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Abstract topology policiessuch as client-server [19, 30], hierar-

Many replication mechanisms for large scale distributechy [4, 27], or ad-hoc [17, 22, 31] define the paths along
systems exist, but they require a designer to compro¥hich communication flows.

mise a system'’s replication policy (e.g., by requiring full  Unfortunately, existing replication mechanisms are
replication of all data to all nodes), consistency policyentangled with specific policy assumptions. For exam-
(e.g., by supporting per-object coherence but not multiple, Bayou [31] allows arbitrary topologies for commu-
object consistency), or topology policy (e.g., by assumnication among nodes but fundamentally assumes a pol-
ing a hierarchical organization of nodes.) In this papericy of full replication where all nodes store all data from
we present the first PRACTI (Partial Replication, Arbi- any volume they export. Conversely, Coda’s [21] repli-
trary Consistency, and Topology Independence) mechaation policy allows nodes to cache subsets of data, but
nisms for replication in large scale systems. These newoda fundamentally assumes a restrictive client-server
mechanisms allow construction of systems that replicateommunication topology.

or cache any data on any node, that provide a broad range Thjs paper describes a set of mechanisms that for the
of consistency and coherence guarantees, and that pggst time simultaneously provide all three PRACTI (Par-
mit any node to communicate with any other node atia| Replication, Arbitrary Consistency, and Topology In-
any time. Our evaluation of a prototype suggests that byependence) propertieBartial replicationmeans that a
disentangling mechanism from policy, PRACTI replica- system can place any subset of data on any node. In con-
tion enables better trade-offs for system designers thapast, some replication systems require a node to main-
possible with existing mechanisms. For example, fokajn full copies of all objects in all volumes they ex-
one workload we study, PRACTI's partial replication re- nort [28, 31, 44]. Arbitrary consistencymeans that the
duces bandwidth requirements by over an order of magsystem provides flexible semantic guarantees, including
nitude compared to full replication for nodes that onlythe abjility to selectively enforce both consistency guaran-

care about a subset of the system’s data. tees (which constrain the order that updates across mul-
. tiple objects become observable to readers) and coher-
1 Introduction ence guarantees (which constrain the order that updates

Data replication is a fundamental technique for improv-10 @ single object become observable but do not addi-
ing the performance [3, 11, 14, 30, 33, 39], availabil-tionally constrain the ordering of updates across differ-
ity [7, 14, 22, 43], ubiquity [21, 31], persistence [26], €Nt objects.) In contrast, some replication systems can
and managability [1] of a broad range of large-scale disonly enforce coherence guarantees but make no guaran-
tributed systems such as personal file systems [21, 31iges about consistency [17, 33Jopology independence
web service replication systems [11, 14, 39], global-scal@€ans that any node can communicate with any other
file systems [9, 43, 33], or enterprise data distributionnode. In contrast, many systems restrict communication
systems [1]. Because no replication system can have pef client-server [19, 21, 30] or hierarchical [4, 42] pat-
fect performance properties [25] or perfect availability t€rns.

and consistency [5], systems designed for different envi- We base the PRACTI protocols on Bayou’s log ex-
ronments make different trade-offs among these factorshange mechanisms [31], which support a range of con-
by implementing different consistency policies, place-sistency guarantees [44] and topology independence, but
ment policies, and topology policies. Informalggnsis-  which fundamentally assume full replication in order to
tency policiesuch as sequential [24] or causal [20] reg-maintain the invariant that each node’s log represents a
ulate how quickly newly written data are seen by readscausally-consistent prefix of the system’s writes. We
placement policiessuch as demand-caching [19, 30], adapt this protocol to support partial replication using
prefetching [16], push-caching [18] or replicate-all [31] two principles. First, weseparate the control path from
define which nodes store local copies of which data, anthe data pathby separating invalidation messages that



identify what has changed from body messages that ercost of providing coherence.

