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Abstract 2. The toolkit providesequential consisten¢$7] with a

This paper explores integrating self-tuning updates and tunable maximum-staleness parameter to reduce appli-
sequential consistency to enable transparent replication cation complexity. Weaker consistency guarantees can
of large-scale information dissemination services. We introduce subtle bugs [25], and as Internet-scale appli-
focus our attention orinformation disseminatiorser- cations become more widespread, ambitious, and com-
vices, a class of service where updates occur at an ori- Plex, simplifying the programming model becomes in-
gin server and reads occur at a number of replicas, and creasingly desirable [29]. If we can provide sequen-
our data replication system suppottansparentrepli- tial consistency, then we can take a single machine’s
cation by providing two crucial properties: (1) sequen- or LAN cluster's service threads that access shared
tial consistency to avoid introducing anomalous behav- state via a file system or database and distribute these
ior to increasingly complex services and (2) self-tuning threads across WAN edge servers without re-writing
transmission of updates to maximize performance and the service and without introducing new bugs.
availability given available system resources. We meellot only is each of these properties important, but their
these aggressive consistency and self-tuning goals usisgmbination is vital. Strong consistency prevents the use
a novel architecture that (1) pushes invalidations on relief stale data, which could hurt performance and availabil-
able FIFO network channels, (2) pushes updates on uity, but prefetching replaces stale data with valid data.
reliable, priority-ordered, low-priority network channels, Conversely, prefetching means that data are no longer
and (3) carefully schedules the application of invalidafetched near the time they are used, so a prefetching sys-
tions and updates at each replica. Our analysis of simtem must rely heavily on its consistency protocol for cor-
lations and our evaluation of a prototype implementatiomect operation.

support the hypothesis that it is feasible to provide trans- proyiding strong consistency guarantees in a large
parent replication for_lnfo_rmathn dissemination applicascale system while providing good availability [10] and
tions. For example, in simulations our system's perforperformance [39] is fundamentally difficult. We there-
mance is a factor of three to four faster than a demanggre restrict our attention to the key subproblem of repli-
based system for a wide range of configurations. cateddissemination serviceshere all updates occur at

1 Introduction one origin server and where multiple edge server repli-

This paper explores integrating self-tuning updates andf> treat the underlying data as read only and perform

sequential consistency to enable transparent replicatigﬁ rvices such as data caching, fragment assembly, per-

. . . S . user customization, and advertising insertion. Although
of large-scale information dissemination services. Re: 9 9

searchers are working to develop programming envirorggf F(iasse ';é?sgrglglvﬁ’e't;i‘;ﬁ?ﬁgtzgnem;p dogtﬁ]nctl C;aesfz(])f
ments [2, 12, 52, 23] and scalable servers [3, 56] for dis- vices. xample, ! ge Sl u

tributing service code to replicas across a network in or"Emd IBM's Sport and Event replication system [13] both

der to improve service availability [18, 35, 63] and per—fOCUS on Improving the pe_rformance, availability, a_nd
scale of dissemination services. Furthermore, we believe

formance [6]. But for this approach to be useful, this X ) o
distributed code must operate on a common set of sharg?lat this case repr_esentg an mpo_rtant bund|r!g block fgr
ore general services with per-object-customized consis-

data. Thus, a fundamental challenge to large-scale s ibncy [26, 53]
vice replication is replication of the underlying data. Y 120, 53]

We pursue the aggressive goal of developing a data /N this paper, we describe the TRIP (Transparent Repli-
replication toolkit that supportsansparenservice repli- ~ cation through Invalidation and Prefetching) system that
cation by providing two key properties. integrates self tuning updates with sequential consistency
1. The toolkit providesself-tuning update$o maximize in order t_o provide transparent replication for dissemina-

performance and availability given the system rellOn services.

sources available at any moment. Self-tuning updates The TRIP algorithm has two parts. First, the server

are crucial for transparent replication because statienplements the system’s self-tuning, push-based prefetch

replication policies are more complex to maintain, lesgy sending a replica’s invalidation messages and re-
able to benefit from spare system resources, and mosponses to demand reads on one channel and by pushing
prone to catastrophic overload if they are mis-tuned othe replica’s updates on another channel. In particular,
during periods of high system load [33]. the server sends invalidations and demand responses over



FIFO channels at normal network priority, but it buffers Data Replication Replica Clients
updates in a priority queue that drains through a low pri- | System 1 -
ority network connection to avoid interfering with other
network traffic [54]. Thus, when bandwidth is high, the
priority queue is empty and the approach approximates

FIFO push-all, but when bandwidth is low, only the most

OriginServer

valuable updates are sent. The replicas implement the
second important part of the algorithm by buffering the
messages they receive and both (1) applying them in a
careful order to maintain sequential consistency and (2)
delaying application of some messages to minimize the
amount of invalid data and thereby maximize local hit
rate, minimize response time, and maximize availability.

This paper evaluates TRIP using both trace-based sim- i .
ulation and evaluation of an implementation. Our simulalh® CAP dilemma, which states that systems cannot get
tions use traces of access to the 2000 Summer Olympis§ongConsistency and higAvailability for systems vul-
web site, a large-scale information dissemination servicderable toPartitions [10]. The replication system cir-
that was served from several geographically distributegUmvents this dilemma by (@) restricting the workload it
replicas. Our prototype provides a file system interfac_@ons'ders and.(b) integrating consistency with prefetch-
at each replica via a local NFS server. This implementdd- Second, it presents a novel system that integrates
tion allows us to run unmodified edge servers thatprovid@re_femh'ng and consistency by (a) using a new self-
both static HTML files and dynamic responses generatdning push-based prefetching algorithm and (b) care-
by programs (e.g., CGl, Servelets, Server Side Includ&y!ly ordering and delaying the application of messages
or Edge Side Include), and that share data through 1 repll_cas. Third, it provides a systematic eyaluatlpn and
file system. A similar approach could be used to suppoft WOrking prototype of such a system to provide evidence
a database interface to the shared state. for the effectiveness and practicality of the approach.

