
Known Unknowns in Large-Scale System Monitoring

Navendu Jain, Dmitry Kit, Prince Mahajan, Praveen Yalagandula†, Mike Dahlin, and Yin Zhang
Department of Computer Sciences †Hewlett-Packard Labs

University of Texas at Austin Palo Alto, CA

ABSTRACT
This paper addresses a central challenge in PRISM, a
large-scale distributed monitoring system: coping with
the uncertainties and ambiguities introduced by network
and node failures. In particular, in a large scale monitor-
ing system, such failures interact badly with techniques
needed for scalability like hierarchy, arithmetic filtering,
and temporal batching. For example, if a monitoring sub-
tree is silent over an interval, it is difficult to distinguish
between two cases: (a) the subtree has sent no updates
because the inputs have not significantly changed or (b)
the inputs have significantly changed but the subtree is
unable to transmit its report. As a result, reported results
can be arbitrarily far from their true values.

To address this challenge PRISM introducesNetwork
Imprecision(NI), a new metric to characterize accuracy
despite node failures, network disruptions, and system
reconfigurations. PRISM leverages NI to flag potentially
inaccurate results, allowing applications to differentiate
between known-correct and likely-erroneous results as
well as to correct distorted results by applying several
redundancy techniques. Evaluation of our PRISM proto-
type shows that NI effectively flags inaccurate query re-
sults while incurring low overheads, and we find that us-
ing NI to automatically select the best results can reduce
the inaccuracy in a PRISM-based monitoring service by
nearly a factor of five.

1. INTRODUCTION
This paper describes how PRISM1 usesNetwork Im-

precision(NI) to enable scalable monitoring. The key
idea of NI is that because no system can guarantee to al-
ways provide the “right” answer [12,32], it instead must
report the extent to which a calculation could have been
disrupted by node and network problems. Intuitively, NI
represents a “stability flag” indicating whether the under-
lying network is stable or not.

Scalable system monitoring and distributed stream pro-
cessing are fundamental abstractions for large-scale net-
worked systems. They serve as basic building blocks for
applications such as network monitoring and manage-
ment [6, 16, 20, 41], financial applications [2], resource
scheduling [17, 40], efficient multicast [38], sensor net-
works [17, 40], resource management [40], and band-
width provisioning [8] that may scale to thousands or
millions of dynamic attributes (e.g., per-flow or per-object

1PRecision-Integrated Scalable Monitoring

state) spanning tens of thousands of nodes.
Three techniques are vital for a monitoring system’s

scalability: (1)hierarchical aggregation[17, 20, 38, 40]
allows a node to access detailed views of nearby informa-
tion and summary views of global information, (2)arith-
metic filtering[19–21, 25, 34, 45] caches recent reports
and only transmits new information if it differs by some
numeric threshold (e.g.,± 10%) from the cached report,
thus trading a bounded small approximation error for a
significant load reduction, and (3)temporal batching[19,
21,25,34,38] combines multiple updates that arrive near
one another in time into a single network message. Each
of these techniques can reduce monitoring overheads by
an order of magnitude or more [19,20,25,40].

As important as these techniques are for reducing load,
they interact badly with network and node failures: a
monitoring system that uses any of these scalability tech-
niques risks reporting highly inaccurate results.

• First, when a monitoring system uses arithmetic fil-
tering, if a subtree or node is silent over an interval,
the system must distinguish two cases: (a) the sub-
tree or node has sent no updates because the inputs
have not significantly changed from the cached val-
ues or (b) the inputs have significantly changed but
the subtree or node is unable to transmit its report.

• Second, under temporal batching there are windows
of time in which a short disruption can block a large
batch of updates (e.g., when a disruption delays
transmission of the combined update), resulting in
large inaccuracies due to staleness in a monitoring
system’s reports.

• Third, in a hierarchical monitoring system, the im-
pact of failures is made worse by theamplification
effect [24]: if a non-leaf node fails, then the en-
tire subtree rooted at that node can be affected. For
example, failure of a level-3 node in a degree-8 ag-
gregation tree can interrupt updates from 512 (83)
leaf node sensors.

These effects can be significant. For example, in one
network monitoring application, we observed that more
than half of all reports differed from the ground truth at
the inputs by more than 60%.

To address this challenge, PRISM introducesNetwork
Imprecision(NI), a new metric for characterizing the in-
consistency in query results due to network instability.
In particular, given that no system can guarantee to al-
ways provide the “right” answer [12, 32], NI attaches an

1

assessment of the current network state with each query
result. Then, a query result with low NI is highly likely
to reflect reality, but an answer with a high value of NI
indicates a low system confidence in that query result—
the network is unstable, hence the result should not be
trusted.

We design, implement, and evaluate PRISM, which
makes use of arithmetic filtering, temporal batching, and
hierarchy for scalability, and which leverages NI to ef-
fectively safeguard accuracy by, for example, (1) infer-
ring an approximate confidence interval for the number
of sensor inputs contributing to a query result, (2) differ-
entiating between correct and erroneous results based on
their NI, or (3) correcting distorted results by applying
redundancy techniques and then using NI to automati-
cally select the best results.

A key challenge is implementing NI efficiently. Be-
cause a given failure has different effects on different ag-
gregation trees embedded in our scalable DHT [40], the
NI reported with an attribute must be specific to that at-
tribute’s tree. Unfortunately, detecting missing updates
due to failures, delays, and reconfigurations requires fre-
quent active probing of paths within a tree. As a re-
sult, naive probing can limit the scalability of the system,
subverting the benefits of arithmetic filtering and tem-
poral batching. Therefore, to provide a topology-aware
implementation of NI that scales to tens of thousands
of nodes and millions of attributes, PRISM introduces a
noveldual-tree prefix aggregationconstruct that exploits
symmetry in its DHT-based aggregation topology to re-
duce the per-node overhead of tracking then distinct NI
values relevant ton aggregation trees in ann-node DHT
from O(n) to O(log n) messages per unit time. For a
1024-node system, dual tree prefix aggregation reduces
the per node cost of tracking NI from a prohibitive 100
messages per second to about 5 messages per second.

The most important benefit of NI is the ability to quan-
tify and improve confidence in the accuracy of outputs
by addressing network instability and the amplification
effect: we observe that for monitoring systems that ig-
nore NI, half of their reports can differ from the truth by
more than 60%. Conversely, by using NI metrics to au-
tomatically select the best of four redundant aggregation
results, we can reduce the observed worst-case inaccu-
racy by nearly a factor of five.

This paper makes four contributions. First, we present
Network Imprecision, a new consistency metric that
characterizes the impact of network instability on aggre-
gate query results. Second, we provide a scalable imple-
mentation of NI via dual-tree prefix aggregation. Third,
our evaluation demonstrates that NI is vital for enabling
scalable aggregation: a system that ignores NI can often
silently report arbitrarily incorrect results. Finally, we
demonstrate how different applications can leverage NI
to detect distorted results and take corrective action.

The rest of this paper is organized as follows. Sec-

000 111010 101
Physical Nodes (Leaf Sensors)

Virtual Nodes (Internal Aggregation Points)

L0

L1

L2

L3

3 4 2 9 6 1 9 3

7 11 7 12

18 19

37

100 110 001 011

Figure 1: The aggregation tree for key 000 in an eight
node system. Also shown are the aggregate values for
a simple SUM() aggregation function.

tion 2 provides background on the scalable DHT-based
aggregation technologies and approximation techniques
that underlie PRISM. Section 3 describes the NI abstrac-
tion and explains how different applications use NI. Sec-
tion 4 presents how to scalably compute the NI metrics.
Section 5 presents the case-study applications that we
build to drive the development and evaluation of PRISM.
Section 6 presents the experimental evaluation of our sys-
tem. Finally, Section 7 discusses related work, and Sec-
tion 8 concludes.

2. BACKGROUND AND PROBLEM
PRISM achieves scalability by combining three well-

known techniques: DHT-based hierarchical aggregation,
arithmetic filtering, and temporal batching. In this sec-
tion, we briefly describe these techniques, define the guar-
antees PRISM must enforce, and illustrate the challenges
to meeting these guarantees in a large-scale system. Ad-
ditional details of PRISM’s implementation of these three
concepts are available elsewhere [19,20,40].

