
PADS: A Policy Architecture
for Building Distributed Storage Systems

Nalini Belaramani∗, Jiandan Zheng§, Amol Nayate†, Robert Soulé‡, Mike Dahlin∗, Robert Grimm‡

∗UT Austin §Amazon.com Inc. †IBM TJ Watson Research ‡NYU

Abstract: This paper presents PADS, a new policy ar-
chitecture that makes it easier to develop distributed stor-
age systems. PADS is based on two key ideas. First,
a distributed storage system is implemented by speci-
fying a control plane that embodies the design policy
of the system over a data plane that provides a set of
common mechanisms. Second, the control plane pol-
icy is separated into routing policy which specifies how
data flows through the system and blocking policy which
forces reads, writes, and data propagation to wait until
system consistency and durability invariants are met. The
argument for PADS is simple: PADS qualitatively reduces
the effort to build new systems. For example, using PADS
we were able to construct a dozen significant distributed
storage systems spanning a large portion of the design
space.

1 Introduction
Our goal is to make it easy for system designers to
construct new distributed storage systems for challeng-
ing environments. Distributed storage systems need to
deal with a wide range of heterogeneity in terms of de-
vice capabilities (e.g., phones, set-top-boxes, laptops,
servers), workloads (e.g., streaming media, interactive
web services, private storage, widespread sharing, de-
mand caching, preloading), connectivity (e.g., wired,
wireless, disruption tolerant), and environments (e.g.,
mobile networks, wide area networks, developing re-
gions). To cope with these varying demands, new sys-
tems are developed [6, 12, 14, 19, 20, 23, 24, 30], each
system making design choices that balance performance,
resource usage, consistency, and availability. Because
these tradeoffs are fundamental [7, 17, 33], we do not ex-
pect a single “hero” distributed storage system to emerge
to serve all situations and end the need for new systems
in new environments and workloads.

In previous work [3, 22], we developed the PRACTI
(Partial Replication, Arbitrary Consistency, Topology In-
dependence) mechanisms. We speculated that PRACTI
could serve as a “replication microkernel” over which
a broad range of new distributed storage systems could
quickly be built and we imagined demonstrating this hy-
pothesis by constructing half a dozen diverse and de-
manding systems modeled on those from the literature [5,
14, 21, 25, 27, 32]. These efforts bogged down. We con-
cluded that PRACTI was only half the story. It was not
sufficient to define a set of replication mechanisms; we

also had to define an architecture to easily implement
policies that define a desired design.

This paper presents PADS, a policy architecture that
makes it easier to construct new distributed storage sys-
tems. PADS is based on two key ideas.

First, a distributed storage system is built by speci-
fying directives in the control plane over a data plane.
The data plane encapsulates the underlying mechanisms
to handle the details of storing and transmitting data and
maintaining consistency information. System designers
only need to write control plane policy that orchestrates
data flows. Cleanly separating the control plane from the
data plane simplifies a designer’s job by abstracting away
many complex implementation details.

Second, the PADS architecture divides control plane
policy into two aspects: routing and blocking.
• Routing policy: Many of the design choices of dis-

tributed storage systems are simply routing decisions
about data flows between nodes. These decisions pro-
vide answers to questions such as: when and where to
send updates? which node to contact on a read miss?
etc. Routing policy sets up data flows among nodes
to meet a system’s performance, availability, and re-
source consumption goals.

• Blocking policy: Blocking policy specifies when nodes
must block incoming updates or local read/write re-
quests so as to maintain system invariants. Blocking
is particularly useful for specifying consistency and
durability goals. For example, a policy might block
the completion of a write until it reaches at least 3 other
nodes to meet a system’s durability requirement.
The main challenge for PADS’s detailed design is to

provide an API for system development that is simple,
flexible, and efficient. For routing policy, PADS provides
a set of actions that set up data flows, a set of triggers
that expose local node information, and the abstraction
of stored events to allow persistent state in the data plane
to affect routing decisions by the control plane. In or-
der to further simplify the definition of routing policies in
terms of these primitives, PADS also defines R/OverLog1,
an extension of the OverLog [18] declarative routing lan-
guage. For blocking policy, PADS provides a set of block-
ing predicates that block access to data until blocking
conditions are satisfied.

1Pronounced “R over OverLog” (for Replication over OverLog) or
“Roverlog.”

1

Simple
Client
Server

Full
Client
Server

Coda
[14]

Coda
+Coop
Cache

TRIP
[21]

TRIP
+Hier

Tier
Store
[5]

Tier
Store
+CC

Chain
Repl
[32]

Bayou
[25]

Bayou
+Small

Dev

Pangaea
[27]

Routing Rules 21 43 31 44 6 6 19 32 75 9 9 75
Blocking Conditions 5 6 5 5 3 3 1 1 4 3 3 1
Topology Client/ Client/ Client/ Client/ Client/ Tree Tree Tree Chains Ad- Ad- Ad-

Server Server Server Server Server Hoc Hoc Hoc
Replication Partial Partial Partial Partial Full Full Partial Partial Full Full Partial Partial
Demand caching

√ √ √ √ √ √ √

Prefetching
√ √ √ √ √ √ √ √ √ √

Cooperative caching
√ √ √ √ √ √

Consistency Seq. Seq. Open/ Open/ Seq. Seq. Coher. Coher. Linear. Causal Coher. Coher.
Close Close

Callbacks
√ √ √ √ √ √

Leases
√ √ √

Invalidation vs. whole update Inval. Inval. Inval. Inval. Inval. Inval. Update Update Update Update Update Update
propagation
Disconnected operation

√ √ √ √ √ √ √ √ √

Crash recovery
√ √ √ √ √ √ √ √ √ √ √ √

Object store interface*
√ √ √ √ √ √ √ √ √ √ √ √

File system interface*
√ √ √ √ √ √ √ √ √ √ √

Fig. 1: Features covered by case-study systems. ∗Note that the original implementations of some of these systems provide interfaces
that differ from the object store or file system interfaces we provide in our prototypes.

Ultimately, the evidence for PADS’s usefulness is sim-
ple: we were able to use PADS to construct a dozen dis-
tributed storage systems summarized in Fig. 1. These
systems were chosen because they span a large portion
of the design space, and PADS’s ability to support these
systems suggests that PADS captures key abstractions for
distributed systems. In addition, the fact that two stu-
dents could construct such a range of systems in a matter
of months illustrates the qualitative simplification PADS
represents for system implementers. Notably, in contrast
with the ten thousand or more lines of code it typically
takes to construct such a system using standard practice,
given the 32K lines of code of the PADS framework, it
requires just 6-75 routing rules and a handful of blocking
conditions to define each new system with PADS. As an
example of the benefits of this approach, we note that, to
the best of our knowledge, we provide the first implemen-
tations of Chain Replication [32] and TRIP [21], which
were evaluated via simulations in the original papers.

A key issue in interpreting Fig. 1 is understanding
how complete or realistic these PADS implementations
are. The PADS implementations are not bug-compatible
recreations of every detail of the original systems, but we
believe they do capture the overall architecture of these
designs by storing approximately the same data on each
node, by sending approximately the same data across the
same network links, and by enforcing the same consis-
tency and durability semantics; we discuss our definition
of architectural equivalence in §5. We also note that our
PADS implementations are sufficiently complete to run
file system benchmarks and that they handle important
and challenging real world details like configuration files
and crash recovery.

Benchmarking of our PADS prototype indicates that
PADS is competitive with hand-built distributed storage

systems with respect to storage space and network band-
width. However, the performance of a PADS implemen-
tation of one system (P-Coda) built on our user-level Java
prototype, is up to 4 times worse than the original hand-
tuned system (Coda). Overall, our performance evalu-
ation leaves us confident that system builders can use
PADS for rapid prototyping and for deployment of sys-
tems for moderately demanding applications. For de-
manding applications, we believe that PADS’s storage
and network overheads suggest that the overall PADS ar-
chitecture is sound, but the absolute performance may
need improvement over that offered by the prototype.

