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Abstract: This paper presents Padre, a new policy ar-
chitecture for developing data replication systems. Padre
simplifies design and implementation by embodying the
right abstractions for replication in widely distributed
systems. In particular, Padre cleanly separates the prob-
lem of building a replication system into the subprob-
lems of specifying liveness policy and specifying safety
policy, and it identifies a small set of primitives that are
sufficient to specify sophisticated systems. As a result,
building a replication system is reduced to writing a few
liveness rules in a domain-specific language to trigger
communication among nodes and specifying safety pred-
icates that define when the system must block requests.
We demonstrate the flexibility and simplicity of Padre
by constructing a dozen substantial and diverse systems,
each using just a few dozen system-specific policy rules.
We demonstrate the agility that Padre enables by adding
new features to several systems, yielding significant per-
formance improvements; each addition required fewer
than ten additional rules and took less than a day.

1 Introduction
A central task for a replication system designer is
to balance the trade-offs among consistency, availabil-
ity, partition-resilience, performance, reliability, and re-
source consumption. Because there are fundamental ten-
sions among these properties [8, 20], no single best so-
lution exists. As a result, when designers are faced with
new or challenging workloads or environments such as
geographically distributed nodes [23], mobile nodes [14,
16], or environmentally-challenged nodes [7], they of-
ten construct new replication systems or modify existing
ones. Our goal is to reduce the effort required to con-
struct or modify a replication system by providing the
right abstractions to manage these fundamental trade-offs
in such environments.

This paper therefore presents Padre, a new policy ar-
chitecture that qualitatively simplifies the development
of data replication systems, for environments with mo-
bile or widely distributed nodes where data placement,
request routing, or consistency constraints affect perfor-
mance or availablity.

The Padre architecture divides replication system de-
sign into two aspects: liveness policy, defining how to
route information among nodes, and safety policy, em-
bodying consistency and durability requirements. Al-
though it is common to analyze a protocol’s safety and

liveness properties separately, taking this idea a step fur-
ther and separately specifying safety and liveness to im-
plement replication systems is the foundation of Padre’s
effectiveness in simplifying development. Given this
clean division, a surprisingly small set of simple policy
primitives is sufficient to implement sophisticated repli-
cation protocols.
• For liveness, the insight is that the policy choices

that distinguish replication systems from each other
can largely be regarded as routing decisions: Where
should a node go to satisfy a read miss? When and
where should a node send updates it receives? Where
should a node send invalidations when it learns of a
new version of an object? What data should be pushed
to what nodes in anticipation of future requests?

• For safety, the observation is that consistency and
durability invariants can by ensured by blocking re-
quests until they do not violate those invariants. E.g.,
block until a write reaches at least 3 nodes, block until
a server acknowledges a write, or block until local stor-
age reflects all updates that occurred before the start of
the current read.
Given these insights, the challenge to implementing

Padre is to define the right set of primitives for concisely
and precisely describing replication systems. We present
a set of triggers (upcalls) exposing the flow of replica-
tion state among nodes, a set of actions (downcalls) to
direct communication of specific subsets of replication
state among nodes, and a set of predicates for blocking
requests and state transfers. To simplify the definition
of liveness (routing) policies in terms of these primitives,
we define R/OverLog1, an extension of the OverLog [21]
routing language.

Even if an architecture is conceptually appealing, to
be useful it must help system builders. We demonstrate
Padre’s power by constructing a dozen systems spanning
a large portion of the design space; we do not believe this
feat would have been possible without Padre. In partic-
ular, in contrast with the ten thousand or more lines of
code it typically takes to construct such a system using
standard practice, it requires just 6-75 policy rules and a
handful of safety predicates to define each system over
Padre. We believe this two to three orders of magnitude
reduction in code volume is illustrative of the qualitative
simplification Padre represents for system implementers.

1Pronounced “R over OverLog” (for Replication over OverLog) or
“Roverlog.”
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Fig. 1: Overview of the Padre architecture for building replication systems by expressing policy.

This simplification stems from two sources: (1) Padre
captures the right abstractions for policy, which reduces
the conceptual effort needed to design a system and (2)
Padre primitives embody the right building blocks, so a
developer does not have to reinvent them.

The rest of this paper describes Padre, demonstrates
how to build systems with Padre, and evaluates the ap-
proach. The paper’s contributions are (1) defining a set
of abstractions that are useful for building and reasoning
about replication systems and (2) providing a system that
realizes these abstractions to facilitate system building.

2 Architecture
Replication systems cover a large design space. Some
guarantee strong consistency while others sacrifice con-
sistency for higher availability; some invalidate stale ob-
jects, while others push updates; some cache objects on
demand, while others replicate all data to all nodes; and
so on. Our design choices for Padre are driven by the
need to accommodate a broad design space while allow-
ing policies to be simple and efficient.

Figure 1 provides an overview of the Padre architec-
ture. To write a policy in Padre, a designer writes live-
ness rules to direct communication between nodes and
safety predicates to block communication and requests
until system invariants are met. To give intuition for how
to build a system by writing such rules, this section pro-
vides an overview of the mechanisms on which these
rules depend, of the abstractions for liveness rules, and
of the abstractions for safety predicates.

Interface and mechanisms. As Figure 1 illustrates,
Padre exposes a local read/write/delete object store in-
terface to applications (©1 in the figure). These functions
operate on local persistent storage mechanisms that han-
dle object storage and consistency bookkeeping ©2.

To propagate updates among machines, Padre requires
a mechanism to transfer streams of updates from one
node to another. For efficiency and flexibility, our Padre
prototype utilizes the PRACTI [2, 38] protocol, which al-
lows a node to set up a subscription to receive updates to
a desired subset of objects ©3.

Three properties of the PRACTI protocol are relevant
to understanding Padre:
1. Partial Replication: For efficiency, a subscription can

carry updates for any subset of the system’s objects,
and the protocol uses separate subscriptions for update
metadata and update data. The update metadata are
represented by invalidation streams that provide infor-
mation about the logical times and ordering of updates
©4. The update data are represented by body streams or
individually fetched update bodies ©5.

2. Any Consistency: Invalidation streams include suffi-
cient information for the system to enforce a broad
range of consistency guarantees, and the system au-
tomatically tracks objects’ consistency status.

3. Topology Independence: A subscription can flow be-
tween any pair of nodes, so any topology for propa-
gating updates can be constructed. Subscriptions can
change dynamically, modifying a topology over time.

Implementation details about the PRACTI protocol
are available elsewhere [2, 38].

Two additional features of the local read/write inter-
face must be mentioned.

First, for flexibility, this interface allows a write op-
eration to atomically update one or more objects. It also
allows writes to be made to specific byte-ranges.

Second, in order to support algorithms that define a to-
tal order on operations [24], the interface supports a vari-
ation on write called writeCSN (write commit sequence
number) that assigns a CSN, in the form of a logical time,
to a previous update.

Given these storage, consistency bookkeeping, and
update communication mechanisms, which are common
across all systems built on Padre, the focus of this paper
is defining policy: what are the right primitives for mak-
ing it easy to express the policies that define replication
systems?

Liveness. The first half of defining a system in Padre is
to define a set of liveness rules ©6 that orchestrate com-
munication of updates between nodes. For example, a
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client in a client-server system should send updates to the
server on writes and fetch data from the server on read
misses while a node in TierStore [7] should transmit any
update it receives for a volume to all children subscribed
for that volume.