code the changes to the contents of files [2, 33]. In con- More broadly, we envision PRACTI as a step towards
trast with Bayou’s protocol that assumes that invalidaa “Unified Replication Architecture” toolkit that will
tions and bodies go hand-in-hand, these modificationsimplify the development and deployment of large-scale
require us to introduce new synchronization rules to enreplication systems. Because current mechanisms and
force ordering restrictions, mechanisms for handling depolicies are entangled, when a replication system is built
mand read misses, and protocols for enforcing policiegor a new environment, it must often be built from scratch
on the minimum safe degree of data replication [33]. Secer must modify existing mechanisms to accommodate
ond, we usémprecise invalidationswvhich allow a single  new policy trade-offs. PRACTI may help define a com-
invalidation to conservatively summarize a set of omittedmon substrate over which a broad range of replication
invalidations. We define a protocol that allows nodes tesystems can be constructed. Note, however, that although
compose precise invalidations into imprecise ones, to inthe current system provides a great deal of flexibility, it
crementally exchange logs of mixed precise and impredoes fall short of our eventual goal of providing a unified
cise invalidations, to allow precise reads (that see a correplication architecture in two significant ways. First, al-
sistent view of the data) or imprecise reads (that see onlthough our current system supports a wide range of con-
acoherentview of the data), and to recover precision for sistency options—including causal coherence, eventual
an interest set that has become imprecise. coherence, causal consistency, eventual consistency, and

Because PRACTI mechanisms support a broad rang@cknowledged writes—there are some limitations on this
of rep"cation, topo|ogy, and Consistency policies, we de.ﬂEXIbI“ty As we discuss in Section 2.4, several enhance-
sign our prototype as a “replication microkernel” thatments appear to be relatively straightforward extensions
Carefu”y separates mechanism from po“cy Rep"cagiven our current meChanismS; these extensions include
tion corescommunicate with one another using an asynapplication-specific conflict detection and resolution [35]
chronous communication protocol, and each core usednd tunable quantitative limits on inconsistency [44].
the PRACTI mechanisms to enforce a node’s safety propStill, we have not precisely quantified the boundaries
erties regardless of what messages other nodes sent@bWwhat semantics can be conveniently accommodated
it. A separatecontroller layer implements the system’s Within PRACTI's “arbitrary” consistency. Second, we do
policies and provides liveness by triggering communi-not yet accommodate some families of replication tech-
cation between nodes. We implement several flavor§iques, such as quorums for replication, callback state
of controller including a novel one that uses SDIMS (afor coordinating communications among nodes [19, 30],
DHT-based Scalable Distributed Information Manage-2nd leases for limiting staleness [15], though we even-
ment System) [40] for a number of purposes includingtually hope integrate such techniques within a common
locating data on read misses and forming per-interest-sémework.
spanning trees to propagate data to interested nodes. ~ This paper makes two contributions. First, it de-

We have constructed a prototype system and we eva?—c”bes novel mec;harpsms that support efficient and scal-
uate it using microbenchmarks. Our primary conclusiorf0!® PRACTIreplication. To our knowledge past systems
is thatby disentangling mechanism from policy, pRAcTIN@ve provided two, but never all three, of the PRACTI

replication enables better trade-offs for system designe@mp?rties' Second, it provides a prototype replication
than possible with existing mechanismBor example, toolkit based on PRACTI that cleanly separates mecha-

PRACTI makes it possible to build a system that pro_nism from policy and that allows nearly arbitrary replica-

vides causal consistency and that—like Bayou—allowd!On: consistency, and topology policies.

any node to exchange updates with any other node and The rest of this paper is organized as follows. Sec-

that—like Coda—allows each node to store and see ugion 2 describes the design of the PRACTI mechanisms,
nd Section 3 details our prototype of the core (mech-

dates for only the data about which it cares. For oné" o
workload we study, PRACTI’s partial replication reducesa,‘n'smS/ safe.ty) and controller (pOHC'eS_/ Ilvengss). Sec-
bandwidth requirements by an order of magnitude comt©n 4 experimentally evaluates the design. Finally, Sec-
pared to a full replication for nodes that only care aboufion Surveys related work and Section 6 highlights our

a subset of the system's data, and PRACTI's topologyFOnclusions.

independence reduces synchronization latency by ove .

a factor of three and enable synchronization in scenaé PRACTI des'Qn

ios where it would otherwise be impossible comparedrhis section describes the key ideas required to provide
to a restricted-topology, central server system for mobilescalable PRACTI replication. The basic idea is simple.

clients that are weakly connected to main server. FinallyAs Section 2.1 describes, we begin with a basic log ex-
we find that imprecise invalidations are effective at limit- change protocol similar to that used in Bayou [31]. Then,

ing the additional cost of providing consistency over thewe modify the protocol to separate the control path from



the data path by separating invalidations from updatef the stream’sstartVV exceedscurrentVV. Other-
bodies as described in Section 2.2; this separation allowsise it processes each write; by insertingw; into its

us to avoid sending all body updates to all nodes and teorted log, updatingurrentV'V and its local Lamport
avoid storing all bodies at all nodes. Third, we uspre-  clock. In order to support fast local reads, each node
cise invalidationdo avoid full replication of consistency also maintains a snapshstore of the per-object state
messages and state as described in Section 2.3. Fourtit, time currentV'V. Storeq;rq contains two fields:
we extend the interface over these basic mechanisms irccept, the accept stamp of the latest write dbjId,
order to support strengthening or weakening of the conand body, the value of that write. When processing

sistency semantics as described in Section 2.4. wy, It (wj.accept > storey, opjra-accept) then update
storew,; obj1d-body = w;.body.
2.1 Background: Log exchange Note that the simple protocol described here omits