Our evaluation supports the hypothesis that it is fea- The rest of the paper proceeds as follows. Section 2

sible to provide transparent replication for informationprov"je"3 background on prefetching and consistency and

dissemination applications by carefully integrating coninore precisely defines the environments in which our

sistency and prefetching. In particular, this combinaframework can be used. Then, Section 3_detalls the_ al-
tion yields three good properties. First, it simplifiesgorlthms at the_ core of ourz_ipproach. Segt|on4o!escr|bes
application development by providing sequential conour prototype implementation, and Section 5 discusses

% th our simulation and prototype evaluation. Finally,

Fig. 1: High level system architecture.

sistency and supporting transparency. Second, where 2h . :
strong consistency might be expected to hurt system pe ection 6 provides an overview of related work, and Sec-

formance, by combining it with self-tuning prefetchingt'on 7 highlights our conclusions and discusses some po-

the system often gets better performance than demant(?-ntlal future directions.

based replication systems that provide weaker consis-
tency guarantees. For example, in simulations our sy ~ SYystem model
tem’s performance is a factor of three to four faster thaigure 1 provides a high level view of the environment
a demand-based system for a wide range of assum@e assume. Amrigin serverand severafeplicas (also
tions about available bandwidth. Third, whereas strongalled content distribution nodes or edge servers) share
consistency might be expected to hurt availability [63]data, andlientsaccess the service via the replicas, which
prefetching updates and carefully scheduling the applean not only provide static HTML files but can also run
cation of invalidations allows replicas to maintain localservice-specific code to dynamically generate responses
copies of large fractions of system state and thereby mas& requests [2, 3, 12, 23, 52, 56]. A redirection infrastruc-
server failures and network partitions. For example, iture [13, 32, 62] directs client requests to a good (e.g.,
a network failure disconnects a replica from the origimearby, lightly loaded, or available) replica. In such an
server, the replica can continue to provide sequentiallyenvironment, the focus of this paper is on ttea repli-
consistent service for an average of over two hours whegation systenthat provides shared state across the origin
the bandwidth before the failure was 50% of the trace’server and the replicas.
average update bandwidth. Proposed service replication architectures [2, 3, 12, 23,
This paper makes three contributions. First, it pro52, 56] vary in their assumptions about the number of
vides evidence that systems can maintain sequential coreplicas (e.g., 10 replicas to thousands), whether a given
sistency for some key WAN distributed service despiteeplica is typically installed for long periods of time on



the same machine(s) or whether replicas are dynamicalbnly a single writer, FIFO consistency is identical to se-
created, destroyed, or moved over fine time scales to rguential consistency or the weaker causal consistency.
spond to changing demand, and whether a replica cachesAlthough ensuring sequential consistency at each
a small subset of hot pages or replicates most or all of @plica provides strong semantic guarantees, clients ac-
service. We focus on supporting modest numbers (e.gcessing a service through the replicas may observe unex-
10-100) of long-lived replicas that each have sufficienpected behaviors in at least two ways due to communica-
local storage to maintain a local copy of the full set oftion channels outside of the shared state.
their service’s shared data. Our protocol remains correct First, because sequential consistency does not specify
under other assumptions, but optimizing performance iany real-time requirement, a client may observe a stale
other environments may require different trade-offs. ~ version of the service. For example, if a network parti-
tion separates a replica from the origin server, the view
2.1 Consistency and timeliness of the service provided by the replica will not reflect re-

This study focuses on protocols that simultaneously erf:€nt updates even if the view continues to obey sequen-
force both sequential consistency, which restricts the pefial consistency. A user could observe, for example, the
mitted ordering among reads and writes across all othomalous behavior of a stock price not changing for sev-
jects, andA-coherence, which limits the real-time dura-€ral minutes during a disconnection. In this case, phys-
tion between when a write of an object occurs and wheif@l time acts as a communications channel outside of
the write becomes visible to subsequent reads. The reé€ control of the data replication system that could al-
of this subsection defines these concepts more preciselfpW a user to detect anomalous behavior introduced by

Evaluating the semantic guarantees of large-scaf@® replication system. o
replication systems requires careful distinctions be- Therefore, we allow systems to enforce timeliness
tween consistencywhich constrains the order that up- Constraints on data updates by provididgcoherence
dates across multiple memory locations becarnserv-  Which requires that any read_reflec't at least all writes that
able[25] to nodes in the systenspherencewhich con- ~ Occurred before the current time minds By combining
strains the order that updates to a single location beconscoherence with sequential consistency, TRIP enforces
observable but does not additionally constrain the ordef tunable staleness limit on the sequentially consistent
ing of updates across different locations, ataleness View- The A parameter reflects a per-service trade-off
which constrains the real-time delay between when apétween availability and worst case staleness: reducing
update completes and when it becomes observable. Ad{,%lmproves tlmellness guarantees but may hurt availabil-
discusses the distinction between consistency and cohdi. Pecause disconnected edge servers may need to refuse
ence in more detail [1]. a request rather than serve top-stale data.

To support transparency, we focus on providing se- Second, some redirection infrastructures [13, 32, 62]

quential consistency. As defined by Lamport, “The resulf’@ cause a client to switch between replicas. Even if
of any execution is the same as if the [read and write] op£@Ch replica provides a sequentially consistent view of
erations by all processes were executed in some sequéhe data, a client switching between replicas may see in-
tial order and the operations of each individual processdionsistencies. For example, consider two repliGasnd
appear in this sequence in the order specified by its pré2 Wherer: processes messages somewhat more slowly
gram.” [37] Sequential consistency is attractive for transth@n”1. If objectsA and B are initially in states, and
parent replication because the results of all read and writgo: thenA is written to stated,, and finally B is written
operations are consistent with an order that could Iegalg stateB;, a client could read objedt and observe state
occur in a centralized system, so—absent time or othdf! from replicar; and then switch to replica, and read

communication channels outside of the shared state—9pJectA and observe statd,. Even though neither,
program that is correct for all executions under a locall 72 Observes any state inconsistent with happens

model with a centralized storage system is also corre@€fore[36] Bi, by switching between replicas the client
for the distributed storage system. can observe such an inconsistent state. In Section 3.3 we

Typically, providing sequential consistency is eXpen_dis:(:uss how to adapt Bayou’s session consistency proto-

sive in terms of latency [11, 39] or availability [10]. How- col [51] to our replication environment to ensure that each

ever, we restrict our study issemination serviceat client observes a sequentially consistent view regardless
havé one writer and many readers, and we enfBtE© of how often the redirection infrastructure switches the

consistency39] under which writes by a process appeali€nt @mong replicas.

to all other processes in the order they were issued, byt .

different processes can observe different interleavings bé Algorlthm

tween the writes issued by one process and the writes i$RIP is based on a novel replication algorithm that re-
sued by another. Note that for applications that includeolves around two simple parts: (1) the server’s self-



Decreasing Sequence #
o

Algorithm 1 Origin server
State

Increasing Priority
seqNo; // Global sequence number

. =® g
Epgate(ob@m iLow Priority .
0dy, priority, seq #) @ NW Channel Decreasing@ql storage; // Seq number + body of each object
ecreasing Seqy ;

