf (A) = ⊕(q1.arg , . . . , qm.arg).

For any requestq in a request sequenceσ, let A(σ, q) be the set of the most recent writes
precedingq in σ corresponding to each of the nodes inT . We say that an aggregation algorithm
providesstrict consistencyin executingσ if any combine requestq in σ returnsf (A(σ, q)) as the
global aggregate value atq.node. Note that this definition of strict consistency for an aggregation
algorithm is a generalization of the traditional definitionof strict consistency for distributed shared
memory systems (for further details, see [20, Chapter 6]). Wedefine an aggregation algorithm to
benice if the algorithm provides strict consistency for sequential executions.

The set of all nodes in treeT is represented bynodes(T ). For any edge(u, v), removal of
(u, v) yields two trees,subtree(u, v) is defined to be one of the trees that containsu.

For any request sequenceσ and any ordered pair of neighboring nodes(u, v), we defineσ(u, v)
as follows: (1)σ(u, v) is a subsequence ofσ; (2) for anywrite requestq in σ such thatq.node is
in subtree(u, v), q is in σ(u, v); and (3) for anycombine requestq in σ such thatq.node is in
subtree(v, u), q is in σ(u, v).

4



r

s

t u

w

v

r

s

t u

w

v

(a) (b)

Figure 1: An example tree network.

3 Informal Overview

In this section we present an informal overview of our algorithm and analysis.
Recall that on a combine request at a nodeu, u returns a value. Roughly speaking, the value

corresponds to the global aggregate value. In order to do that, u contacts other nodes and collects
the local values from all the other nodes. Note that we can minimize the number of messages by
performing aggregation at intermediate nodes, also referred as in-network aggregation.

However, for a combine-dominated workload, one may wish to propagate an updated local
value on a write request to minimize the number of messages exchanged on a combine. On the
other hand, for a write-dominated workload, such propagation tend to be wasteful. In order to
facilitate adaptation of how many messages to send on a combine request versus a write request,
we propose a lease mechanism. Here, we illustrate our lease mechanism for just two nodesu and
v connected by an edge, and a scenario in which combine requests are initiated atv and write
requests are initiated atu. It turns out that the other scenario is symmetric. (See Section 4 for the
complete description of the mechanism.)

If the lease fromu to v is present, then on a write request atu, u propagates the new local value
to v by sending an update message. Hence, in the presence of this lease, a combine request atv

is executed locally. On the other hand, if the lease fromu to v is not present, then on a combine
request atv, a probe message is sent fromv to u. As a result, a response message containing the
local value atu is sent fromu to v. Further, in this case, a write request atu is executed locally.
Note that on a combine-dominated scenario, presence of the lease is beneficial. However, on a
write-dominated scenario,v may receive many updates whilev is not initiating any request. In that
case,v can break the lease by sending a release message tou.

In order to make the lease mechanism work for a tree network ina desirable way, we enforce
two lease invariants. Consider the tree network in Figure 1 asan example. The presence of a lease
on an edge is denoted by a dotted line. To illustrate the first invariant, consider a combine request
q at nodew with leases as in Figure 1(a). During the execution ofq, w sends messages and collects
the local values from all the other nodes. If the lease fromt to u is present, thenu need not send
any message tot. However, this would work only ift has leases fromr ands. Our first invariant
ensures that the lease fromt to u is not set unlesst has leases from all the other neighboring nodes.
Second invariant ensures that the lease fromt to u can not be broken ifu has given a lease to any
other neighboring node, say nodew in Figure 1(b).

Given this lease mechanism, an aggregation algorithm can adapt how far an updated value
should be propagated on a write request by setting and breaking leases appropriately. The next
question is how to set and break the leases dynamically in an optimal manner. We answer this ques-
tion by providing an online lease-based aggregation algorithm RWW (see Section 5). Roughly,
RWW works as follows. For an edge(u, v), RWW sets the lease fromu to v during the execu-
tion of a combine request at any node insubtree(v, u), and breaks the lease after two consecutive

5



write requests at any node insubtree(u, v). Using a potential function argument, we show that
RWW is 5

2
-competitive against any offline lease-based algorithm forsequential executions. We

also show that this bound is tight by providing lower bound arguments. Further, we show that
RWW is 5-competitive against any offline algorithm that provides strict consistency for sequential
executions.

With respect to consistency guarantees, we show that any lease-based aggregation algorithm
provides strict consistency for sequential executions. For concurrent executions, it is difficult to
provide strict or sequential consistency. Causal consistency is considered to be the next weaker
consistency model for the distributed shared memory environment [20, Chapter 6]. At first, it is
not clear how to generalize the causal consistency definitions for the aggregation problem.

We define the causal consistency for the aggregation problemand show that any lease-based al-
gorithm provides causal consistency for concurrent executions (see Section 6). First, we introduce
a new type of ghost requestsgather to associate a combine request with a set of write requests.
The concept of gather requests is similar to the way of associating a read request with a unique
write request in analyzing distributed shared memory [1, 15]. Second, we define causal ordering
among gather and write requests. Third, we extend the lease-based mechanism by adding ghost
variables and ghost actions. Finally, we use an invariant style proof technique to show that any
lease-based algorithm provides causal consistency in two steps. In the first step, we show that a
ghost log maintained at each node, containing gather and write requests, respects causal ordering
among requests. In the second step, we show that there is one-to-one correspondence between
gather and combine requests, that is, for each gather request there is a combine request and vice-
versa, such that the return value of the combine request is same as aggregation function computed
over the set of write requests returned by the gather request.

4 Lease-Based Algorithms

In Section 3 we gave a high level description of an aggregation mechanism based on the concept
of leases. See Figure 2 for the formal description of this mechanism; the underlined function calls
represent stubs for policy decisions of lease setting and breaking. Throughout the remainder of
this paper, any aggregation algorithm that uses this mechanism and defines the policy functions is
said to belease-based.

The status of the leases for an edge (u, v) is given by two boolean variablesu.taken[v] and
u.granted [v]. Nodeu believes that the lease fromv to u is set if and only ifu.taken[v] holds. Also,
u believes that the lease fromu to v is set if and only ifu.granted [v] holds. The local value atu
is stored inu.val . For each neighborvi of u, u.aval [vi] represents the aggregate value computed
over the set of nodes insubtree(vi, u). The following kinds of messages are sent by a lease-based
algorithm:probe, response, update, andrelease.

Informally, for any nodeu, a lease from a nodeu to its neighboring nodev works as fol-
lows. If u.granted [v] holds then, on awrite request at any node insubtree(u, v), u propagates
the new aggregate value tov by sending anupdate message. To break the lease (that is, to falsify
u.granted [v]), arelease() message is sent fromv to u. On the other hand, ifu.granted [v] does not
hold then, on acombine request at any node insubtree(v, u), aprobe() message is sent fromv to
u. As a result, aresponse message is sent fromu to v.

6



node u
var taken[] : array[v1, . . . , vk] of boolean;

granted [] : array[v1, . . . , vk] of boolean;
aval [] : array[v1, . . . , vk] of real; val : real;
uaw : set {int}; pndg : set {node};
snt [] : array[v1, . . . , vk] of set {node};
upcntr : int; sntupdates : set {{node, int, int}};

init val := 0; uaw := ∅; pndg := ∅; upcntr := 0;
sntupdates := ∅; ∀v ∈ nbrs(), taken[v] := false;
granted [v] := false; aval [v] := 0; snt [v] := ∅;

begin

T1 true → {combine}
1 oncombine(u);
2 foreach v ∈ tkn() do

3 uaw [v] := ∅; od

4 if u /∈ pndg →
5 if nbrs() \ tkn() = ∅ →
6 return gval();
7 � nbrs() \ tkn() 6= ∅ →
8 sendprobes(u);
9 snt [u] := nbrs() \ tkn(); fi fi

T2 true → {write q}
1 val := q.arg;
2 if grntd() 6= ∅ →
3 id := newid();
4 forwardupdates(u, id); fi

T3 � rcv probe() from w →
1 probercvd(w);
2 foreach v ∈ tkn() \ {w} do

3 uaw [v] := ∅; od

4 if w /∈ pndg →
5 if nbrs() \ {tkn() ∪ {w}} = ∅ →
6 sendresponse(w);
7 � nbrs() \ {tkn() ∪ {w}} 6= ∅ →
8 sendprobes(w);
9 snt [w] := nbrs() \ {tkn() ∪ {w}}; fi fi

T4 � rcv response(x,flag) from w →
1 responsercvd(flag, w);

2 aval [w] := x;
3 taken[w] := flag;
4 foreach v ∈ pndg do

5 snt [v] := snt [v] \ {w};
6 if snt [v] = ∅ →
7 pndg := pndg \ {v};
8 if v = u →
9 return gval();

10 � v 6= u →
11 sendresponse(v); fi fi od

T5 � rcv update(x, id) from w →
1 updatercvd(w);

2 aval [w] := x;
3 uaw [w] := uaw [w] ∪ id ;
4 if grntd() \ {w} 6= ∅ →
5 nid = newid();
6 sntupdates := sntupdates ∪ {w, id ,nid};
7 forwardupdates(w,nid);
8 � grntd() \ {w} = ∅ →
9 forwardrelease(); fi

T6 � rcv release(S) from w →
1 releasercvd(w);
2 granted [w] := false;
3 onrelease(w, S);

end

procedure sendprobes(node w)
pndg := pndg ∪ {w};
foreach v ∈ nbrs() \ {tkn() ∪ sntprobes() ∪ {w}} do

sendprobe() to v;od

procedure forwardupdates(node w, int id)
foreach v ∈ grntd() \ {w} do

sendupdate(subval(v), id) to v;od

procedure sendresponse(node w)
if (nbrs() \ {tkn() ∪ {w}} = ∅) →

granted [w] := setlease(w);fi
sendresponse(subval(w), granted [w]) to w;

boolean isgoodforrelease(node w)
return (grntd() \ {w} = ∅);

procedure onrelease(node w, set S)
Let id is the smallest id inS;
foreach v ∈ tkn() \ {w} do

Let A be the set of tuplesα in sntupdates

such thatα.node = v andα.sntid ≥ id ;
Let β be a tuple inA

such thatβ.rcvid ≤ α.rcvid , for all α in A;
Let S′ be the set of ids inuaw [v] with ids ≥ β.rcvid ;
uaw [v] := S′;
if isgoodforrelease(v) →

releasepolicy(v);fi od

forwardrelease();

procedure forwardrelease()
foreach v ∈ tkn() do

if isgoodforrelease(v) →
if taken[v] ∧ breaklease(v) →

taken[v] := false;
sendrelease(uaw [v]) to v;
uaw [v] := ∅;fi fi od

int newid()
upcntr := upcntr + 1;
return upcntr ;

real gval()
x := val ;
foreach v ∈ nbrs() do

x := f (x, aval [v]);od

return x;

real subval(node w)
x := val ;
foreach v ∈ nbrs() \ {w} do

x := f (x, aval [v]);od

return x;

set nbrs()
return the set of neighboring nodes;

set tkn()
return {v | v ∈ nbrs() ∧ taken[v] = true};

set grntd()
return {v | v ∈ nbrs() ∧ granted [v] = true};

set sntprobes()
return {snt [v1] ∪ · · · ∪ snt [vk]};

Figure 2: Mechanism for any lease-based algorithm. For the nodeu, {v1, . . . , vk} is the set of
neighboring nodes.

7



4.1 Properties of any Lease-Based Algorithm for Sequential Executions

We define alease graphG(Q) in a quiescent stateQ, as a directed graph with nodes as the nodes
in T , and for any edge (u, v) in T such thatu.granted [v] holds, there is a directed edge (u, v) in
G(Q). For any two distinct nodesu andv, we define theu-parent ofv as the parent ofv in treeT

rooted atu.

Lemma 4.1 For a sequential execution of a request sequence, in any quiescent state, for any two
neighboring nodesu andv, u.taken[v] = v.granted [u].

