
Position Paper: BFT: the Time is Now

Allen Clement1, Mirco Marchetti2, Edmund Wong1,
Lorenzo Alvisi1, and Mike Dahlin1

1The University of Texas at Austin, 2,University of Modena and Reggio Emilia,
{aclement, mirco, elwong, lorenzo, dahlin}@cs.utexas.edu

1 Introduction
Data centers strive to provide reliable access to the data and
services that they host. This reliable access requires the
hosted data and services hosted by the data center to be both
consistent and available. Byzantine fault tolerance (BFT)
replication offers the promise of services that are consistent
and available despite arbitrary failures by a bounded number
of servers and an unbounded number of clients.

The thesis of this position paper is simple: BFT is on the
verge of becoming a practical reality—but clearing the last
hurdles will require to rethink, once again, how BFT systems
must be designed and implemented.

Three fundamental trends support our thesis that
widespread adoption of Byzantine fault tolerance is at
hand.

First, falling hardware costs and the increased value and
importance of services are making significant non-BFT repli-
cation a standard commercial practice [5, 12, 13]. Although
fault tolerance has long been an after-thought for non-critical
applications, it is becoming increasingly worthwhile to use
hardware generously to defend against component failures
and geographic catastrophes [20]. For example, the Google
file system (GFS) relies on three-way replication as a way to
protect data from crash failures [13].

Second, in systems where both reliability and availabil-
ity are important properties, crash tolerance is not enough.
Byzantine faults are a frequent occurrence in the wild, man-
ifesting themselves as disks that do not operate in a fail-stop
manner [4], file systems that implement inadequate actions to
recover from disk faults [22], file systems with bugs in their
crash recovery code [25, 26], human errors [14, 21], or pro-
cessors that exhibit transient Byzantine behavior because of
soft errors [19, 23] and so on. Simple hardware failures can
have dramatic consequences. For example, a single malfunc-
tioning NIC at Los Angeles International Airport stalled im-
migration for more than 12 hours [8, 10].

Third, ten years of research in practical Byzantine fault tol-
erance [7, 6, 1, 11, 18, 17, 15, 16, 24, 27] have reduced signif-
icantly the costs traditionally associated with BFT. Through-
put and latency of BFT replicated services are now competi-
tive with those offered by their unreplicated counterparts [17]
and, by separating agreement from execution [27], the effec-
tive overhead for BFT replication has been brought in line
with the 3-way replication used by existing commercial sys-
tems such as GFS.

In summary, we believe that we are on the verge of reach-

ing the inflection point where it becomes advantageous to
trade increasingly inexpensive hardware for the piece of mind
provided by BFT replication. However, we also believe that,
unless the community changes fundamentally its approach to-
wards building high performance BFT systems, this opportu-
nity may be lost.

From PBFT [6, 7] to Zyzzyva [17], the design and imple-
mentation of high performance BFT systems has adopted the
common-sense engineering principle of optimize for the com-
mon case, carefully tuning their systems to be extremely ef-
ficient during fault-free execution. We contend that this oth-
erwise sound approach should be considered harmful when
designing BFT system, as it encourages the proliferation of
corner cases that result in dramatic performance degradations
in the presence of faults. In other words, the design choices
that have informed today’s BFT systems may have made them
too fragile for actual deployment: current BFT systems can
safely survive Byzantine faults, but can hardly be said to tol-
erate them, as Byzantine faults can render these systems vir-
tually unavailable.

We conclude by briefly reporting on Aardvark, our recent
effort that demonstrates that true Byzantine fault tolerance
can be achieved without sacrificing high performance. For
complete details of the protocol and system design see [9].

Section 2 reviews the advances that have reduced the over-
heads of BFT replication. Section 3 exposes the dangers of
over aggressive optimizations in existing BFT systems. Sec-
tion 4 makes the case for a new approach in designing BFT
systems which we demonstrate

2 Low Overhead BFT
Existing BFT replication systems achieve low overheads by
paying careful attention to the common case in which execu-
tions are gracious. In PBFT [7] and Zyzzyva [17] a gracious
execution is one in which the network is well behaved and
there are no faulty clients or replicas; in Q/U [1] and HQ [11]
a gracious execution has the additional constraint that client
requests do not contend with each other. System designers
are able to take advantage of properties of their chosen com-
mon case in order to provide excellent system throughput and
reduce overheads as shown in the first column of Figure 1. In
the remainder of this section we review the design of existing
systems.

