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Abstract
Technology trends are leading many to consider pushing
applications and storage systems into the network infras-
tructure for transparent anywhere/anytime access to pro-
grams and data. These trends apply not only to low value
services, but also business critical and mission critical
services. Thus, a key research challenge is developing
ways to deliver high-assurance network services across
the commodity Internet. Meeting this challenge will re-
quire a large-scale coordinated effort spanning operating
systems, distributed systems, and networking. This paper
argues that a necessary early step in this effort is design-
ing an experimental methodology to characterize the ex-
tent to which systems succeed in meeting this challenge.
We outline one such methodology that envisions several
sets of scenarios that provide progressively deeper under-
standing of network service behavior: Calm Days scenar-
ios for understanding normal behavior; Red Skies scenar-
ios for understanding behavior under unusual loads, fail-
ure patterns, or attacks; and Perfect Storm scenarios for
understanding behavior under combinations of problems.

1 Introduction
Today, users are increasingly accessing services and stor-
age from a variety of devices, for instance, a laptop,
a home computer, a work computer, a PDA, and a
cell phone. At the same time, maintaining these ma-
chines and storage is becoming increasingly burdensome
and expensive. These trends are leading many to con-
sider pushing traditional applications and storage sys-
tems into the network infrastructure for transparent any-
where/anytime access to programs and data. This in-
frastructure model can provide simplified administra-
tion, (potentially) higher reliability and security, and eco-
nomic benefits resulting from scale.

Many of these same trends imply that, increasingly,
mission-critical services, such as air-traffic control, med-
ical, and military applications, will run over the public In-
ternet. Just as Commercial-Off-The-Shelf (COTS) hard-
ware and software enjoy such large cost and performance
advantages over custom systems that they are increas-

ingly used as a basis for mission-critical systems, the
huge existing infrastructure and the rapid pace of tech-
nological innovation in networking and distributed sys-
tems means that “one-of” systems will face significant
difficulties in keeping pace with the latest innovations in
commodity systems.

In such an environment, key research questions for
operating systems, distributed systems, and networking
are: How do you build network services out of commod-
ity pieces that deliver desired levels of performance and
availability? How do we augment the current Internet in-
frastructure, at all layers, to support mission-critical sys-
tems? How does one compare the performance and avail-
ability of one system to another?

Clearly, an exhaustive discussion of how to answer
these questions is beyond the scope of this paper. It
is likely that solving this problem will require con-
tinued advances in emerging techniques such as net-
work overlays [1, 21], adaptive service and data repli-
cation [26, 2, 23, 3, 28], continued operation across fail-
ures [5, 12], to name just a few. The hypothesis this paper
is that a key missing piece is an experimental method-
ology and infrastructure to evaluate the reliability of a
given service architecture and its realization. In partic-
ular, a goal of our work is to enable designers and ven-
dors of network services to compete on availability, ro-
bustness, and guaranteed worst-case performance under
a wide range of operating conditions, not just average
performance under idealized conditions.

While the systems research community has decades
of experience evaluating raw system performance, there
is comparatively little experience with measuring system
reliability. One difficulty in understanding reliability is
that, by definition, the system must be evaluated under
extraordinary circumstances. Typical trace-based evalu-
ations may not be sufficient to understand the behavior of
the system, for instance, when the goal is 99.999% avail-
ability. A second difficulty arises from the fact that net-
work service reliability must be measured on an end-to-
end per-client basis and must account for service-specific
Quality of Service (QoS) metrics or Service Level Agree-
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ments (SLAs).
An infrastructure for evaluating mission-critical ser-

vices must address at least three issues:

1. Workload and models. We must develop ways
to translate measured common-case workloads and
fault-loads to new workloads that allow us to evalu-
ate systems under more challenging but foreseeable
circumstances. In this paper, we argue for devel-
oping a controlled infrastructure for measuring the
behavior of network services under Calm Day sce-
narios (e.g., normal access patterns, expected failure
patterns), Red Skies scenarios (e.g., flash crowds,
projected worst-case failure patterns, or deliberate
attacks on the system), and Perfect Storm scenarios
(e.g., simultaneous or correlated heavy load, heavy
failures, and/or deliberate attack.)

2. Metrics. We must develop metrics that succinctly
and accurately characterize the properties of the sys-
tem. We argue that these metrics must appropri-
ately characterize the distribution of performance
and availability and data quality seen by different
sets of clients under different network conditions.

3. Experimental infrastructure . It must be possible
to experimentally measure a system and compare
one system against another. We consider the sys-
tems questions associated with building a flexible
test harness for subjecting COTS network services
running on COTS operating systems to a variety of
client and network characteristics.