Proof. Consider any nodev in u.nbrs(). Variableu.taken[v] can be set totrue from false only
in Line 3 of T4 if the flag in the receivedresponse message istrue. However, while sending the
response message fromv to u with flag set totrue, v.granted [u] is set totrue in sendresponse().

While sending arelease message fromu to v, u.taken[v] is falsified inforwardrelease(). How-
ever, on receiving therelease message atv, v.granted [u] is falsified in Line 2 ofT6. �

Lemma 4.2 For a sequential execution of a request sequence, in any quiescent state, for any node
u and any nodev in u.nbrs(), if u.granted [v] then, for all nodesw in u.nbrs() \ {v}, u.taken[w]
holds.

Proof. By inspection of code,u.granted [v] can be set totrue only in the proceduresendresponse().
By inspection of code ofsendresponse(), u.granted [v] can be set totrue only if u.nbrs() \
{u.tkn() ∪ {v}} = ∅. That is, u.granted [v] can be set totrue only if, for all nodesw in
u.nbrs() \ {v}, u.taken[w] holds.

Further, by inspection of code,u.taken[w] is setfalse only in the procedureforwardrelease().
By inspection of code offorwardrelease(), u.taken[w] can be set tofalse only if, for all nodesv
in u.nbrs() \ {w}, u.granted [v] is false. That is, for any nodev in u.nbrs(), if u.granted [v] holds
then, for any nodew in u.nbrs() \ {v}, u.taken[w] is not falsified. �

Lemma 4.3 Consider a sequential execution of a request sequenceσ by a lease-based algorithm.
For anycombine requestq in σ, initiated at nodeu in a quiescent stateQ, letA be the set of nodes
v such thatv.granted [w] does not hold inQ, wherew is theu-parent ofv. In Q, for any nodev in
T , if v.pndg = ∅ and for any nodew in v.nbrs(), v.snt [w] = ∅, then, during the execution ofq, (1)
|A| probe messages are sent, and any nodev in A receives aprobe message from theu-parent of
v; (2) |A| response messages are sent; any nodev in A sends aresponse message to theu-parent
of v; (3) noupdate or release messages are sent.

Proof. We prove part (1) by induction on the length of the path fromu to any nodev in A.
Base case (path length1). By inspection of code ofT1, probe messages are sent to all nodes

in u.nbrs() \ {u.tkn() ∪ u.sntprobes() ∪ {u}}. Since in the quiescent stateQ, for any nodev in
T and any nodew in v.nbrs(), v.snt [w] = ∅, u.sntprobes() = ∅. Hence, aprobe message is sent
to any nodev in u.nbrs() such thatu.taken[v] does not hold. By Lemma 4.1, inQ, u.taken[v] =
v.granted [u]. Hence, any nodev in A such thatv is in u.nbrs() andv.granted [u] does not hold,
receives aprobe message fromu.

Induction hypothesis. Any nodev in A such that the length of the path fromu to v is i receives
aprobe message from theu-parent ofv.

8



Induction step. Consider a nodev in A such that the length of the path fromu to v is (i + 1).
Let theu-parent ofv is w. By the definition ofA, v.granted [w] does not hold inQ. Hence, by
Lemma 4.1 and Lemma 4.2,w.granted [u-parent ofw] does not hold inQ. Thus,w is in A, and by
induction hypothesisw receives aprobe message fromw′. By inspection of code ofT3, w sends a
probe message to any nodew′ in w.nbrs() such thatw.taken[w′] does not hold. Sincew.taken[v]
does not hold and the communication channels are reliable,v receives aprobe message fromw,
theu-parent ofv.

From above arguments, during the execution ofq at least|A| probe messages are sent. By
the inspection of code, any nodev in A ∪ {u} does not send anyprobe message to any node in
v.tkn()\{u-parent ofv}. And so, it is straightforward to see that any nodev in nodes(T )\A does
not receive anyprobe message. Hence, during the execution ofq only |A| probe messages are sent.

We prove part (2) by reverse induction on the length of the path fromu to any nodev in A. Let
the maximum length of the path fromu to any nodev in A be l .

Base case. Consider a nodev in A such that the length of the path fromu to v is l . By part
(1), v receives aprobe message fromw, the u-parent ofv. In the quiescent stateQ, let B be
v.nbrs() \ {v.tkn() ∪ {u-parent ofv}}. By Lemma 4.1,B must be∅, otherwise, there would be a
node inA with the length of the path fromu equal tol + 1. By inspection of code ofT3, if B is
empty, thenv sends back aresponse message tow.

Induction hypothesis. Let any nodev in A with the length of path fromu equal toi, sends a
response message to theu-parent ofv.

Induction step. Consider a nodev in A such that the length of the path fromu to v is i − 1.
Sincev is in A, i− 1 must be greater than0. In Q, letB bev.nbrs()\{v.tkn()∪{u-parent ofv}}.

By part (1),v receives aprobe message from theu-parent ofv. By given condition, inQ,
v.sntprobes() is empty. By inspection of code ofT3, if B is empty, thenv sends aresponse

message back to theu-parent ofv. Hence, the induction step succeeds.
Otherwise,v sendsprobe messages to each of the node inB, and setsv.pndg = {u-parent ofv}

andv.snt [u-parent ofv] = B. Since we are dealing with sequential execution, no node initiates
any request during the execution ofq. And so,v does not initiates any request or receives aprobe

message during the execution ofq. Hence,v.pndg ≤ 1.
By Lemma 4.1 and definition ofA, any node inB is also present inA. Further, the length of

the path fromu to any node inB is i. Hence, by induction hypothesis, any nodew in B sends a
response message tov. By inspection of code ofT4, on receiving theresponse message,v removes
w from v.snt [u-parent ofv]. If v.snt [u-parent ofv] becomes empty, thenv setsv.pndg = ∅, and
sends aresponse message to theu-parent ofv. Hence, the induction step succeeds.

(3) Follows from the inspection of code. �

Lemma 4.4 For any sequential execution of a request sequenceσ, in any quiescent state, for any
nodeu, (1) u.pndg = ∅; (2) for any nodev in u.nbrs(), u.snt [v] = ∅;

Proof. We prove by induction on the number of requests executed.
Base case: Initially, for any nodev, v.pndg = ∅ and for any nodew in v.nbrs(), v.snt [w] = ∅.
Induction hypothesis: In the quiescent stateQ just after execution ofi requests, for any node

v, v.pndg = ∅ and for any nodew in v.nbrs(), v.snt [w] = ∅.
Induction step: Consider the execution(i+ 1)st requestq initiated inQ. If q is awrite request,

then by inspection of code, noprobe or response message are generated. Hence, for any nodev,

9



v.pndg and any nodew in v.nbrs(), v.snt [w] are not modified. Therefore, the execution of(i+1)st
request preserves the claim of the lemma.

Otherwise,q is acombine request, say atu. Consider execution ofq. Let A be the set of nodes
v such thatv.granted [w] does not hold atQ, wherew = u-parent ofv.

By hypothesis, inQ, for any nodev, v.pndg = ∅ and for any nodew in v.nbrs(), v.snt [w] = ∅.
First, consider any nodev in nodes(T ) \ {A ∪ {u}}. By inspection of code, for any node

v, v.pndg and for any nodew in v.nbrs(), v.snt [w] can be modified only inT1 (on acombine

request atv), in T3 (on receiving aprobe message), or inT4 (on receiving aresponse message). In
sequential execution ofσ, v does not initiate any request during the execution ofq. By Lemma 4.3,
during the execution ofq, any node inA receives aprobe message, and only|A| probe messages
are sent. Hence,v does not receive anyprobe message during the execution ofq. By definition of
A, u-parent of any node inA is in A∪{u}. By Lemma 4.3, during the execution ofq, |A| response

messages are generated and any node inA sends aresponse message to theu-parent of the node.
Hence,v does not receive anyresponse message during the execution ofq. Hence,v.pndg and for
any nodew in v.nbrs(), v.snt [w] remain unchanged, that is,∅, during the execution ofq.

Second, considerv = u. By inspection of code ofT1, if u.nbrs() \ u.tkn() = ∅, thenu returns
gval(), and so,u.pndg and for any nodew in u.nbrs(), u.snt [w] remain unchanged, that is, remain
∅. Further, by Lemma 4.1 and Lemma 4.2,|A| = ∅. Hence, from the arguments in the previous
paragraph, induction step succeeds, and the lemma follows.

Otherwise, ifu.nbrs() \ u.tkn() 6= ∅. Then, sinceu.sntprobes() = ∅ by induction hypothesis,
u sends aprobe message to each of the node in the setu.nbrs() \ u.tkn(), andu addsu to u.pndg

and setsu.snt [u] = nodes .nbrs() \ u.tkn(). Since in a sequential execution, a new request can
be generated only in a quiescent state, no node generates anyrequest untilq is completed. Hence,
u does not generate any request untilq is completed, and by Lemma 4.3,u does not receive any
probe message from any node. Therefore,|u.pndg | ≤ 1. By definition of A, any nodew in
u.nbrs() \ u.tkn() is also inA. By Lemma 4.3,w sends back aresponse message tou. By
inspection of code ofT4, on receiving theresponse message,u removesw from u.snt [u]. When
u.snt [u] = ∅, that is,u has receivedresponse messages from all the nodes to whomu has sent a
probe message, then,u setsu.pndg = ∅, and returnsgval().

Finally, consider any nodev in A. By Lemma 4.3,v receives aprobe message from theu-
parent ofv, sayw. Let C bev.nbrs() \ {v.tkn() ∪ {w}}. By inspection of code ofT3, if C = ∅,
thenv sends aresponse message tow, andv.pndg and for any nodew′ in v.nbrs(), v.snt [w′]
remains unchanged, that is, remains∅.

Otherwise, ifC 6= ∅. Then, sincev.sntprobes() = ∅, v sends aprobe message to each of the
node inC. By inspection of code ofT3, while sending aprobe messages,v addsw to v.pndg and
setsv.snt [w] = C. As argued in the preceding paragraph, in a sequential execution, |v.pndg | ≤ 1.
By Lemma 4.3, any nodew′ in C sends back aresponse message tov. By inspection of code of
T4, on receiving theresponse message,v removesw′ from v.snt [v]. Whenv.snt [w] = ∅, that is,
v has receivedresponse messages from all the nodes inC, then,w setsv.pndg = ∅, and sends a
response message back tow.

Hence, after execution ofq, for any nodev in A, v.pndg = ∅ and for any nodew in v.nbrs(),
v.snt [w] = ∅. �

Lemma 4.5 Consider a sequential execution of a request sequenceσ by a lease-based algorithm.
For anywrite requestq in σ initiated at nodeu in a quiescent stateQ, let A be the set of nodes

10



in T reachable fromu in G(Q). Then, during the execution ofq, (1) any nodev in A receives an
update message from theu-parent ofv; (2) |A| update messages are sent; and (3) noprobe or
response messages are sent.

Proof. (1) We prove by induction on the length of the path fromu to any nodev in A.
Base case (path length1). By the inspection of code ofT2, update messages are sent to all

nodes inu.grntd(). That is, anupdate is sent to any nodev in A such that the length of the path
from u to v is 1.

Induction hypothesis. Any nodev in A such that the length of the path fromu to v is i, receives
anupdate message from theu-parent ofv.

Induction step. Consider a nodev in A such that the length of the path fromu to v is (i + 1).
By induction hypothesis, theu-parent ofv, sayw, receives anupdate message. By definition of
A, w.granted [v] holds. By inspection of code ofT5, w sends anupdate message tov. Since the
communication channels are reliable,v receives anupdate message fromw, theu-parent ofv.

(2) From above arguments, at least|A| update messages are sent. By the inspection of code,
any nodev in A ∪ {u} does not send anyupdate message to any node inv.nbrs() \ {v.grntd() ∪
{u-parent ofv}}. And so, it is straightforward to see that any nodev in nodes(T ) \ A does not
receive anyupdate message. Hence, during the execution ofq only |A| probe messages are sent.

