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Abstract
Many replication mechanisms for large scale distributed
systems exist, but they require a designer to compro-
mise a system’s replication policy (e.g., by requiring full
replication of all data to all nodes), consistency policy
(e.g., by supporting per-object coherence but not multi-
object consistency), or topology policy (e.g., by assum-
ing a hierarchical organization of nodes.) In this paper,
we present the first PRACTI (Partial Replication, Arbi-
trary Consistency, and Topology Independence) mecha-
nisms for replication in large scale systems. These new
mechanisms allow construction of systems that replicate
or cache any data on any node, that provide a broad range
of consistency and coherence guarantees, and that per-
mit any node to communicate with any other node at
any time. Our evaluation of a prototype suggests that by
disentangling mechanism from policy, PRACTI replica-
tion enables better trade-offs for system designers than
possible with existing mechanisms. For example, for
one workload we study, PRACTI’s partial replication re-
duces bandwidth requirements by over an order of mag-
nitude compared to full replication for nodes that only
care about a subset of the system’s data.

1 Introduction
Data replication is a fundamental technique for improv-
ing the performance [3, 11, 14, 30, 33, 39], availabil-
ity [7, 14, 22, 43], ubiquity [21, 31], persistence [26],
and managability [1] of a broad range of large-scale dis-
tributed systems such as personal file systems [21, 31],
web service replication systems [11, 14, 39], global-scale
file systems [9, 43, 33], or enterprise data distribution
systems [1]. Because no replication system can have per-
fect performance properties [25] or perfect availability
and consistency [5], systems designed for different envi-
ronments make different trade-offs among these factors
by implementing different consistency policies, place-
ment policies, and topology policies. Informally,consis-
tency policiessuch as sequential [24] or causal [20] reg-
ulate how quickly newly written data are seen by reads,
placement policiessuch as demand-caching [19, 30],
prefetching [16], push-caching [18] or replicate-all [31]
define which nodes store local copies of which data, and

topology policiessuch as client-server [19, 30], hierar-
chy [4, 27], or ad-hoc [17, 22, 31] define the paths along
which communication flows.

Unfortunately, existing replication mechanisms are
entangled with specific policy assumptions. For exam-
ple, Bayou [31] allows arbitrary topologies for commu-
nication among nodes but fundamentally assumes a pol-
icy of full replication where all nodes store all data from
any volume they export. Conversely, Coda’s [21] repli-
cation policy allows nodes to cache subsets of data, but
Coda fundamentally assumes a restrictive client-server
communication topology.

This paper describes a set of mechanisms that for the
first time simultaneously provide all three PRACTI (Par-
tial Replication, Arbitrary Consistency, and Topology In-
dependence) properties.Partial replicationmeans that a
system can place any subset of data on any node. In con-
trast, some replication systems require a node to main-
tain full copies of all objects in all volumes they ex-
port [28, 31, 44]. Arbitrary consistencymeans that the
system provides flexible semantic guarantees, including
the ability to selectively enforce both consistency guaran-
tees (which constrain the order that updates across mul-
tiple objects become observable to readers) and coher-
ence guarantees (which constrain the order that updates
to a single object become observable but do not addi-
tionally constrain the ordering of updates across differ-
ent objects.) In contrast, some replication systems can
only enforce coherence guarantees but make no guaran-
tees about consistency [17, 33].Topology independence
means that any node can communicate with any other
node. In contrast, many systems restrict communication
to client-server [19, 21, 30] or hierarchical [4, 42] pat-
terns.

We base the PRACTI protocols on Bayou’s log ex-
change mechanisms [31], which support a range of con-
sistency guarantees [44] and topology independence, but
which fundamentally assume full replication in order to
maintain the invariant that each node’s log represents a
causally-consistent prefix of the system’s writes. We
adapt this protocol to support partial replication using
two principles. First, weseparate the control path from
the data pathby separating invalidation messages that
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identify what has changed from body messages that en-
code the changes to the contents of files [2, 33]. In con-
trast with Bayou’s protocol that assumes that invalida-
tions and bodies go hand-in-hand, these modifications
require us to introduce new synchronization rules to en-
force ordering restrictions, mechanisms for handling de-
mand read misses, and protocols for enforcing policies
on the minimum safe degree of data replication [33]. Sec-
ond, we useimprecise invalidations, which allow a single
invalidation to conservatively summarize a set of omitted
invalidations. We define a protocol that allows nodes to
compose precise invalidations into imprecise ones, to in-
crementally exchange logs of mixed precise and impre-
cise invalidations, to allow precise reads (that see a con-
sistent view of the data) or imprecise reads (that see only
acoherentview of the data), and to recover precision for
an interest set that has become imprecise.

Because PRACTI mechanisms support a broad range
of replication, topology, and consistency policies, we de-
sign our prototype as a “replication microkernel” that
carefully separates mechanism from policy. Replica-
tion corescommunicate with one another using an asyn-
chronous communication protocol, and each core uses
the PRACTI mechanisms to enforce a node’s safety prop-
erties regardless of what messages other nodes sent to
it. A separatecontroller layer implements the system’s
policies and provides liveness by triggering communi-
cation between nodes. We implement several flavors
of controller including a novel one that uses SDIMS (a
DHT-based Scalable Distributed Information Manage-
ment System) [40] for a number of purposes including
locating data on read misses and forming per-interest-set
spanning trees to propagate data to interested nodes.

We have constructed a prototype system and we eval-
uate it using microbenchmarks. Our primary conclusion
is thatby disentangling mechanism from policy, PRACTI
replication enables better trade-offs for system designers
than possible with existing mechanisms.For example,
PRACTI makes it possible to build a system that pro-
vides causal consistency and that—like Bayou—allows
any node to exchange updates with any other node and
that—like Coda—allows each node to store and see up-
dates for only the data about which it cares. For one
workload we study, PRACTI’s partial replication reduces
bandwidth requirements by an order of magnitude com-
pared to a full replication for nodes that only care about
a subset of the system’s data, and PRACTI’s topology
independence reduces synchronization latency by over
a factor of three and enable synchronization in scenar-
ios where it would otherwise be impossible compared
to a restricted-topology, central server system for mobile
clients that are weakly connected to main server. Finally,
we find that imprecise invalidations are effective at limit-
ing the additional cost of providing consistency over the

cost of providing coherence.
More broadly, we envision PRACTI as a step towards

a “Unified Replication Architecture” toolkit that will
simplify the development and deployment of large-scale
replication systems. Because current mechanisms and
policies are entangled, when a replication system is built
for a new environment, it must often be built from scratch
or must modify existing mechanisms to accommodate
new policy trade-offs. PRACTI may help define a com-
mon substrate over which a broad range of replication
systems can be constructed. Note, however, that although
the current system provides a great deal of flexibility, it
does fall short of our eventual goal of providing a unified
replication architecture in two significant ways. First, al-
though our current system supports a wide range of con-
sistency options—including causal coherence, eventual
coherence, causal consistency, eventual consistency, and
acknowledged writes—there are some limitations on this
flexibility. As we discuss in Section 2.4, several enhance-
ments appear to be relatively straightforward extensions
given our current mechanisms; these extensions include
application-specific conflict detection and resolution [35]
and tunable quantitative limits on inconsistency [44].
Still, we have not precisely quantified the boundaries
of what semantics can be conveniently accommodated
within PRACTI’s “arbitrary” consistency. Second, we do
not yet accommodate some families of replication tech-
niques, such as quorums for replication, callback state
for coordinating communications among nodes [19, 30],
and leases for limiting staleness [15], though we even-
tually hope integrate such techniques within a common
framework.

This paper makes two contributions. First, it de-
scribes novel mechanisms that support efficient and scal-
able PRACTI replication. To our knowledge past systems
have provided two, but never all three, of the PRACTI
properties. Second, it provides a prototype replication
toolkit based on PRACTI that cleanly separates mecha-
nism from policy and that allows nearly arbitrary replica-
tion, consistency, and topology policies.

The rest of this paper is organized as follows. Sec-
tion 2 describes the design of the PRACTI mechanisms,
and Section 3 details our prototype of the core (mech-
anisms/safety) and controller (policies/liveness). Sec-
tion 4 experimentally evaluates the design. Finally, Sec-
tion 5 surveys related work and Section 6 highlights our
conclusions.

2 PRACTI design
This section describes the key ideas required to provide
scalable PRACTI replication. The basic idea is simple.
As Section 2.1 describes, we begin with a basic log ex-
change protocol similar to that used in Bayou [31]. Then,
we modify the protocol to separate the control path from
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the data path by separating invalidations from update
bodies as described in Section 2.2; this separation allows
us to avoid sending all body updates to all nodes and to
avoid storing all bodies at all nodes. Third, we useimpre-
cise invalidationsto avoid full replication of consistency
messages and state as described in Section 2.3. Fourth,
we extend the interface over these basic mechanisms in
order to support strengthening or weakening of the con-
sistency semantics as described in Section 2.4.