Our protocol extends Bayou's log exchange proto_several features. Most notably, in Bayou, writes are more
col [31]. In order to clarify our terminology and differ- general queries that can affect multiple different objects
ences between our protocol and Bayou's, we review th@nd that carry with them references to application spe-
basic protocol here. cific conflict detection and resolution routines [35]. Fur-
When a node issues a write, it assigns the writa@n  thermore, Bayou implements a primary-commit protocol
cept stamgomprising the node’s ID and a logical clock t© establl_sh f_ifmal orderon a _preflx of writes despltg un-
value. The logical clock is a Lamport clock [23] that is COmmunicative nodes. We discuss both of these issues
advanced on each local operation and which, upon confvhen we address flexible consistency in Section 2.4.
munication with another node, is advanced to exceed the Overall, the Bayou protocol provides several attractive
maximum of the local and remote nodes’ logical clocks features. It providesopology independende that any
A node maintains a checkpoint representing all writes uftode can exchange updates with any other node at any
to a time represented by a version veatpl’V, where  time. And, it provides the relatively strong consistency
cpV'V,, holds the highest accept stamp from nedee-  9urantees of causal consistency and eventual consistency
flected in the checkpoint. Additionally, a node maintainsWhich are stronger guarantees than just providing coher-
a log of all writes it has seen since the checkpoint sorte@nce. These stronger consistency guarantees are essential
by the writes’ accept stamps (using the logical clock ador ensuring that Bayou's application-specific detection
the primary key and the node ID to break ties) as welnd resolution procedures eventually agree on the same

as a version vectarurrentV'V that indicates the highest total order on all writes and therefore eventually converge
per-node accept stamps in the log. on the same state: given the power of Bayou’s conflict

At Bayou's core are three properties. First, fefix resolution mechanisms, even with coherence of each in-
propertyis the invariant that a node’s state always reflectglividual object any difference in the order that writes to

a prefix of the sequence of writes by all nodes in the SySc_iifferent objects are observed could cause a “butterfly ef-
tem: if a noded hascurrentVV, — t, theng's state fect” where the state at different nodes arbitrarily diverge.

reflects all writes by up to and including the write at . C
logical timet. Second, each node’s local state always re-2'2 Sep_arate invalidations from update
flectscausally consisterj20] view of all writes that have bodies
occurred. This property follows from the prefix property In order to add partial replication to the log exchange pro-
and from the use of Lamport clocks to ensure that once @col's topology independence and flexible consistency,
node has observed a writg all of its subsequent writes’ we first separate the control path from the data path by
accept stamps will exceeds. Third, the system ensures separating invalidation messages from update messages.
eventual consistency—all connected nodes will eventuThis separation allows update bodies to be sent to and
ally agree on the same total order of all writes. stored at arbitrary subsets of the nodes according to the
Bayou’s log exchange protocdatnforces these prop- system’s data replication policy.
erties. If 5 would like o to send it a stream of up- Invalidation messagesontain two fields: objld,
dates,s sendsx its current version vectarurrentV'V.  which identifies the modified object, aracept which
Then, a connects tog and sends a sequence of mes-s the accept stamp assigned by the writer when the write
sages{startVV, wy, we, ...}. Wheng receives such occurs? A node’s local state includes a log (sorted by
an incoming stream, it rejects the stream if any elemendccept stamp) and a per-object store representing the cur-

1We describe our extension of Bayou’s log exchange protocol that 2For simplicity, we describe the protocol in terms of full-object
supports either thbatch-moddog exchange in the original Bayou, in writes. In practice we track writes on the granularity of arbitrary byte
which a batch of updates is atomically applied to a node’s local state, aranges: Invalidation and body messages contaioftsetand length
astreaminglog exchange in which one node sends another a sequendeeld in addition to the fields discussed here, and our per-object state
of updates, each of which is individually applied. contains per-byte-rangeecept valid, andbodyfields.



