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Abstract
This paper examines the design and implementation of mo-
bile extensions, a distributed operating system abstraction
for supporting disconnected access to dynamic distributed
services. The goal of mobile extensions is to make it as
easy for service providers to deploy services that make
use of caching, hoarding, asynchronous messaging, and
application-level adaptation to cope with mobility, network
failures, and server failures. We identify resource man-
agement as a crucial problem in this environment and de-
velop a novel popularity-based resource management pol-
icy and demonstrate that under web service workloads it al-
locates resources nearly as efficiently as traditional sched-
ulers, while under workloads with more aggressive re-
source users, it provides much stronger performance iso-
lation. Overall, we find that for the four web service work-
loads we study, mobile extensions can reduce failures by as
much as a factor of 5.9 to a factor of 16.7 for those applica-
tions able to provide tolerable service when disconnected.

1 Introduction
This paper examines the design and implementation1 of
mobile extensions, a distributed operating system abstrac-
tion for supporting disconnected access to dynamic dis-
tributed services. Previous work has shown how to support
disconnected access to static data [2, 19, 21, 31]. However,
many modern services dynamically generate large amounts
of uncachable data [34]. For example, HTTP services can
extend the default GET/PUT semantics to run arbitrary pro-
grams at the server in response to user requests [6]. Un-
fortunately, providing dynamic services using such server
extensions inherently limits system performance, mobility,
and robustness to network failures.

In a previous study we demonstrated how mobile,
location-independent extensions could significantly im-
prove performance for clients accessing dynamic ser-
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vices [33]. This paper focuses on using mobile extensions
to address the problem of disconnected operation. Enabling
clients to continue to access dynamic services during pe-
riods of disconnection is crucial both to support mobile
clients, where disconnection is deliberate, and fixed clients,
where failures and overloads at network and servers might
cause service interruptions. Whereas highly available sys-
tems may seek to have “five nines” of availability (99.999%
uptime — about 5 minutes of downtime per year), the Inter-
net network layer provides only about two nines of host-to-
host connection availability (99% uptime — about 14 min-
utes of unavailability per day.) For example Paxson found
that “major routing pathologies” thwart IP routing between
a given pair of hosts 1.5% to 3.4% of the time [24], and
recent (March 13-19, 2000) measurements by keynote.com
from clients in 25 cities viewing pages from 40 popular
HTTP servers found a median end-to-end failure rate of
1.63% [18]. Such failure rates at the network and at servers
make it difficult to deploy mission-critical dynamic ser-
vices under a server-extension architecture because such
architectures do not afford end-to-end strategies.

When network connections are slow or unreliable, many
services can operate in a degraded mode by using a
combination of general techniques (such as caching [15],
prefetching/hoarding [19, 21], write buffering, and asyn-
chronous messaging via persistent message queues [7, 17])
and application-specific adaptation [23]. Unfortunately,
current implementations of the general techniques focus on
traditional client-server relationships where a set applica-
tions are to be installed at a well defined set of satellite sites.
Thus, using these techniques generally requires installing
operating system patches, middleware services, or client
applications. The goal of mobile extensions is to make it
easy for service providers to deploy and for users to access
services that support disconnected operation just as HTTP
makes it easy to deploy and access server-extension-based
services.

Mobile code is not new. For example, Javascript and
Java Applets allow servers to ship code to browsers, Smart
Clients [35] allows servers to ship code to caches, Ac-
tive Caches [5] allow servers to ship code to proxies, Ac-
tive Networks [30] allow network infrastructures to be pro-
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grammed, and agents [12, 20, 25] allow clients and servers
to inject code into a distributed infrastructure. This paper
makes three contributions towards understanding how to
use mobile extensions to support disconnected operation
for distributed services.

First, our mobile extension system provides a novel com-
bination of three features that make it particularly suitable
for supporting disconnected access to dynamic services: (i)
rather than simply support arbitrary programmability, the
system retains HTTP’s successful approach of providing
simple default GET/PUT behavior with the ability to add
extensions when and where needed; (ii) the system uses lo-
cation independence to simplify software engineering, im-
prove security, and to facilitate incremental deployment;
and (iii) the system allows services to take full control of
their caching, hoarding, and messaging protocols.

Second, we develop a resource management framework
that (i) provides dynamic allocation across extensions to
give important extensions more resources than less im-
portant ones, (ii) provides performance isolation so that
aggressive extensions do not interfere with passive ones,
and (iii) makes allocation decisions automatically with-
out relying on user input or directions from untrusted ex-
tensions. To accomplish these goals, the system infers
priority from “popularity” based on request patterns, and
it considers popularity on different timescales for differ-
ent resources according to the following rule: the more
state associated with a resource, the longer the timescale
across which popularity should be considered. For exam-
ple, “stateful” resources such as disk must be scheduled
over longer time periods than “stateless” resources such
as CPU. We evaluate popularity-based resource manage-
ment via a trace-based study and conclude that it provides
reasonable global performance while protecting the sys-
tem from aggressive extensions, and we find that averag-
ing popularity over timescales proportional to a resource’s
state appears to work well.

Our third contribution is to quantify the robustness gains
available to Internet services as a class and to several spe-
cific case study applications. Using trace-driven simula-
tions, we find that for Internet services as a class, mobile
extensions can improve availability by over an order of
magnitude by transforming network failures into degraded-
mode operations. Note that the benefits of degraded-mode
operations vary across services: some require network con-
nectivity to function and will gain no benefit, some can
provide indistinguishable service regardless of the network
state, and many will fall between these extremes.

We have constructed a Java-based mobile extension pro-
totype that provides backwards compatibility with HTTP,
that allows mobile extensions to run at clients, proxies, or
servers, and that enforces security and resource restrictions
on mobile extensions. Our initial applications include an
e-commerce service that hoards catalog entries and queues
orders, a prototype hospital laboratory order service that

transfers requests from doctors to technicians and results
back to doctors, and a set of client-specified hoarding and
QRPC-based extensions for enhancing disconnected access
to legacy HTTP services. Measurements of our system un-
der synthetic workloads show that it can successfully hide
the cost of downloading and installing extension code by
taking advantage of extensions’ location independence.