DHT-based hierarchical aggregation.PRISM’s aggre-
gation abstraction defines a tree spanning all nodes in the
system. As Figure 1 illustrates, each physical node in
the system is a leaf and each subtree represents a logical
group of nodes2. An internal non-leaf node, which we
call a virtual node, is simulated by one or more physi-
cal nodes at the leaves of the subtree rooted at the virtual
node.

PRISM leverages DHTs [28–30,35,46] to construct a
forest of aggregation trees and maps different attributes
to different trees [4,10,28,31,40] for scalability and load
balancing. DHT systems assign a long (e.g., 160 bits),
random ID to each node and define a routing algorithm
to send a request for keyk to a noderootk such that
the union of paths from all nodes forms a treeDHTtreek
rooted at the noderootk. By aggregating an attribute with
key k = hash(attribute) along the aggregation tree corre-

2Note that logical groups can correspond to administrative do-
mains (e.g., department or university) or groups of nodes within
a domain (e.g., a /28 subnet with14 hosts on a LAN in the CS
department) [15,40].

2

3 352

11

19

9 9

12

2

18

7 7

37

4

9

37

17 7

357

21

19

8 14 9

12

2

38

99 357

21

57

8 14 9

12

2

38

17 7

75
reports 75=18(cached)+57

Disruption prevents updates Reconfiguration causes

double counting

9

from reaching root

reports 37=18(cached)+19
should report 57 should report 57

Figure 2: Dynamically-constructed aggregation hier-
archies raise two challenges for guaranteeing the ac-
curacy of reported results: the failure amplification
effectand double countingcaused by reconfiguration.

sponding toDHTtreek, different attributes are load bal-
anced across different trees. Studies suggest that this ap-
proach can provide aggregation that scales to large num-
bers of nodes and attributes [4,10,28,31,40].

Unfortunately, as Figure 2 illustrates, hierarchical ag-
gregation imperils correctness in two ways. First, a fail-
ure of a single node or network path can prevent updates
from a large collection of leaves from reaching the root,
amplifying the effect of the failure [24]. Second, node
and network failures can trigger DHT reconfigurations
that move a subtree from one attachment point to another,
causing the subtree’s inputs to be double-counted by the
aggregation function for some period of time.

Arithmetic Imprecision (AI). Arithmetic imprecision
bounds the difference between the reported aggregate value
and the true value. In PRISM, each aggregation function
reports a range{Vmin, Vmax} in which the true aggre-
gate value, computed by applying that aggregation func-
tion across the inputs, lies [19].

Allowing such arithmetic imprecision enables numeric
filtering: a subtree need not transmit an update unless the
update drives the aggregation value outside the range it
last reported to its parent. Numerous systems have found
that small amounts of arithmetic imprecision can greatly
reduce overheads [19–21, 25, 34, 38, 45], and PRISM al-
lows the size of the range to be set and enforced on a
per-attribute basis to enable adaptive precision-overhead
tradeoffs [20].

Unfortunately as Figure 3 illustrates, arithmetic fil-
tering raises a challenge for correctness: if a subtree is
silent, it is difficult for the system to distinguish between
two cases. Either the subtree has sent no updates be-
cause the inputs have not significantly changed from the
cached values or the inputs have significantly changed
but the subtree is unable to transmit its report.

Temporal Imprecision (TI). Temporal imprecision bounds
the delay from when an event/update occurs until it is re-
ported. In PRISM, each attribute has a TI bound, and

21,25
Should be

Should be
47,67

14,16 7,9 33,36

15 8 4 35

No Reported Change
Network Disruption

Prevents Propagation

9 7 7 12

Initial State

15,19

30,40

No Change

147810

10,145,77,98,10

15,21

30,40

15,19 15,21

8,10 7,9 5,7 10,14

Significantly Changed
Sensors Not

30,40

15,19 36,42

4,6

Figure 3: Arithmetic filtering makes it difficult to de-
termine if a subtree’s silence is because the subtree
has nothing to report or is unreachable.

7

18 19

37

7 12

39169243

11

9 6

8 9 10

→
7

18 19

37

7 12

39169243

11

4 2 5

9 6

8 9 103 5 Sensor Updates

→

7

18 19

37

7 12

39169243

11

3 54 2 5

5 5

9 6

8 9 10

6

5 5 6

Leaf Sensor
Periodic Updates →

3 54 2 5

5 5

9 6

8 9 10

6

5 5 6

10 8

10 8

7

18 19

37

7 12

39169243

11

Internal nodes
batch updates

Figure 4: Temporal batching allows leaf sensors to
condense a series of updates into a periodic report
and allows internal nodes to combine updates from
different subtrees before transmitting them further.

to meet this bound, the system must ensure that updates
propagate from the leaves to the root in the allotted time.

As Figure 4 illustrates, TI allows PRISM to use tem-
poral batching: a set of updates at a leaf sensor are con-
densed into a periodic report or a set of updates that ar-
rive at an internal node over a time interval are combined
before being sent further up the tree [19].

Of course, an attribute’s TI guarantee can only be en-
sured if there is agood pathfrom the leaf to the root.
A good path is a path whose processing and network
propagation times fall within some pre-specified delay
budget [19]. Note that node/network failures/delays can
cause a path to no longer be good thereby preventing
the system from meeting its TI guarantees. Furthermore,
when a system batches a large group of updates together,
a short network or node failure can cause a large error.
For example, suppose a system is enforcing TI=60s for
an attribute, and suppose that an aggregation node near
the root has collected 59 seconds worth of updates from

3

its descendents but then loses its connection to the root
node for a few seconds. That short disruption can cause
the system to violate its TI guarantees for a large number
of updates spread across a large number of nodes.

3. NI ABSTRACTION AND APPLICATION
In this section we describe the NI abstraction that char-

acterizes the consistency of aggregate query results. We
first present the NI metrics that measure the stability of
the system in Section 3.1 and then use a simple example
in Section 3.2 to illustrate how these NI metrics char-
acterize the potential inaccuracy introduced by network
disruptions. Section 3.3 then illustrates how this infor-
mation characterizing the stability of the system can be
used by applications to improve their accuracy. All of the
discussions in this section assume that NI is provided by
an oracle; in Section 4, we describe how to compute the
NI metrics accurately and efficiently.

3.1 NI metrics
The NI abstraction is driven by two fundamental prop-

erties of any large-scale monitoring system. First, no
monitoring system can guarantee to always provide per-
fect consistency in a dynamic environment [12,32]. Thus,
NI can at best flag incorrect results as untrustworthy. Sec-
ond, large distributed systems may never be 100% stable
therefore simply flagging results as “right” or “wrong”
does not suffice. Instead, NI should provide a scale to
characterize how stable the network is during the com-
putation of a query result. This information gives appli-
cations the flexibility to choose the desired query result
consistency by setting NI thresholds appropriately based
on application requirements.

To quantify system stability, NI provides three met-
rics: Nall, Nreachable, andNdup.

• Nall is an estimate of the total number of nodes in
the system.

• Nreachable is a lower bound on the number of nodes
whoserecentinput values are guaranteed to be re-
flected in the query result. Recency is defined by
the TI guarantees the system provides for the at-
tribute. For example, if the TI is 60 seconds, then
Nall − Nreachable is the number of inputs whose
values may be stale by more than 60 seconds.

• Ndup provides an upper bound on the number of
nodes whose input contribution to a result may be
doubly-counted. Double-counting can occur when
reconfiguration of an aggregation tree’s topology
causes a leaf node or a subtree rooted at an inter-
nal node to switch to a new parent while its old
parent retains the node’s or subtree’s input as soft
state until a timeout.

These three metrics characterize the consistency of a query
result:Nreachable close toNall and a lowNdup indicates

that results reflect most inputs and are likely to be useful.
For example,Nall = 100,Nreachable = 99, andNdup = 0
implies that the query result accounts for all but one node
and hence is highly likely to be accurate.3 Conversely,
query answers with high values ofNall − Nreachable or
Ndup suggest that the network is unstable; hence the re-
sults should not be trusted. For example, ifNreachable =
30 andNdup = 20, the query result may be missing inputs
from 70% nodes and further may double-count inputs of
20% nodes.