rent state of each object for readStoreq,;r4 contains  and system availability. The maximum delay parameter
three fields:accept valid, andbody. Finally, each node allows nodes to limit worst case staleness while pursuing
maintains acurrentVVversion vector and aurrentAc-  these benefits.

ceptLamport clock. b dreads. Th ) the safet ;
I . emand reads. The system ensur roper
Invalidation log exchange. When a node receives a y eNSUTes Ie satety property

stream of updategstartVV, w1, w, V. it rejects of providing a causally consistent view of data by having

the stream ifstartVV, > currentVV, for any node @ local read request block until the requested object’s sta-
a. Otherwise, it processes eaelh by inserting the tusisVALID. To ensure liveness, when 84VALID ob-
write into its sorted log and updating the store as folject is read, an implementation should arrange for some-
lO\.NS' one to send the body. PRACTI supports any policy for
ffws-accept > storew; op;ra-accept then doing this from a static hierarchy (i.e., ask your parent [4]

storew, .objrd-valid = INVALID A
storew, objrd-accept = wj.accept or a central server [19] for the missing data) to a separate,

based location-metadata directory [36], to a hint-based

Applying bodies. Although invalidations must be Sem_search strategy [34], to a push-all strategy [31] (i.e., “just
in causal, sequence number order, PRACTI supports digyait and the data will come.”)

tribution of bodies according to arbitrary policies, in arbi-
trary order, across arbitrary topologies. A PRACTI nodeReliability. ~Separating invalidations from updates en-
must therefore synchronize arriving bodies with the in-ables partial replication but also raises the issue of reli-
validation streams before applying them to its local stateability: in Bayou, all nodes have copies of all data, but
For correctness, PRACTI maintains the invariant that upa PRACTI system will need to enforce an explicit policy
date bodies are not applied until the corresponding invaldecision about the minimum acceptable level of replica-
idation message has been. To ensure this invarient, nodéen so that the loss of a node or a local cache replace-
maintain apendingUpdatdist of updates that have been ment decision does not render some data unavailable or
received but not yet applied to the local state, and thethe storage system unreliable. We provide a simple, low-
sort this list by accept stamp to put the earliest-numberelvel mechanism that supports a broad range of high-
update at the head of the queue. When a body messalgyel policies from maintaining a fixed number of “gold”
b is at the head of the pending update queue, the nodmpies of each object [9, 33] to propagating all data to a
waits until storey, opj14.accept > b.accept and then (a) well-provisioned central server [19] or replicated server
if storey.onjra-accept == b.accept, applies the update “core” [21] to Bayou's strategy of replicating everything
by setting thebodyfield of that object’s checkpoint state to everyone: a PRACTI invalidation message can be of
to b.body and setting thevalid field to VALID or (b) if  one of two types—amnboundinvalidation as described
storep. objrd-accept > b.accept, discardsb. above or doundinvalidation that contains, in addition to
Systems can use whatever replication policy theythe fields listed above,lgodyfield that contains the body
want for bodies from demand caching to client-drivenof the write that created the bound invalidation. When
prefetching [16] to replicate-all [31] to server-driven a write is created, its invalidation is initially bound. An
push [18, 39] to globally-optimized placement [38] to unbind messageontains an accept stamp and is propa-
pushing updates of whatever objects have been fetchaghited through the system using a flooding strategy: when
on demand [33]. A policy we advocate is having a sendea node receives an unbind message, it checks to see if it
engueue update bodies in a local priority queue sortetlas the corresponding bound invalidation in its local log;
by update priority which drains to the receivegpendin-  if so, it (1) converts that invalidation to be unbound and
gUpdatelist via TCP-Nice background network trans- (2) propagates the unbind message to all neighbors with
fers [37]. whom it is currently connected. If the node either has not
Also notice that although causal consistency restrictseen the corresponding invalidation or already has it in
the order in which a node applies incoming invalidationsthe unbound state, it does nothing.
nodes can use different policies to delay application of In our implementation unbind propagation is best-
invalidations in order to improve read latency or avail-effort—if the connection topology changes between
ability [29]. In particular, when a node receives an when a write occurs and when it is unbound, some nodes
invalidation I, rather than immediately applyto its lo-  may not see the unbind and continue to propagate the in-
cal state, can wait to applyl until either (a) the cor- validation in the bound state for longer than necessary.
responding update body arrives or (b) a maximum delayut, because this situation should be rare and hurts per-
expires. As we demonstrate in a recent study [29], waitformance rather than correctness, we have elected not
ing until an update arrives before applying an invalida-to include a more heavy-weight mechanism for reliably
tion can increase the fraction of objects stored locally ipropagating unbind messages with the logs. Conversely,
the VALID state and thereby improves both read latencyintegrating the propagation of bound invalidations with
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the log is a conscious choice. By integrating our mechaeise invalidation. A system forms an imprecise invali-
nism for ensuring reliability to the log exchange, we tiedation using the union operation on two general invali-
reliability to the causal order guarantees: any write in aations: gi;y = gi1 U gio hasstart andendarrays with
node’s log depends only on (a) explicitly unbound writesentries for every server in eitheti; or gis's start and
(judged safe by some higher level policy) or (b) boundend with giy.start, = min(giy.starty, gis.start,,),
writes in that node’s log (which are as good as safe dugiy .end, = max(giy.endy, giz.endy ), andgiy .target
to fate sharing). encompassing all objects encompasseg@hyand gio's