The rest of this paper proceeds as follows. In Sections 2
through 4 we discuss the design and implementation of the
system: its goals, programming model, and its resource
management framework. Section 5 provides our experi-
mental evaluation. Section 6 discusses related work, and
Section 7 summarizes our conclusions and discusses future
directions.

2 Design goals
The effectiveness of a mobile extension architecture de-
pends on how it meets three goals: extensibility with simple
default semantics, location independence, and flexible and
automatic resource management.

Extensibility with simple default semantics. Requests
to services should have simple default semantics that do
not require explicit definition of mobile service programs
to handle them, but the infrastructure should allow users
and services to specify extensions that will override some
or all aspects of the default semantics for specified subsets
of requests. This approach has been highly successful for
deploying distributed services under HTTP. HTTP provides
a basic GET interface that provides simple default behavior
of reading a file; at the same time, HTTP allows servers to
arbitrarily redefine the semantics of GET (and other meth-
ods) for specific subsets of requests so that GETs may be
used to activate arbitrary RPC calls. In contrast with pro-
viding a raw RPC interface, this combination of widely-
useful default behavior and extensibility allows complex
services to be prototyped, constructed, deployed, and up-
dated easily.

A mobile extension framework should balance exten-
sibility and simple default semantics. Ideally, a service
should be able to (i) use default semantics only, (ii) com-
pletely override the default semantics for a subset of re-
quests and use default semantics for the others, (iii) over-
ride some aspects of default semantics for some or all re-
quests while retaining some aspects of the default behavior,
or (iv) redefine all behavior for all requests to that service.

Location independence. Extensions should be defined
using a single code base, allowing the same code to run at
a client, at a proxy cache, at a server proxy, or at a server.
The primary advantage of this approach is that extensions
can choose to run at the appropriate point in a network to
meet the requirements of their particular application. For
example, an extension designed to allow a mobile client to
access a mail service when the client has no available net-
work connection must run at the client to be of use, whereas
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an extension designed to allow doctors and lab technicians
to exchange orders and results in a hospital when the hos-
pitals external connection is down should run at a shared
proxy within the hospital.

Location independence has several additional benefits:
First, location independence facilitates incremental deploy-
ment because it simplifies software engineering by allow-
ing services to be used by clients that support the frame-
work and those that do not, while avoiding the need to
maintain two code bases. Systems should use the same
program for the case when code is shipped to clients and
the case where the code runs at the server.

Second, location independence can improve perfor-
mance. Running the same code at clients and servers allows
systems to hide the start-up cost of accessing a new service:
Initially a client can access the extension at the server, but
once the extension has been installed at the client the client
can switch to the local copy for improved robustness and
performance. This reduces the incremental cost of deploy-
ing mobile-extension-based services by avoiding the need
to wait several seconds in the common case of accessing a
service for the first time in order to improve the uncommon
case of disconnected operation.

Flexible and automatic resource management. Clients
and client proxies will run large collections of heteroge-
neous extensions, and the system should automatically as-
sign each an appropriate amount of resources. The mobile
extension environment poses two challenges to resource
management. First, techniques for supporting disconnected
operation, such as hoarding, can dramatically increase a
service’s resource demands: it is one thing to cache the
pages one has visited at a site; it may be another matter
entirely to hoard all of the pages one might visit. Sec-
ond, this environment must accommodate large numbers
of untrusted extensions. Because code is untrusted, poli-
cies that reward increasing resource usage with increas-
ing allocations (e.g., LRU or MFU cache replacement) or
that explicitly ask applications what their resource needs
are [22, 23, 28] are not appropriate. And, because ex-
tensions are general, there is no obvious progress met-
ric [10, 29] that can be tracked to allocate resources by the
utility yielded by each extension.

Given these constraints, a resource management system
for mobile extensions should attempt to forge a compro-
mise between static allocations that require no knowledge
about users or services and dynamic approaches that re-
quire unrealistic amounts of knowledge about users or ser-
vices. Our goal is to construct a dynamic allocation frame-
work that can make reasonable, albeit not perfect, alloca-
tion decisions based on information about users or services
that can readily be observed as the system functions and
that are not easily influenced by untrusted code’s actions.

3 Programming model
Our prototype implementation of mobile extensions is con-
structed as an HTTP proxy that accepts legacy HTTP re-
quests and by default forwards these requests to legacy
HTTP servers. We constructed it using the Java-based Ac-
tive Names framework [33], which allows services to de-
fine a pipeline of programs that will interpret a request.
Both “default protocols” such as HTTP and “extension” are
defined in terms of these service programs. Each service
program is a Java program that provides a method called
Eval() with three arguments: an ActiveName that identifies
the service and encodes the request to be interpreted by that
service, an InputStream of data to that service, and a Vector
of AfterMethods

� The ActiveName consists of two components: the
URL of the code representing the extension service
program and a string. In Active Names terminol-
ogy, the URL identifies a Namespace program and
the string represents a name to be interpreted by that
Namespace program.

� AfterMethods lists services (represented as Active
Names) for the request to visit after the current ser-
vice. The AfterMethods list allows the system to im-
plement a continuation-passing style of programming
where each namespace can insert remaining work later
on the AfterMethods list.

� The InputStream is used to transport bulk input to a
service; the service, in turn, produces an InputStream
that it passes to the next service to be run. For effi-
ciency, a service that does not touch the contents of its
InputStream may pass the handle of that InputStream
to the next service to avoid extra data copies.

Thus, as Figure 1-a illustrates for the case of a default
HTTP request, a request visits a series of extensions that
form a pipeline, with each extension selecting the next ex-
tension to run, processing its input stream, and transporting
the result to the next service.

The rest of this subsection describes how the system pro-
vide extensibility, location independence, and mechanisms
for security and resource management.

3.1 Extensibility
The AfterMethods list provides the key abstraction for ex-
tensibility. Before passing control to the next program on
the AfterMethods list, a program may modify that list by
inserting, deleting, or changing elements on the list and
thereby modify the pipeline of services and extensions that
will handle the request.

