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Abstract: This paper presents PADRE, a policy archi-
tecture that qualitatively simplifies the development of
data replication systems. PADRE achieves this by em-
bodying the right abstractions for replication in large-
scale systems. In particular, PADRE cleanly separates
the problem of building a replication system into the sub-
problems of specifying safety policy and specifying live-
ness policy and identifies a surprisingly small set of prim-
itives that are easy to use and sufficient to specify sophis-
ticated safety constraints and liveness protocols. As a
result, building a replication system is reduced to pick-
ing a consistency library and then writing a few rules in a
declarative language to set up a communication topology.
We demonstrate the flexibility and simplicity of PADRE
by constructing 6 substantial and diverse systems using
just a few dozen lines of system-specific policy code
each. We demonstrate the agility of systems built on
PADRE by adding new features to four systems yield
significant performance improvements; each addition re-
quired fewer than 10 additional lines of code and took
less than a day.

1 Introduction

This paper presents PADRE—a policy architecture that
qualitatively simplifies the development of data repli-
cation systems by providing a conceptual framework
that divides system design into two aspects: safety pol-
icy, embodying consistency and durability requirements,
and liveness policy, describing how to route information
among nodes.

Although it is common to analyze a protocol’s safety
and liveness properties separately, taking this idea a
step further and separately specifying safety and live-
ness to implement replication systems is the foundation
of PADRE’s effectiveness in simplifying development.
Given this clean division, a surprisingly small set of sim-
ple policy primitives is sufficient to implement sophisti-
cated replication protocols.

e For safety, the key observation is that consistency
and durability invariants can by ensured by block-
ing requests until they will not violate the invariants.
PADRE therefore requires policies to specify predi-
cates that must be satisfied before a read or update
completes. For convenience, PADRE provides 5 stan-
dard predicates sufficient to specify most consistency
semantics including best effort consistency, PRAM

consistency, causal consistency, sequential consis-
tency, delta coherence, and linearizability [30].

e For liveness, the key insight is that the policy choices
that distinguish replication systems from each other
can largely be regarded as routing decisions: Where
should a node go to satisfy a read miss? Where should
a node send updates it receives? Where should a node
send invalidations when it learns of a new version of
an object? PADRE therefore provides a routing policy
engine that executes policy-specific declarative routing
rules [15]. PADRE exposes a small number of care-
fully defined policy primitives, only 23 actions and 12
events, from which a broad range of replication sys-
tems can be built.

Even if an architecture is conceptually appealing, to
be useful it must help system builders. We believe our
experience is compelling: using PADRE a small team
was able to quickly construct 6 systems representing di-
verse and significant research work and then extend 4 of
them with significant new features. We do not think this
feat would have been possible without PADRE.

More specifically, PADRE exhibits four properties vi-
tal for a replication policy architecture: (1) it is flexible
enough to support systems that span the bulk of the de-
sign space, (2) it is easy to use and significantly reduces
development time, (3) it facilitates innovation and evolu-
tion by making it straightforward to implement new sys-
tems or improve existing ones, and (4) it has an imple-
mentation with reasonable performance.

PADRE is flexible. We built 6 systems inspired by
systems in the literature including two client-server sys-
tems modeled on Coda [10] and TRIP [18], two server
replication systems modeled on Bayou [20] and Chain
Replication [29], and two object replication systems
modeled on Pangaea [22] and TierStore [5].

PADRE greatly simplifies system building. For ex-
ample, it took 3 graduate students working part time less
than 2 months to build our chosen systems. Each system
only required between 22 and 164 lines of system-specif-
ic policy code.

PADRE facilitates the evolution of existing systems
and the development of new ones. For example, we add
cooperative caching to P-Coda so that a clique of devices
can share data even when disconnected from the server;
we add support for small devices to P-Bayou so that a
limited-storage device can participate in Bayou replica-



tion without storing all of the system’s data; we add co-
operative caching to P-TierStore so that once one user
in a developing region downloads data across an expen-
sive modem link, nearby users can retrieve that data using
their local wireless network; and we improved scalability
of P-TRIP by changing the update propagation strategy
from flat to hierarchical. Each of these features yields
significant performance advantages—an order or mag-
nitude in some cases—yet each enhancement requires
fewer than 10 lines of additional system-specific policy
code.

We find that the systems constructed with PADRE
provide reasonable preformance for prototyping and
moderately demanding environments. Most overheads
can be attributed to inefficiencies in the current declar-
ative language implementation rather than being funda-
mental to the architecture. However, the network over-
heads of systems built with PADRE come close to that of
ideal hand-crafted implementations letting us conclude
that PADRE captures the right abstractions for building
replication systems.

2 PADRE Design

Replication systems cover a large design space. Some
guarantee strong consistency while others sacrifice con-
sistency for higher availability; some invalidate stale ob-
jects, while others push updates; some cache objects on
demand, while others replicate all data to all nodes; and
SO on.

PADRE aims to be a general policy architecture for
specifying large-scale replication systems.! PADRE di-
vides the problem of specifying a replication system into
two smaller problems—specifying safety policy and live-
ness policy. Surprisingly, given this formulation, a small
set of carefully-defined policy primitives are sufficient to
construct an extensive range of systems. These primi-
tives are naturally derived from first principles, and as
shown in Section 6, the predicates can be implemented
with reasonable cost.

For safety, the key observation of PADRE is that a
replication system’s consistency and durability invari-
ants can be ensured by blocking requests until they may
proceed without violating the invariants. Therefore, as
Fig. 1 illustrates, PADRE provides a read/write inter-
cepting layer and a update intercepting layer that can
block a local read, local write, or update received from
the network until a policy-supplied predicate is satisfied.
For example, for both consistency and durability’s sake, a
client-server system policy’s predicate might specify that
a write does not complete until its update is stored at the
server.

'We informally define a large-scale replication system as one in
which nodes can be partitioned from one another, and PADRE focuses
on providing a framework for policies that must manage availability v.
consistency v. resource consumption v. performance trade-offs in such
environments.
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Fig. 1: Overview of PADRE.

Similarly, for liveness, the key insight is that the
policy choices that distinguish replication systems can
largely be regarded as routing decisions: Where should a
node go to satisfy a read miss? Where should a node send
updates it receives? Where should a node send invalida-
tions when it learns of a new version of an object? A live-
ness policy simply supplies a set of rules to ensure prop-
agation of the data and metadata needed for liveness—
including not just eventual progress but also good perfor-
mance and high availability. PADRE therefore provides
a routing policy engine that executes policy-specific rules
that are triggered by a set of 23 PADRE-specified events,
that invoke one of 12 PADRE-specified actions, and that
can store and later retrieve persistent events that allow
declarative routing policy rules to operate on persistent
replication system metadata.

As Fig. 1 illustrates, PADRE relies on a set of un-
derlying mechanisms to store objects locally, receive and
transmit updates, and maintain bookkeeping state to track
the consistency of the local state with respect to updates
by other nodes. We precisely define PADRE’s require-
ments on the underlying mechanisms in Sections 2.1 and
2.2 where we define the primitives that PADRE must ex-
pose. As discussed in Section 3, our prototype system
makes use of PRACTI [1] to provide suitable mecha-
nisms.