To help the reliability algorithm decide when it is targets
safe to unbind a write, each node provides an interface A node groups system data infaterest setsand
sync(replyTo, acceptStamplyhich is an asynchronous tracks whether an interest setpsecise—meaning that
request that asks the node to send a messagplplo  the node’s local state reflects all invalidations overlap-
after the node has stored the invalidation correspondinging the interest set—oimprecise—meaning that the
to acceptStampn its persistent redo log. In addition, for node’s local state is not causally consistent for that in-
convenience, when a nodereceives a bound invalida- terest set due to one or more overlapping imprecise in-
tion for a write originally issued by node, 5 sendsxa  validations.
sync-reply message regardless of whethbas received Algorithm 1 summarizes how a node processes a
asyncrequest for that write. A policy controller can im- streams of general invalidationgstartVV, gi1, gis,
plement, for example, &-copy policy by issuing sync ...} against one interest set of data. For each such in-
requests to various nodes when a write occurs and thetgrest sef S, the node maintains the interest set member-
when it receives: replies, issuing an unbind request to ship, the last precise version vectpi/V that represents
the local node (which will flood the unbind to its neigh- the highest version vector for which all precise invali-
bors). dations have been applied I& and the current version

Analvsis. S ing invalidati ¢ bodi . vectorcV'V that represents the highest version vector for
nawsis. _eparatlng Invalidations from bo HIes retains,, hich a general invalidation has been applied $o
the topology independence and causal consistency of log

exchange protocols, but it allows arbitrary policies to - — ,
control the replication of bodies. Note, however, that a"A!gorlthm 1 ProcessinvalStreams = {startV'V’, gi,

. . L ...} forinterest sef
nodes must still see all invalidations. giz, ...} forinterest sef 5
startVV = s.next()
. . . . if Ja | startVVy > currentV'V, then
2.3 Impremse invalidations return; //Reject stream that does not preserve prefix property
Imprecise invalidations allow a node to omit details from pending = new Set()

logs that it sends while still allowing receivers to enforce gfhies('”.eﬁo ) do
. . . . . gt £ nu
causal consistency. Imprecise invalidations work by (1) v, . newtStartV' v = MAX (startV'Va, gi.starta)

replacing invalidation messages witltansevative sum- if [(3p € pending | (Vo : p.endo < nextStartV'V,)) then
mary of them and (2) maintaining per-node data struc- 1/ Apply overlappingyi from s at start time

tures that track which objects are safe to access. log inserti, startV'V)
if gi.target intersectd S then

if gi.isPrecise() AND Va : ipV'V, > startV'V, then
/l'lf no gaps to this precise inval, update IpVV

Invalidation log exchange. An imprecise invalidation

contains three fieldsstart andend which are arrays of Va : IpV Ve =MAX (IpV Va, gi.starta)
accept stamps, anrget which describes the objects Vo : currentV Vo = MAX (currentV Vy, gi.enda)
affected by the invalidation. For every nodethat has startVV = nextStartV'V

if gi.isPrecise() then

one or more writes summarized by an imprecise inval- storegs.ob; 1q.Updatégi.start, INV ALID)
idation, start,’s value is at most the earliest summa- pending.inser(gi)

rized accept stamp anthd,’s value is at least the lat- gi = s.next()

est summarized accept stampargetmay encode cov- e'S.fe’/ Apply ”OT"O"e"appi”@;“’mpe”dmg atend time
ered objects in any manner, as long as it is conserva- 'iﬁp\;fi“‘l’;w?j’iegj’j)Vtve;then

tive and allows the receiver of the invalidation to identify Va1 IpV Ve =MAX (IpV Vi, p.endV V)