The liveness rules describe how to generate communi-
cation actions (downcalls) ©7 in response to triggers (up-
calls) ©8 and stored events ©9.

Actions route information between nodes’ storage by
setting up subscriptions for data or metadata streams or
by initiating fetches of individual objects.

Triggers provide information about the state and needs
of the underlying replication system. They include local
events (e.g., local read blocked, local write issued), con-
nection events (e.g., body subscription start, invalidation
subscription failed), and message arrival events (e.g., in-
validation arrived or body arrived).

Finally, stored events ©9 store and retrieve the hard
state many systems need make to their routing decisions.
For example, a node in a client-server system needs to
know who the server is and a distribution node in a dis-
semination system [7] needs to know who has subscribed
to what publications.

Designers define liveness policy rules that initiate ac-
tions in response to triggers and stored events using a
rule-based language we call R/OverLog, which extends
OverLog [21] to the needs of replication policy.

Safety. Every replication system guarantees some level
of consistency and durability. Padre casts consistency
and durability as safety policy ©10 because each defines
the circumstances under which it is safe to process a re-
quest or to return a response. In particular, enforcing
consistency semantics generally requires blocking reads
until a sufficient set of updates are reflected in the lo-
cally accessible state, blocking writes until the resulting
updates make it to some or all of the system’s nodes, or
both. Similarly, durability policies often require writes to
propagate to some subset of nodes (e.g., a central server,
a quorum, or an object’s “gold” nodes [26]) before the
write is considered complete or before the updates are
read by another node.

Padre therefore allows blocking predicates ©11 to block
a read request, a write request, or application of received
updates until a predicate is satisfied. The predicates spec-
ify conditions based on the consistency bookkeeping in-
formation maintained by the persistent storage or they
can wait for the arrival of a specific message generated
by the liveness policy. Basing the predicates on these
inputs suffices to specify any order-error or staleness er-
ror constraint in Yu and Vahdat’s TACT model [36] and
thereby implement a broad range of consistency mod-
els from best effort coherence to delta coherence [30] to
causal consistency [18] to sequential consistency [19] to
linearizability [36].

Mechanism
Persistent storage Store objects and maintain consistency metadata
Subscriptions Register interest in receiving updates to some sub-

set of objects
Liveness Policy

Actions Route information from local persistent storage to
remote persistent storage

Triggers Notify liveness policy of local operations, mes-
sages, and connections

Stored Events Store/retrieve persistent state that affects routing
Safety Policy

Predicates Block read, writes, and node-to-node updates to
ensure safety

Fig. 2: Padre abstractions.

Summary. Figure 2 summarizes the main abstractions
provided by Padre to build replication systems.

2.1 Example
To illustrate the approach, we describe the design and im-
plementation of a simple client-server system as a run-
ning example. This simple system includes support for
a client-server architecture, invalidation callbacks [13],
sequential consistency, correctness in the face of crash/-
recovery of any nodes, and configuration; for simplicity,
it assumes that a write overwrites an entire file.

We choose this example not because it is inherently
interesting but because it is simple yet sufficient to il-
lustrate the main aspects of Padre, including support for
coarse- and fine-grained synchronization, consistency,
durability, and configuration. In Sec. 3.4, we extend the
example with features that are relevant for practical de-
ployments, including leases [9], cooperative caching [6],
and an NFS interface with partial-file writes.

Ideally, a policy architecture should let a designer de-
fine such a system by describing its high level properties
and letting the runtime handle the details. For example,
a designer might describe a simple client-server system
using the following statements:

L1. On a read miss, a client should fetch the miss-
ing object from the server.

L2. On a read miss, a client should register to re-
ceive callbacks for the fetched object.

L3. On a write, a client should send the update to
the server.

L4. Upon receiving an update of an object, a server
should send invalidations to all clients registered to
receive callbacks for that object.

L5. Upon receiving an invalidation of an object, a
client should send an acknowledgment to the server
and cancel the callback.

L6. Upon receiving all acknowledgments for an
update, the server should inform the writer.

Additionally, to configure the system the clients and
server need to know each other.
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L7. At startup, a node should read the server ID
from a configuration file.

Similarly, a designer can make simple statements about
the desired durability and consistency properties of the
system. One such safety property relates to durability:

S1. Do not allow a write by a client to be seen
by any other client until the server has stored the
update.

Other safety properties relate to ensuring sequential con-
sistency. One way to ensure sequential consistency is to
enforce three properties S2, S3, and S4. The first two are
straightforward:

S2. A write of an object must block until all earlier
versions have been invalidated.

S3. A read of an object must block until the reader
holds a valid, consistent copy of the object.

The last safety property for this formulation of sequential
consistency is more subtle. Since multiple clients can is-
sue concurrent writes to multiple objects, we must define
some global sequential order on those writes and ensure
that they are observed in that order. In a client-server
system it is natural to have the server set that total order:

S4. A read or write of an object must block until
the client is guaranteed to observe the effects of all
earlier updates in the sequence of updates defined
by the server.

This rule requires us to add one more liveness rule:
L8. Upon receiving acknowledgements for all of
an update’s invalidations, the server should assign
the update a position in the global total order.

The 12 statements above seem to be about as simple a
description as one could hope to have of our example
system. If we can devise an architecture that allows a de-
signer to build such a system with something close to
this simple description while the architecture and run-
time hide or handle the mechanical details, we will regard
Padre as a success.

2.2 Excluded properties
There are at least three properties that Padre does not ad-
dress or for which it provides limited choice to designers:
security, interface, and conflict resolution.

First, Padre does not support security specification.
We believe that ultimately our policy architecture should
also define flexible security primitives. Providing this
capability is important future work, but it is outside the
scope of this paper.

Second, Padre exposes an object-store interface for lo-
cal reads and writes. It does not expose other interfaces
such as a file system or a tuple store. We believe that
these interfaces are not difficult to incorporate. Indeed,
we have implemented an NFS interface over our proto-
type [3].

Third, Padre only assumes a simple conflict resolu-
tion mechanism. Write-write conflicts are detected and
logged in a way that is data-preserving and consistent
across nodes to support a broad range application-level
resolvers. We do not attempt to support all possible
conflict resolution algorithms [7, 15, 16, 27, 32]. We be-
lieve it is straightforward to extend Padre to support other
models.

3 Detailed design
It is well and good to say that designers should build
replication systems by specifying liveness with actions,
triggers, and stored events and by specifying safety with
blocking predicates, but designers can only take this ap-
proach if Padre provides the right set of primitives from
which to build. These primitives must be simple, expres-
sive, and efficient. Given the high-level Padre architec-
ture, precisely defining these primitives is the central in-
tellectual challenge of Padre’s detailed design.

We first detail Padre’s abstractions for defining live-
ness and safety policy. We then discuss two crosscutting
design issues: fault tolerance and correctness.

3.1 Liveness policy
In Padre, a liveness policy must set up invalidation and
body subscriptions so that updates propagate among
nodes to meet a designer’s goals. For example, if a
designer wants to implement hierarchical caching, the
liveness policy would set up subscriptions among nodes
to send updates up and to fetch data down. If a de-
signer wants nodes to randomly gossip updates, the live-
ness policy would set up subscriptions between random
nodes. If a designer wants mobile nodes to exchange up-
dates when they are in communications range, the live-
ness policy would probe for available neighbors and set
up exchanges at opportune times. If a designer wants a
laptop to hoard files in anticipation of disconnected op-
eration [16], the liveness policy would periodically fetch
files from the hoard list. Etc.