2.1 Background: Log exchange
Our protocol extends Bayou’s log exchange proto-
col [31]. In order to clarify our terminology and differ-
ences between our protocol and Bayou’s, we review the
basic protocol here.

When a node issues a write, it assigns the write anac-
cept stampcomprising the node’s ID and a logical clock
value. The logical clock is a Lamport clock [23] that is
advanced on each local operation and which, upon com-
munication with another node, is advanced to exceed the
maximum of the local and remote nodes’ logical clocks.
A node maintains a checkpoint representing all writes up
to a time represented by a version vectorcpV V , where
cpV Vα holds the highest accept stamp from nodeα re-
flected in the checkpoint. Additionally, a node maintains
a log of all writes it has seen since the checkpoint sorted
by the writes’ accept stamps (using the logical clock as
the primary key and the node ID to break ties) as well
as a version vectorcurrentV V that indicates the highest
per-node accept stamps in the log.

At Bayou’s core are three properties. First, theprefix
propertyis the invariant that a node’s state always reflects
a prefix of the sequence of writes by all nodes in the sys-
tem: if a nodeβ hascurrentV Vα = t, thenβ’s state
reflects all writes byα up to and including the write at
logical timet. Second, each node’s local state always re-
flectscausally consistent[20] view of all writes that have
occurred. This property follows from the prefix property
and from the use of Lamport clocks to ensure that once a
node has observed a writew, all of its subsequent writes’
accept stamps will exceedw’s. Third, the system ensures
eventual consistency—all connected nodes will eventu-
ally agree on the same total order of all writes.

Bayou’s log exchange protocol1 enforces these prop-
erties. If β would like α to send it a stream of up-
dates,β sendsα its current version vectorcurrentV V .
Then, α connects toβ and sends a sequence of mes-
sages:{startV V , w1, w2, . . .}. Whenβ receives such
an incoming stream, it rejects the stream if any element

1We describe our extension of Bayou’s log exchange protocol that
supports either thebatch-modelog exchange in the original Bayou, in
which a batch of updates is atomically applied to a node’s local state, or
a streaminglog exchange in which one node sends another a sequence
of updates, each of which is individually applied.

of the stream’sstartV V exceedscurrentV V . Other-
wise it processes each writewi by insertingwi into its
sorted log, updatingcurrentV V and its local Lamport
clock. In order to support fast local reads, each node
also maintains a snapshotstore of the per-object state
at time currentV V . StoreobjId contains two fields:
accept, the accept stamp of the latest write toobjId,
and body, the value of that write. When processing
wi, if (wi.accept > storewi.objId.accept) then update
storewi.objId.body = wi.body.

Note that the simple protocol described here omits
several features. Most notably, in Bayou, writes are more
general queries that can affect multiple different objects
and that carry with them references to application spe-
cific conflict detection and resolution routines [35]. Fur-
thermore, Bayou implements a primary-commit protocol
to establish a final order on a prefix of writes despite un-
communicative nodes. We discuss both of these issues
when we address flexible consistency in Section 2.4.

Overall, the Bayou protocol provides several attractive
features. It providestopology independencein that any
node can exchange updates with any other node at any
time. And, it provides the relatively strong consistency
gurantees of causal consistency and eventual consistency
which are stronger guarantees than just providing coher-
ence. These stronger consistency guarantees are essential
for ensuring that Bayou’s application-specific detection
and resolution procedures eventually agree on the same
total order on all writes and therefore eventually converge
on the same state: given the power of Bayou’s conflict
resolution mechanisms, even with coherence of each in-
dividual object any difference in the order that writes to
different objects are observed could cause a “butterfly ef-
fect” where the state at different nodes arbitrarily diverge.

2.2 Separate invalidations from update
bodies

In order to add partial replication to the log exchange pro-
tocol’s topology independence and flexible consistency,
we first separate the control path from the data path by
separating invalidation messages from update messages.
This separation allows update bodies to be sent to and
stored at arbitrary subsets of the nodes according to the
system’s data replication policy.

Invalidation messagescontain two fields: objId,
which identifies the modified object, andaccept, which
is the accept stamp assigned by the writer when the write
occurs.2 A node’s local state includes a log (sorted by
accept stamp) and a per-object store representing the cur-

2For simplicity, we describe the protocol in terms of full-object
writes. In practice we track writes on the granularity of arbitrary byte
ranges: Invalidation and body messages contain anoffsetand length
field in addition to the fields discussed here, and our per-object state
contains per-byte-rangeaccept, valid, andbodyfields.
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rent state of each object for reads.StoreobjId contains
three fields:accept, valid, andbody. Finally, each node
maintains acurrentVVversion vector and acurrentAc-
ceptLamport clock.

Invalidation log exchange. When a node receives a
stream of updates{startV V , w1, w2, . . .}, it rejects
the stream ifstartV Vα > currentV Vα for any node
α. Otherwise, it processes eachwi by inserting the
write into its sorted log and updating the store as fol-
lows:

if wi.accept > storewi.objId.accept then
storewi.objId.valid = INV ALID
storewi.objId.accept = wi.accept

The node also updates itscurrentVVandcurrentAccept.

Applying bodies. Although invalidations must be sent
in causal, sequence number order, PRACTI supports dis-
tribution of bodies according to arbitrary policies, in arbi-
trary order, across arbitrary topologies. A PRACTI node
must therefore synchronize arriving bodies with the in-
validation streams before applying them to its local state.
For correctness, PRACTI maintains the invariant that up-
date bodies are not applied until the corresponding inval-
idation message has been. To ensure this invarient, nodes
maintain apendingUpdatelist of updates that have been
received but not yet applied to the local state, and they
sort this list by accept stamp to put the earliest-numbered
update at the head of the queue. When a body message
b is at the head of the pending update queue, the node
waits until storeb.objId.accept ≥ b.accept and then (a)
if storeb.objId.accept == b.accept, applies the update
by setting thebodyfield of that object’s checkpoint state
to b.body and setting thevalid field to VALID or (b) if
storeb.objId.accept > b.accept, discardsb.

Systems can use whatever replication policy they
want for bodies from demand caching to client-driven
prefetching [16] to replicate-all [31] to server-driven
push [18, 39] to globally-optimized placement [38] to
pushing updates of whatever objects have been fetched
on demand [33]. A policy we advocate is having a sender
enqueue update bodies in a local priority queue sorted
by update priority which drains to the receiver’spendin-
gUpdate list via TCP-Nice background network trans-
fers [37].

Also notice that although causal consistency restricts
the order in which a node applies incoming invalidations,
nodes can use different policies to delay application of
invalidations in order to improve read latency or avail-
ability [29]. In particular, when a nodeα receives an
invalidationI, rather than immediately applyI to its lo-
cal state,α can wait to applyI until either (a) the cor-
responding update body arrives or (b) a maximum delay
expires. As we demonstrate in a recent study [29], wait-
ing until an update arrives before applying an invalida-
tion can increase the fraction of objects stored locally in
the VALID state and thereby improves both read latency

and system availability. The maximum delay parameter
allows nodes to limit worst case staleness while pursuing
these benefits.

Demand reads. The system ensures the safety property
of providing a causally consistent view of data by having
a local read request block until the requested object’s sta-
tus isVALID. To ensure liveness, when anINVALID ob-
ject is read, an implementation should arrange for some-
one to send the body. PRACTI supports any policy for
doing this from a static hierarchy (i.e., ask your parent [4]
or a central server [19] for the missing data) to a separate,
centralized location-metadata directory [13], to a DHT-
based location-metadata directory [36], to a hint-based
search strategy [34], to a push-all strategy [31] (i.e., “just
wait and the data will come.”)

Reliability. Separating invalidations from updates en-
ables partial replication but also raises the issue of reli-
ability: in Bayou, all nodes have copies of all data, but
a PRACTI system will need to enforce an explicit policy
decision about the minimum acceptable level of replica-
tion so that the loss of a node or a local cache replace-
ment decision does not render some data unavailable or
the storage system unreliable. We provide a simple, low-
level mechanism that supports a broad range of high-
level policies from maintaining a fixed number of “gold”
copies of each object [9, 33] to propagating all data to a
well-provisioned central server [19] or replicated server
“core” [21] to Bayou’s strategy of replicating everything
to everyone: a PRACTI invalidation message can be of
one of two types—anunboundinvalidation as described
above or aboundinvalidation that contains, in addition to
the fields listed above, abodyfield that contains the body
of the write that created the bound invalidation. When
a write is created, its invalidation is initially bound. An
unbind messagecontains an accept stamp and is propa-
gated through the system using a flooding strategy: when
a node receives an unbind message, it checks to see if it
has the corresponding bound invalidation in its local log;
if so, it (1) converts that invalidation to be unbound and
(2) propagates the unbind message to all neighbors with
whom it is currently connected. If the node either has not
seen the corresponding invalidation or already has it in
the unbound state, it does nothing.