2.1 Safety Policy

Every replication system guarantees some level of con-
sistency and durability. Consistency and durability are
cast as safety policy because each defines the circum-
stances under which it is safe to process a request or
to return a response. In particular, enforcing consis-
tency semantics generally requires blocking reads until
a sufficient set of updates are reflected in the locally ac-
cessible state or blocking writes until the resulting up-
dates have made it to some or all of the system’s nodes,
or both [12,30]. Similarly, durability policies often re-
quire writes to propagate to some subset of nodes (e.g.,



a central server [8], a quorum [28], or an object’s “gold”
nodes [22]) before the write is considered complete or
before the updates are read by another node.

Intercepting layers. As Fig. 1 indicates, PADRE de-
fines a read/write intercepting layer that lies between the
application’s read/write interface and the interface pro-
vided by the underlying mechanisms. Similarly, it de-
fines a update intercepting layer that intercepts updates
received from remote nodes before they are applied to
the underlying local state.

The intercepting layers define a total of 5 points for
which a policy can supply a predicate and a timeout value
that blocks a request until the predicate is satisfied or the
timeout is reached. ReadNowBlock blocks a read until it
will return data from a moment that satisfies the predicate
and WriteBeforeBlock blocks a write before it accesses
the underlying local store. ReadEndBlock and WriteEnd-
Block block read and write requests respectively after
they have accessed the local store but before they return.
ApplyUpdateBlock blocks an update received from the
network before it is applied to the local store.

Safety policy module. The safety policy of a specific
replication system defines the predicates for each of the 5
points to capture the safety conditions that must be satis-
fied before a request can continue. If no predicate is sup-
plied, then requests go straight through without blocking.

A replication system’s safety policy is implemented as
a safety policy module that is installed between PADRE’s
intercepting layer and the application read/write inter-
face. The module first installs its desired ApplyUp-
dateBlock predicate, and it then transforms incoming
read/write requests by adding predicates before issuing
them to the underlying system via PADRE’s intercepting
layer.

Note that some consistency and durability policies
such as AFS’s open/close consistency [8] operate on
groups or sessions of operations rather than individual
reads and writes. In such cases, a replication system’s
safety policy module buffers writes and/or implements a
read cache. Also, some safety policies require a set of up-
dates to be applied atomically, so PADRE’s read/write in-
tercepting layer provides a means to issue atomic multi-
object writes. To use this facility, a replication system’s
safety policy module adds a transaction ID to writes and
issues a commit directive at appropriate times.

Standard predicates and libraries. Specifying con-
sistency semantics be tricky. In order to make things eas-
ier for policy designers, PADRE defines a set of built-in
predicates, listed in Fig. 2, which are sufficient to spec-
ify any order-error or staleness constraint in the TACT
model [30]. Yu and Vahdat describe how these con-
straints can be used to implement a broad range of con-
sistency models [30].

[ Standard Blocking Predicates

isValid(o) Block until object o is valid

isCausal(o) Block until the object o is causally con-
sistent with previously completed local
reads and writes

haveBody(o) Block the application of an invalidation

received for object o until the corre-
sponding body arrives.

hasArrived (Nodes, p) Block until each node in Nodes has re-

ceived my pth most recent write

maxStaleness(Nodes,
operationStart, t)

Block until T have received all writes up
to (operationStart —t) from every node
in Nodes.

Fig. 2: Standard, built-in predicates available for defining safety
policies.

We also provide pre-built consistency libraries for
a range of standard consistency semantics: best-effort
coherence, causal consistency [13], 1-copy serializabil-
ity [2], open/close consistency [8], sequential consis-
tency [13], and linearizability [7]. These libraries specify
safety predicates and also include the liveness rules for
generating any messages required to eventually satisfy
the safety conditions. Section 2.2 provides more details
about the liveness rules.

Defining customized predicates. System designers
may want to define their own predicates if their systems
require consistency semantics not covered by the stan-
dard libraries or if they want to take advantage of their
knowledge of the system’s topology to implement con-
sistency more efficiently. For example, our standard li-
brary for sequential consistency initiates communication
between all nodes. However, to implement the same con-
sistency semantics in a client-server system, it may be
more appropriate to restrict communication patterns to
only client-server communication [19].

Most commonly, a custom consistency predicate sim-
ply waits for a specific message or event generated by
the liveness policy. Section 4, for example details how
our implementation of Coda can block completion of a
client’s write until the server confirms that it has com-
pleted invalidating all other connected clients. Addition-
ally, designers can define predicates that depend on the
information about local state exposed by the underlying
mechanisms. For completeness, we enumerate the local
information on which predicate can operate on in Ap-
pendix A.

2.2 Liveness Policy

In PADRE, a liveness policy must set up data place-
ment and the communication among nodes so that up-
dates propagate and safety conditions can eventually be
met.

Update propagation is perhaps the most important as-
pect of data replication systems. Every system imple-
ments protocols that answer the questions: “When and
to whom should I propagate an update to?” and “Who
should I contact if data is not locally available?” Each



[ Subscription Actions

Add pull inval subscription sourceld, SS [, startTime, CP|LOG ]

Add pull body subscription sourceld, SS [, startTime]

Add push inval subscription | destld, SS [, startTime, CP|LOG ]

Add push body subscription | destld, SS [, startTime]

Remove pull inval sub sourceld, SS

Remove pull inval sub sourceld, SS

Remove push body sub destld, SS

Remove push body sub destld, SS

[ One-off Actions

Fetch body sourceld, objld, off, len [, logicTime]

Push body destId, objld, off, len

[ Status Actions

GetCurrLogicalTime

GetCurrRealTime

Fig. 3: Liveness actions provided by PADRE

system answers these questions differently according to
what is best for the environment it targets. For example,
in a client-server system, updates on a client are always
sent to the server but in a peer-to-peer systems, an update
on one node may flood the network of nodes.

Further more, a liveness policy must ensure that safety
conditions are satisfied and requests eventually unblock.
These safety conditions often rely on information about
the propagation of an update to other nodes. A liveness
policy therefore must also generate and route status in-
formation.

PADRE provides a routing policy engine and exposes
a set of 12 actions and 23 events that can be used by
policy rules to set up update and meta-data routing. It
also exposes a mechanism to store events persistently and
trigger them later. The liveness actions, liveness events
and persistent events, listed in Figs. 3, 4 and 5, represent
the complete interface necessary for specifying the live-
ness policies of a broad range of systems. Each primitive
is carefully crafted to capture the right abstractions. In
the rest of this section, we detail this interface.

2.2.1 Liveness Actions

A policy instructs PADRE to propagate data through live-
ness actions. The liveness actions, listed in Fig. 3, fall
under two categories: actions that set up update propa-
gation between two nodes and actions that collect local
status information.

Update propagation actions. PADRE provides 6 ba-
sic actions, listed in Fig. 3 for the different variations of
update propagation:- (pull or push) of a (one-off trans-
fer or subscription) of (bodies or invalidations). PADRE
provides four more actions to turn off subscriptions.
Nodes can communicate one of two types of informa-
tion about an update, either an invalidation or a body. An
invalidation captures the fact that an update occurred at
a particular instant in logical time. A body contains the
data of the update. The communication between nodes
can be a continuous stream of updates that occurred at

the sender or a one-off transfer of an update.

