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Abstract: This paper presents Padre, a new policy ar-
chitecture for developing data replication systems. Padre
simplifies design and implementation by embodying the
right abstractions for replication in widely distributed
systems. In particular, Padre cleanly separates the prob-
lem of building a replication system into the subprob-
lems of specifying liveness policy and specifying safety
policy, and it identifies a small set of primitives that are
sufficient to specify sophisticated systems. As a result,
building a replication system is reduced to writing a few
liveness rules in a domain-specific language to trigger
communication among nodes and specifying safety pred-
icates that define when the system must block requests.
We demonstrate the flexibility and simplicity of Padre
by constructing a dozen substantial and diverse systems,
each using just a few dozen system-specific policy rules.
We demonstrate the agility that Padre enables by adding
new features to several systems, yielding significant per-
formance improvements; each addition required fewer
than ten additional rules and took less than a day.

1 Introduction
A central task for a replication system designer is
to balance the trade-offs among consistency, availabil-
ity, partition-resilience, performance, reliability, and re-
source consumption. Because there are fundamental ten-
sions among these properties [9, 23], no single best so-
lution exists. As a result, when designers are faced with
new or challenging workloads or environments such as
geographically distributed nodes [28], mobile nodes [17,
19], or environmentally-challenged nodes [8], they of-
ten construct new replication systems or modify existing
ones. Our goal is to reduce the effort required to con-
struct or modify a replication system by providing the
right abstractions to manage these fundamental trade-offs
in such environments.

This paper therefore presents Padre, a new policy ar-
chitecture that qualitatively simplifies the development
of data replication systems, for environments with mo-
bile or widely distributed nodes where data placement,
request routing, or consistency constraints affect perfor-
mance or availablity.

The Padre architecture divides replication system de-
sign into two aspects: liveness policy, defining how to
route information among nodes, and safety policy, em-
bodying consistency and durability requirements. Al-
though it is common to analyze a protocol’s safety and

liveness properties separately, taking this idea a step fur-
ther and separately specifying safety and liveness to im-
plement replication systems is the foundation of Padre’s
effectiveness in simplifying development. Given this
clean division, a surprisingly small set of simple policy
primitives is sufficient to implement sophisticated repli-
cation protocols.
• For liveness policy, the insight is that the policy

choices that distinguish replication systems from each
other can largely be regarded as routing decisions:
Where should a node go to satisfy a read miss? When
and where should a node send updates it receives?
Where should a node send invalidations when it learns
of a new version of an object? What data should be
prefetched or pushed to what nodes in anticipation of
future requests?

• For safety policy, the observation is that consistency
and durability invariants can by ensured by blocking
requests until they do not violate those invariants. E.g.,
block until a write reaches at least 3 nodes, block until
a server acknowledges a write, or block until local stor-
age reflects all updates that occurred before the start of
the current read.
Given these insights, the challenge to implementing

Padre is to define the right set of primitives for concisely
and precisely describing replication systems. We present
a set of triggers (upcalls) exposing the flow of replica-
tion state among nodes, a set of actions (downcalls) to
direct communication of specific subsets of replication
state among nodes, and a set of predicates for blocking
requests and state transfers. To simplify the definition
of liveness (routing) policies in terms of these primitives,
we define R/OverLog1, an extension of the OverLog [24]
routing language.

Even if an architecture is conceptually appealing, to
be useful it must help system builders. We demonstrate
Padre’s power by constructing a dozen systems spanning
a large portion of the design space; we do not believe this
feat would have been possible without Padre. In partic-
ular, in contrast with the ten thousand or more lines of
code it typically takes to construct such a system using
standard practice, it requires just 6-75 policy rules and a
handful of safety predicates to define each system over
Padre. We believe this two to three orders of magnitude
reduction in code volume is illustrative of the qualitative

1Pronounced “R over OverLog” (for Replication over OverLog) or
“Roverlog.”
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Fig. 1: Overview of the Padre architecture for building replication systems by expressing policy.

simplification Padre represents for system implementers.
This simplification stems from two sources: (1) Padre
captures the right abstractions for policy, which reduces
the conceptual effort needed to design a system and (2)
Padre primitives embody the right building blocks, so a
developer does not have to reinvent them.

The rest of this paper describes Padre, demonstrates
how to build systems with Padre, and evaluates the ap-
proach. The paper’s contributions are (1) defining a set
of abstractions that are useful for building and reasoning
about replication systems and (2) providing a system that
realizes these abstractions to facilitate system building.

2 Architecture
Replication systems cover a large design space. Some
guarantee strong consistency while others sacrifice con-
sistency for higher availability; some invalidate stale ob-
jects, while others push updates; some cache objects on
demand, while others replicate all data to all nodes; and
so on. Our design choices for Padre are driven by the
need to accommodate a broad design space while allow-
ing policies to be simple and efficient.

Figure 1 provides an overview of the Padre architec-
ture. To write a policy in Padre, a designer writes live-
ness rules to direct communication between nodes and
safety predicates to block communication and requests
until system invariants are met. To give intuition for how
to build a system by writing such rules, this section pro-
vides an overview of the mechanisms on which these
rules depend, of the abstractions for liveness rules, and
of the abstractions for safety predicates.

Interface and mechanisms. As Figure 1 illustrates,
Padre exposes a local read/write/delete object store in-
terface to applications (©1 in the figure). These functions
operate on local persistent storage mechanisms that han-
dle object storage and consistency bookkeeping ©2.

To propagate updates among machines, Padre requires
a mechanism to transfer streams of updates from one
node to another. For efficiency and flexibility, our Padre
prototype utilizes the PRACTI [2, 46] protocol, which al-

lows a node to set up a subscription to receive updates to
a desired subset of objects ©3.

Three properties of the PRACTI protocol are relevant
to understanding Padre:

1. Partial Replication: For efficiency, a subscription can
carry updates for any subset of the system’s objects,
and the protocol uses separate subscriptions for update
metadata and update data. The update metadata are
represented by invalidation streams that provide infor-
mation about the logical times and ordering of updates
©4. The update data are represented by body streams or
individually fetched update bodies ©5.

2. Any Consistency: Invalidation streams include suffi-
cient information for the system to enforce a broad
range of consistency guarantees, and the system au-
tomatically tracks objects’ consistency status.

3. Topology Independence: A subscription can flow be-
tween any pair of nodes, so any topology for propa-
gating updates can be constructed. Subscriptions can
change dynamically, modifying a topology over time.

As a result of these properties, policies can set up sub-
scriptions for any subset of updates between any pair of
nodes at any time, and the underlying mechanisms han-
dle the details of transferring this data and metadata and
tracking consistency state.

Implementation details about the PRACTI protocol
are available elsewhere [2, 46].

Two additional features of the local read/write inter-
face must be mentioned.

First, for flexibility, this interface allows a write op-
eration to atomically update one or more objects. It also
allows writes to be made to specific byte-ranges.

Second, in order to support algorithms that define a to-
tal order on operations [29], the interface supports a vari-
ation on write called writeCSN (write commit sequence
number) that assigns a CSN, in the form of a logical time,
to a previous update.

Given these storage, consistency bookkeeping, and
update communication mechanisms, which are common
across all systems built on Padre, the focus of this paper
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is defining policy: what are the right primitives for mak-
ing it easy to express the policies that define replication
systems?

Liveness. The first half of defining a system in Padre is
to define a set of liveness rules ©6 that orchestrate com-
munication of updates between nodes. For example, a
client in a client-server system should send updates to the
server on writes and fetch data from the server on read
misses while a node in TierStore [8] should transmit any
update it receives for a volume to all children subscribed
for that volume.

The liveness rules describe how to generate communi-
cation actions (downcalls) ©7 in response to triggers (up-
calls) ©8 and stored events ©9.

Actions route information between nodes’ persistent
storage by setting up subscriptions for data or metadata
streams or by initiating fetches of individual objects.

Triggers provide information about the state and needs
of the underlying replication system. They include local
events (e.g., local read blocked, local write issued), con-
nection events (e.g., body subscription start, invalidation
subscription failed), and message arrival events (e.g., in-
validation arrived or body arrived). These three classes
of triggers provide sufficient information to build sophis-
ticated policies.

Finally, stored events ©9 provide a means to store and
retrieve the hard state many systems need make to their
routing decisions. For example, a node in a client-server
system needs to know who the server is and a distribution
node in a dissemination system [8] needs to know who
has subscribed to what publications.

Designers define liveness policy rules that initiate ac-
tions in response to triggers and stored events using a
rule-based language we call R/OverLog, which extends
OverLog [24] to the needs of replication policy.

Safety. Every replication system guarantees some level
of consistency and durability. Padre casts consistency
and durability as safety policy ©10 because each defines
the circumstances under which it is safe to process a re-
quest or to return a response. In particular, enforcing
consistency semantics generally requires blocking reads
until a sufficient set of updates are reflected in the lo-
cally accessible state, blocking writes until the resulting
updates make it to some or all of the system’s nodes, or
both. Similarly, durability policies often require writes to
propagate to some subset of nodes (e.g., a central server,
a quorum, or an object’s “gold” nodes [31]) before the
write is considered complete or before the updates are
read by another node.

Padre therefore allows blocking predicates ©11 to block
a read request, a write request, or application of received
updates until a predicate is satisfied. The predicates spec-
ify conditions based on the consistency bookkeeping in-
formation maintained by the persistent storage or they

Mechanism
Persistent storage Store objects and maintain consistency metadata
Subscriptions Register interest in receiving updates to some sub-

set of objects
Liveness Policy

Actions Route information from local persistent storage to
remote persistent storage

Triggers Notify liveness policy of local operations, mes-
sages, and connections

Stored Events Store/retrieve persistent state that affects routing
Safety Policy

Predicates Block read, writes, and node-to-node updates to
ensure safety

Fig. 2: Padre abstractions.

can wait for the arrival of a specific message generated
by the liveness policy. Basing the predicates on these
inputs suffices to specify any order-error or staleness er-
ror constraint in Yu and Vahdat’s TACT model [44] and
thereby implement a broad range of consistency mod-
els from best effort coherence to delta coherence [37] to
causal consistency [21] to sequential consistency [22] to
linearizability [44].

Summary. Figure 2 summarizes the main abstractions
provided by Padre to build replication systems.

2.1 Example
To illustrate the approach, we describe the design and im-
plementation of a simple client-server system as a run-
ning example. This simple system includes support for
a client-server architecture, invalidation callbacks [16],
sequential consistency [22], correctness in the face of
crash/recovery of any nodes, and configuration; for sim-
plicity, it assumes that a write overwrites an entire file.