3.2 Example
Here, we present how these three metrics provide the

NI abstraction using a simple example.
Consider the aggregation tree computing a SUM ag-

gregate across 5 physical nodes in Figure 5(a); Figures 5(b)-
(e) illustrate how the NI metrics track the tree’s changing
topology because of failures and reconfigurations. For
simplicity, we compute a SUM aggregate under an AI
filtering budget of zero (i.e., update propagation is sup-
pressed if and only if the value of an attribute has not
changed), and we assume a TI guarantee ofTIlimit =
10 seconds (i.e., the system attempts to guarantee a max-
imum staleness of 10 seconds.) Finally, to avoid spu-
rious garbage collection/reconstruction of per-attribute
state, PRISM configures the underlying DHT to recon-
figure topology if a path is down for a long (e.g., 10-
minute) timeout, and internal nodes retain inputs from
their children cached as soft state for slightly longer than
that amount of time.

Initially, (a) the system is stable; the root reports the
correct aggregate value of 25 withNall = Nreachable =
5 andNdup = 0 implying that all nodes’ recent inputs are
reflected in the aggregate result with no double-counting.

Then, (b) the input value changes from 7 to 6 at a leaf
node, but before sending that update, the node gets dis-
connected from its parent. Because of soft state caching,
the failed node’s old input is still reflected in the SUM ag-
gregate, but recent changes at that sensor are not; the root
reports 25 but the correct answer is 24. As (b) shows, NI
exposes this inconsistency to the application by chang-
ing Nreachable to 4 within TIlimit = 10 seconds of the
disruption, indicating that the reported result is based on
stale information from at most one node.

Next, we show how NI exposes the failure amplifica-
tion effect. In (c), a single node failure disconnects the
entire subtree rooted at that node. NI reveals this ma-
jor disruption by reducingNreachable to 2 since only two
leaf nodes retain a good path to the root. The root still
reports 25 but the correct answer (i.e., what an oracle

3The accuracy is dependent on the aggregate function e.g., for
MAX, the one missed input might be the maximum. NI pro-
vides a mechanism for reporting disruptions and applications
determine an appropriate policy for coping with different lev-
els of disruption based on application requirements. Several
such policies are discussed in Section 3.3.

4

N = 5all

reachable

dup

N = 5
N = 0

7

9

25

16

3 6 4 5

Should
be 24

Should
be 15 9

25

16

3 6 4 5

N = 5all

reachable

dup

6

N = 4
N = 0

5

9

25

16

4 4 5

N = 5all

reachable

dup

Should
be 18

3

N = 2
N = 0

5 3

16

N = 5all

reachable

dupN = 2
N = 4

4 4 5

34

Should
be 18

13

4 4 5

18

16

5

all

reachable

dupN = 0

N = 4
N = 4

3

13

(a) Fault-free (b) Node disconnect (c) Amplification (d) Reconfig 1 (e) Reconfig 2

Figure 5: The evolution of Nreachable, Nall, and Ndup as nodes fail and the system reconfigures. The values in
the center of each circle represent the value of an example SUM aggregate. The vertical blue bars show the
virtual nodes corresponding to a given physical node at the leaf.

would compute using the live sensors’ values as inputs)
is 18. By using NI, the application learns that failures
are affecting the result since only 2 out of 5 nodes are
reachable. Thus, this report cannot be trusted; the appli-
cation can either discard it or take corrective actions such
as those discussed in Section 3.3.

We now show how NI exposes the effects of overlay
reconfiguration. After a timeout (d), the affected leaf
nodes detect the failure and switch to a new parent; NI
exposes this change by increasingNreachable to 4. But
since the nodes’ old values may still be cached, NI in-
creasesNdup to 2 implying that two nodes’ inputs are
doubly-counted in the root’s answer of 34.

Finally, we show how NI highlights when the system
has restabilized. In (e), the system again reaches a stable
state—the soft state expires,Ndup falls to zero,Nall be-
comes equal toNreachable of 4, and the root reports the
correct aggregate value of 18.

3.3 Using NI
PRISM’s formulation of NI explicitly separates the ba-

sic mechanism for detecting and quantifying NI from
the policy of how to minimize the result inaccuracy
caused by failures and reconfigurations. This separa-
tion is needed because the impact of omitted updates
(whenNreachable < Nall) or duplicated updates (when
Ndup > 0) depends on the topology of the aggregation
tree (e.g., a leaf node failure may have less impact than
an internal node failure), the nature of the aggregation
function (e.g., some aggregation functions are insensi-
tive to duplicates [7]), the variability of the sensor inputs
(e.g., when inputs change slowly, using a cached update
for longer than desired may have a modest impact), and
application requirements (e.g., some applications may
prize availability over correctness and live with best ef-
fort answers while others may prefer not to act when the
accuracy of information is suspect.) Therefore, PRISM
reportsNall, Nreachable, andNdup and allows applica-
tions to evaluate the significance of disruptions and to
take application-appropriate actions to manage this im-
pact.

The simple mechanism of providing these three NI
metrics is nonetheless powerful—it supports a broad range

of techniques for coping with network and node disrup-
tions. We first describe four standard techniques we have
implemented: (1) flag incorrect answers, (2) choose the
best of several answers, (3) on-demand reaggregationwhen
the reported answer is unacceptable, and (4) probing to
determine the numerical contribution of duplicate or stale
inputs. We then briefly sketch other ways applications
can make use of NI.

• Filtering or flagging unacceptably uncertain
answers—PRISM’s first standard technique is to
manage the trade-off between consistency and
availability [12] by sacrificing availability: appli-
cations report an exception rather than returning
an answer when NI exceeds a threshold. Alterna-
tively, applications can be configured to maximize
availability by always returning an answer based on
the best available information but flagging that an-
swer’s quality as high (e.g.,NItot < 1%, where
NItot = MAX [Nall−Nreachable

Nall
, Ndup

Nall
]), medium

(e.g.,NItot < 10%), or low (e.g.,NItot ≥ 10%).

• Redundant aggregation—PRISM can aggregate an
attribute usingk different keys so that one of the
keys is likely to find a route around the disruption.
Since each key is aggregated using a different tree,
each has a different NI associated with it, and the
application chooses the result associated with the
key that has the smallest NI.

In PRISM’s DHT-based aggregation topology, most
nodes in an aggregation tree are near the leaf level.
Therefore, a small increase ink significantly re-
duces the probability that a given failure affects a
node near the root level in allk trees. In particu-
lar, if there aref independent failures in anℓ-level
d-ary aggregation tree, the expected number of dis-
connected nodes isf ∗ (ℓ + 1) but the standard de-
viation is high:f ∗d

ℓ
2 . In comparison, by aggregat-

ing an attribute along a (small) constant number of
trees, then with high probability, the expected num-
ber of disconnected nodes due to all failures occur-
ring at level≤ i (i << ℓ; i = 0 is leaf level) has a
meanf ∗ (i + 1) but a smaller standard deviation

5

f ∗ d
i
2 . E.g., forℓ = 2, d = 16,f = 10, i = 1, ag-

gregating an attribute alongk = 4 trees decreases
deviation from 160 for a single tree to 40; detailed
proofs are in the technical report [19]. Later in Sec-
tion 6.2, we show that by aggregating an attribute
upk = 4 paths and using NI to choose best the an-
swer, we can reduce inaccuracy by nearly a factor
of five.

• On-demand reaggregation—givena signal that cur-
rent results may be affected by significant disrup-
tions, PRISM allows applications to trigger a full
on-demand reaggregation to gather current reports
(without AI caching or TI buffering) from all avail-
able inputs. In particular, if an application receives
an answer with unacceptably highNdup or Nall −
Nreachable, it issues a “probe” to force all nodes in
the aggregation tree to discard their cached data for
the attribute and to recompute the result using the
current value at all reachable leaf inputs.

• DetermineVdup or Vstale—whenNdup or Nall −
Nreachable is high, an application knows that many
inputs may be double counted or stale. An appli-
cation can gain additional information about how
the network disruption affects a specific attribute
by computingVdup orVstale for that attribute.Vdup

is the aggregate function applied to all inputs that
indicate that they may also be counted in another
subtree; for example in Figure 5(d),Vdup is 9 from
the two nodes on the left that have taken new par-
ents before they are certain that their old parent’s
soft state has been reclaimed. Similarly,Vstale is
the aggregate function applied across cached values
from unreachable children; in Figure 5(c)Vstale is
16, indicating that 16/25 of the sum value comes
from nodes that are currently unreachable.

