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Abstract
This paper argues for a simple change to Byzantine Fault Tolerant state machine replication libraries. Tradi-
tional state machine replication based Byzantine fault tolerant (BFT) techniques provide high availability and
security but fail to provide high throughput. This limitation stems from the fundamental assumption of general-
ized state machine replication techniques that all replicas execute requests sequentially in the same total order
to ensure consistency across replicas. We propose a high throughput Byzantine fault tolerant architecture that
uses application-specific information to identify and concurrently execute independent requests. Our architecture
thus provides a general way to exploit application parallelism in order to provide high throughput without com-
promising correctness. Although this approach is extremely simple, it yields dramatic practical benefits. When
sufficient application concurrency and hardware resources exist, CBASE, our system prototype, provides orders of
magnitude improvements in throughput over BASE, a traditional BFT architecture. CBASE-FS, a Byzantine fault
tolerant file system that uses CBASE, achieves twice the throughput of BASE-FS for the IOZone micro-benchmarks
even in a configuration with modest available hardware parallelism.

1 Introduction
With the growing prevalence of large-scale distributed services and access-anywhere Internet services, there is

increasing need to build systems that provide high availability to ensure uninterrupted service, high reliability to

ensure correctness, high confidentiality against malicious attacks [1] to steal data, and high throughput [23] to

keep pace with high system load.

Recent work on Byzantine fault tolerant (BFT) state machine systems has demonstrated that generalized state

machine replication can be used to improve availability and reliability [20, 8, 19] as well confidentiality [24].

Furthermore, this work suggests that the approach has important practical properties in that it adds low overhead

[8, 20, 24], can recover proactively from faults [9], can make use of existing off-the-shelf implementations to

improve availability and to reduce replication cost [20], and can minimize replication of the application-specific

parts of the system [24].

However, current BFT state machine systems can fail to provide high throughput. They use generalized state

machine replication techniques that require all non-faulty replicas to execute all requests sequentially in the same

order, completing execution of each request before beginning execution of the next one. This sequential execution

of requests can severely limit the throughput of systems designed to achieve high throughput via concurrency [23].

Unfortunately, this concurrency-dependent approach lies at the core of many (if not most) large-scale network

services such as file systems, web servers, mail servers, and databases. Furthermore, technology trends generally

make it easier for hardware architectures to scale throughput by increasing the number of hardware resources

(e.g., processors, hardware threads, or disks) rather than increasing the speed of individual hardware elements.
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Although current BFT systems like PBFT [8] and BASE [20] implement optimizations such as request batching in

order to amortize their replication overheads due to agreement protocol messages and cryptographic computations,

existing systems still impose this fundamental limitation on application-level concurrency.

In this paper, we argue for a simple addition to the existing BFT state machine replication architectures that

allows throughput of the system to scale with application parallelism and available hardware resources. Our

architecture separates agreement from execution [24] and inserts a general parallelizer module between them. The

parallelizer uses application-supplied rules to identify and issue concurrent requests that can be executed in parallel

without compromising the correctness of the replicated service. Hence, the throughput of the replicated system

scales with the parallelism exposed by the application and with available hardware resources. More broadly, in

our architecture replicas execute requests according to a partial order that allows for concurrency as opposed to

the total order enforced by traditional BFT architectures.

We demonstrate the benefits of our architecture by building and evaluating a prototype library for constructing

Byzantine fault-tolerant replicated services called CBASE (Concurrent BASE). CBASE extends the BASE sys-

tem [20] which uses the traditional BFT state machine replication architecture. We use a set of micro-benchmarks

to stress test our system and find that when sufficient application concurrency and hardware resources exist,

CBASE provides orders of magnitude improvements in throughput over the traditional BFT architecture. We

also find that for applications or hardware configurations that can not take advantage of concurrency, CBASE adds

little overhead compared to the optimized BASE system. As a case study, we implement CBASE-FS, a replicated

Byzantine fault tolerant file system, to quantify the benefits for a real application. CBASE-FS achieves twice the

throughput of BASE-FS for the IOZone micro-benchmarks even in a configuration with modest available hard-

ware parallelism. When we artificially simulate more hardware resources, CBASE’s maximum write throughput

scales by over an order of magnitude compared to the traditional BFT architecture.