(3) Follows from the inspection of code. �

Lemma 4.6 For any nodeu, u.granted [v] is set totrue only while sending aresponse message
to v with flag set totrue.

Proof. For any nodeu, u.granted [v] can be set totrue only in sendresponse procedure. By the
inspection of code, the lemma follows. �

Lemma 4.7 For any nodeu, u.granted [v] is set tofalse only on receiving arelease message from
v.

Proof. Follows from the inspection of code. �

Lemma 4.8 Consider a sequential execution of a request sequenceσ by a lease-based algorithm
and any two neighboring nodesu andv.

1. Let a combine requestq in σ(u, v) be initiated in a quiescent stateQ. If u.granted [v]
does not hold inQ, then in execution ofq, (i) a probe message is sent fromv to u; (ii) a
response message is sent fromu to v; (iii) u.granted [v] can be set totrue while sending the
response message fromv to u; and (iv) noupdate or release messages are sent. Otherwise,
if u.granted [v] holds, then in execution ofq, no messages are exchanged betweenu andv.

2. Let awrite requestq in σ(u, v) be initiated in a quiescent stateQ. If u.granted [v] does not
hold in Q, then in execution ofq, no messages are exchanged betweenu andv. Otherwise,
if u.granted [v] holds inQ, then in execution ofq, (i) an update message is sent fromu to v;
(ii) a release message fromv to u can be sent; (iii) on receiving therelease message atu,
u.granted [v] is set tofalse; and (iv) noprobe or response messages are sent.

11



3. Let awrite requestq in σ(v, u) be initiated in a quiescent stateQ. If u.granted [v] holds in
Q, then in execution ofq, a release message can be sent fromv to u, and on receiving the
release message atu, u.granted [v] is set tofalse.

4. In the execution of acombine request inσ(v, u), u.granted [v] is not affected.

Proof. Part (1) follows from Lemma 4.3, Lemma 4.4, and 4.6. Part (2) follows from Lemma 4.5,
Lemma 4.7, and the inspection of code. Part (3) follows from Lemma 4.7 and the inspection of
code. Part (4) follows from Lemma 4.3, Lemma 4.4, and Lemma 4.6. �

u.granted [v] in Q Requestq in σ(u, v) u.granted [v] in Q′ Cost
false R false 2

false R true 2

false W false 0

false N false 0

true R true 0

true W false 2

true W true 1

true N false 1

true N true 0

Figure 3: For any two neighboring nodesu andv, possible changes in the value ofu.granted [v]
and costs incurred by any lease-based algorithm in executing any requestq from σ(u, v). Here,q is
initiated in the quiescent stateQ and completed in the quiescent stateQ′. A release message sent
during the execution of awrite request inσ(v, u) is associated with anoop (N) request.

Lemma 4.8 is summarized in Figure 3. Arelease message sent during the execution of awrite

request inσ(v, u) is associated with anoop (N) request in this figure.
For any nodeu, we defineI1(u), I2(u), andI3(u) as follows. (1)I1(u): For the most recent

write requestq at u, u.val = q.arg ; (2) I2(u): For anyupdate or response messagem from any
neighboring nodev to u, m.x = f (A), whereA is the set of most recent write requests at each
of the nodes insubtree(v, u); and (3)I3(u): For any quiescent stateQ and any nodev in u.tkn(),
u.aval [v] = f (A(v)), whereA(v) is the set of the most recentwrite request at each of the nodes
in subtree(v, u). Let I(u) beI1(u) ∧ I2(u) ∧ I3(u).

Lemma 4.9 Consider a sequential execution of a request sequenceσ by a lease-based algorithm.
For any nodeu, if I1(u) and I3(u) hold just before anupdate messagem is sent fromu to any
nodev in u.nbrs(), thenm.x = A, whereA is the set of the most recentwrite requests at each of
the nodes insubtree(u, v).

Proof. By Lemma 4.2, for any nodev in u.nbrs(), if u.granted [v] then, for all nodesw in u.nbrs()\
{v}, u.taken[w] holds.

For any nodew in u.nbrs(), let A(w) be the set of the most recentwrite requests precedingq
in σ at each of the nodes insubtree(w, u). By I3(u), if u.taken[w] then,u.aval [w] = f (A(w)).

12



By the inspection of code, for any nodev in u.grntd(), anupdate messagem is sent tov with
m.x = u.subval(v). Let {w1, . . . , wk} beu.nbrs() \ {v} andB be the set of the most recentwrite

requests at each on the node insubtree(u, v).

m.x = subval(v)

= f (u.val , aval [w1], . . . , aval [wk]

= f (q.arg , f (A(w1)), . . . , f (A(wk)))

= f (B) (1)

In the above equation, the second equality follows from the definition of functionsubval().
The third equality follows fromI1(u) and I3(u). The last equality follows from the fact that
subtree(u, v) = {u} ∪ subtree(w1, u) ∪ · · · ∪ subtree(wk, u). �

Lemma 4.10 Consider a sequential execution of a request sequenceσ by a lease-based algorithm.
For any nodeu, I(u) is an invariant.

Proof.
Initially, there are nowrite request atu andu.tkn() is empty. Hence,I(u) holds.
{I(u)}T1{I(u)}. I1(u), I2(u), andI3(u) are not affected.
{I(u)}T2{I(u)}. Let thewrite requestq is initiated in the quiescent stateQ. In execution of

T2, I1(u) is only affected in Line 1. By the inspection of code, Line 1 preservesI1(u). I3(u) is not
affected in execution ofT2. If u.grntd() 6= ∅ in the quiescent stateQ, thenI2(u) is affected in the
procedureforwardupdates(), invoked in Line4. By Lemma 4.9,I2(u) is preserved in Line4.

Therefore,I1(u) ∧ I2(u) ∧ I3(u) is preserved in the execution ofT2.
{I(u)}T3{I(u)}. By the inspection of code,I1(u) andI3(u) are not affected.I2(u) is affected

only in the proceduresendresponse(), invoked in Line6 to send aresponse messagem to w.
However, Line6 is executed only ifu.nbrs() \ {u.tkn() ∪ {w}} is empty. ByI3(u), for any node
v in u.nbrs(), if u.taken[v], thenu.aval [v] = f (A), whereA is the set of the most recentwrite

requests at each of the nodes insubtree(v, u). As in the proof of Lemma 4.9,m.x = f (B), where
B is the set of the most recentwrite requests at each of the node insubtree(u,w).

{I(u)}T4{I(u)}. I1(u) is not affected inT4. In T4, I3(u) is affected in Line2 andI2(u) is
affected insendresponse() procedure, invoked in Line11.

In the following, for any nodew′ in u.nbrs(), let B(w′) be the set of the most recentwrite

requests at each of the node insubtree(w, u).
SinceI2(u) holds for the receivedresponse message, after execution of Line2, u.aval [w] =

f (B), whereB(w). Hence,I3(u) holds in the execution of Line2.
To argue thatI2(u) holds in Line11, we show that just before the execution of Line11, for

each nodew′ in u.nbrs() \ {v}, u.aval [w′] = f (B(w′)).
By Lemma 4.3 and Lemma 4.5, aresponse message fromw is received during the execution

of a combine request, sayq. We can assume thatq.node 6= u, since Line11 is executed only if
q.node 6= u.

From Lemma 4.3,u is q.node-parent ofw andv is q.node-parent ofu. Let q be initiated in the
quiescent stateQ, and in quiescent stateQ, let A be the set of nodesu.nbrs() \ {u.tkn() ∪ {v}}.

13



Again by Lemma 4.3, during execution ofq, u sends aprobe message to each of the node in
A and receives aresponse message from each of them. For each the receivedresponse message
from w, as argued above, after execution of Line2, u.aval [w] = f (B(w)). By the inspection of
code ofT3, while sendingprobe messages,u setsu.snt [v] = A. By the inspection of code ofT4,
on receiving aresponse message from a nodew, w is removed fromu.snt [v]. Hence, Line11 is
executed only whenu has receivedresponse messages from all the nodes inA. Hence, just before
execution of11, for each of the nodew′ in A, u.aval [w′] = B(w′). By I2, for each of the nodew′

in u.tkn(), u.aval [w′] = B(w′). Hence, just before the execution of Line11, for each of the node
w′ in u.nbrs \ {v}, u.aval [w′] = B(w′). Hence, as in the proof of Lemma 4.9, for theresponse

messagem sent tov, m.x = f (C), whereC is the set of the most recentwrite requests at each of
the node insubtree(u, v).

{I(u)}T5{I(u)}. I1(u) is not affected in the execution ofT5.
I3(u) is affected only in Line 2. LetA be the set of the most recentwrite requests at each of

the node insubtree(w, u). By I2(u), m.x = f (A). After Line 2u.aval [w] = f (A). Hence,I3(u)
is preserved in Line 2.

If u.grntd() 6= ∅ in quiescent stateQ, thenI2(u) is affected in the procedureforwardupdates(),
invoked in Line 7. By Lemma 4.9,I2(u) is preserved in Line 7.

Therefore,I1(u) ∧ I2(u) ∧ I3(u) is preserved in the execution ofT5.
{I(u)}T6{I(u)}. I1(u), I2(u), andI3(u) are not affected. Hence,I(u) is preserved. �

Lemma 4.11 Any lease-based aggregation algorithm is nice.

Proof. Follows from Lemma 4.3 and Lemma 4.10. �

From Lemma 4.11 and the definition of a nice aggregation algorithm, we have that any lease-
based aggregation algorithm provides strict consistency in a sequential execution.

5 Competitive Analysis Results for Sequential Executions

var lt : array[v1 . . . vk] of int;
granted : array[v1 . . . vk] of boolean;

procedure oncombine()
foreach v ∈ tkn() do

lt [v] := 2; od

procedure probercvd(node w)

foreach v ∈ tkn() \ {w} do

lt [v] := 2; od

boolean setlease(node w)
lg[w] := true;
return true;

procedure responsercvd(boolean flag,node w)

if flag ∧ (taken[w] = false) →
lt [w] := 2; fi

procedure updatercvd(node w)

if (grntd() \ {w} = ∅) ∧ lt [w] > 0 →
lt [w] := lt [w] − 1; fi

procedure releasepolicy(node v)

lt [v] := max(0, lt [v] − |uaw [v]|);
procedure releasercvd(node w)

lg[w] := false;
boolean breaklease(node w)

return(lt [w] = 0);

Figure 4: Policy decisions forRWW

We defineRWW as an online lease-based aggregation algorithm that follows the policy deci-
sions shown in Figure 4 for setting or breaking a lease.

Informally, RWW works as follows. For any edge(u, v), RWW sets the lease fromu to v

during the execution of acombine request at any node in thesubtree(v, u), and breaks the lease
after two consecutivewrite requests at any nodes insubtree(u, v).

14



5.1 Properties ofRWW

For positive integersa andb, an online lease-based algorithmA is in the class of(a, b)-algorithms
if, in a sequential execution of any request sequenceσ by A, for any edge(u, v), A satisfies the
following condition: (1) ifu.granted [v] is false, then it is set totrue aftera consecutivecombine

requests inσ(u, v); and (2) ifu.granted [v] is true, then it is set tofalse afterb consecutivewrite

requests inσ(u, v).
For any ordered pair of neighboring nodesu and v, we definetype(u, v) messages as the

following kinds of messages exchanged betweenu andv: (1) probe messages fromv to u; (2)
response messages fromu to v; (3) update messages fromu to v; and (4)release messages from
v to u. For a lease-based algorithmA and a request sequenceσ, we defineCA(σ, u, v), as the
number oftype(u, v) messages in execution ofσ byA.