Write(obj, D|Q Inval(obj, seq # time) ®M is nReplicas; // Number of replicas

body, priority @%%’g‘;ll(l’;;ie‘}’[’«" updtChnll]; // Lossy, prior. order, low prior. link
Update(obj, b@@ invDemChnll]; // Lossless, FIFO channels
Local call to write(objID, body, priority, timestamp)
Origin Server Replica seqNot+;
. . - L - . storage.update(objld, body, seqNo);
Fig. 2 OverV|e_vv of replication algorithm. The circled numbers ¢ (i = 0: i < nReplicas; i+t) do
are discussed in the text. invDemChnl[i].send(INV AL, objld, seqNo, timestamp);

i . L i i updtChnlli].insert(UPDATE, objld, body, seqNo, priority);
tuning efforts to send updates in priority order without in-eceive (READ, objlid) from replica

terfering with other network users and (2) each replica’s (body, objSeqNo) = storage.get(objId); ‘

efforts to buffer messages it receives, to apply them in invDemChnllreplica].send(REPLY, objld, body, objSeqNo);
. - dtChnl[replica).cancel (objId);

an order that meets consistency constraints, and to delay"**C"![reptical.cancel(objld);

applying some of these messages to improve availability

and performance. o _
Figure 2 provides a high-level view of the aIgoritthhe” the network between the origin server and a replica

for synchronizing a replica’s data store with the originP"ovides a large amount of spare bandwidth, the prior-
server's. When the origin server writes an object (numily quéue drains quickly and the channel approximates
ber @in the figure), it immediately sends an invalidation@ !0Ssless, FIFO, push-all channel. But, when network
to each replicaz and it enqueues the body of the up-Pandwidth is scarce, only valuable items are sent and the
date in a priority queue for each repli@ In contrast buffering delay allows multiple updates of the same data
with the immediate transmission of invalidations on &€ collapse into a single update and save network band-
normal-priority lossless network connectigneach pri- Width [5]. Note that unlike many traditional prefetching
ority queue drains by sending its highest-priority updat®otocols [20, 27, 28, 46, 55], there is no pre-set threshold
to its replica via a low-priority network channel when thethat determines whether a given object is valuable enough
network path between the origin server and replica hd9 Send; instead, TRIP relies on the low-priority network
spare capacity, protocol to ensure that objects are only sent when the
At the replicaboth invalidation ® and updatepmes-  value of doing SO exceeds the cost [33]. _
sages that arrive are buffered rather than being imme- In order to integrate sequential consistency akd
diately applied to the replica’s local data stage A coherence with self-tuning updates, the origin server sep-
scheduler at each replica applies invalidations in strickrates each replica’s invalidation channel from its update
sequence-number ordeg; delaying the application of channel. When an update occurs, the origin server im-
each successive invalidation until its corresponding upMediately sends the invalidation to each replica, but it
date appears in the update buffer or until its deadline (urRnqueues the update bodies n the per-replica priority
der A-coherence) arrives. Similarly, when the scheduleflueues. Unfortunately, separating these channels pre-
at a replica applies a buffered updateit always applies Vents re_pllcas from depgngimg on message arrival order
the one with the lowest available sequence number a,{grconSIStgncy, so the origin server associates a sequence
it only applies an update if all invalidations with lower humber with each update and each stored object, and it
sequence numbers have already been applied. includes an object’'s sequence number in all invalidation,
The full algorithm must also handle demand reads, netiPdate, and demand-reply messages.
work disconnections, and machine failures. We therefore ) i )
detail the server and replica algorithms in the next twd\lgorithm details.  As the pseudocode in Algorithm 1
subsections. Then Section 3.3 discusses several limitg?0Ws, the origin server maintains a global monotonically

tions of the basic algorithm and possible optimizationdcreasing sequence numbmeqNo local storagewith

available within this framework. the body and sequence number of each object, a set of
o per-replica channelisvDemChnl[]for sending invalida-
3.1 Origin server tions and demand replies, and a set of per-replica chan-

The core of the origin server is a novel and generallynelsupdtChnl[] for pushing updates.
applicable architecture for push-based prefetching where To write an object, an origin server incremesesiNo
each update channel to a replica consists of a prioritypdatesstoragewith seqNoand the object’s new body,
queue of updates that drains via a low-priority networksends invalidations on each replic&'sDemChn| and
connection to a replica. By combining a priority queueendqueues updates on each replicgetChnl
and a low-priority network protocol, the updates’ chan- Each enqueued update includepréority that spec-
nel provides for self-tuning prefetching for each replicaifies the update’s relative ranking to other pending up-



dates. Our interface allows a server to use any algorithid.2 Replica

for choosing the priority of an update, and this paper doeshe core of each replica is a novahedulerthat coor-
not attempt to extend the state of the art in prefetch pretinates the application of invalidations, updates, and de-
diction policies. A number of standard prefetching premand read replies to the replica’s local state. The sched-
diction algorithms exist [20, 27, 28, 46, 55] or the servejjler has two conflicting goals. On one hand, it would like
may make use of application-specific knowledge to prito delay applying invalidations for as long as possible to
oritize an item (e.g., @ news editor may know that thgninimize the amount of invalid data and thereby maxi-
day’s headline article will be widely read before the sysmize local hit rate, maximize availability, and minimize
tem has measured the story’s read frequency). Note thagsponse time. On the other hand, it must enforce sequen-
some implementations may extend this interface to spega| consistency anc\-coherence, so it must enforce two
ify different priorities for propagating a given update toconstraints:
different replicas to, for example, account for differegty A replica must apply all invalidations with sequence
access patterns at different replicas. numbers less thaiV to its storage before it can apply
When the server receives a demased(objld)from an invalidation, update, or demand reply with sequence
a replica, it retrieves from its local store the object's numberN.!

body and per-object sequence number, and it Sendsc9n A replica must apply an invalidation with timestamp
the replica’sinvDemChnla demand reply message. No- 5 its storage no later than+ A — maxSkew.

tice that this reply includes the sequence number stor re, A specifies the maximum staleness allowed be-

with the object when it was last updated, which may bGt’ween when an update is applied at the origin server and

smaller than the current globaéqNo Upon sending a when the update affects subsequent reads neendSkew
demand reply to a client, the origin server also cancelg o
. . X o ounds the clock skew between the origin server and the
any push of the object to that client still pendingup- replica
dtChnl Each scheduler therefore applies invalidations in se-
quence number order and maximizes the amount of valid
o _ data in its local storage by trying to delay applying an
Communication channels. The system design de- invalidation with sequence numbaf until it has an up-
pends on the distinct properties of ileDemChrg and  date with the same sequence number. But, a scheduler is
theupdtChn. forced to apply an invalidation earlier than that in two cir-

EachinvDemChnfor invalidations and demand replies cumstances: (1) the staleness deadline for an invalidation
is a lossless FIFO channel that operates at normal nédXpires or (2) a demand read reply that reflects stdte
work priority. Our protocol uses a persistent message > NN) arrives at the replica, forcing the scheduler to
queue [31] to ensure that this channel is lossless evéfmediately apply pending invalidations with sequence
across crashes and network partitions, which dramatitumbers up td\/ to avoid stalling the demand read.

cally simplifies crash recovery. Algorithm details. The pseudocode in Algorithm 2 de-