PADRE defines a uni-directional continuous stream as
a subscription and supports both invalidation subscrip-
tions and body subscriptions. Every subscription action
is associated with a subscription set and a start-time.
The subscription set specifies the group of objects (e.g.
/a/b/*:/x/*) for which the receiver is interested in receiv-
ing invalidations or bodies of updates that occurred after
the logical start-time.

An invalidation subscription contains a causally con-
sistent stream of invalidations. The causal order is impor-
tant to support stronger consistency semantics at a higher
level. However, in order to maintain consistency across
all objects despite subscription sets that may span arbi-
trary subsets of objects, invalidations that a node receives
on a subscription must be causally ordered with respect
to other invalidations. Therefore, invalidation subscrip-
tions must contain causal ordering information of objects
outside the subscription set as well. PRACTI, for exam-
ple, uses imprecise invalidations to provide such ordering
information [1].

Invalidations subscriptions also expose a third param-
eter, the catchup option. If the catchup option is CP, the
subscription begins with a checkpoint that invalidates all
objects in the subscription set that were updated between
the start-time and the current time. If the catchup option
is LOG, the subscriptions begins with the log of invalida-
tions to objects in the subscription set from the start-time.
Note that CP and LOG catchup options have identical se-
mantics and post conditions, but as we detail in Section 3,
their costs can differ.

A body subscription, on the other hand, is an un-
ordered stream of bodies of updates.

PADRE also supports one-off transfer of bodies from
one node to the other. The “fetch” or “push”, is asso-
ciated with an objld and an optional logical time. The
sender sends the latest body of objld it has. If logical
time is specified, the body is only sent if it is at least as
new as logical time, otherwise, a NACK is sent otherwise.
Note, PADRE does not support one-off transfer of an in-
validation because invalidations must always be ordered
with respect to other invalidations for consistency.

Local status actions. Some safety predicates may de-
pend on the propagation of information through the sys-
tem. PADRE, therefore provides actions that enable live-
ness policy to collect information about a node’s local
status. These actions include: GerCurrLogicalTime to
retrieve the current logical time of the node and GetrCur-
rRealTime to retrieve the current real time of the node.

2.2.2 Liveness Events

Policy writers need events about local state in order to
decide when to invoke what actions. For example, a pol-
icy needs to know if a read was blocked so that it can
decide to fetch a body from another node or to establish



[ Local read/write events

Read blocked non-existent object | objld, offset, length, logicTime

Read blocked invalid object objld, offset, length, logicTime

Read blocked inconsistent object | objld, offset, length, logicTime

‘Write objld, offset, length, logicTime

Delete objld

Message arrival events ]

Inval arrives
Fetch success
Fetch failed
[ Connection events ]

SS, senderld
SS, senderld
SS, senderld
SS, senderld
SS, senderld
SS, senderld
SS, senderld
SS, receiverld
SS, receiverld
SS, receiverld
SS, receiverld

sender, objld, off, len, logicTime
sender, objld, off, len, logicTime
senderld, objld, offset, length, logicTime

Inval subscription start

Inval subscription caught-up

Inval subscription end

Inval subscription failed

Body subscription start

Body subscription end

Body subscription failed
Outgoing inval subscription start
Outgoing inval subscription end
Outgoing inval subscription failed
Outgoing body subscription start
Outgoing body subscription end SS, receiverld
Outgoing body subscription failed | SS, receiverld
[ Status events |

Current logical time
Current real time

logicTime
realTime

Fig. 4: Local events generated for liveness policy.

subscriptions. Fig. 4 lists the events provided by PADRE
for this purpose. These events inform the policy layer
about

e Local read, write, delete events for objects and
whether the request was blocked.

o Messages received. Whether an invalidation arrived or
fetches were successful.

e Connection events. Whether subscriptions were suc-
cessfully established or whether they were removed.

e Status events about the requested information such as
the logical time, or real time.

2.2.3 Persistent Events

Some policies need mechanisms to store routing or con-
figuration information persistently. For example, in Pan-
gaea [22], each object also identifies the list of gold repli-
cas for that object. Other systems store configuration
lists such as lists of nodes to peer with or lists of files
to prefetch [5, 10].

Given that liveness policies in PADRE are described
using rules that invoke actions when triggered by events,
we convert persistent information into an event abstrac-
tion. PADRE provides a set of actions, listed in Fig. 5,
that store of events as tuples persistently in an object and
later use that object to generate the events.

For example, to append an item to a hoard list [10],
a rule can invoke the action WriteTuple: hoardListOb-
jld, HOARD_ITEM, objldToBeHoarded. Later when the
system wishes to walk the hoard list, a rule invokes the

[ Persistent Events ]

Write tuple objld, tupleName, fieldl, ..., fieldN
Read tuples objld
Read and watch tuples | objld
Stop watch objld
Delete tuples objld

Fig. 5: Interface to store events persistently

action RadTuples: hoardListObjld which causes the run-
time system to read the specified object and generate a
HOARD _ITEM event for each tuple stored in the object.

2.3 Excluded Properties

There are several properties that PADRE does not ad-
dress or for which provides limited choice to designers.
These include security, interface, and conflict resolution.

First, PADRE does not support security specification.
We believe that ultimately our policy architecture should
also define flexible security primitives. Providing this ca-
pability is important future work, but it is outside the
scope of this paper, which can be regarded as focusing
on the architectural problem of allowing systems to de-
fine their replication policy in terms of consistency, dura-
bility and topology.

Second, PADRE only exposes an object-store inter-
face for local reads and writes. It does not expose other
interfaces such as a file system interface or a tuple store.
We believe that these interfaces are not difficult to in-
corporate. In fact, we have implemented a file system
interface over our prototype of PADRE.

Third, PADRE only assumes a simple conflict resolu-
tion mechanism. Write-write conflicts are detected and
logged in a way that is data-preserving and consistent
across nodes to support a broad range application-level
resolvers. We do not attempt to support all possible con-
flict resolution algorithms [5, 9, 10, 24,27]. We believe it
is straight forward to extend the PADRE model to sup-
port Bayou’s more flexible application-specified conflict
detection and reconciliation programs [20].

3 Implementation

We developed a prototype in order to explore the
feasibility and practicality of building systems with
PADRE. The prototype implementation takes advantage
of PRACTI [1] because the mechanisms PRACTI pro-
vides match those needed by PADRE, and it uses Over-
Log/P2 [15] because OverLog/P2 provides a language
and a runtime with which liveness rules can be conve-
niently written and executed.

PRACTI. PRACTI is a data replication substrate, im-
plemented with Java and Berkeley DB. PRACTI provides
all mechanisms required by PADRE including an object
store, consistency tracking, invalidation and body sub-
scriptions, and fetches. The semantics of these mecha-
nisms match PADRE’s expectations.