For review, Figure 2 illustrates the basic communication
patterns in Castro and Liskov’s PBFT protocol [7]. A set of
n ≥ 3 f + 1 servers select one of their number to be the pri-

1

System Gracious Execution Malformed MAC Client Spam Slow Primary Replica Spam
1ms 10ms 100ms

PBFT [7] 36350 0 crash 5396 4635 1097 0
Zyzzyva [17] 48253 0 crash 14547 5141 crash 0
HQ[11] 15873 0∗ 0 N/A 0
Aardvark [9] 40527 40527 7873 38084 39089 37903 11706

Figure 1: Operations per second of BFT Replication protocols under various node behaviors when the network is well be-
haved and in the presence of 200 correct clients. Gracious execution corresponds to scenarios in which the network and all
participating nodes are well behaved. The Malformed MAC column corresponds to scenarios in which a single client produces
a MAC that can be authenticated by exactly one server. ∗ The HQ prototype does not implement the full recovery path for
malformed client MACs, so the attack cannot technically be implemented. The Client Spam column covers the case where a
single faulty client floods the servers with 9000B messages. The Slow Primary column shows the throughput when a single
primary introduces a delays of 1ms, 10ms, and 100ms before sending PRE-PREPARE messages. The Replica Spam columns
show the impact of a replica that spams other servers with 9000B messages.

mary. A client sends its REQUEST message to the primary,
and the primary assigns the request a sequence number and
sends a PRE-PREPARE message to the other servers. The
servers then do an all-to-all exchange of PREPARE messages
and then of COMMIT messages. Once a sufficient number
of servers agree on the request’s order in a linearizable total
order of all requests, they execute the request and send a RE-
PLY message to the client. A clients acts on the REPLY once
it has at least f +1 matching replies.

To ensure progress, a client retransmits a request to all
replicas if it does not receive a reply by a timeout, and the
replicas forward the request to the primary. Each replica then
expects the request to complete execution of a request by a
timeout. If no requests complete execution in time, the replica
assumes that the primary is faulty and initiates a view change
by stopping all processing of messages in the current view
and sending a VIEW-CHANGE message to all servers. Once
a sufficient number of replicas initiate a view change, they are
able to start the next view with a different primary. Addition-
ally, if a server falls behind in this asynchronous system, it is
able to catch up by fetching a recent checkpoint and recent
messages from its peers.

A key performance optimization is the use of mes-
sage authentication codes (MACs) for authentication rather
than digital signatures. In particular, REQUEST, PRE-
PREPARE, PREPARE, and COMMIT messages contain an
authenticator—an array of n MACs, one for each server. For
practical values of n, generating n MACs is at least an order
of magnitude faster than verifying a signature. For example,
on a 2.0GHz Pentium-M, openssl 0.9.8g can compute over
500,000 MACs per second for 64 byte messages, but it can
only verify 6455 1024-bit RSA signatures per second or pro-
duce 309 1024-bit RSA signatures per second.1

Other representative protocols are similar in principle, but
vary their message patterns. For example, Zyzzyva [17] spec-

1Elliptic curve algorithms have faster signature generation (e.g., 2275 per
second for 160-bit signatures, which are believed to be approximately equiv-
alent in strength to 1024-bit RSA signatures) but slower signature verification
(e.g., 499/s for 160-bit signatures); most PBFT messages are generated once
and read n−1 times.

C

0

1

2

3

REQUEST PRE−PREPARE PREPARE COMMIT REPLY

Figure 2: Basic communication pattern in PBFT

ulatively executes requests, replies to clients after the PRE-
PREPARE phase, and can skip the subsequent steps if enough
replies match. Q/U [1] eliminates the primary and uses client
retransmissions to resolve conflicting updates. HQ [11] is a
hybrid protocol that resembles Q/U in the absence of con-
tention and relies on a protocol like PBFT rather than client
back-off to resolve conflicts.