We choose this example not because it is inher-
ently interesting but because it is simple yet sufficient
to illustrate the main aspects of Padre, including sup-
port for coarse- and fine-grained synchronization, con-
sistency, durability, and configuration. In Sec. 4.1, we
extend the example with features that are relevant for
practical deployments, including leases [11], cooperative
caching [7], and an NFS [32] interface with partial-file
writes.

Ideally, a policy architecture should let a designer de-
fine such a system by describing its high level properties
and letting the runtime handle the details. For example,
a designer might describe a simple client-server system
using the following statements:

L1. On a read miss, a client should fetch the miss-
ing object from the server.

L2. On a read miss, a client should register to re-
ceive callbacks for the fetched object.

L3. On a write, a client should send the update to
the server.
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L4. Upon receiving an update of an object, a server
should send invalidations to all clients registered to
receive callbacks for that object.

L5. Upon receiving an invalidation of an object, a
client should send an acknowledgment to the server
and cancel the callback.

L6. Upon receiving all acknowledgments for an
update, the server should inform the writer.

Additionally, to configure the system the clients and
server need to know each other.

L7. At startup, a node should read the server ID
from a configuration file.

Similarly, a designer can make simple statements about
the desired durability and consistency properties of the
system. One such safety property relates to durability:

S1. Do not allow a write by a client to be seen
by any other client until the server has stored the
update.

Other safety properties relate to ensuring sequential con-
sistency. One way to ensure sequential consistency is to
enforce three properties S2, S3, and S4. The first two are
straightforward:

S2. A write of an object must block until all earlier
versions have been invalidated.

S3. A read of an object must block until the reader
holds a valid, consistent copy of the object.

The last safety property for this formulation of sequential
consistency is more subtle. Since multiple clients can is-
sue concurrent writes to multiple objects, we must define
some global sequential order on those writes and ensure
that they are observed in that order. In a client-server
system it is natural to have the server set that total order:

S4. A read or write of an object must block until
the client is guaranteed to observe the effects of all
earlier updates in the sequence of updates defined
by the server.

This rule requires us to add one more liveness rule:
L8. Upon receiving acknowledgements for all of
an update’s invalidations, the server should assign
the update a position in the global total order.

The 12 statements above seem to be about as simple a
description as one could hope to have of our example
system. If we can devise an architecture that allows a de-
signer to build such a system with something close to
this simple description while the architecture and run-
time hide or handle the mechanical details, we will regard
Padre as a success.

2.2 Excluded properties
There are at least three properties that Padre does not ad-
dress or for which it provides limited choice to designers:
security, interface, and conflict resolution.

First, Padre does not support security specification.
We believe that ultimately our policy architecture should
also define flexible security primitives. Providing this ca-
pability is important future work, but it is outside the
scope of this paper, which can be regarded as focusing
on the architectural problem of allowing systems to de-
fine their replication policy in terms of safety and liveness
to address the CAP [9], performance [23], reliability, and
resource consumption trade-offs.

Second, Padre exposes an object-store interface for lo-
cal reads and writes. It does not expose other interfaces
such as a file system or a tuple store. We believe that
these interfaces are not difficult to incorporate. Indeed,
we have implemented an NFS interface over our proto-
type [3].

Third, Padre only assumes a simple conflict resolu-
tion mechanism. Write-write conflicts are detected and
logged in a way that is data-preserving and consistent
across nodes to support a broad range application-level
resolvers. We do not attempt to support all possible
conflict resolution algorithms [8, 18, 19, 34, 39]. We be-
lieve it is straightforward to extend Padre to support other
models such as Bayou’s application-specified conflict de-
tection and reconciliation programs [39].

3 Detailed design
It is well and good to say that designers should build
replication systems by specifying liveness with actions,
triggers, and stored events and by specifying safety with
blocking predicates, but designers can only take this ap-
proach if Padre provides the right set of primitives from
which to build. These primitives must be simple, expres-
sive, and efficient. Given the high-level Padre architec-
ture, precisely defining these primitives is the central in-
tellectual challenge of Padre’s detailed design.

We first detail Padre’s abstractions for defining live-
ness and safety policy. We then discuss two crosscutting
design issues: fault tolerance and correctness.

3.1 Liveness policy
In Padre, a liveness policy must set up invalidation and
body subscriptions so that updates propagate among
nodes to meet a designer’s goals. For example, if a
designer wants to implement hierarchical caching, the
liveness policy would set up subscriptions among nodes
to send updates up and to fetch data down. If a de-
signer wants nodes to randomly gossip updates, the live-
ness policy would set up subscriptions between random
nodes. If a designer wants mobile nodes to exchange up-
dates when they are in communications range, the live-
ness policy would probe for available neighbors and set
up exchanges at opportune times. If a designer wants a
laptop to hoard files in anticipation of disconnected op-
eration [19], the liveness policy would periodically fetch
files from the hoard list. Etc.
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Liveness policies do such things by defining how ac-
tions are taken in response to triggers and stored events.

3.1.1 Actions

The basic abstraction provided by a Padre action is sim-
ple: an action sets up a subscription to route updates
from one node to another.

The details of this primitive boil down to making sub-
scriptions efficient by letting designers control what in-
formation is sent. To that end, the subscription actions
API gives the designer 5 choices:

1. Select invalidations or bodies. Each update comprises
an invalidation and a body. An invalidation indicates
that an update of a particular object occurred at a par-
ticular instant in logical time; invalidations help en-
force consistency by notifying nodes of updates and
by ordering the system’s events. Conversely, a body
contains the data for a specific update.

2. Select objects of interest. A subscription specifies
which objects are of interest to the receiver, and the
sender only includes updates for those objects. Padre
exports a hierarchical namespace so a group of related
objects can be concisely specified (e.g., /a/b/*).

3. For a body subscription, select streaming or single-
item mode. A subscription for a stream of bodies sends
updated bodies for the objects of interest until the sub-
scription terminates; such a stream is useful for coarse-
grained replication or for prefetching. Alternatively, a
policy can send a single body by having the sender
push it or the receiver fetch it. For reasons discussed
below, invalidations are always sent in streams.

4. Select the start time for a subscription. A subscription
specifies a logical start time, and the stream sends all
updates that have occurred since that time.

5. Specify a catchup mode for a subscription. If the start
time for a subscription is earlier than the sender’s cur-
rent logical time, then the sender can transmit either a
log of the events that occurred between the start time
and the current time or a checkpoint that includes just
the most recent update to each byterange since the start
time. Sending a log is more efficient when the num-
ber of recent changes is small compared to the number
of objects covered by the subscription. Conversely, a
checkpoint is more efficient if (a) the start time is in
the distant past (so the log of events is long) or (b) the
subscription is for only a few objects (so the size of
the checkpoint is small). Note that once a subscrip-
tion catches up with the sender’s current logical time,
updates are sent as they arrive, effectively putting all
active subscriptions into a mode of continuous, incre-
mental log transfer.

Figure 18 in the Appendix lists the full actions API.

Example. Consider the operation of the simple client-
server system. The actions required to route bodies and
invalidations are simple, entailing four Padre actions to
handle statements L1-L4 in Section 2.1.

In particular, on a read miss for object o, a client takes
two Padre actions. First, it issues a single-object fetch for
the current body of o (L1). Second, it sets up an invalida-
tion subscription for object o so that the server will notify
the client if o is updated (L2 and L4). As a result of these
actions, the client will receive the current version of o,
receive consistency bookkeeping information for o, and
receive an invalidation when o is next modified.

To send a client’s writes to the server (L3), rather than
set up fine-grained, dynamic, per-object subscriptions as
we do for reads, at startup a client’s liveness policy sim-
ply creates two coarse-grained subscriptions: one to send
data (bodies) for all objects starting from the server’s cur-
rent logical time and another to do the same for metadata
(invalidations.)

3.1.2 Triggers
Liveness policies invoke Padre actions when Padre trig-
gers signal important events.
• Local read, write, delete operation triggers inform the

liveness policy when a read blocks because it needs
additional information to complete or when a local up-
date occurs.

• Messages receipt triggers inform the liveness policy
when an invalidation arrives, a body arrives, a fetch
succeeds, or a fetch fails.

• Connection event triggers inform the liveness policy
when subscriptions are successfully established, when
a subscription has allowed a receiver’s state to catch
up with a sender’s state, or when a subscription is re-
moved or fails.

Figure 18 in the Appendix lists the full triggers API.

Example. In the simple client-server example, to issue
a demand read request and set up callbacks, statements
L1 and L2 are triggered when a read blocks; to have a
client acknowledge an invalidation, statement L5 is trig-
gered when a client receives an invalidation message; and
to notify a writer when its write has completed, state-
ments L6 and L8 are triggered when a server receives
acknowledgements from clients.

Statement L3 requires a client to send all updates to
the server. Rather than setting up a subscription to send
o when o is written, our implementation maintains a
coarse-grained subscription for all objects at all times.
Establishment of this subscription is triggered by system
startup and by connection failure.

Statement L4 requires a server to send invalidations to
all clients registered to receive callbacks for an updated
object. These callback subscriptions are set up when a
client reads data (L2), and because these subscriptions
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are already established, the liveness policy need not take
any additional action when an update arrives.

3.1.3 Stored events
Systems often need to maintain hard state to make rout-
ing decisions. Supporting this need is challenging both
because we want an abstraction that meshes well with
our event-driven, rule-based policy language and because
the techniques must handle a wide range of scales. In
particular, the abstraction must handle not only simple,
global configuration information (e.g., the server iden-
tity in a client-server system like Coda [19]), but it must
also scale up to per-volume or per-file information (e.g.,
which children have subscribed to which volumes in a
hierarchical dissemination system [8, 28] or which nodes
store the gold copies of each object in Pangaea [31].)

To provide a uniform abstraction to address this range
of concerns, Padre provides stored events. To use stored
events, policy rules produce one or more tuples that are
stored into a data object in the underlying persistent ob-
ject store. Rules also define when the tuples in an ob-
ject should be retrieved, and the tuples thus produced can
then trigger other policy rules. Figure 18 in the Appendix
shows the full API for stored events.

To illustrate the flexibility of stored events, we first
illustrate their use for simple configuration information
in the running example. We then illustrate several more
dynamic, fine-grained applications of the primitive.

Example: Simple client-server. Clients must route
requests to the server, so the liveness policy needs to
know who that is. At configuration time, the installer
writes the tuple ADD SERVER [serverID] to the object
/config/server. At startup, the liveness policy pro-
duces the stored events from this object, which causes the
client’s liveness policy to update its internal state with the
identity of the server.