all objects affected by the summarized writes. Our im- Va : currentV Vo =MAX (currentV Vo, p.endV Ve )

plementation encodesrgetas a list of directory paths pending.removep)

where each path represents either an individual file or di-

rectory (e.g., /foo/bar) or a subtree (e.g., /flim/flam/*).  We rely on the prefix property for reasoning about
Note that a precise invalidation is a special case of amessages in a stream. In particular, a stream that be-
imprecise invalidation with a single writestart = end  gins with startVV guarantees that the subsequent invali-
and a single object astarget We use the terngen- dations represent a causally consistent sequence with no
eral invalidationto refer to either a precise or impre- omissions starting frorstartV\V. To support incremental




application in which multiple instances of Algorithm 1 ing betweenstartV'V and gi.start. In order to avoid
execute concurrently and interleave their application ofosing this valuable information, when a node inseiits
invalidations, our algorithm updates a per-stream, perinto its log, it first decomposegi into per-writer gen-
interest setstartVV after processing each invalidation. eral invalidations; it then usegp filling andintersection
For simplicity the pseudo-code shows a single interesbperations to encode this “no missing invalidations” in-
set version of our protocol; see the appendix the full verformation.

sion. Decomposingyi into per-writer general invalidations

A node applies general invalidations from a streanyi. is simple: for each server in gi.start, generateyi,
to an interest set in sorted order based on their timeswith gi.start,, gi.end,, andgi.target.
tamps, but they are handled differently depending on For the gap filling operation, each per-writer log main-
whether they overlap an interest set or not. If an invaltains the invarient that there is no gap between the end
idation overlaps an interest set, it is applied atstart  time of an element and the start time of the next element.
timeas it arrives from the stream, but if it does not over-When a node insertgi,, into its per-writer log fora at
lap, it is buffered until itsend timeis guaranteed not startV'V,, if gi is newer than the newest element in the
to be causally dependent on any remaining start time itog, it fills any gap betweep: and existing element by
the stream, which happens when its end time is at mosnserting a new gap-filling invalidation with a start stamp
nextStartVV, the startVV value that will hold after one larger than the highest existing end stamp, and end
the next invalidation is processed at its start time. stamp one smaller thayi’s start, and an empty target.

At g¢i's start time, we first insert it into the sorted log ~ For the intersection operation, we maintain the invari-
of all invalidations and update the local random acces&nt that there is at most one invalidation that covers any
store. Then, if the invalidation overlags, we advance moment in time in a per-writer log. We intersect two
currentV'V to the end time of the invalidation (indicat- general invalidationgi; andgi» by replacing them with
ing that the data id.S must reflect invalidations up end  up to three general invalidations: the first covers the time
in order to be considered current). We advalmé/ for ~ from the earlier start to the later start and targets the ob-
the interest only if (ajtartVVis at most the currepVV  jects targeted by the earlier start; the second covers the
for IS (i.e., there is no missing precise invalidation be-time from the later start to the earlier end and covers tar-
fore gi) and (b) this general invalidation is, in fact, a pre- gets represented by the intersectioryof andgiy's tar-
cise invalidation (i.e.gi does not introducing a missing gets; and the third covers the time from the earlier end to
precise invalidation.) Finally, if the invalidation overlaps the later end and covers the targets of the later end.
the interest set, we advanstartVVfor the interest set; if When we send a stream of invalidations to another
the invalidation is precise, we update the per object stateode, we discard gap-filling invalidations and we com-
in the same way as described in Section 2.2. bine per-writer invalidations into multi-writer invalida-

Conversely, if an invalidation does not overlap an in-tions using the policy described in Section 3.1.

terest set, it could safely be ignored since it carries N®emand reads. When a demand read occurs. it blocks

invalidations that could make the interest set IMprecise, i the interest set it targets becomes precise. This

But,_the very faqt that the ir_1va|idation does not intersecbIocking ensures the safety property that reads always
the mterest set Is “?ef“'—!t Sh.OWS. that there_ was a P&phserve a causally consistent view. In Section 2.4 we de-
riod of time over which no invalidations (precise or im- scribe how a reader can relax these guarantees. As with

precise) intersected the interest set; this information L ads of invalidated objects, a system can use any policy
help disambiguate other general invalidations that over . selecting one or more n’odes to which to connect in

Iapdtf;_e mtgfr(irs]t s_et alr)g tth's otne |ntt|c|jﬂe. Th?reform 8 order to retrieve the precise invalidations needed to make
end time, if the invalidation target does not overla®, an interest set precise.