3 The Dark Secret of BFT
The dark secret of BFT replication protocols is that they
rely heavily on gracious execution in order to maintain high
throughput. One might hope that exotic “malicious server” at-
tacks requiring careful coordination or an uncooperative net-
work would be required to slow existing BFT systems dra-
matically; unfortunately existing protocol designs and im-
plementations are sufficiently high strung that they can be
disrupted by decidedly non-exotic behaviors including mal-
formed messages from a single faulty client, primary, or
replica even when the network is well behaved. Figure 1
shows the impact of a variety of Byzantine behaviors on the
throughput of existing systems.

The malformed MAC column of Figure 1 shows the impact
of a big MAC attack on system throughput. In a big MAC
attack, a faulty client provides a MAC that can be authenti-
cated by a single server but not by any other servers. When
the primary orders the request, the other replicas are unable
to authenticate its authenticity and a resolution sub protocol
is required. This problem does not arise during gracious ex-
ecutions in which there are no faulty clients or servers and
the network is well behaved. Unfortunately a single faulty

2

client can force the resolution protocol to be executed—
additionally, a faulty primary or replica can request the res-
olution protocol and it is impossible for any node to ascertain
whether the client, primary, replica, or network is at fault.
Current implementations of PBFT [7] and Zyzzyva [17] ob-
serve a throughput of 0 when faced with this attack. HQ [11]
is not vulnerable to the attack as described above since it does
not rely on a primary, but a similar attack is possible. The at-
tack cannot be implemented in HQ [11] since all clients and
replicas are hard-coded to share the same keys.

The client and replica spam attacks in Figure 1 are im-
plemented by a single process sending 9000 byte messages
to all of the replicas from either a client or non-primary
server machine. Current implementations of PBFT [7] and
Zyzzyva [17] crash under the strain of these attacks and the
throughput of HQ [11] is driven to 0 as the attacking node
prevents legitimate clients from opening TCP connections to
the servers.

The primary is a distinguished replica that is uniquely po-
sitioned to control the system’s throughput—no request can
be executed until it is assigned a sequence number by the pri-
mary. During gracious executions, the primary is always cor-
rect and provides optimal throughput. Previous authors [2, 3]
have observed that a slow primary can have a substantial im-
pact on system throughput. The slow primary column of Fig-
ure 1 shows the dramatic drop in system throughput when
the primary delays ordering requests by 1, 10, and 100ms.
HQ [11] does not rely on a primary to order requests so is
not subject to a slow primary attack; the lack of a primary
leaves HQ unable to batch requests and is the primary reason
its peak throughput is a factor of 2 slower than PBFT and a
factor of 3 slower than Zyzzyva.

Existing BFT systems guarantee consistency at all times
and provide excellent performance during gracious execu-
tions in which there are no failures. Unfortunately, the design
and implementation decisions made to achieve optimal per-
formance during gracious executions leave the systems vul-
nerable to severe disruption by a single faulty client or server.

4 BFT: From Z to A
We argue that many BFT systems should be willing to give
up some best case performance in order to provide good per-
formance over a wider range of situations for two reasons.

First, in current systems the best case is fragile, so building
a system around its best case performance may be dangerous.
In particular, (1) the best case is achieved only when very
strong assumptions hold and (2) departing from the best case
can devastate performance because the system then provides
at best eventual progress and at worst no practical progress.
This fragility is not just a theoretical problem, as shown in
Section 3.

Second, many systems may be insensitive to modest re-
ductions in peak agreement throughput because of limited de-
mand or other bottlenecks.

In particular, many services’ peak demands are far under
the best case throughput offered by existing BFT replication
protocols. For such systems, good enough is good enough,

and modest reductions in best case agreement throughput will
have little effect on end to end system performance. In such
systems, increased robustness may come at effectively no
cost.