In particular, all incoming requests are assigned a default
set of services to visit including standard services such as
HTTP-cache and fetch-legacy-HTTP-server- as well as a
ServerCust module. This customization module provides
an opportunity for the server to modify the standard Af-
terMethod list to override some or all of the standard pro-
cessing for a request. ServerCust is a trusted module that
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Figure 1: Example service/extension program pipeline of (a) standard HTTP protocol, (b) completely overridden protocol, (c) partially-
overridden protocol.

maintains a delegation table of mappings from URL pre-
fixes to programs that should be executed to customize re-
quests to those URLs, and it provides an interface that al-
lows each service to update its mapping (but, obviously,
not the mappings of other services) by piggy-backing del-
egation directives on HTTP reply headers. For example,
the HTTP service www.exmpl.com might specify that the
program http://www.exmpl.com/eg.jar be inserted into the
pipeline for all requests to www.exmpl.com/*. As Figure 1-
b and 1-c illustrate, incoming requests to www.exmpl.com
would visit HTTP Front End and ServerCust, which would
next send the request to the program eg.jar. When the
eg.jar program runs it could, for instance, completely over-
ride the standard HTTP protocol with its own caching,
hoarding, and network fetch protocol (Figure 1-b) or it
could partially modify the AfterMethod list to replace the
standard HTTP-network-fetch module with a module that
does automatic fail-over across several exmpl.com mirror
servers [35] (Figure 1-c).

3.2 Location independence
The extension programs are location independent and can
run on any node that provides the virtual machine interface.
In this paper we focus on two configurations. In the first,
origin servers and end-clients support mobile extensions.
In the second, origin servers, end-clients, and shared client-
proxies support mobile extensions.

By default, each program executes the next program
in the pipeline on the local machine (which may be the
client, proxy, or server), but each program is free to ex-
plicitly invoke the same program or a different one on a
different node. The choice of when to execute locally and
when to jump to a different machine is extension-specific.
More sophisticated topologies such as replicated servers or
third-party hosting services such as Akamai are possible,
but rather than try to provide a general topology-discovery
mechanism, we allow each service to provide whatever
topology-discovery mechanism is appropriate for that ser-
vice as an extension program. Although solving the general
topology discovery problem is difficult, for the system con-
figurations discussed in this paper, topology discovery sim-

ply consists of examining the AfterMethod stack to place
computations on the local client machine or at the remote
client proxy.

4 Virtual machine and resource
management

Service programs run on a virtual machine that provides
security, resource management, and local/remote method
invocation among service programs. We use the Java-2
security system to associate each downloaded set of code
with a separate codebase and use the codebase associated
with code both to restrict what memory and disk state it
may access and to identify the resource principal for disk
and network requests, CPU scheduling, and memory allo-
cation.

Our security model is oriented towards isolating un-
trusted namespace programs from one another and from the
underlying machine, both for security and to limit resource
consumption. When untrusted code in the form of remote
namespaces runs on the Active name system, we need to
dynamically give it permissions to access its fair share of
resources. In Java2, there is a central java.Security.Policy
object that dictates the set of permissions for every code-
base. But, it requires that all such permissions be provided
prior to execution. ActiveNames has enhanced the current
Java security architecture by giving permissions to classes
dynamically when they are loaded from an untrusted re-
mote site. We achieve this by overloading the central pol-
icy object into an ActiveName Policy object, which assigns
to every namespace a unique permission to identify itself.
When accessing any resources or security-sensitive infor-
mation, a namespace has to identify itself with its Active
Name. The virtual machine then uses standard Java-2 stack
inspection verifies that the caller has permission to use the
offered name before allowing the request to proceed.

Given the challenges discussed in Section 2, our goal is
to construct a dynamic allocation framework that can make
reasonable allocation decisions based on information about
users or services that can readily be observed by the system
that are not easily manipulated by the extensions. We use
service “popularity” as a crude indication of service prior-
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ity, and allocate resources to services in proportion to their
popularities. This approach is based on the intuition that
services that users often access are generally more valuable
to them than those the they seldom use.

Our implementation consists of four main components:
an observation module that tracks service popularity, a scal-
ing module that translates raw popularity counts into per-
resource per-service allocations, a manual override module
that allows users to override the algorithm’s decisions, and
per-resource schedulers. These pieces are described below.

4.1 Observation module
The observation module tracks system activity to infer the
priority that users give to different services. This popu-
larity tracking is implemented by attaching a “coin” (im-
plemented as a protected class) to each HTTP request that
arrives at the RawHTTP module from a client authorized
to make requests to that proxy. As the request visits dif-
ferent services within the system, the observation module
credits a fraction of the coin to each service visited. The
system uses heuristics to ensure that all services visited by
a request receive approximately equal fractions of the re-
quest’s coin, and the system ensures that the sum of the
fractions allocated to services is less than or equal to 1.0.
In addition, the system allows only trusted modules to cre-
ate new “coins;” untrusted extensions can only pass coins
to one another or split coins.

A limitation of the prototype is that our interface to
legacy HTTP clients makes it vulnerable to attacks in
which legacy client-extension code running at clients (e.g.,
Java Applets or Javascript) issues requests to the mobile
extension proxy in the client’s name, thus inflating the ap-
parent popularity of a service. This problem could be ad-
dressed by having browsers tag each outgoing request with
the number of requests issued by a page or its code since
the last user interaction with the page; our system would
then assign smaller coins to later requests.

A second limitation of our prototype is that our strategy
of providing one coin per incoming HTTP request repre-
sents a simplistic measure of popularity. For example, one
might also track the size of the data fetched or the amount
of screen real estate the user is devoting to a page repre-
senting a service.

4.2 Scaling module
Whereas the observation module produces “raw” counts
of popularity (how many requests visit each service and
which services each request visits), the scaling module con-
verts these raw counts into per-resource, per-service allo-
cations. As noted above, our intuition is that we can infer
priority from popularity. However, the appropriate defini-
tion of “popularity” varies across resources because differ-
ent resources must be scheduled on different time scales.
“Stateless” resources such as CPU can be scheduled on a

moment-to-moment basis to satisfy current requests. Con-
versely, “stateful” resources such as disk not only take
longer to move resources from one service to another but
also typically use their state to carry information across
time, so disk space may be more valuable if allocations
are reasonably stable over time. Thus, the CPU should be
scheduled across services according to the momentary pop-
ularity of each service, while disk space should be allocated
according to the popularity of the service over perhaps the
last several hours or days. Other resources — such as net-
work bandwidth, disk bandwidth, and memory space —
may fall between these extremes.