The main contribution of this study is a case for changing the standard architecture for Byzantine fault tolerant

state machine replication to include a parallelizer module that can expose potentially concurrent requests to enable

parallel execution. Based on this study, we conclude that this idea is appealing for two reasons. First, it is simple.

It requires only a small change to the existing standard BFT replication architecture. Second, it can provide large

practical benefits. In particular, this simple change can improve the throughput of some services by orders of

magnitude, making it practical to use BFT state machine replication for modern commercial services that rely on

concurrency for high throughput.

The main limitation of this approach is that safely executing multiple requests in parallel fundamentally requires

application-specific knowledge of inter-request dependencies. But, we do not believe this limitation undermines

our argument. In particular, our prototype parallelizer implements a set of default rules that assume that all
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requests depend on all other requests. Applications that require or are satisfied with sequential execution can

simply leave these default rules in place. But, applications that desire increased throughput can override these

rules to expose their concurrency to the replication library. Furthermore, designers of such applications can take

an iterative approach, first developing simple rules that expose some application concurrency and later developing

more sophisticated rules that expose more concurrency if required for performance.

The rest of this paper proceeds as follows. Sections 2 and 3 outline our system model and review the standard

architecture for existing Byzantine fault tolerant state machine replication systems. Then Section 4 describes our

proposed architecture and Section 5 describes our prototype replication library, CBASE. Section 6 discusses our

experimental evaluation, Section 7 discusses related work, and Section 8 summarizes our conclusions.

2 System Model
Our system model comprises a set of standard assumptions for Byzantine fault tolerant state machine replication.

For brevity, we list them here. A more complete discussion of these assumptions is available elsewhere [24]. We

assume an asynchronous distributed system where nodes may operate at arbitrarily different speeds and where the

network may fail to deliver messages, delay them, corrupt them, duplicate them, or deliver them out of order. The

system is safe under this asynchronous model, and it is live under a bounded fair links [24] system model that does

include a weak synchrony assumption that bounds worst-case delivery time of a message that is sent infinitely

often.

We assume a Byzantine fault model where faulty nodes can behave arbitrarily. They can crash, lose data, alter

data, and send incorrect protocol messages. We assume a strong adversary who can coordinate faulty nodes in

arbitrarily bad ways to disrupt the service. We assume the adversary to be computationally limited and that it

cannot subvert cryptographic techniques. We assume that at most f nodes can fail out of n replicas.

3 Background: BFT systems
BFT state machine replication based systems provide high availability and reliability [8, 20] and high security

[24] but fail to provide high throughput. There is a large body of research [15, 17, 19, 8, 20, 24] on replication

techniques to implement highly-available systems that tolerate failures. Instead of using single server to implement

a service, these techniques replicate the server and use a distributed algorithm to coordinate the replicas. The

replicated system provides the abstraction of a single service to the clients and continues to provide correct service

even when some of the replicas fail.

Figure 1 illustrates a typical BFT state machine replication architecture. Clients issue requests to the replicated

service. Conceptually, replicas consist of two stages, an agreement stage and an execution stage. In reality, these

two stages may be tightly integrated in a single machine [8, 20] or implemented on different machines [24]. The
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Fig. 1: Traditional BFT Architecture

agreement stage runs a distributed agreement protocol to agree on the order of client requests and the execution

stage executes all of the requests in the same order.

Each execution node maintains a state machine that implements the desired service. A state machine consists

of a set of state variables that encode the machine’s state and a set of commands that transform its state. A state

machine takes one or more of the following actions to execute a command:

1. Read a subset of the state variables, called the read-set R.

2. Modify a subset of the state variables, called the write-set W.

3. Produce some output O to the environment.

A command is non-deterministic if its write-set values or output are not uniquely determined by its input and

read-set values; otherwise it is a deterministic command. A state machine is called a deterministic state machine

if all commands are deterministic. The safety property (correctness condition) of a system that uses state machine

replication technique requires that all the non-faulty replicas starting from the same state should reach the same

final state after executing the same set of requests from clients. The following requirements [21] ensure safety of

a replicated system:

1. Deterministic state machine: Every non-faulty replica state machine is deterministic.

2. Agreement: Every non-faulty state machine replica receives every request.

3. Order: Every non-faulty state machine replica processes the requests it receives in the same relative order.

By ensuring the above conditions, all non-faulty replicas start from the same state, execute all the requests in the

same order, end up in the same final state, and produce the same output sequence.