Since per-attributeVdup and Vstale provide more
information than the NI metrics, which merely char-
acterize the state of the topology without reference
to the aggregation functions or their values, it is
natural to ask: Why not always provideVdup and
Vstale and dispense with the NI metrics entirely?
As we will show in Section 4, the NI metrics can
be computed efficiently. Conversely, the attribute-
specificVdup andVstale metrics must be computed
and actively maintained on a per-attribute basis, mak-
ing them too expensive for indiscriminant use. Given
the range of techniques that can make use of the
much cheaper NI metrics, PRISM provides them as
a general mechanism but allows applications that
require (and are willing to pay for) the more de-
tailedVdup andVstate information to do so.

For other monitoring applications, it may be useful to
apply other domain-specific or application-specific tech-
niques. Examples include

• Duplicate-insensitive aggregation—some systems
can be designed with duplicate-insensitive aggre-
gation functions where nodes can transmit multi-
ple copies of aggregate values along different paths
to guard against failures without affecting the final
result. For example, MAX is inherently duplicate-
insensitive [21], and duplicate-insensitive approxi-
mations of some other functions exist [7,22,24].

• Increasing reported TI—short bursts of reduced
Nreachable mean that an aggregated value may not
reflect some recent updates. Rather than report a
result with low staleness but a high NI (e.g.,NItot

> 20%), the system can report an older result with
a low NI (e.g.,NItot < 1%) but explicitly increase
the TI staleness bound.

• Statistical Data Analysis—systems can combine
application-level redundancy and statistical infer-
ence to estimate the missing values, as well as es-
timating the process parameters for the model gen-
erating those values. E.g., Bayesian inference [33]
has been used in a 1-level tree to estimate missing
sensor inputs and model parameters in an environ-
mental sensor network.

These examples are illustrative but not comprehensive.
Armed with information about the likely quality of a given
answer, applications can take a wide range of approaches
to protect themselves from network disruptions.

4. COMPUTING NI METRICS
In this section we describe how PRISM computes the

three NI metrics. It is important to note that whereas AI
and TI are specified and enforced on a per-attribute basis,
NI is maintained by the system for each aggregation tree
and shared across all attributes mapped to a tree. This
arrangement amortizes the cost of maintaining NI.

Although monitoring connectivity to nodes to com-
pute the NI metricsNall, Nreachable, andNdup appears
straightforward—the metrics are all conceptually aggre-
gates across the state of the system—in practice two chal-
lenges arise. First, the system must cope with reconfigu-
ration of dynamically constructed aggregation trees; oth-
erwise the aggregate NI values might include reports of
disconnected subtrees as well as double count the con-
tribution of rejoined subtrees. Second, the system must
scale to large numbers of nodes despite (a) the need for
active probing to measure liveness between each parent-
child pair and (b) the need to compute distinct NI values
for each of the large number of distinct aggregation trees
in the underlying DHT forest; otherwise the system will
incur excessive monitoring overhead as we show in Sec-
tion 4.3.

In the rest of this section, we first provide a simple al-
gorithm for computingNall andNreachable for a single,
static tree. Then, in Section 4.2 we explain how PRISM

6

computesNdup to account for dynamically changing ag-
gregation topologies. Later, in Section 4.3 we describe
how to scale the approach to a large number of distinct
trees constructed by PRISM’s DHT framework.

4.1 Single tree, static topology
This section considers calculatingNall andNreachable

for a single, static-topology aggregation tree.
Nall is simply a count of all nodes in the system, which

serves as a baseline for evaluatingNreachable andNdup.
Nall is easily computed using PRISM’s aggregation ab-
straction. Each leaf node inserts 1 to theNall aggregate,
which has SUM as its aggregation function. Note that
even if a node becomes disconnected from the DHT, its
contribution to theNall aggregate remains cached as soft
state by its ancestors for a long timeoutTdeclareDead.
TdeclareDead is set to be longer than the timeout used
to trigger topology changes by the underlying DHT so
that a node whose parent becomes unreachable will have
time to connect to a new parent before being removed
from theNall count.

Nreachable for a subtree is a count of the number of
leaves that have agood pathto the root of the subtree,
where a good path is a path whose processing and net-
work propagation times currently fall within the system’s
smallest supported TI boundTImin. The differenceNall

− Nreachable thus represents the number of nodes whose
inputs may fail to meet the system’s tightest supported
staleness bound; we will discuss what happens for at-
tributes with TI bounds larger thanTImin momentarily.

Nodes computeNreachable in two steps:

1. Basic aggregation: PRISM creates a SUM aggre-
gate and each leaf inserts local value of 1. The root
of the tree then gets a count of all nodes.

2. Aggressive pruning: In contrast with the default be-
havior of retaining aggregate values of children as
soft state for up toTdeclareDead, Nreachable must
immediately change if the connection to a subtree
is no longer a good path. Therefore, each internal
node periodically probes each of its children. If a
child c is not responsive, the node removes subtree
c’s contribution from theNreachable aggregate and
immediately sends the new value up towards the
root of theNreachable aggregation tree.

Temporal batching. If for an attribute the TI bound is
relaxed toTIattr > TImin, PRISM uses the extra time
TIattr − TImin to batch updates for reducing load. To
implement temporal batching, PRISM defines a narrow
window of time during which a node must propagate up-
dates to its parents; the details appear in an extended
technical report [19]. However, an attribute’s subtree that
was unreachable over the lastTIattr could have been un-
lucky and missed its window even though it is currently
reachable.

To avoid having to calculate a multitude ofNreachable

values for different TI bounds, PRISM modifies its tem-
poral batching protocol to ensure that each attribute’s
promised TI bound is met for all nodes counted as reach-
able. In particular, when a node receives updates from
a child marked unreachable, it knows those updates may
be late and may have missed their propagation window.
It therefore marks such updates as NODELAY. When a
node receives a NODELAY update, it processes it im-
mediately and propagates the result with the NODELAY
flag so that temporal batching is temporarily suspended
for that attribute. This modification may send extra mes-
sages in the (hopefully) uncommon case of a link perfor-
mance failure and recovery, but it ensures that the cur-
rent Nreachable value counts nodes that are meeting all
of their TI contracts.

4.2 Dynamic topology
Each virtual node in PRISM caches state from its chil-

dren so that when a new input from one child comes in, it
can use local information to compute new values to pass
up. This information is soft state—a parent discards it
if a child is unreachable for a long time. But because
reconstructing this state is expensive (there may be tens
of thousands of attributes for aggregation functions like
“where is the nearest copy of file foo” [36]), PRISM uses
long timeouts (TdeclareDead ≈ 10 minutes) to avoid spu-
rious garbage collection.

As a result, when a subtree chooses a new parent, that
subtree’s inputs may still be stored by a former parent
and thus may be counted multiple times in the aggregate
as shown in Figure 5(d).Ndup exposes this inaccuracy
by bounding the number of leaves whose inputs might
be included multiple times in the aggregate query re-
sult. Note that PRISM allows a user to define duplicate-
insensitive aggregation functions where possible [7, 24].
However, to support a broader range of aggregation func-
tions, PRISM computesNdup for each aggregation tree.

The basic aggregation function forNdup is simple: if
a subtree root spanningk leaf nodes switches to a new
parent, that subtree root inserts the valuek into theNdup

aggregate, which has SUM as its aggregation function.
Later, when the node is certain that sufficient time has
elapsed to ensure that its old parent has removed its soft
state, it updates its input ofNdup to 0.

Our Ndup implementation must deal with two issues.
First, for correctness, we must maintain the invariant that
Ndup bounds the number of nodes whose inputs are double-
counted despite failures and network delays. Second, for
good performance, we must minimize the scope of dis-
ruptions when a tree reconfigures.

4.2.1 Lease aggregation
For correctness, PRISM ensures thatNdup always

bounds the number of nodes with double-counted inputs
despite network disruptions and delays (as opposed to

7

 * (1−max_drift))

2 t_recv

1 t_send

3 d_grantLease = t_haveLease − t_recv

4

5 t_haveLease = min_c (t_haveLease[c])

LEASE_RENEW

n2

n1

t_grantLease = max(t_grantLease, t_haveLease)

d_grantLease

t_haveLease[n2] = t_send + (d_grantLease

Figure 6: Protocol for a parent to renew a lease on the
right to retain a child’s contribution to an aggregate.

