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Abstract
This paper explores integrating self-tuning updates and
sequential consistency to enable transparent replication
of large-scale information dissemination services. We
focus our attention oninformation disseminationser-
vices, a class of service where updates occur at an ori-
gin server and reads occur at a number of replicas, and
our data replication system supportstransparentrepli-
cation by providing two crucial properties: (1) sequen-
tial consistency to avoid introducing anomalous behav-
ior to increasingly complex services and (2) self-tuning
transmission of updates to maximize performance and
availability given available system resources. We meet
these aggressive consistency and self-tuning goals using
a novel architecture that (1) pushes invalidations on reli-
able FIFO network channels, (2) pushes updates on un-
reliable, priority-ordered, low-priority network channels,
and (3) carefully schedules the application of invalida-
tions and updates at each replica. Our analysis of simu-
lations and our evaluation of a prototype implementation
support the hypothesis that it is feasible to provide trans-
parent replication for information dissemination applica-
tions. For example, in simulations our system’s perfor-
mance is a factor of three to four faster than a demand-
based system for a wide range of configurations.

1 Introduction
This paper explores integrating self-tuning updates and
sequential consistency to enable transparent replication
of large-scale information dissemination services. Re-
searchers are working to develop programming environ-
ments [2, 12, 52, 23] and scalable servers [3, 56] for dis-
tributing service code to replicas across a network in or-
der to improve service availability [18, 35, 63] and per-
formance [6]. But for this approach to be useful, this
distributed code must operate on a common set of shared
data. Thus, a fundamental challenge to large-scale ser-
vice replication is replication of the underlying data.

We pursue the aggressive goal of developing a data
replication toolkit that supportstransparentservice repli-
cation by providing two key properties.
1. The toolkit providesself-tuning updatesto maximize

performance and availability given the system re-
sources available at any moment. Self-tuning updates
are crucial for transparent replication because static
replication policies are more complex to maintain, less
able to benefit from spare system resources, and more
prone to catastrophic overload if they are mis-tuned or
during periods of high system load [33].

2. The toolkit providessequential consistency[37] with a
tunable maximum-staleness parameter to reduce appli-
cation complexity. Weaker consistency guarantees can
introduce subtle bugs [25], and as Internet-scale appli-
cations become more widespread, ambitious, and com-
plex, simplifying the programming model becomes in-
creasingly desirable [29]. If we can provide sequen-
tial consistency, then we can take a single machine’s
or LAN cluster’s service threads that access shared
state via a file system or database and distribute these
threads across WAN edge servers without re-writing
the service and without introducing new bugs.

Not only is each of these properties important, but their
combination is vital. Strong consistency prevents the use
of stale data, which could hurt performance and availabil-
ity, but prefetching replaces stale data with valid data.
Conversely, prefetching means that data are no longer
fetched near the time they are used, so a prefetching sys-
tem must rely heavily on its consistency protocol for cor-
rect operation.

Providing strong consistency guarantees in a large
scale system while providing good availability [10] and
performance [39] is fundamentally difficult. We there-
fore restrict our attention to the key subproblem of repli-
cateddissemination serviceswhere all updates occur at
one origin server and where multiple edge server repli-
cas treat the underlying data as read only and perform
services such as data caching, fragment assembly, per-
user customization, and advertising insertion. Although
this case is restrictive, it represents an important class of
services. For example, Akamai’s Edge Side Include [2]
and IBM’s Sport and Event replication system [13] both
focus on improving the performance, availability, and
scale of dissemination services. Furthermore, we believe
that this case represents an important building block for
more general services with per-object-customized consis-
tency [26, 53].

In this paper, we describe the TRIP (Transparent Repli-
cation through Invalidation and Prefetching) system that
integrates self tuning updates with sequential consistency
in order to provide transparent replication for dissemina-
tion services.

The TRIP algorithm has two parts. First, the server
implements the system’s self-tuning, push-based prefetch
by sending a replica’s invalidation messages and re-
sponses to demand reads on one channel and by pushing
the replica’s updates on another channel. In particular,
the server sends invalidations and demand responses over
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FIFO channels at normal network priority, but it buffers
updates in a priority queue that drains through a low pri-
ority network connection to avoid interfering with other
network traffic [54]. Thus, when bandwidth is high, the
priority queue is empty and the approach approximates
FIFO push-all, but when bandwidth is low, only the most
valuable updates are sent. The replicas implement the
second important part of the algorithm by buffering the
messages they receive and both (1) applying them in a
careful order to maintain sequential consistency and (2)
delaying application of some messages to minimize the
amount of invalid data and thereby maximize local hit
rate, minimize response time, and maximize availability.

This paper evaluates TRIP using both trace-based sim-
ulation and evaluation of an implementation. Our simula-
tions use traces of access to the 2000 Summer Olympics
web site, a large-scale information dissemination service
that was served from several geographically distributed
replicas. Our prototype provides a file system interface
at each replica via a local NFS server. This implementa-
tion allows us to run unmodified edge servers that provide
both static HTML files and dynamic responses generated
by programs (e.g., CGI, Servelets, Server Side Include,
or Edge Side Include), and that share data through the
file system. A similar approach could be used to support
a database interface to the shared state.

Our evaluation supports the hypothesis that it is fea-
sible to provide transparent replication for information
dissemination applications by carefully integrating con-
sistency and prefetching. In particular, this combina-
tion yields three good properties. First, it simplifies
application development by providing sequential con-
sistency and supporting transparency. Second, whereas
strong consistency might be expected to hurt system per-
formance, by combining it with self-tuning prefetching
the system often gets better performance than demand-
based replication systems that provide weaker consis-
tency guarantees. For example, in simulations our sys-
tem’s performance is a factor of three to four faster than
a demand-based system for a wide range of assump-
tions about available bandwidth. Third, whereas strong
consistency might be expected to hurt availability [63],
prefetching updates and carefully scheduling the appli-
cation of invalidations allows replicas to maintain local
copies of large fractions of system state and thereby mask
server failures and network partitions. For example, if
a network failure disconnects a replica from the origin
server, the replica can continue to provide sequentially-
consistent service for an average of over two hours when
the bandwidth before the failure was 50% of the trace’s
average update bandwidth.

This paper makes three contributions. First, it pro-
vides evidence that systems can maintain sequential con-
sistency for some key WAN distributed service despite
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Fig. 1: High level system architecture.

the CAP dilemma, which states that systems cannot get
strongConsistency and highAvailability for systems vul-
nerable toPartitions [10]. The replication system cir-
cumvents this dilemma by (a) restricting the workload it
considers and (b) integrating consistency with prefetch-
ing. Second, it presents a novel system that integrates
prefetching and consistency by (a) using a new self-
tuning push-based prefetching algorithm and (b) care-
fully ordering and delaying the application of messages
at replicas. Third, it provides a systematic evaluation and
a working prototype of such a system to provide evidence
for the effectiveness and practicality of the approach.