The scaling module provides a general interface to as-
sess each service’s popularity on the different time scales
appropriate to different resources. Each resource registers
with the scaling module by specifying an epochLength and
scalingFraction. For each resource, the scaling layer main-
tains per-service resource containers [3], and the fraction of
resource

�
that the scheduling layer should give to service�

is frac[R,S] = ����� �	��
 �
��� � ��� �
������ �	��
 �
��� � � � � ��� , where ��������� �!��"$#�%&�'�)( �+*
equals the sum of all services’ containers for a resource
(i.e., ��������� �!��",#�%&�'�)( �+*�-/. ��������� �!��"$#0( �21)3�*

.)
Whenever the popularity layer credits a service with a

fraction of a coin, the resource containers for that service
at each resource are increased by the specified amount, as
are the �4�������5�!��"$#�%&�'� values for each resource.

Conceptually, the array of per-service containers
for each resource is multiplied by scalingRate every
epochLength interval. For efficiency, we store the last up-
date time with each container and rescale the value if nec-
essary when it is read or written. If the scalingFraction
and epochLength are powers of two, this operation can be
accomplished with a few addition, subtraction, and shift
operations per read or update.

For each resource, we choose an epochLength propor-
tional to the state associated with the resource or the typ-
ical occupancy time in the resource for a demand request.
For example, for disks, we count the number of bytes de-
livered to HTTP Front End and increment the disk epoch
number once per 65��7�8 � ��95" bytes seen. For networks, we
use epochLength = 2 seconds to represent a generous net-
work round trip time.

4.3 Override module
Although we do not rely on manual resource allocation,
there are cases where human direction is desirable. For
example, a user may wish to tell her proxy to give high pri-
ority to requests to her online trading service even though
she uses it only occasionally. Also, shared replication ser-
vices such as Rent-A-Server [32], Akamai, or Sandpiper
may allocate resources across services according to con-
tractual agreements rather than the popularity of the ser-
vices.

For such cases, our system provides an override module
that allows resource allocations to be manually set. Note
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that none of the experiments discussed in this paper use the
override module.

4.4 Resource schedulers

Our virtual machine provides proportional-share resource
schedulers for each critical resource. The mechanisms used
to track and restrict system resource utilization in our Java-
based system are similar to those used in JRes [9]. Our
current implementation provides a Start-time Fair Queu-
ing (SFQ) scheduler for network bandwidth [13] and a
proportional-share disk space allocator (described below).
We are in the process of implementing a proportional-
share CPU scheduler and memory allocator. To support
application-level adaptation, the system’s resource sched-
uler decides what fraction of each resource to give to each
service, while leaving it to the services how best to make
use of their allocations. To facilitate adaptation, the re-
source manager signals extensions when their allocations
cross specified thresholds.

The proportional-share schedulers for stateless re-
sources, such as CPU and network, enforce resource limits
by scheduling requests and threads using SFQ.

The proportional share scheduler partitions disk space
across extensions according to their scaled popularities. If
some extensions do not used their full allotment, the re-
maining space is divided proportionally among the other
extensions. The disk space scheduler accomplishes this by
maintaining a per-service price, which is the scaled popu-
larity of the service divided by the disk space held by the
service. When a service requests more space, the system
selects the service with the lowest current page price as a
victim and signals that extension to release disk space. For
efficiency, these actions are decoupled via a reserve buffer
from which new pages can be allocated immediately and
victims selected lazily as allocation demands and priori-
ties change. When an extension’s allocation shrinks be-
low a warning threshold relative to the extension’s allocated
space, the scheduler warns the extension to reduce its us-
age with a signal. If the extension fails to reduce its usage
before its allocation falls to the point where the extension
exceeds its maximum allocation, the system kills the ex-
tension. To maintain the abstraction of persistent storage
in such cases, the disk system provides an interface for ex-
tensions to specify an ”forwarding address” and to mark
on-disk objects that should be forwarded. In the event of
the extension’s demise, the system promises to forward this
marked state, although it may discard state after asking for
the user’s permission if the forwarding address is persis-
tently unreachable. This forwarding procedure may some-
times prevent the system from reclaiming space when it
would like to do so, but we feel that the benefits of true
persistent state are worth this limitation.

4.5 Utility libraries
Using the low-level resources provided by the resource
managers, extension services implement higher level ab-
stractions such as caching, hoarding, write buffering, or
asynchronous messaging by making use of common li-
braries the system provides or by implementing custom
versions of these abstractions [11]. We examine several
example applications in the next session. A systematic dis-
cussion of the techniques that applications may use to cope
with disconnection is beyond the scope of this paper.

5 Evaluation
We first investigate some basic properties of our implemen-
tation. We then examine properties of our resource man-
agement and robustness policies and implementations.

5.1 Location independence
A disadvantage of implementing services as mobile code is
that startup time may increase: this approach may hurt per-
formance in the common case of first accessing a service
to help in the uncommon case of network failures. Un-
fortunately, users confronted with a long “applet loading”
message when they first access a service may go elsewhere
before they have a chance to benefit from the downloaded
code.

As noted above, location independence can hide the cost
of installing new services at clients. In particular, when
our ServerCust module delegates a service to an extension,
by default it downloads and installs the extension program
in the background while continuing to send requests to the
original server. Once the extension has been installed, the
ServerCust module sends requests to it instead. The delega-
tion interface allows servers to specify foreground loading
if needed.

Figure 2 shows the impact of background loading. In this
experiment, a client issues 20 requests to a service with a 1
second delay between each request. Because we are inter-
ested in the cost of loading the service and not the service
itself, we examine a simple service that dynamically gen-
erates a small (100 byte) page. The Java jar file containing
this program is 1790 bytes, but we expand it to 22031 bytes
by adding some unnecessary functions.