Lemma 5.1 Consider a sequential execution of a request sequenceσ byRWW and any two neigh-
boring nodesu andv. Then, during the execution of any request fromσ(v, u), u.granted [v] is not
affected.

Proof. First, consider the execution of anycombine request inσ(v, u). By Lemma 4.3 and Lemma
4.4, noupdate or release messages are sent. Further, noresponse message fromu to v are sent.
Hence,u.granted [v] is not affected during the execution of anycombine request inσ(v, u).

Second, consider the execution of anywrite request inσ(v, u). By Lemma 4.5, noprobe or
response messages are sent. Further, noupdate message fromu to v is sent. By the inspection
of code ofRWW, a release message fromv to u can sent during execution of awrite request in
σ(u, v). Hence,u.granted [v] is not affected during the execution of anywrite request inσ(v, u).�

Let I4(u) be the following predicate. For any nodev in u.nbrs(), if u.taken[v] does not hold
then,u.uaw [v] = ∅. Otherwise, ifu.grntd()\{v} = ∅ then,(u.lt [v]+|u.uaw [v]| = 2)∧u.lt [v] > 0;
elseu.lt [v] = 2.

Lemma 5.2 Consider a sequential execution of a request sequence byRWW. For any nodeu,
I4(u) is an invariant.

Proof. Initially, for any nodev in u.nbrs(), u.taken[v] does not hold andu.uaw [v] = ∅.
{I4(u)}T1{I4(u)}. For any nodev in u.tkn(), u.lt [v] is set to2 in oncombine procedure and

u.uaw [v] is set to∅ in Line 3. Hence,I4(u) is preserved.
{I4(u)}T2{I4(u)}. I4(u) is not affected.
{I4(u)}T3{I4(u)}. For any nodev in u.tkn()\{w}, u.lt [v] is set to2 in probercvd() procedure

andu.uaw [v] is set to∅ in Line 3. Hence,I4(u) is preserved.
{I4(u)}T4{I4(u)}. By Lemma 4.3, aresponse message is received fromw as a result of an

earlierprobe message sent tow during execution of acombine request, sayq. By Lemma 4.3
again, in the quiescent stateQ in which q is initiated,u.taken[w] does not hold. Hence, ifI4(u)
holds before execution ofT4 then,u.uaw [w] is empty.

If flag is true then,u.lt [w] is set to2 in responsercvd() procedure, andu.taken[w] is set to
true in Line 3. Sinceu.uaw [w] remains empty,I4(u) holds after execution ofT4.

{I4(u)}T5{I4(u)}. By Lemma 4.5 and 4.1,u receives anupdate message fromw iff u.taken[w]
holds.

15



If u.grntd()\{w} = ∅ then,u.lt [w] is decremented by1 in updatercvd() procedure. Otherwise,
u.lt [w] is not affected. In Line3, |uaw [w]| is incremented by1. Hence, ifu.lt [w] remains greater
than0, thenI4(u) is preserved.

If u.lt [w] is decremented to0 then, arelease message is sent tow in forwardrelease() procedure
invoked in Line9. In forwardrelease() procedure,u.taken[w] is set tofalse, andu.uaw [w] is set
to ∅. Hence,I4(u) is preserved.

{I4(u)}T6{I4(u)}. Fix v to be an arbitrary node inu.nbrs() \ {w}.
By the inspection of code, ifu.grntd() \ {v} 6= ∅ then,u.lt [v] is not affected. Hence,I4(u) is

preserved in execution ofT6.
Now we argue that, ifu.grntd() \ {v} = ∅, then alsoI4(u) is preserved.
First, we argue that|S| = 2. By the inspection of code, arelease message from nodew to

u is sent only inforwardrelease() procedure containingw.uaw [u]. Since anyrelease message is
sent only ifw.breaklease(u) returnstrue, w.lt [u] is 0 while sendingrelease message. SinceI4(u)
holds before execution ofT6, |S| = 2.

Second, we argue that inonrelease() procedure, the number of tuplesα in sntupdates with
α.sntid greater or equal to the smallestid in S is at most2. From the inspection of code, (1)
identifiers of all receivedupdate messages at nodew from u are added tow.uaw [u]; (2) identifiers
of sentupdate messages fromu are always incremented; (3) an identifier is not removed fromthe
middle inw.uaw [u], that is, identifiers inw.uaw [u] are contiguous; and (4) on receiving anupdate

message, identifier of the forwardedupdate message to nodew is added tosntupdates. Hence,S
contains identifiers of last twoupdate messages sent tow from u, that is,S contains two highest
identifiers ofupdate messages sent tow. SinceS may contain identifiers corresponding to the
update messages due towrite requests atu, the number of tuplesα in sntupdates with α.sntid

greater or equal to the smallest id inS is at most2.
Third, because of above arguments,|A| is at most2, whereA is as defined inonrelease()

procedure.
Fourth, we argue that|S ′| is at most2. Identifiers of the receivedupdate messages are in

increasing order. Before receiving therelease message,u.granted [w] holds. On receiving an
update message fromv, identifier of the receivedupdate message is added tou.uaw [v]. Since
u.granted [w] holds, on receiving anupdate with id , anupdate message is sent tow with nid , and
a tuple{v, id , nid} is addedsntupdates. Hence, the size of the set of identifiers inu.uaw [v] (i.e.,
|S ′|) with identifiers≥ β.rcvid , whereβ is as defined inonrelease() procedure, is at most2.

Finally, we argue that|u.uaw [v]| + u.lt [v] = 2. Since before receiving therelease message,
u.granted [w] andI4(u) hold,u.lt [v] = 2 before the invocation ofreleasepolicy . In releasepolicy ,
u.lt [v] is set tou.lt [v]−|u.uaw [v]|. Hence, after execution ofreleasepolicy , |u.uaw [v]|+u.lt [v] =
2.

If u.lt [v] becomes0 then, inforwardrelease() procedure,u.tkn[v] is setfalse, u.uaw [v] is set
to ∅, and arelease message is sent tov.

Hence,I4(u) is preserved in execution ofT6. �

Lemma 5.3 Consider a sequential execution of a request sequenceσ byRWW and any two neigh-
boring nodesu andv. (1) In the quiescent state after execution of anycombine request inσ(u, v),
u.granted [v] holds. (2) In the quiescent state after execution of two consecutivewrite requests in
σ(u, v), u.granted [v] does not hold.

16



Proof. (1) Let the thecombine requestq is initiated in the quiescent stateQ and completed in the
quiescent stateQ′.

If u.granted [v] in Q, then notype(u, v) messages are sent during the execution ofq, and so
u.granted [v] holds inQ′.

Otherwise, ifu.granted [v] does not hold inQ, then by Lemma 4.3, during the execution ofq,
a probe message is sent fromv to u and aresponse message is sent fromu to v. By inspection
of code ofsendresponse, RWW’s functionsetlease is invoked. By inspection of code ofRWW,
setlease always returnstrue, and sou.granted [v] is set totrue. Hence, after execution ofq,
u.granted [v] holds.

(2) Let the two consecutivewrite requests areq1 andq2, initiated in quiescent statesQ andQ′

respectively. Letq2 is completed in the quiescent stateQ′′.
By Lemma 4.5, ifu.granted [v] does not hold inQ, then during the execution ofq1, notype(u, v)

messages are exchanged betweenu andv. Hence,u.granted [v] is not affected and remainsfalse
in Q′ andQ′′.

Otherwise, ifu.granted [v] in Q, then without loss of generality we can assume that the request
precedingq1 in σ(u, v) is acombine requestq.

Since, by Lemma 5.1, any request inσ(v, u) does not affectu.granted [v], without loss of
generality we can also assume that there are no request inσ(v, u) such that the request lies between
q1 andq2 in σ.

By part (1), inQ, there is a path fromu to q.node (sayw) in the lease graphG(Q). Further, inQ,
w.uaw [u-parent ofw] is empty andw.lt [u-parent ofw] is 0. By Lemma 4.5,w receives anupdate
message during the execution ofq1. By the inspection of code ofT5, w.taken[u-parent ofw] holds
in Q′. Hence, by Lemma 4.2 and Lemma 4.1,u.granted [v] holds inQ′.

It is sufficient to show that during the execution ofq2, a release message is sent fromv to u,
falsifying u.granted [v].

Let A be the set of reachable nodes in the lease graphG(Q′) from u following the edge(u, v).
Let id(q1, w) be theid of theupdate message received atw during the execution ofq1.
First, we show that the following properties hold. Fixw to be an arbitrary node inA. (1) Node

w receives anupdate message during the execution ofq1. (2) In quiescent stateQ′, w.uaw [u-parent ofw]
containsid(q1, w). (3) In quiescent stateQ′, if w.grntd()\{u-parent ofw} is empty,|w.uaw [u-parent ofw]| =
1 andw.lt [u-parent ofw] = 1.

(1) By Lemma 4.5, noprobe or response messages are sent during the execution ofq1. By the
inspection of code, an edge is added in the lease graph only while sending and receiving aresponse

message. Hence, if an edge is present in the lease graphG(Q′), then the edge is also present in the
lease graphG(Q). Hence, by Lemma 4.5, each node inA receives anupdate message during the
execution ofq1.

(2) From (1) and Lemma 4.5,w receives anupdate message fromu-parent ofw. From the
inspection of code ofT5, id(q1, w) is added tow.uaw [u-parent ofw]. In quiescentQ′, since the
identifiers ofupdate messages sent from theu-parent ofw to w are in increasing order andq1

is the latestwrite request,id(q1, w) is the highest identifier inw.uaw [u-parent ofw]. Hence,
w.uaw [u-parent ofw] containsid(q1, w).

(3) Without loss of generality assume thatw.grntd() \ {u-parent ofw} is empty. By (2), in
quiescent stateQ′, |w.uaw [u-parent ofw]| > 0.

By the inspection of code,w.lt [u-parent ofw] > 0. Hence, by Lemma 5.2,|w.uaw [u-parent ofw]| ≤
2.

17



By contradiction, we show that|w.uaw [u-parent ofw]| 6= 2. Assume that|w.uaw [u-parent ofw]| =
2 in Q′. By Lemma 5.2 and the inspection of code ofT5 andT6, if w.grntd() \ {u-parent ofw} is
empty and|w.uaw [u-parent ofw]| = 2, thenw.lt [u-parent ofw] is 0 in Q′. Hence,w must send a
release message to theu-parent ofw and setw.taken[u-parent ofw] to false during the execution
of q1. But w is in A, hence, contradiction.

Therefore,|w.uaw [u-parent ofw]| = 1, and by Lemma 5.2, (3) follows.
Second, We show the desired result by showing that every nodew in A, includingv, sends a

release message tou-parent ofw containing{id(q1, w), id(q2, w)}.
We prove this claim by reverse induction on the length of the path fromu to any node inA. Let

the maximum length of the path fromu to any node inA be l .
Base case. Consider a nodew in A such that the length of the path fromu tow is l . By definition

of A, w.grntd() \ {u-parent ofw} is empty. By Claim 2 and Claim 3,w.uaw [u-parent ofw] =
{id(q1, w)} andw.lt [u-parent ofw] = 1.

By Lemma 4.1 and Lemma 4.2,w is reachable fromq2.node in the lease graphG(Q′). Hence,
by Lemma 4.5, during the execution ofq2, w receives anupdate message from theu-parent ofw.

By inspection of code ofT5, updatercvd() function of RWW is invoked. Inupdatercvd(),
w.lt [u-parent ofw] is set to0. By inspection of code ofT5, forwardrelease() procedure is invoked.
By inspection of code ofRWW, breaklease() returnstrue. Hence,w.granted [u-parent ofw] is
set tofalse and arelease message is sent to theu-parent ofw containing{id(q1, w), id(q2, w)}.

Induction hypothesis. Let any nodew in A with the length of the path fromu to w is i, where
i > 1, sends arelease message to theu-parent ofw containing{id(q1, w), id(q2, w)}.