The rest of the paper proceeds as follows. Section 2
provides background on prefetching and consistency and
more precisely defines the environments in which our
framework can be used. Then, Section 3 details the al-
gorithms at the core of our approach. Section 4 describes
our prototype implementation, and Section 5 discusses
both our simulation and prototype evaluation. Finally,
Section 6 provides an overview of related work, and Sec-
tion 7 highlights our conclusions and discusses some po-
tential future directions.

2 System model
Figure 1 provides a high level view of the environment
we assume. Anorigin serverand severalreplicas (also
called content distribution nodes or edge servers) share
data, andclientsaccess the service via the replicas, which
can not only provide static HTML files but can also run
service-specific code to dynamically generate responses
to requests [2, 3, 12, 23, 52, 56]. A redirection infrastruc-
ture [13, 32, 62] directs client requests to a good (e.g.,
nearby, lightly loaded, or available) replica. In such an
environment, the focus of this paper is on thedata repli-
cation systemthat provides shared state across the origin
server and the replicas.

Proposed service replication architectures [2, 3, 12, 23,
52, 56] vary in their assumptions about the number of
replicas (e.g., 10 replicas to thousands), whether a given
replica is typically installed for long periods of time on
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the same machine(s) or whether replicas are dynamically
created, destroyed, or moved over fine time scales to re-
spond to changing demand, and whether a replica caches
a small subset of hot pages or replicates most or all of a
service. We focus on supporting modest numbers (e.g.,
10-100) of long-lived replicas that each have sufficient
local storage to maintain a local copy of the full set of
their service’s shared data. Our protocol remains correct
under other assumptions, but optimizing performance in
other environments may require different trade-offs.

2.1 Consistency and timeliness
This study focuses on protocols that simultaneously en-
force both sequential consistency, which restricts the per-
mitted ordering among reads and writes across all ob-
jects, and∆-coherence, which limits the real-time dura-
tion between when a write of an object occurs and when
the write becomes visible to subsequent reads. The rest
of this subsection defines these concepts more precisely.

Evaluating the semantic guarantees of large-scale
replication systems requires careful distinctions be-
tweenconsistency, which constrains the order that up-
dates across multiple memory locations becomeobserv-
able [25] to nodes in the system,coherence, which con-
strains the order that updates to a single location become
observable but does not additionally constrain the order-
ing of updates across different locations, andstaleness,
which constrains the real-time delay between when an
update completes and when it becomes observable. Adve
discusses the distinction between consistency and coher-
ence in more detail [1].

To support transparency, we focus on providing se-
quential consistency. As defined by Lamport, “The result
of any execution is the same as if the [read and write] op-
erations by all processes were executed in some sequen-
tial order and the operations of each individual processor
appear in this sequence in the order specified by its pro-
gram.” [37] Sequential consistency is attractive for trans-
parent replication because the results of all read and write
operations are consistent with an order that could legally
occur in a centralized system, so—absent time or other
communication channels outside of the shared state—a
program that is correct for all executions under a local
model with a centralized storage system is also correct
for the distributed storage system.

Typically, providing sequential consistency is expen-
sive in terms of latency [11, 39] or availability [10]. How-
ever, we restrict our study todissemination servicesthat
have one writer and many readers, and we enforceFIFO
consistency[39] under which writes by a process appear
to all other processes in the order they were issued, but
different processes can observe different interleavings be-
tween the writes issued by one process and the writes is-
sued by another. Note that for applications that include

only a single writer, FIFO consistency is identical to se-
quential consistency or the weaker causal consistency.

Although ensuring sequential consistency at each
replica provides strong semantic guarantees, clients ac-
cessing a service through the replicas may observe unex-
pected behaviors in at least two ways due to communica-
tion channels outside of the shared state.

First, because sequential consistency does not specify
any real-time requirement, a client may observe a stale
version of the service. For example, if a network parti-
tion separates a replica from the origin server, the view
of the service provided by the replica will not reflect re-
cent updates even if the view continues to obey sequen-
tial consistency. A user could observe, for example, the
anomalous behavior of a stock price not changing for sev-
eral minutes during a disconnection. In this case, phys-
ical time acts as a communications channel outside of
the control of the data replication system that could al-
low a user to detect anomalous behavior introduced by
the replication system.

Therefore, we allow systems to enforce timeliness
constraints on data updates by providing∆-coherence,
which requires that any read reflect at least all writes that
occurred before the current time minus∆. By combining
∆-coherence with sequential consistency, TRIP enforces
a tunable staleness limit on the sequentially consistent
view. The∆ parameter reflects a per-service trade-off
between availability and worst case staleness: reducing
∆ improves timeliness guarantees but may hurt availabil-
ity because disconnected edge servers may need to refuse
a request rather than serve too-stale data.

Second, some redirection infrastructures [13, 32, 62]
may cause a client to switch between replicas. Even if
each replica provides a sequentially consistent view of
the data, a client switching between replicas may see in-
consistencies. For example, consider two replicasr1 and
r2 wherer2 processes messages somewhat more slowly
thanr1. If objectsA andB are initially in statesA0 and
B0, thenA is written to stateA1, and finallyB is written
to stateB1, a client could read objectB and observe state
B1 from replicar1 and then switch to replicar2 and read
objectA and observe stateA0. Even though neitherr1

nor r2 observes any state inconsistent withA1 happens
before[36] B1, by switching between replicas the client
can observe such an inconsistent state. In Section 3.3 we
discuss how to adapt Bayou’s session consistency proto-
col [51] to our replication environment to ensure that each
client observes a sequentially consistent view regardless
of how often the redirection infrastructure switches the
client among replicas.

3 Algorithm
TRIP is based on a novel replication algorithm that re-
volves around two simple parts: (1) the server’s self-
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tuning efforts to send updates in priority order without in-
terfering with other network users and (2) each replica’s
efforts to buffer messages it receives, to apply them in
an order that meets consistency constraints, and to delay
applying some of these messages to improve availability
and performance.

Figure 2 provides a high-level view of the algorithm
for synchronizing a replica’s data store with the origin
server’s. When the origin server writes an object (num-
ber©1 in the figure), it immediately sends an invalidation
to each replica©2 and it enqueues the body of the up-
date in a priority queue for each replica©3. In contrast
with the immediate transmission of invalidations on a
normal-priority lossless network connection©4, each pri-
ority queue drains by sending its highest-priority update
to its replica via a low-priority network channel when the
network path between the origin server and replica has
spare capacity©5.