Although the state machine replication technique can provide high availability and reliability, it can fail to

provide high throughput. The fundamental drawback of the generalized state machine approach is that the Order

requirement does not allow replicas to execute requests concurrently. In particular, unless strong assumptions
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Fig. 2: High throughput BFT state machine replication architecture

are made about state machine’s internal implementation, execution node must finish executing request i before

executing request i+1. Otherwise, concurrency within a state machine could introduce non-determinism into the

system, which can cause different replicas’ state to diverge and cause safety to be violated. For example, if replicas

implementing NFS were to execute multiple write requests to the same file concurrently, different replicas could

execute the write requests in different orders and end up having different versions of the same file. Unfortunately,

executing requests sequentially can severely limit the throughput of a system. Moreover, the throughput of such

systems does not scale with resources as replicas execute one request at a time and hence fail to exploit the

additional resources.

4 High Throughput BFT State Machine Replication
Figure 2 illustrates our high throughput state machine replication architecture, where we maintain the separation

between the agreement and execution stages and introduce a parallelizer between them. The parallelizer takes

a totally ordered set of requests from the agreement stage and uses application-supplied rules to first identify

independent requests and then issue them concurrently to the execution stage. A thread pool in the execution stage

can then execute the requests in parallel to improve system throughput.

4.1 Relaxed Order and Parallelizer

The key idea of high throughput state machine replication is to relax Schneider’s Order requirement on state

machine replication (defined above) to allow concurrent execution of independent requests without compromising

safety.

We say that two requests are dependent if the write-set of one has at least one state variable in common with

the read-set or write-set of the other. More formally, we define dependence as follows: Request r i, with read-set

Ri and write-set Wi and request r j , with read-set is R j and write-set W j, are dependent requests if any of the

following conditions is true (1) Wi ∩W j 6= φ, (2) Wi ∩R j 6= φ, or (3) Ri ∩W j 6= φ. We also define dependence to
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be transitive: if ri and r j are dependent and r j and rk are dependent, then ri and rk are dependent. Two requests ri

and r j are said to be concurrent if they are not dependent.

Given this notion of dependence, we refine Schneider’s Order requirement for replicated state machine safety

into a Relaxed Order requirement:

3a Relaxed Order: Every non-faulty state machine replica processes any pair of dependent requests it receives

sequentially and in the same relative order.

Notice that under the Relaxed Order requirement, concurrent requests can be processed in parallel. Thus, with the

Relaxed Order requirement, all non-faulty replicas execute requests in the same partial order as opposed to the

traditional architecture where all correct replicas execute requests in the same total order.

In the new architecture, the parallelizer uses application-specific information to take advantage of the Relaxed

Order requirement. The parallelizer transforms a totally ordered schedule of requests provided by the agreement

protocol into a partially ordered schedule based on application semantics.

A sound parallelizer ensures the following partial order property: for any two requests r i and r j such that ri

and r j are dependent and ri precedes r j in the total order established by the agreement stage, then ri completes

execution before r j begins execution. For fault tolerance, we also assume that the parallelizer has a local decision

property: each replica’s parallelizer does dependence analysis locally and does not exchange messages with other

replicas. Hence, given a correct agreement protocol, faulty replicas cannot affect the partial order enforced at the

correct replicas.

Notice that there are two properties that are not required of a parallelizer. First, we do not require precision:

a sound parallelizer may enforce additional ordering constraints on requests beyond those required by the partial

order property. This non-requirement is important because it allows us to simplify the design of parallelizers

for complex applications by building conservative parallelizers that can introduce false dependencies between

requests. For example, in Section 5.3 we describe a simple NFS implementation that uses a conservative analysis

to identify some, but not all, concurrent requests. Second, we do not require equality: different correct parallelizers

may enforce different partial orders as long as all correct parallelizers’ partial orders are consistent with the order

required by the partial order property. One could, for example, implement multiple versions of the parallelizer for

an application to prevent any one implementation from being a single point of failure [22].