Liveness policies do such things by defining how ac-
tions are taken in response to triggers and stored events.

3.1.1 Actions
The basic abstraction provided by a Padre action is sim-
ple: an action sets up a subscription to route updates
from one node to another.

The details of this primitive boil down to making sub-
scriptions efficient by letting designers control what in-
formation is sent. To that end, the subscription actions
API gives the designer 5 choices:
1. Select invalidations or bodies. Each update comprises

an invalidation and a body. An invalidation indicates
that an update of a particular object occurred at a par-
ticular instant in logical time; invalidations help en-
force consistency by notifying nodes of updates and
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by ordering the system’s events. Conversely, a body
contains the data for a specific update.

2. Select objects of interest. A subscription specifies
which objects are of interest to the receiver, and the
sender only includes updates for those objects. Padre
exports a hierarchical namespace so a group of related
objects can be concisely specified (e.g., /a/b/*).

3. For a body subscription, select streaming or single-
item mode. A subscription for a stream of bodies sends
updated bodies for the objects of interest until the sub-
scription terminates; such a stream is useful for coarse-
grained replication or for prefetching. Alternatively, a
policy can send a single body by having the sender
push it or the receiver fetch it. For reasons discussed
below, invalidations are always sent in streams.

4. Select the start time for a subscription. A subscription
specifies a logical start time, and the stream sends all
updates that have occurred since that time.

5. Specify a catchup mode for a subscription. If the start
time for a subscription is earlier than the sender’s cur-
rent logical time, then the sender can transmit either a
log of the events that occurred between the start time
and the current time or a checkpoint that includes just
the most recent update to each byterange since the start
time. Sending a log is more efficient when the num-
ber of recent changes is small compared to the number
of objects covered by the subscription. Conversely, a
checkpoint is more efficient if (a) the start time is in
the distant past (so the log of events is long) or (b) the
subscription is for only a few objects (so the size of
the checkpoint is small). Note that once a subscrip-
tion catches up with the sender’s current logical time,
updates are sent as they arrive, effectively putting all
active subscriptions into a mode of continuous, incre-
mental log transfer.

Figure 15 in the Appendix lists the full actions API.

Example. Consider the operation of the simple client-
server system. The actions required to route bodies and
invalidations are simple, entailing four Padre actions to
handle statements L1-L4 in Section 2.1.

In particular, on a read miss for object o, a client takes
two Padre actions. First, it issues a single-object fetch for
the current body of o (L1). Second, it sets up an invalida-
tion subscription for object o so that the server will notify
the client if o is updated (L2 and L4). As a result of these
actions, the client will receive the current version of o,
receive consistency bookkeeping information for o, and
receive an invalidation when o is next modified.

To send a client’s writes to the server (L3), rather than
set up fine-grained, dynamic, per-object subscriptions as
we do for reads, at startup a client’s liveness policy sim-
ply creates two coarse-grained subscriptions: one to send

data (bodies) for all objects starting from the server’s cur-
rent logical time and another to do the same for metadata
(invalidations.)

3.1.2 Triggers
Liveness policies invoke Padre actions when Padre trig-
gers signal important events.
• Local read, write, delete operation triggers inform the

liveness policy when a read blocks because it needs
additional information to complete or when a local up-
date occurs.

• Messages receipt triggers inform the liveness policy
when an invalidation arrives, a body arrives, a fetch
succeeds, or a fetch fails.

• Connection event triggers inform the liveness policy
when subscriptions are successfully established, when
a subscription has allowed a receiver’s state to catch
up with a sender’s state, or when a subscription is re-
moved or fails.

Figure 15 in the Appendix lists the full triggers API.

Example. In the simple client-server example, to issue
a demand read request and set up callbacks, statements
L1 and L2 are triggered when a read blocks; to have a
client acknowledge an invalidation, statement L5 is trig-
gered when a client receives an invalidation message; and
to notify a writer when its write has completed, state-
ments L6 and L8 are triggered when a server receives
acknowledgements from clients.

Statement L3 requires a client to send all updates to
the server. Rather than setting up a subscription to send
o when o is written, our implementation maintains a
coarse-grained subscription for all objects at all times.
Establishment of this subscription is triggered by system
startup and by connection failure.

Statement L4 requires a server to send invalidations to
all clients registered to receive callbacks for an updated
object. These callback subscriptions are set up when a
client reads data (L2), and the liveness policy need not
take any additional action when an update arrives.

3.1.3 Stored events
Systems often need to maintain hard state to make rout-
ing decisions. Supporting this need is challenging both
because we want an abstraction that meshes well with
our event-driven, rule-based policy language and because
the techniques must handle a wide range of scales. In
particular, the abstraction must handle not only simple,
global configuration information (e.g., the server iden-
tity in a client-server system like Coda [16]), but it must
also scale up to per-volume or per-file information (e.g.,
which children have subscribed to which volumes in a
hierarchical dissemination system [7, 23] or which nodes
store the gold copies of each object in Pangaea [26].)

To provide a uniform abstraction to address this range
of concerns, Padre provides stored events. To use stored
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events, policy rules produce one or more tuples that are
stored into a data object in the underlying persistent ob-
ject store. Rules also define when the tuples in an ob-
ject should be retrieved, and the tuples thus produced can
then trigger other policy rules. Figure 15 in the Appendix
shows the full API for stored events.

To illustrate the flexibility of stored events, we first
illustrate their use for simple configuration information
in the running example. We then illustrate several more
dynamic, fine-grained applications of the primitive.

Example: Simple client-server. Clients must route
requests to the server, so the liveness policy needs to
know who that is. At configuration time, the installer
writes the tuple ADD SERVER [serverID] to the object
/config/server. At startup, the liveness policy pro-
duces the stored events from this object, which causes the
client’s liveness policy to update its internal state with the
identity of the server.

Example: Per-volume subscriptions. In a hierarchi-
cal dissemination system, to set up a persistent subscrip-
tion for volume v from a parent p to a child c, a rule
at the parent stores the tuple SUBSCRIPTION c v to an
object /subs/p/v. Later, when a trigger indicates that
an update for v has arrived at p, a policy rule uses the
stored events abstraction to produce the events stored in
/subs/p/v, which, in turn, activates rules that cause ac-
tions such as transmission of recent updates of v to each
of the children with subscriptions.

Example: Per-file location information. In Pan-
gaea [26], each file’s directory entry includes a list of
gold nodes that store copies of that file. To implement
such fine-grained, per-file routing information, a Padre
liveness policy creates a goldList object for each file,
stores several GOLD NODE objId nodeId tuples in that
object, and updates a file’s goldList whenever the file’s
set of gold nodes changes (e.g., due to a long-lasting
failure.) When a read miss occurs, the liveness pol-
icy produces the stored GOLD NODE tuples from file’s
goldList, and these tuples activate rules that route a
read request to one of the file’s gold nodes.