In the rest of the paper, we first discuss the interplay of
system workloads and faultloads. Then, we discuss met-
rics for characterizing systems. In Section 4 we outline
how to integrate these issues into an experimental frame-
work. Finally, Section 5 summarizes our conclusions and
future directions.

2 Workload and environment
A service’s behavior is affected both by its workload—
the set of requests sent to it—and also by by the larger
network environment where it operates.

• Common case workloads can be characterized by
traces. But for highly-available services, other sce-
narios must be considered. For example, systems
must be able to handle unusual load situations such
as flash crowds. Given that systems are deployed
on the commodity Internet, it may also be important
that they resist deliberate attacks such as distributed
denial of service attacks (DDoS) or targeted attacks
to exploit bugs in the system.

• Environmental factors that affect services in-
clude hardware, software, and maintenance failures
within the system as well as external network vari-
ability or failures.

Different systems will address these problems in dif-
ferent ways and to different degrees. To simplify un-
derstanding of this broad range of trade-offs, we orga-
nize scenarios into three basic groups that should be
considered by systems seeking to provide progressively
stronger service guarantees.

Calm day. Calm day scenarios represent workloads
with typical access patterns and environments with typi-
cal failure patterns and no deliberate attacks.

Some techniques for evaluating calm day workloads
are relatively well understood. Request traces have long
been used to benchmark systems. And a number of stud-
ies have quantified environmental factors such as hard-
ware, maintenance, and environmental failures [13], In-
ternet failures [18, 15, 9, 1], and Internet performance
variability [29]. Several recent studies have used fault-
loads derived from such studies to examine end-to-end
service availability [9, 28].

To deepen system understanding under calm day sce-
narios, additional research is needed. On the request-load
side, for example, it may be important to consider the
long-term evolution of the service. For instance, it would
be important to consider the rate at which new content
is introduced and how clients access different portions of
the service as a function of time. On the environment
side, although there is a growing body of publicly avail-
able data on network availability [18, 15, 9, 16], addi-
tional studies are needed to help Internet service design-
ers understand the range of Internet behavior. In particu-
lar, we need traces spanning longer periods of time (e.g.,
months or years v. days or weeks), resolving finer time
granularities (e.g., failure-duration resolutions of seconds
rather than tens of minutes), including performance in-
formation (e.g., available bandwidth and latency data
rather than just connectivity information), and correlat-
ing measured properties with network topology features
(e.g., distinguish the difference, if any, in performance
variability between nodes on the same ISP versus nodes
on different ISPs). Emerging technologies such as Plan-
etLab [19] and ScriptRoute [22] may help enable these
more detailed measurements.

Red skies. Red skies scenarios reflect stressful scenar-
ios that are unusual but nonetheless common enough that
they must be considered in assessing business-critical or
mission-critical systems. These scenarios can be orga-
nized into three groups.

Natural disasters (RS1): These are scenarios that
stress Internet services but that are not deliberately ini-
tiated. For example, flash crowds can subject a service to

2



request loads many times those normally seen. Similarly,
studies suggest that Internet routing interruption dura-
tions are heavy-tailed, meaning that long interruptions
are rare but account for a significant fraction of overall in-
terruption time [15, 9]. Other examples of rare but stress-
ful events that should be considered include power out-
ages [13], system upgrades and maintenance [13, 25, 4],
and internal hardware and software failures.

Deliberate “black box” attacks (RS2): These are sce-
narios where an external adversary deliberately attempts
to impede service delivery by accessing the service by
sending either a large number of “normal” requests to
the system or by sending “generic abnormal” requests.
One example of an attack based on “normal” requests is a
distributed denial of service (DDoS) attack where many
nodes simultaneously and repeatedly attempt to down-
load a large file from a site. “Generic abnormal” re-
quests are requests designed to challenge system imple-
mentations but that do not target service-specific known
bugs. For example, an attacker might initiate requests to
a cgi program with randomly generated arguments with
the hope of triggering a bug.

Deliberate “vulnerability-targeted” attacks (RS3):
These are scenarios where an external adversary delib-
erately attempts to impede service delivery by exploiting
service-specific vulnerabilities. A notorious example of
this sort of attack are the various sendmail bugs used to
compromise many Internet systems.