EachupdtChnlprovides an abstraction suited for self-scribes the behavior of a replica. Each replica maintains
tuning push-based prefetch by (1) buffering updates in ive main data structures. First, a replica maintains a local
priority queue and (2) sending them across the networtata store that maps each object ID for the shared state to
using a low priority network protocol. Three actions ma-either the tupl€INVALID, seqNojf the local copy of the
nipulate each per-replica priority queue. First,iagert object is in the invalid state or the tup(¢ALID, seqNo,
adds an update with a specified priority. If another upbody)if the local copy of the object is in the valid state.
date to the samebjld occupies the priority queue, the Second, a replica maintaipendinglnval a list of pend-
older update is discarded. An implementation may bountilg invalidation messages that have been received over
the upper size of the priority queue buffer and discardhe network but not yet applied to the local data store;
low priority items to maintain this size bound. Second dhese invalidation messages are sorted by sequence num-
cancel(objld)call removes any pending update tisjld.  ber. Third, a replica maintairgendingUpdatea list of
Third, a worker thread loops, removing the highest priorpending pushed updates that have been received over the
ity update from the queue and then doing a low-prioritynetwork but not yet applied to the local data store; no-
network send of a push-update message containing thiee that although the origin server sorts and sends these
objld, body, and seqNoof the item. The low priority update messages by priority, each replica sorts its list of
network protocol should ensure that low priority traffic pending updates bgequence numberFinally, A spec-
does not delay, inflict losses on, or take bandwidth fronifies the maximum staleness allowed between when an
normal-priority traffic; a number of such protocols have  1ye show that enforcing condition C1 yields sequential consistency
been proposed [7, 8, 45, 54]. in the Appendix.




Algorithm 2 Replica
State

storage; // Validity, sequence number, andbody of each object
pendingInval; // Received but unprocessed invalidation
pendingUpdate; // Received but unprocessed updates

delta; // Max staleness between server and replica

maxSkew; // Max clock skew between server and replica
receive (INVAL, objld, seqNo, timestamp) on invDemChnl

pendingInval.put(objld, seqNo, timestamp);
receive (UPDATE, objld, body, seqNo) on updtChnl
pendingUpdate.put(objld, body, seqNo);

pendingUpdate.head.seqNe< pendinglnval.nextSeqToProcess()
// Scheduler applies an update
(objId, body, seqNo) = pendingUpdate.removeHead();
if (seqNo > storage.getSeqNo(objId))then
storage.update(objld, VALID, seqNo, body);
if (seqNo pendingInval.nextSeqToProcess()) then
pendingInval.doneProcessing(seqNo);
currentTime() < pendinginval.head.timestamp + delta - maxSkew

Scheduler applies an invalidate

applyNexztInval(); // See below
local call to read(objld)
if (VALID == storage.getState(objId)) then
return storage.get Body(objld);
send(READ, objld) to origin server;
storage.waitUntilValid(objId);

return storage.getBody(objId);
receive (REPLY, objld, body, seqNo) on invDemChnl
while (pendingInval.nextSeqToProcess() < seqNo) do
applyNextInval(); // See below

storage.update(objld, VALID, seqNo, body); // Unblock rd

applyNextinval() // Internal private method called from above
(objld, seqNo, timestamp) = pendinglnval.readHead();
if (seqNo > storage.getSeqNo(objId)) //'Atleast once’ chnl
then
storage.update(objld, INVALID, seqNo);

pendingInval.doneProcessing(seqNo);

this case, the procedure informs thendinglnvalqueue
thatseqNohas been processed, which allopendingin-

val to garbage collect the message and to acknowledge
processing of invalidatiosegNato the origin server.

The scheduler removes the invalidation message with
the lowest sequence number frggandinglnvaland ap-
plies it to itsstoragewhen the invalidation’s deadline ar-
rives attimestamp + A — maxzSkew. ThependingIn-
val queue and network channel normally provide FIFO
message delivery, and they guarantee at least once de-
livery of each invalidation when crashes occur. To sup-
port end-to-end at-least-once semantics, before applying
an invalidation, a replica verifies that it is a new one, and
after applying an invalidation a replica capgendingin-
val.doneProcessing(segNa) allow garbage collection
of the message and to acknowlege processing of invali-
dationseqNao the origin server.

Processing requests from clients. When servicing a
client request that reads objegtjId (either as input to

a dynamic content-generation program or as the reply to
a request for a static data file), a replica uses the locally
stored body ifobjld is in the VALID state. But, if the
object is in theINVALID state, the replica sends a de-
mand request message to the server and then waits for
the demand reply message. Note that by sending de-
mand replies and invalidations on the same FIFO network
channel, the origin server guarantees that when a de-
mand reply with sequence numhErarrives at a replica,
the replica has already received all invalidations with se-
quence numbers less thah though some of these inval-
idations may still be buffered ipendinglinval So when

update is applied at the origin server and when the upt demand reply arrives, the replica enforces condition C1

date affects subsequent reads, amkSkewbounds the
clock skew between the origin server and the replica.

Scheduler actions. After INVAL and UPDATE mes-
sages arrive and are enqueued gandinglnval and

by simply applying all invalidation messages whose se-
quence numbers are at most the reply’s sequenceNumber
before applying the reply’s update to the local state and
returning the reply’s value to the read request.

Our protocol implements an additional optimization

pendingUpdatea scheduler applies these buffered mesgnot shown in the pseudo-code for simplicity) by main-
sages in a careful order to meet the two constraints abot@ining an index of pending updates searchable by object

and to minimize the amount of invalid data.

ID. Then, when a read request encounters an invalid ob-

The scheduler removes the update message with tiect, before sending a demand request to the origin server,

lowest sequence number from pendingUpdatesind

the replica checks the pending update list. If a pending

applies it to itsstorageas soon as it knows it has ap- update for the requested object is in this list, the system
plied all invalidations with lower sequence numbers. Apapplies all invalidations whose sequence numbers are no
plying a prefetched update normally entails updating théarger than the pending update’s sequence number, ap-
local sequence number and body for the object, but if thglies that pending update, and returns the value to the
locally stored sequence number already exceeds the ujgad request.

date’s sequence number, the replica must discard the up-A remaining design choice is how to handle a second
date because a newer demand reply or invalidation hasad requests, for objecto, that arrives when a first
already been processed. Also note that in the case wherad request; for objecto; is blocked and waiting to

updateN arrives before invalidatiotV is applied, update
N can be applied as soon as invalidatiin- 1 has been

receive a demand reply from the origin server. Allow-
ing ro to proceed and potentially access a cached copy

applied and then invalidatioN need never be applied. In of o, risks violating sequential consistency [1] if pro-



gram order specifies that happens before;. On the and increasing staleness during disconnections, some ser-
other handy; andr, are issued by independent threadsvices may choose the latter. Such services may configure
of computation that have not so synchronized, then th€RIP to increaseé\ when it detects a disconnection from
threads are logically concurrent and it would be legal tahe server. This increase allows the system to further de-
allow readr; to “pass” read-; in the cache [25, 37]. lay applying pending invalidations and thus maximize the