3.1.4 Liveness policies in R/OverLog
To write a liveness policy, a designer writes rules
in R/OverLog. As in OverLog [21] a program in
R/OverLog is a set of table declarations for storing tu-
ples and a set of rules that specify how to create a new
tuple when a set of existing tuples meet some constraint.
For example,

out(@Y, A, C) :- in1(@X, A, B, C), t1(@X, A, B, D),
t2(@X, A, ), C < D

indicates that whenever there exist at node X a tuple in1,
any entry in table t1, and any entry in table t2 such that all
have identical second fields (A), in1 and the tuple from t1
have identical third fields (B), and the fourth field (C) of

in1 is smaller than the fourth field (D) in the tuple from
t1, create a new tuple (out) at node Y using the second and
fourth fields from in1 (A and C). Note that for the tuple
in t2, the wildcard matches anything for field three.

R/OverLog extends OverLog by adding type informa-
tion to tuples and by efficiently implementing the inter-
face for inserting and receiving tuples from a running
OverLog program. This interface is important for Padre
to inject triggers to and receive actions from the policy.

Note that if learning a domain specific language is not
one’s cup of tea, one can define a (less succinct) policy by
writing Java handlers for Padre triggers and stored events
to generate Padre actions and stored events.

Example. Statement L1 of our simple client server ex-
ample allows a client to fetch a missing object from the
server when it suffers a read miss. We can write two
R/OverLog rules to express this complete statement:
L1a: clientRead(@S, C, Obj, Off, Len) :-

TRIG informReadBlock(@C, Obj, Offset, Len, ),
TBL serverId(@C, S), C 6= S.

.

L1b: ACT sendBody(@S, S, C, Obj, Off, Len) :-
clientRead(@S, C, Obj, Off, Len).

The first rule is triggered when a read blocks at a
client. It generates a clientRead tuple at the server. The
appearance of this tuple at the server generates a send-
Body action.

This approach allows us to define a liveness policy us-
ing rules that track our original statements L1-L8. See
the appendix for a full listing of the 21-rule R/OverLog
liveness policy for this example. Most of our original
statements map to one or two rules. Tracking which
nodes require or have acknowledged invalidations is a bit
more involved, so L6 maps to eight rules that maintain
lists of clients that must receive callbacks.

Although this example is simple, our experience for a
broad range of systems is that Padre generally provides a
natural, precise, and concise way to express a designer’s
intent and that it meets our goal of allowing a designer to
construct a system by writing high-level statements de-
scribing the system’s operation.

3.2 Safety policy
In Padre, a system’s safety policy is defined by a set of
blocking predicates that prevent state observation or up-
dates until consistency or durability constraints are met.

Padre defines 5 points for which a policy can supply a
predicate and a timeout value that blocks a request until
the predicate is satisfied or the timeout is reached. Read-
NowBlock blocks a read until it will return data from
a moment that satisfies the predicate, and WriteBefore-
Block blocks a write before it modifies the underlying lo-
cal store. ReadEndBlock and WriteEndBlock block read
and write requests after they have accessed the local store
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isValid Block until node has body corresponding to high-
est received invalidation for the target object

isComplete Block until object’s consistency state reflects all
updates before the node’s current logical time

isSequenced Block until object’s total order is established
propagated
nodes, count, p

Block until count nodes in nodes have received
my pth most recent write

maxStale
nodes, count, t

Block until I have received all writes up to
(operationStart− t) from count nodes in nodes.

tuple tuple-spec Block until receiving a tuple matching tuple-spec

Fig. 3: Conditions available for defining safety policies.

but before they return. ApplyUpdateBlock blocks an up-
date received from the network before it is applied to the
local store.

Figure 3 lists the conditions available to safety predi-
cates. isValid is useful for enforcing coherence on reads
and for maximizing availability by ensuring that inval-
idations received from other nodes are not applied un-
til they can be applied with their corresponding bod-
ies [7, 23]. isComplete and isSequenced are useful for
enforcing consistency semantics like causal, sequential,
or linearizable. propagated and maxStaleness are useful
for enforcing TACT order error and temporal error tun-
able consistency guarantees [36]. propagated is also use-
ful for enforcing some durability invariants. Cases not
handled by these predicates are handled by tuple. Tu-
ple becomes true when the liveness rules produce a tuple
matching a specified pattern.

For maximum flexibility, each read/write operation in-
cludes parameters to specify the safety predicates. Repli-
cation system developers typically insulate applications
and users from the full interface by adding a simple wrap-
per that exposes a standard read/write API and that adds
the appropriate parameters before passing the requests
through to Padre.

Example. Part of the reason for focusing on the client
server example is that the example illustrates both some
simple aspects of safety policy and some that are rela-
tively complex.

Statement S1 requires the server to block application
of invalidations until the corresponding body can be si-
multaneously applied. This restriction is easily enforced
by setting isValid for the ApplyUpdateBlock predicate.

Statement S2 requires us to prevent a write from com-
pleting until all earlier versions of the updated object
have been invalidated. So, we define a writeComplete
objId logicalTime tuple that the server generates once it
has gathered acknowledgements from all nodes that had
been caching the object (L6), and we set the writeEnd-
Block predicate to block until this tuple is produced.

Statement S3 and S4 require a read to return only se-
quentially consistent data, so the ReadNowBlock predi-
cate sets three flags: isValid ensures that the read returns
only when the body is as fresh as the consistency state;
isComplete ensures that the read returns only when the

consistency metadata for the object is current; and isSe-
quenced ensures that the read of an object returns only
once the reader has observed the server’s commit of the
most recent write of that object. Similarly, S4 requires us
to prevent a write from completing until the local state re-
flects all previously sequenced updates, so the writeEnd-
Block predicate requires the isSequenced condition.

Theorem 1. The simple client server implementation en-
forces sequential consistency.

The proof appears in an extended technical report [3].

3.3 Crosscutting issues
Much of the simplicity of Padre policies comes be-
cause the Padre primitives automatically handle many
low-level details that otherwise complicate a system de-
signer’s life. Some of these aspects of Padre can be il-
lustrated by describing how a designer approaches two
cross-cutting issues in Padre: tolerating faults and rea-
soning about the correctness of a policy.

3.3.1 Fault tolerance
At design time, Padre’s role is to help a designer ex-
press design decisions that affect fault tolerance. For ex-
ample, by setting up subscriptions to distribute data and
metadata, the liveness policy determines where data are
stored, which affects both durability and availability; by
defining a static or dynamic topology for distributing up-
dates or fetching data, the liveness policy can affect avail-
ability by determining when nodes are able to communi-
cate; and by specifying what consistency constraints to
enforce, the safety policy affects availability.

Then, during system operation, Padre liveness rules
define how to detect and react to faults. Often, policies
simply detect failures when failed network connections
invoke a subscription failed trigger, but Padre’s use of a
variation of OverLog for defining liveness policies also
allows more sophisticated systems to include rules to ac-
tively monitor nodes’ connectivity [21], or even imple-
ment a group membership or agreement algorithm [29].
Example reactions to faults include retrying requests,
rerouting requests, or making additional copies of data
whose replication factor falls below a low water mark.

Finally, when a node recovers, Padre’s role is to insu-
late the designer from the low-level details. Upon recov-
ery, local mechanisms first reconstruct local state from
persistent logs. Then, Padre’s subscription primitives ab-
stract away many of challenging details resynchroniz-
ing node state, allowing per-system policies to focus on
reestablishing the system’s high-level update flows.