At the replicaboth invalidation©6 and update©7 mes-
sages that arrive are buffered rather than being imme-
diately applied to the replica’s local data store©8. A
scheduler at each replica applies invalidations in strict
sequence-number order©9, delaying the application of
each successive invalidation until its corresponding up-
date appears in the update buffer or until its deadline (un-
der∆-coherence) arrives. Similarly, when the scheduler
at a replica applies a buffered update©10, it always applies
the one with the lowest available sequence number and
it only applies an update if all invalidations with lower
sequence numbers have already been applied.

The full algorithm must also handle demand reads, net-
work disconnections, and machine failures. We therefore
detail the server and replica algorithms in the next two
subsections. Then Section 3.3 discusses several limita-
tions of the basic algorithm and possible optimizations
available within this framework.

3.1 Origin server
The core of the origin server is a novel and generally-

applicable architecture for push-based prefetching where
each update channel to a replica consists of a priority
queue of updates that drains via a low-priority network
connection to a replica. By combining a priority queue
and a low-priority network protocol, the updates’ chan-
nel provides for self-tuning prefetching for each replica.

Algorithm 1 Origin server
State

seqNo; // Global sequence number
storage; // Seq number + body of each object
nReplicas; // Number of replicas
updtChnl[]; // Lossy, prior. order, low prior. link

invDemChnl[]; // Lossless, FIFO channels

Local call to write(objID, body, priority, timestamp)
seqNo++;
storage.update(objId, body, seqNo);
for (i = 0; i < nReplicas; i++) do

invDemChnl[i].send(INV AL, objId, seqNo, timestamp);
updtChnl[i].insert(UPDATE, objId, body, seqNo, priority);

receive (READ, objId) from replica
(body, objSeqNo) = storage.get(objId);
invDemChnl[replica].send(REPLY, objId, body, objSeqNo);

updtChnl[replica].cancel(objId);

When the network between the origin server and a replica
provides a large amount of spare bandwidth, the prior-
ity queue drains quickly and the channel approximates
a lossless, FIFO, push-all channel. But, when network
bandwidth is scarce, only valuable items are sent and the
buffering delay allows multiple updates of the same data
to collapse into a single update and save network band-
width [5]. Note that unlike many traditional prefetching
protocols [20, 27, 28, 46, 55], there is no pre-set threshold
that determines whether a given object is valuable enough
to send; instead, TRIP relies on the low-priority network
protocol to ensure that objects are only sent when the
value of doing so exceeds the cost [33].

In order to integrate sequential consistency and∆-
coherence with self-tuning updates, the origin server sep-
arates each replica’s invalidation channel from its update
channel. When an update occurs, the origin server im-
mediately sends the invalidation to each replica, but it
enqueues the update bodies in the per-replica priority
queues. Unfortunately, separating these channels pre-
vents replicas from depending on message arrival order
for consistency, so the origin server associates a sequence
number with each update and each stored object, and it
includes an object’s sequence number in all invalidation,
update, and demand-reply messages.

Algorithm details. As the pseudocode in Algorithm 1
shows, the origin server maintains a global monotonically
increasing sequence numberseqNo, local storagewith
the body and sequence number of each object, a set of
per-replica channelsinvDemChnl[] for sending invalida-
tions and demand replies, and a set of per-replica chan-
nelsupdtChnl[] for pushing updates.

To write an object, an origin server incrementsseqNo,
updatesstoragewith seqNoand the object’s new body,
sends invalidations on each replica’sinvDemChnl, and
enqueues updates on each replica’supdtChnl.

Each enqueued update includes apriority that spec-
ifies the update’s relative ranking to other pending up-
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dates. Our interface allows a server to use any algorithm
for choosing the priority of an update, and this paper does
not attempt to extend the state of the art in prefetch pre-
diction policies. A number of standard prefetching pre-
diction algorithms exist [20, 27, 28, 46, 55] or the server
may make use of application-specific knowledge to pri-
oritize an item (e.g., a news editor may know that the
day’s headline article will be widely read before the sys-
tem has measured the story’s read frequency). Note that
some implementations may extend this interface to spec-
ify different priorities for propagating a given update to
different replicas to, for example, account for different
access patterns at different replicas.

When the server receives a demandread(objId) from
a replica, it retrieves from its local store the object’s
body and per-object sequence number, and it sends on
the replica’sinvDemChnla demand reply message. No-
tice that this reply includes the sequence number stored
with the object when it was last updated, which may be
smaller than the current globalseqNo. Upon sending a
demand reply to a client, the origin server also cancels
any push of the object to that client still pending inup-
dtChnl.

Communication channels. The system design de-
pends on the distinct properties of theinvDemChnls and
theupdtChnls.

EachinvDemChnlfor invalidations and demand replies
is a lossless FIFO channel that operates at normal net-
work priority. Our protocol uses a persistent message
queue [31] to ensure that this channel is lossless even
across crashes and network partitions, which dramati-
cally simplifies crash recovery.

EachupdtChnlprovides an abstraction suited for self-
tuning push-based prefetch by (1) buffering updates in a
priority queue and (2) sending them across the network
using a low priority network protocol. Three actions ma-
nipulate each per-replica priority queue. First, aninsert
adds an update with a specified priority. If another up-
date to the sameobjId occupies the priority queue, the
older update is discarded. An implementation may bound
the upper size of the priority queue buffer and discard
low priority items to maintain this size bound. Second a
cancel(objId)call removes any pending update forobjId.
Third, a worker thread loops, removing the highest prior-
ity update from the queue and then doing a low-priority
network send of a push-update message containing the
objId, body, and seqNoof the item. The low priority
network protocol should ensure that low priority traffic
does not delay, inflict losses on, or take bandwidth from
normal-priority traffic; a number of such protocols have
been proposed [7, 8, 45, 54].

3.2 Replica
The core of each replica is a novelschedulerthat coor-
dinates the application of invalidations, updates, and de-
mand read replies to the replica’s local state. The sched-
uler has two conflicting goals. On one hand, it would like
to delay applying invalidations for as long as possible to
minimize the amount of invalid data and thereby maxi-
mize local hit rate, maximize availability, and minimize
response time. On the other hand, it must enforce sequen-
tial consistency and∆-coherence, so it must enforce two
constraints:

C1 A replica must apply all invalidations with sequence
numbers less thanN to its storage before it can apply
an invalidation, update, or demand reply with sequence
numberN .1

C2 A replica must apply an invalidation with timestampt
to its storage no later thant + ∆−maxSkew.

Here, ∆ specifies the maximum staleness allowed be-
tween when an update is applied at the origin server and
when the update affects subsequent reads, andmaxSkew
bounds the clock skew between the origin server and the
replica.

Each scheduler therefore applies invalidations in se-
quence number order and maximizes the amount of valid
data in its local storage by trying to delay applying an
invalidation with sequence numberN until it has an up-
date with the same sequence number. But, a scheduler is
forced to apply an invalidation earlier than that in two cir-
cumstances: (1) the staleness deadline for an invalidation
expires or (2) a demand read reply that reflects stateM
(M > N ) arrives at the replica, forcing the scheduler to
immediately apply pending invalidations with sequence
numbers up toM to avoid stalling the demand read.