Example: Hoard list. To append an item to a hoard
list [19], a rule can create the tuple HOARD ITEM, ob-
jId and use the stored event abstraction to add that tuple
to the persistent object /config/[nodeID]/hoardlist.
Later when the policy wishes to walk the hoard list to
prefetch objects, it can use the stored event abstrac-
tion to produce all of the tuples stored in hoardlist,
which causes the runtime system to generate all of the
HOARD ITEM tuples stored in the object. The produc-
tion of these tuples, in turn, activates rules that cause ac-
tions such as fetching an item from the server.

Example: Per-volume subscriptions. In a hierarchi-
cal dissemination system, to set up a persistent subscrip-
tion for volume v from a parent p to a child c, a rule
at the parent stores the tuple SUBSCRIPTION c v to an
object /subs/p/v. Later, when a trigger indicates that
an update for v has arrived at p, a policy rule uses the
stored events abstraction to produce the events stored in

/subs/p/v, which, in turn, activates rules that cause ac-
tions such as transmission of recent updates of v to each
of the children with subscriptions.

Example: Per-file location information. In Pan-
gaea [31], each file’s directory entry includes a list of
gold nodes that store copies of that file. To implement
such fine-grained, per-file routing information, a Padre
liveness policy creates a goldList object for each file,
stores several GOLD NODE objId nodeId tuples in that
object, and updates a file’s goldList whenever the file’s
set of gold nodes changes (e.g., due to a long-lasting
failure.) When a read miss occurs, the liveness pol-
icy produces the stored GOLD NODE tuples from file’s
goldList, and these tuples activate rules that route a
read request to one of the file’s gold nodes.

3.1.4 Liveness policies in R/OverLog
To write a liveness policy, a designer writes rules
in R/OverLog. As in OverLog [24] a program in
R/OverLog is a set of table declarations for storing tu-
ples and a set of rules that specify how to create a new
tuple when a set of existing tuples meet some constraint.
For example,

out(@Y, A, C) :- in1(@X, A, B, C), t1(@X, A, B, D),
t2(@X, A, ), C < D

indicates that whenever there exist at node X a tuple in1,
any entry in table t1, and any entry in table t2 such that all
have identical second fields (A), in1 and the tuple from t1
have identical third fields (B), and the fourth field (C) of
in1 is smaller than the fourth field (D) in the tuple from
t1, create a new tuple (out) at node Y using the second and
fourth fields from in1 (A and C). Note that for the tuple
in t2, the wildcard matches anything for field three.

R/OverLog extends OverLog by adding type informa-
tion to tuples and by efficiently implementing the inter-
face for inserting and receiving tuples from a running
OverLog program. This interface is important for Padre
to inject triggers to and receive actions from the policy.

R/OverLog implements fixed point semantics by
which all rules triggered by the appearance of the same
tuple are executed atomically in isolation from one an-
other. Once all such tuples are executed, their table up-
dates are applied, their actions are invoked, and the tuples
they produce are enqueued for future execution. Then an-
other new tuple is selected and all of the rules it triggers
are executed.

Note that if learning a domain specific language is not
one’s cup of tea, one can define a (less succinct) policy by
writing Java handlers for Padre triggers and stored events
to generate Padre actions and stored events.

Example. Statement L1 of our simple client server ex-
ample allows a client to fetch a missing object from the
server when it suffers a read miss. We can write two
R/OverLog rules to express this complete statement:
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Blocking Conditions
isValid Block until node has body corresponding to high-

est received invalidation for the target object
isComplete Block until object’s consistency state reflects all

updates before the node’s current logical time
isSequenced
VV|CSN

Block until object’s total order is established via
Golding’s algorithm (VV) [10] or an explicit com-
mit (CSN) [29].

propagated
nodes, count, p

Block until count nodes in nodes have received
my pth most recent write

maxStale
nodes, count, t

Block until I have received all writes up to
(operationStart− t) from count nodes in nodes.

tuple tuple-spec Block until receiving a tuple matching tuple-spec

Fig. 3: Conditions available for defining safety policies.

L1a: clientRead(@S, C, Obj, Off, Len) :-
TRIG informReadBlock(@C, Obj, Offset, Len, ),
TBL serverId(@C, S), C 6= S.

.

L1b: ACT sendBody(@S, S, C, Obj, Off, Len) :-
clientRead(@S, C, Obj, Off, Len).

The first rule is triggered when a read blocks at a
client. It generates a clientRead tuple at the server. The
appearance of this tuple at the server generates a send-
Body action.

This approach allows us to define a liveness policy us-
ing rules that track our original statements L1-L8. See
the appendix for a full listing of the 21-rule R/OverLog
liveness policy for this example. Most of our original
statements map to one or two rules. Tracking which
nodes require or have acknowledged invalidations is a bit
more involved, so L6 maps to eight rules that maintain
lists of clients that must receive callbacks.

Although this example is simple, our experience for a
broad range of systems is that Padre generally provides a
natural, precise, and concise way to express a designer’s
intent and that it meets our goal of allowing a designer to
construct a system by writing high-level statements de-
scribing the system’s operation.

3.2 Safety policy
In Padre, a system’s safety policy is defined by a set of
blocking predicates that prevent state observation or up-
dates until consistency or durability constraints are met.

Padre defines 5 points for which a policy can supply a
predicate and a timeout value that blocks a request until
the predicate is satisfied or the timeout is reached. Read-
NowBlock blocks a read until it will return data from
a moment that satisfies the predicate, and WriteBefore-
Block blocks a write before it modifies the underlying lo-
cal store. ReadEndBlock and WriteEndBlock block read
and write requests after they have accessed the local store
but before they return. ApplyUpdateBlock blocks an up-
date received from the network before it is applied to the
local store.

Figure 3 lists the conditions available to safety predi-
cates. isValid is useful for enforcing coherence on reads
and for maximizing availability by ensuring that inval-

idations received from other nodes are not applied un-
til they can be applied with their corresponding bod-
ies [8, 28]. isComplete and isSequenced are useful for
enforcing consistency semantics like causal, sequential,
or linearizable. propagated and maxStaleness are useful
for enforcing TACT order error and temporal error tun-
able consistency guarantees [44]. propagated is also use-
ful for enforcing some durability invariants. Cases not
handled by these predicates are handled by tuple. Tu-
ple becomes true when the liveness rules produce a tuple
matching a specified pattern.

For maximum flexibility, each read/write operation in-
cludes parameters to specify the safety predicates. Repli-
cation system developers typically insulate applications
and users from the full interface by adding a simple wrap-
per that exposes a standard read/write API and that adds
the appropriate parameters before passing the requests
through to Padre.

The ApplyUpdateBlock predicate is set by a function
call that supplies the predicate to be enforced on incom-
ing updates.

Example. Part of the reason for focusing on the client
server example is that the example illustrates both some
simple aspects of safety policy and some that are rela-
tively complex.

Statement S1 requires the server to block application
of invalidations until the corresponding body can be si-
multaneously applied. This restriction is easily enforced
by setting isValid for the ApplyUpdateBlock predicate.

Statement S2 requires us to prevent a write from com-
pleting until all earlier versions of the updated object
have been invalidated. So, we define a writeComplete
objId logicalTime tuple that the server generates once it
has gathered acknowledgements from all nodes that had
been caching the object (L6), and we set the writeEnd-
Block predicate to block until this tuple is produced.

Statement S3 and S4 require a read to return only se-
quentially consistent data, so the ReadNowBlock predi-
cate sets three flags: isValid ensures that the read returns
only when the body is as fresh as the consistency state;
isComplete ensures that the read returns only when the
consistency metadata for the object is current; and isSe-
quenced CSN ensures that the read of an object returns
only once the reader has observed the server’s commit
of the most recent write of that object. Similarly, S4 re-
quires us to prevent a write from completing until the lo-
cal state reflects all previously sequenced updates, so the
writeEndBlock predicate requires the isSequenced CSN
condition.

Theorem 1. The simple client server implementation en-
forces sequential consistency.

Proof. We first define a total order on all updates and
reads. We then show this total order is consistent with
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every node’s program order.

Total order on updates. An update is assigned two
logical timestamps called accept stamps: the writer’s log-
ical time when the writer issued the write and the server’s
logical time when it commits the write. An accept stamp
has two parts, a node ID and a value. We define a total
order on accept stamps:

as1 < as2 iff as1.value < as2.value
OR
(as1.value = as2.value

AND as1.node < as2.node)
The value of a timestamp is a Lamport clock [21]: a

node n maintains the invariant that its n.value exceeds
the value in any event it has previously observed. It does
so by setting n.value = max(event.value + 1, n.value)
whenever it receives an event and by setting n.value =
n.value+1 whenever it generates an event.

Note that if an update has a logical write time of w,
then if it has a commit time of c, c > w: since a server
issues a commit after seeing a write, the commit’s record
must have an accept stamp that exceeds the accept stamp
of the write’s record.

When two updates modify the same byte, the under-
lying Padre data storage and transfer mechanisms imple-
ment a last writer wins policy. So, if update u2’s write
time exceeds update u1’s write time (u2.w > u1.w) and
both updates modify the same byte, then update u2 must
appear after update u1 in our total order.

We therefore assign an effective commit time to an up-
date u that was committed by the server with commit c to
be the following tuple:

u.et = c′.as where c′ is a commit record s.t.
c′.as > u.as
AND
c′.target = u.target
AND
(6 ∃c′′ s.t. c′′.target = u.target AND
u.as < c′′.as < c′.as )

I.e., u is effectively committed by the next commit
record that commits any write that updates the same data
as u.

Notice that for update u1 and u2 both updating the
same data, if update u1 has an earlier logical timestamp
than update u2 but commit c2 has an earlier logical times-
tamp than commit c1, then both u1 and u2 have an effec-
tive commit time of c2.as.

Write polistion. We can now define an update u’s
position based on u’s effective commit time and accept
stamp.:

u.pos = [u.et, u.as]
and we order the positions to define a total order on all
updates:

u1.pos < u2.pos iff u1.pos.et < u2.pos.et
OR
(u1.pos.et = u2.pos.et
AND u1.pos.as < u2.pos.as)

Read position. A read’s effective time is the largest
commit stamp for any write issued by the reader or re-
ceived by the reader before the read accesses the object
store. Since multiple reads can have the same effective
time, we break ties using the nodes accept stamp at the
time of the read. Note that each read operation advances
the node’s accept stamp.