In our implementation unbind propagation is best-
effort—if the connection topology changes between
when a write occurs and when it is unbound, some nodes
may not see the unbind and continue to propagate the in-
validation in the bound state for longer than necessary.
But, because this situation should be rare and hurts per-
formance rather than correctness, we have elected not
to include a more heavy-weight mechanism for reliably
propagating unbind messages with the logs. Conversely,
integrating the propagation of bound invalidations with
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the log is a conscious choice. By integrating our mecha-
nism for ensuring reliability to the log exchange, we tie
reliability to the causal order guarantees: any write in a
node’s log depends only on (a) explicitly unbound writes
(judged safe by some higher level policy) or (b) bound
writes in that node’s log (which are as good as safe due
to fate sharing).

To help the reliability algorithm decide when it is
safe to unbind a write, each node provides an interface
sync(replyTo, acceptStamp), which is an asynchronous
request that asks the node to send a message toreplyTo
after the node has stored the invalidation corresponding
to acceptStampin its persistent redo log. In addition, for
convenience, when a nodeβ receives a bound invalida-
tion for a write originally issued by nodeα, β sendsα a
sync-reply message regardless of whetherβ has received
a syncrequest for that write. A policy controller can im-
plement, for example, ak-copy policy by issuing sync
requests to various nodes when a write occurs and then,
when it receivesk replies, issuing an unbind request to
the local node (which will flood the unbind to its neigh-
bors).

Analysis. Separating invalidations from bodies retains
the topology independence and causal consistency of log
exchange protocols, but it allows arbitrary policies to
control the replication of bodies. Note, however, that all
nodes must still see all invalidations.

2.3 Imprecise invalidations
Imprecise invalidations allow a node to omit details from
logs that it sends while still allowing receivers to enforce
causal consistency. Imprecise invalidations work by (1)
replacing invalidation messages with aconsevative sum-
mary of them and (2) maintaining per-node data struc-
tures that track which objects are safe to access.

Invalidation log exchange. An imprecise invalidation
contains three fields:start andend, which are arrays of
accept stamps, andtarget, which describes the objects
affected by the invalidation. For every nodeα that has
one or more writes summarized by an imprecise inval-
idation, startα’s value is at most the earliest summa-
rized accept stamp andendα’s value is at least the lat-
est summarized accept stamp.Targetmay encode cov-
ered objects in any manner, as long as it is conserva-
tive and allows the receiver of the invalidation to identify
all objects affected by the summarized writes. Our im-
plementation encodestarget as a list of directory paths
where each path represents either an individual file or di-
rectory (e.g., /foo/bar) or a subtree (e.g., /flim/flam/*).
Note that a precise invalidation is a special case of an
imprecise invalidation with a single writer,start = end,
and a single object as atarget. We use the termgen-
eral invalidation to refer to either a precise or impre-

cise invalidation. A system forms an imprecise invali-
dation using the union operation on two general invali-
dations:giU = gi1 ∪ gi2 hasstart andendarrays with
entries for every server in eithergi1 or gi2’s start and
end with giU .startα = min(gi1.startα, gi2.startα),
giU .endα = max(gi1.endα, gi2.endα), andgiU .target
encompassing all objects encompassed bygi1 andgi2’s
targets.

A node groups system data intointerest setsand
tracks whether an interest set isprecise—meaning that
the node’s local state reflects all invalidations overlap-
ping the interest set—orimprecise—meaning that the
node’s local state is not causally consistent for that in-
terest set due to one or more overlapping imprecise in-
validations.

Algorithm 1 summarizes how a node processes a
streams of general invalidations{startV V , gi1, gi2,
. . .} against one interest set of data. For each such in-
terest setIS, the node maintains the interest set member-
ship, the last precise version vectorlpV V that represents
the highest version vector for which all precise invali-
dations have been applied toIS and the current version
vectorcV V that represents the highest version vector for
which a general invalidation has been applied toIS.

Algorithm 1 ProcessInvalStreams = {startV V , gi1,
gi2, . . .} for interest setIS

startV V = s.next()
if ∃α | startV Vα > currentV Vα then

return; //Reject stream that does not preserve prefix property
pending = new Set()
gi = s.next()
while (gi 6= null) do
∀α : nextStartV Vα = MAX(startV Vα, gi.startα)
if !(∃p ∈ pending | (∀α : p.endα ≤ nextStartV Vα)) then

// Apply overlappinggi froms at start time
log.insert(gi, startV V )
if gi.target intersectsIS then

if gi.isPrecise() AND ∀α : lpV Vα ≥ startV Vα then
// If no gaps to this precise inval, update lpVV
∀α : lpV Vα =MAX (lpV Vα, gi.startα)

∀α : currentV Vα = MAX (currentV Vα, gi.endα)
startV V = nextStartV V

if gi.isPrecise() then
storegi.objId.update(gi.start, INV ALID)

pending.insert(gi)
gi = s.next()

else// Apply non-overlappingp frompending at end time
if !(p.target intersectsIS) then

if ∀α : lpV Vα ≥ startV V α then
∀α : lpV Vα =MAX (lpV Vα, p.endV Vα)

∀α : currentV Vα =MAX (currentV Vα, p.endV Vα)
pending.remove(p)

We rely on the prefix property for reasoning about
messages in a stream. In particular, a stream that be-
gins with startVVguarantees that the subsequent invali-
dations represent a causally consistent sequence with no
omissions starting fromstartVV. To support incremental
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application in which multiple instances of Algorithm 1
execute concurrently and interleave their application of
invalidations, our algorithm updates a per-stream, per-
interest setstartVV after processing each invalidation.
For simplicity the pseudo-code shows a single interest
set version of our protocol; see the appendix the full ver-
sion.

A node applies general invalidations from a stream
to an interest set in sorted order based on their times-
tamps, but they are handled differently depending on
whether they overlap an interest set or not. If an inval-
idation overlaps an interest set, it is applied at itsstart
timeas it arrives from the stream, but if it does not over-
lap, it is buffered until itsend timeis guaranteed not
to be causally dependent on any remaining start time in
the stream, which happens when its end time is at most
nextStartV V , the startV V value that will hold after
the next invalidation is processed at its start time.

At gi’s start time, we first insert it into the sorted log
of all invalidations and update the local random access
store. Then, if the invalidation overlapsIS, we advance
currentV V to the end time of the invalidation (indicat-
ing that the data inIS must reflect invalidations up toend
in order to be considered current). We advancelpVV for
the interest only if (a)startVVis at most the currentlpVV
for IS (i.e., there is no missing precise invalidation be-
foregi) and (b) this general invalidation is, in fact, a pre-
cise invalidation (i.e.,gi does not introducing a missing
precise invalidation.) Finally, if the invalidation overlaps
the interest set, we advancestartVVfor the interest set; if
the invalidation is precise, we update the per object state
in the same way as described in Section 2.2.

Conversely, if an invalidation does not overlap an in-
terest set, it could safely be ignored since it carries no
invalidations that could make the interest set imprecise.
But, the very fact that the invalidation does not intersect
the interest set is useful—it shows that there was a pe-
riod of time over which no invalidations (precise or im-
precise) intersected the interest set; this information can
help disambiguate other general invalidations that over-
lap the interest set and this one in time. Therefore, atgi’s
end time, if the invalidation target does not overlapIS,
(1) advanceIS’s currentVVtogi.end and (2) ifstartV V
is at mostIS’s lpVV, updatelpVVso that all elements are
at least as great asgi.end.

Log update. Our desire to support both partial repli-
cation and arbitrary topologies complicates log updates.
Simply inserting each received invalidationgi into the
local log in sorted order would not be sufficient because
interpreting a general invalidation is done in the context
of the stream in which it is received. In particular,gi is
interpreted based on the per-streamstartV V which in-
dicates that no causally required invalidations are miss-

ing betweenstartV V and gi.start. In order to avoid
losing this valuable information, when a node insertsgi
into its log, it first decomposesgi into per-writer gen-
eral invalidations; it then usesgap fillingandintersection
operations to encode this “no missing invalidations” in-
formation.