TRIP therefore provides two optionsConservative amount of valid local data and maximize the amount of
mode preserves transparancy but requires a read issuite the replica can operate before suffering a miss. For
while an earlier read is blocking on a miss to blodig- example, if a replica set& = oo during disconnections,
gressivemode compromises transparency because it ré-will apply no invalidations while disconnected, but it
quires knowledge of application internals, but it allows amay serve arbitrarily stale data.

cached read to pass a pending read miss. Our experimegtss Limitations and optimizations

examine this trade-off in more detail. R
Our current protocol is limited in at least two ways. These
Operating during disconnection. When a replica be- limitations could be addressed with future optimizations.

comes disconnected from the server due to a network par-First, as described in Section 2.1 our current proto-
tition or server failure, the replica attempts to service rec0l can allow a client that switches between replicas to
quests from its local store. If the local copies of mosfPbserve violations of sequential consistency. Therefore,
objects are valid, a replica may be able to mask the gidor best results the redirection algorithm should direct a
connection for an extended period. Note that to enforcgli€nt to the same replica for long periods of time.
A-coherence, a replica must block all reads if it has not We speculate that a system could adapt Bayou's ses-
communicated with the origin server far seconds. We SiOn guarantees protocol [51] to maintain sequential con-
use a heartbeat protocol to ensure liveness when the n&iStency semantics when a client switches replicas. In
work is available. But, if a read miss occurs during garticular, a replica’s web server could insert an HTTP
disconnection, it logically blocks until the connection isCOOki€ reflecting the highest sequence number observed
reestablished and the server satisfies the demand missPY @ clientin responses to a client and inspect this cookie
In a web service environment, blocking a client in-O" all requests from a cllent.. If the sequence number
definitely is an undesirable behavior. Therefore, TRIF" @ request exceeds the replica’s sequence number, the
provides three ways for services to give up somé&eplica web server signals the replication infrastructure to

transparancy in order to gain control of recovery in th’0cess pending invalidations to bring the sequence num-

case where a replica blocks because it is disconnect®§" 10 @ point where the request can be processed. This
from the origin server. optimization compromises transparency, but we specu-

First, after a time-out a read can return an error cod@te that the necessary modifications to the server would

to the calling edge server program. Although a Correcgenerally not be 100 invasive.

. Second, our protocol sends each invalidation to all
program should always check for error codes on file or P

database reads, in practice this interface is not fully tran£(-apllcas even if a replica does not currently have a valid

parent because (a) many applications fail to check foroPY of the object being invalidated. We take this ap-

error codes on 10 operations and (b) the actions an a;;rj’-:](\)/?rd;rfqornf'”lﬂ“?tz z;nd aecausge rﬁ?/virc)jrtlrznarr:g t?r?et
plication should take on a read error may differ in thisfe ) in? rO\?e dsava?labifil eaf] derae?s oisivenessaan dsw%:rgee
distributed case (where, say, redirecting the request to gr imp ty P

different replica may work) versus the centralized casémeggfzzt:reothrer?;?gio?sbfo t? d ng:'gt?énng:giocﬁgfjtg_
(where probabily little can be done.) - Jurp u X

Second. rather than require apolications to deal Witlqitional caching environments where replicas maintain
! q PP small subsets of data by adding callback state [30]. Given

time-outs internally, TRIP can be configured to take two :

) : ) ) ur target environment, we have no current plans to pur-

actions when a demand read times out: (1) signal the redﬂ)— . Lo

X . sue this optimization.

rection layer [13, 32, 62] to stop sending requests to this

replica and (2) signal the local web server infrastructurdt ~ Prototype

to close all existing connections to all clients and to rewe have developed a prototype that implements the al-

spond to subsequent client requests with an HTTP redgorithm described in Section 3. The implementation in-

rect [22] to a different replica. The approach then reliegludes the features described above except that (1) it does

on client-initiated request retransmission for end-to-en@ot implement theggressiveptimization (Section 3.2),

recovery [10]. This option provides less precise controso it is alwaysconservativend blocks reads to the cache

to the application, but it also requires less invasive modiwhen a read miss is outstanding and (2) of the three inter-

fications of the service-specific code. faces for handling read misses during disconnection de-
Third, given the choice between reducing availabilityscribed in Section 3.2, it only implements read time-outs;



it does not provide the “close all connections and changgueued in priority rather than FIFO order at the server.
redirection” option or the “increas&” option described A key optimization in our implementation of the update
above. Deployment does depend on two additional sulgueue is to enqueue an updated file's name rather than the
systems that are outside the scope of this project: a protapdated file’s body. As described in Section 3, our update
col for limiting the clock skew between each replica andprotocol only ever sends the most recent version of a file,
the origin server [42] and a policy for prioritizing which so there is no need for each queue to maintain its own
documents to push to which replicas [28, 55], which maygopies of files. A potential future optimization would be
in turn, require some facility for gathering read frequencyto send diffs rather than the entire new file [43].
information from replicas [48, 59]. To provide a low-priority network channel for up-
Our prototype is implemented in Java, C, and C++ omlates that does not interfere with other network traffic,
a Linux platform, but we expect the server code to beve reimplement TCP-Nice [54] as a user-level proto-
readily portable to any standard operating system and tloel that makes use of libpcap for packet monitoring to
replica code to be portable to any system that supportaeasure round-trip times. This implementation retains
mounting an NFS server. TCP-Nice’s non-interference properties, but because of
The rest of this section discusses internal details arithe additional measurement overheads at user-level, the
design decisions in the server and replica implementamplementation may be too conservative and may there-
tions. fore realize somewhat lower network utilization than an
in-kernel implementation.

4.1 Server

The server is a user-level daemon that provides an inteéll—'2 Replica
face for local write insertions and remote reads. It use®ur replica exports the system’s shared state via a local
the local file system for file storage. Note that ratheuser-level NFS file server [40]. The replica mounts this
than store per-file sequence numbers, which the protdecal file server as if it were a normal NFS server, allow-
col sends with demand read replies, our prototype onling local processes to access shared data as if they were
maintains a global sequence number. The algorithm otored in a standard file system. The replica’s in-kernel
erates as described in Section 3 except the server includdgS client sends all requests to the local user-level NFS
the current global sequence number when sending a dgerver, which implements our replication algorithm.
mand reply rather than the sequence number of the ob- Our implementation uses the local file system for stor-
ject’s most recent update. This simplification can forceage. Each shared file is represented by two local files: a
a replica to process more invalidation messages befosfiadow fildor metadata (whether the file is valid and the
processing a demand reply; the resulting protocol thugersion number of the local copy) andiata filefor the
continues to provide sequential consistency, but its pebody of valid files.
formance and availability may be reduced compared to .
the full protocol. 4.3 Limitations to transparency