(1) advancd S’s currentVVito gi.end and (2) ifstartVV
is at most/.S’s IpVV, updatdpVVso that all elements are Example. Figure 1 illustrates these mechanisms in ac-
at least as great ag.end. tion. Nodea writes objects a, b, and c; nogecares
about object a and receives framprecise invalidations
Log update. Our desire to support both partial repli- about a and imprecise invalidations about b and c. Node
cation and arbitrary topologies complicates log updatesy cares about object ¢ and receives franprecise in-
Simply inserting each received invalidatigt into the  validations about ¢ and imprecise invalidations about a
local log in sorted order would not be sufficient becauseand b. Finally, nodé cares about a and ¢ and receives
interpreting a general invalidation is done in the contexfrom /3 precise invalidations about a (but imprecise inval-
of the stream in which it is received. In particulaf,is  idations about b and ¢ due ftis imprecision) and from
interpreted based on the per-streatartV'V which in-  ~ precise invalidations about ¢ (but imprecise invalida-
dicates that no causally required invalidations are misstions about a and b.) First; sends a stream of invalida-



Node Beta

stream startVV ~ IS={a} startVV ~ IS={bc} Node Delta

971?[:07 | (3)0- s lP(YV CVOV (bCO)- s II’(YV CY)V stream startVV 1S={a} startVV 1S={b} startVV 1S={c}
‘('2:2,-;) s _ s {a},s {a},s" IpVV ¢VV  {b}s {b}s” IpVV ¢VV {c}s {c},s’ IpVV cVV
Node Alpha i [ ) 2 2 5 > 2 S0 ¢ 00 0 0 0 0 00
15=(ab.c} S — 2 2 2 2 2 2 2 2 2
IBYV eVy @8 ! 6 6 6 6 26 @sbo
write(2,2,a) —— 8 8 8 8 28 Nggay 5 — 5 v — 5 —
2 2 10,12, S
ST P 2 1 2 s 1 g8 0 8 8 8 0 2 8 8§ 0 2 8
4 4 o
Write(6,6,¢) P : :‘Fﬁ -— : 8 8 4 2 8 4 4 8
6 6 . 50,
write(8,8,a) ’ ’ Node Gamma | (8,10,ab) g g & & g g S §
ite(10.10b) 8 8 . Stream startVV ~ IS={ab} startVV  IS={c} | //7‘ 8 10 10 2 10 10 10 10
EREIONY 10N\ e | {ab}.s IpVV ¢VV {cl,s  IpVV cVV s 12,12,¢) — = > h 5 s X
write(12,12.¢) \(ZXE) \ & 0 v v & 0 /\(/10'12'1’4 ! ! ! !
2 12 | 4 0 4 4 4 4 === 12 2 12 12 212 12 1212
(6,6.c) | s
| 10 b)‘ 6 0 6 6 6 6 Delta’s final per—writer log for alpha:
L0 1), (2.2,8), (33,:7), (44b), (5.5.7). (6:6,0), (7.7.), (8.8.), (9.9.-), (10,10,b), (11,11,-), (12,12.¢
| 10 0 10 10 10 10 (0,1,-), (2,2,), ( ), ( ). (¢ ), (6,6.0), ( ). (8.8.a), ( ), (10,10,b), ( ). (12,12,¢)
| (12,12,(:)J
- 12 0 12 12 12 12

Fig. 1: lllustration of imprecise invalidation mechanismssplit-join scenario. Nodes, 3, v, andd share objects a, b, and c.

At each node, we show the per-interest-set information (last precise version g¢tiorand current version vectefi’V), the
per-invalidation-stream informatios#artV'V and a series of generalized invalidations), and the per-interest-set per-invalidation-
stream informationgtartV'V as it is updated as each generalized invalidation is applied.) For clarity, we show'sitymponent

for all version vectors and omit the node IB)(in accept stamps.