The above taxonomy generally orders the scenarios
by increasing complexity of execution and by increas-
ing depth of coverage. Note that the line between “black
box” and “vulnerability-targeted” attacks may not be
sharp. Qualitatively, we intend “black box” attacks to
be attacks that can be included in a toolkit of “generic”
attacks that are specific to a wide range of services while
“vulnerability-targeted” attacks may have to be specifi-
cally crafted for each service. A key research challenge
is developing workloads for systematic Red Skies testing.

RS 1 scenarios could be modeled by observing exist-
ing systems to characterize the frequency, severity, du-
ration, and other key parameters to develop synthetic
models of events of interest such as flash crowds, net-
work failures, hardware failures, or maintenance fail-
ures. Given the heavy-tailed distribution of some of these
properties, it may be necessary to extrapolate beyond
the events observed in finite-length traces to project the
severity of the worst-case event likely to be seen. For ex-
ample, we should be able to estimate the severity of the
“100-year Internet failure event” – the most severe fail-
ure that has at least a 1% chance of occurring per year
– so that just as a civil engineer can design buildings to
tolerate a 100-year storm event, service designers could
construct services to tolerate 100-year failure events.

Some RS 2 workloads could be modeled by tracing

and extrapolating from observed events. For example,
Moore et. al measured several important aspects of a
wide collection of Internet denial of service attacks [17].
Other RS 2 workloads could be modeled on existing tools
such as Ballista [11] (which systematically varies param-
eters to Unix system calls in ways designed to trigger
unknown implementation bugs).

Developing RS 3 workloads is challenging. Short of
formally proving the correctness of a service, it seems
difficult to know all of the bugs that could be lurking in
it. We believe that it is still possible to generate some
broadly-useful RS 3 scenarios. For example, for a given
package one could track the rate of new bug discovery
and project the number of remaining latent bugs. Another
approach may be to extend fault injection techniques de-
signed to model common programmer errors [14, 6] to
inject faults designed to model common exploitable net-
work service bugs.

Perfect storm. As made famous by the book and
movie of the same name, a 1991 storm in the Atlantic
Ocean off the east coast of the United States has become
known as a “Perfect Storm” because a combination of
factors combined to create unusually vicious conditions.
System engineers designing business critical and mission
critical services must similarly consider how different
factors listed above may interact, and workloads should
be developed that capture important aspects of these in-
teractions.

One source of interaction is chance. Given accurate
Red Skies workloads, it should be possible to estimate
the probability of multiple factors occurring simultane-
ously and to identify and model significantly likely in-
teractions. In addition to random interactions, workloads
must consider correlation among interactions. For exam-
ple, an attacker might deliberately launch an attack dur-
ing a flash crowd event or a widespread network outage.

3 Metrics
3.1 Performability
The overall goal of our work is to enable meaningful
comparison of competing service architectures under a
variety of network conditions. Thus, we must distill ser-
vice behavior to a meaningful yet minimal set of met-
rics. There are three inter-related axes along which a ser-
vice’s behavior must be evaluated: performance, avail-
ability, and data quality. Considering the first two, we
adapt earlier work in the performability community. We
argue that service availability should be measured as a
distribution of response times for individual client re-
quests. This response time must account for end-to-end
client-perceived performance, including WAN propaga-
tion time and congestion, DNS resolution, server pro-
cessing time, etc. Certain requests may have an infinite
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response time, corresponding to the case where the ser-
vice has suffered a true failure—the client cannot access
the service at all. In other cases, the service may return a
response, but so slowly that the service must effectively
be considered unavailable.

Such a distribution of response times must be con-
sidered in light of individual service characteristics and
client expectations. For instance, clients accessing a Web
news service may have different expectations than those
downloading a large software file or performing a com-
plex query against a genome database. Further, this dis-
tribution of response time might be evaluated in the con-
text of an SLA.

3.2 Data Quality
The third axes along which service behavior must be
evaluated is the quality of the data returned to individ-
ual client requests. In general, quantifying data quality
must be done in an application-specific manner. How-
ever, some potential, application-independent measures
of data quality include:

• Consistency:For many services, small and bounded
reductions in data consistency is tolerable to end
users, especially in exchange for improved per-
formability. Earlier work [28] shows that service
consistency can be numerically quantified in a gen-
eral, application-independent manner and that re-
ducing consistency results in commensurate im-
provements in overall service performance and
availability.

• Transcoding:Many Web services present rich mul-
timedia content to end users. However, the content
can often be effectively presented to end users with
reduced multimedia fidelity.

• Online Aggregation:Database queries make up a
significant portion of network service access. Re-
cent work [20] shows that many aggregation queries
(e.g., average employee salary or temperature) can
be answered with high accuracy by sampling the un-
derlying data.