The properties of existing BFT state machine replication systems and of a sound parallelizer with local decisions

ensure the correctness of our architecture.

Safety: The final state reached by our architecture for a given set of requests is equivalent to the final state

reached by executing those requests in a linearizable [11] order. More precisely, for a given initial application
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state (or abstract state [20]) S0, if a system comprising a correct agreement stage [8, 9, 20, 24], sound parallelizer,

and correct execution stage [24] reaches final state S f inal after the agreement stage receives a set of inputs I and

establishes a total order I across these inputs, and after all requests in I have completed execution, then this final

state S f inal is equivalent to the final state reached by starting the state machine in the equivalent initial state and

serially executing requests I in order I.

Proof sketch: The agreement protocol (e.g., atomic multicast) [8] used by the system guarantees total ordering of

all requests. From the properties of the parallelizer, all non-faulty replicas execute the dependent requests in the

same order and satisfy the Relaxed Order property. Relaxed Order ensures safety because (1) Dependent requests

execute in the same order at all replicas and follow the order provided by the agreement stage. This constraint is

by definition enforced by a sound parallelizer. And (2) Independent requests can be commuted safely. Because

independent requests modify disjoint sets of state variables, the result of executing independent requests in any

order places the system in the same final state.

Liveness If a system comprised of the agreement and execution stages is live, then the system comprised of the

agreement, execution, and parallelizer is also live if the parallelizer is sound and also implements the following

fairness property: eventually the oldest pending request that has been issued by the agreement protocol to the

parallelizer but that has not yet completed execution must be the next request given to the execution thread pool.

This property can be discharged by a sound parallelizer because the oldest pending request need not have any

predecessors under the partial order property. And this property is sufficient when combined with our assumption

that the agreement and execution stages are live.

4.2 Advantages and Limitations

This state machine replication architecture has two potential advantages. First, it can support high-throughput

applications. If the workload contains independent requests and the system has enough hardware resources, then

independent requests can be executed concurrently by the execution stage to improve the throughput of a system.

Second, it is simple and flexible. In particular, to achieve high throughput, we did not change any of the other

components in the system like client behavior, the agreement protocol, or the application. These components can

therefore be changed to suit the requirements of the replicated system. For example, one can change the agreement

protocol and client side behavior to build a system that either tolerates Byzantine failures or fail-stop failures while

achieving high throughput without modifying the parallelizer.

The main limitation of a system using this architecture is that the rules used by the parallelizer to identify

dependent requests require knowledge of the inner workings of each application. In many ways, this knowledge is

similar to that required to build the abstraction layer used in BASE to mask differences in different implementations
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of the same underlying application [20]. However, it may in general be difficult to know what internal state a given

request affects or to determine with certainty whether any given pair of requests are dependent.

Fortunately, it is not necessary to completely understand the inner workings of an application in order to de-

fine a parallelizer for it. In particular, it is always permissible to define conservative rules that include all true

dependencies but also include some false dependencies. System designers may choose to follow an incremental

approach by first defining a set of simple but conservative rules to identify “obvious” concurrent requests and then

progressively refine the rules if more parallelism is needed to meet performance goals.

5 CBASE Prototype
The goal of our prototype is to demonstrate a general way to extend state machine replication systems in order to

allow concurrent execution of requests for applications that can identify dependencies among requests.

Our prototype, CBASE (Concurrent BASE) system extends the BASE [20] system to use the high throughput

state machine replication architecture described in the previous section. BASE (BFT with Abstract Specification

Encapsulation) uses the PBFT (Practical Byzantine Fault Tolerance) algorithm [8] to provide Byzantine fault toler-

ant services. The PBFT agreement protocol is well suited for practical systems as it does not assume synchrony for

safety and also in that it introduces modest delay while providing high reliability and availability. BASE extends

PBFT by using abstraction to improve robustness and reduce cost.