The rest of this paper describes PADS, demonstrates
how to build systems with PADS, and evaluates the ap-
proach.

2 Architecture
Distributed storage systems cover a large design space.
Some guarantee strong consistency while others sacrifice
consistency for higher availability; some invalidate stale
objects, while others push updates; some cache objects
on demand, while others replicate all data to all nodes;
and so on. Our design choices for PADS are driven by
the need to accommodate this broad design space while
allowing policies to be simple and efficient.

Fig. 2 shows how a system designer uses PADS to con-
struct a system. She begins with a set of high-level goals
regarding factors like performance, availability, resource
consumption, consistency, and durability. She then con-
siders the trade-offs among these goals, and architects a
system design that optimizes these trade-offs.

Without PADS, she would then need to implement the
system design from scratch spending several months for
implementation and debugging. With PADS the system
design is implemented as policy over a provided set of

2

System Goals Policy Specification System Deployment

Performance

Availablity

Consistency

Durability

Resource Consumption

Data Plane
Mechanisms

Routing

Blocking

Routing
Policy

Blocking
Policy

System
Design

System

Goals

Policy

Specification

System

Deployment

System

Design

Performance

Availablity

Consistency

Durability

Resource Consumption

Routing
Policy

Blocking
Policy

Data Plane
Mechanisms

Fig. 2: Overview of PADS architecture and use.

common mechanisms. The system designer focuses only
on policy specification.

Note that a PADS policy is a specific set of directives
rather than a set of high-level goals. For example, a
policy designer might decide on a client-server architec-
ture and specify “When an update occurs, a client should
send the update to the server within 30 seconds” rather
than stating the high level goals “Machine X has highly
durable storage” and “Data should be durable within 30
seconds of its creation” and then relying on the system to
derive a client-server architecture with a 30 second write
buffer. Distributed storage design is a creative process
and PADS does not attempt to automate it. Instead, PADS
aids a designer by allowing her to easily express and im-
plement her design decisions.

As Fig. 2 indicates, PADS defines a policy architecture
that is based on two principles. First, it casts policy as a
control plane and defines an interface to system’s data
plane that embodies a set of common mechanisms. The
control plane orchestrates communication among nodes,
while the data plane handles low-level details like data
storage, data transmission, and consistency bookkeep-
ing. Second, PADS’s policy architecture splits the control
plane policy into two parts: routing policy and blocking
policy.

• Routing policy defines when nodes should send what
information to which other nodes. The intuition for
routing policy is that many of the design choices
that distinguish how different replication systems work
(e.g., Coda vs. Bayou vs. TierStore) can be regarded
as routing decisions: Where should a node go to sat-
isfy a read miss? When and where should a node send
updates it receives? Where should a node send invali-
dations when it learns of a new version of an object?

• Blocking policy specifies when a node must prevent a
local read or write from proceeding or when it must
delay applying an update received from another node.
Blocking is crucial to implement consistency and dura-
bility semantics of a system. For example, block until
a write reaches at least 3 nodes for durability, block
until a server acknowledges a write for consistency, or
block until local storage reflects all updates that oc-
curred before the start of the current read for consis-
tency.

In PADS, routing policy is specified as an event-driven
program that implements these routing decisions. and
blocking policy is specified as a set of blocking predi-
cates that state the conditions that must be satisfied be-
fore a local read/write or an application of a remote up-
date can proceed.

This division of policy into routing and blocking
works well because it introduces a separation of con-
cerns for a system designer. First, a system’s trade-offs
among performance, availability, and resource consump-
tion goals largely map to routing rules. For example,
Bayou sends all updates to all nodes to provide excellent
response time and availability. Second, a system’s dura-
bility and consistency constraints are naturally expressed
as a combination of blocking predicates (e.g., block a
read until it will return the most recent write), and rout-
ing rules (e.g., send a notification to all nodes caching a
block when that block is updated).

Given a routing and blocking policy, PADS defines a
runtime system that executes the policy across a set of
nodes. The designer places her system’s blocking predi-
cates in a configuration file and she uses the PADS com-
piler to translate her routing rules into Java. She then dis-
tributes a Java jar file containing PADS’s standard mech-
anisms and her system’s policies to the system’s nodes.
Once the system is running at each node, users can read
and write data via a local interface, and the system syn-
chronizes data among nodes according to the policy.

2.1 Scope and limitations
PADS is not designed with the goal of aiding the con-
struction of any conceivable replication system for any
conceivable environment. By restricting our scope, we
can craft abstractions that are well suited to a particular
range of environments rather than building a generic pro-
gramming system that can accommodate all designs but
that is useful for none.

We target distributed storage environments with mo-
bile devices, nodes connected by WAN networks, or
nodes in developing regions with limited or intermittent
connectivity. In these environments, factors like limited
bandwidth, heterogeneous device capabilities, network
partitions, or workload properties force interesting trade-
offs among data placement, update propagation, and con-
sistency. Conversely, we do not target environments like

3

well-connected clusters where other abstractions may be
of more immediate use to programmers [2].

We also restrict our attention to the construction of
distributed storage systems with a read/write/delete in-
terface, rather than trying to be an all-purpose distributed
programming environment. Designers looking for a
toolkit to help implement Paxos [16] should look else-
where.

Within this scope, there are at least three properties
that PADS does not address or for which it provides lim-
ited choice to designers: security, interface and conflict
resolution. Thus, PADS may represent only a first step
towards a fully general framework.

First, PADS does not support security specification.
We believe that ultimately our policy architecture should
also define flexible security primitives. Providing this
capability is important future work, but it is outside the
scope of this paper.

Second, PADS exposes an object-store interface for lo-
cal reads and writes. It does not expose other interfaces
such as a file system or a tuple store. We believe that
these interfaces are not difficult to incorporate. Indeed,
we have implemented an NFS interface over our proto-
type.

Third, PADS only assumes a simple conflict resolu-
tion mechanism. Write-write conflicts are detected and
logged in a way that is data-preserving and consistent
across nodes to support a broad range application-level
resolvers. We implement a simple last-writer wins res-
olution scheme and believe that it is straightforward to
extend PADS to support other schemes [5, 13, 14, 28, 31].

3 The PADS policy architecture
As discussed above, system development on PADS ar-
chitecture entails specifying a per-system control policy
over data plane as separate routing and blocking policies.

The data plane on which the control plane operates
provides basic replication mechanisms in terms of 3 key
abstractions. The data plane handles the details of
• Storing data locally.

• Sending and receiving updates among nodes.

• Maintaining consistency bookkeeping information.
The details of how the data plane implements these

mechanisms [3, 22] are not the focus of this paper. What
is important here is the abstractions it exposes to the con-
trol plane: it must expose an API that is simple, flexible,
and efficient enough for a system designer to easily ex-
press her intent and for the runtime system to efficiently
realize the intended design. The rest of this section de-
tails the routing and blocking abstractions PADS exposes
to policy writers. We provide an example of how a de-
signer uses this API to build a system in the next section.

Routing Actions
Add Inval Sub srcId, destId, objs, [time], LOG|CP|CP+Body
Remove Inval Sub srcId, destId, objs
Add Body Sub srcId, destId, objs
Remove Body Sub srcId, destId, objs
Send Body srcId, destId, objId, off, len, writerId, time
Assign Seq objId, off, len , writerId, time

Fig. 3: Routing actions provided by PADS.

3.1 Routing policy
In PADS, a routing policy sets up update flows among
nodes to meet a designer’s goals. The basic abstraction
provided by the data plane for a data flow is subscription
– a unidirectional stream of updates established between
two nodes. If a designer wants to implement hierarchical
caching, the routing policy would set up subscriptions
among nodes to send updates up and to fetch data down.
If a designer wants nodes to randomly gossip updates,
the routing policy would set up subscriptions between
random nodes. If a designer wants mobile nodes to ex-
change updates when they are in communication range,
the routing policy would probe for available neighbors
and set up exchanges at opportune times. Etc.