Induction step. Consider a nodew in A such that the length of the path fromu to w is i − 1.
As argued in the base case, during the execution ofq2, w receives anupdate message from the
u-parent ofw.

By property (2) and above arguments,w.uaw [u-parent ofw] containsid(q1, w) andid(q2, w).
By induction hypothesis, for each nodew′ in w.nbrs() such thatw is u-parent ofw′, w receives

a release message fromw′.
By the inspection of the code ofT6, after receiving arelease message from all the nodesw′

such thatw.granted [w′] in Q′, w setsw.lt [u-parent ofw] to 0, and sends arelease message to
u-parent ofw containing{id(q1, w), id(q2, w)}.

Therefore, during the execution ofq2, arelease message is sent fromv tou, falsifyingu.granted [v].
�

Lemma 5.4 The algorithmRWW is a (1, 2)-algorithm.

Proof. Follows from Lemma 5.3. �

Lemma 5.5 Consider a sequential execution of any request sequenceσ byRWW. For any quies-
cent stateQ, and for any ordered pair of neighboring nodes(u, v), FRWW(u, v) is greater than0
if and only ifu.granted [v] holds.

Proof. Follows from Lemma 5.1 and Lemma 5.3. �

18



R

R

W

R

W

W

R
R

R

W

W

RS(1, 0)

S(0, 0) S(0, 2)

S(1, 2) S(1, 1)

S(0, 1)
W

N, W N
N

W, N
R, N

W, N R, N
N

N

Figure 5: States and state transitions for any pair of nodes(u, v) in executing requests fromσ′(u, v)
(defined in Lemma 5.8).

5.2 Competitive Ratio ofRWW

In this section we show thatRWW is 5
2
-competitive against an optimal offline lease-based algo-

rithm OPT for the sequential aggregation problem (see Theorem 1). We also show thatRWW is
5-competitive against a nice optimal offline algorithm for the sequential aggregation problem (see
Theorem 2). Further, we show that, for any lease-based aggregation algorithmA, there exist a
request sequenceσ and an offline algorithm such that, in a sequential executionof σ, the cost ofA
is at least5

2
times that of the offline algorithm (see Theorem 3).

Lemma 5.6 In a sequential execution of any request sequenceσ, for any two neighboring nodes
u andv, CRWW(σ, u, v) = CRWW(σ(u, v), u, v).

Proof. Follows from Lemma 4.8 and Lemma 5.1. �

Lemma 5.7 Consider a sequential execution of a request sequenceσ by a lease-based algorithm
A. For any two neighboring nodesu andv, the total number of messages exchanged betweenu

andv in executingσ is the sum ofCA(σ, u, v) andCA(σ, v, u).

Proof. Follows from the definitions ofCA(σ, u, v) andCA(σ, v, u). �

Consider a sequential execution of an arbitrary request sequenceσ byRWW. For any quiescent
stateQ, and for any ordered pair of neighboring nodes(u, v), we define the configuration ofRWW,
denotedFRWW(u, v), as follows: (1) ifQ is the initial quiescent state, thenFRWW(u, v) is 0; (2) if
the last completed request inσ(u, v) is acombine request, thenFRWW(u, v) is 2; (3) if the last two
completed requests inσ(u, v) are acombine request followed by awrite request, thenFRWW(u, v)
is 1; (4) if the last two completed requests inσ(u, v) arewrite requests, thenFRWW(u, v) is 0.

For any quiescent stateQ and ordered pair of neighboring nodes(u, v), we define the configu-
ration ofOPT FOPT(u, v) to be1 if u.granted [v] holds; otherwise,0.

Lemma 5.8 Consider a sequential execution of a request sequenceσ by RWW and OPT. For
any two neighboring nodesu andv, CRWW(σ, u, v) is at most5

2
timesCOPT(σ, u, v).

19



minimize : c

Φ(0, 2) − Φ(0, 0) + 2 ≤ 2 · c
Φ(1, 2) − Φ(0, 0) + 2 ≤ 2 · c
Φ(0, 0) − Φ(0, 0) ≤ 0
Φ(1, 2) − Φ(1, 0) + 2 ≤ 0
Φ(0, 0) − Φ(1, 0) ≤ 2 · c
Φ(1, 0) − Φ(1, 0) ≤ c

Φ(0, 0) − Φ(1, 0) ≤ c

Φ(0, 2) − Φ(0, 2) ≤ 2 · c
Φ(1, 2) − Φ(0, 2) ≤ 2 · c
Φ(0, 1) − Φ(0, 2) + 1 ≤ 0
Φ(1, 2) − Φ(1, 2) ≤ 0
Φ(0, 1) − Φ(1, 2) + 1 ≤ 2 · c
Φ(1, 1) − Φ(1, 2) + 1 ≤ c

Φ(0, 2) − Φ(1, 2) ≤ c

Φ(0, 2) − Φ(0, 1) ≤ 2 · c
Φ(1, 2) − Φ(0, 1) ≤ 2 · c
Φ(0, 0) − Φ(0, 1) + 2 ≤ 0
Φ(1, 2) − Φ(1, 1) ≤ 0
Φ(0, 0) − Φ(1, 1) + 2 ≤ 2 · c
Φ(1, 0) − Φ(1, 1) + 2 ≤ c

Φ(0, 1) − Φ(1, 1) ≤ c

Figure 6: LP formulation of the costs associated with state transitions.

20



Proof. Once a requestq in σ is initiated in a quiescent state, without loss of generality, we
assume thatRWW executesq, and thenOPT executesq.

We construct a new request sequenceσ′(u, v) from σ(u, v) as follows: (1) insert anoop request
in the beginning and at the end ofσ(u, v); and (2) insert anoop request between every pair of
successive requests inσ(u, v).

In the rest of the proof, first, for bothRWW andOPT, we argue that we can charge each of the
type(u, v) messages to a request inσ′(u, v). Then, to prove the lemma, we use potential function
arguments to show thatCRWW(σ′(u, v), u, v) is at most5

2
timesCOPT(σ′(u, v), u, v).

For RWW, from Lemma 5.6, we have,CRWW(σ, u, v) = CRWW(σ(u, v), u, v). For RWW,
we do not charge any message to anoop request inσ′(u, v). Hence, we have,CRWW(σ, u, v) =
CRWW(σ′(u, v), u, v).

ForOPT, from lemma 4.3, during the execution of acombine request inσ(v, u), notype(u, v)
messages are sent. Also from Lemma 4.5 and part 3 of Lemma 4.8,during the execution of a
write request inσ(v, u) by OPT, only a release message fromv to u can be sent. Consider a
type(u, v) release messagem sent during the execution of awrite requestq in σ(v, u) by OPT.
On receivingm, u.granted [v] is falsified. From Lemma 4.5, Lemma 4.3, Lemma 4.6, and part 3
and 4 of Lemma 4.8,u.granted [v] is not set totrue before executing anothercombine request in
σ(u, v). Hence, at most onetype(u, v) release message can be associated with anoop request.
Thus, we can associate alltype(u, v) messages with a request inσ′(u, v).

Therefore, we can restrict our attention to messages sent inexecuting requests inσ′(u, v) in
comparingCRWW(σ, u, v) andCOPT(σ, u, v).

For the ordered pair(u, v), in Figure 5, we show a state diagram depicting possible changes
in FRWW(u, v) andFOPT(u, v) in executing a request fromσ′(u, v). In the state diagram, a state
labeledS(x, y) represent a state of the algorithms in whichFOPT(u, v) is x andFRWW(u, v) is y.
Observe that the changes inFRWW(u, v) in executing a request is deterministic as specified by the
algorithm in Figure 4. On the other hand, the changes inFOPT(u, v) in executing a request is not
known in advance. Hence, more than one possible changes inFOPT(u, v) in executing a request
are depicted by non-deterministic state transitions. Recall that the cost of processing a request in a
particular configuration for any lease-based algorithm is given in Figure 3.

We define a potential functionΦ(x, y) as a mapping from a stateS(x, y) to a positive real
number. The amortized cost of any transition is defined as thesum of the change in potential
∆(Φ) and the cost ofRWW in the transition. For any transition, we write that the amortized
cost is at mostc times the cost ofOPT in the transition, wherec is a constant factor. We solve
these inequalities by formulating a linear program with an objective function to minimizec (see
Figure 6). By solving the linear program, we getc = 5

2
, Φ(0, 0) = 0, Φ(0, 1) = 2, Φ(0, 2) = 3,

Φ(1, 0) = 5
2
, Φ(1, 1) = 2, andΦ(1, 2) = 1

2
.

Hence, for any state transition due to the execution of a requestq from σ′(u, v), the amortized
cost is at most5

2
times the cost ofOPT in the execution ofq. Recall that, in the initial quiescent

state,FRWW(u, v) andFOPT(u, v) are0, and the potential for any state is non-negative. There-
fore, in execution ofσ′(u, v), the total cost ofRWW is at most5

2
times that ofOPT. That is,

CRWW(σ, u, v) is at most5
2

timesCOPT(σ, u, v). �

Theorem 1 AlgorithmRWW is 5
2
-competitive with respect to any lease-based algorithm for the

sequential aggregation problem.

21



Proof. From Lemma 5.8, in a sequential execution of a request sequenceσ, for any two neighbor-
ing nodesu andv, CRWW(σ, u, v) is at most5

2
timesCOPT(σ, u, v). By symmetry,CRWW(σ, v, u) is

at most5
2

timesCOPT(σ, v, u). Hence, the total number of messages exchanged betweenu andv in
execution ofσ byRWW is at most5

2
times that ofOPT. Summing over all the pairs of neighboring

nodes, we get thatCRWW(σ) is at most5
2

timesCOPT(σ). Hence, the theorem follows. �

Theorem 2 AlgorithmRWW is5-competitive with respect to any nice algorithm for the sequential
aggregation problem.

Proof sketch.Let OPTN be the optimal nice algorithm for the sequential aggregation problem.
Consider any pair of neighboring nodes(u, v). We compare the cost ofRWW and OPTN in
executing request sequencesσ(u, v) andσ(v, u) separately.

First, consider the execution of requests inσ(u, v). We define anepochas follows. The first
epoch starts at the beginning of the request sequence. An epoch ends with awrite to combine tran-
sition inσ(u, v), and a new epoch starts at the same instant. By the definition ofa nice algorithm,
OPTN provides strict consistency for the sequential execution problem. Hence,OPTN sends at
least one message in the any epoch. We are able to show that thealgorithmRWW sends at most
5 messages in any epoch (follows from Lemma 5.3). Summing overall the epochs, we get that
the cost ofRWW in executingσ(u, v) is at most5 times that ofOPTN. By symmetry, the cost
of RWW in executingσ(v, u) is at most5 times that ofOPTN. By summing over all the pair of
neighboring nodes, the desired result follows. �

Theorem 3 For any lease-based algorithmA, there exist a request sequenceσ and an offline
algorithm such that the costA in executingσ is at least5

2
times that of the offline algorithm.

Proof sketch. We give an adversarial request generating argument to sketch the desired result.
Consider an example of a tree consisting of just two nodesu andv such that there is an edge
betweenu andv. The adversarial request generating algorithmADV is as follows. The algorithm
ADV generatesa combine requests atv such that there is a lease fromu to v after execution of
a-th request. And then,ADV generatesb write requests atu such that there is no lease fromu
to v after execution ofb-th request. Using potential function arguments, we can show that, for a
sufficient long request sequenceσ generated byADV, the cost ofA in executingσ is at least5

2

times that of an optimal offline algorithm, which is tailoredto the request sequenceσ. �

6 Consistency Results for Concurrent Executions

In this section we generalize the traditional definition of causal consistency [1] for the aggrega-
tion problem, and show that any lease-based aggregation algorithm is causally consistent. As
mentioned earlier, the key difference between the setup in [1] and ours is in reading one value
compared to aggregating values from all the nodes. See Section 3 for an informal discussion on
this section.