Our client machine has a 366 MHz Pentium-II proces-
sor and 128 MB of memory, and it runs JDK-1.2.2 under
Microsoft Windows 98. The graphs show three cases for
network connectivity – the client is connected to the net-
work via a modem that reports a 26.4 Kbit/s connection, a
128 Kbit/s ISDN, and a 10 Mbit/s Ethernet. We repeat each
experiment at least 10 times and show the 90% confidence
intervals in the figure.

In each graph, the x-axis shows the request number and
the y-axis shows the response time of that request. The
lines show three cases: origin server where all requests
are sent to the origin server, foreground where the reply
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Figure 2: Foreground v. background loading of extensions.
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to the first request delegates future requests to a mobile ex-
tension at the client and where the second request cannot
complete until the extension is installed, and background
where requests after the first request but before the ser-
vice replica has been downloaded are serviced by the re-
mote replica and where subsequent requests are serviced
locally. As the data in the figure show, background load-
ing improves worst case performance by factors of 5.3, 2.3,
and 1.4 compared to foreground loading, although it does
not completely eliminate, the installation cost of mobile ex-
tensions.

The single code base and location independent code
models used by mobile extensions are useful for support-
ing this optimization. The same code runs at the server
and client, which makes switching from one replica to the
other simple. It also avoids the need to write the service
twice and maintain two versions of the code.

5.2 Resource management mechanism
Figure 3 shows the popularity-based resource management
algorithm in action. We construct two simple extension
programs each of which repeatedly writes as much data as
it can to disk. We activate an artificial workload that sends
two requests per second to the services, initially splitting
requests evenly between them. As the two services fill up
the small (3 MB) disk partition under test, their allocations
are equal. Then, when the request distribution changes so
that the first service receives three times as many requests
as the second, the first’s allocation grows at the expense of

the second’s until their disk allocations are in the ratio of
3:1. Finally, the workload returns to even request rates to
the two services, and, over time, so do the disk allocations.
Note that the fair share and consumption lag the load be-
cause disk scales popularity over time. Also note that the
extensions’ schedulers keep consumpution at about 95% of
fair share, yielding a small gap between the two lines.

5.3 Popularity-based policy
This simulation experiment tests two hypotheses about the
performance of per-service popularity-based resource al-
location policies relative to that of traditional allocation
algorithms that optimize for global performance without
considering performance isolation. First, we hypothe-
size that under benign workloads — where services use
only the resources needed to satisfy on-demand requests
from users — per-service popularity-based resource al-
location can provide performance competitive with tradi-
tional allocation. Second, we hypothesize that under work-
loads where some services aggressively use resources, per-
service popularity-based resource allocation prevents ag-
gressive extensions from hurting global performance.

We study this problem in the context of cache re-
placement by examining three algorithms: (1) traditional
LRU replacement that emphasizes global performance, (2)
Fixed-N, which supports performance isolation by dividing
the cache into

�
equal parts and allowing each of the the

�
most recently accessed services to use one part, and (3)

Service Popularity, which allocates disk spaces in propor-
tion to each service’s time-scaled popularity as described
in Section 4. We assume that the system tracks the num-
ber of bytes delivered by each service to end users and
that it rescales popularity for the disk resource by multiply-
ing each service’s accumulated value by 0.5 when the total
number of bytes delivered to users since the last rescale ex-
ceeds (1.0 * the size of the disk). This approach relates the
period of time over which to scale popularity to the amount
of system state and thus allows us to avoid changing “magic
numbers” for different disk sizes.

Our simulator uses as input two traces: Squid [1], which
contains 7 days (3/28/00 – 4/03/00) of accesses to the squid
regional cache at NCAR in Boulder, Colorado that serves
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requests that miss in lower-level squid caches, and the first
seven days from UC Berkeley Home-IP HTTP traces [14].
The simulator uses information in the traces to identify
cachable and non-cachable pages as well as stale pages that
require reloads. We simulate a proxy cache shared by all
clients in the trace.

Figure 4 shows the hit rate of these algorithms as total
cache size varies. As hypothesized, the Service Popularity
algorithm is competitive with the Global LRU algorithm
across the range of cache sizes studied: Service Popular-
ity’s performance is slightly worse for UCB and slightly
better for squid. Conversely, Fixed-N’s performance suf-
fers because it allocates the same amount of space to all
services and because the parameter

�
must be chosen care-

fully to match the size of the cache.
Next, we randomly select 20% of the sites and intro-

duce artificial prefetch requests from them. In particu-
lar, each time such a site references an object, we gen-
erate 10 requests for additional objects whose total size
is � #'"�� "������ ��� #'"'7�74���0"$��"�7�7 times the size of the origi-
nal request. Thus, when � #'"	� "$���
� �����0#'"'7$7,���0",��"'7 -��



,
prefetching services prefetch 10 times as much data as they
use. Note that because prefetches are not in response to
user requests and their results are not delivered to users,
prefetches do not increase a service’s popularity or priority
under the Service Popularity algorithm. Figure 5 shows the
performance of the non-prefetching services as we vary the
aggressiveness of the prefetching services. When prefetch-
ing is restrained, the Popularity and LRU algorithms are
competitive. However, as prefetching becomes more ag-
gressive, the performance of non-prefetching sites suffers
under LRU, while their performance under Popularity-
based replacement is mostly unaffected.

5.4 Internet service robustness
This experiment examines potential effectiveness of using
downloaded code to improve robustness of Internet ser-
vices by transforming failed sessions that are interrupted
by network disconnections into degraded sessions that are
served by downloaded mobile extensions. Clearly, the rel-
ative advantage of degraded sessions over failed sessions
will vary from service to service: some services can pro-
vide full service while disconnected, others can provide tol-
erable service across short disconnections, and still others
require continuous on-line communication with a remote
site to be effective. This experiment does not attempt to
quantify the benefit of degraded service over failed service;
instead it seeks to quantify how often services that do sup-
port mobile extensions can expect to improve their robust-
ness to network disconnections.