Similarly, when systems have other bottlenecks, Amdahl’s
law limits the impact of changing the performance of agree-
ment. For example, Zyzzyva can execute about 50,000 null
requests per second [17], suggesting that agreement con-
sumes 20µs per request. If, rather than a null service, we
replicate a service for which executing an average request
consumes 100µs of processing time, then peak throughput
with Zyzzyva would be about 8333 requests per second. If,
instead, agreement were accomplished via a protocol with
double the overhead of Zyzzyva (e.g., 40µs per request), peak
throughput would still be about 7100 requests/second. In this
hypothetical example, doubling agreement overhead reduces
peak end-to-end throughput by less than 15%. Castro and
Liskov [7] observed that the overheads of Byzantine consen-
sus is in the noise compared to the overheads associated with
running an NFS server.

In [9] we present Aardvark, a BFT replication system de-
signed to provide good performance in all fault scenarios
by avoiding common case optimizations that expose obscure
corner cases. In the context of previous systems, Aardvark
takes the surprising steps of judiciously relying on signa-
tures during normal operation, frequently undergoing view
changes in order to elect a new primary, and forgoing IP
multicast for inter-replica communication. As shown in fi-
nal row of Figure 1 these design decisions impose a 30% hit
to throughput when compared to Zyzzyva, but result in a pro-
tocol that performs significantly better in the presence of fail-
ures.

5 Conclusion
Barbara Liskov observed that researchers spent several years
working on using cryptography to secure distributed systems
without widespread deployment of these ideas, leading at
least one prominent researcher to muse publicly that this line
of research, while theoretically intriguing, had been a prac-
tical failure. Within a few years, however, technology had
reduced the costs of these techniques and applications had be-
come more demanding—and rather suddenly distributed au-
thentication was in wide use. Almost one decade after Castro
and Liskov’s seminal paper [6], we believe history is about to
repeat itself.

In the same way that RAID disks are standard techniques
for reliable storage despite the extra costs, BFT has the
promise to become the norm in reliable systems. To make
BFT the norm for deploying highly reliable and available sys-
tems, however, it is necessary to revisit how BFT systems
are designed and implemented. We argue that optimizing the
common case at the expense of introducing complicated cor-
ner cases and performance trapdoors in the presence of fail-
ures is going after fools gold. Fortunately, we believe that
Aardvark demonstrates that one can have one’s cake and eat
it too—just hold the ice cream.

3

6 Acknowledgements
The authors would like to thank the LADIS PC for the com-
ments and feedback. This work was partially supported by
NSF grants CSR-PDOS-0509338 and CSR-PDOS-0720649.

References
[1] M. Abd-El-Malek, G. Ganger, G. Goodson, M. Reiter, and J. Wylie.

Fault-scalable byzantine fault-tolerant services. In Proc. 20th SOSP,
Oct. 2005.

[2] A. S. Aiyer, L. Alvisi, A. Clement, M. Dahlin, J.-P. Martin, and
C. Porth. BAR fault tolerance for cooperative services. In Proc. 20th
SOSP, Oct. 2005.

[3] Y. Amir, B. Coan, J. Kirsch, and J. Lane. Byzantine replication under
attack. In DSN 2008, 2008.

[4] W. Bartlett and L. Spainhower. Commercial fault tolerance: A tale of
two systems. IEEE Transactions on Dependable and Secure Comput-
ing, 1(1):87–96, 2004.

[5] M. Burrows. The chubby lock service for loosely-coupled distributed
systems. In OSDI 2006, pages 335–350, Berkeley, CA, USA, 2006.
USENIX Association.

[6] M. Castro and B. Liskov. Practical Byzantine fault tolerance. In Proc.
3rd OSDI, pages 173–186, Feb. 1999.

[7] M. Castro and B. Liskov. Practical Byzantine fault tolerance and proac-
tive recovery. ACM Trans. Comput. Syst., 2002.

[8] At lax, computer glitch delays 20,000 passengers.
http://travel.latimes.com/articles/la-trw-lax12aug12.