In particular the subscription primitive simplifies re-
covery by allowing a Padre node’s consistency book-
keeping logic (©2 in Figure 1) to automatically track
the subset of objects for which complete information is
present and another subset that may be affected by omit-
ted updates [2, 38], and safety policies can block access
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to the latter if they desire to enforce FIFO or stronger
consistency. As a result, crash recovery in most systems
simply entails restoring lost connections or reacting to re-
quests that block because they are accessing potentially
inconsistent data by fetching the missing information.

Example. In the simple client-server system, signifi-
cant design-time decisions include requiring all data to
be stored at and fetched from a central server and enforc-
ing sequential consistency.

Because of the semantics embedded in the subscrip-
tion primitives, simple techniques then suffice to ensure
correct operation even if the client crashes and recovers,
the server crashes and recovers, or network connections
fail and are restored.

In particular, after a subscription carrying updates
from a client to the server breaks, the server periodi-
cally attempts to reestablish the connection. Because the
server always restarts a subscription from where it left
off, once a local write is applied to a client’s local state,
it eventually must be applied to the server’s state

Additionally, after a connection carrying invalidations
from the server to the client breaks and is reestablished,
Padre’s low-level consistency bookkeeping mechanisms
advance the client’s consistency state only for objects
whose subscriptions have been added to the new connec-
tion. Other objects are then treated as potentially incon-
sistent as soon as the first invalidation arrives on the new
connection. As a result, no special actions are needed
resynchronize a client’s state during recovery.

3.3.2 Correctness
Three aspects of Padre’s core architecture simplify rea-
soning about the correctness of Padre systems. First,
the primitives over which policies are built handle the
low-level bookkeeping details needed to track consis-
tency state. Second, the separation of policy into safety
and liveness reduces the risk of safety violations: safety
constraints are expressed as simple invariants and errors
in the (more complex) liveness policies tend to mani-
fest as liveness bugs rather than safety violations. Third,
the conciseness of Padre specifications greatly facilitates
analysis, peer review, and refinement of designs.

Example In the client-server system, the same abstrac-
tions that simplify reasoning about consistency synchro-
nization across failures also make systems robust to de-
sign errors. For example, if a policy starts a subscription
“too late,” fails to include needed objects in a subscrip-
tion, or fails to set up a subscription from a node that has
needed updates, the bookkeeping logic will identify any
affected items as potentially inconsistent. Additionally,
in such a situation, safety constraints will block reads or
writes or both, but they will not allow applications to ob-
serve inconsistent data. Finally, the conciseness of the
specification facilitates analysis: the system is defined

by 21 liveness rules and 5 safety predicates (see the Ap-
pendix for the entire specification), and most of the 21
rules are trivial; the difficult parts of the design come
down to 9 rules (L6a-L6i).

section Evaluation
A policy architecture for replication systems should

be flexible, should simplify system building, should fa-
cilitate the evolution of systems, and should have good
performance. To examine the first three factors, our eval-
uation centers on a series of case studies. We then exam-
ine the performance of the prototype.

Experimental environment. The prototype imple-
mentation uses PRACTI [2, 38] to provide the mech-
anisms over which policy is built. We implement a
R/OverLog to Java compiler using the xtc toolkit [10,
12]. Except where noted, all experiments are carried
out on machines with single-core 3GHz Intel Pentium-
IV Xeon processors, 1GB of memory, and 1Gb/s Ether-
net. Machines are connected via an Emulab [34], which
allows us to vary network latency. We use Fedora Core
6, BEA JRocket JVM Version 27.4.0, and Berkeley DB
Java Edition 3.2.23.

3.4 Full example
In previous sections, we discuss implementation of a sim-
ple client-server system. This system requires just 21
Padre liveness rules and five Padre safety predicates, and
it implements a client-server architecture, callbacks, se-
quential consistency, crash recovery, and configuration.

We can easily add additional features to make the sys-
tem more practical.

First, to ensure liveness for all clients that can commu-
nicate with the server, we use volume leases [35] to ex-
pire callbacks from unreachable clients. Adding volume
leases requires an additional safety predicate to block
client reads if the client’s view of the server’s state is
too stale. The liveness implementation keeps the client’s
view up-to-date by sending periodic heartbeats via a vol-
ume lease object. It requires 3 liveness rules to have
clients maintain subscriptions to the volume lease object
and have the server put heartbeats into that object, and
4 more to check for expired leases and to allow a write
to proceed once all leases expire. Note that by trans-
porting heartbeats via a Padre object, we ensure that a
client observes a heartbeat only after it has observed all
causally preceding events, which greatly simplifies rea-
soning about consistency.

Second, we add cooperative caching by replacing the
rule that sends a body from the server with 6 rules: 3
rules to find a helper and get data from the helper, and 3
rules to fall back on the server if there no helper is found
or when the helper fails to satisfy the request. Note that
reasoning about cache consistency remains easy because
invalidation metadata still follow the client-server paths,
and the safety predicates ensure that a body is not read
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Fig. 4: Demonstration of full client-server system. The x axis
shows time and the y axis shows the value of each read or write
operation.

until the corresponding invalidation has been processed.
In contrast, some previous implementations of coopera-
tive caching found it challenging to reason about consis-
tency [4].

Third, we add support for partial-file writes by adding
seven rules to track which blocks each client is caching
and to cancel a callback subscription for a file only when
all blocks have been invalidated.

Fourth, we add three rules to the server that check for
blind writes when no callback is held and to establish
callbacks for them.

Figure 4 illustrates the functionality of the enhanced
system. To highlight the interactions, we add a 50ms
delay on the network links between the clients and the
server. We configure the system with a 2 second lease
heartbeat and a 5 second lease timeout. In this exper-
iment, one client repeatedly reads an object and then
sleeps for 500ms and another client repeatedly writes the
object and sleeps for 2000ms. We plot the start time, fin-
ish time, and value of each operation.

During the first 20 seconds of the experiment, as the
figure indicates and as promised by Theorem 1, sequen-
tial consistency is enforced.

We kill the server process 20 seconds into the exper-
iment and restart it 10 seconds later. While the server is
down, writes block immediately and reads continue un-
til the lease expires. Both resume shortly after the server
restarts, and the mechanics of subscription reestablish-
ment ensure that consistency is maintained.

We kill the reader at 50 seconds and restart it 10 sec-
onds later. Initially, writes block, but as soon as the lease
expires, writes proceed. When the reader restarts, reads
resume as well.

3.5 Example: Weaker consistency
Many distributed data systems weaken consistency to im-
prove performance or availability. For example, Figure 5
illustrates a similar scenario as Figure 4 but using the
Padre implementation of TierStore [7], which enforces
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Fig. 5: Demonstration of TierStore under a workload similar to
that in Figure 4.

best effort coherence rather than sequential consistency
and which propagates updates according to volume sub-
scriptions rather than via demand reads. As a result, all
reads and writes complete locally and without blocking,
so both performance and availability are improved.

3.6 Additional case studies
This section discusses our experience constructing 7 base
systems and 5 additional variations detailed in Figure 6.
The case study systems cover a large part of the design
space including client-server systems like Coda [16] and
TRIP [23], server-replication systems like Bayou [24]
and Chain Replication [33], and object replication sys-
tems like Pangaea [26] and TierStore [7].

The systems include a wide range of approaches
for balancing consistency, availability, partition re-
silience, performance, reliability, and resource consump-
tion, including demand caching and prefetching; coarse-
and fine-grained invalidation subscriptions; structured
and unstructured topologies; client-server, cooperative
caching, and peer-to-peer replication; full and partial
replication; and weak and strong consistency. The fig-
ure details the range of features we implement from the
papers describing the original systems.