PADS’s routing primitives consist of actions that es-
tablish or remove subscriptions to direct the communica-
tion of specific subsets of data among nodes and triggers
that expose the status of local operations and informa-
tion flow. A system’s routing policy is specified as an
event-based program that invokes actions in response to
triggers received.

The basic idea of having an event driven program that
responds to triggers is not new. Our design task in con-
structing PADS is to provide the right set of actions and
triggers to control a replication data plane. PADS aug-
ments the basic event-driven programming model with a
new abstraction: stored events, which allows a routing
policy to store events in a named object in the underly-
ing system and later cause the system to re-produce those
events to trigger routing actions. This path between the
data plane and the control plane allows routing policies to
use persistent state (e.g., configuration files) and object-
specific state (e.g., a directory of related files that should
be replicated together) to drive its routing decisions.

Finally, to aid writing an event-driven routing pro-
gram, we adopt the R/OverLog routing language.
R/OverLog allows policy writers to construct routing
policies in a concise manner.

3.1.1 Actions
The basic abstraction provided by a PADS action is sim-
ple: an action sets up a subscription to route updates
from one node to another. The abstraction is so simple
because the data plane handles the implementation de-
tails, allowing the system designer to focus on specifying
what information should propagate to where. To that end,

4

the subscription actions API gives the designer 5 choices:

1. Select invalidations or bodies. In the data plane, each
update comprises an invalidation and a body. An inval-
idation indicates that an update of a particular object
occurred at a particular instant in logical time; inval-
idations help enforce consistency by notifying nodes
of updates and by ordering the system’s events. Con-
versely, a body contains the data for a specific update.

2. Select objects of interest. A subscription specifies
which objects are of interest to the receiver, and the
sender only includes updates for those objects. PADS
exports a hierarchical namespace so a group of related
objects can be concisely specified (e.g., /a/b/*).

3. For a body subscription, select streaming or single-
item mode. A subscription for a stream of bodies sends
updated bodies for the objects of interest until the sub-
scription terminates; such a stream is useful for coarse-
grained replication or for prefetching. Alternatively, a
policy can send a single body by having the sender
push it or the receiver fetch it. For reasons discussed
in §3.2, invalidations are always sent in streams.

4. Select the start time for a subscription. A subscription
specifies a logical start time, and the stream sends all
updates that have occurred since that time.

5. Specify a catchup mode for a subscription. If the start
time for a subscription is earlier than the sender’s cur-
rent logical time, then the sender can transmit either a
log of the events that occurred between the start time
and the current time or a checkpoint that includes just
the most recent update to each byterange since the start
time. Sending a log is more efficient when the num-
ber of recent changes is small compared to the number
of objects covered by the subscription. Conversely, a
checkpoint is more efficient if (a) the start time is in
the distant past (so the log of events is long) or (b) the
subscription is for only a few objects (so the size of
the checkpoint is small). Note that once a subscrip-
tion catches up with the sender’s current logical time,
updates are sent as they arrive, effectively putting all
active subscriptions into a mode of continuous, incre-
mental log transfer.

In addition to the interface for creating subscriptions,
PADS provides actions to remove subscriptions, send an
individual body or mark a previous update with a commit
sequence number to aid in enforcing consistency [25].
Fig. 3 details the full routing actions API.

3.1.2 Triggers
Routing policies invoke PADS actions when PADS trig-
gers signal important events that must be handled accord-
ing to the system’s design. These events fall into three
categories.

Local Read/Write Triggers
Read block obj, off, len, EXIST|VALID|COMPLETE|SEQ
Write obj, off, len, writerId, time
Delete obj, writerId, time

Message Arrival Triggers
Inval arrives srcId, obj, off, len, writerId, time
Body send success srcId, obj, off, len, writerId, time
Body send failed srcId, destId, obj, off, len, writerId, time

Connection Triggers
Subscription start srcId, destId, objs, Inval|Body
Subscription caught-up srcId, destId, objs, Inval
Subscription end srcId, destId, objs, reason, Inval|Body

Fig. 4: Routing triggers provided by PADS.

Stored Events
Write event objId, eventName, field1, ..., fieldN
Read event objId
Read and watch event objId
Stop watch objId
Delete events objId

Fig. 5: PADS’s stored events interface.

• Local read, write, delete operation triggers inform the
routing policy when a read blocks because it needs ad-
ditional information to complete or when a local up-
date occurs.
• Messages receipt triggers inform the routing policy

when an invalidation arrives, when a body arrives, or
when a body send succeeds or fails.
• Connection event triggers inform the liveness policy

when subscriptions are successfully established, when
a subscription has allowed a receiver’s state to catch
up with a sender’s state, or when a subscription is re-
moved or fails.
Fig. 4 details the full triggers API.

3.1.3 Stored events
Systems often need to maintain hard state to make rout-
ing decisions. Supporting this need is challenging both
because we want an abstraction that meshes well with
our event-driven, rule-based policy language and because
the techniques must handle a wide range of scales. In
particular, the abstraction must handle not only simple,
global configuration information (e.g., the server iden-
tity in a client-server system like Coda [14]), but it must
also scale up to per-volume or per-file information (e.g.,
which children have subscribed to which volumes in a
hierarchical dissemination system [5, 21] or which nodes
store the gold copies of each object in Pangaea [27].)

To provide a uniform abstraction to address this range
of concerns, PADS provides stored events. To use stored
events, policy rules produce one or more events that are
stored into a data object in the underlying persistent ob-
ject store. Rules also define when the events in an ob-
ject should be retrieved, and the events thus produced can
then trigger other policy rules. Fig. 5 details the full API
for stored events.

5

P2 Runtime R/OverLog runtime
Local Ping Latency 3.8ms 0.322ms
Local Ping Throughput 232 req/s 9,390 req/s
Remote Ping Latency 4.8ms 1.616ms
Remote Ping Throughput 32 req/s 2,079 req/s

Fig. 6: Performance for processing a NULL trigger to produce
a NULL event.

3.1.4 Liveness policies in R/OverLog
PADS provides R/OverLog, a language and runtime
to simplify writing event-driven routing programs.2

R/OverLog is based on the OverLog routing lan-
guage [18], and a R/OverLog program is a set of table
declarations for storing tuples and a set of rules that spec-
ify how to create a new tuple or table update when an
event occurs and the system’s state matches some con-
straints.

R/OverLog extends OverLog by (1) adding type infor-
mation to tuples, (2) providing an interface to pass trig-
gers, actions, and stored events as tuples between PADS
and the R/OverLog program, and (3) restricting the syn-
tax slightly to allow us to implement a R/OverLog-to-
Java compiler that produces executables that are more
stable and faster than programs under the more general
P2 [18] runtime system. Figure 6 compares the perfor-
mance of the two systems for processing a simple event.

3.2 Blocking policy
A blocking policy specifies a set of blocking predicates
that prevent state observation or updates until desired in-
variants are satisfied. Two sets of design choices deter-
mine the blocking policy interface: where operations can
block and what conditions can the invariants be based on.

3.2.1 Blocking points
PADS defines five points for which a policy can supply a
predicate and a timeout value that blocks a request until
the predicate is satisfied or the timeout is reached. The
first three are the most important:

• ReadNowBlock blocks a read until it will return data
from a moment that satisfies the predicate. Blocking
here is useful for ensuring consistency (e.g., block un-
til a read is guaranteed to return results causally con-
sistent with prior reads.)

• WriteEndBlock blocks a write request after it has up-
dated the local store but before it returns. Blocking
here is useful for ensuring consistency (e.g., block until
all previous versions of this data are invalidated) and
durability (e.g., block here until the update is stored at
the server.)

2Note that if learning a domain specific language is not one’s cup of
tea, one can define a (less succinct) policy by writing Java handlers for
PADS triggers and stored events to generate PADS actions and stored
events.