Decomposinggi into per-writer general invalidations
giα is simple: for each serverα in gi.start, generategiα
with gi.startα, gi.endα, andgi.target.

For the gap filling operation, each per-writer log main-
tains the invarient that there is no gap between the end
time of an element and the start time of the next element.
When a node insertsgiα into its per-writer log forα at
startV Vα, if gi is newer than the newest element in the
log, it fills any gap betweengi and existing element by
inserting a new gap-filling invalidation with a start stamp
one larger than the highest existing end stamp, and end
stamp one smaller thangi’s start, and an empty target.

For the intersection operation, we maintain the invari-
ent that there is at most one invalidation that covers any
moment in time in a per-writer log. We intersect two
general invalidationsgi1 andgi2 by replacing them with
up to three general invalidations: the first covers the time
from the earlier start to the later start and targets the ob-
jects targeted by the earlier start; the second covers the
time from the later start to the earlier end and covers tar-
gets represented by the intersection ofgi1 andgi2’s tar-
gets; and the third covers the time from the earlier end to
the later end and covers the targets of the later end.

When we send a stream of invalidations to another
node, we discard gap-filling invalidations and we com-
bine per-writer invalidations into multi-writer invalida-
tions using the policy described in Section 3.1.

Demand reads. When a demand read occurs, it blocks
until the interest set it targets becomes precise. This
blocking ensures the safety property that reads always
observe a causally consistent view. In Section 2.4 we de-
scribe how a reader can relax these guarantees. As with
reads of invalidated objects, a system can use any policy
for selecting one or more nodes to which to connect in
order to retrieve the precise invalidations needed to make
an interest set precise.

Example. Figure 1 illustrates these mechanisms in ac-
tion. Nodeα writes objects a, b, and c; nodeβ cares
about object a and receives fromα precise invalidations
about a and imprecise invalidations about b and c. Node
γ cares about object c and receives fromα precise in-
validations about c and imprecise invalidations about a
and b. Finally, nodeδ cares about a and c and receives
from β precise invalidations about a (but imprecise inval-
idations about b and c due toβ’s imprecision) and from
γ precise invalidations about c (but imprecise invalida-
tions about a and b.) First,α sends a stream of invalida-
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Fig. 1: Illustration of imprecise invalidation mechanisms insplit-join scenario. Nodesα, β, γ, andδ share objects a, b, and c.
At each node, we show the per-interest-set information (last precise version vectorlpV V and current version vectorcV V ), the
per-invalidation-stream information (startV V and a series of generalized invalidations), and the per-interest-set per-invalidation-
stream information (startV V as it is updated as each generalized invalidation is applied.) For clarity, we show onlyα’s component
for all version vectors and omit the node ID (α) in accept stamps.

tions (precise for a and imprecise for b and c) toβ. As
illustrated in the figure, each invalidation advancesβ’s
per-invalidation-stream, per-interest-setstartV V value
as well asβ’s per-interest-set last precise version vector
(lpV V ) and current version vector (cV V ) for interest set
{a}. However, because the second invalidation (4, 6, bc)
intersects interest set{b,c}, that message causes that in-
terest set to become imprecise and subsequent invalida-
tions fail to advance that interest set’slpV V . After pro-
cessing all four invalidations in that stream,β is precise
for interest set{a}, but imprecise for interest set{b,c}.
γ’s behavior processing the stream of precise invalida-
tions for c and imprecise invalidations for a and b is sim-
ilar.

Then, whenβ andγ send their log contents toδ, we
show the case whereγ processesβ’s first three invalida-
tions, thenγ’s four invalidations, and finallyβ’s fourth
invalidation. As the figure shows, after processing the
first three invalidations fromβ, δ is precise for{a}, but
imprecise for{b} and{c}. The next four messages (from
γ) makeδ precise for{c} but imprecise for{a} and{b}.
Finally, the last message (fromβ) bringsδ to the state one
would desire: after seeing all precise invalidations for ob-
jects a and c,δ is precise for both interest set{a} and{c}
despite the fact that these precise messages were mixed
with some imprecise invalidations for objects a, b, and c.
Finally, one may verify that because of theδ’s gap filling
and intersection operations,δ’s log contains sufficient in-
formation so that a nodeε that receivesδ’s log contents
could get precise updates for objects a or c.3 Conversely,
note that ifδ were simply to interleave the messages it
received fromα andβ without gap filling and intersec-
tion and then send them toε, information would be lost

3And, in this case, b. Our current log maintanence algorithm ac-
tually extracts a bit more information from the stream of incoming re-
quests than our interest set status algorithm; we are not sure if there is
a clean way to extract this information during interest set maintenance
as well.

andε would be left imprecise for interest sets{a}, {b},
and{c}.

Checkpoint recovery. The above protocol describes
the common case of streaming, incremental log ex-
change. However, nodes can garbage collect their logs,
so the system must handle the case when a nodeβ re-
quests data fromα, butα’s currentVVis newer thanβ’s
lpVV for a given interest set. The protocol handles this
case by doing a full state transfer for the interest set:α
sendsβ its lpVV andcVV for the interest set along with
theacceptstamp for each object in that interest set from
α’s per-object state.β updates itslpVV andcVV for the
interest set and, if theaccepttime it receives for an ob-
ject exceeds the locally storedaccepttime, it updates the
local accepttime for the object and marks the objectIN-
VALID. Note that checkpoint recovery can be done on a
per-interest set basis, but for any interest sets not updated,
currentVVmust be advanced to at least thecurrentVVof
the checkpoint.

Analysis. This algorithm retains topology indepen-
dence and causal consistency, but it also allows partial
replication of both bodies and invalidations. In partic-
ular, to maintain an interest set in the precise state re-
quires O(number of writes to the interest set) precise in-
validations plus one imprecise invalidation summarizing
invalidations that do not intersect the interest set. In prac-
tice, systems may send more imprecise invalidations than
this minimum in order to limit the delay in assembling
and sending an invalidation stream as described in Sec-
tion 3.1.

2.4 Tunable consistency
The basic mechanisms above provide a solid substrate
over which it is straightforward to weaken the sys-
tem’s consistency guarantees (e.g., to improve perfor-
mance [25] or availability in the face of partitions [5])
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or to strengthen the system’s consistency guarantees to
meet application semantic requirements.

Weakening consistency. By default, demand reads
block until the interest set they reference is precise and
they can ensure that the data they return represents a
causally-consistent view of the system’s state. We pro-
vide an interface that overrides this behavior by allow-
ing imprecise readsthat skip thelpVV = cVVcheck and
return data as soon as the local store record for the re-
quested object is valid regardless of whether the inter-
est set in which it resides is precise or imprecise. Nodes
that use this interface observecausally coherentdata—
if a node reads a versionvj of an object and then writes
another versionvj+1 of the object, than once any node
reads versionvj+1 of the object, any subsequent read
will return versionvj+1 or a later version—but they are
no longer guaranteed to observe a causally consistent
view—if a node reads versionva of objecta and then
writes versionvb of objectb, a node that reads versionvb

of objectb using an imprecise read may still observe a
version of objecta older thanva.

The potential benefit of doing an imprecise read is
that a node can read an object from a currently-imprecise
interest set without communicating with other nodes to
make that interest set precise. Imprecise reads can there-
fore reduce bandwidth consumption, improve response
time, or improve availability. Note that even if a node
α executes one or more imprecise reads and then issues
some writes, the protocol ensures thatα’s log contains
sufficient imprecise invalidations to put all of its invali-
dations into a causally consistent order: even ifα sends
its log toβ, β can continue to provide causal consistency
across all objects.

Strengthening consistency. A library interface built
over the low-level mechanisms provided by the basic
PRACTI interface can strengthen consistency guaran-
tees. In particular, thesync()interface described above
allows the construction of a write() that blocks until
the update has propagated to a specified set of ma-
chines [22, 33]. Another option for strengthening con-
sistency that we plan to explore is layering TACT over
these basic mechanisms to provide tunable consistency
guarantees [44].

Conflict detection and resolution. The simple proto-
col described above provides incremental log exchange
and last-writer-wins conflict resolution with global even-
tual consistency in the case of concurrent writes. How-
ever, it is useful to not only resolve conflicts in a globally
consistent way but also to flag them and provide informa-
tion about conflicting writes to a more flexible manual
or programmatic conflict resolution procedure. As we
discuss in an extended technical report [8], we augment
the protocol described above by including hooks to detect

write-write conflicts (by adding aprevAcceptfield in all
invalidation messages and per-object store records), stor-
ing “losing” writes in a local (unshared) per-object con-
flict file, and providing utility functions to read and delete
losing writes from conflict files as part of a “compensat-
ing transaction” for application-specific conflict resolu-
tion. Causal consistency (as opposed to coherence) is
useful for conflict detection and resolution: our protocol
ensures that all nodes agree on the same set of conflicts
and “losing” writes.