A B C D E F G
H fails

H

f(H)f(G)f(E) f(F)f(D)f(C)f(B)f(A)

f(A,B) f(C,D)

f(A..D) f(E..H)

f(E,F) f(G,H)

attribute = f(A.H)

f(A)

A B C D E F G H
H fails

f(H)f(G)f(F)f(E)f(D)f(C)f(B)

f(A,B) f(C,D) f(E,F) f(G,H)

attribute = f(A..D)
f(A..D)

f(A..D) LEASE EXPIRED

(i) (ii)

A B C D E F G H
H fails

f(H)f(G)f(F)f(E)f(D)f(C)f(B)f(A)

f(A,B) f(C,D) f(E,F)

f(E,F)f(A..D)

f(A..F)
attribute = f(A..F)

EXPIRED
LEASE

f(F)f(E)f(A)

f(A,B) f(G)

H fails
H

f(G)

GFE

f(E,F)

f(E..G)

attribute = f(A..G)
f(A..G)

f(A..D)

f(C,D)

C D

f(D)f(C)

B

f(B)

A

LEASE
EXPIRED

(iii) (iv)
(a) Impact of leaf failure without early expiration

A B C D E F G
H fails

H

f(H)f(G)f(E) f(F)f(D)f(C)f(B)f(A)

f(A,B) f(C,D)

f(A..D) f(E..H)

f(E,F) f(G,H)

attribute = f(A.H)

B C D E F G H

f(E..G)

attribute = f(A..G)
f(A..G)

f(A..D)

f(A,B)

f(A) f(B)

A

f(C) f(D) f(E)

f(C,D) f(E,F)

f(F) f(G)

f(G)

EXPIRE

H fails

EARLY

(b) Impact of leaf failure with early expiration

Figure 7: Recalculation of aggregate function across
values A, B, ..., H after the node with input H fails (a)
without and (b) with early expiration.

just providing a best-effort estimate). This guarantee is
achieved through the use of a novellease aggregation
algorithm that extends the concept of leases [13] to hier-
archical aggregation.

Figure 6 details the protocol used when a noden1 up-
dates a lease on the inputs from a set of descendants
rooted atn2. The algorithm makes use of local clocks
at n1 andn2, but it is not sensitive to skew and toler-
ates a maximum drift rate ofmaxdrift (e.g., 5%). In this
protocol, a node maintainsthaveLease, the latest time for
which it holds leases for all descendants, andtgrantLease,
the latest time for which it has granted a lease to its an-
cestors. The key to the protocol is that the leases granted
by a node are limited by the shortest lease held from any
descendant.

Note that to cope with clock skew, the childn2 ex-

tends the lease by a durationdgrantLease, but the child
interprets thedgrantLease interval starting fromtrecv, the
time it received the renewal request, while the parent in-
terprets the interval starting fromtsend. As a result, a
lease always expires at a parent before expiring at any de-
scendent regardless of the skew between their clocks [42].

A node that roots ak-leaf subtree that switches to a
new parent then contributesk to Ndup until tgrantLease,
after which it may reset its contribution ofNdup to 0
because its former parent is guaranteed to have cleared
from its soft state all inputs from that node.

4.2.2 Early expiration
For good performance, PRISM usesearly expiration

to minimize the scope of disruption when a tree’s topol-
ogy reconfigures. In particular, the lease aggregation
mechanism ensures the invariant that leases near the root
of a tree are shorter than leases near the leaves. As a
result, a naive implementation that removes cached soft
state exactly when a lease expires would exhibit the per-
verse behavior illustrated in Figure 7(a): each node from
the root to the parent of a failed node will successively
expire its problematic child’s state, recalculate its ag-
gregates without that child, update its parent, renew its
parent’s lease, and then repeatedly receive and propagate
updated aggregates from its child as the process ripples
down the tree. Not only is that process expensive, but
it may significantly and unnecessarily perturb values re-
ported at the root for all attributes by removing and re-
adding large subtrees of inputs. For example, in Figure 7-
ii, the leaf failure at node H temporarily removes inputs
E, F, and G from the aggregate. Furthermore, note that
the example in Figure 7 is a common case: in a randomly
constructed tree, the vast majority of nodes are near the
leaves. Failing to address this problem would transform
the common-case of leaf failures into significant disrup-
tions and bring into play the amplification effect.

Early expiration avoids this unwarranted disruption as
Figure 7(b) illustrates. A node at leveli of the tree dis-
cards the state of an unresponsive subtree (maxLevels

- i) * dearly before its lease expires. Once the node has
removed the problematic child’s inputs from the aggre-
gates values it has reported to its parent, the node can
renew leases to its parent that are no longer limited by
the ever-shortening lease held on the problematic child.
As the figure illustrates, this technique minimizes dis-
ruption by allowing a node near the trouble spot to prune
the tree, update its ancestors, and resume granting long
leasesbeforeany ancestor acts.

4.3 Scaling to large systems
Scaling NI is a challenge. To scale attribute moni-

toring to large numbers of nodes and attributes, PRISM
constructs a forest of trees using an underlying DHT and
then uses different aggregation trees for different attributes
[40]. As Figure 8 illustrates, a failure affects different

8

000 111010 101
L0

L1

L2

L3

100 110 001 011
1 1 1 111 1 1

22 2 2 2 2 2 2

4

4 7

34 4

1

Figure 8: The failure of a physical node has different
effects on different aggregations depending on which
virtual nodes are mapped to the failed physical node.
The numbers next to virtual nodes show the value of
Nreachable for each subtree after the failure of physi-
cal node 001, which acts as a leaf for one tree but as a
level-2 subtree root for another.

trees differently. The figure shows 2 aggregation trees
corresponding to keys 000 and 111 for a 8-node system.
In this system, the failure of the physical node with key
001 removes only a leaf node from the tree 111 but dis-
connects a 2-level subtree from the tree 000 highlighting
the amplification effect. Therefore, quantifying the effect
of failures will require calculating NI metrics for each of
then distinct global trees in ann-node system. Making
matters worse, as Section 4.1 explained, maintaining the
NI metrics requires frequent active probing along each
edge in each tree.

As a result of these factors, the straightforward algo-
rithm for maintaining NI metrics separately for each tree
is not tenable: the DHT forest ofn degree-d aggregation
trees withn physical nodes and each tree havingn−1/d

1−1/d

edges (d > 1), hasΘ(n2) edges that must be monitored;
such monitoring would requireΘ(n) messages per node
every probe interval (p = 10s in PRISM prototype). To
put this in perspective, consider an=1024-node system
with d=16-ary trees (i.e., a DHT with 4-bit correction
per hop). The straightforward algorithm then has each
node sending over roughly 100 probes per second. As the
system grows, the situation deteriorates rapidly—a 16K-
node system requires each node to send roughly 1600
probes per second.

Our solution, described below, reduces active moni-
toring work toΘ(d logd n) probes per node perp sec-
onds. The 1024-node system in the example would re-
quire each node to send about 5 probes per second; the
16K-node system would require each node to send about
7 probes per second.

4.3.1 Dual tree prefix aggregation

To make it practical to maintain the NI values, we take
advantage of the underlying structure of our Plaxton-tree-
based DHT [28] to reuse common subcalculations across
different aggregation trees using a noveldual tree prefix
aggregationabstraction.

00*

000 111010 101
L0

L1

L2

L3

100 110 001 011

Figure 9: Plaxton tree topology is an approximate
butterfly network. The bold connections illustrate
how a virtual node 00* uses the dual tree prefix ag-
gregation abstraction to aggregate values from a tree
below it and distribute the results up a tree above it.

As Figure 9 illustrates, this DHT construction forms
an approximate butterfly network. For a degree-d tree,
the virtual node at leveli has an id that matches the keys
that it routes inlog d ∗ i bits. It is the root of exactly one
tree, and its children are approximatelyd virtual nodes
that match keys inlog d ∗ (i − 1) bits. It hasd parents,
each of which matches different subsets of keys inlog d∗
(i+1) bits. But notice that for each of these parents, this
tree aggregates inputs fromthe same subtrees.

Whereas the standard aggregation abstraction computes
a function across a set of subtrees and propagates it to one
parent, adual tree prefix aggregationcomputes an aggre-
gation function across a set of subtrees and propagates it
to all parents. As Figure 9 illustrates, each node in a dual
tree prefix aggregation is the root of two trees: an aggre-
gation tree below that computes an aggregation function
across a set of leaves and a distribution tree above that
propagates the result of this computation to a collection
of enclosing aggregates that depend on this sub-tree for
input.