CBASE modifies BASE to cleanly separate the agreement and execution stages1 and introduces a parallelizer

between these stages as shown in Figure 2. CBASE’s single threaded agreement module uses BASE’s 3-phase

atomic multicast protocol to establish a total order on requests. The parallelizer thus receives a series of requests

from the agreement module, and it uses an application-specific set of rules to identify dependencies among requests

and thereby establish a partial order across them. A pool of worker threads each draws a request out of the

parallelizer, executes it on the application state machine, and informs the parallelizer of request completion.

Internally, the parallelizer uses a dependency graph to maintain a partial order across all pending requests;

vertices represent requests and directed edges represent dependencies. The dependency graph forms a DAG as

there can be not be circular dependencies because dependent requests are ordered in the order they are inserted

and the independent requests are not ordered. The parallelizer has an application-independent scheduler that uses

the DAG to schedule the requests according to the partial order. The worker threads in the execution stage receive

independent requests (vertices with no incoming edges) from the parallelizer, execute them concurrently, and

remove a request from the DAG when its execution completes.

The default behavior of the parallelizer is to treat all the requests as dependent, in which case it behaves like the

existing BASE system where the requests are executed sequentially. This default behavior can be used when the

1Note, however, that our implementation does not allow the agreement and execution modules to run on different sets of machines [24].
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finite state machine is treated as a black box or where dependencies across requests cannot easily be inferred. The

rules in the parallelizer can be incrementally refined by taking a conservative approach where the requests known

to touch different states can be treated as independent and all the other requests can be treated as dependent.

Similarly, for backwards compatibility with existing state machines, if a state machine is not thread safe we can

just have single worker thread or implement a mutual exclusion lock around the state machine.

5.1 Parallelizer interface
The parallelizer appears to the agreement and execution threads as a variation of a producer/consumer queue.

When a consumer thread asks for a request, the parallelizer searches for a request that is independent of all

incomplete preceding requests and returns one if found; otherwise it blocks the consumer thread until a request

becomes independent. The interface used by the agreement and execution stages is as follows:

• Parallelizer.insert(): Called by the agreement stage to enqueue a request when the request is committed in the

agreement stage. It inserts a node in the dependency graph, does dependence analysis of this request with

preceding outstanding requests, and creates incoming edges to this node from the requests that this request is

dependent on. The new request is put in a blocked state if it has incoming edges.

• Parallelizer.next request(): Called by the execution stage to return a ready request. A request is ready if it does

not have any incoming edges in the dependency graph. If no request is ready, this call blocks until it can return

a ready request.

• Parallelizer.remove request(): Called by the execution stage after the execution of a request is completed and a

reply is sent to the client. The parallelizer removes the node corresponding to this request and all the outgoing

edges from this node. As a result, some of the blocked requests may transition to the ready state.

• Parallelizer.sync(): This interface supports replica checkpoints required by the BASE system [20]. This func-

tion is called by the agreement stage with the sequence number of the next checkpoint. The scheduler in the

parallelizer blocks all requests that are enqueued beyond this sequence number even if they are not dependent

on other requests until the agreement stage completes a checkpoint. The agreement stage updates the next

checkpoint sequence number by calling this function as soon as the checkpoint is complete.

5.2 Dependence Analysis
The parallelizer’s goal is to determine if a new request is dependent on any pending request using application-

specific rules. The parallelizer design must balance three conflicting goals: (1) Generality – the parallelizer should

provide an interface that allows a broad range of applications to encode rules for detecting dependencies among

their requests; (2) Simplicity – the interface for specifying these rules should be simple to reduce the effort and

likelihood of error in dependency-rule specification; and (3) Flexibility – the interface should allow specification
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of simple conservative dependency rules and progressive refinement to more precise dependency rules that expose

more concurrency. Notice that our design is a compromise among these design goals and that other algorithms for

identifying dependencies among requests could be explored in future work.