The extended report also describes how to use the
PRACTI mechanisms with Bayou’s more powerful strat-
egy of associating application-specific conflict detection
and resolution functions with writes [35]. Our reasons for
a simpler approach are (1) to support incremental (rather
than batch) log exchange for improved performance and
(2) to avoid the need for acommitprotocol that can en-
sure that late-arriving writes (which can include detec-
tion/resolution “programs” that can arbitrarily disrupt the
current state) are placed after committed writes.

3 Implementation
Our PRACTI techniques cleanly separate mechanism
from policy in order to support a broader range of repli-
cation policies than made available by current techniques
that entangle policy choices with their mechanisms for
replication, consistency, or topology. Our implemen-
tation therefore seeks to serve as a “replication micro-
kernel” that provides basic low level mechanisms over
which higher-level services can be built.

The PRACTI mechanisms ensure safety. Our pro-
totype uses an asynchronous style of communica-
tion in which incoming messages or streams are self-
describing—the rules for processing each incoming mes-
sage are completely defined, and interpreting a message
does not require knowledge of what request triggered its
transmission. Because message handling rules are based
on the PRACTI algorithms, they ensure safety regardless
of the policy used for sending messages: any machine
can send any legal protocol message to any other ma-
chine at any time, and the receiver’s rules for processing
incoming messages embed no assumptions about who
communicates with whom, make no assumptions about
what data is replicated to which machines as well as en-
force rules that track each object or interest set’s consis-
tency state based on all messages received.

Because the low-level mechanisms enforce safety in-
dependent of policy, higher level policies can focus on
liveness (including performance and availability con-
cerns.) Essentially, the policy layer’s job is to ensure that
the right nodes send useful data at the right time in order
to do such things as to satisfy a read miss, prefetch data
to improve performance, or provision a node’s local stor-
age so that it can make its data available while discon-
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Fig. 2: High level architecture of PRACTI prototype.

nected. Each node provides an interface for requesting
that the node send invalidations or bodies to other nodes,
but these requests can be regarded as hints: the loss of
messages or the introduction of extra messages can affect
system performance but not the correctness of responses
to application read and write requests.

Figure 2 illustrates the division of labor between
mechanism and policy in our system. A PRACTIcore
maintains local state in alog for reliability and commu-
nication and alocal store for random access. A core
receives and generates streams of general invalidations
(precise, imprecise, and bound invalidations), bodies
(demand replies and prefetched/pushed data), and sync
replies (to support unbind and consistency policies as de-
scribed in Sections 2.2 and 2.4.) The core also provides a
remote request interface that allows remotely-generated
requests to trigger outgoing streams or individual mes-
sages.

A controller’s purpose is to send requests asking other
nodes’ cores to trigger streams or messages. To aid this
task, the core informs its local controller of important
events (e.g., connection initiation/termination, local re-
quests, and message arrivals.) To customize a replica-
tion system to an environment, different controllers use
different policies. For example, we implement a Static-
TopologyController that creates a static topology among
its nodes for propagating invalidations and bodies and for
satisfying demand requests, a BayouController that per-
manently leaves all invalidations in the bound state, and
a SDIMSController that uses the DHT-based Scalable In-
formation Management System [40] to track the state of
the distributed system.

3.1 Core implementation
The core implements procedures applying incoming re-
quest messages to its local state that ensure that the rules
described in Section 2 are enforced. A core’s local state
has two main parts: a log and a data store.

Log. A core’s log has two main purposes. First, it
acts as a replay log for reliability. Second, it maintains
causally-ordered lists of invalidations for communicaton
with other nodes.

Our log implementation has two components. First,
it has a single on-disk append-only replay log in which
invalidation messages, local updates, and unbind mes-
sages are stored in the order they are received. Second,
it maintains an in-memory per-writer log of invalidations
and local updates sorted by accept stamp. Incoming mes-
sages are first appended to the on-disk replay log and
then, as described in Section 2.3, they are decomposed
into single-writer invalidations that are merged with the
single writer logs usinggap fillingandintersectionto en-
force the invarient that each per-writer log contains a gap-
free list of elements that do not overlap in time.

Data store. The data store maintains per-interest set
status, which tracks the last precise version vector (lpVV)
and current version vector (cVV) for each interest set as
described in Section 2.3. In our implementation, an inter-
est set is identified by a subdirectory name and includes
the path from the root to that subdirectory as well as all
enclosed subdirectories.

The data store also maintains per-object metadata and
body information. For each object in the system, one file
on the local disk holds the body of the object, with byte
i of the file corresponding to bytei of the object. A sec-
ond file holds the object’s consistency state: a series of
records with anoffsetandlengthidentifying a byterange,
acceptidentifying accept stamp of the most recent inval-
idation applied to the byterage,prevAcceptidentifying
the accept stamp of the previous write to the byterage
(for conflict detection as described in Section 2.4), and a
valid flag indicating whether the body file’s contents are
VALID or INVALID for this range. For simplicity, we
implement each object’s consistency state as a Java ob-
ject, manage an in-memory cache of these objects, and
serialize dirty objects to per-object disk files for check-
points.

Operation. Section 2 outlines how a core processes in-
coming invalidation and body messages as well as lo-
cal read requests. Local write and delete requests are
treated like incoming invalidation requests—they are first
applied to the log and then to the local store. Incoming
sync replies have no effect on the core’s state.

Each core has an interface to trigger outgoing streams
of invalidations. A request to start an invalidation stream
includes thedestinationnode ID to which to send the
data, astartVVversion vector indicating the desired start-
ing point, and a precise setP listing subdirectories for
which the receiver would prefer to receive precise invali-
dations if the sender has them available. A sender thread
has two tasks: First, it must draw requests from the per-
writer logs in a causally consistent order, and second it
should reduce network overhead by combining some in-
validations into imprecise invalidations and sending the
resulting stream of general invalidations in a causally
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consistent order. It accomplishes the first task by initial-
izing sentVV = startVV, drawing from the per-writer logs
the element with the lowest accept stamp that exceeds
sentVV, and updatingsentVVto include the end time of
the element. Key to accomplishing the second task is the
following observation:

Given a causally consistent sequenceS of gen-
eral invalidationsS = (g0, g1, . . . , gn−1), se-
lect any two subsequencesS1 andS2 such that
g0 appears inS1, each element ofS appears
in eitherS1 or S2, and all elements inS1 and
S2 appear in the same relative order as inS.
Form an imprecise invalidationI that is the
union of all invalidations inS1 (as defined in
Section 2.3.) Then, the sequenceS′ = (I, S2)
represents a causally consistent sequence.

This property follows from the fact that if the imprecise
invalidationI intersects a receiver’s interest setIS, then
when it arrives, the receiver advancesIS.cV V to I.end
but does not advanceIS.lpV V ; conversely, ifI does
not intersectIS, then when it arrives, the receiver waits
until at leastI.end before advancing eitherIS.cV V or
IS.lpV V . In the either case, when processing each mes-
sagegi from S2, IS.lpV V is no higher than it would
have been ifgi were processed as part of the original se-
quenceS, andIS.cV V is at least as high, soIS is only
precise after processing messagegi underS2 if it would
have been precise after processing the message underS.

To save bandwidth while avoiding unnecessarily mak-
ing interest sets imprecise, a sender therefore buffers out-
going invalidations and aggregates ones that do not in-
tersectP. When an outgoing stream draws a sequence
S of invalidations out of the log, it adds eachgi to I if
gi does not intersect the precise setP and it appendsgi

to a sequence of pending invalidationsS2 otherwise. A
node sends and clearsI and thenS2 after one of two
timeouts occurs: eitherTprecise ms have elapsed since
the first element was placed in this instance ofS2 or
Timprecise ms have elapsed sinceI became non-empty.
TypicallyTimprecise > Tprecise since nodes may tolerate
longer delays for updates about information they don’t
care about. Note that our current prototype implements a
limited version of this logic that allowsTimprecise to be
set by the trigger request but that assumesTprecise == 0.