Predefined Conditions on Local Consistency State
isValid Block until node has received the body corre-

sponding to the highest received invalidation for
the target object

isComplete Block until object’s consistency state reflects all
updates before the node’s current logical time

isSequenced Block until object’s total order is established
maxStale
nodes, count, t

Block until I have received all writes up
to (operationStart − t) from count nodes in
nodes.

User Defined Conditions on Local or Distributed State
event event-spec Block until an event matching tuple-spec is re-

ceived from routing policy

Fig. 7: Conditions available for defining blocking predicates.

• ApplyUpdateBlock blocks an update received from the
network before it is applied to the local store. Block-
ing here is useful for servers that must always be able
to supply any data and for clients that want to be able
to operate in disconnected mode (e.g., block applying
this invalidation until I have received the correspond-
ing body.)

PADS also provides WriteBeforeBlock to block a write
before it modifies the underlying local store and Read-
EndBlock to block a read after it has retrieved data from
the local store but before it returns.

3.2.2 Blocking conditions
A blocking predicate can use any combination of the con-
ditions listed in Fig. 7. The first four conditions provide
an interface to the consistency bookkeeping information
maintained in the data plane on each node.

• IsValid requires that the last body received for an ob-
ject is as new as the last invalidation received for that
object. isValid is useful for enforcing coherence on
reads and for maximizing availability by ensuring that
invalidations received from other nodes are not applied
until they can be applied with their corresponding bod-
ies [5, 21].
• IsComplete requires a node to receive all invalidations

for the target object up to the node’s current logical
time. IsComplete is needed because liveness poli-
cies can direct arbitrary subsets of invalidations to a
node, so a node may have gaps in its consistency state
for some objects. If a node only reads objects for
which isValid and isComplete is true, it is guaranteed
to see FIFO consitency (aka writes-follow-writes aka
PRAM) and also causal consistency.
• IsSequenced blocks until the most recent write to the

target object has been assigned a position in a total or-
der. Policies that want to ensure sequential or stronger
consistency can use the Assign Seq routing action (see
Fig. 3) to allow a node to sequence other nodes’ writes
and use the isSequenced condition to block reads of
unsequenced data.

6

• MaxStaleness is useful for bounding real time stale-
ness.
The event condition provides an interface to the con-

trol plane with which a routing policy can signal an ar-
bitrary condition to a blocking predicate. An operation
waiting for tuple unblocks when the routing rules pro-
duce an event matching a specified pattern.

Rationale. The built-in consistency bookkeeping prim-
itives were chosen because they are simple and inexpen-
sive to maintain within the data plane, but they would be
complex or expensive to maintain in the control plane.
Note that they are primitives, not solutions. For example,
to enforce linearizability, one must not only ensure that
one reads only sequenced updates (e.g., via blocking at
ReadNowBlock on isSequenced) but also that a write op-
eration blocks until all prior versions of the object have
been invalidated (e.g., via blocking at WriteEndBlock on,
say, the tuple receivedAllAcks).

Event condition is needed for two reasons. The most
obvious need is to avoid having to predefine all pos-
sible interesting conditions. The other reason for al-
lowing conditions to be met by events from the event-
driven routing policy is that when conditions reflect dis-
tributed state, policy designers can exploit knowledge of
their system to produce better solutions than a generic
topology-oblivious implementation of the same condi-
tion. For example, in the client-server system we de-
scribe in §5, to ensure its consistency semantics, a client
blocks a write until it is sure that all other clients caching
the object have been invalidated. Hence, when an ob-
ject is written, all other clients send acknowledgements to
the server when they receive an invalidation. The server
gathers acknowledgements then generates a receivedAll-
Acks event for the client that issued the write so that the
write can unblock.

4 Constructing P-TierStore
As an example on how to build a system with PADS, we
describe our implementation of P-TierStore, a system in-
spired by TierStore [5].

4.1 System goals
TierStore is a distributed object storage system for devel-
oping regions where networks are bandwidth-constrained
and unreliable. Each node reads and writes some specific
subsets of the data. Since nodes must often operate in
disconnected mode, ensuring 100% availability is more
important than providing strong consistency.

4.2 System design
In order to achieve these goals, TierStore employs a hi-
erarchical publish/subscribe system. All nodes are ar-
ranged in a tree. To propagate updates up the tree, every
node sends all of its updates and its children’s updates

to its parent. To flood data down the tree, data are parti-
tioned into “publications” and every node subscribes to a
set of publications from its parent node covering its own
interests and those of its children. For consistency, Tier-
Store only supports single-object monotonic reads coher-
ence.

4.3 Policy specification
In order to construct P-TierStore, we decompose the de-
sign into routing policy and blocking policy.

The 19 rule routing policy is responsible for establish-
ing the publication aggregation and multicast trees. In
terms of PADS primitives, each connection in the tree is
simply an invalidation and a body subscription between
nodes. Every PADS node stores, in configuration ob-
jects, the ID of its parent, the IDs of its children, and
the set of publications to subscribe to. On start up, a
node uses stored events to read the configuration objects
and stores the configuration information in R/OverLog
tables (6 rules). When it knows of the ID of its parent, it
adds subscriptions for every item in the publication set (2
rules). For every child, it adds subscriptions for “/*” to
receive all updates from the child (2 rules). If an applica-
tion decides to subscribe to another publication, it simply
writes to the configuration object. A new stored event is
generated and the routing rules add subscriptions for the
new publication (4 rules).

Recovery. Whenever an incoming or an outgoing sub-
scription fails, the node periodically tries to re-establish
the connection (1 rule). Crash recovery requires no ex-
tra policy rules. When a node crashes and starts up, it
simply re-establishes the subscriptions. The underlying
subscription mechanisms automatically detect which up-
dates are missing and send them over.

Delay tolerant network (DTN) support. P-TierStore
supports DTN environments by allowing one or more
mobile PADS nodes to relay information between a par-
ent and a child in a distribution tree. In this configura-
tion, whenever a relay node arrives, a node subscribes to
receive any new updates the relay node brings and pushes
all new local updates for the parent (or child) subscription
to the relay node (4 rules).

Blocking policy. Blocking policy is simple because
TierStore has weak consistency requirements. Since
TierStore prefers stale available data to unavailable data,
we set the applyUpdateBlock to isValid to avoid applying
an invalidation until the body is received.

TierStore v. P-TierStore. Publications in TierStore
are defined by a container name and depth to include all
objects up to that depth from the root of the publication.
However, since P-TierStore uses a name hierarchy to de-
fine publications (e.g., /publication1/*), all objects under
the directory tree become part of the subscription. The

7

workaround is to define publications in separate subtrees
and to stitch them together via symbolic links.

Also, as noted in §2.1, PADS provides a single
conflict-resolution mechanism, which differs from Tier-
Store’s in some details. Similarly, TierStore provides na-
tive support for directory objects, while PADS supports a
simple untyped object store interface.

5 Experience and evaluation
In this section, we explore PADS’s usefulness as a plat-
form for developing distributed storage systems. There
is no quantitative way to prove that PADS is a better plat-
form than any other, so we base our evaluation on our
experience.

Fig. 1 conveys the main result of this paper: using
PADS, a small team was able to construct a dozen signif-
icant systems with a large number of features that cover
a large part of the design space. PADS qualitatively re-
duced the effort to build these systems and quantitatively
increased our team’s capabilities: we do not believe a
small team such as ours could have constructed anything
approaching this range of systems without PADS.

In the rest of this section, we detail this experience by
first discussing the range of systems studied, the develop-
ment effort needed, and our debugging experience. We
then explore the realism of the systems we construct by
examining how PADS handles key system-building prob-
lems like configuration, consistency, and crash recovery.
Finally, we examine the costs of PADS’s generality: what
overheads do our PADS implementations pay compared
to ideal or hand-crafted implementations?