The server uses a custom persistent messa@aur goal is to provide transparent replication to existing
queue [31] for sending updates and invalidations t@pplications, but the system does expose a few aspects
each replica. The implementation buffers invalidatiorof replication. Some of these issues are implementation
messages on the server’s disk, manages TCP connectiai®ices and some are more fundamental.
between the server and replicas, and buffers pending In our current implementation, an application at the
messages in the replica’s memory sorted by sequeneerver inserts updates into the system using a special
number. The implementation ensures end-to-endyrite call that includes the object ID, the updated data,
at-least-once message delivery by allowing a replica tand the replication priority. We provide this interface to
wait to process a pending message until the messagetow applications to control the replication policy. An
deadline, read the message and apply it to its locallternative would be to intercept write calls at the origin
persistent state, and finally explicitly acknowledgeserver as we now intercept read calls at the replicas. In
message processing to the server's message layer.  such an implementation, the system would have to imple-

The use of a persistent message queue for deliveringent a default policy for prioritizing updates by, for ex-
invalidation messages simplifies our implementation bymple, tracking the write rate of each object at the server,
avoiding the need for a separate resynchronization prottracking the read rate of each object at each client, propa-
col to handle failures [4]. gating read frequency information to the server, and esti-

Each update channel between the server and a repliozating the priorities of an update as the read rate divided
is similar to a persistent message queue except (a) thy the write rate and scaled by the object size [55].
server buffer is in memory because it is permissible to A more fundamental issue is that the correct config-
lose an update if the server crashes and (b) messages aration of a replicated service may depend on the inter-



nal structure of a service. For example, we currently sedral geographically distributed locations. The logs con-
a singleA value to limit the staleness of a replica, buttain a total of 22.8 million client requests and 281 thou-
it might be desirable to allow different updates to specsand writes by the origin server, and they span one day.
ify different A values. Similarly, our current interface  In order to simplify simulations we ignore certain en-
applies each update individually, but some applicationgies in our trace file. In particular, we remove from the
may wish group a set of updates into a single atomicallytrace files (1) all requests that do not contain 200 or 304
applied group. Finally, although we focus on disseminaas server return codes, (36.7%), (2) all dynamic requests,
tion services, it may be desirable restructure a more con(i3.9%), (3) entries that appear out of order in the trace
plex services into different pieces with different repli-files (0.58%), and (4) requests that our parser fails to
cation strategies for each piece. Some services, for iparse (0.17%). We eliminate those requests with return
stance, may not replicate some critical pieces for securityodes other than 304 and 200 because we assume that the
when replicas are less trusted than the origin server. Qsxpensive operations at a replica are those that potentially
some services may wish to make use of different consigead to communication with the origin server. Although
tency protocols for different subsets of data [26, 53].  requests that result in error codes of 302 (server redirec-
tion) are valid requests, we remove them from our traces
5 Evaluation because those requests reappear in our trace files as re-

We evaluate our traces using two approaches: by emploflu€sts with 304 or 200 as return codes. We remove dy-
ing a trace-driven simulator and evaluating a prototype. "amic requests because we do not have data of which un-
derlying objects they access. We remove out-of-order re-

5.1 Simulation methodology quests because they pose a problem for the event queue in

Our trace-driven simulator models an origin server an@ur trace-driven simulator. Finally, we remove requests
twenty replicas and assumes that the primary bottlenedRat have valid return codes but that our trace parser fails
in the system is the network bandwidth from the originto parse because it is conservative. Since the number of
server. To simplify analysis and comparisons among aleduests in the traces that are either unparseable or appear
gorithms, we assume that the bandwidth available to theut-of-order is small, we do not believe that removing
system does not change throughout a simulation. We al$gem significantly influences our results.
assume that bandwidth consumed by control information . ,
(invalidate messages, message queue acknowledgmerts.-2 Prediction policy
meta data, etc.) is insignificant compared to the banddur interface allows a server to use any algorithm to
width consumed transferring objects; we confirm this aschoose the priority of an update, and this paper does not
sumption using our prototype—control messages accoufttempt to extend the state of the art in prefetch predic-
for less than 1% of the data transferred by the systention. A number of standard prefetching prediction al-
Transferring an object over the network thus consumegorithms exist [20, 27, 28, 46, 55] or the server may
a link for objectsize/bandwidth seconds, and the de- make use of application-specific knowledge to prioritize
lay from when a message is sent to when it is received &n item. Our simple default heuristic for estimating the
given bynwLatency + messageSize/bandwidth. By — benefit/cost ratio of one update compared to another is
default we simulate a round-trip time (or 2wvLatency to first approximate the probability that the new version
of 200ms +/- 90%between the origin server and a replic&f an object will be read before it is written as the ob-
We compare TRIP'$IFO-Delayed-Invalidation/Pri- served read frequency of the object divided by the ob-
ority-Delayed-Updatealgorithm with two algorithms: served write frequency of the object and then to set the
Demand Onlywhich delivers invalidates eagerly in FIFO relative priority of the object to be this probability divided
order but does no prefetching, aRdsh Allwhich eagerly by the object’s size [55]. This algorithm appears to be a
pushes all updates to all replicas in FIFO order. We inireasonable heuristic for server push-update protocols: it
tially assume that the system requires (1) sequential cofavors read-often objects over write-often objects and it
sistency, which all of these algorithms provide, and (2) davors small objects over large ones.
A-coherence guarantee &f = 60 seconds, which De- . .
mand Only naturally meets, TRIP consciously enforces?.2 ~ Simulation results

and Push All may or may not meet depending on availour primary simulation results are that (1) self-tuning
able bandwidth. We will later modify these assumptionsprefetching can dramatically improve the response time
51.1 Workload of serving requests at replicas compared to demand-based

We evaluate the algorithms using a trace-based workloef'érateg'es’ (2) although a Push All strategy enjoys excel-

of the Web site of a major sporting evenhosted at sev- ent.res?onse times by seving al requests .dm'ectly fro'm
replicas’ local storage, this strategy is fragile in that if

2The 2000 Summer Olympic games update rates exceed available bandwidth for an extended




! ‘ ‘ ‘ Derand Oy —— figure includes non-stale requests in the calculations. We
pusnal 7k omit due to space constraints a second graph that shows
the (higher) average staleness observed by the subset of
reads under each algorithm that receive stale data.