We can now define a read’s position based on its ef-
fective time and accept stamp:

r.pos = [r.et, r.as]
and we order the positions to define a total order:

r1.pos < r2.pos iff r1.pos.et < r2.pos.et
OR
(r1.pos.et = r2.pos.et
AND r1.p.as < r2.p.as)

Total order on all reads and writes. A total order
on all reads and writes is defined by the write position and
the read position. Specifically all reads with an effective
time et come after all writes with effective commit time
et.

o1.pos < o2.pos iff o1.pos.et < o2.pos.et

OR

o1.pos.et = o2.pos.et

AND

[(o1.op = o2.op AND
o1.as < o2.as)

OR

(op1.op 6= o2.op AND
o2.op = READ)]

Order of local operations is consistent with the to-
tal order. Recall that a write blocks until the server
assigns a commit record for the write and an acknowl-
edgement is received. Hence for two consecutive lo-
cal writes, the effective time of the first write is always
smaller than the effective time of the second write. For
two writes, w1 and w2, if w1 happened before w2, we
can conclude that (w1.as < w2.as AND w1.et < w2.et).
Hence, w1.pos < w2.pos

Since reads are issued with the ReadNowBlock pred-
icate having the isSequenced CSN condition set, a read
of an object blocks until the node receives the commit
record for that write. Thus, the effective time of a read
of byte is at least as large as the last committed write of
that byte. If a write, w1, happened before a read, r1, we
can conclude that (w1.as < r1.as AND w1.et <= r1.et)
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Since for the same effective times, reads are ordered after
writes, w1.pos < r1.pos.

On the other hand, if a read, r1, locally happened be-
fore another read, r2, r2’s effective time is at least as
large as r1. Since (r1.as < r2.as AND r1.et <= r2.et),
we can conclude that r1.pos < r2.pos.

Finally, if a write, w1, locally happened before a read,
r1, r1’s effective time is at least as large as that of w1.
Since, (w1.as < r1.as AND w1.et <= r1.et). we can
conclude that w1.pos < r1.pos.

Putting all the above cases together, we have shown
that if an operation, op1, happened before another op-
eration, op2, on a node, then op1.pos is smaller than
op2.pos.

The results of local operations are consistent with
the total order. A write does not get a CSN until all
nodes caching the target object have been invalidated.
Since reads are issued with the ReadNowBlock predicate
having the isSequenced CSN condition set, once data to
be read is invalidated, a read of that object blocks until
the node receives the commit record. Thus, for all writes
that can affect the results of the read, either (a) the read
completes before a write of the same object is assigned
a CSN, gets assigned an effective time smaller than that
of the write, comes before the write in the total order and
does not reflect or (b) the read completes after the reader
receives the CSN for the write, gets assigned an effective
time equal to the commit time of the write and reflects
the update.

Hence, any read reflects the result of all writes that
precede the read in the total order and none that succeed
it in the total order.

Given that there is total order on all operations and
results of local operations are consistent with that total
order, we conclude that the client server implementation
enforces sequential consistency. �

Overall, we find that Padre’s separation of safety and
liveness and the simple view of consistency state ex-
ported by Padre not only simplifies implementing safety
semantics but also simplifies reasoning about their cor-
rectness.

3.3 Crosscutting issues
Much of the simplicity of Padre policies comes be-
cause the Padre primitives automatically handle many
low-level details that otherwise complicate a system de-
signer’s life. Some of these aspects of Padre can be il-
lustrated by describing how a designer approaches two
cross-cutting issues in Padre: tolerating faults and rea-
soning about the correctness of a policy.

3.3.1 Fault tolerance
At design time, Padre’s role is to help a designer ex-
press design decisions that affect fault tolerance. For
example, by setting up subscriptions to distribute data

and metadata, the liveness policy determines where data
are stored, which affects both durability and availability.
E.g., a designer can store all data at all nodes [29], store
data at a group of redundant, well-maintained servers
and hoard data at clients for disconnected operation [19],
store data at any k nodes [31], etc. Similarly, by defin-
ing a static or dynamic topology for distributing updates
or fetching data, the liveness policy can affect availabil-
ity by determining when nodes are able to communicate.
E.g., a designer can specify an adaptive, gossip-based
topology [29], a hierarchy that makes use of delay tol-
erant links [8] or that reconfigures around faults [42], a
static hierarchy or client-server topology, etc. Finally,
by specifying what consistency constraints to enforce,
the safety policy affects availability, with stronger con-
sistency generally making it more difficult or expensive
to maintain a given level of system availability.

Then, during system operation, Padre liveness rules
define how to detect and react to faults. Often, policies
simply detect failures when failed network connections
invoke a subscription failed trigger, but Padre’s use of a
variation of OverLog for defining liveness policies also
allows more sophisticated systems to include rules to ac-
tively monitor nodes’ connectivity [24], or even imple-
ment a group membership or agreement algorithm [36].
Example reactions to faults include retrying or aborting
requests, rerouting requests, or making additional copies
of data whose replication factor falls below a low water
mark.

Finally, when a node recovers, Padre’s role is to insu-
late the designer from the low-level details. Upon recov-
ery, local mechanisms first reconstruct local state from
persistent logs. Then, Padre’s subscription primitives ab-
stract away many of challenging details resynchroniz-
ing node state, allowing per-system policies to focus on
reestablishing the system’s high-level update flows.

In particular, an invalidation stream for object set O
not only transfers detailed information about the updates
of objects in O but also carries additional information
identifying sets of objects to which causally-preceding
updates may have been omitted. As a result, a Padre
node’s consistency bookkeeping logic (©2 in Figure 1) au-
tomatically tracks the subset of objects for which com-
plete information is present and another subset that may
be affected by omitted updates [2, 46], and safety poli-
cies can block access to the latter if they desire to enforce
FIFO or stronger consistency.

Notably, these mechanisms track this consistency
state even across crashes that could introduce gaps in the
sequences of invalidations sent between nodes. As a re-
sult, crash recovery in most systems simply entails restor-
ing lost connections and letting the underlying mech-
anisms ensure that local state reflects any updates that
were missed.

Note that the protocols for transferring invalidation
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streams use two techniques to minimize the cost of send-
ing the extra bookkeeping information needed to flag po-
tentially inconsistent subsets of data. First, they use im-
precise invalidations to concisely summarize missing in-
formation [2]. Second, they multiplex multiple subscrip-
tions over the same network connection so that they only
need to send information relating to any update once per
connection rather than repeatedly sending this bookkeep-
ing information once per subscription [46]. Implementa-
tion details for these low-level mechanisms appear else-
where [2, 46].

Example. In the simple client-server system, signifi-
cant design-time decisions include requiring all data to
be stored at and fetched from a central server and enforc-
ing sequential consistency.

Because of the semantics embedded in the subscrip-
tion primitives, simple techniques then suffice to ensure
correct operation even if the client crashes and recovers,
the server crashes and recovers, or network connections
fail and are restored.

In particular, after a subscription carrying updates
from a client to the server breaks, the server periodi-
cally attempts to reestablish the connection. Because the
server always restarts a subscription from where it left
off, once a local write is applied to a client’s local state,
it eventually must be applied to the server’s state

Additionally, after a connection carrying invalidations
from the server to the client breaks and is reestablished,
Padre’s low-level consistency bookkeeping mechanisms
advance the client’s consistency state only for objects
whose subscriptions have been added to the new connec-
tion. Other objects are then treated as potentially incon-
sistent as soon as the first invalidation arrives on the new
connection. As a result, no special actions are needed
resynchronize a client’s state during recovery. Note that
to ensure that writes can complete and to avoid having
to reestablish all subscriptions, the part of the server’s
liveness policy that waits for clients to acknowledge in-
validations treats a client’s acknowledgement for an in-
validation as also acknowledging all earlier invalidations
from the server to the client.

3.3.2 Correctness
Three aspects of Padre’s core architecture simplify rea-
soning about the correctness of Padre systems. First,
the primitives over which policies are built handle the
low-level bookkeeping details needed to track consis-
tency state. Second, the separation of policy into safety
and liveness reduces the risk of safety violations: safety
constraints are expressed as simple invariants and errors
in the (more complex) liveness policies tend to mani-
fest as liveness bugs rather than safety violations. Third,
the conciseness of Padre specifications greatly facilitates
analysis, peer review, and refinement of designs.

Example In the client-server system, the same abstrac-
tions that simplify reasoning about consistency synchro-
nization across failures also make systems robust to de-
sign errors. For example, if a policy starts a subscription
“too late,” fails to include needed objects in a subscrip-
tion, or fails to set up a subscription from a node that has
needed updates, the bookkeeping logic will identify any
affected items as potentially inconsistent. Additionally,
in such a situation, safety constraints will block reads or
writes or both, but they will not allow applications to ob-
serve inconsistent data. Finally, the conciseness of the
specification facilitates analysis: the system is defined
by 21 liveness rules and 5 safety predicates (see the Ap-
pendix for the entire specification), and most of the 21
rules are trivial; the difficult parts of the design come
down to 9 rules (L6a-L6i).

3.4 Local interface libraries.
The object store interface provided by Padre is intended
as a simple low-level API over which a developer would
typically add a wrapper through which applications send
requests. To facilitate deployment of useful Padre sys-
tems, we provide several pre-built, standard wrapper li-
braries.

The simplest of these libraries provide high-level con-
sistency or durability properties by wrapping the read and
write calls to set the appropriate blocking parameters.
We provide simple wrappers for linearizability, sequen-
tial consistency, causal consistency [21], bounded stale-
ness [37, 44], best effort coherence, PRAM/FIFO consis-
tency [23], and order error [44]. We also provide a wrap-
per library that does read and write buffering to provide
open/close consistency [19].

Another use of wrapper libraries is to provide alter-
native interfaces to our object store. For example, we
provide a wrapper that provides a user-level NFS server
(similar to SFS [25] but written in Java) so that a user
can run a Padre node with this wrapper on their local ma-
chine and then mount the file system; note that in this
configuration the NFS protocol is used between the local
in-kernel NFS client and the local user-level NFS server,
and the Padre runtime handles communication between
machines.

4 Evaluation
A policy architecture for replication systems should be
flexible, should simplify system building, should facili-
tate the evolution of systems, and should have good per-
formance. To examine the first three factors, our evalua-
tion centers on a series of case studies. We then examine
the performance of the prototype.

Experimental environment. The prototype imple-
mentation uses PRACTI [2, 46] to provide the mech-
anisms over which policy is built. We implement a
R/OverLog to Java compiler using the xtc toolkit [12,
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15]. Except where noted, all experiments are carried
out on machines with single-core 3GHz Intel Pentium-
IV Xeon processors, 1GB of memory, and 1Gb/s Ether-
net. Machines are connected via an Emulab [41], which
allows us to vary network latency. We use Fedora Core
6, BEA JRocket JVM Version 27.4.0, and Berkeley DB
Java Edition 3.2.23.

4.1 Full example
In previous sections, we discuss implementation of a sim-
ple client-server system. This system requires just 21
Padre liveness rules and five Padre safety predicates, and
it implements a client-server architecture, callbacks, se-
quential consistency, crash recovery, and configuration.