Algorithm details. The pseudocode in Algorithm 2 de-
scribes the behavior of a replica. Each replica maintains
five main data structures. First, a replica maintains a local
data store that maps each object ID for the shared state to
either the tuple(INVALID, seqNo)if the local copy of the
object is in the invalid state or the tuple(VALID, seqNo,
body) if the local copy of the object is in the valid state.
Second, a replica maintainspendingInval, a list of pend-
ing invalidation messages that have been received over
the network but not yet applied to the local data store;
these invalidation messages are sorted by sequence num-
ber. Third, a replica maintainspendingUpdate, a list of
pending pushed updates that have been received over the
network but not yet applied to the local data store; no-
tice that although the origin server sorts and sends these
update messages by priority, each replica sorts its list of
pending updates bysequence number. Finally, ∆ spec-
ifies the maximum staleness allowed between when an

1We show that enforcing condition C1 yields sequential consistency
in the Appendix.
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Algorithm 2 Replica
State

storage; // V alidity, sequence number, and body of each object
pendingInval; // Received but unprocessed invalidation
pendingUpdate; // Received but unprocessed updates
delta; // Max staleness between server and replica

maxSkew; // Max clock skew between server and replica

receive (INVAL, objId, seqNo, timestamp) on invDemChnl

pendingInval.put(objId, seqNo, timestamp);

receive (UPDATE, objId, body, seqNo) on updtChnl
pendingUpdate.put(objId, body, seqNo);

pendingUpdate.head.seqNo≤ pendingInval.nextSeqToProcess()
// Scheduler applies an update
(objId, body, seqNo) = pendingUpdate.removeHead();
if (seqNo ≥ storage.getSeqNo(objId)) then

storage.update(objId, V ALID, seqNo, body);
if (seqNo == pendingInval.nextSeqToProcess()) then

pendingInval.doneProcessing(seqNo);

currentTime() ≤ pendingInval.head.timestamp + delta - maxSkew

Scheduler applies an invalidate

applyNextInval(); // See below

local call to read(objId)
if (V ALID == storage.getState(objId)) then

return storage.getBody(objId);
send(READ, objId) to origin server;
storage.waitUntilV alid(objId);

return storage.getBody(objId);

receive (REPLY, objId, body, seqNo) on invDemChnl
while (pendingInval.nextSeqToProcess() ≤ seqNo) do

applyNextInval(); // See below

storage.update(objId, V ALID, seqNo, body); // Unblock rd

applyNextInval() // Internal private method called from above
(objId, seqNo, timestamp) = pendingInval.readHead();
if (seqNo ≥ storage.getSeqNo(objId)) // ′At least once′ chnl
then

storage.update(objId, INV ALID, seqNo);

pendingInval.doneProcessing(seqNo);

update is applied at the origin server and when the up-
date affects subsequent reads, andmaxSkewbounds the
clock skew between the origin server and the replica.

Scheduler actions. After INVAL and UPDATE mes-
sages arrive and are enqueued inpendingInval and
pendingUpdate, a scheduler applies these buffered mes-
sages in a careful order to meet the two constraints above
and to minimize the amount of invalid data.

The scheduler removes the update message with the
lowest sequence number from itspendingUpdatesand
applies it to itsstorageas soon as it knows it has ap-
plied all invalidations with lower sequence numbers. Ap-
plying a prefetched update normally entails updating the
local sequence number and body for the object, but if the
locally stored sequence number already exceeds the up-
date’s sequence number, the replica must discard the up-
date because a newer demand reply or invalidation has
already been processed. Also note that in the case where
updateN arrives before invalidationN is applied, update
N can be applied as soon as invalidationN − 1 has been
applied and then invalidationN need never be applied. In

this case, the procedure informs thependingInvalqueue
thatseqNohas been processed, which allowspendingIn-
val to garbage collect the message and to acknowledge
processing of invalidationseqNoto the origin server.

The scheduler removes the invalidation message with
the lowest sequence number frompendingInvaland ap-
plies it to itsstoragewhen the invalidation’s deadline ar-
rives attimestamp + ∆ −maxSkew. ThependingIn-
val queue and network channel normally provide FIFO
message delivery, and they guarantee at least once de-
livery of each invalidation when crashes occur. To sup-
port end-to-end at-least-once semantics, before applying
an invalidation, a replica verifies that it is a new one, and
after applying an invalidation a replica callspendingIn-
val.doneProcessing(seqNo)to allow garbage collection
of the message and to acknowlege processing of invali-
dationseqNoto the origin server.

Processing requests from clients. When servicing a
client request that reads objectobjId (either as input to
a dynamic content-generation program or as the reply to
a request for a static data file), a replica uses the locally
stored body ifobjId is in the VALID state. But, if the
object is in theINVALID state, the replica sends a de-
mand request message to the server and then waits for
the demand reply message. Note that by sending de-
mand replies and invalidations on the same FIFO network
channel, the origin server guarantees that when a de-
mand reply with sequence numberN arrives at a replica,
the replica has already received all invalidations with se-
quence numbers less thanN , though some of these inval-
idations may still be buffered inpendingInval. So when
a demand reply arrives, the replica enforces condition C1
by simply applying all invalidation messages whose se-
quence numbers are at most the reply’s sequenceNumber
before applying the reply’s update to the local state and
returning the reply’s value to the read request.

Our protocol implements an additional optimization
(not shown in the pseudo-code for simplicity) by main-
taining an index of pending updates searchable by object
ID. Then, when a read request encounters an invalid ob-
ject, before sending a demand request to the origin server,
the replica checks the pending update list. If a pending
update for the requested object is in this list, the system
applies all invalidations whose sequence numbers are no
larger than the pending update’s sequence number, ap-
plies that pending update, and returns the value to the
read request.

A remaining design choice is how to handle a second
read requestsr2 for object o2 that arrives when a first
read requestr1 for objecto1 is blocked and waiting to
receive a demand reply from the origin server. Allow-
ing r2 to proceed and potentially access a cached copy
of o2 risks violating sequential consistency [1] if pro-
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gram order specifies thatr1 happens beforer2. On the
other hand,r1 andr2 are issued by independent threads
of computation that have not so synchronized, then the
threads are logically concurrent and it would be legal to
allow readr2 to “pass” readr1 in the cache [25, 37].

TRIP therefore provides two options.Conservative
mode preserves transparancy but requires a read issued
while an earlier read is blocking on a miss to block.Ag-
gressivemode compromises transparency because it re-
quires knowledge of application internals, but it allows a
cached read to pass a pending read miss. Our experiments
examine this trade-off in more detail.