22



6.1 Definitions

Request. For the convenience of the analysis of this section, we extend the definition of a request
from Section 2 as follows. A requestq is a tuple (node, op, arg , retval , index ), where (1)node is
the node where the request is initiated; (2)op is the type of of the request,combine, gather , or
write; (3) arg is the argument of the request (if any); (4)retval is the return value of the request (if
any); and (5)index is the number of requests that are generated atq.node and completed beforeq
is completed.

An aggregation algorithm executeswrite andcombine requests as described in Section 2. To
execute agather request, an aggregation algorithm returns a setA of pairs of the form(node, index )
such that (1) for each nodeu in T , there is a tuple(u, i) in A, wherei ≥ −1; (2) for any tuple(u, i)
in A, if i ≥ 0, then there is awrite requestq such thatq.node = u andq.index = i; and (3)|A| is
equal to the number of nodes inT .

Miscellaneous. For the convenience of analysis of this section, we extend the definition of
function f from Section 2 as follows. In the extended definition,f can also take a set of pairsA
of the form(node, index ) as an argument, andf (A) = f (B), whereB is a set ofwrite requests
such that for any tuple(u, i) in A with i ≥ 0, there is awrite requestq in B with q.node = u and
q.index = i.

A combine-writesequence (set) is a sequence (set) of requests containing only combine and
write requests. Agather-writesequence (set) is a sequence (set) of requests containing only gather

andwrite requests. LetA be a set of requests. Then,pruned(A, u) is a subset ofA such that, for
any requestq in A, q is in pruned(A, u) if and only if q.op = write or q.node = u.

For any sequence of requestsS and any requestq in S, we definerecentwrites(S, q) as a set
of pairs such that the size ofrecentwrites(S, q) is equal to the number of nodes inT , and for any
nodeu in T : (1) if q′ is the most recentwrite request atu precedingq in S, then(u, q′.index ) is in
recentwrites(S, q); (2) if there is nowrite request atu precedingq in S, in which case,(u,−1) is
in recentwrites(S, q).

LetA be a gather-write set, andS be a linear sequence of all the requests inA. Then,S is called
aserializationof A if and only if, for anygather requestq in S, q.retval = recentwrites(S, q).

For any two request sequencesσ andτ , σ − τ is defined to be the subsequence ofσ containing
all the requestsq in σ such thatq is not present inτ . For any two request sequencesσ andτ , σ.τ is
defined to beσ appended byτ .

Compatibility . Letq1 be acombine orwrite request andq2 be agather orwrite request. Then,
q1 andq2 arecompatibleif and only if (1) q1.op = write andq1 = q2; or (2) q1.op = combine,
q2.op = gather , q1.retval = f (q2.retval), and thenode, arg , andindex fields are equal forq1 and
q2. A combine-write sequenceσ and a gather-write sequenceτ are compatible if and only if (1)
σ andτ are of equal length; and (2) for all indicesi, σ(i) andτ(i) are compatible. LetA be a
combine-write set andB be a gather-write set. Then,A andB are compatible if and only if for
any nodeu in T , there exists a linear sequenceS of all the requests inpruned(A, u), and a linear
sequenceS ′ of all the requests inpruned(B, u) such thatS andS ′ are compatible.

Causal Consistency. We definecausal ordering( ) among any two requestsq1 andq2 in a

gather-write execution-historyA as follows. First,q1
1
 q2 if and only if (1) q1.node = q2.node

and q1.index < q2.index ; or (2) q1 is a write request,q2 is a gather request, andq2 returns

(q1.node, q1.index ) in q2.retval . Second,q1
i+1
 q2 if and only if there exists a requestq′ such

23



thatq1
i
 q′

1
 q2. Finally, q1  q2 if and only if there exists ani such thatq1

i
 q2.

The execution-history of an aggregation algorithm is defined as the set of all requests executed
by the algorithm. A gather-write execution-historyA is causally consistentif and only if, for
any nodeu in T , there exists a serializationS of pruned(A, u) such thatS respects the causal
ordering among all the requests inpruned(A, u). A combine-write execution-historyA is
causally consistent if and only if there exists a gather-write execution-historyB such thatA andB

are compatible andB is causally consistent.

6.2 Algorithm

In Figure 7, we present the mechanism for any lease-based aggregation algorithm withghost ac-
tions(in the curly braces). The ghost actions are presented for the convenience of analysis.

For any nodeu, u.log is a ghost variable. For any nodeu, u.wlog is a subsequence ofu.log

containing all thewrite requests inu.log .
Initially, for any nodeu, u.val := 0, u.uaw := ∅, u.pndg := ∅, u.upcntr := 0, u.sntupdates :=

∅. For each nodev in u.nbrs(), u.taken[v] := false, u.granted [v] := false, u.aval [v] := 0,
u.snt [v] := ∅, andu.log is empty.

Functionrequest(combine) generates and returns acombine requestq′ as follows.q′.node =
u, q′.op = combine, q′.arg = ∅, q′.retval = gval(), andq′.index is 1 plus the number of com-
pleted requests atu. Functionrequest(write, q) generates and returns awrite requestq′ as follows.
q′.node = u, q′.op = write, q′.arg = q.arg , q′.retval = ∅, andq′.index is 1 plus the number of
completed requests atu.

6.3 Analysis

For each nodeu in T , we construct a gather-write sequenceu.gwlog from u.log as follows: (1)
if u.log(i) is a write request thenu.gwlog(i) = u.log(i); (2) if u.log(i) is a combineq1 then,
u.gwlog(i) is agather q2 such thatq2.node = q1.node, q2.op = gather , q2.index = q1.index , and
q2.retval = recentwrites(u.log , q1).

For each nodeu in T , we constructu.log ′ andu.gwlog ′ fromu.log andu.gwlog as follows. First,
initialize u.log ′ to u.log , andu.gwlog ′ to u.gwlog . Then, for each nodev in T exceptu repeat the
following steps: (1)u.log ′ = u.log ′.(v.wlog−u.log ′); (2)u.gwlog ′ = u.gwlog ′.(v.wlog−u.gwlog ′).

For any set of nodesA and a request sequenceσ, recent(A, σ) returns a set of|A| pairs such
that, for any nodeu ∈ A: (1) if q′ is the most recentwrite request atu in σ, then(u, q′.index ) is in
recent(σ, q); (2) if there is nowrite request atu in σ, then(u,−1) is in recent(S, q).

For a set of nodesA, a real valuex, and a request sequenceσ, we definecorresponds(A, x, σ)
to betrue if and only if x = f (recent(A, σ)).

For a set of nodesA and a request sequenceσ, projectwrites(A, σ) returns the sub-sequence
of σ containing all thewrite requests at any node inA.

For request sequencesσ andτ , prefix (σ, τ) is defined to betrue if and only if τ is a prefix of
σ. Remark: An empty sequence is considered prefix of any other request sequence.

Lemma 6.1 For anyupdate or response messagem from any nodev to any neighboring nodeu,
let S be thev.wlog afterm has been sent. Then,prefix (S,m.wlog) holds.

24



node u
var taken : array[v1 . . . vk] of boolean;

granted : array[v1 . . . vk] of boolean;
aval : array[v1 . . . vk] of real; val : real;
uaw : set {int}; pndg : set {node};
snt [] : array[v1, . . . , vk] of set {node};
upcntr : int; sntupdates : set {{node, int, int}};

begin

T1 true → {combine q}
1 oncombine(u);
2 foreach v ∈ tkn() do

3 uaw [v] := ∅; od

4 if u /∈ pndg →
5 if nbrs() \ tkn() = ∅ →
6 {appendrequest(combine) to log};
7 return gval();
8 � nbrs() \ tkn() 6= ∅ →
9 sendprobes(u);

10 snt [u] := nbrs() \ tkn(); fi fi

T2 true → {write q}
1 val := q.arg; {appendrequest(write, q) to log}
2 if grntd() 6= ∅ →
3 id := newid();
4 forwardupdates(u, id); fi

T3 � rcv probe() from w →
1 probercvd(w);
2 foreach v ∈ tkn() \ {w} do

3 uaw [v] := ∅; od

4 if w /∈ pndg →
5 if nbrs() \ {tkn() ∪ {w}} = ∅ →
6 sendresponse(w);
7 � nbrs() \ {tkn() ∪ {w}} 6= ∅ →
8 sendprobes(w);
9 snt [w] := nbrs() \ {tkn() ∪ {w}}; fi fi

T4 � rcv response(x,flag) from w →
{rcv response(wlogw ,flag) from w} →

1 responsercvd(flag, w);

2 aval [w] := x; {log := log.(wlogw − log)};
3 taken[w] := flag;
4 foreach v ∈ pndg do

5 snt [v] := snt [v] \ {w};
6 if snt [v] = ∅ →
7 pndg := pndg \ {v};
8 if v = u →
9 {appendrequest(combine) to log};

10 return gval();
11 � v 6= u →
12 sendresponse(v); fi fi od

T5 � rcv update(x, id) from w →
{rcv update(wlogw , id) from w } →

1 updatercvd(w);
2 aval [w] := x; {log := log.(wlogw − log)};
3 uaw [w] := uaw [w] ∪ id ;
4 if grntd() \ {w} 6= ∅ →
5 nid = newid();
6 sntupdates := sntupdates ∪ {w, id ,nid};
7 forwardupdates(w,nid);
8 � grntd() \ {w} = ∅ →
9 forwardrelease(); fi

T6 � rcv release(S) from w →
1 releasercvd(w);
2 granted [w] := false;
3 onrelease(w, S);

end

procedure sendprobes(node w)
pndg := pndg ∪ {w};
foreach v ∈ nbrs() \ {tkn() ∪ snt ∪ {w}} do

sendprobe() to v;od

procedure forwardupdates(node w, int id)
foreach v ∈ grntd() \ {w} do

sendupdate(subval(v), id) to v;
{sendupdate(wlog, id) to v};od

procedure sendresponse(node w)
if (nbrs() \ {tkn() ∪ {w}} = ∅) →

granted [w] := setlease(w);fi
sendresponse(subval(w), granted [w]) to w;
{sendresponse(wlog, granted [w]) to w; }

boolean isgoodforrelease(node w)
return (grntd() \ {w} = ∅);

procedure onrelease(node w, set S)
Let id is the smallest id inS;
foreach v ∈ tkn() \ {w} do

Let A be the set of tuplesα in sntupdates

such thatα.node = v andα.sntid ≥ id ;
Let β be a tuple inA

such thatβ.rcvid ≤ α.rcvid , for all α in A;
Let S′ be the set of ids inuaw [v] with ids ≥ β.rcvid ;
uaw [v] := S′;
if isgoodforrelease(v) →

releasepolicy(v);fi od

forwardrelease();

procedure forwardrelease()
foreach v ∈ tkn() do

if isgoodforrelease(v) →
if taken[v] ∧ breaklease(v) →

taken[v] := false;
sendrelease(uaw [v]) to v;
uaw [v] := ∅;fi fi od

int newid()
upcntr := upcntr + 1;
return upcntr ;

real gval()
x := val ;
foreach v ∈ nbrs() do

x := f (x, aval [v]);od

return x;

real subval(node w)
x := val ;
foreach v ∈ nbrs() \ {w} do

x := f (x, aval [v]);od

return x;

set nbrs()
return the set of neighboring nodes;

set tkn()
return {v | v ∈ nbrs() ∧ taken[v] = true};

set grntd()
return {v | v ∈ nbrs() ∧ granted [v] = true};

Figure 7: Mechanism for any lease-based algorithm with ghost actions. For the nodeu,
{v1, . . . , vk} is the set of neighboring nodes.

25



Proof. By the inspection of code (forwardupdates() andsendresponse()), m.wlog = v.wlog when
m is being sent. Sincev.wlog grows only at the end, the lemma follows. �

Lemma 6.2 For any twoupdate or response messagesm1 andm2 from a nodev to any neighbor-
ing nodeu such thatm2 is sent afterm1, prefix (m2.wlog ,m1.wlog) holds.