The data indicate that the simple Push All algorithm
provides much better response time than the Demand
Only strategy, speeding up responses by a factor of at

least four for all bandwidth budgets examined. However,

g

Response time (s)
x

‘ this comparison is a bit misleading as Figure 4 indicates:
s for bandwidth budgets below 2.1MB/s, Push All fails to
deliver all of the updates and serves data that becomes in-
001 - . . . . o creasingly stale as the simulation progresses. If the sys-
Avalable banduidth (MB/s) tem enforcesA-coherence withA = 60 seconds, Push

All replicas would be forced to either violate this fresh-
o ness guarantee or become unavailable when the available
Pt T ] bandwidth falls below about 5MB/s.
The TRIP algorithm has significant advantages over
both Push All and Demand Only. When available band-
o 1 width exceeds 5MB/s, TRIP matches Push All's excel-
o . ] lent response time and provides 4x speedups compared
o e to the Demand Only system. At lower bandwidths, this
algorithm meets the timeliness bound of 60 seconds, but
it still significantly outperforms the Demand Only strat-

Fig. 3: The effect of bandwidth availability on response times
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%
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0.01

o001 | 1 egy. For example, when 2MB/s of bandwidth is available,

o000t [ \\K 1 TRIP provides a speedup of 3.5 compared to Demand

1005 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ Only, and Push All provides only an additional speedup
ST e of 1.2 despite the latter’s liberties with the system’s fresh-

ness requirements. Even at low bandwidths, TRIP gets
Fig. 4: Average staleness of data served by replicas.  significantly better response times than the Demand Only
period of time, the service must either violate is algorithm becagse (2) the selfftunlng r_1etwork schedu_ler

. . allows prefetching to occur during lulls in demand traffic
consistency guarantee or become unavailable, (3) Wheer\1/en for a heavily loaded system [33] and (b) the prior-
prefetching is used, delaying application of invalidationl ueue at the o):i in serve>r/ ensures that the refe?chin
messages by up to 60 seconds provides a modest adt él(tq occurs is of h? h benefit/cost items Forpexam Ieg
tional improvement in response times, and (4) by maxi- 19 ; . mp'e,

- . . . at 500KB/s of available bandwidth, which causes signif-
mizing the amount of valid data at replicas, prefetchlnq .

. - . . . cant congestion for even the Demand Only case, TRIP
can improve availability by masking disconnections behas more than a 3x speedup over Demand Onl
tween a replica and the origin server. P P Y-

Push All and Demand Only represent extreme cases

5.2.1 Response times and staleness of static-threshold-based prefetching with thresholds of

In Figure 3 we quantify the effects of different replicationO (push an update regardless of its likelihood of being
strategies on client-perceived response times as we vatgcessed) and 1 (only push an update if it is certain to
available bandwidth. We assume that client requests fé¢ accessed), respectively. Intermediate static thresh-
valid objects at the replica are satisfied in 20ms, where#¥ds would land between these cases—increasing the
requests for invalidated objects are forwarded from théhreshold above 0 would reduce the system’s best-case
replica to the origin over a network with an averageP€rformance by increasing the high-bandwidth response
round-trip latency of 200ms as noted above. To put thedéne plateau towards the Demand Only line, but higher
results in perspective, Figure 4 plots the averagge- Prefetch thresholds would also shift to the left the over-
nessobserved by a request. We define staleness as fdpad point where staleness guarantees are violated.

lows. If a replica serves versidnof an object after the o

origin site has already (in simulated time) written ver->-2-2 Variations of TRIP

sionj (5 > k), we define the staleness of a request td-igure 5 shows the behavior of response times under
be the difference between when the request arrived at thariations of TRIP. We modify the TRIP algorithm in
replica and when versioh + 1 was written. To facili- two ways. We first vary the coherence parameter
tate comparison across algorithms, this average staleness response times by evaluating setting= 0, which
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TRIP-Aggressive ---x- ment and measure the length of time before any replica
| receives a request that it cannot mask due to disconnec-
tion. We refer to this duration as tmeask duration We
assume that systems enforfiecoherence withA = 60
seconds before the disconnection but that disconnected
replicas maximize their mask duration by stopping their
processing of invalidations and updates during discon-
nections and extendirdy as long as they can continue to
service requests. Thus, during periods of disconnectivity
our system chooses to provide stale data rather than fail-
0 : : : : ing to satisfy client requests. Note that given these data,

Avallabe bandwich (VB the impact of enforcing shorteks during disconnections
can be estimated as the minimum of the time reported
here and theé\ limit enforced.

I Figure 6 shows how the average mask duration varies
e T with bandwidth for the TRIP, TRIP-aggressive, and De-
ol e 1 mand Only algorithms. Because mask duration is highly
/ sensitive to the timing of a failure, different trials show
high variability. We quantify this variability in more de-

/ tail in an extended technical report [44].

/ ] Note that the traditional Demand Only algorithm per-

I 1 forms poorly. In Figure 6, the line closely follow = 0,

] indicating virtually no ability to mask failures. This poor

o 1 behavior arises because the first request for an object af-
‘ ‘ ‘ ‘ ter that object is modified causes a disconnected replica

° ! ? i (B ! ° to experience an unmaskable failure. On the other hand,

the Push All algorithm can mask all failures due to the
Fig. 6: Dependence of mask duration on bandwidth. ~ fact that at any point in time, the entries in a replica’s

forces a replica’s scheduler to apply all invalidations im-CaChe form a sequentially consistent (though potentially
tale) view of data.

mediately. We then investigate the potential benefit of h orith ; h 4onlval
the TRIP-aggressiveptimization, which sacrifices some ' "€ TRIP algorithm outperforms the Demand Only al-

transparency by assuming that when the application igorlthrlp d";i the gvr\?ph by TnaXIE)mZ%n'?'RtTFe’ am.ou.nt of lo-
sues concurrent read requests, the requests are Iogicaﬁ@ valid data. e_notg that bot variations pro-
[de average masking times of thousands of seconds for

independent and which allows reads of cached objects dwidth of /s and ab dth i q
pass reads that have blocked (as described in Section 3. ?}n width of 1.5MB/s and ahove and that providing ad-

Reducing average staleness by reduabelow 60s ional bandwidth allows these systems to prefetch more

inflicts a modest cost on response time, and this cost dgf"ta apd hen.ce mask a failure for a longer durauon_. As
clines as available bandwidth increases. The benefit of dF—Oted n Seqtlon 3, systems may choose to relax t.“e'r
lowing some applications to exploit independence acros%oherence time boun_d to some longkt \{alu_e_ during
read requests can be substantial. For example, for a s%e_rlods of disconnection to improve availability. These
tem with 500KB/s of available bandwidth, this optimiza- ata SUQ,QGSt that systems may then be able to complgtely
tion improves response time by a factor of 2.5. But, thié“aSk fa|lure§ that last tr)e_ maximum maskable duration
benefit falls as available bandwidth increases, suggesth’?@fen for relatively largel” limits.

that this optimization may become less valuable as nej-

work costs fall relative to the cost of requiring program-l‘s"4 Prototype measurements

mers to carefully analyze applications to rule out the posiVe evaluate our prototype on the Emulab testbed [57].

ot ‘ ‘ ‘ Er— unreachable to replicas. We simulate a failure at that mo-
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Fig. 5: Latencies yielded by variations of TRIP
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sibility of unexpected interactions [29]. We configure the network to consist of an origin server
L and 4 replicas that receive 5MBps of bandwidth and
5.3 Availability 200ms round-trip times. We mount the local user-level