Operating during disconnection. When a replica be-
comes disconnected from the server due to a network par-
tition or server failure, the replica attempts to service re-
quests from its local store. If the local copies of most
objects are valid, a replica may be able to mask the dis-
connection for an extended period. Note that to enforce
∆-coherence, a replica must block all reads if it has not
communicated with the origin server for∆ seconds. We
use a heartbeat protocol to ensure liveness when the net-
work is available. But, if a read miss occurs during a
disconnection, it logically blocks until the connection is
reestablished and the server satisfies the demand miss.

In a web service environment, blocking a client in-
definitely is an undesirable behavior. Therefore, TRIP
provides three ways for services to give up some
transparancy in order to gain control of recovery in the
case where a replica blocks because it is disconnected
from the origin server.

First, after a time-out a read can return an error code
to the calling edge server program. Although a correct
program should always check for error codes on file or
database reads, in practice this interface is not fully trans-
parent because (a) many applications fail to check for
error codes on IO operations and (b) the actions an ap-
plication should take on a read error may differ in this
distributed case (where, say, redirecting the request to a
different replica may work) versus the centralized case
(where probably little can be done.)

Second, rather than require applications to deal with
time-outs internally, TRIP can be configured to take two
actions when a demand read times out: (1) signal the redi-
rection layer [13, 32, 62] to stop sending requests to this
replica and (2) signal the local web server infrastructure
to close all existing connections to all clients and to re-
spond to subsequent client requests with an HTTP redi-
rect [22] to a different replica. The approach then relies
on client-initiated request retransmission for end-to-end
recovery [10]. This option provides less precise control
to the application, but it also requires less invasive modi-
fications of the service-specific code.

Third, given the choice between reducing availability

and increasing staleness during disconnections, some ser-
vices may choose the latter. Such services may configure
TRIP to increase∆ when it detects a disconnection from
the server. This increase allows the system to further de-
lay applying pending invalidations and thus maximize the
amount of valid local data and maximize the amount of
time the replica can operate before suffering a miss. For
example, if a replica sets∆ =∞ during disconnections,
it will apply no invalidations while disconnected, but it
may serve arbitrarily stale data.

3.3 Limitations and optimizations
Our current protocol is limited in at least two ways. These
limitations could be addressed with future optimizations.

First, as described in Section 2.1 our current proto-
col can allow a client that switches between replicas to
observe violations of sequential consistency. Therefore,
for best results the redirection algorithm should direct a
client to the same replica for long periods of time.

We speculate that a system could adapt Bayou’s ses-
sion guarantees protocol [51] to maintain sequential con-
sistency semantics when a client switches replicas. In
particular, a replica’s web server could insert an HTTP
cookie reflecting the highest sequence number observed
by a client in responses to a client and inspect this cookie
on all requests from a client. If the sequence number
in a request exceeds the replica’s sequence number, the
replica web server signals the replication infrastructure to
process pending invalidations to bring the sequence num-
ber to a point where the request can be processed. This
optimization compromises transparency, but we specu-
late that the necessary modifications to the server would
generally not be too invasive.

Second, our protocol sends each invalidation to all
replicas even if a replica does not currently have a valid
copy of the object being invalidated. We take this ap-
proach for simplicity and because we primarily target
environments that trade cheap bandwidth and storage
for improved availability and responsiveness and where
replicas are therefore able to maintain valid copies of
most data. Our protocols could be extended to more tra-
ditional caching environments where replicas maintain
small subsets of data by adding callback state [30]. Given
our target environment, we have no current plans to pur-
sue this optimization.

4 Prototype
We have developed a prototype that implements the al-
gorithm described in Section 3. The implementation in-
cludes the features described above except that (1) it does
not implement theaggressiveoptimization (Section 3.2),
so it is alwaysconservativeand blocks reads to the cache
when a read miss is outstanding and (2) of the three inter-
faces for handling read misses during disconnection de-
scribed in Section 3.2, it only implements read time-outs;
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it does not provide the “close all connections and change
redirection” option or the “increase∆” option described
above. Deployment does depend on two additional sub-
systems that are outside the scope of this project: a proto-
col for limiting the clock skew between each replica and
the origin server [42] and a policy for prioritizing which
documents to push to which replicas [28, 55], which may,
in turn, require some facility for gathering read frequency
information from replicas [48, 59].

Our prototype is implemented in Java, C, and C++ on
a Linux platform, but we expect the server code to be
readily portable to any standard operating system and the
replica code to be portable to any system that supports
mounting an NFS server.

The rest of this section discusses internal details and
design decisions in the server and replica implementa-
tions.

4.1 Server
The server is a user-level daemon that provides an inter-
face for local write insertions and remote reads. It uses
the local file system for file storage. Note that rather
than store per-file sequence numbers, which the proto-
col sends with demand read replies, our prototype only
maintains a global sequence number. The algorithm op-
erates as described in Section 3 except the server includes
the current global sequence number when sending a de-
mand reply rather than the sequence number of the ob-
ject’s most recent update. This simplification can force
a replica to process more invalidation messages before
processing a demand reply; the resulting protocol thus
continues to provide sequential consistency, but its per-
formance and availability may be reduced compared to
the full protocol.

The server uses a custom persistent message
queue [31] for sending updates and invalidations to
each replica. The implementation buffers invalidation
messages on the server’s disk, manages TCP connections
between the server and replicas, and buffers pending
messages in the replica’s memory sorted by sequence
number. The implementation ensures end-to-end,
at-least-once message delivery by allowing a replica to
wait to process a pending message until the message’s
deadline, read the message and apply it to its local
persistent state, and finally explicitly acknowledge
message processing to the server’s message layer.

The use of a persistent message queue for delivering
invalidation messages simplifies our implementation by
avoiding the need for a separate resynchronization proto-
col to handle failures [4].

Each update channel between the server and a replica
is similar to a persistent message queue except (a) the
server buffer is in memory because it is permissible to
lose an update if the server crashes and (b) messages are

queued in priority rather than FIFO order at the server.
A key optimization in our implementation of the update
queue is to enqueue an updated file’s name rather than the
updated file’s body. As described in Section 3, our update
protocol only ever sends the most recent version of a file,
so there is no need for each queue to maintain its own
copies of files. A potential future optimization would be
to send diffs rather than the entire new file [43].

To provide a low-priority network channel for up-
dates that does not interfere with other network traffic,
we reimplement TCP-Nice [54] as a user-level proto-
col that makes use of libpcap for packet monitoring to
measure round-trip times. This implementation retains
TCP-Nice’s non-interference properties, but because of
the additional measurement overheads at user-level, the
implementation may be too conservative and may there-
fore realize somewhat lower network utilization than an
in-kernel implementation.