Proof. By Lemma 6.1,m1.wlog is a prefix ofv.wlog afterm1 has been sent. By the inspection of
code (forwardupdates() andsendresponse()), m2.wlog = v.wlog whenm2 is being sent. Hence,
the lemma follows. �

Lemma 6.3 Just before the execution ofT4 (T5) at u, on receiving aresponse message (anupdate
message)m sent fromv, let σ be projectwrites(A,m.wlog) and τ be projectwrites(A, u.log),
whereA = subtree(v, u). Then, (1)prefix (σ, τ) holds; (2)projectwrites(nodes(T )\A,m.wlog −
u.log) is an empty set.

Proof. (1) We prove by induction on the number ofupdate or response messages fromv to u.
Base case. Sincev.granted [u] does not hold initially, the first message of our interest is a

response messagem. Sinceu receives anywrite requests inA only from v, τ is empty. Hence,
prefix (σ, τ) holds.

Induction step. Since communication channels are FIFO,(n + 1)st update or response mes-
sagem reachesu after nth messagem ′. By induction hypothesis, just before receivingm ′,
projectwrites(A, u.log) is prefix of projectwrites(A,m ′.wlog). In line 2 of T4 (T5), u.log =
u.log .(m ′.wlog − u.log), that is, all thewrite requests inm ′.wlog not present inu.log are ap-
pended tou.log . Hence,projectwrites(A, u.log) = projectwrites(A,m ′.wlog) after execution of
Line 2 of T4 (T5).

By Lemma 6.2,m ′.wlog is a prefix ofm.wlog . Hence, just before receivingm, projectwrites(A, u.log)
is a prefix ofprojectwrites(A,m.wlog).

(2) LetB benodes(T )\A. By Lemma 6.1, Lemma 6.2, and part (1), at any instantprojectwrites(B, v.log)
is a prefix ofprojectwrites(B, u.log). By Lemma 6.1,m.wlog is a prefix ofv.wlog afterm has been
sent. Hence, just before receivingm, projectwrites(B,m.wlog) is a prefix ofprojectwrites(B, u.log).
Therefore,projectwrites(B,m.wlog − u.log) is empty. �

For any nodeu, (1) I1(u): corresponds(A, u.gval(), u.log), whereA is the set of all nodes
in T ; (2) I2(u): for any update or response messagem from u to any nodev in u.nbrs(),
corresponds(A,m.x,m.wlog), whereA is the set of all nodes insubtree(u, v); and (3)I3(u):
for any nodev in u.nbrs(), corresponds(A, u.aval [v], u.log), whereA is the set of all nodes in
subtree(v, u). Let I(u) beI1(u) ∧ I2(u) ∧ I3(u).

Lemma 6.4 For any nodeu, if I1(u) and I3(u) hold just before anupdate or a response mes-
sagem is sent fromu to a nodev in u.nbrs(), thencorresponds(A,m.x,m.wlog), whereA =
subtree(u, v).

Proof. Initially, u.val is 0 andu.log is empty. Hence, initially,

u.val = f (recent({u}, u.log)) (2)

26



The only line of code that modifiesu.val is Line 1 ofT2. This line preserves equation 2. Hence,
equation 2 holds just before sending anyupdate or response message.

In the following equation, let{v1, . . . , vk} = u.nbrs() \ {v} andSi = subtree(vi, u)

m.x = u.subval(v)

= f (u.val , u.aval [v1], . . . , u.aval [vk])

= f (f (recentwrites({u}, u.log)), f (recent(S1, u.log)), . . . , f (recent(Sk, u.log)))

= f (recent({u} ∪ S1 ∪ · · · ∪ Sk), u.log)

= f (recent(A, u.log))

= f (recent(A,m.wlog)) (3)

In the above equation, the first equality follows from the algorithm. The second equality fol-
lows from the definition ofsubval(v). The third equality follows fromI3 and equation 2. The
fourth and fifth equalities follows from the fact that{u}, S1, . . . , Sk are disjoint sets of nodes and
their union issubtree(T, u, v). The last equality follows from the fact thatm.wlog = wlog and
recent(A, log) = recent(A,wlog).

Hence, the lemma follows. �

Lemma 6.5 For any nodeu, I(u) is an invariant.

Proof. Initially, for any nodeu, u.gval() is 0 andu.log is empty. Hence,I1(u) holds. There
are noupdate or response messages. Hence,I2(u) holds. For any nodev in u.nbrs(), u.aval [v] is
0 andu.log is empty. Hence,I3(u) holds.

{I(u)}T1{I(u)}. In the execution ofT1, for any nodev in u.nbrs(), u.aval [v] andu.val remain
unchanged. Noupdate or response messages are generated in execution ofT1. No write request
is added tou.log . Hence,I1(u), I2(u), andI3(u) are not affected in execution ofT1.

{I(u)}T2{I(u)}. In the execution ofT2, only part of the code affectingI1(u) is the line1. Note
that Line1 does not affectI2(u) andI3(u). In the following equation, let{v1, . . . , vk} = u.nbrs()
andSi = subtree(T, vi, u).

f (u.aval [v1], . . . , u.aval [vk]) = f (f (recent(S1, u.log)), . . . , f (recent(Sk, u.log)))

= f (recent(S1, u.log) ∪ · · · ∪ recent(Sk, u.log))

= f (recent(S1 ∪ · · · ∪ Sk, u.log)

= f (recent(nodes(T ) \ {u}, u.log)) (4)

In the above equation, the first equality follows fromI3(u). The second equality follows from
the fact thatS1, . . . , Sk are disjoint sets of nodes.

Let q be thewrite request appended tou.log in Line 1. After Line 1, val is q.arg , and{q} is
recent({u}, log). Hence, after Line1,

u.val = f (recent({u}, u.log)) (5)

Therefore, after Line1,

27



u.gval() = f (u.val , u.aval [v1], . . . , u.aval [vk])

= f (u.val , f (u.aval [v1], . . . , u.aval [vk]))

= f (f (recent({u}, u.log)), f (recent(nodes(T ) \ {u}, u.log))

= f (recent({u}, u.log) ∪ recent(nodes(T ) \ {u}, u.log))

= f (recent(nodes(T ), u.log)) (6)

In the above equation, the first equality follows from the definition of u.gval(). The second
equality follows from the associativity property off . The third equality follows from the equations
4 and 5.

Hence,corresponds(nodes(T ), u.gval(), u.log) holds after line1. That is,I1(u) holds after
Line 1. Therefore, for each line of the code inT2 if I1(u)∧I2(u)∧I3(u) holds before the execution
of the line thenI1(u) holds after the execution of the line.

In the execution ofT2, the only part of the code affectingI2(u) is the invocation of procedure
forwardupdates() in Line 4. By Lemma 6.4,I2(u) holds after Line4. Therefore, for each line of
the code inT2 if I1(u)∧ I2(u)∧ I3(u) holds before the execution of the line thenI2(u) holds after
the execution of the line.

In T2, I3(u) is not affected.
{I(u)}T3{I(u)}. I1(u) and I3(u) are not affected in the execution ofT3. Only part of the

code that affectsI2(u) is the invocation of proceduresendresponse() in Line 6. By Lemma 6.4,
I2(node) holds after line6.

{I(u)}T4{I(u)}. Only lines that affectI(u) are Line2 and Line12. Line 2 does not affect
I2(u), but affectsI1(u) andI3(u) since the line modifiesu.aval [w] andu.log . First we show that
I3(u) is preserved in Line2, and so,I1(u) is also preserved.

Let m be theresponse message received andA be subtree(w, u). By part (1) of Lemma 6.3,
after the execution of Line2, u.aval [w] = m.x andrecent(A, u.log) = recent(A,m.wlog). Hence,
by I2(u), u.aval [w] = f (recent(A, u.log)).

By part (2) of Lemma 6.3, for allv in u.nbrs() \ {w}, recent(B, u.log) is not affected, where
B = subtree(v, u), and so,corresponds(B, u.aval [v], u.log) remains unchanged. Hence, along
with the arguments in the preceding paragraph,I3(u) is preserved in Line2, and so, preserved in
the execution ofT4.

By part (2) of Lemma 6.3,recent({u}, u.log) is not affected. Therefore,I1(u) is also preserved
in Line 2, and so, preserved in the execution ofT4.

Line 12 only affectsI2(u). By Lemma 6.4,I2(u) holds in Line12.
Therefore,I1(u) ∧ I2(u) ∧ I3(u) is preserved in the execution ofT4.
{I(u)}T5{I(u)}. Only lines that affectI(u) are Line2 and Line7. Line 2 does not affect

I2(u), but affectsI1(u) andI3(u). Line 7 affects onlyI2(u).
By part (2) of Lemma 6.3,recent({u}, u.log) is not affected in Line2. Therefore,I1(u) is

preserved in Line2, and so, preserved in the execution ofT5.
Let m be theupdate message received andA besubtree(w, u). By part (1) of Lemma 6.3, after

the execution of Line2, u.aval [w] = m.x andrecent(A, u.log) = recent(A,m.wlog). Hence, by
I2(u), u.aval [w] = f (recent(A, u.log)).

By part (2) of Lemma 6.3, for all nodesv in u.nbrs() \ {w}, recent(B, u.log) is not affected,
whereB = subtree(v, u), and so,corresponds(B, u.aval [v], u.log) remains unchanged. Hence,

28



along with the arguments in the preceding paragraph,I3(u) is preserved in Line2, and so, preserved
in the execution ofT5.

Line 7 affects onlyI2(u). By Lemma 6.4,I2(u) holds in Line7.
Therefore,I1(u) ∧ I2(u) ∧ I3(u) is preserved in the execution ofT5.
{I(u)}T6{I(u)}. In the execution ofT6, I1(u), I2(u), andI3(u) are not affected. Hence,I(u)

is preserved in the execution ofT6. �

For a request sequenceσ and a requestq, index (σ, q) returns the index ofq in σ if present,
otherwise, returns−1. For any request sequenceσ, and requestsq1 andq2 in σ, precedes(σ, q1, q2)
is defined to betrue if and only if index (σ, q1) < index (σ, q2).

Lemma 6.6 Let q1 and q2 be anygather or write requests such thatq1.node = q2.node and
q1.index < q2.index . Then,q1 andq2 belong toq1.node.gwlog , andprecedes(q1.node.gwlog , q1, q2)
holds.

Proof. From given condition,q1 andq2 belong toq1.node.log andprecedes(q1.node.log , q1, q2).
By the construction ofgwlog , the lemma follows. �

Lemma 6.7 Letu andv be distinct nodes and letq1 andq2 bewrite requests inv.gwlog such that
q2.node = v, precedes(v.gwlog , q1, q2), andq2 belongs tou.gwlog . Then,q1 belongs tou.gwlog

andprecedes(u.gwlog , q1, q2).

Proof. By induction on the length of path fromv to u, sayl.
Base case.l = 1, that is,u and v are neighboring nodes. Letu receivesq2 in an update

or a response messagem, that is, q2 belongs tom.wlog and q2 does not belong tou.log just
before receivingm. By the inspection of code,m.wlog = v.wlog . Hence, just beforem is sent,
q2 belongs tov.log . Sinceprecedes(v.log , q1, q2), precedes(m.wlog , q1, q2). If q1 is in u.log just
before receivingm, then on receivingm, q2 belongs tou.log , and so,precedes(u.gwlog , q1, q2)
holds. Otherwise, on receivingm, u.log = u.log .(u.log−m.wlogw), and so,precedes(u.log , q1, q2)
holds. Hence, by construction ofu.gwlog , precedes(u.gwlog , q1, q2) holds.