Generating outgoing body streams is similar but sim-
pler because the safety of the system does not depend on
the order of body messages or sync replies. When a node
receives a request for a body, the node uses data in its
local store to generate and send a body message with the
object ID, byte range, the range’s accept stamp, and as
much data beginning at the requested offset as is valid.
Note that if the local data is in the INVALID state, the
node’s reply would indicate a zero-length body, which

has no semantic effect at the receiver, but which will gen-
erate an event the receiver’s controller can use as a hint
that it should retry (perhaps to a different node); if the
data store does not have a record for that object/offset,
the node generates an impossibly low-numbered accept
stamp for its reply which has the same effect. For effi-
ciency, our prototype maintains a pool of TCP connec-
tions for body messages to amortize TCP setup costs and
to pipeline sends when multiple bodies are sent to a node.

A core also provides an interface to request that a
nodeα push bodies newer than some version vector to
another nodeβ for some specified object or subtree in
the object name space. In our implementationα allo-
cates a bounded-size priority queue which drains update
body messages toβ over a low-priority network connec-
tion [37], andα inserts into this priority queue a reference
to each new body matching the subtree using a per-object
priority supplied byα’s controller.

Recovery and garbage collection. In order to allow
trimming of update logs, nodes checkpoint their local
store state. A checkpoint comprises acurrentVVversion
vector that indicates the on-disk state reflects at least the
application of general invalidations up tocurrentVV, the
list of interest sets, a per interest setlpVV version vector
indicating the last time the interest set was precise, the
per-object metadata (current to at leastlpVV for each ob-
ject’s interest set), and the per-object body for at least any
bound invalidations that are reflected in the checkpoint
(a node’s controller is always free to direct the node to
discard any unbound body to limit space consumption.)
Once such a checkpoint is stored, the prefix of the log be-
fore currentVVmay be truncated, though in practice we
keep a longer prefix in the log to facilitate incremental
synchronization among nodes [31].

3.2 Controller implementation
Each core has a controller that initiates the communica-
tion that the core needs such as subscriptions to invalida-
tion streams, subscriptions to prefetch body streams, and
requests for bodies to satisfy demand read misses. Con-
trollers also issue maintenance directives to the local core
for issues like cache replacement and garbage collection.

The controller subsystem is defined by its interface.
Within this interface, we anticipate a wide range of dif-
ferent implementations providing different policies.

Interface and operation. Controllers use three inter-
faces to accomplish their work: a core calls a con-
troller’s inform interface to inform the controller of im-
portant events, a controller calls a remote core’sremote
requestinterface to trigger sends, and a controller calls
its core’smanagementinterface for maintenance func-
tions like cache control. Additionally, a set of controllers
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implementing a specific distributed policy may commu-
nicate with one another using policy-specific interfaces.

A core uses its local controller’s inform interface to
inform the controller of events of interest. In our imple-
mentation, a core informs it local controller of (1)stream
connectioninitiation or termination for invalidations or
updates, (2) inval, sync, and bodymessage arrivalevents,
and (3)local eventslike read hit, read miss, read impre-
cise (a read that blocks accessing an imprecise interest
set), and write.

Controllers can respond to inform events by sending
request messages to a remote core’s remote request in-
terface. For example, when informed of a read miss, a
controller uses some policy-specific strategy to identify a
node that can supply the miss and sends a request to that
node for the body. Then, one of three things will hap-
pen: (1) the body arrives at the core, unblocks the waiting
read request, and causes the core to inform its controller
of the body arrive event, (2) an empty body arrives at
the core (signifying that the sender does not have the de-
sired data), the controller receives a body arrive event for
the empty body, and the controller sends another body
read request, or (3) a timeout event occurs within the
controller and the controller issues another body read re-
quest.

Finally, the core has a local management interface that
allows the controller to query the core to learn about in-
ternal state (e.g., the intererest set status, per-object state,
log status, and connection status) and to manage that lo-
cal state (e.g., shut down a connection, mark an object
as invalid and garbage collect its body storage, or begin
trackinglpVVandcVVfor a new interest set.)

SDIMS Controller To more concretely illustrate the
interactions between the controller and the core, we de-
scribe one of the controllers we have built. The SDIMS
controller uses the DHT-based SDIMS system [40] to
coordinate a distributed collection of controllers. Note
that the current SDIMS Controller is intended as a proof
of concept for the PRACTI mechanisms rather than as
a full-fledged replication system. Although we intend
to build complete replication system using SDIMS and
PRACTI, some desirable features are not yet imple-
mented as we detail below.

Our prototype uses SDIMS to maintain per-interest-
set spanning trees for both invalidation and update
streams. As Figure 3 illustrates, for a given interest set
IS, a node informs SDIMS of its interest inIS, and
SDIMS aggregates this information across locality-aware
and administrative-unit-aware trees, selecting an inter-
ested node from each subtree to function as the subtree’s
root. A node then finds its parent using SDIMS and cre-
ates invalidation (and optionally, update) streams to and
from its parent forIS. Note that some updates to the in-

to parent spanning tree

5
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Fig. 3: Example invalidation/update spanning tree formed by
SDIMSController for an interest set (e.g., /foo/bar/*). The
circles represent the virtual tree formed by SDIMS for inter-
est set /foo/bar/*, the solid nodes represent nodes interested in
/foo/bar/*, the numbers denote the ID of the node selected by
SDIMS as the spanning tree root for each SDIMS subtree, and
the arrows show the node-to-node connections made based on
SDIMS’s guidance.

terest set/foo/bar/* are relevant to the interest set/foo/*
(and vice versa), so the root node of the spanning tree for
IS selects as its parent any node in the spanning tree for
the shorterpath’ formed by deleting after the last “/” in
IS’s path. A controller maintains spanning tree connec-
tions by retrying on communication failures and when
SDIMS notifies a node that its parent in in the spanning
tree has changed.

We use a similar approach for maintaining a dis-
tributed directory for satisfying local read misses. Each
node informs SDIMS of the valid byte ranges it caches
and queries SDIMS on misses to find a nearby copy of
data [32, 36].

Note that SDIMS ensures only eventual consistency,
so a spanning tree parent or body supplier suggested by
SDIMS may not be the correct parent, may not have the
desired data, or may be unreachable. The first problem
is handled by using SDIMS’scontinuous probeinter-
face to notify a controller when its parent changes. A
controller handles stale values and timeouts by retrying
SDIMS queries with a flag toreaggregatestored values
from children in the distributed tree [40].

A complete version of an SDIMS-based distributed
file system would require several additional features.
First, we plan to use SDIMS to allow a node to locate
a nearby node whose interest set status for some inter-
est set is precise up to a specified point in time. This
information is useful for “filling holes” when a node re-
ceieves an imprecise invalidation for an interest set it
wishes to maintain as precise. Providing this information
will entail maintaining per-interest set, per-writer aggre-
gation functions so that an SDIMS subtree will identify
the node in the subtree with the highest accept stamp for
a given interest set and writer. Second, we plan to use
SDIMS to track the read and write rates to different ob-
jects. Prefetch algorithms use this information to prior-
itize replication [38, 39]. Third, a complete controller
should implement policies for local cache replacement
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Fig. 4: Scalability of PRACTI

and garbage collection of the log.

4 Evaluation
In this section we evaluate the properties of our PRACTI
prototype. The flexibility provided by the PRACTI
mechanisms provides two significant advantages over
past systems. First, by disentangling mechanism from
policy, PRACTI represents a single flexible system that
can match systems that have been optimized for specific
topology, replication, or consistency environments. Sec-
ond, by providing a clean general substrate, PRACTI en-
ables better trade-offs than are available to any existing
system for some important environments.

Based on our experiments, our primary conclusions
are (1) the separation of invalidations from updates can
reduce bandwidth consumption by an order of magni-
tude compared to full-replication systems when work-
loads have locality of interest, (2) the use of imprecise
invalidations can provide a further significant reduction
in synchronization overheads in systems with large num-
bers of files when some nodes only care about subsets
of those files, (3) flexible topologies can significantly re-
duce synchronization delays, particularly in mobile or
low-bandwidth environments, and (4) imprecise invalida-
tions make the bandwidth cost of providing consistency
guarantees approach the cost of providing weaker coher-
ence guarantees.

We show in figure 4 and 5 the number of bytes trans-
ferred for each of our various replication strategies. We
run our experiments on two machines - a sender, which
writes to random files, and a receiver that reads random
files. At the sender, we generate 1000 files with 10000
bytes each, and perform 10000 random writes. The re-
ceiver then reads 10 of those files. We assume that the
receiver replicates 10% of the directories in the system,
and for each directory, we assume that the receiver repli-
cates 10% of the files in that directory.

Full replication (Bayou)

Partial replication Dirs

Partial replication Files
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Fig. 5: Scalability of PRACTI

We evaluate the bandwidth consumed by PRACTI
under 3 configurations: (1)Full replication, where the
sender sends precise invalidates for all modified files, (2)
Partial replication Dirs, where the sender sends a pre-
cise invalidate message for each modified filef if f lies
in a directoryd that is replicated at the receiver (even if
only a subset ofd is replicated at the receiver) and (3)
Partial replication Files, where the sender sends precise
invalidate messages for exactly only those files that are
replicated at the receiver.