4.2 Replica
Our replica exports the system’s shared state via a local
user-level NFS file server [40]. The replica mounts this
local file server as if it were a normal NFS server, allow-
ing local processes to access shared data as if they were
stored in a standard file system. The replica’s in-kernel
NFS client sends all requests to the local user-level NFS
server, which implements our replication algorithm.

Our implementation uses the local file system for stor-
age. Each shared file is represented by two local files: a
shadow filefor metadata (whether the file is valid and the
version number of the local copy) and adata filefor the
body of valid files.

4.3 Limitations to transparency
Our goal is to provide transparent replication to existing
applications, but the system does expose a few aspects
of replication. Some of these issues are implementation
choices and some are more fundamental.

In our current implementation, an application at the
server inserts updates into the system using a special
write call that includes the object ID, the updated data,
and the replication priority. We provide this interface to
allow applications to control the replication policy. An
alternative would be to intercept write calls at the origin
server as we now intercept read calls at the replicas. In
such an implementation, the system would have to imple-
ment a default policy for prioritizing updates by, for ex-
ample, tracking the write rate of each object at the server,
tracking the read rate of each object at each client, propa-
gating read frequency information to the server, and esti-
mating the priorities of an update as the read rate divided
by the write rate and scaled by the object size [55].

A more fundamental issue is that the correct config-
uration of a replicated service may depend on the inter-

8



nal structure of a service. For example, we currently set
a single∆ value to limit the staleness of a replica, but
it might be desirable to allow different updates to spec-
ify different ∆ values. Similarly, our current interface
applies each update individually, but some applications
may wish group a set of updates into a single atomically-
applied group. Finally, although we focus on dissemina-
tion services, it may be desirable restructure a more com-
plex services into different pieces with different repli-
cation strategies for each piece. Some services, for in-
stance, may not replicate some critical pieces for security
when replicas are less trusted than the origin server. Or,
some services may wish to make use of different consis-
tency protocols for different subsets of data [26, 53].

5 Evaluation
We evaluate our traces using two approaches: by employ-
ing a trace-driven simulator and evaluating a prototype.

5.1 Simulation methodology
Our trace-driven simulator models an origin server and
twenty replicas and assumes that the primary bottleneck
in the system is the network bandwidth from the origin
server. To simplify analysis and comparisons among al-
gorithms, we assume that the bandwidth available to the
system does not change throughout a simulation. We also
assume that bandwidth consumed by control information
(invalidate messages, message queue acknowledgments,
meta data, etc.) is insignificant compared to the band-
width consumed transferring objects; we confirm this as-
sumption using our prototype—control messages account
for less than 1% of the data transferred by the system.
Transferring an object over the network thus consumes
a link for objectsize/bandwidth seconds, and the de-
lay from when a message is sent to when it is received is
given bynwLatency + messageSize/bandwidth. By
default we simulate a round-trip time (or 2 *nwLatency)
of 200ms +/- 90%between the origin server and a replica.

We compare TRIP’sFIFO-Delayed-Invalidation/Pri-
ority-Delayed-Updatealgorithm with two algorithms:
Demand Only, which delivers invalidates eagerly in FIFO
order but does no prefetching, andPush Allwhich eagerly
pushes all updates to all replicas in FIFO order. We ini-
tially assume that the system requires (1) sequential con-
sistency, which all of these algorithms provide, and (2) a
∆-coherence guarantee of∆ = 60 seconds, which De-
mand Only naturally meets, TRIP consciously enforces,
and Push All may or may not meet depending on avail-
able bandwidth. We will later modify these assumptions.

5.1.1 Workload
We evaluate the algorithms using a trace-based workload
of the Web site of a major sporting event2 hosted at sev-

2The 2000 Summer Olympic games

eral geographically distributed locations. The logs con-
tain a total of 22.8 million client requests and 281 thou-
sand writes by the origin server, and they span one day.

In order to simplify simulations we ignore certain en-
tries in our trace file. In particular, we remove from the
trace files (1) all requests that do not contain 200 or 304
as server return codes, (36.7%), (2) all dynamic requests,
(13.9%), (3) entries that appear out of order in the trace
files (0.58%), and (4) requests that our parser fails to
parse (0.17%). We eliminate those requests with return
codes other than 304 and 200 because we assume that the
expensive operations at a replica are those that potentially
lead to communication with the origin server. Although
requests that result in error codes of 302 (server redirec-
tion) are valid requests, we remove them from our traces
because those requests reappear in our trace files as re-
quests with 304 or 200 as return codes. We remove dy-
namic requests because we do not have data of which un-
derlying objects they access. We remove out-of-order re-
quests because they pose a problem for the event queue in
our trace-driven simulator. Finally, we remove requests
that have valid return codes but that our trace parser fails
to parse because it is conservative. Since the number of
requests in the traces that are either unparseable or appear
out-of-order is small, we do not believe that removing
them significantly influences our results.

5.1.2 Prediction policy

Our interface allows a server to use any algorithm to
choose the priority of an update, and this paper does not
attempt to extend the state of the art in prefetch predic-
tion. A number of standard prefetching prediction al-
gorithms exist [20, 27, 28, 46, 55] or the server may
make use of application-specific knowledge to prioritize
an item. Our simple default heuristic for estimating the
benefit/cost ratio of one update compared to another is
to first approximate the probability that the new version
of an object will be read before it is written as the ob-
served read frequency of the object divided by the ob-
served write frequency of the object and then to set the
relative priority of the object to be this probability divided
by the object’s size [55]. This algorithm appears to be a
reasonable heuristic for server push-update protocols: it
favors read-often objects over write-often objects and it
favors small objects over large ones.

5.2 Simulation results
Our primary simulation results are that (1) self-tuning
prefetching can dramatically improve the response time
of serving requests at replicas compared to demand-based
strategies, (2) although a Push All strategy enjoys excel-
lent response times by serving all requests directly from
replicas’ local storage, this strategy is fragile in that if
update rates exceed available bandwidth for an extended
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Fig. 4: Average staleness of data served by replicas.

period of time, the service must either violate its∆-
consistency guarantee or become unavailable, (3) when
prefetching is used, delaying application of invalidation
messages by up to 60 seconds provides a modest addi-
tional improvement in response times, and (4) by maxi-
mizing the amount of valid data at replicas, prefetching
can improve availability by masking disconnections be-
tween a replica and the origin server.

5.2.1 Response times and staleness

In Figure 3 we quantify the effects of different replication
strategies on client-perceived response times as we vary
available bandwidth. We assume that client requests for
valid objects at the replica are satisfied in 20ms, whereas
requests for invalidated objects are forwarded from the
replica to the origin over a network with an average
round-trip latency of 200ms as noted above. To put these
results in perspective, Figure 4 plots the averagestale-
nessobserved by a request. We define staleness as fol-
lows. If a replica serves versionk of an object after the
origin site has already (in simulated time) written ver-
sion j (j > k), we define the staleness of a request to
be the difference between when the request arrived at the
replica and when versionk + 1 was written. To facili-
tate comparison across algorithms, this average staleness

figure includes non-stale requests in the calculations. We
omit due to space constraints a second graph that shows
the (higher) average staleness observed by the subset of
reads under each algorithm that receive stale data.