In the CBASE prototype, conflict detection between a pair of requests depends on the function each invokes

and on the arguments each request passes to its function. An application that has F distinct function entry points

provides the parallelizer with four things:

1. A request parser that takes an application request and produces a function ID and an argument object.

2. An operator concurrency matrix OCM that identifies pairs of functions that are considered to be in conflict

independent of the arguments to the functions. OCM is an FxF matrix, where OCM[i, j] is true if a request

invoking function i and a request invoking function j are always considered to be dependent. This dependency

may be because these functions always access common state with one of them updating that state, or this

dependency may be because these functions sometimes access common state and a conservative design assumes

they always do for simplicity or because more careful analysis of arguments is impractical for the application.

3. An argument analysis function AAF that takes two argument objects and returns true if an analysis of the

arguments indicates that functions that are not flagged by the OCM may access common state when supplied

with these arguments. More precisely, AAF(a1,a2) must return true if there exists any pair of functions f1,

f2 such that OCM[ f1, f2] = false but f1(a1) and f2(a2) access common state and either modifies that common

state.

4. An operator+argument concurrency matrix OACM that identifies pairs of functions that are considered to be in

conflict only when an analysis of the arguments indicates that they may access common state.

When a new request r j calling function f j with arguments a j arrives, the parallelizer compares it to each pending

request ri calling function fi with arguments ai as follows. First, it checks for argument-independent dependencies:

if OCM[ fi, f j] is true, the requests are dependent. If not, then it checks to see if the arguments indicate that

there may be additional risk of dependencies: if AAF(ai,a j) is true, then it also checks for argument-dependent

dependencies and identifies a dependency between ri and r j if OACM[ fi, f j] is true. Finally, if OCM[ fi, f j] is false

and either AAF(ai,a j) is false or OACM[ fi, f j] is false, then no dependency between ri and r j exists.

This structure facilitates a 2-level analysis in which the operator concurrency matrix OCM defines broad rules

where no argument analysis is attempted or needed and in which the operator+argument concurrency matrix

OACM defines more precise rules that are invoked after an analysis of the arguments indicates that two calls that

sometimes are independent may be in conflict due to their arguments. The next subsection describes our NFS file

system prototype where we use the OACM to encode rules for functions if the state they affect is easily identified

from file handles in their arguments and where we use the OCM to handle other functions.
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Fig. 3: CBASE-FS: High throughput Byzantine fault tolerant NFS

5.3 Example Service: NFS

We have implemented CBASE-FS, a Byzantine fault tolerant NFS [4] using CBASE as shown in Figure 3. Our

implementation builds on BASE-FS [20], which uses existing implementations of NFS to implement each instance

of the replicated state machine. In particular, a client in CBASE-FS mounts the replicated file system exported

by the replicas as a local NFS file system [18]. Unmodified applications access the file system using standard file

system calls. The local kernel sends NFS calls to the local user-level NFS server, which acts as a wrapper for

CBASE-FS by calling the invoke procedure of the BASE replication library to relay the request to the replicas.

This procedure returns when the wrapper receives f +1 matching replies from different replicas.

The agreement stage in CBASE takes part in the atomic multicast protocol to establish a total order on requests

and then sends each ordered request to the parallelizer. The parallelizer updates the dependency graph using

NFS’s concurrency matrix as defined in section 5.3.1 whenever a request is enqueued. The worker threads in the

execution stage dequeue independent requests and execute the requests using the conformance wrapper interface

as defined by the BASE system for NFS.

CBASE-FS uses BASE’s [20] abstraction layer (conformance wrapper) to resolve non-determinism in NFS

such as file handle assignment or timestamp generation. Additionally, CBASE introduces a new source of non-

determinism due to concurrent execution of NFS create operations to different files. The existing BASE confor-

mance wrapper at different replicas could return different file handles based on the order of execution of these

requests. We fix this problem by having a rule in the concurrency matrix to treat the requests with create/delete

operations as always dependent.2

Rodrigues et al. [20] provide additional details of the BASE library and BASE-FS Byzantine fault tolerant NFS

server on which we build.
2We speculate that additional concurrency could be exposed by including constraints based on a request’s total-order sequence number

to the conformance wrapper’s file handle generation logic and the parallelizer’s dependency logic.
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5.3.1 Concurrency Matrix for NFS

For NFS, we keep the classification simple by just looking at the file handles, and thus have conservative rules

for some of the operations. Our argument analysis function (AAF) defines two arguments as related if they

include a common file handle. We present the key rules that are used in defining NFS’s argument-independent

operator concurrency matrix (OCM) and argument-dependent operator+argument concurrency matrix (OACM)

below. Refer to [14] for the complete definitions of the concurrency matrices.