[ Primitive [ Ideal Implementation [ PRACTI Implementation ]
Inval subscription with (pastUpdates + newUpdates) * sizelnval (pastUpdates + newUpdates) * sizelnval
LOG catchup + numImplny * sizelmplnv
Inval subscription with | (pastUpdatedObjs + newUpdates) * sizelnval | pastUpdatedObjs * sizeMeta + newUpdates * sizelnval
CP catchup + numImplIny * sizelmplnv
Body subscription (pastUpdatedObjs + newUpdates) * sizeBody (pastUpdateObjs + newUpdates) * sizeBody
Fetch/Push Body sizeBody sizeBody

Fig. 6: Ideal network overhead and PRACTI implementation of PADRE primitives where sizelnval is the size of an invalidation,
sizelmplny is the size of an imprecise invalidation, sizeMeta is size of meta data of object for checkpoint, sizeBody is average size
of a body, pastUpdates is number of past updates — updates to the subscription set that occurred after start-time but before the
subscription was established, newUpdates is number of current updates — updates to the subscription set after the subscription was
established, pastUpdateObjs is number of objects in the subscription set modified by past updates, numlmplny is the number of

imprecise invalidations sent on a invalidation subscription.

PADRE defines 4 modes for update propagation.
Fig. 6 list the network overheads for an ideal imple-
mentation and PRACTI implementation of these prim-
itives. The overheads for the ideal implementation are
derived directly from the description of the primitive in
Section 2.2. For example, when a body subscription is es-
tablished, all bodies of objects in the subscription set that
were updated from start-time to the current time are sent,
after which the sender forwards any new body it receives.
Hence the idealized network cost of a body subscription
is: (pastUpdatedObjs + newUpdates) * sizeBody.

As Fig. 6 illustrates, the network overheads of
PRACTT are within a constant factor of an ideal im-
plementation of PADRE. Invalidation subscriptions in
PRACTT also transfer imprecise invalidations that ag-
gregate invalidations of updates outside the subscription
set for consistency reasons. However, the overhead is at
most 50% of the ideal implementation. The number and
size of imprecise invalidations is greatly dependent on
the locality of the workload. In the worst case scenario,
for workloads with poor locality, at most one imprecise
invalidation is sent per actual invalidation. The size of
the imprecise invalidations is dependent on how con-
cisely the list of affected objects can be encoded. Thus,
for workloads with good locality, few imprecise invalida-
tions are sent, and and the size of an imprecise invalida-
tion is comparable to the size of a precise invalidation [1].

Another thing to note is that the log of invalidations
that PRACTI maintains is truncated from time to time to
maintain storage bounds [20]. If an invalidation subscrip-
tion is established with LOG catch up but its start-time is
set to a point before the log truncation point, a checkpoint
up to the log truncation point, followed by invalidations
are sent instead.

We made several changes to PRACTI during the im-
plementation of PADRE. These changes include adding
an interface that converts PRACTI commands and inform
methods to PADRE’s actions and events; making the un-
derlying implementation of PRACTTI subscriptions more
efficient by multiplexing multiple subscriptions on a sin-
gle stream; adding a file system interface support by im-
plementing an NFS interface in Java; and adding support

for atomic multi-object writes needed for the file system
interface implementation. Details of these changes re-
quire a knowledge of PRACTI’s mechanisms, which is
outside the scope of this paper.

OverLog/P2. OverLog and P2 [15] are respectively a
declarative language and a runtime layer for implement-
ing overlays. Since PADRE considers liveness policy as
specifying topology, OverLog/P2 are good for writing
and executing liveness policy.

A program in OverLog is a set of table declarations for
storing tuples and a set of rules that specify how to cre-
ate a new tuple when a set of existing tuples meet some
constraint. For example,

out(@Y, A, C, D) :-
inl(@X, A, B, C), in2(@X, A, B, D), in3(@X, A, _)

indicates that whenever there exist at node X tuples inl/,
in2, and in3 such that all have identical second fields (A),
and inl and in2 have identical third fields (B), create a
new tuple (out) at node Y using the second and fourth
fields from inl (A and C) and the fourth field from in2
(D). Note that for in3, the _ wildcard matches anything
for field three.

PADRE actions and events map naturally to Over-
Log’s tuples. OverLog rules can be used to specify live-
ness rules that trigger actions based on events received.

To give a concrete example of how one could specify
an action in the liveness policy, consider the following
rule from our implementation of TierStore [5]:

addPulllnvalSubscription( @ Node, Parent, Volume) :-
newLiveNeighbor(@ Node, Parent),
isParent(@Node, Parent),
wantSubscribe(@ Node, Volume)

This rule causes a node to subscribe for one or more vol-
umes of interest when a node it regards as its parent be-
comes reachable.

PADRE prototype. We added support to allow the
P2 runtime to communicate with PRACTI so that live-
ness the rules can invoke the appropriate mechanisms.
In particular, we implemented an abstraction layer that
converts the large collection of low-level PRACTI com-
mands and inform methods into a smaller set of higher



level PADRE actions and events. We also added a bridge
between the abstraction layer and the P2 routing engine.

4 Building a System on PADRE

This section can be seen as a quick tutorial on how sys-
tems can be constructed on PADRE. To build a system,
a designer specifies safety and liveness policies by typi-
cally picking a pre-built standard safety library and writ-
ing OverLog rules to set up the topology. Alternatively
the designer can build a customized safety library by
specifying predicates at the safety module in Java, and
writing rules so that safety conditions can eventually be
met.

We picked Coda [10] as our example system because
it is a well-studied system that has a lot of demanding
features and can demonstrate the ease with which each
feature can be built on PADRE. Our implementation, P-
Coda, is inspired by the version of Coda described by
Kistler et. al. [10]. P-Coda supports disconnected oper-
ation, reintegration, crash recovery, whole-file caching,
open/close consistency (when connected), causal consis-
tency (when disconnected), and hoarding. We also il-
lustrate the ease with which significant new features can
be added to an existing system by adding co-operative
caching to P-Coda.

We know of one feature from the system Kistler et. al.
describes that we are missing: we do not support cache
replacement prioritization. In Coda, some files and direc-
tories can be given a lower priority and will be discarded
from the cache before others. Additionally, Coda is a
long-running project with many papers worth of ideas.
We omit features discussed in other papers such as server
replication [23], trickle reintegration [16], and variable
granularity cache coherence [17]. We see no fundamen-
tal barriers to adding them in P-Coda.

We provide a brief system description and then
present the client-side safety and liveness policies respec-
tively.

4.1 System Description

P-Coda is a client-server system. The server stores all
files and each client caches some files. The server main-
tains a list of clients who cache valid copies of each file.

P-Coda provides open/close semantics, which means
that when a file is opened at a client, the client will return
the local valid copy or retrieve the newest version from
the server. A file close operation on a connected client
will block until all updates have been propagated to the
server and the server has made sure that all copies cached
on other connected clients have been invalidated. When
a client is disconnected from the server, open/close con-
sistency is relaxed and a client can access locally cached
files that are causally consistent.

Every client has a list of files, the “hoard set”, that it
will periodically refetch from the server and store locally.

4.2 Implementing safety policy

P-Coda uses the standard open/close consistency library.
A file “open” is implemented as a read of an object. The
ReadNowBlock predicate is set to isCausal; i.e., all reads
will block until the local object is consistent before the
object is accessed. All writes to a file are buffered un-
til the file is closed, at which point the object is written.
If a client is connected to the server, the WriteEndBlock
predicate is recvAckFromServer; otherwise it is the null
predicate. The open/close safety module has 124 semi-
colons of Java code.