For example in Figure 9, consider the level 2 virtual
node 00* mapped to node 000. This node’sNreachable

count of 4 represents the total number of leaves included
in that virtual node’s subtree. This node aggregates this
singleNreachable count from its descendants and prop-
agates this value to both of its level-3 parents, 000 and
001. For simplicity, the figure shows a binary tree; by
default PRISM corrects 4 bits per hop andd=16, so each
subtree is common to 16 parents.

5. CASE-STUDY APPLICATIONS
We have developed a prototype of the PRISM mon-

itoring system on top of FreePastry [30]. To guide the
system development and to drive the performance eval-
uation, we have also built three case-study applications
using PRISM: (1) a distributed heavy hitter detection ser-
vice, (2) a distributed monitoring service for Internet-
scale systems, and (3) a distributed bot detector service.

Distributed Heavy Hitter detection (DHH). Our first
application is identifying heavy hitters in a distributed

9

system—for example, the top 10 IPs that account for a
significant fraction of total incoming traffic in the last 10
minutes [8, 20]. The key challenge for this distributed
query is scalability for aggregating per-flow statistics for
tens of thousands to millions of concurrent flows in real-
time. For example, a subset of the Abilene [1] traces used
in our experiments include 80 thousand flows that send
about25 million updates per hour.

To scalably compute the global heavy hitters list, we
chain two aggregations where the results from the first
feed into the second. First, PRISM calculates the to-
tal incoming traffic for each destination address from all
nodes in the system using SUM as the aggregation func-
tion and hash(HH-Step1, destIP) as the key. For exam-
ple, tuple (H = hash(HH-Step1, 128.82.121.7), 700 KB)
at the root of the aggregation treeTH indicates that a total
of 700 KB of data was received for 128.82.121.7 across
all vantage points during the last time window. In the
second step, we feed these aggregated total bandwidths
for each destination IP into a SELECT-TOP-10 aggre-
gation with key hash(HH-Step2, TOP-10) to identify the
TOP-10 heavy hitters among all flows.

PrMon. The second case-study application is PrMon,
a distributed monitoring service that is representative of
monitoring Internet-scale systems such as PlanetLab [27]
and Grid systems [37] that provide platforms for devel-
oping, deploying, and hosting global-scale services. For
instance, to manage a wide array of user services run-
ning on the PlanetLab testbed, the system administra-
tors need a global view of the system to identify prob-
lematic services (slices in PlanetLab terminology) e.g.,
if any slice is consuming more than 10GB of memory
across all nodes on which it is running. Similarly, users
require system state information to query for “lightly-
loaded” nodes for deploying new experiments or to track
the resource consumption of their running experiments.

To provide such information in a scalable way and in
real-time, PRISM computes the per-slice aggregates for
each resource attribute (e.g., CPU, MEM, etc.) along dif-
ferent aggregation trees. This aggregate usage of each
slice across all PlanetLab nodes for a given resource at-
tribute (e.g., CPU) is then input to a per-resource SELECT-
TOP-100 aggregate (e.g., SELECT-TOP-100, CPU) to
compute the list of top-100 slices in terms of consump-
tion of the resource.

PrBot. The final monitoring application is PrBot, a dis-
tributed bot detector service to keep track of which nodes
are contacting a large number of other nodes. In this ap-
plication, a leaf sensor at each node maintains a sketch [7]
data structure to count the number of distinct elements in
the set of destination IP addresses to which that node has
sent a packet. The sketch outputs a cardinality estimate
of this set which is fed into PRISM as (PrBot, Sensor-Id,
set-size) to compute a top-100 list of nodes that might be
used as bots. In the presence of failures, our aim is to
accurately compute this list so as not to raise any false

 0.001

 0.01

 0.1

 1

 0 50 100 150 200 250 300

T
ot

al
 #

 m
es

sa
ge

s
(n

or
m

al
iz

ed
)

TI (seconds)

AI = 0
AI = 1%

AI = 10%
AI = 20%

Figure 10: Load vs. AI and TI for DHH application.

alarms (false positives) or miss any inputs (false nega-
tives).

6. EXPERIMENTAL EVALUATION
Our experiments focus on investigating the consistency-

availability trade-offs that NI exposes, and quantifying
the overhead in computing the NI metrics. Overall, our
evaluation shows that PRISM is an effective substrate for
accurate scalable monitoring: the NI metrics both suc-
cessfully characterize system state and reduce measure-
ment inaccuracy while incurring a small communication
overhead.

We run our experiments in controlled environments
(clusters of 100 Emulab [39] or 20 department Condor
machines), and PlanetLab [27] up to 96 nodes.

6.1 Scalability benefits
First, we quantify the scalability benefits from PRISM’s

combination of hierarchical aggregation, arithmetic fil-
tering, and temporal batching for the DHH application.
We use multiple netflow traces obtained from the Abi-
lene [1] Internet2 backbone network. Figure 10 shows
the precision-performance results running DHH on 400
nodes mapped to 100 physical Emulab machines; the to-
tal monitoring load is normalized relative to the load for
AI of 0 and TI of 10 seconds. Note that AI and TI each
reduce monitoring overheads by nearly an order of mag-
nitude. We examine the PrMon and the PrBot applica-
tions in the extended technical report and observe similar
results [19].

6.2 NI: Exposing disruption
In this section, we analyze the effectiveness of NI met-

rics in reflecting network state and filtering inaccurate re-
ports.

We first illustrate how NI metrics reflect network state
for a small scale controlled experiment. In Figure 11,
we run a 20 node experiment on the departmental Con-
dor cluster where we kill a single node att = 815 seconds

10

 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200 1400 1600 1800

N
et

w
or

k
Im

pr
ec

is
io

n
M

et
ric

s

Time (seconds)

Nreachable
Nall

Ndup

Figure 11: NI metrics under induced system churn –
single node failure at 815 seconds into the experimen-
tal run.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2 4 6 8 10 12 14 16 18

V
al

ue

Time (hours)

Nreachable
Nall

Ndup

Figure 12: NI metrics reflecting PlanetLab state (85
nodes).

into the run and observe the variation of reported NI met-
rics for an attribute with TI of 60 seconds. This failure
causes theNreachable value to fall from 20 to 15 within
40 seconds after the node failure. The drop inNreachable

indicates that any result calculated in this interval might
only include correct values from 15 nodes. After about
240 seconds, the underlying DHT declares the missing
node to be dead and reconfigures the topology. Corre-
spondingly, theNdup value goes from 0 to 4 at aboutt

= 1060 seconds when the disconnected nodes join new
parents and start reporting theirNdup value. TheNall

value remains stable from 20 until about t=1600 seconds
to reflect the longTdeclareDead timeout from the failure
at t = 815 seconds before the system declares unreach-
able nodes to be dead. Finally, theNdup value falls back
to 0 and bothNall andNreachable stabilize at 19 (nodes)
denoting that the system is back to a stable state.

For subsequent experiments, we focus on NI’s effec-
tiveness during periods of instability. In particular, we
run experiments on PlanetLab nodes. Because these nodes

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

C
D

F
 (

%
 a

ns
w

er
s)

Difference from truth (%)

NI oblivious
NI < 5%

NI < 10%
NI < 50%
NI < 75%
NI < 90%

Figure 13: CDF for reported answers filtered for dif-
ferent NI thresholds andk = 1.

show heavy load, unexpected delays, and relatively fre-
quent reboots (especially prior to deadlines!), we expect
these nodes to exhibit more NI than in a typical dis-
tributed environment, which makes them a convenient
stress test of our system.

Figure 12 shows how NI reflects network state for a
85-node PrMon experiment on PlanetLab for an 18-hour
run. We observe that even without any induced fail-
ures, there are short-term instabilities in values reported
by Nreachable, Nall, andNdup due to missing/delayed
ping reply messages forNreachable and lease expirations
triggered by DHT reconfigurations forNdup. During the
course of the run, 5 of the 85 nodes became unrespon-
sive; hence the finalNreachable andNall values stabilize
at 80.