We measure the replication policies’ effect on availabilfile server using NFS with attribute caching disabled. For
ity as follows. For each of 50 runs of our simulator forsimplicity, we do not monitor object replication priori-

a given set of parameters, we randomly choose a poities in real time but instead pre-calculate them using each
in time when we assume that the origin server becomesbject’s average read rate, write rate, and size [55].
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w0 ‘ ‘ ‘ ‘ TCP-Nice [54] to avoid network interference. The rest
of NPS’s design is quite different than TRIP’s: NPS fo-
cuses on supporting prefetching of soon-to-be-accessed
T ] objects by client browsers rather than pushing of updates
by origin servers to replicas, and it does not consider the
problem of maintaining consistency for data that may be
S P - R I ] prefetched long before being used.
‘ Most proposed Internet-scale data replication systems
focus on ensuring various levels of coherence or staleness
or both [16, 34, 38, 41, 58, 60, 61], but few provide ex-
plicit consistency guarantees. Unfortunately, Frigo notes
that even strong coherence is considerably weaker than
) . . . . i sequential consistency [24]. Bradley and Bestavros [9]
Fig. 7. Replica-perceived response times y'elded. by th%wgue that increasingly complex Internet-scale services
Demand-fetch-only, FIFO-push-all, and the TRIP algorithms ™. ; .
will demand sequential consistency and propose a vector-

Figure 7 shows the response times as seen at eachdifck-based algorithm for achieving it. They focus on
the 4 replicas. We collect these data by replaying at thgeveloping a backwards-compatible browser-server pro-
origin and at each replica the first hour of our update tracgcol and do not explore prefetching. The IBM Sporting
and web traces in real time. The response time for a givesnd Event CDN system uses a push-all replication strat-
request is calculated as the difference between when tlagy and enforces delta coherence via invalidations [14].
request arrives at a replica and when its reply is genepkamai’'s EdgeSuite [2] primarily relies on demand reads
ated. Note that these response times do not represeiiid enforces delta coherence via polling with stronger
the end-to-end delay experienced by clients because thegnsistency available via object renaming. Burns et
do not include the network delays between clients angl. [11] discuss gublish consistencynodel of consis-
replicas. However, one can easily compute total end-tqency that is useful for web workloads and show that con-
end delays by adding client-replica network delays to thisistency implemented by file systems has inefficiencies
data. that prevents easily scaling them to many clients. Most

As we see in the graph, the Push All algorithm yieldsof these systems use demand reads, but several strategies
the best response time. For example, it outperforms thfer mixing updates and invalidates have been explored for
Demand Only algorithm by a factor of 2 for 3 of the multicast networks [21, 49, 38]. These multicast-based
4 replicas. We note that at 5SMBps bandwidth availproposals all use static thresholds to control prefetching
able to the system, TRIP incurs only minor increase irand provide best-effort consistency, coherence, and time-
response times over Push All: 7.5%, 6.2%, 1.4%, anfiness semantics by sending and applying all messages
3.4% overhead for each replica respectively. We also notgagerly. A potential avenue for future work is to develop
that by delaying the application of invalidate messages way for TRIP to make use of multicast or hierarchy to
TRIP with A = 60s reduces response times compared tgcale to larger numbers of replicas.

35

25 |

Mean response time (ms)

Demand-only
Demand-only

TRIP-Eager

Demand-only

TRIP-Eager

Demand-only
TRIP
TRIP

Replica 3 Replica 4

A = 0by 4.4%, 8.7%, 5.0%, and 3.0% respectively. In replicated databases, several systems have explored
ways to allow different updates to specify different con-
6 Related work sistency requirements. Lazy Replication [35] allows an

In contrast with TRIP, most existing and proposed repliupdate to enforce causal, sequential, or linearizable con-
cation systems provide neither self-tuning replication nogistency. Bayou [47] maintains causal consistency at all
sequential consistency with tunable staleness. times and it asynchronously reorders operations to even-
In particular, most replication systems use static replitually reach a global sequentially-consistent ordering of
cation policies such as always-conservative demandpdates that may differ considerably from the causal or-
fetching [2, 15], always-aggressive push-all [13, 47], oder seen when a node first applies a given update. These
hand-tuned threshold-based prefetching [20, 27, 28, 463ystems both focus on multi-writer environments and
Davison et al. [19] propose using a connectionless trangventually propagate all updates to all replicas. Yu and
port protocol and using low priority datagrams (the in-Vahdat [63] show that in such systems minimizing the
frastructure for which is assumed) to reduce network intime between when an update occurs and when it prop-
terference. Crovella et al. [17] show that a window-baseé@gates maximizes system availability for any given con-
rate controlling strategy for sending prefetched data leadistency constraint. Our protocol demonstrates how to
to less bursty traffic and smaller network queue length€xploit this observation for dissemination workloads by
In earlier work, we describe a threshold-free prefetchintegrating consistency and self-tuning prefetch.
ing system called NPS [33] that like TRIP makes use of Several studies have examined ways to cache pages
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that are dynamically generated based on some underly{2] Turbo-charging dynamic web data with akamai edgesuite. Aka-

ing data [50]. Challenger et al.'s [13, 14] Data Update

Propagation allows replicas to cache pages or page frad§
ments that are dynamically generated at an origin server
by tracking dependencies between pages and the under-
lying data used to generate them and by sending invali{4l
dations or updates to cached pages when the underlying]

data change.

Our argument for sequential consistency is similar in
spirit to Hill's position that multiprocessors should sup-
port simple memory consistency models like sequentia
consistency rather than weaker models [29]. Hill argueg7)
that speculative execution reduces the performance ben-
efit that weaker models provide to the point that their ad-18]
ditional complexity is not worth it. We similarly argue 9]
that for dissemination workloads, as technology trends
reduce the cost of bandwidth, prefetching can reduce tH&0]
cost of sequential consistency so that little additional be n

efitis gained by using a weaker model and exposing m
complexity to the programmer.

7 Conclusion

This paper explores integrating self-tuning updates an[éS]
sequential consistency to enable transparent replication
of large-scale information dissemination services. Ouli4]
novel architecture succeeds in this goal by (1) pr°[15]
viding self-tuning push-based prefetch from the server
and (2) buffering and carefully scheduling the applicaf16]
tion of invalidations and updates at replicas to maxi-
mize the amount of valid data—and therefore maximiz
the hit rate, minimize the response time, and maximize
availability—at a replica. Our analysis of simulations[18]
and our evaluation of a prototype implementation support
the hypothesis that it is feasible to provide transparer{%g]
replication for information dissemination applications by

carefully integrating consistency and prefetching.
A limitation of this work is its focus on information

dissemination applications. This class of applications igl]
important, but in the future we hope to apply our protocol
as one part of a more general system where one subseti¢l
the data is read-only at the replicas, where another sub
is read/write at the replicas, and where different subsets

use different consistency algorithms [26, 53].
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