4.3 Implementing liveness policy

P-Coda’s 33 client-side liveness rules can be divided into
7 main groups: configuration, connectivity, demand read,
write propagation, recovery, hoarding, and safety meta-
data. Algorithm 1 defines P-Coda’s client side liveness
policy.

Configuration and connectivity. A configuration file
stores the server’s identity in a configServer tuple, and
another configuration file provides the hoard list in a
series of doHoard tuples. At each client C, the ta-
ble entry isConnected(@C, S) indicates whether the
server S is currently reachable. We use 17 rules (not
shown) based on the published P2 implementation of
Narada [15] to track connectivity information and gen-
erate newLiveNeighbor and declareDeadNode tuples,
which invoke rules (c1) or (c2) respectively.

Handling blocked reads. Two rules are triggered
when a read of object o is blocked at a connected client.
(scl) subscribes for o’s invalidations using a checkpoint
for efficiency, and (sc2) fetches the body. Eventually, o
is no longer inconsistent, and the safety policy unblocks
the read. The invalidation subscription ensures that if an-
other node updates o, it will become invalid.

Write propagation and callbacks. To propagate client
writes to the server, rules (csl) and (cs2) are triggered
when the client connects to the server. They create an
invalidation subscription and a body subscription for all
updates from the client to the server. Note that because
of open/close semantics, the writes within one open/close
session only generate one invalidate and body that go
through the subscriptions to the server.

The invalidation subscriptions created by clients when
they cache objects from the server ensure that our un-
derlying mechanisms transmit invalidations of new up-
dates to maintain causal consistency. To avoid sending
repeated invalidations to a client, we include a rule (cbr)
to remove an object from the invalidation subscription
when a client’s cache is already invalidated by an invali-
dation.

Recovery. When a client reconnects to a server, it trig-
gers (re) to establish an invalidation subscription for an



// Get server and list of peers from config file
cfl readAndWatchTuple(@X, nodeFile) :-
atlnit, nodeFile:= “/coda/nodeList”
cf2  server(@X, S) :-
configServer(@X, S)
// Server connection status
¢l isConnected(@X, V) :-
newLiveNeighbor(@X, S), server(@X, S), V:=1
c¢2  isConnected(@X, V) :-
declareDeadNode(@X, S), server(@X, S), V:=0
// Local read miss: Add an inval subscription
scl addPullInvalSubscription(@X, S,0bj, Catchup) :-
localReadBlocked(@X, Obj, _, _), server(@X, S),
isConnected(@X, V), V==1, Catchup:=“CP”,
X#S /I am client
// ... and get a body
sc2  fetch(@X, S, Obj, Off, Len) :-
localReadBlocked(@X, Obj, Off, Len), server(@X, S),
isConnected(@X, V), V==1, X#S /I am client
// Server is detected: add subscriptions to send updates to server
csl addPullInvalSubscription(@S, X, SS, Catchup) :-
isConnected(@X, V), V==1, server(@X, S), SS:=/*,
Catchup:=“LOG”, X#S // I am client
cs2  addPullBodySubscription(@S, X, SS, Catchup) :-
isConnected(@X, V), V==1, server(@X, S), SS:=/*,
Catchup:=“LOG”, X#S // I am client
// Client receives an inval: Remove subscription
cbr  removePulllnvalSubscription(@S, X, Obj) :-
invalArrives(@X, S, Obj, _, _, _), server(@X, S),
X#S // I am client
// Server is detected: Add subscription to “”
re  addPulllnvalSubscription(@X, S, SS, Catchup) :-
isConnected@X(X, V), V==1, server@X(X, S),
SS:=EMPTY, Catchup := “LOG”, X#S // I am client
// Hoarding: Add hoard subscriptions when server reachable
hl  readAndWatchTuple(@X, hoardFile) :-
isConnected(@X, V), V==1, hoardFile:="“/coda/hoardList”
h2  addPulllnvalSubscription(@X, S, SS, Catchup) :-
doHoard(@X, SS), Catchup:=“CP”, server(@X, S),
X#S // I am client
h3  addPullBodySubscription(@X, S, SS, Catchup) :-
doHoard(@X, SS), Catchup:=“CP”, server(@X, S),
X#S /I am client
// Safety metadata: Send Ack to server when I receive an inval
sfl  ackServer(@S, X) :-
invalArrives(@X, S, Obj, _, _, .), server(@X, S),
X#S // I am client
// Safety metadata: Inform safety policy when received ack from server
sf2  recvAckFromServer(@X) :-
ackFromServer(@X, S), server(@X, S), X#£S /I am client
// Safety metadata: Inform safety policy if not connected to server
sf3  notConnected(@X) :-
writeBlocked(@X), isConnected(@X, V), V#£1,
X#S // I am client
// Cooperative caching: Check reachable peers if server unreachable
ccl  peer(@X, P) :-
configPeer(@X, P)
cc2  pConnected(@X, P, V) :-
newLiveNeighbor(@X, P), peer(@X, P), V:=1
cc3  pConnected(@X, P, V) :-
declareDeadNode(@X, P), peer(@X, P), V:=0
ccd  fetch(@X, P, Obj, Off, Len) :-
localReadBlockedInconsistent(@X, Obj, Off, Len),
isConnected(@X, V), V==0, pConnected(@X, P, W),
W==1, server(@X, S), X !=S /1 am client

Algorithm 1: Client-side liveness rules in P-Coda. Connec-
tion monitoring rules are excluded

empty subscription set from the server. This action
makes all locally cached objects inconsistent until new
callbacks in the form of invalidation subscriptions are es-
tablished.

Hoarding. As in Coda, we prefetch objects in a user-
defined hoard set. The hoard set is stored as tuples in a
local configuration file which is read when the server be-
comes connected (h1). The client then subscribes to re-
ceive invalidations and bodies for subscription sets listed
in the hoard file (h2, h3).

Safety metadata. Several events propagate safety
metadata to ensure that the open/close consistency library
eventually allows progress. A client sends an acknowl-
edgement to the server whenever it receives an invali-
dation (sfl). Once the server has collected the required
acknowledgements from other clients, it sends ackFrom-
Server(@X,S) to the client. The liveness policy generates
recvAckFromServer(@X) so that the safety policy can un-
block. If the client is disconnected from the server, it
simply generates a notConnected(@X) message so that
the write can unblock (sf3). These functions require 22
rules on the server.

4.4 Adding Cooperative Caching

We add cooperative caching to P-Coda so that discon-
nected clients can fetch valid files from their peers. This
feature allows a disconnected client to access files it pre-
viously couldn’t.

Four rules enable disconnected clients to fetch data
from their peers while maintaining causal consistency.
Algorithm 1 shows how we augment the node list con-
figuration file to include a list of peers. When (cf1) reads
the configuration file, it generates configPeer tuples that
populate the peer table via (ccl). (cc2) and (cc3) keep
track of connectivity to peers, and (cc4) triggers a fetch
attempt from reachable peers if the server is not reach-
able. Note that the arrival of data unblocks a waiting
read regardless of where it comes from and the predi-
cates ensure that consistency is still enforced despite this
significant change to how updates flow through the sys-
tem. In section 6, we show the performance improvement
achieved by these four rules.

5 Case Studies

This section examines a series of case-studies to explore
whether PADRE’s approach to constructing replication
system does indeed benefit system designers.