• getattr and null requests are read only requests and hence are independent for both related and unrelated argu-

ments.

• Reads to different files are independent whereas reads to the same files are dependent. Reads modify the last-

accessed-time attribute of a file, so we do not concurrently execute read requests to the same file.

• Writes to different files are independent and writes to the same file are dependent.

• All create and remove operations to the same file or different files are dependent as they introduce non-

determinism if executed concurrently as discussed above.

• Create/Rename/Remove operations are always treated as dependent on Read/Write operations. Read/Write op-

erations carry the file handle of the file whereas create/rename/remove requests carry the file handle of the

directory in which file is present and the filename of the file to be deleted. As we just look at the file han-

dle to decide if two arguments are related or not, we cannot execute the requests with create/rename/remove

concurrently with read/write requests.

We give up some potential concurrency across requests with these conservative rules. Looking at other fields in

the request apart from file handle and keeping additional state about file handles could allow for more sophisticated

and accurate classification. There is a tradeoff between on one hand the simplicity of the design and the time spent

to classify requests versus on the other hand the amount of concurrency realized by the parallelizer. This trade-off

should be explored in more detail in the future.

5.4 Additional Optimizations
The BASE and the PBFT systems have implemented optimizations [8, 9, 20] to improve throughput of the system.

CBASE also implements the following throughput optimizations from BASE:

• Reduced Communication: This optimization avoids having all the replicas send replies to the client. Instead,

the client designates a replica to send the result and all the other replicas just send the digest of the result. The

digests allow the client to check the correctness of the result while significantly reducing network bandwidth

consumption for large replies. If the client does not receive a correct result from the designated replica, it

retransmits the request as usual, requesting that all replicas send the full reply.
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• Request batching: The primary reduces agreement protocol overhead by assigning a single sequence number

to an ordered batch of requests and by starting single instance of the agreement protocol for the batch. When

the system is heavily loaded, this batching reduces protocol overhead at little cost to latency.

• Read-only optimization: A client multicasts a read-only request directly to all replicas, and the replicas execute

it immediately after checking that it is properly authenticated, that the client has access, and that the request is

in fact read-only. The last check is done by service specific upcall that is similar in spirit to our more general

dependency check in the parallelizer.

However, CBASE does not execute requests tentatively as in BASE and PBFT systems because it is shown in

[7] that this optimization has little impact on throughput when used along with request batching and that it adds

complexity to the code to keep uncommitted state in the system.

6 Evaluation
A high throughput BFT system should achieve two goals: (1) it should provide high throughput by exploiting

application parallelism and additional resources, (2) it must have low overhead when there is no parallelism in the

application or when there are no additional resources to execute requests concurrently. CBASE should outperform

BASE when there is scope for concurrent execution of requests and should perform as well as BASE when there

is no scope for concurrent execution. This section evaluates CBASE and compares its performance with BASE.

We also evaluate the performance of replicated the NFS system (CBASE-FS) that uses CBASE and compare its

performance with BASE-FS and NFS that is not replicated.

All experiments run with 4 replicas and the system tolerates one Byzantine fault. Replicas run on single pro-

cessor machines with 933 MHZ PIII processor and connected by a 100 Mbit ethernet hub. All the machines have

256MB of memory except for one that has 512MB of memory. The experiments run on an isolated network. We

use 5 client machines to load the system and the client processes were evenly distributed across the machines.

Client machines are connected to the network through the same ethernet hub as the replicas. Two of the client

machines have 933 MHZ PIII processor with 512MB of memory and the other three machines have 450 MHZ PIII

processor with 128KB of memory. All machines run Redhat Linux 7.2.