Approach and environment. The goal of PADS is to
help people develop new systems. One way to evaluate
PADS would be to construct a new system for a new de-
manding environment and report on that experience. We
choose a different approach—constructing a broad range
of existing systems—for three reasons. First, a single
system may not cover all of the design choices or test
the limits of PADS. Second, it might not be clear how
to generalize the experience from building one system to
building others. Third, it might be difficult to disentangle
the challenges of designing a new system for a new envi-
ronment from the challenges of realizing a design using
PADS.

The PADS prototype uses PRACTI [3] to provide the
data plane mechanisms. We implement a R/OverLog to
Java compiler using the XTC toolkit [9]. Except where
noted, all experiments are carried out on machines with
3GHz Intel Pentium IV Xeon processors, 1GB of mem-
ory, and 1Gb/s Ethernet. Machines and network connec-
tions are controlled via the Emulab software. We use
Fedora Core 8, BEA JRockit JVM Version 27.4.0, and
Berkeley DB Java Edition 3.2.23.

5.1 System development on PADS

This section examines our experience by detailing the de-
sign space we have covered, how the agility of the result-
ing implementations makes them easy to change, the de-
sign effort needed to construct a system under PADS, and
our experience debugging and analyzing our implemen-
tations.

5.1.1 Flexibility
We constructed systems chosen from the literature to
cover large part of the design space. including client-
server systems like We refer to our implementation of
each system as P-system (e.g., P-Coda). To provide a
sense of the design space covered, we provide a short
summary of each of the system’s properties below and in
Figure 1.

Generic client-server. We construct a simple (P-SCS)
and a full featured (P-FCS) version of a generic client-
server system. Objects are stored on the server, and
clients cache the data from the server on demand. Both
systems implement callbacks in which the server keeps
track of which clients are storing an object and sends in-
validations to them whenever the object is updated. The
difference between simple client server and full client
server is that P-SCS assumes full object writes while P-
FCS supports partial-object writes and also implements
leases and cooperative caching. Leases [8] increase
availability by allowing a server to break a callback for
unreachable clients. Cooperative caching allows clients
to retrieve data from a nearby client rather than from the
server. Both P-SCS and P-FCS enforce demanding se-
quential consistency semantics and ensure durability by
making sure that the server always holds the body of the
most recently completed write of each object.

Coda [14]. Coda is a client-server system that supports
mobile clients. Note that we implement Coda’s client-
server protocol, but we omit its server-to-server replica-
tion protocol. Coda is similar to P-FCS—it implements
callbacks and leases but not cooperative caching; also, it
guarantees open/close consistency instead of sequential
consistency. A key feature of Coda is its support for dis-
connected operation—clients can access locally cached
data when they are offline and propagate offline updates
to the server on reconnection. Every client has a hoard
list that specifies objects to be periodically fetched from
the server to ensure that valid versions of these objects
are locally cached.

TRIP [21]. TRIP a distributed storage system for large-
scale information dissemination: all updates occur at a
server and all reads occur at clients. TRIP uses a self-
tuning prefetch algorithm to maximize the amount of
data that a client can serve from its local state subject

8

to a staleness limit. TRIP guarantees sequential consis-
tency via a simple algorithm that exploits the constraint
that all writes are by a single server. TRIP was originally
evaluated via simulation [21]; we believe that P-TRIP is
the first implementation of the protocol.

TierStore [5]. TierStore is described in §4.

Chain replication [32]. Chain replication is a server
replication protocol that guarantees linearizability and
high availability. All the nodes in the system are arranged
in a chain. Updates occur at the head and are only con-
sidered complete when they have reached the tail. Chain
replication was originally evaluated via simulation [32].

Bayou [25]. Bayou is a server-replication protocol that
focuses on peer-to-peer data sharing. Every node has a
local copy of all of the system’s data. From time to time,
a node picks a peer with whom to exchange updates via
anti-entropy sessions.

Pangaea [27] Pangaea is a peer-to-peer distributed
storage system for wide area networks. It employs
a gossip-based protocol to propagate updates between
replicas. Pangaea maintains a connected graph across
replicas for each object, and it pushes updates along the
graph edges. Pangaea maintains 3 gold replicas for every
object to ensure data durability. Our implementation also
includes the optimizations described in the paper includ-
ing delta propagation and harbingers.

Summary of design features. As Fig. 1 further details,
these systems cover a wide range of design features in a
number of key dimensions. For example,
• Replication: full replication [21, 25, 32], partial repli-

cation [5, 14, 27] (and P-FCS), demand caching [14,
27] (and P-FCS), prefetching [5, 21, 27], and coopera-
tive caching [27] (and P-FCS),

• Topology: structured topologies such as client-
server [14, 21] (and P-FCS), hierarchical[5], and
chain [32]; unstructured topologies [25, 27]. Inval-
idation-based [14] (and P-FCS) and update-based [5,
21, 25] propagation.

• Consistency: monotonic-reads coherence [5, 27], ca-
sual [25], sequential [21] (and P-FCS), and lineariz-
ability [32]; techniques such as callbacks [14, 21] (and
P-FCS) and leases [14] (and P-FCS).

• Availability: Disconnected operation [5, 14, 21, 25],
crash recovery (all), and network reconnection (all).

Goal: Architectural equivalence. We build systems
based on the above designs from the literature, but
constructing perfect, “bug-compatible” duplicates of the
original systems using PADS is probably not a realistic
(or useful) goal. On the other hand, if we were free to
pick and choose arbitrary subsets of features to exclude,

then the bar for evaluating PADS is too low: we can claim
to have built any system by simply excluding any features
PADS has difficulty supporting.

Section 2.1 identifies three aspects of system design—
security, interface, and conflict resolution—for which
PADS provides limited support, and our implementations
of the above systems do not attempt to mimic the original
designs in these dimensions.

Beyond that, we have attempted to faithfully imple-
ment the designs in the papers cited, except where ex-
plicitly noted above. More precisely, although our im-
plementations certainly differ in some details, we believe
we have built systems that are architecturally equivalent
to the original designs. We define architectural equiva-
lence in terms of three properties:

E1. Equivalent overhead. A system’s network bandwidth
between any pair of nodes and its local storage at any
node are within a small constant factor of the target
system.

E2. Equivalent consistency. The system provides consis-
tency and staleness properties that are at least as strong
as the target system’s.

E3. Equivalent local data. The set of data that may be
accessed from the system’s local state without network
communication is a super-set of the set of data that
may be accessed from the target system’s local state.
Notice that this property encompasses several factors
including latency, availability, and durability.

There is a principled reason for believing that these prop-
erties capture something about the essence of a repli-
cation system: they highlight how a system resolves
the fundamental CAP (Consistency vs. Availability vs.
Partition-resilience) [7] and PC (Performance vs. Con-
sistency) [17] trade-offs that any replication system must
make.

5.1.2 Agility
As workloads and goals change, a system’s requirements
also change. We explore using PADS to adapt a system
by adding new features. We highlight two cases in partic-
ular: our implementation of Bayou (P-Bayou) and Coda
(P-Coda). Due to space constraints, we omit discussion
of converting P-TRIP from a client-server to a hierarchi-
cal topology. Even though they are simple examples,
they demonstrate that being able to easily adapt a dis-
tributed storage system to send the right data along the
right paths can pay big dividends.

P-Bayou small device enhancement. P-Bayou is a
server-replication protocol that exchanges updates be-
tween two servers via an anti-entropy protocol. Since
anti-entropy propagates updates to the whole data set, P-
Bayou cannot efficiently support smaller devices which
have limited storage or bandwidth.

9

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 100 200 300 400 500

D
at

a
T

ra
ns

fe
re

d
(K

B
)

Number of Writes

P-Bayou

Ideal
P-Bayou small

device enhancement

Fig. 8: Anti-Entropy bandwidth on P-Bayou

It is easy to change P-Bayou to support small devices.
In the original P-Bayou design, when anti-entropy is trig-
gered, a node connects to any reachable peers and sub-
scribes to receive invalidations and bodies for all objects
using a subscription set “*”. In our small device varia-
tion, a node instead reads a list of directories from a per-
node configuration file (via stored events) and subscribes
only for the listed subdirectories. This change required
us to modify two routing rules.