In figure 4 we evaluate the bandwidth consumed
by PRACTI underconservativealgorithms, where the
sender does not push any files to the receiver but instead
forces the receiver to demand-fetch files as necessary. We
note that by restricting the sender to sending precise in-
validate messages for only those files that lie in replicated
directories, we successfully reduce bandwidth consump-
tion by a factor of 3.1. When we restrict the sender to
sending invalidate messages only for exactly those files
that lie in the receiver’s interest set, we successfully re-
duce bandwidth consumption by a factor of 8.1. Due to
the large difference between the number of files written at
the sender and the number of reads at the receiver, most
of the bandwidth (> 97.6%) is spent sending invalidate
messages; as a result, theDemand Databar is not visi-
ble. If transferring file data consumes more bandwidth,
the relative benefits yielded by sending imprecise invali-
dates would be reduced.

Figure 5 shows the bandwidth consumed by PRACTI
when usingaggressivealgorithms, where for each modi-
fied file for which the sender sends an invalidate message
it also sends the modified data. The first line in the figure
represents the case where the sender pushes all updates
to the receiver, as is done byBayou[31]. However, we
note that by restricting the sender to sending only those
updates that occur in files that lie in replicated directo-
ries, the sender consumes a factor of 8.7 less bandwidth.
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Laptop/PDA/Phone All
BW BW

Replicate all 2521KB 35125KB
All-inval, interest-update 483KB 3612KB
Interest-update, interest-inval 443KB 2991KB
Hierarchy impossible 1588KB

Table 1: Bandwidth consumption for synchronization.

Furthermore, by restricting the sender to sending only
those updates that are to files replicated at the receiver,
the sender uses a factor of 20 less bandwidth compared
to the fully replicated configuration.

Table 4 shows the bandwidth costs of synchronizing
a collection of machines using various mechanisms and
policies. In this (emulated via NistNet) scenario, a user
in a hotel room has a laptop, PDA, and phone that share
a 1Mbit/s wireless connection, and the user also has an
account on a fixed server that the laptop can access via
a 50Kbit/s modem link (when it is available). We use
a synthetic workload in which 100K files each of 10KB
size exist at the server, with 10K of those files at the lap-
top, 1K at the PDA, and 100 at the phone. We assume
that since the last synchronization event, 1% of the files
at each location have changed. We compare synchroniza-
tion costs under two scenarios: (1) no connection to the
server is available and the laptop, PDA, and phone are
only able to communicate with one another and (2) a con-
nection to the server is available.

The table compares four protocols for synchronizing
the devices. First, the replicate-all approach replicates all
data and distributes all updates to all devices (similar to
Bayou). The second strategy separates invalidations and
updates, has the devices subscribe for all invalidations,
but has them only subscribe to (i.e., hoard [21]) updates
for the files in their interest sets. The third strategy re-
stricts subscriptions to the interest sets for both metadata
and data. And, the fourth strategy requires all communi-
cation to be between the server and a client as in tradi-
tional client-server systems; like the third approach, our
client-server toplogy system restricts subscriptions to the
interest set for both data and metadata.

As the table illustrates, separating invalidations from
update bodies and providing nodes with the flexabity to
only access the bodies they care about significantly re-
duces bandwidth requirements. In this example, the sec-
ond strategy uses about an order of magnitude less band-
width than the first. Also note that allowing nodes to
observe only subsets of invalidations provides significant
further reductions. In this example, where the laptop and
server share 10% of their data, the third strategy reduces
bandwidth by about 10%; if the universe of data were
larger than the 1GB used here and as if devices shared
smaller subsets of data, this number would increase.

Finally note the advantage of topology independence.
The centralized synchronization of metadata required by

Laptop/PDA/Phone All
Sync Time Sync Time

Replicate all 26s >1200s(*)
All-inval, interest-update 7.5s 402.2s
Interest-update, interest-inval 7.4s 400.3s
Hierarchy impossible 427.4s

Table 2: Synchronization delays. (*) Due to time limitations,
we were unable to complete the replicate-all run over the slow
network link for this submission, and we cut the run short after
1200 seconds. Given these bandwidth constraints, the full run
must take at least 1873 seconds.

some replication systems would force the user in this sce-
nario to dial in in order to synchronize her PDA and lap-
top, even if the two devices are in the same room, thou-
sands of miles away from the server; clearly such restric-
tions are burdensome.

Table 4 further illustrates this scenario. This table
shows the synchronization times for an unoptimized ver-
sion of our system, using NistNet to restrict bandwidths
to the values listed above. Compared to a replicate-all
strategy, partial replication reduces synchronization de-
lay by over a factor of five, and we would expect that gap
to widen as we tune our system. The optimized peer-to-
peer exchange of data also reduces time compared to a
hierarchical system, even when the network to the server
is available.

The following table illustrates the efficiencies that
come from imprecise invalidations as well as the bene-
fits of having the flexibility to choose which data to track
in detail:

Precise Imprecise
Subscribe 10000 349723 bytes 1769 bytes
Subscribe 1000 4546 bytes 3122 bytes

In this experiment, a node that had been imprecise for
a directory subtree containing 100,000 files references a
file in that subtree. To do so, the node must become pre-
cise for at least the file in question, but since the process
is likely to reference other data in that subtree, it may
also make the directories that include that file precise for
several levels of ancestors. We show two cases: where
the node makes the nearest 10,000 files (10% of the data)
precise and where the node makes the nearest 1,000 files
(1% of the data) precise. Note that the first case requires
about an order of magnitude more bandwidth than the
second approach due to imprecise invalidations’ ability
to stand in for large numbers of precise invalidations.
Note also that the additional overheads required to carry
imprecise invalidations (and thereby provide consistency,
not just coherence) are small compared to both the pre-
cise information and (not shown) compared to the body
data of the files being accessed. And finally note that the
imprecise invalidations reduce the metadata bandwidth
cost of synchronizing a subset of this volume by orders
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of magnitude compared to synchronizing all items pre-
cisely.

The experiments described above demonstrate the key
properties of the PRACTI approach. Our evaluation ef-
forts are ongoing and we expect to complete additional
experiments in the immediate future.

5 Related work
Replication is fundamentally difficult. For example
Brewer describes the CAP dilemma [5]: a replication
system that provides sequentialConsistency cannot si-
multaneously provide 100%Availability in an environ-
ment that can bePartitioned. Similarly, Lipton and
Sandberg describe fundamental performance limitations
for distributed systems that provide sequential consis-
tency [25]. As a result, systemsmust make compro-
mises or optimize for specific workloads. Unfortunately,
these workload-specific compromises are often reflected
in system mechanisms, not just their policies.

In particular, state of the art mechanisms allow a sys-
tem designer to retain full flexibility along at most two of
the three dimensions of replication, consistency, or topol-
ogy policy.

A first set of systems such as Sprite [30], AFS [19],
and Coda [21] support arbitrary replication policies and
in principle could support a range of consistency poli-
cies [41] (though, in practice, such systems typically im-
plement a specific consistency policy), but these pro-
tocols fundamentally assume a topology policy that re-
stricts communications to hierarchical paths. Even when
client-server systems permit limited client-client commu-
nication for cooperative caching [2, 10, 12] serialization
of control messages at the server is vital for reasoning
about consistency [6].

A second set of systems such as Bayou [31],
TACT [43], and Ivy [28] use a log-propagation mecha-
nism that is capable of providing a range of consistency
guarantees [43] and that supports arbitrary topologies.
However, these mechanisms assume a replicate-all place-
ment policy that maintains a copy of all objects in a vol-
ume on each node that participates in the volume’s repli-
cation system.

A third set of systems such as Ficus [17] and Pan-
gaea [33] maintain synchronization information sepa-
rately for each object and support arbitrary topology poli-
cies and arbitrary replication policies. However, although
these systems can provide some coherence guarantees on
the order of reads and writes when an individual object is
considered, they provide limited consistency guarantees
regarding the ordering of reads and writes across objects.

6 Conclusion
In this paper, we present the first PRACTI (Partial Repli-
cation, Arbitrary Consistency, and Topology Indepen-
dence) mechanism for replication in large scale systems.