6.3 Coping with disruption
Next we quantify the risks of reporting global aggre-

gate results without incorporating NI. We run a 1 hour
PrMon experiment on 94 PlanetLab nodes for an attribute
computing a SUM aggregate with AI = 0 and TI = 10
seconds. Here we present the results for the SUM ag-
gregate since it is common in our three case-study and
several other applications; the results for other standard
aggregation functions (e.g., MAX, MIN, AVG, etc.) are
described in an extended technical report [19]. Figure 13
shows the CDF of reported answers showing the devia-
tion in reports with respect to an oracle that has instan-
taneous access to all inputs; we simulate this oracle via
off-line processing of input logs. The different lines in
the graph correspond to the reported answers filtered for
different NI thresholds. For simplicity, we condense NI
to a single parameter MAX[Nall−Nreachable

Nall
, Ndup

Nall
]. We

observe that NI effectively reflects the stability of net-
work state: when NI< 5%, 80% answers have less than
20% deviation from the true value. Conversely, for moni-
toring systems that ignore NI (theNI obliviousline), half
of their reports differ from the truth by more than 60%.

11

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

C
D

F
 (

%
 a

ns
w

er
s)

Difference from truth (%)

K = 1
K = 2
K = 3
K = 4

Figure 14: CDF of NI values for different k.

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

C
D

F
 (

%
 a

ns
w

er
s)

NI

K = 1
K = 2
K = 3
K = 4

Figure 15: CDF of NI values for k duplicate keys.

As discussed in Section 3.3, applications can filter results
using different NI thresholds and take an appropriate ac-
tion to correct distorted results.

In Figure 14 we explore the effectiveness of the redun-
dant aggregation approach discussed in Section 3.3 i.e.,
usingk redundant trees to compute an attribute SUM and
then using NI to identify the highest-quality result. Fig-
ure 14 shows the CDF of results with respect to the devia-
tion from an oracle as we varyk from 1 to 4. When devi-
ation is less than 10% (small NI), retrieving results from
the root of one aggregation tree (k = 1) suffices. How-
ever, for large deviation, fetching the reports from only
one aggregation tree can introduce deviation as high as
100% whereas choosing the result from the most stable
of 4 trees reduces the deviation to at most 22% thereby
reducing the worst-case inaccuracy by nearly a factor of
5. Note that PRISM enables a trade-off: for a given
bandwidth budget, a system may be able to use small
increases in arithmetic filtering and temporal batching to
increasek and thereby greatly reduce NI.

Filtering answers during periods of high churn exposes
a fundamental consistency versus availability tradeoff [12].
Figure 15 shows how varyingk allows us to increase
monitoring load to improve this tradeoff. Ask increases,
the fraction of time during which NI is low increases.
The intuition is that because the vast majority of nodes

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 16 32 64 128 256 512 1024

M
es

sa
ge

s
pe

r
no

de
 p

er
 s

ec
on

d

Number of nodes

Dual-tree Prefix Aggregation
Per-tree Aggregation

Figure 16: NI monitoring overhead for dual-tree pre-
fix aggregation compared to computing NI per aggre-
gation tree; x-axis is on a log scale.

in any 8-ary tree are near the leaves, sampling several
trees rapidly increases the probability that at least one
tree avoids encountering many near-root failures. We
provide an analytic model formalizing this intuition in
our technical report [19].

6.4 NI scalability
Finally, we quantify the monitoring overhead of track-

ing NI via (1) each aggregation tree and (2) dual-tree pre-
fix aggregation. Figure 16 shows the average per-node
message cost for NI monitoring varying network size
from 16 to 1024 nodes. We observe that the overhead
using per aggregation tree scales linearly with the net-
work size whereas it scales logarithmically using dual-
tree prefix aggregation.

Note that the above experiment constructs alln trees
in the DHT forest ofn nodes assuming that the number
of attributes is at least the number of nodesn. However,
for systems that aggregate fewer attributes, it is important
to know which of the above two techniques for tracking
NI is more efficient. Figure 17 shows both the aver-
age and the maximum message cost across all nodes in a
1000-node experiment for both per-tree NI aggregation
and dual-tree prefix aggregation. We observe that the
break-even point for the average load is 44 trees (4.4%)
while the break-even point for the maximum load is only
8 trees (0.8%).

7. RELATED WORK
The idea of flagging results when the state of a dis-

tributed system is disrupted by node or network failures
has been used in tackling other distributed systems prob-
lems. For example, our idea of NI is analogous to that
of failure detectors [5] for fault-tolerant distributed sys-
tems. Freedman et al. propose link-attestation groups
abstraction in [11] that uses an application specific no-
tion of reliability and correctness, so as to map which
pairs of nodes consider each other reliable. Their system,

12

 0.1

 1

 10

 100

 1000

 1 10 100 1000

M
es

sa
ge

s
pe

r
no

de
 p

er
 s

ec
on

d

Number of trees

Per-tree Max load
Per-tree Avg load

Dual-Tree Prefix Max load
Dual-Tree Prefix Avg load

Figure 17: Comparing NI tracking overhead by vary-
ing the number of trees (attributes) for (a) per-tree
aggregation vs. (b) dual-tree prefix aggregation in a
1000-node system. The figure shows both the AVG
load and the MAX load, along with the break-even
points.

designed for groups on the scale of tens of nodes, mon-
itors the nodes and system and exposes such attestation
graph to the applications. Bawa et. al [3] survey previous
work on measuring the validity of query results in faulty
networks. Their “single-site validity” semantic is equiv-
alent to PRISM’sNreachable metric. Completeness[14]
defined as the percentage of network hosts whose data
contributed to the final query result, is similar to the ratio
of Nreachable andNall. Relative Error [7, 43] between
the reported and the “true” result at any instant can only
be computed by an oracle with a perfect view of the dy-
namic network.

Several aggregation systems have worked to address
the failure amplification effect. To mask failures, TAG [21]
proposes (1) reusing previously cached values and (2)
dividing the aggregate value into fractions equal to the
number of parents and then sending each fraction to a
distinct parent. This approach only reduces the variance
but not the expected value of the aggregate value at the
root. SAAR uses multiple interior-node-disjoint trees to
reduce the impact of node failures [23]. Other studies
have proposed multi-path routing methods [7, 14, 18, 22,
24] for fault-tolerant aggregation.

Recent proposals [3,7,22,24,44] have combined mul-
tipath routing with order- and duplicate-insensitive data
structures to tolerate faults in sensor network aggrega-
tion. The key idea is to use probabilistic counting [9]
to approximately count the number of distinct elements
in a multi-set. PRISM takes a complementary approach:
whereas multipath duplicate-insensitive (MDI) aggrega-
tion seeks to reduce the effects of network disruption,
PRISM’s NI metric seeks to quantify the network dis-
ruptions that do occur. In particular, although MDI ag-
gregation can, in principle, reduce network-induced in-
accuracy to any desired target if losses are independent
and sufficient redundant transmissions are made [24], the

systems studied in the literature are still subject to non-
zero network-induced inaccuracy due to efforts to bal-
ance transmission overhead with loss rates, insufficient
redundancy in a topology to meet desired path redun-
dancy, or correlated network losses across multiple links.
These issues may be more severe in our environment
than in wireless sensor networks targeted by MDI ap-
proaches because the dominant loss model may differ
(e.g., link congestion and DHT reconfigurations in our
environment versus distance-sensitive loss probability for
the wireless sensors) and because the transmission cost
model differs (for some wireless networks, transmission
to multiple destinations can be accomplished with a sin-
gle broadcast.)

The MDI aggregation techniques are also complemen-
tary in that PRISM’s infrastructure provides NI informa-
tion that is common across attributes while the MDI ap-
proach modifies the computation of individual attributes.
As Section 3.3 discussed, NI provides a basis for inte-
grating a broad range of techniques for coping with net-
work error, and MDI aggregation may be a useful tech-
nique in cases when (a) an aggregation function can be
recast to be order- and duplicate-insensitive and (b) the
system is willing to pay the extra network cost to transmit
each attribute’s updates. Further, to realize this promise,
additional work is required to extend MDI approach to
bounding the approximation error while still minimizing
network load via AI and TI filtering.

Consistency has long been studied in the context of
non-aggregatingfile systems and databases. Yu et al. [45]
propose three metrics—Numerical Error, Order Error, and
Staleness—to capture the consistency spectrum in a dis-
tributed replicated system where any node can perform
read or write operations. Numerical error is similar to
AI and Staleness is similar to TI. Payton et. al [26]
proposed a query processing model for one-shot, non-
aggregate queries in mobile ad hoc and sensor networks.