The data indicate that the simple Push All algorithm
provides much better response time than the Demand
Only strategy, speeding up responses by a factor of at
least four for all bandwidth budgets examined. However,
this comparison is a bit misleading as Figure 4 indicates:
for bandwidth budgets below 2.1MB/s, Push All fails to
deliver all of the updates and serves data that becomes in-
creasingly stale as the simulation progresses. If the sys-
tem enforces∆-coherence with∆ = 60 seconds, Push
All replicas would be forced to either violate this fresh-
ness guarantee or become unavailable when the available
bandwidth falls below about 5MB/s.

The TRIP algorithm has significant advantages over
both Push All and Demand Only. When available band-
width exceeds 5MB/s, TRIP matches Push All’s excel-
lent response time and provides 4x speedups compared
to the Demand Only system. At lower bandwidths, this
algorithm meets the timeliness bound of 60 seconds, but
it still significantly outperforms the Demand Only strat-
egy. For example, when 2MB/s of bandwidth is available,
TRIP provides a speedup of 3.5 compared to Demand
Only, and Push All provides only an additional speedup
of 1.2 despite the latter’s liberties with the system’s fresh-
ness requirements. Even at low bandwidths, TRIP gets
significantly better response times than the Demand Only
algorithm because (a) the self-tuning network scheduler
allows prefetching to occur during lulls in demand traffic
even for a heavily loaded system [33] and (b) the prior-
ity queue at the origin server ensures that the prefetching
that occurs is of high benefit/cost items. For example,
at 500KB/s of available bandwidth, which causes signif-
icant congestion for even the Demand Only case, TRIP
has more than a 3x speedup over Demand Only.

Push All and Demand Only represent extreme cases
of static-threshold-based prefetching with thresholds of
0 (push an update regardless of its likelihood of being
accessed) and 1 (only push an update if it is certain to
be accessed), respectively. Intermediate static thresh-
olds would land between these cases—increasing the
threshold above 0 would reduce the system’s best-case
performance by increasing the high-bandwidth response
time plateau towards the Demand Only line, but higher
prefetch thresholds would also shift to the left the over-
load point where staleness guarantees are violated.

5.2.2 Variations of TRIP

Figure 5 shows the behavior of response times under
variations of TRIP. We modify the TRIP algorithm in
two ways. We first vary the coherence parameter∆
on response times by evaluating setting∆ = 0, which
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forces a replica’s scheduler to apply all invalidations im-
mediately. We then investigate the potential benefit of
theTRIP-aggressiveoptimization, which sacrifices some
transparency by assuming that when the application is-
sues concurrent read requests, the requests are logically
independent and which allows reads of cached objects to
pass reads that have blocked (as described in Section 3.2).

Reducing average staleness by reducing∆ below 60s
inflicts a modest cost on response time, and this cost de-
clines as available bandwidth increases. The benefit of al-
lowing some applications to exploit independence across
read requests can be substantial. For example, for a sys-
tem with 500KB/s of available bandwidth, this optimiza-
tion improves response time by a factor of 2.5. But, this
benefit falls as available bandwidth increases, suggesting
that this optimization may become less valuable as net-
work costs fall relative to the cost of requiring program-
mers to carefully analyze applications to rule out the pos-
sibility of unexpected interactions [29].

5.3 Availability
We measure the replication policies’ effect on availabil-
ity as follows. For each of 50 runs of our simulator for
a given set of parameters, we randomly choose a point
in time when we assume that the origin server becomes

unreachable to replicas. We simulate a failure at that mo-
ment and measure the length of time before any replica
receives a request that it cannot mask due to disconnec-
tion. We refer to this duration as themask duration. We
assume that systems enforce∆-coherence with∆ = 60
seconds before the disconnection but that disconnected
replicas maximize their mask duration by stopping their
processing of invalidations and updates during discon-
nections and extending∆ as long as they can continue to
service requests. Thus, during periods of disconnectivity
our system chooses to provide stale data rather than fail-
ing to satisfy client requests. Note that given these data,
the impact of enforcing shorter∆s during disconnections
can be estimated as the minimum of the time reported
here and the∆ limit enforced.

Figure 6 shows how the average mask duration varies
with bandwidth for the TRIP, TRIP-aggressive, and De-
mand Only algorithms. Because mask duration is highly
sensitive to the timing of a failure, different trials show
high variability. We quantify this variability in more de-
tail in an extended technical report [44].

Note that the traditional Demand Only algorithm per-
forms poorly. In Figure 6, the line closely followy = 0,
indicating virtually no ability to mask failures. This poor
behavior arises because the first request for an object af-
ter that object is modified causes a disconnected replica
to experience an unmaskable failure. On the other hand,
the Push All algorithm can mask all failures due to the
fact that at any point in time, the entries in a replica’s
cache form a sequentially consistent (though potentially
stale) view of data.

The TRIP algorithm outperforms the Demand Only al-
gorithm in the graph by maximizing the amount of lo-
cal valid data. We note that both TRIP variations pro-
vide average masking times of thousands of seconds for
bandwidth of 1.5MB/s and above and that providing ad-
ditional bandwidth allows these systems to prefetch more
data and hence mask a failure for a longer duration. As
noted in Section 3, systems may choose to relax their∆-
coherence time bound to some longer∆′ value during
periods of disconnection to improve availability. These
data suggest that systems may often be able to completely
mask failures that last the maximum maskable duration
even for relatively large∆′ limits.

5.4 Prototype measurements
We evaluate our prototype on the Emulab testbed [57].
We configure the network to consist of an origin server
and 4 replicas that receive 5MBps of bandwidth and
200ms round-trip times. We mount the local user-level
file server using NFS with attribute caching disabled. For
simplicity, we do not monitor object replication priori-
ties in real time but instead pre-calculate them using each
object’s average read rate, write rate, and size [55].
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Fig. 7: Replica-perceived response times yielded by the
Demand-fetch-only, FIFO-push-all, and the TRIP algorithms

Figure 7 shows the response times as seen at each of
the 4 replicas. We collect these data by replaying at the
origin and at each replica the first hour of our update trace
and web traces in real time. The response time for a given
request is calculated as the difference between when the
request arrives at a replica and when its reply is gener-
ated. Note that these response times do not represent
the end-to-end delay experienced by clients because they
do not include the network delays between clients and
replicas. However, one can easily compute total end-to-
end delays by adding client-replica network delays to this
data.