Except where noted in the figure all of the systems im-
plement important features like well-defined consistency
semantics, crash recovery, and support for both the ob-
ject store interface and an NFS wrapper, which provides
a user-level NFS server (similar to SFS [22] but written
in Java).2

Rather than discussing each of these dozen systems
individually [3], we highlight our overall conclusions:
1. Padre is flexible.
As Figure 6 indicates, we are able to construct systems
with a wide range of architectures and features. Padre is
aimed at environments where nodes are geographically
distributed or mobile and where data placement affects

2Note that in this configuration the NFS protocol is used between
the local in-kernel NFS client and the local user-level NFS server, and
the Padre runtime handles communication between machines.
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Simple Full Bayou Chain Coda Tier Tier
Client Client Bayou + Small Repl Coda + Coop Pangaea Store Store TRIP TRIP
Server Server [24] Device [33] [16] Cache [26] [7] +CC [23] +Hier

Liveness rules 21 43 7 9 75 31 35 75 16 20 6 8
Safety predicates 5 6 3 3 5 5 5 1 1 1 2 2
Consistency Seq. Seq. Causal Causal Linear. Open/ Open/ Coher. Coher. Causal Seq. Seq.
Consistency close close
Topology Client/ Client/ Ad- Ad- Chains Client/ Client/ Ad- Tree Tree Client/ Tree

Server Server Hoc Hoc Server Server Hoc Server
Partial replication

√ √ √ √ √ √ √ √

Demand-only Caching
√ √

Prefetching/Replication
√ √ √ √ √ √ √ √ √ √

Cooperative caching
√ √ √

Disconnected operation
√ √ √ √ √ √

Callbacks
√ √ √ √ √ √

Leases
√ √ √

Reads always
satisfied locally

√ √ √ √ √

Crash recovery
√ √ √ √ √ √ √ √ √ √ √ √

Object store interface∗
√ √ √ √ √ √ √ √ √ √ √ √

File system interface∗
√ √ √ √ √ √ √ √ √ √ √

Fig. 6: Features covered by case-study systems. ∗Note that the original implementations of some of these systems provide interfaces
that differ from the object store or file system interfaces we provide in our prototypes.

performance or availability. Other environments such as
machine rooms may prioritize different types of trade-
offs and benefit from different approaches [1].

2. Padre simplifies system building.
As Figure 6 details, each system is described with 6 to 75
liveness rules and a few blocking predicates. As a result,
once a designer knows how she wants a system to work
(i.e., could describe the system in high-level terms like
L1-L8 and S1-S4), implementing it is straightforward.
Furthermore, the compactness of the code facilitates code
review, and the separation of safety and liveness facili-
tates reasoning about correctness.

Many systems are considerably simpler than the client
server example primarily because they require less strin-
gent consistency semantics. Our Chain Replication and
Pangaea implementations are more complex, at 75 rules
each, due to the implementation of a membership service
for Chain Replication and the richness of features in Pan-
gaea.

3. Padre facilitates the evolution of existing systems and
the development of new ones.

We illustrate Padre’s support for rapid evolution by by
adding new features to several systems. We add cooper-
ative caching to the Padre version of Coda (P-Coda) in 4
lines; this addition allows a set of disconnected devices
to share updates while retaining consistency. We add
small-device support to P-Bayou in 1 line; this addition
allows devices with limited capacity or that do not care
about some of the data to participate in a server replica-
tion system. We add cooperative caching to P-TierStore
in 4 lines; this addition allows data to be downloaded
across an expensive modem link once and then shared via
a cheap wireless network. Each of these simple optimiza-
tions provides significant performance improvements or
needed capabilities as illustrated in Section 3.8.

Overall, our experience supports our thesis that Padre
facilitates the design of replication systems by capturing

Primitive Best Case Padre Prototype

Start conn. 0 Nnodes ∗ (Ŝid + Ŝt)
Inval sub w/ (Nprev +Nnew)∗Sinval (Nprev +Nnew)∗ Ŝinval
LOG catchup +Ssub +Nimpr ∗ Ŝimpr + Ŝsub

Inval sub w/ (NmodO +Nnew)∗Sinval (NmodO +Nnew)∗ Ŝinval
CP catchup +Ssub +Nimpr ∗ Ŝimpr + Ŝsub

Body sub (NmodO +Nnew)∗Sbody (NmodO +Nnew)∗ Ŝbody

Single body Sbody Ŝbody

Fig. 7: Network overheads of primitives. Here, Nnodes is the
number of nodes; Nprev and NmodO are the number of updates
and the number of updated objects from a subscription start
time to the current logical time; Nnew is the number of updates
sent on a subscription after it has caught up to the sender’s log-
ical time until it ends; and Nimpr is the number of imprecise
invalidations sent on a subscription. Sid , St , Sinval , Simpr, Ssub
and Sbody are the sizes to encode a node ID, logical timestamp,
invalidation, imprecise invalidation, subscription setup, or body
message; Sx are the sizes of ideal encodings and Ŝx are the sizes
realized in the prototype.

the right core abstractions for describing such systems.

3.7 Performance
Our primary performance goal is to minimize network
overheads. We focus on network costs for two reasons.
First, we want Padre systems to be useful for network-
limited environments. Second, if network costs are close
to the ideal, it would be evidence that Padre captures the
right abstractions for constructing replication systems.

3.7.1 Network efficiency
Figure 3.6 shows the cost model of our implementation of
Padre’s primitives and compares these costs to the costs
of best-case implementations. Note that these best-case
implementation costs are optimistic and may not always
be achievable.

Two things should be noted. First, the best case costs
of the primitives are proportional to the useful informa-
tion sent, so they capture the idea that a designer should
be able to send just the right data to just the right place.
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Second, the overhead of our implementation over the
ideal is generally small.

In particular, there are three ways in which our pro-
totype may send more information than a hand-crafted
implementation of some systems.

First, Padre metadata subscriptions are multiplexed
onto a single network connection per pair of communi-
cating nodes, and establishment of such a connection re-
quires transmission of a version vector [38]. Note that
in our prototype this cost is amortized across all of the
subscriptions multiplexed on a network connection. A
best-case implementation might reduce this communica-
tion, so we assume a best-case cost of 0.

Our use of connections allows us to avoid sending per-
update version vectors or storing per-object version vec-
tors. Instead, each invalidation and stored object includes
an acceptStamp [24] comprising a 64-bit nodeID and a
64-bit Lamport clock.

Second, invalidation subscriptions carry both precise
invalidations that indicate the logical time of each up-
date of an object targeted by a subscription and impre-
cise invalidations that summarize updates to other ob-
jects [2]. The number of imprecise invalidations sent is
never more than the number of precise invalidations sent
(at worst, the system alternates between the two), and
it can be much less if writes arrive in bursts with local-
ity [2]. The size of an imprecise invalidation depends on
the locality of the workload, which determines the extent
to which the target set for imprecise invalidations can be
compactly encoded. A best-case implementation might
avoid sending imprecise invalidations in some systems,
so we assume a best-case invalidation subscription cost
of only sending precise invalidations.

Third, our Java-serialization of specific messages may
fall short of the ideal encodings.