We can easily add additional features to make the sys-
tem more practical.

First, to ensure liveness for all clients that can commu-
nicate with the server, we use volume leases [43] to ex-
pire callbacks from unreachable clients. Adding volume
leases requires an additional safety predicate to block
client reads if the client’s view of the server’s state is
too stale. The liveness implementation keeps the client’s
view up-to-date by sending periodic heartbeats via a vol-
ume lease object. It requires 3 liveness rules to have
clients maintain subscriptions to the volume lease object
and have the server put heartbeats into that object, and
4 more to check for expired leases and to allow a write
to proceed once all leases expire. Note that by trans-
porting heartbeats via a Padre object, we ensure that a
client observes a heartbeat only after it has observed all
causally preceding events, which greatly simplifies rea-
soning about consistency.

Second, we add cooperative caching [7] by replacing
the rule that sends a body from the server with 6 rules: 3
rules to find a helper and get data from the helper, and 3
rules to fall back on the server if there no helper is found
or when the helper fails to satisfy the request. Note that
reasoning about cache consistency remains easy because
invalidation metadata still follow the client-server paths,
and the safety predicates ensure that a body is not read
until the corresponding invalidation has been processed.
In contrast, some previous implementations of coopera-
tive caching found it challenging to reason about consis-
tency [5].

Third, we add support for partial-file writes by adding
seven rules to track which blocks each client is caching
and to cancel a callback subscription for a file only when
all blocks have been invalidated.

Fourth, we add three rules to the server that check for
blind writes when no callback is held and to establish
callbacks for them.

Figure 4 illustrates the functionality of the enhanced
system. To highlight the interactions, we add a 50ms
delay on the network links between the clients and the
server. We configure the system with a 2 second lease
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Fig. 5: Demonstration of TierStore under a workload similar to
that in Figure 4.

heartbeat and a 5 second lease timeout. In this exper-
iment, one client repeatedly reads an object and then
sleeps for 500ms and another client repeatedly writes the
object and sleeps for 2000ms. We plot the start time, fin-
ish time, and value of each operation.

During the first 20 seconds of the experiment, as the
figure indicates and as promised by Theorem 1, sequen-
tial consistency is enforced.2

We kill the server process 20 seconds into the exper-
iment and restart it 10 seconds later. While the server is
down, writes block immediately and reads continue un-
til the lease expires. Both resume shortly after the server
restarts, and the mechanics of subscription reestablish-
ment ensure that consistency is maintained.

We kill the reader at 50 seconds and restart it 10 sec-
onds later. Initially, writes block, but as soon as the lease
expires, writes proceed. When the reader restarts, reads
resume as well.
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4.2 Example: Weaker consistency
Many distributed data systems weaken consistency to im-
prove performance or availability. For example, Figure 5
illustrates a similar scenario as Figure 4 but using the
Padre implementation of TierStore [8], which enforces
best effort coherence rather than sequential consistency
and which propagates updates according to volume sub-
scriptions rather than via demand reads. As a result, all
reads and writes complete locally and without blocking,
so both performance and availability are improved.

4.3 Additional case studies
This section discusses our experience constructing 7 base
systems and 5 additional variations detailed in Figure 6.
The case study systems cover a large part of the design
space including client-server systems like Coda [19] and
TRIP [28], server-replication systems like Bayou [29]
and Chain Replication [40], and object replication sys-
tems like Pangaea [31] and TierStore [8].

The systems include a wide range of approaches
for balancing consistency, availability, partition re-
silience, performance, reliability, and resource consump-
tion, including demand caching and prefetching; coarse-
and fine-grained invalidation subscriptions; structured
and unstructured topologies; client-server, cooperative
caching, and peer-to-peer replication; full and partial
replication; and weak and strong consistency. The fig-
ure details the range of features we implement from the
papers describing the original systems.

Except where noted in the figure all of the systems im-
plement important features like well-defined consistency
semantics, crash recovery, and support for both the object
store interface and an NFS wrapper.

Rather than discussing each of these dozen systems
individually [3], we highlight our overall conclusions:

1. Padre is flexible.

As Figure 6 indicates, we are able to construct systems
with a wide range of architectures and features. Padre is
aimed at environments where nodes are geographically
distributed or mobile and where data placement affects
performance or availability. Other environments such as
machine rooms may prioritize different types of trade-
offs and benefit from different approaches [1].

2. Padre simplifies system building.

As Figure 6 details, each system is described with 6 to 75
liveness rules and a few blocking predicates. As a result,
once a designer knows how she wants a system to work
(i.e., could describe the system in high-level terms like
L1-L8 and S1-S4), implementing it is straightforward.
Furthermore, the compactness of the code facilitates code

2In this simple case, sequential consistency requires each read to
return the value of the last write to complete before the start of the read
or the value of any write to begin after the start but before the end of
the read.

review, and the separation of safety and liveness facili-
tates reasoning about correctness.

Many systems are considerably simpler than the client
server example primarily because they require less strin-
gent consistency semantics. Our Chain Replication and
Pangaea implementations are more complex, at 75 rules
each, due to the implementation of a membership service
for Chain Replication and the richness of features in Pan-
gaea.
3. Padre facilitates the evolution of existing systems and

the development of new ones.

We illustrate Padre’s support for rapid evolution by by
adding new features to several systems. We add cooper-
ative caching to the Padre version of Coda (P-Coda) in 4
lines; this addition allows a set of disconnected devices
to share updates while retaining consistency. We add
small-device support to P-Bayou in 1 line; this addition
allows devices with limited capacity or that do not care
about some of the data to participate in a server replica-
tion system. We add cooperative caching to P-TierStore
in 4 lines; this addition allows data to be downloaded
across an expensive modem link once and then shared via
a cheap wireless network. Each of these simple optimiza-
tions provides significant performance improvements or
needed capabilities as illustrated in Section 4.5.

Overall, our experience supports our thesis that Padre
facilitates the design of replication systems by capturing
the right core abstractions for describing such systems.

We briefly describe our experience with these systems
below.

4.3.1 P-Bayou
Bayou is a server replication system that uses anti-
entropy to exchange updates between any pair of servers
at any time. We implement a server replication system
over Padre modeled on the version of Bayou described
by Petersen et. al. [29]. In particular, we implement log-
based peer-to-peer anti-entropy protocol, log truncation
to limit state, checkpoint exchange in case of log trun-
cation, primary commit, causal consistency, and eventual
consistency.

Implementing safety and liveness policies. For
safety, P-Bayou simply sets the ReadNowBlock predicate
to isValid and isComplete. To provide 100% availability
as the original Bayou does, P-Bayou sets the ApplyUp-
dateBlock predicate to isValid so as to delay applying
an invalidation to a node until the node has received the
corresponding body.

The liveness policy contains rules for carrying out
anti-entropy sessions. Anti-entropy sessions can be eas-
ily implemented by establishing invalidation and body
subscriptions between nodes for “/*” and removing the
subscriptions once all updates have been transferred.
Note, as in Bayou, if the log at the sender is truncated
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Simple Full Bayou Chain Coda Tier Tier
Client Client Bayou + Small Repl Coda + Coop Pangaea Store Store TRIP TRIP
Server Server [29] Device [40] [19] Cache [31] [8] +CC [28] +Hier

Liveness rules 21 43 9 9 75 31 35 75 16 20 6 6
Safety predicates 5 6 3 3 4 5 5 1 1 1 3 3
Consistency Seq. Seq. Causal Causal Linear. Open/ Open/ Coher. Coher. Causal Seq. Seq.
Consistency close close
Topology Client/ Client/ Ad- Ad- Chains Client/ Client/ Ad- Tree Tree Client/ Tree

Server Server Hoc Hoc Server Server Hoc Server
Partial replication

√ √ √ √ √ √ √ √

Demand-only Caching
√ √

Prefetching/Replication
√ √ √ √ √ √ √ √ √ √

Cooperative caching
√ √ √

Disconnected operation
√ √ √ √ √ √

Callbacks
√ √ √ √ √ √

Leases
√ √ √

Reads always
satisfied locally

√ √ √ √ √

Crash recovery
√ √ √ √ √ √ √ √ √ √ √ √

Object store interface∗
√ √ √ √ √ √ √ √ √ √ √ √

File system interface∗
√ √ √ √ √ √ √ √ √ √ √

Fig. 6: Features covered by case-study systems. ∗Note that the original implementations of some of these systems provide interfaces
that differ from the object store or file system interfaces we provide in our prototypes.

// Add subscriptions when a random neighbor is selected
bc01 addInvalSubscription(@X, Y, X, SS, Catchup) :-

doAntiEntropy(@X, Y), SS := “/*”, Catchup:=“LOG”

bc02 addBodySubscription(@X, Y, X, SS) :-
doAntiEntropy(@X, Y), SS:= “/*”

// Remove subscriptions when we have received all updates
bc03 removeInvalSubscription(@X, Y, SS) :-

informInvalSubscriptionCaughtup(@X, Y, SS)

bc04 removeBodySubscription(@X, Y, SS) :-
informBodySubscriptionCaughtup(@X, Y, SS)

Algorithm 1: Anti-entropy rules in P-Bayou

to a point after subscription’s start time, the invalidation
subscription will automatically send a checkpoint.

The complete implementation of P-Bayou’s liveness
policy requires 9 rules: 4 for anti-entropy (Algorithm
1), 3 for random neighbor selection (not shown), and
2 to read list of servers from a configuration file. The
doAntiEntropy tuple is generated periodically by the ran-
dom neighbor selection rules which in turn invokes the
anti-entropy rules (bc01, bc02).

P-Bayou + small-device support. In standard Bayou,
each node must store all objects in all volumes it exports
and must receive all updates in these volumes. It is dif-
ficult for a small device (e.g, a phone) to share some ob-
jects with a large device (e.g, a server hosting my home
directory). By building on Padre, we can easily support
small devices. Instead of storing the whole database, a
node can specify the set of objects or directories it cares
about by changing the subscription set for anti-entropy.
This addition requires changing the subscription set in
(bc01) and (bc02) rules.

4.3.2 P-Coda
We implement P-Coda, a system inspired by the version
of Coda described by Kistler et. al. [19]. P-Coda sup-
ports disconnected operation, reintegration, crash recov-

ery, whole-file caching, open/close consistency (when
connected), causal consistency (when disconnected), and
hoarding. We know of one feature from this version that
we are missing: we do not support cache replacement
prioritization. In Coda, some files and directories can be
given a lower priority and will be discarded from cache
before others. Coda is long-running project with many
papers worth of ideas. We omit features discussed in
other papers like server replication [33], trickle reintegra-
tion [26], and variable granularity cache coherence [27].
We see no fundamental barriers to adding them in P-
Coda. We also illustrate the ease with which co-operative
caching can be added to P-Coda.