As we see in the graph, the Push All algorithm yields
the best response time. For example, it outperforms the
Demand Only algorithm by a factor of 2 for 3 of the
4 replicas. We note that at 5MBps bandwidth avail-
able to the system, TRIP incurs only minor increase in
response times over Push All: 7.5%, 6.2%, 1.4%, and
3.4% overhead for each replica respectively. We also note
that by delaying the application of invalidate messages,
TRIP with∆ = 60s reduces response times compared to
∆ = 0 by 4.4%, 8.7%, 5.0%, and 3.0% respectively.

6 Related work
In contrast with TRIP, most existing and proposed repli-
cation systems provide neither self-tuning replication nor
sequential consistency with tunable staleness.

In particular, most replication systems use static repli-
cation policies such as always-conservative demand
fetching [2, 15], always-aggressive push-all [13, 47], or
hand-tuned threshold-based prefetching [20, 27, 28, 46].
Davison et al. [19] propose using a connectionless trans-
port protocol and using low priority datagrams (the in-
frastructure for which is assumed) to reduce network in-
terference. Crovella et al. [17] show that a window-based
rate controlling strategy for sending prefetched data leads
to less bursty traffic and smaller network queue lengths.
In earlier work, we describe a threshold-free prefetch-
ing system called NPS [33] that like TRIP makes use of

TCP-Nice [54] to avoid network interference. The rest
of NPS’s design is quite different than TRIP’s: NPS fo-
cuses on supporting prefetching of soon-to-be-accessed
objects by client browsers rather than pushing of updates
by origin servers to replicas, and it does not consider the
problem of maintaining consistency for data that may be
prefetched long before being used.

Most proposed Internet-scale data replication systems
focus on ensuring various levels of coherence or staleness
or both [16, 34, 38, 41, 58, 60, 61], but few provide ex-
plicit consistency guarantees. Unfortunately, Frigo notes
that even strong coherence is considerably weaker than
sequential consistency [24]. Bradley and Bestavros [9]
argue that increasingly complex Internet-scale services
will demand sequential consistency and propose a vector-
clock-based algorithm for achieving it. They focus on
developing a backwards-compatible browser-server pro-
tocol and do not explore prefetching. The IBM Sporting
and Event CDN system uses a push-all replication strat-
egy and enforces delta coherence via invalidations [14].
Akamai’s EdgeSuite [2] primarily relies on demand reads
and enforces delta coherence via polling with stronger
consistency available via object renaming. Burns et
al. [11] discuss apublish consistencymodel of consis-
tency that is useful for web workloads and show that con-
sistency implemented by file systems has inefficiencies
that prevents easily scaling them to many clients. Most
of these systems use demand reads, but several strategies
for mixing updates and invalidates have been explored for
multicast networks [21, 49, 38]. These multicast-based
proposals all use static thresholds to control prefetching
and provide best-effort consistency, coherence, and time-
liness semantics by sending and applying all messages
eagerly. A potential avenue for future work is to develop
a way for TRIP to make use of multicast or hierarchy to
scale to larger numbers of replicas.

In replicated databases, several systems have explored
ways to allow different updates to specify different con-
sistency requirements. Lazy Replication [35] allows an
update to enforce causal, sequential, or linearizable con-
sistency. Bayou [47] maintains causal consistency at all
times and it asynchronously reorders operations to even-
tually reach a global sequentially-consistent ordering of
updates that may differ considerably from the causal or-
der seen when a node first applies a given update. These
systems both focus on multi-writer environments and
eventually propagate all updates to all replicas. Yu and
Vahdat [63] show that in such systems minimizing the
time between when an update occurs and when it prop-
agates maximizes system availability for any given con-
sistency constraint. Our protocol demonstrates how to
exploit this observation for dissemination workloads by
integrating consistency and self-tuning prefetch.

Several studies have examined ways to cache pages
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that are dynamically generated based on some underly-
ing data [50]. Challenger et al.’s [13, 14] Data Update
Propagation allows replicas to cache pages or page frag-
ments that are dynamically generated at an origin server
by tracking dependencies between pages and the under-
lying data used to generate them and by sending invali-
dations or updates to cached pages when the underlying
data change.

Our argument for sequential consistency is similar in
spirit to Hill’s position that multiprocessors should sup-
port simple memory consistency models like sequential
consistency rather than weaker models [29]. Hill argues
that speculative execution reduces the performance ben-
efit that weaker models provide to the point that their ad-
ditional complexity is not worth it. We similarly argue
that for dissemination workloads, as technology trends
reduce the cost of bandwidth, prefetching can reduce the
cost of sequential consistency so that little additional ben-
efit is gained by using a weaker model and exposing more
complexity to the programmer.

7 Conclusion
This paper explores integrating self-tuning updates and
sequential consistency to enable transparent replication
of large-scale information dissemination services. Our
novel architecture succeeds in this goal by (1) pro-
viding self-tuning push-based prefetch from the server
and (2) buffering and carefully scheduling the applica-
tion of invalidations and updates at replicas to maxi-
mize the amount of valid data—and therefore maximize
the hit rate, minimize the response time, and maximize
availability—at a replica. Our analysis of simulations
and our evaluation of a prototype implementation support
the hypothesis that it is feasible to provide transparent
replication for information dissemination applications by
carefully integrating consistency and prefetching.

A limitation of this work is its focus on information
dissemination applications. This class of applications is
important, but in the future we hope to apply our protocol
as one part of a more general system where one subset of
the data is read-only at the replicas, where another subset
is read/write at the replicas, and where different subsets
use different consistency algorithms [26, 53].
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Appendix: Sequential consistency
proof sketch
The replica ensures sequential consistency [37] by en-
forcing condition C1 across invalidations, updates, and
demand read replies.

Lemma 1 If condition C1 holds, then the system pro-
vides sequential consistency.

Proof sketch. Assemble a sequential order for all write
and read operations as follows. Assignwi, theith write
operation at the origin servers, an ordering number
n(s,i) which equals the global sequence number the ori-
gin server uses forwi’s invalidations. At each replica
server copyc, assignrj , the jth read operation at that
replica, the ordering numbern(c,j) equal to the highest
sequence number of any invalidation processed by replica
c whenrj executes its return. Now, sort all read and write
operations by their ordering numbers with writes coming
before reads with the same ordering number and with ties
among reads broken by lexical ordering of replica IDs.
Such an ordering is sequentially consistent because (1)
the result of each read in the system is the same as its re-
sult if executed in this sequential order and (2) read and
writes from any program that executes at a node in the
system appear in this sequence in program order.

The system enforces C1 by the program constraints de-
scribed above and by relying on per-replica reliable FIFO
channels both to deliver invalidations in sequence num-
ber order and to ensure that when a demand read reply
arrives, all earlier invalidations have arrived as well.
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