Figure 8 illustrates the synchronization cost for a sim-
ple scenario. In this experiment, there are 10,000 objects
in the system organized into 10 groups of 1,000 objects
each, and each object’s size is 10KB. The reader registers

Write Write Read Read
(sync) (async) (cold) (warm)

ext3 6.64 0.02 0.04 0.02
Padre object store 8.47 1.27 0.25 0.16

Fig. 9: Read/write performance for 1KB objects/files in ms.

Write Write Read Read
(sync) (async) (cold) (warm)

ext3 19.08 0.13 0.20 0.19
Padre object store 52.43 43.08 0.90 0.35

Fig. 10: Read/write performance for 100KB objects/files in ms.

to receive invalidations for one of these groups. Then, the
writer updates 100 of the objects in each group. Finally,
the reader reads all of the objects.

We look at four scenarios representing combinations
of coarse-grained vs. fine-grained synchronization and
of writes with locality vs. random writes. For coarse-
grained synchronization, the reader creates a single inval-
idation subscription and a single body subscription span-
ning all 1000 objects in the group of interest and receives
100 updated objects. For fine-grained synchronization,
the reader creates 1000 invalidation subscriptions, each
for one object, and fetches each of the 100 updated bod-
ies. For writes with locality, the writer updates 100 ob-
jects in the ith group before updating any in the i + 1st
group. For random writes, the writer intermixes writes to
different groups in random order.

Four things should be noted. First, the synchroniza-
tion overheads are small compared to the body data trans-
ferred. Second, the “extra” overhead of Padre over the
best-case is a small fraction of the total overhead in all
cases. Third, when writes have locality, the overhead of
imprecise invalidations falls further because larger num-
bers of precise invalidations are combined into each im-
precise invalidation. Fourth, coarse-grained synchroniza-
tion has lower overhead than fine-grained synchroniza-
tion because they avoid per-object setup costs.

3.7.2 Performance overheads
This section examines the performance of the Padre pro-
totype. Our goal is to provide sufficient performance
for the system to be useful, but we expect to pay some
overheads relative to a local file system for three reasons.
First, Padre is a relatively untuned prototype rather than
well-tuned production code. Second,our implementation
emphasizes portability and simplicity, so Padre is writ-
ten in Java and stores data using BerkeleyDB rather than
running on bare metal. Third, Padre provides additional
functionality such as tracking consistency metadata not
required by a local file system.

Figures 9 and 10 summarize the performance for read-
ing or writing 1KB or 100KB objects stored locally in
Padre compared to the performance to read or write a file
on the local ext3 file system. In each run, we read/write
100 randomly selected objects/files from a collection of
10,000 objects/files. The values reported are averages of
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P2 Runtime R/OverLog runtime
Local Ping Latency 3.8ms 0.322ms
Local Ping Throughput 232 req/s 9,390 req/s
Remote Ping Latency 4.8ms 1.616ms
Remote Ping Throughput 32 req/s 2,079 req/s

Fig. 11: Performance numbers for processing NULL trigger to
produce NULL event.

Reads Writes
Min Max Avg Min Max Avg

Full CS 0.18 9.34 1.07 19.69 42.03 26.28
P-TierStore 0.16 0.74 0.19 6.65 22.40 7.68

Fig. 12: Read/Write performance in milliseconds for reading
1KB objects under the same workload as Figure 4.

5 runs. Overheads are significant, but the prototype still
provides sufficient performance for a wide range of sys-
tems.

Padre performance is signficantly affected by the run-
time system for executing liveness rules. Our compiler
converts R/OverLog programs to Java, giving us a signif-
icant performance boost compared to an earlier version
of our system, which used P2 [21] to execute OverLog
programs. Figure 11 quantifies these overheads.

Figure 12 depicts read and write performance for the
full client-server system and P-TierStore under the same
workload as in Figure 4 but without any additional net-
work latency. For the client-server system, read hits take
under 0.2ms. Read misses average 4ms, yielding an av-
erage read time of 1ms. Writes need to wait until the
write is stored by the server, the reader is invalidated,
and a server ack is received and average 26ms. For P-
TierStore, because of weaker consistency semantics, all
reads and writes are locally satisfied.

3.8 Benefits of agility
As discussed in Section 1, replication system designs
make fundamental trade-offs among consistency, avail-
ability, partition-resilience, performance, reliability, and
resource consumption, and new environments and work-
loads can demand new trade-offs. As a result, being able
to architect a replication system to send the right data
along the right paths can pay big dividends.

This section measures improvements resulting from
adding features to two of our case-study systems; due to
space constraints, we omit discussion of similar experi-
ences with two others (see Figure 6.) In both cases, we
adapt the system to a new environment and gain order-of-
magnitude improvements by making what are—because
of Padre—trivial additions to existing designs.

Figure 13 demonstrates the significant improvement
by adding 4 rules for cooperative caching to P-Coda. For
the experiment, the latency between two clients is 10ms,
whereas the latency between a client and server is 500ms.
Without cooperative caching, a client is restricted to re-
trieving data from the server. However, with cooperative
caching, the client can retrieve data from a nearby client,
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Fig. 14: Anti-Entropy bandwidth on P-Bayou

greatly improving read performance. More importantly,
with this new capability, clients can share data even when
disconnected from the server.

Figure 14 examines the bandwidth consumed to syn-
chronize 3KB files in P-Bayou and serves two purposes.
First, it demonstrates that the overhead for anti-entropy in
P-Bayou is relatively small even for small files compared
to an “ideal” Bayou implementation (plotted by count-
ing the bytes of data that must be sent ignoring all over-
heads.) More importantly, it demonstrates that if a node
requires only a fraction (e.g., 10%) of the data, the small
device enhancement, which allows a node to synchronize
a subset of data [3], greatly reduces the bandwidth re-
quired for anti-entropy.

4 Related work
PRACTI [2, 38] defines a set of mechanisms that can re-
duce replication costs by simultaneously supporting Par-
tial Replication, Any Consistency, and Topology Inde-
pendence. However, PRACTI provides no guidance on
how to specify policies that define a replication system.
Although we had conjectured that it would be easy to
construct a broad range of systems over PRACTI mech-
anisms, when we then sat down to use PRACTI to im-
plement a collection of representative systems, we re-
alized that policy specification was a non-trivial task.
Padre transforms PRACTI’s “black box” for policies into
an architecture and runtime system that cleanly sepa-
rates safety and liveness concerns, that provides blocking
predicates for specifying consistency and durability con-
straints, that defines a concise set of actions, triggers, and
stored events upon which liveness rules operate. This pa-
per demonstrates how this approach facilitates construc-
tion of a wide range of systems.
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A number of other efforts have defined frameworks
for constructing replication systems for different environ-
ments. Deceit [28] focuses on replication across a well-
connected cluster of servers. Zhang et. al. [37] define
an object storage system with flexible consistency and
replication policies in a cluster environment. As opposed
to these efforts for cluster file systems, Padre focuses on
systems in which nodes can be partitioned from one an-
other, which changes the set of mechanisms and policies
it must support. Stackable file systems [11] seek to pro-
vide a way to add features and compose file systems, but
it focuses on adding features to local file systems.