We provide a brief system description and discuss the
safety and liveness policy of the client.

System Description P-Coda is a client-server system,
similar to the example discussed earlier. The main differ-
ences between P-Coda and the client-server system are
detailed below.

P-Coda provides open/close semantics which means
that when a file is opened at a client, the client will return
the local valid copy or retrieve the newest version from
the server. A close on a client will block until all up-
dates have been propagated to the server and the server
has made sure that all copies cached on other clients have
been invalidated. When a client is disconnected from the
server, the client only accesses locally cached files that
are valid.

Every client has a list of files, the “hoard set”, that it
will prefetch from the server and store it in its local cache
whenever it is connected to the server.

P-Coda supports disconnected operation by weaken-
ing sequential consistency to causal consistency when a
client is disconnected from the server: allowing writes to
continue uncommitted and reads to access uncommitted
but valid objects.
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Implementing safety policy P-Coda uses the standard
open/close consistency library. A file “open” is imple-
mented as a read of an object. All writes to a file are
buffered until the file is closed at which point, the object
is written. The safety predicates

The ReadNowBlock predicate is set to isValid AND
isComplete AND (isCommited OR tuple notConnected).
Reads will read committed data when connected to
the server, and casually-consistent objects when discon-
nected from the server. The WriteEndBlock predicate is
set to tuple notConnected OR tuple recvAckFromServer.
The safety policy will block a write until it receives a
recvAckFromServer or a notConnected message from the
liveness policy.

Implementing liveness policy We extend the liveness
rules of the simple-client server model to implement P-
Coda in 31 rules. First, like the full client-server exam-
ple, we add 3 rules to check for blind writes when no
callback is held and establish callbacks for them. Sec-
ond, we add 4 rules to keep track of the server status, in-
form safety policy of the server status and unblock writes
when disconnected from the server. Third, we implement
hoarding in 3 rules by storing the hoard set as tuples in a
configuration file and establishing invalidation and body
subscriptions for each of them whenever the client con-
nects to the server.

Adding cooperative caching We add co-operative
caching to P-Coda so that disconnected clients can fetch
valid files from their peer. This allows a disconnected
client to access files it previously couldn’t. We augment
the node list configuration file to include a list of peers
and add rules to fetch objects from nearby peers if the
server is not reachable. In Figure 16, we show the per-
formance improvement achieved by these four rules.

4.3.3 P-Pangaea

Pangaea [31] is a wide-area file system that supports high
degrees of replication and high availability. Replicas of a
file are arranged in an m-connected graph, with a clique
of g gold nodes. The location of the gold nodes for each
file is stored in the file’s directory entry. Updates flood
harbingers in the graph. On receipt of a harbinger, a node
requests the body from the sender of the harbinger with
the fastest link. Pangaea enforces weak, best-effort co-
herence.

P-Pangaea implements object creation, replica cre-
ation, update propagation, gold nodes and m-connected
graph maintenance, temporary failure rerouting and per-
manent failure recovery. We do not implement the “red
button” feature, which provides applications confirma-
tion of update delivery or a list of unavailable replicas,
but do not see any difficulty in integrating it.

Implementing safety and liveness policies. P-
Pangaea setst the ReadNowBlock predicate to isValid so
that reads only access valid objects.

P-Pangaea considers harbingers as invalidations, and
hence each edge of a Pangaea graph is an invalidation
subscription. P-Pangaea’s liveness policy sets up and
maintains the m-connected graph for each object among
the nodes. If a read is blocked because an object is not
locally available, the liveness policy has rules to add the
node to the object’s graph by finding a nearby replica,
fetching the object from the replica, and adding an in-
validation subscription from it. When a node receives
an invalidation for an object, the object is immediately
fetched from the replica with the fastest link.

The liveness policy comprises of 75 rules. Most of the
complexity stems from (1) constructing the required per-
object invalidation graph across gold and bronze replicas,
(2) updating the invalidation graph when nodes become
unreachable, and (3) creating new gold replicas for ob-
jects when an existing gold replica fails.

4.3.4 P-Chain Replication
Chain Replication [40] is a server replication protocol
in which the nodes are arranged as a chain to provide
high availability and linearizability. All updates are in-
troduced at the head of the chain and queries are handled
by the tail. An update does not complete until all live
nodes in the chain have received it.

P-Chain Replication implements this protocol with
support for volumes, node failure and recovery, and the
addition of new nodes to the chain.

Implementing safety and liveness policies For safety,
we set the ReadNowBlock predicate to isValid and is-
Complete. The ApplyUpdatePredicate is set to isValid.
The WriteAfterBlock is set to tuple ackFromTail so that a
write is blocked until an acknowledgement from the tail
is received.

P-Chain-Replication implements each link in the
chain as an invalidation and a body subscription. When
an update occurs at the head, the update flows down the
chain via subscriptions. Chain management is carried out
by a master, as in the original system. We implement the
master in OverLog.

Note that most of the complexity in the original chain
replication algorithm stems from the need to track which
updates have been received by a node’s successors so as
to handle node failure and recovery. Padre makes recov-
ery simple because of the semantics guaranteed by sub-
scriptions. When subscriptions are established, all up-
dates that the successor is missing are automatically sent
during catchup, making it unnecessary for predecessors
to track the flow of updates.

The liveness policy totals 75 rules: 2 for update prop-
agation, 2 for redirecting read requests to volume tail and
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write requests to volume head, 3 for generation of ac-
knowlegements, 29 for chain management, 15 for failure
recovery, 7 for initialization, and 17 for connection man-
agement at master.

4.3.5 P-TierStore
TierStore [8] is an object based hierarchical replication
system for developing regions that provides eventual
consistency and per-object coherence in the face of in-
termittent connectivity. It employs a “pub/sub” approach
to distribute updates among nodes.

Implementing safety and liveness policies. P-
TierStore sets the ReadNowBlock predicate to isValid
to implement best-effort coherence and sets the Ap-
plyUpdateBlock predicate to isValid to delay applying
an invalidation to a node until the node has received the
corresponding body.

The liveness policy maintains the tree-based topology
with the help of configuration files, as in the original pro-
tocol. Every node has configuration files which specify
its parent node, its children, and the “publication”, i.e.
data subtree, it is interested in. On initialization, these
files are read as stored events and subscriptions are es-
tablished. From a parent to child, invalidation and body
subscriptions for each of the publications a child is inter-
ested in are established. From a child to parent, invalida-
tion and body subscriptions for “/*” are established. The
total number of liveness rules for reading configuration
files and establishing connections is 16.

DTN support. Our current P-Tierstore implementation
supports delay tolerant network (DTN) environments by
allowing one or more mobile Padre nodes to relay in-
formation between a parent and a child in a distribution
tree. In this configuration, whenever the relay node ar-
rives, a node subscribes to receive any new updates the
relay node brings and pushes all new local updates for
the parent (or child) subscription to the relay node. The
relay node can simply be a USB drive, in which case,
a physical node runs two Padre instances, one that uses
the local fixed storage and serves local requests and the
other which uses the removable USB storage that acts as
the relay.

An alternative approach would be to make use of ex-
isting DTN network protocols. This approach is straight-
forward to implement if the DTN layer informs the policy
layer when it has an opportunity to send to another node
and when that opportunity ends. An opportunity could be
that a TCP connection opens up or a USB drive was in-
serted. The liveness policy would establish subscriptions
to send updates within that connection opportunity as a
DTN bundle.

Extending P-TierStore. Just like P-Coda, cooperative
caching is easily added to P-TierStore by adding 4 rules.

Primitive Best Case Padre Prototype

Start conn. 0 Nnodes ∗ (Ŝid + Ŝt)
Inval sub w/ (Nprev +Nnew)∗Sinval (Nprev +Nnew)∗ Ŝinval
LOG catchup +Ssub +Nimpr ∗ Ŝimpr + Ŝsub

Inval sub w/ (NmodO +Nnew)∗Sinval (NmodO +Nnew)∗ Ŝinval
CP catchup +Ssub +Nimpr ∗ Ŝimpr + Ŝsub

Body sub (NmodO +Nnew)∗Sbody (NmodO +Nnew)∗ Ŝbody

Single body Sbody Ŝbody

Fig. 7: Network overheads of primitives. Here, Nnodes is the
number of nodes; Nprev and NmodO are the number of updates
and the number of updated objects from a subscription start
time to the current logical time; Nnew is the number of updates
sent on a subscription after it has caught up to the sender’s log-
ical time until it ends; and Nimpr is the number of imprecise
invalidations sent on a subscription. Sid , St , Sinval , Simpr, Ssub
and Sbody are the sizes to encode a node ID, logical timestamp,
invalidation, imprecise invalidation, subscription setup, or body
message; Sx are the sizes of ideal encodings and Ŝx are the sizes
realized in the prototype.

This addition enables users in a developing region to re-
trieve data using local wireless links from nearby peers
who have already downloaded data across an expensive
modem link.

4.3.6 P-TRIP
TRIP [28] seeks to provide transparent replication for
web edge servers of dynamic content. All nodes enforce
sequential consistency and a limit on staleness.

Implementing safety and liveness policy. P-TRIP
set the readNowBlock predicate to isValid and
isComplete and set a limit for maxStaleness. The
ApplyU pdateBlock predicate is to isValid. Note
that since there is a single writer, these predicates
are sufficient to enforce sequential consistency. The
liveness rules are simple: clients subscribe to receive all
invalidations and bodies from the server. The complete
implementation of P-TRIP’s liveness policy requires 6
rules.

Extending P-TRIP. What is perhaps most interesting
about this example is the extent to which Padre facilitates
evolution. For example, the TRIP implementation as-
sumes a single server and a star topology. By implement-
ing on Padre, we can improve scalability by changing the
topology from a star to a static tree simply by changing
a node’s configuration file to list a different node as its
parent—invalidations and bodies flow as intended and se-
quential consistency is still maintained. Better still, if one
writes a topology policy that dynamically reconfigures a
tree when nodes become available or unavailable [24], a
few additional rules to subscribe/unsubscribe produce a
dynamic-tree version of TRIP that still enforces sequen-
tial consistency.

4.4 Performance
Our primary performance goal is to minimize network
overheads. We focus on network costs for two reasons.
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First, we want Padre systems to be useful for network-
limited environments. Second, if network costs are close
to the ideal, it would be evidence that Padre captures the
right abstractions for constructing replication systems.

4.4.1 Network efficiency
Figure 4.3.6 shows the cost model of our implementa-
tion of Padre’s primitives and compares these costs to the
costs of best-case implementations. Note that these best-
case implementation costs are optimistic and may not al-
ways be achievable.