We demonstrate the flexibility of PADRE by con-
structing 6 systems covering a large part of the design
space including client-server systems like Coda [10] and
TRIP [18], server-replication systems like Bayou [20]and
Chain Replication [29], and object replication systems
like Pangaea [22] and Tier-Store [S]. Figure 7 provides
an overview of the scope of this effort.



[ [ Bayou | ChainReplication | Coda [ Pangaea | TierStore [ TRIP ]
Consistency Causal Linearizability Open/close Causal* Sequential
Coherence Vv Vv
Structured Topology Vv v v N
Ad-hoc Topology V4 v
Callbacks IV
Co-operative Cashing NG Na
Hoarding Vv
Anti-Entropy Vv
Flooding v
Never invalidate object
before body available 4 v v

Fig. 7: Features covered by case-study systems. Features with * are additional features added to our implementation.

Safety Policy Liveness Policy
Standard [ Customized

Bayou 12 - 29
Chain - 85 79
Replication

Coda 124 - 55
Pangaea 12 - 67
TierStore 12 - 28
TRIP 12 - 22

Fig. 8: Lines of code required to implement each system. Stan-
dard safety policy means that a standard consistency library was
used. Customized means that a customized library was used to
implement the system.

Constructing these systems also demonstrates the sim-
plicity of using PADRE. Each system required a few
dozen lines of policy code, see Fig. 8. All systems were
built by 3 graduate students in less than 2 months of part-
time effort. In particular, most of them took 1-2 weeks to
build.

Finally, we demonstrate PADRE’s support for rapid
evolution by extending systems by adding new features.
We add cooperative caching to P-Coda in four lines; this
addition allows a set of disconnected devices to share up-
dates while retaining consistency. We add small-device
support to P-Bayou in one line; this addition allows de-
vices with limited capacity or that do not care about
some of the data to participate in a server replication sys-
tem. We add cooperative caching to P-TierStore in four
lines; this addition allows data to be downloaded across
an expensive modem link once and then shared via a
cheap wireless network. Each of these simple optimiza-
tions provides significant performance improvements or
needed capabilities as illustrated in section 6.

We describe each system we developed in turn. Due
to space constraints we only highlight how essential fea-
tures of their designs were implemented on PADRE. We
do not repeat the discussion of P-Coda.

5.1 P-Bayou

We implement a server replication system over PADRE
modeled on the version of Bayou described by Petersen
et. al. [20]. In particular, we implement the log-based

// Define subscription set for anit-entropy
init  ss(@X, SS) :-
atInit, SS:=*/*"
// Add subscriptions when a random neighbor is selected

bcO1 addPullInvalSubcription(@X, Y, SS, Catchup) :-
doAntiEntropy(@X, Y), ss(@X, SS), Catchup:=“LOG”
bc02  addPullBodySubcription(@X, Y, SS) :-

doAntiEntropy(@X, Y), ss(@X, SS)
// Remove subscriptions when we have received all updates

bc03  removePulllnvalSubcription(@X, Y, SS) :-
informInvalSubscriptionCaughtup(@X, Y, SS)
bc04  removePullBodySubcription(@X, Y, SS) :-

informBodySubscriptionCaughtup(@X, Y, SS)

Algorithm 2: Anti-entropy rules in PADRE-Bayou

peer-to-peer anti-entropy protocol, checkpoint exchange
in case of log truncation, and causal consistency. We then
add small-device support to P-Bayou by simply changing
one rule.

Implementing safety and liveness policies. For
safety, P-Bayou simply uses the standard causal con-
sistency library provided by PADRE. To provide 100%
availability as the original Bayou does, P-Bayou uses the
standard haveBody predicate to delay applying an inval-
idation to a node until the node has received the corre-
sponding body.

The liveness policy contains rules for carrying out
anti-entropy sessions. Anti-entropy sessions can be eas-
ily implemented by establishing invalidation and body
subscriptions between nodes for “/*” and removing the
subscriptions once all updates have been transferred.
Note, as in Bayou, if the log at the sender is truncated
to a point after subscription’s start time, the invalidation
subscription will automatically send a checkpoint.

The complete implementation of P-Bayou’s liveness
policy requires 29 rules: 5 for anti-entropy (Algorithm
2), 8 for random neighbor selection (not shown), and 16
for connection management (not shown). The doAntiEn-
tropy tuple is generated periodically by the random
neighbor selection rules which in turn invokes the anti-
entropy rules (bcO1, bc02).




Small-device support. In standard Bayou, each node
must store all objects in all volumes it exports and must
receive all updates in these volumes. It is difficult for a
small device (e.g, a phone) to share some objects with a
large device (e.g, a server hosting my home directory).
By building on PADRE, we can easily support small de-
vices. Instead of storing the whole database, a node can
specify the set of objects or directories it cares about by
changing the subscription set for anti-entropy. This ad-
dition requires changing only the (init) rule. This change
might introduce some read misses due to incomplete in-
validate information propagations from “small” devices
to “large” devices. We add two standard predicates have-
Body and isConsistent to ApplyUpdateBlock to prevent
this situation.

5.2 P-Pangaea

Pangaea [22] is a wide-area file system that supports high
degrees of replication and high availability. Replicas of a
file are arranged in an m-connected graph, with a clique
of g gold nodes. The location of the gold nodes for each
file is stored in the file’s directory entry. Updates flood
harbingers in the graph. On receipt of a harbinger, a node
requests the body from the sender of the harbinger with
the fastest link. Pangaea enforces weak, best-effort co-
herence.

P-Pangaea implements object creation, replica cre-
ation, update propagation, gold nodes and m-connected
graph maintenance, temporary failure rerouting and per-
manent failure recovery. We do not implement the “red
button” feature, which provides applications confirma-
tion of update delivery or a list of unavailable replicas,
but do not see any difficulty in integrating it.

Implementing safety and liveness policies. PADRE-
Pangaea uses the standard best-effort coherence library
which block reads until objects are valid.

PADRE-Pangaea considers harbingers as invalida-
tions, and hence each edge of a Pangaea graph is an in-
validation subscription. PADRE-Pangaea’s liveness pol-
icy sets up and maintains the m-connected graph for each
object among the nodes. If a read is blocked because
an object is not locally available, the liveness policy has
rules to add the node to the object’s graph by finding a
nearby replica, fetching the object from the replica, and
adding an invalidation subscription from it. When a node
receives an invalidation for an object, the object is imme-
diately fetched from the replica with the fastest link.

The liveness policy comprises of 67 rules. Most of the
complexity stems from (1) constructing the required per-
object invalidation graph across gold and bronze replicas,
(2) updating the invalidation graph when nodes become
unreachable, and (3) creating new gold replicas for ob-
jects when an existing gold replica fails.
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5.3 P-Chain Replication

Chain Replication [29] is a server replication protocol
in which the nodes are arranged as a chain to provide
high availability and linearizability. All updates are in-
troduced at the head of the chain and queries are handled
by the tail. An update does not complete until all live
nodes in the chain have received it.

P-Chain Replication implements this protocol with
support for volumes, node failure and recovery, and the
addition of new nodes to the chain.