Consistency for aggregation, however, is fundamen-
tally different. For example, aggregation systems are
large-scale with many concurrent writers which implies
that it is not feasible to resolve CAP dilemma [12] by
blocking reads during periods when a writer may be dis-
connected. So we emphasize availability by providing
conditional consistency: operations always complete but
results are annotated with information about their qual-
ity.

8. CONCLUSIONS

If a man will begin with certainties, he shall
end in doubts: but if he will be content to be-
gin with doubts, he shall end in certainties.
–Sir Francis Bacon

We have presented Network Imprecision, a new metric
of characterizing network state that quantifies the consis-
tency of aggregate query results in a dynamic large-scale

13

monitoring system. Without NI guarantees, large scale
network monitoring systems may provide misleading re-
ports because query result outputs by such systems may
be arbitrarily wrong. Incorporating NI in the PRISM
monitoring framework qualitatively improves its output
by exposing cases when approximation bounds on query
results can not be trusted.

9. REFERENCES
[1] Abilene internet2 network.

http://abilene.internet2.edu/.
[2] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom.

Models and issues in data stream systems. InPODS, 2002.
[3] M. Bawa, A. Gionis, H.Garcia-Molina, and R. Motwani. The

price of validity in dynamic networks. InSIGMOD, 2004.
[4] A. Bharambe, M. Agrawal, and S. Seshan. Mercury: Supporting

Scalable Multi-Attribute Range Queries. InSIGCOMM,
Portland, OR, August 2004.

[5] T. Chandra and S. Toueg. Unreliable failure detectors for reliable
distributed systems.J. ACM, 43(2):225–267, Mar. 1996.

[6] D. D. Clark, C. Partridge, J. C. Ramming, and J. Wroclawski. A
knowledge plane for the internet. InSIGCOMM, 2003.

[7] J. Considine, F. Li, G. Kollios, and J. Byers. Approximate
aggregation techniques for sensor databases. InICDE, 2004.

[8] C. Estan and G. Varghese. New directions in traffic measurement
and accounting. InSIGCOMM, 2002.

[9] P. Flajolet and G. N. Martin. Probabilistic counting algorithms
for data base applications.Journal of Computer and System
Sciences,, 31(2):182–209, Oct. 1985.

[10] M. J. Freedman and D. Mazires. Sloppy Hashing and
Self-Organizing Clusters. InIPTPS, Berkeley, CA, February
2003.

[11] M. J. Freedman, I. Stoica, D. Mazieres, and S. Shenker. Group
therapy for systems: Using link attestations to manage failures.
In IPTPS, 2006.

[12] S. Gilbert and N. Lynch. Brewer’s conjecture and the feasibility
of Consistent, Available, Partition-tolerant web services. InACM
SIGACT News, 33(2), Jun 2002.

[13] C. Gray and D. Cheriton. Leases: An Efficient Fault-Tolerant
Mechanism for Distributed File Cache Consistency. InSOSP,
pages 202–210, 1989.

[14] I. Gupta, R. van Renesse, and K. P. Birman. Scalable
fault-tolerant aggregation in large process groups. InDSN, 2001.

[15] N. J. A. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and
A. Wolman. SkipNet: A Scalable Overlay Network with
Practical Locality Properties. InUSITS, March 2003.

[16] J. M. Hellerstein, V. Paxson, L. L. Peterson, T. Roscoe,
S. Shenker, and D. Wetherall. The network oracle.IEEE Data
Eng. Bull., 28(1):3–10, 2005.

[17] R. Huebsch, J. M. Hellerstein, N. Lanham, B. T. Loo, S. Shenker,
and I. Stoica. Querying the Internet with PIER. InVLDB, 2003.

[18] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed
diffusion: a scalable and robust communication paradigm for
sensor networks. InMobiCom, 2000.

[19] N. Jain, D. Kit, P. Mahajan, P. Yalagandula, M. Dahlin, and
Y. Zhang. Technical Report TR-06-22, UT Austin Department of
Computer Sciences, March 2006.

[20] N. Jain, D. Kit, P. Mahajan, P. Yalagandula, M. Dahlin, and
Y. Zhang. Star: Self tuning aggregation for scalable monitoring.
In 33rd International Conference on Very Large Databases
(VLDB), 2007.

[21] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong.
TAG: a Tiny AGgregation Service for Ad-Hoc Sensor Networks.
In OSDI, 2002.

[22] A. Manjhi, S. Nath, and P. B. Gibbons. Tributaries and deltas:
efficient and robust aggregation in sensor network streams.In
SIGMOD, 2005.

[23] A. Nandi, A. Ganjam, P. Druschel, T. S. E. Ng, I. Stoica,
H. Zhang, and B. Bhattacharjee. Saar: A shared control planefor
overlay multicast. InNSDI, 2007.

[24] S. Nath, P. B. Gibbons, S. Seshan, and Z. R. Anderson. Synopsis
diffusion for robust aggregation in sensor networks. InSenSys,
2004.

[25] C. Olston, J. Jiang, and J. Widom. Adaptive filters for continuous
queries over distributed data streams. InSIGMOD, 2003.

[26] J. Payton, C. Julien, and G.-C. Roman. Automatic consistency
assessment for query results in dynamic environments. In
Proceedings of the ACM SIGSOFT Symposium on the
Foundations of Software Engineering, 2007. (to appear).

[27] Planetlab.http://www.planet-lab.org.
[28] C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing

Nearby Copies of Replicated Objects in a Distributed
Environment. InACM SPAA, 1997.

[29] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker.
A Scalable Content Addressable Network. InSIGCOMM, 2001.

[30] A. Rowstron and P. Druschel. Pastry: Scalable, Distributed
Object Location and Routing for Large-scale Peer-to-peer
Systems. InMiddleware, 2001.

[31] J. Shneidman, P. Pietzuch, J. Ledlie, M. Roussopoulos,
M. Seltzer, and M. Welsh. Hourglass: An infrastructure for
connecting sensor networks and applications. Technical Report
TR-21-04, Harvard Technical Report, 2004.

[32] A. Siegel.Performance in Flexible Distributed File Systems.
PhD thesis, Cornell, 1992.

[33] A. Silberstein, G. Puggioni, A. Gelfand, K. Munagala, and
J. Yang. Suppression and failures in sensor networks: A bayesian
approach. In33rd International Conference on Very Large
Databases (VLDB), 2007.

[34] A. Singla, U. Ramachandran, and J. Hodgins. Temporal notions
of synchronization and consistency in Beehive. InProc. SPAA,
1997.

[35] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and
H. Balakrishnan. Chord: A scalable Peer-To-Peer lookup service
for internet applications. InACM SIGCOMM, 2001.

[36] R. Tewari, M. Dahlin, H. Vin, and J. Kay. Design Considerations
for Distributed Caching on the Internet. InICDCS, May 1999.

[37] http://www.globus.org/.
[38] R. van Renesse, K. Birman, and W. Vogels. Astrolabe: A robust

and scalable technology for distributed system monitoring,
management, and data mining.TOCS, 21(2):164–206, 2003.

[39] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,
M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An integrated
experimental environment for distributed systems and networks.
In Proc. OSDI, pages 255–270, Boston, MA, Dec. 2002.

[40] P. Yalagandula and M. Dahlin. A scalable distributed information
management system. InProc SIGCOMM, Aug. 2004.

[41] P. Yalagandula, P. Sharma, S. Banerjee, S.-J. Lee, and S. Basu.
S3: A Scalable Sensing Service for Monitoring Large
Networked Systems. InProceedings of the SIGCOMM
Workshop on Internet Network Management, 2006.

[42] J. Yin, L. Alvisi, M. Dahlin, and C. Lin. Hierarchical Cache
Consistency in a WAN. InProc USITS, Oct. 1999.

[43] R. G. Yonggang Jerry Zhao and D. Estrin. Computing aggregates
for monitoring wireless sensor networks. InSNPA, 2003.

[44] H. Yu. Dos-resilient secure aggregation queries in sensor
networks. InPODC, pages 394–395, 2007.

[45] H. Yu and A. Vahdat. Design and evaluation of a conit-based
continuous consistency model for replicated services.ACM
Trans. on Computer Systems, 20(3), Aug. 2002.

[46] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry: An
Infrastructure for Fault-tolerant Wide-area Location and
Routing. Technical Report UCB/CSD-01-1141, UC Berkeley,
Apr. 2001.

14