These new mechanisms allow construction of systems
that replicate or cache any data on any node, that pro-
vide a broad range of consistency and coherence guaran-
tees, and that allow any node to communicate with any
other node at any time. Our evaluation of our prototype
suggests thatby disentangling mechanism from policy,
PRACTI replication enables better trade-offs for system
designers than possible with existing mechanisms.By
cleanly separating mechanism from policy, we speculate
that PRACTI may serve as the basis for aunified repli-
cation architecturethat simplifies the design and deploy-
ment of large-scale replication systems.
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A Additonal details
A.1 Design: Multi-interest set generaliza-

tion
Section 2.3 shows a simplified version of the PRACTI al-
gorithm for applying a streams of general invalidations
to a single interest setIS. Our actual implementation
handles multiple interest sets by drawing each invalida-
tion from the stream and applying the invalidation to the
log and then to each interest set status record. To support
this, we maintain per-stream, per-interest-setstartVVs.
Algorithm 2 shows this extension.

A.2 Design: Conflict detection and resolu-
tion

The simple protocol described in Section 2.4 provides
incremental log exchange and last-writer-wins conflict
resolution with global eventual consistency in the case
of concurrent writes. However, it is useful to not only
resolve conflicts in a globally consistent way but also
to flag them and provide information about conflicting
writes to a more flexible manual or programmatic con-
flict resolution procedure.

To support more flexible conflict detection and res-
olution, we augment the algorithm described above by
adding a field,prevAcceptto both invalidation messages
and to per-object store state. When a node receives an in-
validation inv and appliesinv to the local store of an
object obj (with inv.accept 6= obj.accept), there are
three cases to consider. First, ifinv.prevAccept ==
obj.accept, there is no write-write conflict. The second
case,inv.prevAccept > obj.accept, is impossible by
the prefix property. The third case,inv.prevAccept <
obj.accept, represents a write-write conflict, which is re-
solved by updatingobj with eitherinv or obj dependig
on which has a higher accept stamp and by storing the
losing entry to disk in a local (non-shared) per-object
conflict file; bodies that match stored losing writes are
also stored. PRACTI implementations can provide a lo-
cal interface for reading and deleting these “losing” con-
flicting writes, which allows higher-level code to resolve
conflicts using application-specific rules by generating
compensating transactions.

Note that although different nodes can see different
series of “losing” writes, all nodes that make an interest
set precise are guaranteed to see the “final” write to each
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Algorithm 2 ProcessInvalStreams = {startV V , gi1,
gi2, . . .}

// First, process the startVV token.
svv = s.next()
for all IS in allISs do

startV V sIS = svv;
if ∃α | svvα > IS.currentV Vα then

// Create and apply “gap filling” imprecise inval
∀α : gapInv.startα = MIN(svvα, IS.currentV Vα)
∀α : gapInv.endα = MAX(svvα, gapInv.startα)
gapInv.target = IS.path // Any target that overlaps IS
applyOverlappingAtStrtTm(IS, gapInv, IS.currentV V )

// Now, process each general invalidation in stream.
pending = new Set()
gi = s.next()
while (gi 6= null) do
∀α : nextStartV Vα = MAX(startV Vα, gi.startα)
if !(∃p ∈ pending | (∀α : p.endα ≤ nextStartV Vα)) then

log.insert(gi)
for all IS in allISs do

if gi.target intersectsIS then
applyOverlappingAtStrtTm(IS, gi, startV V sIS )

startV V sIS = nextStartV V
if gi.isPrecise() then

storegi.objId.update(gi.start, INV ALID)
pending.insert(gi)
gi = s.next()

else// Apply non-overlappingp frompending at end time
for all IS in allISs do

if !(p.target intersectsIS) then
applyNonOverlappingAtEndTime(IS, p, startV V sIS )

pending.remove(p)
ProcedureapplyOverlappingAtStrtTm(IS, gi, startV V )

if gi.isPrecise() AND ∀α : IS.lpV Vα ≥ startV Vα then
// If no gaps to this precise inval, update lpVV
∀α : IS.lpV Vα =MAX (IS.lpV Vα, gi.startα)

∀α : IS.currentV Vα = MAX (IS.currentV Vα, gi.endα)
ProcedureapplyNonOverlappingAtEndTime(IS, p, startV V )

if ∀α : lpV Vα ≥ startV Vα then
∀α : lpV Vα =MAX (lpV Vα, p.endV Vα)

∀α : currentV Vα =MAX (currentV Vα, p.endV Vα)

causally–independent series. For example, consider the
case of two causal chains of writes to one location by
the nodesα, β, andγ: (1) w0α, w1β, w2β, w3β and (2)
w0α, w4γ. The protocol guarantees that eventually any
precise node will agree that the final state of the write is
the result ofγ’s write at time 4 and that there was a write-
write conflict thatw3β lost, and but different nodes may
see different subsets ofw1β, w2β, w3β, which seems ac-
ceptable in that neither causal chain regards eitherw1β
or w2β as important values for the final state of the sys-
tem.

Alternative: Per-write conflict detection and resolu-
tion code. The PRACTI mechanisms are also compat-
ible with Bayou’s more powerful strategy of associat-
ing application-specific conflict detection and resolution
code with each writew and re-executing this code each
time the set of writes precedingw is changed by a log
exchange operation. An advantage of this more flexible

approach is that it can detect both write-write and read-
write conflicts. We chose to use the simpler last-writer-
wins and compensating transaction approach for two rea-
sons.

First, our more restrictive approach allows efficient in-
cremental application of interleaved streams of updates
because it does not require “roll back” of the current ran-
dom access state to process an arriving write: the deter-
mination of whether a conflict occurred and the decision
about the final state of the object can be made by com-
paring the write’sacceptStampandprevWritefields with
the local object’sacceptStampandprevWritefields. In
contrast, Bayou’s conflict detection and resolution code
logically run at the point in time when the write occurs,
so they must be able to read the state of the system at
that time. As a result, to apply a newly-arriving write,
the system first rolls back its state to the logical time of
the write; it then applies the write and reapplies all sub-
sequent writes. This cost is tenable in Bayou because
Bayou was designed for batch application of updates,
which amortizes the cost of rolling back and reapplying
updates across a batch of newly arrived updates.

Second, our simpler approach allows us to avoid the
need for a “commit protocol” that can establish a final
write order that differs from the natural order on accept
stamps. Bayou’s “in line” execution of powerful conflict
resolution code introduces the possibility of a “butterfly
effect” in which the introduction of a single, previously
unseen, low-timestamped write into a log can cause any
or all newer writes in the log to execute a different con-
flict detection or resolution code path and to therefore
write different values to different objects. In principle,
whenever a previously unseen old write is applied, the
resulting system state can look arbitrarily different from
the previous system state. Bayou limits this problem
by using a primary commit protocol so that connected
nodes can establish an order on writes that causes “late-
arriving” writes to be sorted after “on-time” writes. Con-
versely, a last-writer-wins approach is less vulnerable to
late-arriving writes: either (a) despite the delay the late-
arriving write is logically the newest write to the object
and the object is updated or (b) the late-arriving write is
logically older than other writes that have been applied
and it has no effect other than being logged as a conflict.

Neither of these considerations is fundamental to
PRACTI, and these trade-offs would apply to existing
systems as well. One factor that may be more relevant to
PRACTI is that the centralized commit protocol used in
Bayou may limit scalability under PRACTI because it re-
quires the primary node to see all invalidation messages;
this issue does not limit Bayou because Bayou already
requires all nodes to see all updates. An open question
is whether there exists a suitablescalablecommit proto-
col that can avoid the need for any node to see all of the
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invalidations.

A.3 Implementation: Checkpoint recovery
When a node boots, it first recovers the local store from
the checkpoint and the in-memory per-writer log from
the on-disk log. Then, the node simply issues a request to
its own network request interface asking the log to send a
stream of invalidations with a precise set comprising the
union of the node’s interest sets and starting atcurrentVV.
The node then receives a causally consistent stream of all
of the updates it has in the log but has not yet applied to
its checkpoint, and it processes those requests normally,
which adds them to the log (where they are ignored as
redundant) and to the data store.

If a node receives a request for a stream of updates be-
ginning earlier than the start of the node’s log, the node’s
responds by sending its checkpoint of the requested in-
terest set followed by the normal stream of invalidations.
To apply a remote checkpoint to a node’s local state for
interest setIS, the node first treats the checkpoint as
an imprecise invalidation that intersects all of its inter-
est sets and that starts at node’s currentcurrentVVand
that ends at max(the node’scurrentVV, the checkpoint’s
currentVV) and applies that inferred imprecise invalida-
tion to its log and interest set status. The node then
update’s the state ofIS by updating it’sIS.lpV V to
max(IS.lpV V , checkpointlpV V ) and by applying each
invalidation stored in the checkpoint’s per-object state as
a precise invalidation to the local log and local state.
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