Implementing safety and liveness policies Although
we could use our standard sequential consistency library,
to gain performance and availability comparable to the
original Chain Replication system we implement a cus-
tomized consistency library that exploits the chain topol-
ogy and simply blocks a write until it receives an ac-
knowledgement from the tail. This customized safety
library required 85 semi-colons of Java code and 3 Over-
Log rules for liveness to generate the necessary events.

P-Chain-Replication implements each link in the
chain as a invalidation and a body subscription. When
an update occurs at the head, the update flows down the
chain via subscriptions. Chain management is carried out
by a master, as in the original system. We implement the
master in OverLog.

Note that most of the complexity in the original chain
replication algorithm stems from the need to track which
updates have been received by a node’s successors so as
to handle node failure and recovery. PADRE makes re-
covery simple because of the semantics guaranteed by
subscriptions. When subscriptions are established, all
updates that the successor is missing are automatically
sent during catchup, making it unnecessary for predeces-
sors to track the flow of updates.

The liveness policy totals 79 rules: 3 for update prop-
agation, 9 for chain management at the servers, 35 for
chain management at the master, 20 for connection man-
agement, 9 for initialization, and 3 for safety metadata.

5.4 P-TierStore and P-TRIP

We also implement TierStore [5], a hierarchical replica-
tion system for developing regions, and TRIP [18], a sys-
tem that seeks to provide transparent replication of dy-
namic content for web edge servers. We summarize the
relevant statistics in Fig.8. Due to space constraints, we
omit detailed discussion.

What is perhaps most interesting about these exam-
ples is the extent to which PADRE facilitates evolution.
For example, the TRIP implementation assumes a single
server and a star topology. By implementing on PADRE,
we can improve scalability by changing the topology
from a star to a static tree simply by changing a node’s
configuration file to list a different node as its parent—
invalidations and bodies flow as intended and sequen-
tial consistency is still maintained. Better still, if one



writes a topology policy that dynamically reconfigures
a tree when nodes become available or unavailable [15],
a few additional rules to subscribe/unsubscribe produce a
dynamic-tree version of TRIP that still enforces sequen-
tial consistency.

6 Evaluation

Section 5 demonstrated the benefits of PADRE’s ap-
proach. In this section, we evaluate the practicality of
PADRE by examining the performance of the prototype.

First, we show that PADRE faithfully captures the ab-
stractions needed by replication systems in that systems
specified at a high level still send the expected messages.
Then, we show that latency and throughput of systems
built on PADRE are acceptable for prototyping or for
moderately demanding system deployments. Finally, we
demonstrate the benefits of agility by quantifying the per-
formance improvements achieved by the simple enhance-
ments we made to the case-study systems.

We find that the performance is acceptable for pro-
totyping and for moderately demanding deployments.
Most of the overheads can be attributed to inefficiencies
in the declarative language interpretation rather than be-
ing fundamental to the architecture, as demonstrated in
Section 6.2. We believe that the performance should im-
prove as P2 becomes a mature technology. Alternatively,
falling back to an imperative implementation of critical
rules can yield significant performance improvement.

All experiments are carried out on Dell Dimension
4100 machines with 800MHz Pentium-II1I CPUs, 256MB
of memory, and 100Mb/s Ethernet. We use Fedora Core
6, Sun JVM 1.5, and Berkeley DB Java Edition 3.2.23.

6.1 Network Overheads

Section 3 discusses the cost model PADRE exposes to
policy writers. This section shows experimentally that
the constants abstracted by the model are modest even
compared to the ideal implementation of the primitives.

As discussed in Section 3 an ideal implementation of
an invalidation subscription will send subscriptionStart
message when it is established, and a subscriptionCaugh-
tUp message once the past invalidations or the check-
point has been sent. Each of these messages can be as
small as a single byte. In PADRE, since multiple sub-
scriptions are multiplexed on a single stream, the sub-
scriptionStart and subscriptionCaughtUp messages con-
tain the encoding of the associated subscription set.

Fig. 9 quantifies the network bandwidth required to
establish an invalidation subscription. 500 objects were
updated and the x-axis corresponds to the number of ob-
jects for which subscriptions were established. The three
lines correspond to the cost when a separate subscrip-
tion for each object was established, like traditional call-
backs [8].

The figure demonstrates that the cost of establishing
subscriptions for LOG catchup and CP catchup is within
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Fig. 9: Bandwidth for establishing invalidation subscriptions.

[ | Coherence-only | PADRE |

1-in-1 update 26 26
1-in-10 updates 26 30
1-in-2 updates 26 52

Fig. 10: Number of bytes per relevant update sent over an in-
validation stream for different workloads. 1-in-10 represents a
workload in which every 1 out of 10 updates happen to objects
in the subscription set.

a factor of the ideal implementation. The overhead can be
attributable to the size of the subscriptionStart message.
CP catchup does worse than LOG catchup because the
size of the invalidation meta-data for each object is bigger
than an actual invalidation sent during LOG catchup.

We also quantify the cost of establishing a single
coarse-grained submission for all objects. The cost of a
coarse-grained LOG and CP catchup is almost the same.
Both fairly better than the ideal because the subscription-
Start and subscriptionCaughtUp messages are only sent
once instead of 500 times.

Invalidation subscriptions also have the additional
overhead of imprecise invalidations sent to maintain con-
sistency information. Fig. 10 quantifies this overhead
when compared to a system that does not send any con-
sistency ordering information. We compared the over-
heads under three workloads. As we can see from
Fig. 10, even in the worst case, the overhead for main-
taining consistency is at most 2x the number of invalida-
tions sent over the subscription.

6.2 System Performance

This section evaluates the performance of systems built
on PADRE prototype. We find that the performance is ac-
ceptable for prototyping and for moderately demanding
deployments, and is greatly affected by the performance
of the P2 runtime.

Fig. 11 depicts the read/write throughput at the inter-
ception layer for local objects with no predicates. Fig. 12
depicts the time required to run the Andrew bench-
mark [8] over PADRE prototype via the implemented
NFS wrapper. As you can see from Fig. 12, PADRE suf-
fers from a factor of two slowdown when compared to
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Fig. 11: Local interface performance.
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[ | Latency | Maximum Throughput |
Local Ping 4ms 224 req/s
Remote Ping 13ms 95 req/s

Fig. 13: Performance numbers for inserting null tuples into P2.

P-Coda with P-Coda with

liveness in P2 | liveness in Java
File open on cold cache 96.92 ms 10.44 ms
File open on hot cache 2.59 ms 0.79 ms
File close 112.1 ms 19.24 ms

Fig. 14: Coda open/close performance with server at 10 ms
ping latency.

the benchmark accessing the local Linux ext2 filesystem
via a local NFS server. We configured the prototype to
emulate a client-server system, and ran the benchmark
on the client (with a cold cache) and the server at a ping
latency of 10 ms. The performance dropped by another
factor of two.

The prototype performance is greatly affected by the
performance of P2. Fig. 13 demonstrates the round
trip ping latencies and maximum throughput per second
for a null P2 event inserted by PADRE on a local ma-
chine and remote machine. Infact, the performance of P-
Coda greatly improves, as depicted by Fig. 14, when we
switched from a P2/OverLog implementation of the live-
ness rules to a Java implementation of liveness policy.
“File close” demonstrates significant difference in per-
formance because its completion is blocked by a liveness
predicate, which in turn is affected by P2’s performance.