Two things should be noted. First, the best case costs
of the primitives are proportional to the useful informa-
tion sent, so they capture the idea that a designer should
be able to send just the right data to just the right place.
Second, the overhead of our implementation over the
ideal is generally small.

In particular, there are three ways in which our pro-
totype may send more information than a hand-crafted
implementation of some systems.

First, Padre metadata subscriptions are multiplexed
onto a single network connection per pair of communi-
cating nodes, and establishment of such a connection re-
quires transmission of a version vector [46]. Note that
in our prototype this cost is amortized across all of the
subscriptions and invalidations multiplexed on a network
connection. A best-case implementation might avoid or
reduce this communication, so we assume a best-case
cost of 0.

Our use of connections allows us to avoid sending per-
update version vectors or storing per-object version vec-
tors. Instead, each invalidation and stored object includes
an acceptStamp [29] comprising a 64-bit nodeID and a
64-bit Lamport clock.

Second, invalidation subscriptions carry both precise
invalidations that indicate the logical time of each up-
date of an object targeted by a subscription and impre-
cise invalidations that summarize updates to other ob-
jects [2]. The number of imprecise invalidations sent is
never more than the number of precise invalidations sent
(at worst, the system alternates between the two), and
it can be much less if writes arrive in bursts with local-
ity [2]. The size of an imprecise invalidation depends on
the locality of the workload, which determines the extent
to which the target set for imprecise invalidations can be
compactly encoded. A best-case implementation might
avoid sending imprecise invalidations in some systems,
so we assume a best-case invalidation subscription cost
of only sending precise invalidations.

Third, our Java-serialization of specific messages may
fall short of the ideal encodings.

Figure 8 illustrates the synchronization cost for a sim-
ple scenario. In this experiment, there are 10,000 objects
in the system organized into 10 groups of 1,000 objects
each, and each object’s size is 10KB. The reader registers
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Fig. 8: Network bandwidth cost to synchronize 1000 10KB
files, 100 of which are modified.

to receive invalidations for one of these groups. Then, the
writer updates 100 of the objects in each group. Finally,
the reader reads all of the objects.

We look at four scenarios representing combinations
of coarse-grained vs. fine-grained synchronization and
of writes with locality vs. random writes. For coarse-
grained synchronization, the reader creates a single inval-
idation subscription and a single body subscription span-
ning all 1000 objects in the group of interest and receives
100 updated objects. For fine-grained synchronization,
the reader creates 1000 invalidation subscriptions, each
for one object, and fetches each of the 100 updated bod-
ies. For writes with locality, the writer updates 100 ob-
jects in the ith group before updating any in the i + 1st
group. For random writes, the writer intermixes writes to
different groups in random order.

Four things should be noted. First, the synchroniza-
tion overheads are small compared to the body data trans-
ferred. Second, the “extra” overhead of Padre over the
best-case is a small fraction of the total overhead in all
cases. Third, when writes have locality, the overhead of
imprecise invalidations falls further because larger num-
bers of precise invalidations are combined into each im-
precise invalidation. Fourth, coarse-grained synchroniza-
tion has lower overhead than fine-grained synchroniza-
tion because they avoid per-object setup costs. In partic-
ular, for this example, setting up a single-object callback
requires transmission of 333 bytes, so setting up 1000
callbacks costs 333,000 bytes, and setting up a single
subscription of all 1000 objects in a group costs 97,236
bytes.

More generally, our implementation efficiently im-
plements both fine-grained and coarse-grained subscrip-
tions. An ideal implementation of an invalidation sub-
scription will send subscriptionStart message when it is
established, and a subscriptionCaughtUp message once
the past invalidations or the checkpoint has been sent.
Each of these messages can be as small as a single byte.
In Padre, since multiple subscriptions are multiplexed on
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Fig. 9: Bandwidth for establishing invalidation subscriptions.

a single stream, the subscriptionStart and subscription-
CaughtUp messages contain the encoding of the associ-
ated subscription set.

Fig. 9 quantifies the network bandwidth required to
establish an invalidation subscription. 500 objects were
updated and the x-axis corresponds to the number of ob-
jects for which subscriptions were established. The three
lines correspond to the cost when a separate subscrip-
tion for each object was established, like traditional call-
backs [16].

The figure demonstrates that the cost of establishing
subscriptions for LOG catchup and CP catchup is within
a factor of the ideal implementation. The overhead can be
attributable to the size of the subscriptionStart message.
CP catchup does worse than LOG catchup because the
size of the invalidation meta-data for each object is bigger
than an actual invalidation sent during LOG catchup.

We also quantify the cost of establishing a single
coarse-grained submission for all objects. The cost of a
coarse-grained LOG and CP catchup is almost the same.
Both fairly better than the ideal because the subscription-
Start and subscriptionCaughtUp messages are only sent
once instead of 500 times.

Invalidation subscriptions also have the additional
overhead of imprecise invalidations sent to maintain con-
sistency information. Fig. 10 quantifies this overhead
when compared to a system that does not send any con-
sistency ordering information. We compare the over-
heads under three workloads. Under the first workload
(1-in-1), all updates are made to objects within the sub-
scription set of the invalidation stream. Under the sec-
ond workload (1-in-10), for every 10 updates made, one
of them is made to an object within the subscription set.
Under the (1-in-2) workload, for every update made to an
object that lies in the subscription set, another is made an
object that lies out of the subscription set. Fig. 10, even
in the worst case, the overhead for maintaining consis-
tency is at most 2x the number of invalidations sent over
the subscription.

Coherence-only Padre
1-in-1 update 26 26
1-in-10 updates 26 30
1-in-2 updates 26 52

Fig. 10: Number of bytes per relevant update sent over an in-
validation stream for different workloads. 1-in-10 represents a
workload in which every 1 out of 10 updates happen to objects
in the subscription set.

Write Write Read Read
(sync) (async) (cold) (warm)

ext3 6.64 0.02 0.04 0.02
BerkeleyDB 8.01 0.06 0.06 0.01
Local NFS 8.61 0.14 0.10 0.05
Padre object store 8.47 1.27 0.25 0.16

Fig. 11: Read/write performance for 1KB objects/files in ms.

Write Write Read Read
(sync) (async) (cold) (warm)

ext3 19.08 0.13 0.20 0.19
BerkeleyDB 14.43 4.08 0.77 0.18
Local NFS 21.21 1.37 0.26 0.22
Padre object store 52.43 43.08 0.90 0.35

Fig. 12: Read/write performance for 100KB objects/files in ms.

P2 Runtime R/OverLog runtime
Local Ping Latency 3.8ms 0.322ms
Local Ping Throughput 232 req/s 9,390 req/s
Remote Ping Latency 4.8ms 1.616ms
Remote Ping Throughput 32 req/s 2,079 req/s

Fig. 13: Performance numbers for processing NULL trigger to
produce NULL event.

4.4.2 Performance overheads
This section examines the performance of the Padre pro-
totype. Our goal is to provide sufficient performance
for the system to be useful, but we expect to pay some
overheads relative to a local file system for three reasons.
First, Padre is a relatively untuned prototype rather than
well-tuned production code. Second,our implementation
emphasizes portability and simplicity, so Padre is writ-
ten in Java and stores data using BerkeleyDB rather than
running on bare metal. Third, Padre provides additional
functionality such as tracking consistency metadata not
required by a local file system.

Figures 11 and 12 summarize the performance for
reading or writing 1KB or 100KB objects stored lo-
cally in Padre compared to the performance to read or
write a file on the local ext3 file system. In each run,
we read/write 100 randomly selected objects/files from
a collection of 10,000 objects/files. The values reported
are averages of 5 runs. Overheads are significant, but the
prototype still provides sufficient performance for a wide
range of systems.

Padre performance is signficantly affected by the run-
time system for executing liveness rules. Our compiler
converts R/OverLog programs to Java, giving us a signif-
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Fig. 14: Performance for Andrew benchmark.

Reads Writes
Min Max Avg Min Max Avg

Full CS 0.18 9.34 1.07 19.69 42.03 26.28
P-TierStore 0.16 0.74 0.19 6.65 22.40 7.68

Fig. 15: Read/Write performance in milliseconds for reading
1KB objects under the same workload as Figure 4.

icant performance boost compared to an earlier version
of our system, which used P2 [24] to execute OverLog
programs. Figure 13 quantifies these overheads.

Fig. 14 depicts the time required to run the Andrew
benchmark [16] over the Padre prototype via the Java
NFS wrapper. Padre successfully runs the benchmark,
but it is slower than a well-tuned local file system.

Figure 15 depicts read and write performance for the
full client-server system and P-TierStore under the same
workload as in Figure 4 but without any additional net-
work latency. For the client-server system, read hits take
under 0.2ms. Read misses average 4ms, yielding an av-
erage read time of 1ms. Writes need to wait until the
write is stored by the server, the reader is invalidated,
and a server ack is received and average 26ms. For P-
TierStore, because of weaker consistency semantics, all
reads and writes are locally satisfied.

4.5 Benefits of agility
As discussed in Section 1, replication system designs
make fundamental trade-offs among consistency, avail-
ability, partition-resilience, performance, reliability, and
resource consumption, and new environments and work-
loads can demand new trade-offs. As a result, being able
to architect a replication system to send the right data
along the right paths can pay big dividends.

This section measures improvements resulting from
adding features to two of our case-study systems; due to
space constraints, we omit discussion of similar experi-
ences with two others (see Figure 6.) In both cases, we
adapt the system to a new environment and gain order-of-
magnitude improvements by making what are—because
of Padre—trivial additions to existing designs.

Figure 16 demonstrates the significant improvement
by adding 4 rules for cooperative caching to P-Coda. Co-
operative caching allows a clique of connected devices to
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Fig. 17: Anti-Entropy bandwidth on P-Bayou

share data without relying on the server. For the experi-
ment, the latency between two clients is 10ms, whereas
the latency between a client and server is 500ms. With-
out cooperative caching, a client is restricted to retrieving
data from the server. However, with cooperative caching,
the client can retrieve data from a nearby client, greatly
improving read performance. More importantly, with
this new capability, clients can share data even when dis-
connected from the server.

Figure 17 examines the bandwidth consumed to syn-
chronize 3KB files in P-Bayou and serves two purposes.
First, it demonstrates that the overhead for anti-entropy in
P-Bayou is relatively small even for small files compared
to an “ideal” Bayou implementation (plotted by count-
ing the bytes of data that must be sent ignoring all over-
heads.) More importantly, it demonstrates that if a node
requires only a fraction (e.g., 10%) of the data, the small
device enhancement, which allows a node to synchronize
a subset of data [3], greatly reduces the bandwidth re-
quired for anti-entropy.