This change raises a design question for the designer.
If a small device S synchronizes with a first complete
server C1, it will not receive updates to objects outside
of its subscription sets. These omissions will not affect
S since S will not access those objects. However, if S
later synchronizes with a second complete server C2, C2
may end up with causal gaps in its update logs due to the
missing updates. We have three choices: we can weaken
consistency from causal to per-object coherence; we can
restrict communication to avoid such situations (e.g., pre-
vent S from synchronizing with C2); or we can weaken
availability by forcing C2 to fill its gaps before allowing
local reads of potentially stale objects. We choose the
first, so we change the blocking predicate for reads to no
longer require the isComplete condition. Other designers
may make different choices depending on their environ-
ment and goals.

Fig. 8 examines the bandwidth consumed to synchro-
nize 3KB files in P-Bayou and serves two purposes. First,
it demonstrates that the overhead for anti-entropy in P-
Bayou is relatively small even for small files compared
to an ideal Bayou implementation (plotted by counting
the bytes of data that must be sent ignoring all metadata
overheads.) More importantly, it demonstrates that if a
node requires only a fraction (e.g., 10%) of the data, the
small device enhancement, which allows a node to syn-
chronize a subset of data, greatly reduces the bandwidth
required for anti-entropy.

P-Coda and cooperative caching. In P-Coda, on a
read miss, a client is restricted to retrieving data from the
server. We add cooperative caching to P-Coda by adding
13-rules: 9 to monitor the reachability of nearby nodes, 2
to retrieve data from a nearby client on a read miss, and
2 to fall back to the server if the client cannot satisfy the

 0

 100

 200

 300

 400

 500

P-Coda + Cooperative CachingP-Coda

A
ve

ra
ge

 r
ea

d
la

te
nc

y
(m

s)

Fig. 9: Average read latency of P-Coda and P-Coda with coop-
erative caching.

data request.
Fig. 9 shows the difference in read latency for misses

with and without support for cooperative caching. For
the experiment, the latency between the two clients is
10ms, whereas the latency between a client and server is
500ms. When data can be retrieved from a nearby client,
read performance is greatly improved. More importantly,
with this new capability, clients can share data even when
disconnected from the server.

5.1.3 Ease of development
Each of these systems took a few days to three weeks to
construct by one or two graduate students in part time ef-
fort. The time includes mapping the original system de-
sign to PADS policy primitives, implementation, testing
and debugging. In our experience, mapping the design of
the original implementation to routing and blocking pol-
icy was challenging at first but became progressively eas-
ier. Once the design work was done, the implementation
did not take long since most of the low-level mechanisms
were already provided by the data plane. As Fig. 1 indi-
cates, each system was implemented in fewer than 100
routing rules and fewer than 10 blocking conditions.

5.1.4 Debugging and correctness
Three aspects of PADS’s can simplify debugging and rea-
soning about the correctness of PADS systems.

First, the conciseness of PADS policy greatly facili-
tates analysis, peer review, and refinement of design. It
was extremely useful to be able to sit down and walk
through an entire design in a one or two hour meeting.

Second, the abstractions themselves divide work in a
way that simplifies reasoning about correctness. For ex-
ample, we find that the separation of policy into routing
and blocking helps reduce the risk of consistency bugs. A
consistency policy’s safety conditions are specified and
enforced by simple blocking predicates, so it is not diffi-
cult to get them right. We must then design our routing
policy to deliver sufficient data to a node to eventually
satisfy the predicates to ensure liveness.

Third, domain-specific languages can facilitate the use
of model checking [4]. As future work, we intend to im-
plement a translator from R/Overlog to Promela [1] so

10

that policies can be model checked to test the correctness
of a system’s implementation.

5.2 Realism
When building a distributed storage system, a system de-
signer needs to address issues that arise in practical de-
ployment such as configuration options, handling local
crash recovery, distributed crash recovery, and, most im-
portantly, maintaining consistency and durability during
periods of crashes.

PADS makes it easy to tackle the above issues for three
reasons.

First, since the stored events primitive allows routing
policies to access local objects, policies can store and re-
trieve configuration and routing options on-the-fly. For
example, in P-TierStore, publications a node wishes to
access are stored in a configuration object. In P-Pangaea,
each object’s parent directory objects stores the list of
nodes from which to fetch an object on a read miss.

Second, for consistency and handling crash recov-
ery, the underlying subscription mechanisms insulates
the designer from low-level details. Upon recovery, lo-
cal mechanisms first reconstruct local state from per-
sistent logs. Then, PADS’s subscription primitives ab-
stract away many of challenging details of resynchroniz-
ing node state. Notably, these mechanisms track consis-
tency state even across crashes that could introduce gaps
in the sequences of invalidations sent between nodes.
As a result, crash recovery in most systems simply en-
tails restoring lost subscriptions and letting the underly-
ing mechanisms ensure that local state reflects any up-
dates that were missed.

Third, blocking predicates greatly simplify maintain-
ing strong consistency during crashes. If there is a crash
and the required consistency semantics cannot be guar-
anteed, the system will simply block access to “unsafe”
data. On recovery, once the subscriptions have been re-
stored so that the predicates are satisfied, data becomes
accessible again.

Each of the PADS system we constructed, we im-
plemented support for these practical concerns. Due to
space limitations we focus this discussion on investigat-
ing the behaviour of two systems under failure. These
systems include our implementations of the full-featured
client server system (P-FCS) and TierStore (P-TierStore).
Both are client-server based systems, but they have very
different consistency guarantees. We demonstrate the
systems are able to provide their corresponding consis-
tency guarantees despite failures.

Consistency, durability and crash recovery in P-
FCS and P-TierStore Our experiment consists of one
server and two clients. To highlight the interactions,
we add a 50ms delay on the network links between the
clients and the server. Client C1 repeatedly reads an ob-

 0

 5

 10

 15

 20

 25

 30

 0 10 20 30 40 50 60 70 80

V
al

ue
 o

f r
ea

d/
w

rit
e

op
er

at
io

n

Seconds

Server
Unavailable

Reader
Unavailable

Reads continue
until lease expires

Write blocked until
server recovers

Write blocked until
until lease expires

Reader
Writer

Fig. 10: Demonstration of full client-server system under fail-
ures. The x axis shows time and the y axis shows the value of
each read or write operation.

ject and then sleeps for 500ms, and Client C2 repeat-
edly writes increasing values to the object and sleeps for
2000ms. We plot the start time, finish time, and value of
each operation.

Fig. 10 illustrates behaviour of P-FCS under failures.
P-FCS guarantees sequential consistency by maintaining
per-object callbacks [11], object leases [8] and blocking
the completion of a write until the server has stored the
write and invalidated all other client caches. We config-
ure the system with a 5 second lease timeout. During the
first 20 seconds of the experiment, as the figure indicates,
sequential consistency is enforced. We kill (kill -9) the
server process 20 seconds into the experiment and restart
it 10 seconds later. While the server is down, writes block
immediately but reads continue until the lease expires af-
ter which reads block as well. When we restart the server,
it recovers its local state and then resumes processing re-
quests. Both reads and writes resume shortly after the
server restarts, and the subscription reestablishment and
policy implementation ensure that consistency is main-
tained.

We kill the reader, C1, at 50 seconds and restart it 10
seconds later. Initially, writes block, but as soon as the
lease expires, writes proceed. When the reader restarts,
reads resume as well.

Fig. 11 illustrates a similar scenario using P-TierStore.
P-TierStore enforces monotonic reads coherence rather
than sequential consistency and propagates updates via
subscriptions when the network is available. As a re-
sult, all reads and writes complete locally and without
blocking despite failures. During periods of no failures,
the reader receives updates quickly and reads return re-
cent values. However, if the server is unavailable, writes
still progress and the reads return values that are locally
stored even if they are stale.