In theory, allowing services to ship code to clients should
allow services to significantly improve their robustness. In
practice, three factors may limit this effect. First, we as-
sume that clients begin to download extension code the first
time they access a service in the trace, so sessions soon af-

Workload Date NClients NServers Sessions

Squid-P 3/28/00 – 4/03/00 1 131193 1557875
Squid-C 3/28/00 107 52526 403235
BU-P 1/17/95 – 5/17/95 1 4614 56789
BU-C 1/17/95 – 5/17/95 33 4614 68949

Table 1: Web access trace parameters.

ter the first access may be unprotected and suffer capacity
misses. Second, systems may have to evict state or code
from one service to provide resources for others causing
later compulsory misses for that service. Third, due to in-
stallation time, if a failure occurs, soon after an earlier re-
quest in which the client started to load an extension, the
client may not have time to install the service’s extension
or the extension may not have time to download the state
needed to mask failures.

Workload. Our simulation study uses two types of
traces: a set of web service access logs that we use di-
rectly as reference traces and Internet connectivity failure
measurements from which we a generate a synthetic failure
workload.

Table 1 summarizes key parameters for our access pat-
tern traces. We examine both the squid trace described ear-
lier and a four-month trace taken at clients at Boston Uni-
versity [8]. This trace is old, but it includes client cache
hits, and the client ID mappings are not changed over the
trace period. We examine both traces from the point of
view of a proxy shared by all clients in the trace (Squid-
P and BU-P) and from the point of view of individual
client machines (Squid-C and BU-C) with no shared proxy.
Because the squid traces change the client-anonymization
mapping daily, we only look at the first day of the Squid-C
trace.

For our simulations, we post-process the traces to group
individual accesses into sessions. We define a session as a
set of accesses from a client (-C traces) or proxy (-P traces)
to a single server in which the maximum gap between suc-
cessive requests is 60 seconds.

Table 2 summarizes key parameters of our failure model
based on Paxson’s measurements of connectivity among a
collection of 37 sites in 1994 and 1995 [24]. Failures in this
dataset are of two types: temporary outages that resolve
themselves during the course of a 450-second traceroute
session and persistent failures that continue beyond the end
of a traceroute session.

Our simulation models the connection between a client
and server with three states: Up (the network is up), Temp
(the network is encountering a temporary outage), and
Perst (the network is encountering a persistent failure). For
each client-server connection, we choose an initial state ac-
cording to the steady-state probabilities — ����� , � � ��� � ,
and ��� ����� � — which we set based on Paxson’s values for
temporary failures and our analysis of the trace’s persistent
failures. Note that Paxson remarks that the tracing method-
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Temporary Failures Persistent Failures
Model

����� �����	�
�
Duration

�����
�����	�
� �����	���	�
Duration

�����������	���	�

Fail-S .982 .015 30 + exponential(40) ��� ������� � ! .003
500 with probability 0.95

30000 with probability 0.05
�
� "#�$����� %

Fail-L .982 .015 30 + exponential(40) ��� ������� � ! .003
3600 with probability 0.95

111000 with probability 0.05
& � & �$����� '

Table 2: All times in seconds from Paxson [24] and rounded to 2 significant digits.

ology may under-sample during times of network failures,
so our model may underestimate failure rates.

Paxson’s measurements allow him to characterize the ex-
pected duration of temporary outages with precision: for
temporary outages not ascribed to router loops, durations
in one trace were modeled by a constant 30 seconds plus
an exponentially distributed random variable with mean of
about 40 seconds in one trace. For simplicity, we assume
that temporary failures arrive at exponentially-distributed
intervals with mean

�)( � ����* � ��� � calculated to yield the
specified � � � � � for the given failure duration.

Unfortunately, Paxson’s data provide less precision for
modeling persistent failures. Due to the relatively low sam-
pling rate used in the study failures lasting several min-
utes to several hours are generally only detected in a single
traceroute session. Thus, for most persistent failures ob-
served, the data provide loose lower and upper bounds on
average failure duration of 450 seconds to several hours,
respectively. Our analysis of the raw trace data indicates

that 94% of the persistent failure events (excluding end-
host failures) spanned only one traceroute sample; Of the
persistent failures that last long enough to be seen in multi-
ple traceroute sessions, our analysis yields lower and upper
bounds on average failure duration of 8.6 hours and 30.9
hours if only network failures are considered. Because we
cannot characterize persistent failures precisely, we con-
sider two bounding models for the duration of persistent
failures: Fail-S, in which we assume the shortest persistent
failures consistent with the bounds above, and Fail-P, in
which we assume the longest. For simplicity, we assume
that persistent failures arrive at exponentially-distributed
intervals with mean

� ( � � �
* � ����� � calculated to yield the
specified ��� ����� � for a given mean failure duration.

For these experiments, we conduct four trials with differ-
ent random seeds for the network failure model and graph
the mean and standard deviation of results.
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Methodology. Our simulator assumes that each server
identified in the trace is implemented as a location-
independent mobile extension that can be accessed either
at the server, proxy, or client and that clients and proxies
begin to download mobile extensions when they first ac-
cess service. The amount of time to download, install, and
get useful service from a mobile extension is a configurable
parameter with default value �!� 7$��� ��� �!��� " - �

�


seconds.
During the �!� 7$��� ��� �!��� " , clients and proxies access the ser-
vice from the origin server. In addition to mobile exten-
sions, the simulator assumes that clients and proxies imple-
ment infinite-size traditional web object caches that store
each cachable object referenced by the client or proxy.

If the network remains up during an entire session, the
simulator classifies the session as No Failure. For sessions
in which the network fails, the simulator examines the ob-
jects referenced in the session and classifies the session as
follows: (1) Cache Hit if all requests are for fresh cached
web objects; (2) Stale Hit if all requests are for cached web
objects and if the trace indicates that some of those objects
require updates from the server; (3) Hoard-able Degraded
if the mobile extension is installed at the time of the net-
work failure all requests are for cachable objects but some
miss; (4) Dynamic Degraded if the mobile extension is in-
stalled at the time of the failure but not all session data are
cachable; and (5) Fail if the mobile extension is not in-
stalled at the time of the failure and either some data are
not cachable or some data are cache misses. Note that due
to limitations of the trace and of the HTTP protocol, the
traces may overstate the cachability of data and may under-
estimate the rate of change of data. Thus our results may
understate the Stale Hit and Dynamic Degraded rates and
overstate the Cache Hit, Stale Hit, and Hoardable Degraded
rates.