5 Related work
PRACTI [2, 46] defines a set of mechanisms that can re-
duce replication costs by simultaneously supporting Par-
tial Replication, Any Consistency, and Topology Inde-
pendence. However, PRACTI provides no guidance on
how to specify policies that define a replication system.
Although we had conjectured that it would be easy to
construct a broad range of systems over PRACTI mech-
anisms, when we then sat down to use PRACTI to im-
plement a collection of representative systems, we re-
alized that policy specification was a non-trivial task.
Padre transforms PRACTI’s “black box” for policies into
an architecture and runtime system that cleanly sepa-
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rates safety and liveness concerns, that provides blocking
predicates for specifying consistency and durability con-
straints, that defines a concise set of actions, triggers, and
stored events upon which liveness rules operate. This pa-
per demonstrates how this approach facilitates construc-
tion of a wide range of systems.

A number of other efforts have defined frameworks
for constructing replication systems for different environ-
ments. Deceit [35] focuses on replication across a well-
connected cluster of servers. Zhang et. al. [45] define
an object storage system with flexible consistency and
replication policies in a cluster environment. As opposed
to these efforts for cluster file systems, Padre focuses on
systems in which nodes can be partitioned from one an-
other, which changes the set of mechanisms and policies
it must support. Stackable file systems [13] seek to pro-
vide a way to add features and compose file systems, but
it focuses on adding features to local file systems.

Padre incorporates the order error and staleness ab-
stractions of TACT tunable consistency [44]; we do not
currently support numeric error. Like Padre, Swarm [38]
provides a set of mechanisms that seek to make it easy
to implement a range of TACT guarantees; Swarm, how-
ever, implements its coherence algorithm independently
for each file, so it does not attempt to enforce cross-object
consistency guarantees like causal [21], sequential [22],
1SR [4], or linearizability [14]. IceCube [18] and act-
ions/constraints [34] provide frameworks for specifying
general consistency constraints and scheduling reconcili-
ation to minimize conflicts. Fluid replication [6] provides
a menu of consistency policies, but it is restricted to hier-
archical caching.

Padre follows in the footsteps of efforts to define run-
time systems or domain-specific languages to ease the
construction of routing [24], overlay [30], cache consis-
tency protocols [5], and routers [20].

6 Conclusion
In this paper, we describe Padre a policy architecture
which allows replication systems to be implemented by
simply specifying policies. In particular, we show that
replication policies can be cleanly separated into safety
policies and liveness policies both of which can be im-
plemented with a small number of primitives

Our experience building systems on Padre confirmed
the benefits of Padre: Padre is flexible and can be used
to construct a broad range of systems. All of our sys-
tems were built using a few lines of code and in a short
amount of time. We don’t think this feat would have been
possible without Padre. Padre also makes it easy to ex-
tend a system. We added significant features to 4 systems
in less than a day. Finally, despite not being aggressively
tuned, Padre has near ideal network traffic and acceptable
absolute performance for a wide range of workloads.
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A Liveness API and full example
Figure 18 lists all of the actions, triggers, and stored
events that Padre designers use to construct liveness poli-
cies that route updates among nodes.

The following 21 liveness rules describe the full live-
ness policy for the simple client-server example.
// Read miss: client fetch from server
L1a: clientRead(@S, C, Obj, Off, Len) :-

TRIG informReadBlock(@C, Obj, Off, Len, ),
TBL serverId(@C, S), C 6= S.

.

L1b: ACT sendBody(@S, S, C, Obj, Off, Len) :-
clientRead(@S, C, Obj, Off, Len).

// ReadMiss: establish callback
L2a: ACT addInvalSubscription(@S, S, C, Obj, Catchup) :-

clientRead(@S, C, Obj, Off, Len), Catchup := “CP”.

Liveness Actions
Add Inval Sub srcId, destId, objs, [time], LOG|CP|CP+Body
Remove Inval Sub srcId, destId, objs
Add Body Sub srcId, destId, objs
Remove Body Sub srcId, destId, objs
Send Body srcId, destId, objId, off, len, writerId, logTime
Assign Seq objId, off, len , writerId, logTime

Connection Triggers
Inval subscription start srcId, destId, objs
Inval subscription caught-up srcId, destId, objs
Inval subscription end srcId, destId, objs, reason
Body subscription start srcId, objs, destId
Body subscription end srcId, destId, objs, reason

Local read/write Triggers
Read block obj, off, len, EXIST|VALID|COMPLETE|COMMIT
Write obj, off, len, writerId, logTime
Delete obj, writerId, logTime

Message arrival Triggers
Inval arrives sender, obj, off, len, writerId, logTime
Fetch success sender, obj, off, len, writerId, logTime
Fetch failed sender, receiver, obj, offset, len, writerId, logTime

Stored Events
Write tuple objId, tupleName, field1, ..., fieldN
Read tuples objId
Read and watch tuples objId
Stop watch objId
Delete tuples objId

Fig. 18: Padre interfaces for liveness policies.

L2b: TBL hasCallback(@S, Obj, C) :-
clientRead(@S, C, Obj, Off, Len).

//Maintain c-to-s subscriptions for updates.
L3a: ACT addInvalSubscription(@S, C, S, SS, Catchup) :-

clientCFGTuple(@S, C), SS:=“/*”, Catchup := “CPwithBody”,
TBL serverId(@S, S).

L3b: ACT addBodySubscription(@S, C, SS) :-
clientCFGTuple(@S, C), SS:=“/*”, TBL serverId(@S, S).

L3c: ACT addInvalSubscription(@S, C, SS, Catchup) :-
TRIG informInvalSubscriptionEnd(@S, C, S, SS, ),
Catchup := “CPwithBody”.

L3d: ACT addBodySubscription(@S, C, SS) :-
TRIG informBodySubscriptionEnd(@S, C, S, SS, ).

// No rules needed for L4 (see L2)
// When client receives an invalidation: ACK server, cancel callback
L5a: ackServer(@S, C, Obj, Off, Len, Writer, Stamp) :-

TRIG informInvalArrives(@C, S, Obj, Off, Len, Stamp, Writer),
TBL serverId(@C, S), S6=C.

L5b: removeInvalSubscription(@C, S, C, Obj) :-
TRIG informInvalArrives(@C, S, Obj, Off, Len, Stamp, Writer),
TBL serverId(@C, S), S6=C.

// Server receives inval: gather acks from all who have callback
// Acks are cumulative. Ack of timestamp i acks all earlier
L6a: TBL needAck(@S, Ob, Off, Ln, C2, Wrtr, Stmp, Need) :-

TRIG informInvalArrives(@S, C, Ob, Off, Ln, Stmp, Wrtr),
TBL hasCallback(@S, Ob, C2), C2 6= Wrtr, Need := 1,
TBL serverId(@S, S).

L6b: TBL needAck(@S, Ob, Off, Ln, C2, Wrtr, Stmp, Need) :-
TRIG informInvalArrives(@S, C, Ob, Off, Ln, Stmp, Wrtr),
C2 == Wrtr, Need := 0, TBL serverId(@S, S).

L6c: TBL needAck(@S, Ob, Off, Ln, C, Wrtr, Stmp, Need) :-
ackServer(@S, C, , , , , RStmp),
TBL needAck(@S, Ob, Off, Ln, C, Wrtr, Stmp, ),
Stmp < RStmp, Need:= 0, TBL serverId(@S, S).
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L6d: TBL needAck(@S, Obj, C, Wrtr, Stmp, Need) :-
ackServer(@S, C, , , , RecvWrtr, RStmp),
TBL needAck(@S, Obj, C, Wrtr, Stmp, ), Stmp == RStmp,
Wrtr ≤ RecvWrtr, Need:= 0, TBL serverId(@S, S).

L6e: delete TBL hasCallback(@S, Obj, C) :-
TBL needAck@S, Obj, , , C, , , Need), Need == 0,
TBL serverId(@S, S).

L6f: acksNeeded(@S, Ob, Off, Ln, Wrtr, RStmp, <count>) :-
TBL needAck(@S, Ob, Off, Ln, C, Wrtr, RStmp, NeedTrig),
TBL needAck(@S, Ob, Off, Ln, C, Wrtr, RStmp, NeedCount),
NeedTrig == 0, NeedCount == 1.

L6g: writeComplete(@Wrtr, Obj) :-
acksNeeded(@S, Obj, Off, Len, Wrtr, RStmp, Count),
Count == 0.

L6h: delete TBL needAck(@S, Obj, C, WrtrId, RStmp, ) :-
acksNeeded(@S, Obj, Off, Len, Wrtr, RStmp, Count),
Count == 0.

// Startup: produce configuration stored event tuples
L7a: SE readTuples(@X, Obj) :-

init(@X), Obj := “clientCFG”.

L7b: SE readTuples(@X, Obj) :-
init(@X), Obj := “serverCFG”.

// When all acks received: Assign a CSN to the update
L8: ACT assignSeq(Obj, Off, Len, Stmp, Wrtr) :-

acksNeeded(@S, Obj, Off, Len, Wrtr, Stmp, Count), Count == 0.

For safety, this system sets the ApplyUpdateBlock pred-
icate at the server to isValid and sets the readNowBlock
predicate to isValid AND isComplete AND isSequenced
CSN. Additionally, it sets the writeEndBlock predicate to
tuple writeComplete objId with a timeout of 20 seconds.
Clients retry the write if it times out; the retry ensures
completion if there is a server failure and recovery.

B Planned Extension
In order to provide greater flexibility for defining live-
ness policies, we plan to expose the persistent store’s
consistency bookkeeping information as live tables in
R/OverLog. This information would allow specification
of policies which rely on state information. For example,
a policy can establish subscriptions only if the sender has
new updates by comparing the sender’s logical version
vector (LVV ) to the local LVV . In principle, a R/OverLog
policy could maintain this state itself, but exposing con-
sistency state already maintained by the runtime system
may simplify some policies. Figure 19 summarizes the
information we plan to make available.

Live Tables Export
LVV nodeId logTime Logical version vector: the

logical time of the most
recent event received from
each node

RVV nodeId time Real time version vector:
the real timestamp attached
to the newest event re-
ceived from each node

VALID objId TRUE|FALSE True if the local object
store stores for ob jId an
update body whose logi-
cal timestamp matches that
of the most recent invalida-
tion seen for ob jId

CAUSAL objId TRUE|FALSE True if the local object
store has for ob jId the
most recent invalidation on
which any other update in
the object store depends

COMMITTED objId TRUE|FALSE True if the local object
store has for ob jId a com-
mit record that references
the most recent invalida-
tion received for ob jId

Fig. 19: Live tables export bookkeeping state to liveness poli-
cies.
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