5.3 Performance
We carry out performance evaluation of PADS in two
steps. First, we evaluate the fundamental costs associated

11

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 10 20 30 40 50 60 70 80

V
al

ue
 o

f r
ea

d/
w

rit
e

op
er

at
io

n

Seconds

Server
Unavailable

Reader
Unavailable

Reads satisfied
locally

Writes
continue

Reader
Writer

Fig. 11: Demonstration of TierStore under a workload similar
to that in Figure 10.

Ideal PADS Prototype
Subscription setup
Inval Subscription O(NpU pdates) O(Nnodes +NpU pdates)
with LOG catchup
Inval Subscription O(Nob j) O(Nob j)
with CP from time=0
Inval Subscription O(Nob jU pd) O(Nnodes +Nob jU pd)
with CP from time=VV
Body Subscription O(Nob jU pd) O(Nob jU pd)
Transmitting updates
Inval Subscription O(NnU pdates) O(NnU pdates)
Body Subscription O(NnU pdates) O(NnU pdates)

Fig. 12: Network overheads of primitives. Here, Nnodes is the
number of nodes; Nob j is the number of objects in the subscrip-
tion set. NpU pdates and Nob jU pd are the number of updates that
occurred and the number objects in the subscription set that
were modified from a subscription start time to the current log-
ical time; NnU pdates is the number of updates that to the sub-
scription set that occur after the subscription has caught up to
the sender’s logical time.

with the PADS architecture. In particular, we demonstrate
that network overheads of the PADS approach are within
reasonable bounds of the best case implementations.

Second, we evaluate the absolute performance of the
PADS prototype. We quantify overheads associated with
the primitives via micro-benchmarks and compare the
performance of two implementations of the same sys-
tem: the original implementation with the one built over
PADS. We find that P-Coda is as much as 4 times worse
than Coda.

5.3.1 Fundamental overheads
PADS needs to have predictable costs. In particular, the
amount of information stored and sent over the network
should proportional to the amount of data a node is in-
terested in. We first provide the cost model of PADS and
then run experiments to confirm that the constant factors
are indeed small.

Fig. 12 shows the cost model of our implementation of
PADS’s primitives and compares these costs to the costs
of ideal implementations. As it can be seen from Fig. 12,

 0

 200

 400

 600

 800

 1000

 1200

 1400

Fine RandomFine SeqCoarse RandomCoarse Seq

T
ot

al
 B

an
dw

id
th

 (
K

B
)

Ideal

Body

Consistency
overhead

Invalidations

Subscription
setup

Fig. 13: Network bandwidth cost to synchronize 1000 10KB
files, 100 of which are modified.

costs associated with PADS in most cases are competitive
with ideal costs. Note that these ideal costs are optimistic
and may not be able always be achievable.

There are two ways that PADS sends more information
than an ideal or a hand-crafted implementation.

First, during invalidation subscription setup, PADS
sends a version vector indicating the start time the sub-
scription and catchup information so that the receiver can
determine if the catchup information introduces gaps in
the receiver’s consistency state. That cost is then amor-
tized over all the updates sent on the connection. Also,
this cost can be avoided by starting a subscription at log-
ical time 0 and with a checkpoint rather than a log for
catching up to the current time. Note, checkpoint catchup
is particularly cheap when interest sets are small.

Second, in order to support flexible consistency, inval-
idation subscriptions also carry extra information such as
imprecise invalidations [3]. Imprecise invalidations sum-
marize updates to objects out of the subscription set and
are sent to mark logical gaps in the casual stream of in-
validations. The number of imprecise invalidations sent
depends on the workload and is never more than the num-
ber of precise invalidations sent. The size of imprecise
invalidations is generally much smaller than bodies of
updates and hence they do not impose a large overhead,
as demonstrated in the next section.

5.3.2 Quantifying the overheads
We run experiments to investigate the constant factors
in the cost model and quantify the overheads associated
with subscription setup and flexible consistency. Fig. 13
illustrates the synchronization cost for a simple scenario.
In this experiment, there are 10,000 objects in the system
organized into 10 groups of 1,000 objects each, and each
object’s size is 10KB. The reader registers to receive in-
validations for one of these groups. Then, the writer up-
dates 100 of the objects in each group. Finally, the reader
reads all the objects.

We look at four scenarios representing combinations
of coarse-grained vs. fine-grained synchronization and
of writes with locality vs. random writes. For coarse-

12

1KB objects 100KB objects
Coda P-Coda Coda P-Coda

Cold read 13.59 44.2 28.78 46.11
Hot read 0.14 0.22 0.34 0.44
Hot Write 17.4 72.77 72.77 73.32
Disconnected Write 17.17 19.67 15.52 19.87

Fig. 14: Read and write latencies in milliseconds for Coda and
P-Coda

grained synchronization, the reader creates a single inval-
idation subscription and a single body subscription span-
ning all 1000 objects in the group of interest and receives
100 updated objects. For fine-grained synchronization,
the reader creates 1000 invalidation subscriptions, each
for one object, and fetches each of the 100 updated bod-
ies. For writes with locality, the writer updates 100 ob-
jects in the ith group before updating any in the i + 1st
group. For random writes, the writer intermixes writes to
different groups in random order.

Four things should be noted. First, the synchroniza-
tion overheads are small compared to the body data trans-
ferred. Second, the “extra” overheads associated with
PADS subsciption setup and flexible consistency over the
best case is a small fraction of the total overhead in all
cases. Third, when writes have locality, the overhead of
flexible consistency drops further because larger numbers
of invalidations are combined into an imprecise invalida-
tion. Fourth, coarse-grained synchronization has lower
overhead than fine-grained synchronization because they
avoid per-object subscription setup costs.

Similarly, Fig. 8 compares the bandwidth overhead as-
sociated with using PADS system implementation with
an ideal implementation. As the figure indicates, the
bandwidth required by subscriptions to propagate up-
dates comes close to ideal implementations. The extra
overhead can be attributed to the small amount of meta-
data sent with each update.

5.4 Absolute Performance
Our goal is to provide sufficient performance to be use-
ful. We compare the performance of a hand-crafted im-
plementation of a system (Coda) that has been in pro-
duction use for over a decade, and a PADS implemen-
tation of the same system (P-Coda). We expect to pay
some overheads relative to a tuned kernel implementa-
tion for three reasons. First, PADS is a relatively untuned
prototype rather than well-tuned production code. Sec-
ond, our implementation emphasizes portability and sim-
plicity, so PADS is written in Java and stores data using
BerkeleyDB rather than running on bare metal. Third,
PADS provides additional functionality such as tracking
consistency metadata some of which may not be required
by a hand-crafted system.

Fig. 14 compares the client-side read and write laten-
cies under Coda and P-Coda. The systems are set up in a
two client configuration. To measure the read latencies,

we set up the scenario as follows: Client C1 has a col-
lection of 1,000 objects/files and Client B has none. For
cold reads, Client C2 randomly selects 100 objects/files
to read. Each read fetches the object from the server
and will establish a callback for the object. C2 re-reads
those objects to measure the hot-read latency. To mea-
sure the hot-write latency, we set up the scenario as fol-
lows: Both C1 and C2 have the same collection of 1,000
objects/files. C2 selects 100 objects/files to write. The
write will cause the server to break a callback with C1.
Disconnected writes are measured by disconnecting C2
from the server and writing to 100 randomly selected ob-
jects. The values are averages of 5 runs.

As expected, PADS’s a user-level Java implementation
cannot compete with a hand-crafted C implementation.
P-Coda’s cold read performance is two times worse and
the hot write performance is allmost 4 times worse than
the original implementation for small files.

6 Related work
PADS and PRACTI. We use a modified version of
PRACTI [3, 34] as PADSś data plane. Writing a new
policy in PADS differs from constructing a system using
PRACTI alone for three reasons that together reflect a
major rethinking of the abstractions a data plane should
export to a control plane.

1. PADS adds key abstractions not present in PRACTI
such as the separation of routing policy from blocking
policy, blocking predicates, stored events, and commit
actions.