6.1 Micro-Benchmark

The micro-benchmark compares the performance of BASE and CBASE executing a simple, stateless service -

clients sends 0KB requests to which the servers repies 0KB results. We show that for our microbenchmark CBASE

imposes little additional latency or overhead compared to BASE and that CBASE’s throughput scales linearly with

application parallelism and available hardware resources.
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6.1.1 Overhead

Figure 4 compares the overhead of BASE and CBASE by running the baseline benchmark configured with infi-

nite application concurrency (no shared state across requests) and minimal hardware demand per request (each

application request at the server simply returns immediately). BASE is CPU-limited—a small number of clients

saturate the CPU, but BASE allows throughput to reach a peak of about 15,000 requests per second by employing

agreement-stage batching [9], yielding a CPU overhead of less than 100 µs per request. CBASE runs with 16

execution threads and BASE runs with 1 thread. All points in the graph are averages of 3 runs with variance of

less than 15%. The CBASE parallelizer treats all requests as independent, but limited hardware resources limit the

benefits gained by concurrency —requests run on a uniprocessor and return immediately. Figure 4 shows that the

lines representing CBASE and BASE closely follow each other illustrating that CBASE introduces little overhead

when there is no scope for concurrent execution of requests.

6.1.2 Scalability of throughput with application parallelism and resources

The throughput of a service depends both on the parallelism present in the application and on the hardware re-

sources (e.g., processors, disks, bandwidth) available to the system. In this set of experiments, we evaluate the

scalability of throughput with varying application parallelism and hardware resources.
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First, we evaluate the ability throughput to scale with resources. We simulate accesses to a varying array

of parallel disks by running the benchmark with the modification that the code to process each request sleeps

for 20ms before returning a reply. The CBASE parallelizer assumes infinite parallelism in the application and

considers all requests to be independent. We simulate varying “disk” resources by configuring CBASE to run with

varying numbers of execution threads. We note that BASE still runs with a single thread since it never attempts

to issue more than one request to the execution stage at a time. Figure 5(a) shows that the throughput of BASE

saturates at 50 ops/sec (as expected with 20ms service time for each operation) which matches the throughput of

CBASE running with 1 thread. The throughput of CBASE increases with the number of clients but eventually

saturates because increasing the number of clients improves concurrency only if throughput is limited by the

available hardware resources. As the number of “disks” (threads) increases, the throughput of CBASE increases

nearly linearly—128 “disks” reach a throughput of 4700 requests/second.

Next, we evaluate the scalability of throughput with parallelism in the application. We run the same experiment

as above except that we fix the number of resources in this experiment and vary parallelism in the application. We

emulate 100 resources by fixing the number of CBASE execution threads to 100. We define the parallelism factor

as the number of requests that we allow to be executed concurrently, and simulate varying application parallelism

by varying this parameter. Thus, the parallelizer assigns each incoming requests to one of parallelism factor

buckets and creates dependencies among all requests to the same bucket, allowing only a fixed number of requests

to be independent at any point of time. Figure 5(b) shows that the throughput of BASE saturates at 50 ops/sec

and that CBASE matches this performance when the application parallelism factor is 1. CBASE’s maximum

throughput increases almost linearly with increasing parallelism factor up to 100. The throughput of CBASE does

not improve beyond a parallelism factor of 100 because it is limited by the 100 simulated hardware resources.

Notice that in both of these experiments, when application parallelism and hardware resources are available,

CBASE’s throughput can exceed BASE’s by orders of magnitude.

6.2 NFS Micro-Benchmarks
In this subsection, we evaluate the performance of CBASE-FS, a replicated NFS that uses CBASE. We also

compare the performance of CBASE-FS with BASE-FS and unreplicated NFS.

6.2.1 Local disk

In this benchmark, each client writes 4KB of data to a different file in a directory exported by the file system. We

vary the number of concurrent clients and measure the response times throughput of the system. As described in

Section 4, requests to different files are treated as independent requests by the CBASE parallelizer. CBASE-FS

runs with 16 threads and unreplicated NFS runs with 16 daemon processes. In all file system instances, NFS

servers write asynchronously to the disk.
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