Results. Our goals are to first quantify the improvements
that mobile extensions can provide, then to determine what
factors cause these improvements, and finally to determine
the sensitivity of the approach to service installation time,
network failure rates, and the number of simultaneous ex-
tensions proxies and clients maintain.

The y-axis of Figure 6 shows the fraction of sessions
classified in the categories listed above. The x-axis shows
the install time for each service using a logarithmic scale,
and each graph shows these results for a different workload.
When installation times are short, caching plus mobile ex-
tensions can improve availability by at most factors of 16.7,
16.5, 16.3, and 5.96 for the four workloads compared to
the failure rate that would be encountered if each request
were sent to the origin server. The improvements avail-
able from caching alone appear small (reductions in failure
rates of 1.12, 1.13, 1.38, and 1.30) although in the Squid
workloads lower-level caches may hide sessions that only
reference cached data, causing us to understate the bene-
fits of caching alone. Conversely, aggressive hoarding plus

caching may be able to achieve significant improvements;
the simulations indicate upper bounds of 2.88, 2.91, 5.03,
3.78 for this combination.

The available benefits fall gradually as installation time
increases. At a 10,000 second installation time the upper
bound on availability improvements are 10.71, 10.24, 8.18,
and 2.91 for the four workloads.

Figure 7 shows session results as we vary (a) persistent
and (b) temporary failure rates . These data and the data
in Figure 6-(a) and (b) suggest the improvement in session
failure rate provided by mobile extensions are relatively in-
sensitive to the underlying network failure patterns.

Figure 8 shows session results for caches and prox-
ies that maintain only a finite number of local copies of
extensions and evict the rest using an MFU policy (re-
sults for LRU replacement and exponentially decaying av-
erage MFU are similar but not shown.) Shown are the
Squid-P/Fail-S and BU-C/Fail-S workloads; BU-P/Fail-S
and Squid-C/Fail-S are similar. take advantage of mobile
extensions, client and proxy virtual machines must be scal-
able to handle hundreds or thousands of simultaneously
downloaded extensions. This paper does not explicitly ad-
dress the issue of the scalability of Java virtual machines to
such large numbers of extensions, and this appears to be an
important subject for future work. These data also suggest
that fair and efficient resource management will be impor-
tant since large numbers of extensions may need to share a
client or proxy’s resources.

5.5 Disconnected catalog application
Consider an e-commerce application in which users read
several pages of information, add an element to a shopping
cart, and commit a purchase transaction. In a traditional
server extension architecture, a network or server failure
at any point in the interaction can cause the transaction to
fail. Furthermore, the “store” is not available to mobile
clients that are deliberately disconnected. To improve ro-
bustness of this application and to allow purchases to be
made from mobile, disconnected devices, we have con-
structed a “Disconnected catalog” application using mobile
extensions. This application hoards the contents of the cat-
alog, and logs additions to the shopping cart to local disk.
Upon commit, the client’s system writes the order to an
asynchronous message queue to be sent to the server and
waits for up to two seconds. If, during those two seconds,
the resulting origin-server response appears in the client’s
message queue, the client returns that response to the user
immediately. If the two seconds elapse before the server re-
sponse appears, the client extension proxy generates a reply
to the client browser that indicates that the network connec-
tion to the server is slow or down and that the system will
continue to retry the request, along with a “receipt” URL
that the client may use to check on the status of the order.

We test this system in two configurations: Origin Server
in which all requests go through the origin server and ME-
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Local in which the client uses mobile extensions to down-
load a local copy of the service as described above.

We test the system with a 233 MHz Pentium II running
Windows NT acting as the client and a 166 MHz Ultra-
SPARC running Solaris acting as the server. The client
is connected to the Internet via a commercial ISP using a
cable-modem. The server is connected via the University
of Texas’s connection.

We use a synthetic client that reads three pages with 20
seconds of think time between reads, then adds an item to
the cart, then checks out. A client repeats this process 45
seconds after the previous session completes. We introduce
synthetic failures of duration 30 + Exponential(40) seconds

each. The failures arrive randomly according to an expo-
nential distribution with mean 3500 seconds to yield an av-
erage failure rate of 2%. This failure pattern is intended
to stress the system rather than to model any particular ob-
served workload.

Figure 9 shows failure rates and performance for this ap-
plication. The bars represent failure rates for Read, Add,
and Commit requests sent to the Origin Server or requests
sent to the Mobile Extension. The white bars represent
failure rates where a client’s request does not receive a
reply from the service. The gray bar on the right shows
cases of degraded service under mobile extensions where
the client’s commit request takes more than two seconds to
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Figure 9: Failure rate and response time for catalog application.

be sent to and returned from the origin server, so the sys-
tem gives the client a “receipt” and the client checks the
URL later for updates. In parenthesis above each bar is
the average time for the successful requests of the specified
type (except in the case of the “degraded” bar, which shows
elapsed time to complete the degraded requests.)

This experiment illustrate how mobile extensions can
improve robustness by decoupling the service from the net-
work connection. At the same time, it illustrates that this
approach transforms but does not eliminate the problems
caused by connectivity failures: situations that cause trans-

action failures in the Origin Server configuration cause de-
lays in the mobile extension configuration. Finally, these
data illustrate that an additional benefit of the approach
is significantly improved responsiveness for most requests
from moving the bulk of the service near the client.

5.6 “Hospital” application
In this experiment, we consider the following scenario:
doctors in a hospital use web terminals to order laboratory
tests for their patients, technicians receive these orders, and
when the tests are complete, a technician enters the results
into a terminal, after which the doctor may view the result.
It is easy to build and deploy a prototype of such an ap-
plication under HTTP’s server-extension architecture with
a centrally-located server or server cluster. However, such
an implementation would be vulnerable to Internet failures.
Given that most network outages are short in duration [24],
this application may be able to provide acceptable, but de-
graded service across network failures using asynchronous
messaging with persistent message queues to transmit or-
ders among participants.