2. PADS significantly changes abstractions from those
provided in PRACTI. For example, where PRACTI
provides the abstraction of connections between
nodes, each of which carries one subscription, PADS
provides the abstraction of subscriptions and multi-
plexes subscriptions onto a single connection per pair
of nodes, which enables fine-grained subscriptions
and dynamically adding new items to a subscription.
Similarly, where PRACTI provides the abstraction of
bound invalidations to make sure that bodies and up-
dates propagate together, PADS provides more flexible
blocking predicates, and where PRACTI hard-coded
several mechanisms to track the progress of updates
through the system, PADS simply triggers the routing
policy and lets the routing policy handle whatever no-
tifications are needed.

3. PADS provides R/OverLog which has proven to be a
convenient way to to think about, write, and debug
routing policies.

The whole is more important than the parts. Building
systems with PADS is much simpler than without. In
some cases this is because PADS provides abstractions
not present in PRACTI. In others, it is “merely” because

13

PADS provides a better way of thinking about the prob-
lem.

Other frameworks. A number of other efforts have
defined frameworks for constructing distributed storage
systems for different environments. Deceit [29] focuses
on distributed storage across a well-connected cluster of
servers. Stackable file systems [10] seek to provide a
way to add features and compose file systems, but it fo-
cuses on adding features to local file systems.

Some systems, such as Cimbiosys, distribute data
among nodes not based on object identifiers or file
names, but rather on content-based filters. We see no fun-
damental issue in incorporating filters in PADS to identify
a set of related objects. This would allow system design-
ers to set up subscriptions and maintain consistency state
in terms of filters rather than object-name prefixes.

PADS follows in the footsteps of efforts to define run-
time systems or domain-specific languages to ease the
construction of routing [18], overlay [26], cache consis-
tency protocols [4], and routers [15].

7 Conclusion
Our goal is to provide a framework that allows devel-
opers to quickly build new distributed storage systems.
This paper presents PADS a policy architecture that pro-
vides a control plane over which system design can be
constructed in terms of routing and blocking policy. By
providing the right policy abstractions, PADS allows de-
velopers to concentrate on policy without worrying about
the complex low-level implementation details. Our expe-
rience suggests that PADS achieves our goal.

References
[1] Spin - formal verification. http://spinroot.com/spin/

whatispin.html.
[2] M. Aguilera, A. Merchant, M. Shah, A. Veitch, and C. Karamon-

lis. Sinfonia: A new paradigm for building scalable distributed
systems. In SOSP, 2007.

[3] N. Belaramani, M. Dahlin, L. Gao, A. Nayate, A. Venkataramani,
P. Yalagandula, and J. Zheng. PRACTI replication. In Proc NSDI,
May 2006.

[4] S. Chandra, M. Dahlin, B. Richards, R. Wang, T. Anderson, and
J. Larus. Experience with a Language for Writing Coherence Pro-
tocols. In USENIX Conf. on Domain-Specific Lang., Oct. 1997.

[5] M. Demmer, B. Du, and E. Brewer. TierStore: a distributed stor-
age system for challenged networks. In Proc. FAST, Feb. 2008.

[6] S. Ghemawat, H. Gobioff, and S. Leung. The Google file system.
In SOSP, 2003.

[7] S. Gilbert and N. Lynch. Brewer’s conjecture and the feasibility
of Consistent, Available, Partition-tolerant web services. In ACM
SIGACT News, 33(2), Jun 2002.

[8] C. Gray and D. Cheriton. Leases: An Efficient Fault-Tolerant
Mechanism for Distributed File Cache Consistency. In SOSP,
pages 202–210, 1989.

[9] R. Grimm. Better extensibility through modular syntax. In Proc.
PLDI, pages 38–51, June 2006.

[10] J. Heidemann and G. Popek. File-system development with stack-
able layers. ACM TOCS, 12(1):58–89, Feb. 1994.

[11] J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satyanarayanan,
R. Sidebotham, and M. West. Scale and Performance in a Dis-
tributed File System. ACM TOCS, 6(1):51–81, Feb. 1988.

[12] A. Karypidis and S. Lalis. Omnistore: A system for ubiqui-
tous personal storage management. In PERCOM, pages 136–147.
IEEE CS Press, 2006.

[13] A. Kermarrec, A. Rowstron, M. Shapiro, and P. Druschel. The
IceCube aproach to the reconciliation of divergent replicas. In
PODC, 2001.

[14] J. Kistler and M. Satyanarayanan. Disconnected Operation in the
Coda File System. ACM TOCS, 10(1):3–25, Feb. 1992.

[15] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. Kaashoek. The
Click modular router. ACM TOCS, 18(3):263–297, Aug. 2000.

[16] L. Lamport. Paxos made simple. ACM SIGACT News Distributed
Computing Column, 32(4), Dec. 2001.

[17] R. Lipton and J. Sandberg. PRAM: A scalable shared memory.
Technical Report CS-TR-180-88, Princeton, 1988.

[18] B. Loo, T. Condie, J. Hellerstein, P. Maniatis, T. Roscoe, and
I. Stoica. Implementing declarative overlays. In SOSP, Oct. 2005.

[19] D. Malkhi and D. Terry. Concise version vectors in WinFS. In
Symp. on Distr. Comp. (DISC), 2005.

[20] J. Mazzola, P. David, S.Tom, and Y. K. Chen. Footloose: A case
for physical eventual consistency and selective conflict resolution.
In IEE WMCSA, 2003.

[21] A. Nayate, M. Dahlin, and A. Iyengar. Transparent information
dissemination. In Proc. Middleware, Oct. 2004.

[22] M. D. N.Belaramani, J. Zheng. Feres: Flexible and efficient
replica synchronization. In In review, 2008.

[23] E. Nightingale and J. Flinn. Energy-efficiency and storage flexi-
bility in the blue file system. In Proc. OSDI, Dec. 2004.

[24] N.Tolia, M. Kozuch, and M. Satyanarayanan. Integrating portable
and distributed storage. In Proc. FAST, pages 227–238, 2004.

[25] K. Petersen, M. Spreitzer, D. Terry, M. Theimer, and A. Demers.
Flexible Update Propagation for Weakly Consistent Replication.
In SOSP, Oct. 1997.

[26] A. Rodriguez, C. Killian, S. Bhat, D. Kostic, and A. Vahdat.
MACEDON: Methodology for automatically creating, evaluat-
ing, and designing overlay networks. In Proc NSDI, 2004.

[27] Y. Saito, C. Karamanolis, M. Karlsson, and M. Mahalingam.
Taming aggressive replication in the Pangaea wide-area file sys-
tem. In Proc. OSDI, Dec. 2002.

[28] M. Shapiro, K. Bhargavan, and N. Krishna. A constraint-
based formalism for consistency in replicated systems. In Proc.
OPODIS, Dec. 2004.

[29] A. Siegel, K. Birman, and K. Marzullo. Deceit: A flexible dis-
tributed file system. Corenell TR 89-1042, 1989.

[30] S. Sobti, N. Garg, F. Zheng, J. Lai, E. Ziskind, A. Krishnamurthy,
and R. Y. Wang. Segank: a distributed mobile storage system. In
Proc. FAST, pages 239–252. USENIX Association, 2004.

[31] D. Terry, M. Theimer, K. Petersen, A. Demers, M. Spreitzer, and
C. Hauser. Managing Update Conflicts in Bayou, a Weakly Con-
nected Replicated Storage System. In SOSP, Dec. 1995.

[32] R. van Renesse and F. B. Schneider. Chain replication for sup-
porting high throughput and availability. In Proc. OSDI, Dec.
2004.

[33] H. Yu and A. Vahdat. The costs and limits of availability for
replicated services. In SOSP, 2001.

[34] J. Zheng, N. Belaramani, M. Dahlin, and A. Nayate. A universal
protocol for efficient synchronization. http://www.cs.utexas.
edu/users/zjiandan/papers/upes08.pdf, Jan 2008.

14