Padre incorporates the order error and staleness ab-
stractions of TACT tunable consistency [36]; we do not
currently support numeric error. Like Padre, Swarm [31]
provides a set of mechanisms that seek to make it easy
to implement a range of TACT guarantees; Swarm, how-
ever, implements its coherence algorithm independently
for each file, so it does not attempt to enforce cross-object
consistency guarantees like causal, sequential, or lin-
earizability. IceCube [15] and actions/constraints [27]
provide frameworks for specifying general consistency
constraints and scheduling reconciliation to minimize
conflicts. Fluid replication [5] provides a menu of consis-
tency policies, but it is restricted to hierarchical caching.

Padre follows in the footsteps of efforts to define run-
time systems or domain-specific languages to ease the
construction of routing [21], overlay [25], cache consis-
tency protocols [4], and routers [17].

5 Conclusion
In this paper, we describe Padre a policy architecture
which allows replication systems to be implemented by
simply specifying policies. In particular, we show that
replication policies can be cleanly separated into safety
policies and liveness policies both of which can be im-
plemented with a small number of primitives
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A Liveness API and full example
Figure 15 lists all of the actions, triggers, and stored
events that Padre designers use to construct liveness poli-
cies that route updates among nodes.

Liveness Actions
Add Inval Sub srcId, destId, objs, [time], LOG|CP|CP+Body
Remove Inval Sub srcId, destId, objs
Add Body Sub srcId, destId, objs
Remove Body Sub srcId, destId, objs
Send Body srcId, destId, objId, off, len, writerId, logTime
Assign Seq objId, off, len , writerId, logTime

Connection Triggers
Inval subscription start srcId, destId, objs
Inval subscription caught-up srcId, destId, objs
Inval subscription end srcId, destId, objs, reason
Body subscription start srcId, objs, destId
Body subscription end srcId, destId, objs, reason

Local read/write Triggers
Read block obj, off, len, EXIST|VALID|COMPLETE|COMMIT
Write obj, off, len, writerId, logTime
Delete obj, writerId, logTime

Message arrival Triggers
Inval arrives sender, obj, off, len, writerId, logTime
Fetch success sender, obj, off, len, writerId, logTime
Fetch failed sender, receiver, obj, offset, len, writerId, logTime

Stored Events
Write tuple objId, tupleName, field1, ..., fieldN
Read tuples objId
Read and watch tuples objId
Stop watch objId
Delete tuples objId

Fig. 15: Padre interfaces for liveness policies.

The following 21 liveness rules describe the full live-
ness policy for the simple client-server example.
// Read miss: client fetch from server
L1a: clientRead(@S, C, Obj, Off, Len) :-

TRIG informReadBlock(@C, Obj, Off, Len, ),
TBL serverId(@C, S), C 6= S.

.

L1b: ACT sendBody(@S, S, C, Obj, Off, Len) :-
clientRead(@S, C, Obj, Off, Len).

// ReadMiss: establish callback
L2a: ACT addInvalSubscription(@S, S, C, Obj, Catchup) :-

clientRead(@S, C, Obj, Off, Len), Catchup := “CP”.

L2b: TBL hasCallback(@S, Obj, C) :-
clientRead(@S, C, Obj, Off, Len).

//Maintain c-to-s subscriptions for updates.
L3a: ACT addInvalSubscription(@S, C, S, SS, Catchup) :-

clientCFGTuple(@S, C), SS:=“/*”, Catchup := “CPwithBody”,
TBL serverId(@S, S).

L3b: ACT addBodySubscription(@S, C, SS) :-
clientCFGTuple(@S, C), SS:=“/*”, TBL serverId(@S, S).

L3c: ACT addInvalSubscription(@S, C, SS, Catchup) :-
TRIG informInvalSubscriptionEnd(@S, C, S, SS, ),
Catchup := “CPwithBody”.

L3d: ACT addBodySubscription(@S, C, SS) :-
TRIG informBodySubscriptionEnd(@S, C, S, SS, ).

// No rules needed for L4 (see L2)
// When client receives an invalidation: ACK server, cancel callback
L5a: ackServer(@S, C, Obj, Off, Len, Writer, Stamp) :-

TRIG informInvalArrives(@C, S, Obj, Off, Len, Stamp, Writer),
TBL serverId(@C, S), S6=C.

L5b: removeInvalSubscription(@C, S, C, Obj) :-
TRIG informInvalArrives(@C, S, Obj, Off, Len, Stamp, Writer),
TBL serverId(@C, S), S6=C.

// Server receives inval: gather acks from all who have callback
// Acks are cumulative. Ack of timestamp i acks all earlier
L6a: TBL needAck(@S, Ob, Off, Ln, C2, Wrtr, Stmp, Need) :-

TRIG informInvalArrives(@S, C, Ob, Off, Ln, Stmp, Wrtr),
TBL hasCallback(@S, Ob, C2), C2 6= Wrtr, Need := 1,
TBL serverId(@S, S).

L6b: TBL needAck(@S, Ob, Off, Ln, C2, Wrtr, Stmp, Need) :-
TRIG informInvalArrives(@S, C, Ob, Off, Ln, Stmp, Wrtr),
C2 == Wrtr, Need := 0, TBL serverId(@S, S).

L6c: TBL needAck(@S, Ob, Off, Ln, C, Wrtr, Stmp, Need) :-
ackServer(@S, C, , , , , RStmp),
TBL needAck(@S, Ob, Off, Ln, C, Wrtr, Stmp, ),
Stmp < RStmp, Need:= 0, TBL serverId(@S, S).

L6d: TBL needAck(@S, Obj, C, Wrtr, Stmp, Need) :-
ackServer(@S, C, , , , RecvWrtr, RStmp),
TBL needAck(@S, Obj, C, Wrtr, Stmp, ), Stmp == RStmp,
Wrtr ≤ RecvWrtr, Need:= 0, TBL serverId(@S, S).

L6e: delete TBL hasCallback(@S, Obj, C) :-
TBL needAck@S, Obj, , , C, , , Need), Need == 0,
TBL serverId(@S, S).

L6f: acksNeeded(@S, Ob, Off, Ln, Wrtr, RStmp, <count>) :-
TBL needAck(@S, Ob, Off, Ln, C, Wrtr, RStmp, NeedTrig),
TBL needAck(@S, Ob, Off, Ln, C, Wrtr, RStmp, NeedCount),
NeedTrig == 0, NeedCount == 1.

L6g: writeComplete(@Wrtr, Obj) :-
acksNeeded(@S, Obj, Off, Len, Wrtr, RStmp, Count),
Count == 0.

L6h: delete TBL needAck(@S, Obj, C, WrtrId, RStmp, ) :-
acksNeeded(@S, Obj, Off, Len, Wrtr, RStmp, Count),
Count == 0.

// Startup: produce configuration stored event tuples
L7a: SE readTuples(@X, Obj) :-

init(@X), Obj := “clientCFG”.

L7b: SE readTuples(@X, Obj) :-
init(@X), Obj := “serverCFG”.

// When all acks received: Assign a CSN to the update
L8: ACT assignSeq(Obj, Off, Len, Stmp, Wrtr) :-

acksNeeded(@S, Obj, Off, Len, Wrtr, Stmp, Count), Count == 0.

For safety, this system sets the ApplyUpdateBlock pred-
icate at the server to isValid and sets the readNowBlock
predicate to isValid AND isComplete AND isSequenced
CSN. Additionally, it sets the writeEndBlock predicate to
tuple writeComplete objId with a timeout of 20 seconds.
Clients retry the write if it times out; the retry ensures
completion if there is a server failure and recovery.
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