[9] A. Clement, M. Marchetti, E. Wong, L. Alvisi, and M. Dahlin. Making
Byzantine fault tolerant systems tolerate Byzantine faults. In OSDI,
2009.

[10] Contingency planning, for technology and terrorism. http://en.
wikipedia.org/wiki/HurricaneKatrina.

[11] J. Cowling, D. Myers, B. Liskov, R. Rodrigues, and L. Shrira. HQ
replication: A hybrid quorum protocol for Byzantine fault tolerance.
In Proc. 7th OSDI, Nov. 2006.

[12] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo:
amazon’s highly available key-value store. SIGOPS Oper. Syst. Rev.,
41(6):205–220, 2007.

[13] S. Ghemawat, H. Gobioff, and S.-T. Leung. The google file system. In
Proc. 19th SOSP, pages 29–43. ACM Press, 2003.

[14] J. Gray. A census of Tandem system availability between 1985 and
1990. IEEE Trans. on Reliability, 39(4), Oct. 2000.

[15] J. Hendricks, G. R. Ganger, and M. K. Reiter. Low-overhead byzantine
fault-tolerant storage. In SOSP, 2007.

[16] C. Ho, R. van Renesse, M. Bickford, and D. Dolev. Nysiad: Practical
protocol transformation to tolerate byzantine failures. In NSDI, 2008.

[17] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong. Zyzzyva:
speculative byzantine fault tolerance. In SOSP, 2007.

[18] R. Kotla and M. Dahlin. High throughput Byzantine fault tolerance. In
DSN, June 2004.

[19] S. S. Mukherjee, J. S. Emer, and S. K. Reinhardt. The soft error prob-
lem: An architectural perspective. In HPCA, pages 243–247, 2005.

[20] Hurricane Katrina. http://en.wikipedia.org/wiki/
HurricaneKatrina.

[21] D. Oppenheimer, A. Ganapathi, and D. Patterson. Why do internet
services fail, and what can be done about it, 2003.

[22] V. Prabhakaran, L. N. Bairavasundaram, N. Agrawal, H. S. Gunawi,
A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Iron file systems. In
SOSP ’05: Proceedings of the twentieth ACM symposium on Operating
systems principles, pages 206–220, New York, NY, USA, 2005. ACM
Press.

[23] P. Shivakumar, M. Kistler, S. W. Keckler, D. Burger, and L. Alvisi.
Modeling the effect of technology trends on the soft error rate of com-
binational logic. In DSN ’02: Proceedings of the 2002 International
Conference on Dependable Systems and Networks, pages 389–398,
Washington, DC, USA, 2002. IEEE Computer Society.

[24] A. Sing, T. Das, P. Maniatis, P. Druschel, and T. Roscoe. Bft protocols
under fire. In NSDI, 2008.

[25] J. Yang, C. Sar, and D. Engler. Explode: a lightweight, general system
for finding serious storage system errors. In USENIX’06: Proceedings
of the 7th conference on USENIX Symposium on Operating Systems
Design and Implementation, pages 10–10, Berkeley, CA, USA, 2006.
USENIX Association.

[26] J. Yang, P. Twohey, D. Engler, and M. Musuvathi. Using model check-
ing to find serious file system errors. In OSDI’04: Proceedings of the
6th conference on Symposium on Opearting Systems Design & Imple-
mentation, pages 19–19, Berkeley, CA, USA, 2004. USENIX Associ-
ation.

[27] J. Yin, J.-P. Martin, A. Venkataramani, L. Alvisi, and M. Dahlin. Sep-
arating agreement from execution for Byzantine fault tolerant services.
In Proc. 19th SOSP, 2003.

4

http://en.wikipedia.org/wiki/HurricaneKatrina
http://en.wikipedia.org/wiki/HurricaneKatrina
http://en.wikipedia.org/wiki/HurricaneKatrina
http://en.wikipedia.org/wiki/HurricaneKatrina

	Introduction
	Low Overhead BFT
	The Dark Secret of BFT
	BFT: From Z to A
	Conclusion
	References