We constructed a prototype of this system that consists
of three separate extensions, each built around a persis-
tent message queue. The doctor-client extension buffers the
doctor’s order submissions and asynchronously receives re-
sults that are pushed to it. The lab-client asynchronously
receives pushed orders and buffers results as they are for-
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Rem/Rem Loc/Rem Loc/Prxy

Success(
�

1 min) 82.94% 78.59% 99.90%
1 - 10 min 0.67% 3.26% 0.00%

�
10 min 7.88% 17.86% 0.015%

Failure 8.58% 0.00% 0.085%

Table 3: Network- and infrastructure-induced failures and de-
lays. Success indicates the percentage of requests that were satis-
fied within 1 minute of the best case completion time of 10 min-
utes. The next two lines indicate degradation of service in which
requests and replies are delayed. Finally, the last column includes
cases where the system refused to accept an order request.

warded to the rest of the system; both the doctor-client
and lab-client are accessed via standard HTTP. Finally, the
server application routes orders from a doctor to the right
lab and routes results the other way.

All extensions are mobile and the location that they run
will affect robustness. In the Local/Proxy case, the client
programs install themselves on the doctor and lab termi-
nals and server program installs itself at the hospital proxy
machine. In the Local/Remote case, the client programs in-
stall themselves at the lab terminals, but the server runs at
a central site. Finally, in the Remote/Remote case, the ter-
minals do not support mobile extensions, so all three pro-
grams must run at the central site.

We deployed mobile extension virtual machines to four
sites distributed across the Internet – three at academic in-
stitutions and one at a DSL client of a commercial ISP. Due
to machine limitations, we approximate the Local/Proxy
case with both clients and the server running on the same
machine. We simulate a workload in which doctors sub-
mit orders at times distributed exponentially with mean 10
minutes. Lab technicians’ browsers poll for orders every
10 seconds. When labs receive an order, they process it
in exactly 10 minutes and then send the result. We intro-
duce faults by killing the central server machine for uni-
form random intervals from 1 to 10 minutes and separate
these crashes by uniform random intervals from 10 to 60
minutes. These failure rates are higher than we expect in
practice, but they allow us to observe the behavior of our
systems under stress.

Table 3 summarizes the results of this experiment. In
this scenario under the Remote/Remote case, which corre-
sponds to traditional HTTP, a large number of requests fail
(because the doctor can not contact the server to submit
an order) and a similar number of requests are delayed by
more than a minute when a network failure prevents a sub-
mitted order from progressing. Column three (“Loc/Rem”)
shows that moving the client programs and their associated
write buffers to the clients eliminates submit failures, but
can transform those failures into multi-minute delays; in
practice, this system would also have to warn users when
requests are delayed for more than a few minutes. Finally,
by taking full advantage of client and proxy programma-
bility to move the server to the hospital as well eliminates

nearly all long delays and failures.
Note that we did encounter one failed request in the Lo-

cal/Proxy case where the machine hosting one of our exper-
iments crashed in a way that left a client process running
just enough longer than the proxy process that it was able
to observe and log a failure to connect. This illustrates a
true limitation of the system: the system provides tools for
eliminating one (we believe significant) source of service
disruption, but as one factor is reduced, others, in this case
host failures, become significant.

6 Related work
This work is closely related to the ideas of the Rover
toolkit for building mobile applications [17], which uses
mobile code, caching, and QRPC to allow applications to
work when disconnected. The differences between the ap-
proaches stem from our focus not only on mobility but also
disconnections due to network and server failures and our
goal of providing an infrastructure for large collections of
services that are installed without user intervention or even
knowledge. As a result, we focus more of our attention
on resource management, provide location independence
so that extensions can run at clients, at proxies, and at
servers, and we quantify the end-to-end availability advan-
tages such an approach can provide.

As noted in the Introduction, a large number of mobile
code systems have been proposed or built. The strategies
we discuss in this paper focus on providing disconnected
operation for robustness and mobility and on the resource
management problems that arise in such an environment.

Adaptive research scheduling is an active research area.
However, most proposed approaches are designed for be-
nign environments where applications can be trusted to in-
form the system of their needs [16, 22] or can be monitored
for progress [29, 10]. We treat applications as untrustwor-
thy black boxes and allocate resources based on inferred
value from the user rather than stated demand from the ap-
plications. The former approach can be more precise and
can get better performance in benign environments, but the
latter provides safety in environments with aggressive ex-
tensions. Noble et. al [23] emphasize agility, the speed at
which applications and allocations respond to changing re-
source conditions, as a metric of dynamic resource sched-
ulers. We argue that for stateful resources such as mem-
ory and disk, agility must be restrained to match the rate
at which the resource may usefully be transferred between
applications.

A number of economics-based strategies have been pro-
posed for distributing resources among competing applica-
tions in large distributed systems [27, 4]. These systems
target more general network topologies than ours and they
use secure electronic currency to ration resources.

File caching [15], replication [31], hoarding [19, 21],
and write buffering are standard techniques for coping with
disconnection for static file services. Active channels [2]
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provide an interface for server-directed hoarding. In addi-
tion to being limited to static web pages, active channels re-
quire user intervention to enable each service, presumably
to control servers’ use of client resources. Similarly, Inter-
net Explorer lets users identify groups of pages to hoard,
but users must manually select sites and indicate refetch
frequency and hoard depth.

7 Conclusions and future work
HTTP’s server extension strategy for deploying distributed
services is successful in part because it facilitates incre-
mental deployment and extensibility with simple default
semantics. Unfortunately, this approach is fundamentally
limited with respect to end-to-end availability and support-
ing mobility. Mobile extensions seek to fix those limits
while retaining those advantages.

Our evaluation of our prototype system and our simula-
tion studies suggest that mobile extensions hold promise.
However, future work is needed to fully understand this
approach. For example, we have evidence that aggressive
hoarding could significantly improve service availability,
but we have not quantified the network, disk, or server-load
cost of pursuing that strategy. Also, it appears that for a
large number of services to make use of mobile extensions,
clients and proxies must be prepared to host hundreds or
thousands of extensions. Future work is needed to evalu-
ate and improve the scalability of our virtual machine. Fi-
nally, we have explored one class of mobile middleware ex-
tensions for improving service robustness in which servers
send clients extensions that can act autonomously on their
behalf. It may be interesting to consider other techniques
enabled by a mobile extension framework such as server
selection/fail-over [35] or having clients ship code into the
network to act on their behalf during periods of disconnec-
tion [26].
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