6.3 Benefits of Agility

This section illustrates some of the performance im-
provements resulting from the the additional features
added to our case-study systems.

Fig. 15 demonstrates the significant improvement by
adding the 4 rules for cooperative caching to P-Coda. Co-
operative caching alllows a clique of connected devices
to share data without relying on the server. For the ex-
periment, the results of which are depicted in Fig. 15, the
latency between two clients is 10ms, whereas the latency
between a client and server is 500ms. Without coopera-
tive caching, a client is restricted to retrieving data from
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Fig. 16: Anti-Entropy bandwidth on PADRE-Bayou

the server. However, with cooperative caching, the client
can retrieve data from a nearby client, thus greatly im-
proving read performance. More importantly, with this
new capability, clients can share data even when dis-
connected from the server. P-TierStore with cooperative
caching also demonstrates similar improvements.

Fig. 16 serves two purposes. First, it demonstrates
that the overhead for anti-entropy in P-Bayou is rela-
tively small compared to an “ideal” Bayou implemen-
tation. More importantly, it demonstrates, if a node re-
quires only 10% of the data, the small device enhance-
ment in P-Bayou greatly reduces the bandwidth required
for anti-entropy.

7 Related work

PRACTI [1] defines a set of mechanisms designed to span
the design space of replication systems, and the PRACTI
paper argues that the mechanisms can reduce replica-
tion costs by simultaneously supporting Partial Replica-
tion, Arbitrary Consistency, and Topology Independence.
However PRACTI provides no guidance on how to spec-
ify policies that define a replication system. Although
we had conjectured that it would be easy to construct a
broad range of systems over the PRACTI mechanisms,
when we then sat down to use PRACTI to implement



a collection of representative systems, we realized that
policy specification was a non-trivial task and that a pol-
icy architecture was needed to complement PRACTI’s
mechanisms. PADRE transforms PRACTT’s “black box”
for policies into an architecture and runtime system that
cleanly separates safety and liveness concerns, that pro-
vides blocking predicates for specifying consistency and
durability constraints, that defines a concise set of events
and actions upon which liveness rules operate, and that
introduces a persistence model for allowing declarative
rules to operate on persistent replication metadata. This
paper demonstrates how this approach facilitates con-
struction of a wide range of systems that approximate or
improve upon systems from literature.

A number of other efforts have defined general frame-
works for constructing replication systems for different
environments. Deceit [25] focuses on replication across
a well-connected cluster of servers. Zhang et. al. [31]
define an object storage system with flexible consistency
and replication policies in a cluster environment. As op-
posed to these efforts for cluster file systems, PADRE fo-
cuses on systems in which nodes can be partitioned from
one another, which changes the set of mechanisms and
policies it must support. Stackable file systems [6] seek
to provide a way to add features and compose file sys-
tems, but it focuses on adding features to local file sys-
tems.

PADRE incorporates the order error and staleness
abstractions of TACT tunable consistency [30]; we do
not currently support numeric error. Like PADRE,
Swarm [26] provides a set of mechanisms that seek
to make it easy to implement a range of TACT guar-
antees; Swarm, however, implements its coherence al-
gorithm independently for each file, so it does not at-
tempt to enforce cross-object consistency guarantees like
causal [13], sequential [14], 1SR [2], or linearizabil-
ity [7]. IceCube [9] and actions/constraints [24] pro-
vide frameworks for specifying general consistency con-
straints and scheduling reconciliation to minimize con-
flicts. Fluid replication [4] provides a menu of consis-
tency policies, but it is restricted to hierarchical caching.

PADRE uses P2 [15] to execute liveness policies.
More broadly, PADRE follows in the footsteps of efforts
to define runtime systems or domain-specific languages
to ease the construction of routing [15], overlay [21],
cache consistency protocols [3], and routers [11].

The specific optimizations we add to replication sys-
tems have all been done before. Our contribution is to
provide an abstraction that supports such optimizations
in a general way and that makes it simple to evolve an
existing system by adding new features.

8 Experience and Conclusion

We started this project with the goal of trying to build an
architecture that would allow a couple of graduate stu-

13

dents to rapidly build replication systems. We studied a
dozen or so classic and cutting edge replication systems
and we came to three realizations that influenced the de-
sign of PADRE:

First, the key design aspect that distinguishes differ-
ent replication systems is how they define update routing.
Every system defines a different routing policy.

Second, if the right mechanisms for update propaga-
tion are provided, it is much easier to write routing policy
in a declarative language as rules. This realization en-
abled us to take advantage of PRACTI as the mechanism
layer and OverLog as the language for writing routing
rules.

There were still some aspects of replication systems
that didn’t quite fit into routing. Our third realization was
that “the rest” was essentially consistency and durability
constraints that define “safe-to-return” conditions for re-
quests.

In order to confirm the effectiveness of PADRE,
we decided to construct several existing systems over
PADRE. Initial difficulties stemmed from trying to un-
derstand the protocol of the system we wanted to build
and mapping it to the PADRE world and switching to a
declarative way of thinking to specify liveness polices.
Once we overcame these difficulties, systems became
progressively easier to build.

In this paper, we describe PADRE a policy architec-
ture which allows replication systems to be implemented
by simply specifying policies. In particular, we show that
replication policies can be cleanly separated into safety
policies and liveness policies both of which can be im-
plemented with a small number of primitives

Our experience building 6 systems on PADRE con-
firmed the benefits of PADRE. PADRE is flexible and
can be used to construct a broad range of systems. All
6 systems were built using a few lines of code and in
a short amount of time. We don’t think this feat would
have been possible without PADRE. PADRE also makes
it easy to extend a system. We added significant features
to 4 systems in less than a day. Finally, despite not being
aggressively tuned, the performance of systems built on
PADRE is acceptable for prototyping and deploying in
moderately demanding environments.
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A State Exposed to Predicates

As Section 2.1 noted, most safety policies can make
use of predefined consistency libraries or blocking predi-
cates. Policies may define customized predicates, and for
completeness we list here the information on which they
operate.

Predicates can operate on two classes of informa-
tion: local built-in bookkeeping information and policy-
defined events.

The underlying replication mechanisms expose four
pieces of built-in bookkeeping information about the up-
dates they have processed: (1) the local current logical
version vector cVV (i.e., for each node 7 in the system,
cV'V|[n] is the highest logical timestamp of any event by n
that has been processed by the local node); (2) the local
current real time vector rVV (i.e., for each node in the
system, a real time value such that the local state reflects
the most recent event before that time but no events af-
ter that time); (3) whether any specified object o is valid
(i.e., the local system stores for o an update body whose
logical timestamp matches that of the most recent inval-
idation seen for 0); and (4) whether any specified object
o0 is causally consistent (i.e., if the most recent invalida-
tion locally stored for o has logical time /, and the local
current version vector is cV'V, then any update of o with
logical time later than /, must also be later than ¢VV: (I,
<l)— (Vn:cVVin]) <)

In addition to using built-in bookeeping information,
predicates can make use of policy-specific events gener-
ated by the policy’s liveness rules. Predicates typically
make use of such events to track the propagation of in-
formation to or from other nodes. For example, in a
client-server system, a write might block until a node re-
ceives from the server an acknowledgement representing
that the server has stored the update and invalidated all
other caches.