• Harvest/Yield:Related to both consistency and on-
line aggregation, many web search services may
not access the entire inverted index in returning
client results. This reduction in the quality of re-
turned search results is typically imperceptible to
end users, but results in significantly improved per-
formability relative to waiting for all responses in a
cluster environment.

These measures of data quality are interesting because
services can often trade decreased data quality for im-
proved performability. Earlier work [28, 20, 7] shows

that moderate decreases in data quality can result in dis-
proportionately large improvements in overall service
throughput.

3.3 Discussion
Given the above definitions of performance, availabil-
ity, and data quality, the principal challenge becomes
blending these metrics into simple measures of service
behavior as a function of global network characteristics
(client access patterns, network conditions, attacks, fail-
ures, etc.).

We will have to develop metrics that trade the com-
pleteness of benchmark results against their understand-
ability. For instance, the system could return the per-
formance and data quality for each individual request.
While such results are complete, it is difficult to compare
two services based on this raw data. Distilling these re-
sults to cumulative distribution functions of performance
and data quality is more understandable, though poten-
tially useful information is lost. From the perspective
of simplicity, we envision a numeric continuum of fail-
ure characteristics, ranging from Calm Day to the Per-
fect Storm. The metric for evaluating overall service be-
havior then becomes the maximum level of failure for
which a given architecture can still satisfy a target SLA,
where the SLA specifies performability and data quality
requirements. Thus, a service architecture can be judged
to be superior to another if it can satisfy a given SLA
further along the failure spectrum for the same cost.

4 Putting it All Together
Given workloads and metrics, we want to make it rel-
atively easy to experimentally evaluate systems under
Calm Day, Red Skies, and Perfect Storm conditions.

A testbed for Internet services should allow users to
test unmodified software prototypes – including user-
specified operating systems and application software – in
a configurable Internet-like environment including real-
istic topologies and switch behavior. Existing systems
such as Emulab/Netbed [27], and ModelNet [24] pro-
vide a basic framework of this sort. The ORCHESTRA
system [10] provides an environment for evaluating dis-
tributed systems that is specifically designed to simplify
fault injection, but it focuses on cluster network models
and restricts operating system choice.

We envision a two-pronged research effort to develop
an experimental service benchmarking system. First,
we must develop “packages” of Calm Day, Red Skies,
and Perfect Storm network conditions under which sys-
tems can be tested. Some of these packages may specify
generic, service-independent conditions such as a pack-
age that specifies network topology, performance, and
availability on a “normal network day,” “1-year bad net-
work day,” and “100-year bad network day.” Other pack-
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ages may be service dependent, but be generated au-
tomatically in a service-independent way. For exam-
ple, given the interface to a service, one could automat-
ically generate a “black box” attack on the system that
probes for vulnerabilities using techniques similar to Bal-
lista [11]; or, one could develop a self-scaling bench-
mark [8] that automatically characterizes a range of Calm
Day performance characteristics based on an input set
of traces or that automatically generates a Red Skies de-
nial of service attack workload by identifying expensive
queries for the system to process. Beyond these standard
packages, of course, the system must still support evalu-
ation under service-dependent workloads.

Second, we plan to extend ModelNet by adding inter-
faces to accept these packages. The idea is to run tar-
get services within ModelNet, subject to specified access
patterns and failure conditions. Failures may consist of
WAN failures—preventing a subset of clients from ac-
cessing the service or a subset of its replicas—or internal
service failures—reducing available service throughput
at a given site, reducing data quality, or making a por-
tion of the service unavailable. To capture such complex
interactions, we will extend ModelNet to not only inject
faults, but to capture the impact of various failures on
end-to-end behavior. For instance, we must capture the
behavior of BGP to determine the impact of WAN router
or wide-area replica failure and of OSPF to capture the
effects of internal service failures. ModelNet can already
capture the complex interactions of multi-tiered services,
for instance, accounting for databases, web servers, ap-
plication servers, storage, switches, and routers. Because
ModelNet runs unmodified application code and operat-
ing systems, the effect of individual failures on overall
service availability and data quality can be measured di-
rectly from individual client perspectives.

5 Conclusions and future directions
Given technology trends, a key research challenge is
developing ways to deliver high-assurance network ser-
vices across the commodity Internet. Meeting this chal-
lenge will require a large-scale coordinated effort span-
ning operating systems, distributed systems, and net-
working. This paper outlines a necessary early step in
this effort: designing an experimental methodology to
characterize the extent to which systems succeed in meet-
ing this challenge.
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