Induction hypothesis. For somei, such thatl = i, q1 belongs tou.gwlog andprecedes(u.gwlog , q1, q2).
Induction step. Considerl = i + 1. Let w be the node such thatw belongs tou.nbrs() andv

belongs tosubtree(T,w, u). Let u receivesq2 from w in anupdate or aresponse messagem. By
the inspection of code,q2 belongs tow.log , and so, by construction ofw.gwlog , q2 also belongs
to w.gwlog . By induction hypothesis and by construction ofw.gwlog , q1 belongs tow.log and
precedes(w.log , q1, q2) holds whenm is sent. Sincem.wlog = w.wlog whenm is sent,q1 belongs
to m.wlog andprecedes(m.log , q1, q2) holds. As in the base case, regardless of whetherq1 belongs
to u.log just before receivingm, q1 belongs tou.log andprecedes(u.log , q1, q2) on receivingm.
Hence, by construction ofu.gwlog , precedes(u.gwlog , q1, q2) holds. �

Lemma 6.8 Let q1 andq2 begather requests such thatq1.node 6= q2.node, and for integeri > 1,

q1
i
 q2. Then, there is awrite requestq′ such thatq′.node = q1.node and for integerj, q1

j
 

q′
i−j
 q2, wherei > j ≥ 1.

29



Proof. By contradiction. Assume that there is no suchwrite request atq1.node. Let q1
1
 . . .

1
 

q′
1
 q′′

1
 . . .

1
 q2 such thatq′′ is the first request in this chain that is not atq1.node. That is,

in this chain,q1, . . . , q
′ are atq.node. We can find such a request (q′′) sinceq2.node 6= q1.node.

By causal ordering (
1
 ) definition,q′

1
 q′′ if and only if q′ is awrite request andq′′ is agather

request. Hence, the contradiction. Therefore, the lemma follows. �

Lemma 6.9 For any nodeu andi = 1, 2, let qi be a request such that(qi.op = write) ∨ (qi.op =
gather ∧ qi.node = u). Further assume thatq1  q2 andq2 belongs tou.gwlog . Then,q1 belongs
to u.gwlog andprecedes(u.gwlog , q1, q2) holds.

Proof. By definition,q1  q2 if and only if there existsi such thatq1
i
 q2. We prove the lemma

by induction oni.

Base case:i = 1, that is,q1
1
 q2. There are two casesq1

1
 q2 by rule(1) or by rule(2).

First case,q1
1
 q2 by rule(1), that is,q1.node = q2.node andq1.index < q2.index . There are

two cases,(a) u = q1.node; (b) u 6= q1.node. Case(a), that is,u = q1.node. By lemma 6.6,q1 and
q2 belong tou.gwlog , andprecedes(u.gwlog , q1, q2) holds. Case(b), that is,u 6= q1.node. Let v be
q1.node. By lemma 6.6,precedes(v.gwlog , q1, q2) holds. Sinceu 6= v, q1 andq2 arewrite requests.
Sinceq2 belongs tou.gwlog , by lemma 6.7,q1 is in u.gwlog andprecedes(u.gwlog , q1, q2) holds.

Second case,q1
1
 q2 by rule (2), that is,q1 is a write request andq2 is a gather request

such thatq2 returns(q1.node, q1.index ) in q2.retval . Sinceq2 returns(q1.node, q1.index ), q1

is in u.log andprecedes(u.log , q1, q2) holds. By construction ofu.gwlog , q1 is in u.gwlog and
precedes(u.gwlog , q1, q2) holds.

Induction step:q1
i
 q′

1
 q2. Consider the two cases, (1)(q′.op = write) ∨ (q′.op =

gather ∧ q′.node = u), and (2)(q′.op = gather ∧ q′.node 6= u).
Case (1), that is,(q′.op = write) ∨ (q′.op = gather ∧ q′.node = u). By induction hypothesis,

q′ belongs tou.gwlog , precedes(u.gwlog , q′, q2) holds. Also by induction hypothesis,q1 belongs to
u.gwlog , precedes(u.gwlog , q1, q

′) holds. Hence,q1 belongs tou.gwlog , andprecedes(u.gwlog , q1, q2)
holds.

Case (2), that is,(q′.op = gather ∧ q′.node 6= u). Let q′.node bev. Sinceq′.op = gather ,

q′
1
 q2 could only be by rule (1), that is,q2.node = v andq′.index < q2.index . Sincev 6= u,

q2 must be awrite request. By Lemma 6.6,precedes(v.gwlog , q′, q2) holds. Now consider the two
possible cases forq1, (a) q1.op = write, and (b)q1.op = gather ∧ q1.node = u. Case (a), that
is, q1.op = write. By induction hypothesis,q1 belongs tov.gwlog andprecedes(v.gwlog , q1, q

′)
holds. From above,q1 andq2 belong tov.gwlog andprecedes(v.gwlog , q1, q2). By lemma 6.7,q1

belongs tou.gwlog andprecedes(u.gwlog , q1, q2).

Case (b), that is,q1.op = gather ∧ q1.node = u. Sinceq1.node 6= q′.node, q1
i
 q′,

and q1 and q′ are gather requests,i must be greater than1. By Lemma 6.8, there is awrite

requestq′′ such thatq′′.node = u and q1
j
 q′′

i−j
 q′, for somej, i > j ≥ 1. By induc-

tion hypothesis,q′′ belongs tov.gwlog andprecedes(v.gwlog , q′′, q′) holds. Hence, from above,
precedes(v.gwlog , q′′, q2) holds. Sinceq′′ and q2 are write requests,q2.node = v, q2 belongs
to u.gwlog , andprecedes(v.gwlog , q′′, q2) holds, by Lemma 6.7,precedes(u.gwlog , q′′, q2) holds.

From above,q′′ belongs tou.gwlog and q1
j
 q′′ for somej ≥ 1. Hence, by induction hy-

30



pothesis,precedes(u.gwlog , q1, q
′′) holds. From above, it follows that,q1 belongs tou.gwlog and

precedes(u.gwlog , q1, q2) holds. �

Lemma 6.10 For any nodeu, u.gwlog ′ respects the causal ordering among requests inu.gwlog ′.

Proof. We prove this lemma by induction on the number of iterations in the construction of
u.gwlog ′. For the base case, by Lemma 6.9,u.gwlog respects the causal ordering among re-
quests inu.gwlog . In each iteration in the construction, the additional requests are added at the
end ofu.gwlog ′. By Lemma 6.9 again, this step preserves the causal ordering among requests in
u.gwlog ′. �

Lemma 6.11 For any nodeu, u.log ′ andu.gwlog ′ are compatible.

Proof. We prove this lemma by induction on the number of iterations in the construction ofu.log ′

andu.gwlog ′. For the base case, by Lemma 6.5,u.log andu.gwlog are compatible. In each iteration
of the construction, by the base case and the induction hypothesis, additional requests appended to
both the request sequences are mutually compatible. Hence,u.log ′ andu.gwlog ′ are compatible.�

Theorem 4 Let setA be the execution-history of any lease-based algorithmA. Then,A is causally
consistent.

Proof. Consider any nodeu in T . By construction,u.gwlog ′ is a serialization of all the requests
in u.gwlog ′. From this observation and Lemma 6.10,u.gwlog ′ is causally consistent. By construc-
tion, u.log ′ contains all the requests inpruned(A, u). By Lemma 6.11,u.log ′ andu.gwlog ′ are
compatible. Hence, by definition,A is causally consistent. �

7 Discussion

What we have done in this paper is a useful case study in the design and analysis of self-tuning
distributed algorithm for an important key primitive. Although we have focussed on fault-free
case, we can extend some of our results to faulty environment, especially with respect to causal
consistency, by keeping track of time-stamps with writes.

An open problem for future research is to design a self-tuning algorithm for the approximate
aggregation problem, where one allows a certain numerical error in the aggregate value, and ana-
lyze the algorithm in competitive analysis framework.

References

[1] M. Ahamad, G. Neiger, J. E. Burns, P. Kohli, and P. W. Hutto.Causal memory: Definitions,
implementation, and programming.Distributed Computing, 9:37–49, 1995.

[2] B. Awerbuch, Y. Bartal, and A. Fiat. Distributed paging forgeneral networks.Journal of
Algorithms, 28:67–104, 1998.

31



[3] B. Awerbuch, Y. Bartal, and A. Fiat. Competitive distributed file allocation.Information and
Computation, 185:1–40, 2003.

[4] M. Bawa, A. Gionis, H. Garcia-Molina, and R. Motwani. The price of validity in dynamic
networks. InProceedings of the ACM SIGMOD International Conference on Management
of Data, pages 515–526, June 2004.

[5] N. Belaramani, M. Dahlin, L. Gao, A. Nayate, A. Venkataramani, P. Yalagandula, and
J. Zheng. PRACTI replication. InUSENIX Symposium on Networked Systems Design and
Implementation, May 2006.

[6] A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cambridge
University Press, Cambridge, UK, 1998.

[7] K. Czajkowski, C. Kesselman, S. Fitzgerald, and I. T. Foster. Grid information services for
distributed resource sharing. InProceedings of the 10th IEEE International Symposium on
High Performance Distributed Computing, pages 181–194, August 2001.

[8] V. Duvvuri, P. Shenoy, and R. Tewari. Adaptive Leases: A strong consistency mechanism
for the world wide web.IEEE Transactions on Knowledge and Data Engineering, 15:1266–
1276, 2003.

[9] Y. Fu, J. Chase, B. Chun, S. Schwab, and A. Vahdat. SHARP: An architecture for secure
resource peering. InProceedings of the 19th ACM Symposium on Operating Systems Princi-
ples, pages 133–148, October 2003.

[10] Ganglia: Distributed monitoring and execution system.
http://ganglia.sourceforge.net.

[11] M. G. Gouda.Elements of Network Protocol Design. John Wiley & Sons, New York, 1998.

[12] C. Gray and D. Cheriton. Leases: An efficient fault-tolerant mechanism for distributed file
cache consistency. InProceedings of the 12th ACM Symposium on Operating Systems Prin-
ciples, pages 202–210, December 1989.

[13] N. Jain, P. Yalagandula, M. Dahlin, and Y. Zhang. INSIGHT: A distributed monitoring system
for tracking continuous queries. InWork-in-Progress Session at SOSP 2005, pages 23–26,
October 2005.

[14] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. TAG: A tiny aggregation service
for ad-hoc sensor networks. InProceedings of the 5th Symposium on Operating Systems
Design and Implementation, December 2002.

[15] J. Misra. Axioms for memory access in asynchronous hardware systems.ACM Transactions
on Programming Languages and Systems, 8:142–153, 1986.

[16] C. Olston and J. Widom. Offering a precision-performance tradeoff for aggregation queries
over replicated data. InProceedings of the 26th International Conference on Very Large Data
Bases, pages 144–155, September 2000.

32



[17] R. Renesse, K. P. Birman, and W. Vogels. Astrolabe: A robustand scalable technology
for distributed system monitoring, management, and data mining. ACM Transactions on
Computer Systems, 21:164–206, 2003.

[18] M. Roussopoulos and M. Baker. CUP: Controlled update propagation in peer-to-peer net-
works. InUSENIX Annual Technical Conference, pages 167–180, June 2003.

[19] D. D. Sleator and R. E. Tarjan. Amortized efficiency of list update and paging rules.Com-
munications of the ACM, 28:202–208, 1985.

[20] A. S. Tanenbaum.Distributed Operating Systems. Prentice-Hall, 1995.

[21] M. Wawrzoniak, L. Peterson, and T. Roscoe. Sophia: An information plane for networked
systems. InProceedings of the 2nd Workshop on Hot Topics in Networks, November 2003.

[22] R. Wolski, N. Spring, and J. Hayes. The network weather service: A distributed resource per-
formance forecasting service for metacomputing.Journal of Future Generation Computing
Systems, 15:757–768, 1999.

[23] P. Yalagandula and M. Dahlin. A scalable distributed information management system. In
Proceedings of the ACM SIGCOMM Conference, pages 379–390, August/September 2004.

33