tions (precise for a and imprecise for b and c)stoAs  ande would be left imprecise for interest sefa}, {b},
illustrated in the figure, each invalidation advangés  and{c}.
per-invalidation-stream, per-interest-setrtV'V value ) )
as well asd’s per-interest-set last precise version vectofCheckpoint recovery. The above protocol describes
(IpV'V) and current version vectori( V) for interest set  theé common case of streaming, incremental log ex-
{a}. However, because the second invalidatiors(bc) change. However, nodes can garbage collect their logs,
intersects interest s¢b,c}, that message causes that in-SO the system must handle the case when a ribde
terest set to become imprecise and subsequent invaliddUests data fromy, buta’s currentVVis newer thani's
tions fail to advance that interest seljg’V. After pro- IpVV for a given interest set. The protocql handles this
cessing all four invalidations in that streamijs precise ~ ¢ase by doing a full state transfer for the interest set:
for interest sefa}, but imprecise for interest séb,c}. sendsg its IpVV andcVV for t_he mterest_set along with
~'s behavior processing the stream of precise invalidath®accepistamp for each object in that interest set from
tions for ¢ and imprecise invalidations for a and b is sim-'S per-object statej updates itdpVV andcVVfor the
ilar. interest set and, if thaccepttime it receives for an ob-
Then, when3 and~ send their log contents & we ject exceed; the locally stqrattcepltime, it updatgs the
show the case whergprocesses's first three invalida-  l0calaccepttime for the object and marks the objett
tions, themy’s four invalidations, and finally3’s fourth VALID. Note that checkpoint recovery can be done on a

invalidation. As the figure shows, after processing theP@r-interest set basis, but for any interest sets not updated,
first three invalidations fron®, J is precise for{a}, but currentVVmust be advanced to at least tharentVVof

imprecise fo{b} and{c}. The next four messages (from the checkpoint.

7) maked precise for{c} butimprecise fofa} and{b}. Analysis. This algorithm retains topology indepen-

Finally, thg last message (froff) br|_ngs_§ to t_he ;tate ON€ Gence and causal consistency, but it also allows partial
would desire: after seeing all precise invalidations for ob-

) X . : replication of both bodies and invalidations. In partic-
jects a and oj is precise for both _mterest sea} and{c} . ng\r, to maintain an interest set in the precise state re-
despite the fact that these precise messages were mixed. . . o
. : L L . guires O(number of writes to the interest set) precise in-
with some imprecise invalidations for objects a, b,and c.__,. ;.. . o o -
Finally, one may verify that because of tile gap fillin validations plus one imprecise invalidation summarizing
and in)?ersectiorilo erationss lod contains sSffti):ient 31 invalidations that do not intersect the interest set. In prac-
formation so that g nodecht rgceivesS's log contents tice, systems may send more imprecise invalidations than
: : 9 this minimum in order to limit the delay in assembling
could get precise updates for objects a ér@onversely, : . o . )
) . . ..and sending an invalidation stream as described in Sec-
note that if§ were simply to interleave the messages 'ttion 31
received froma and 8 without gap filling and intersec- o
tion and then send them tg information would be lost 5 4 Tynable consistency

3And, in this case, b. Our current log maintanence algorithm ac-The basic mechanisms above provide a solid substrate

tually extracts a _b|t more information fro_m th.e stream of incoming re- 5o \which it is Straightforward to weaken the sys-
quests than our interest set status algorithm; we are not sure if there IS

a clean way to extract this information during interest set maintenancl€M’S consistency _gua'jamees (e.g., to impr_qve perfor-
as well. mance [25] or availability in the face of partitions [5])



or to strengthen the system’s consistency guarantees tarite-write conflicts (by adding arevAccepfield in all
meet application semantic requirements. invalidation messages and per-object store records), stor-
ing “losing” writes in a local (unshared) per-object con-

Weakening consistency. By default, demand reads _.° _ T - )
block until the interest set they reference is precise anH'Ct file, and providing utility functions to read and delete
Qsing writes from conflict files as part of a “compensat-

they can ensure that the data they return representsir? transaction” for application-specific conflict resolu-
causally-consistent view of the system’s state. We pro-. g _app P .
tion. Causal consistency (as opposed to coherence) is

vide an interface that overrides this behavior by allow- . ) :
useful for conflict detection and resolution: our protocol

ing imprecise readshat skip thdpVV = cVVcheck and :
return data as soon as the local store record for the ree_nsures_that aI_I nodes agree on the same set of conflicts
qguested object is valid regardless of whether the intergnqrhlgsén?er\:\gggsr'e ort also describes how to use the
est set in which it resides is precise or imprecise. NOdeBRACTI Xmechanismps Wwith Bavou's rlnore ovv\\;erfu:Jstrat—
that use this interface obsergausally coherentlata— o Ath bay o POy .
if a node reads a versian of an object and then writes egy of associating application-specific conflict detection
another version;,, of the object, than once any node and resolution functions with writes [35]. Our reasons for
+1 ’ - :

reads version;jfl of the object, any subsequent read® simpler approach are (1) to _support incremental (rather
will return versionv;; or a later version—but they are th??obaatghg It?]% i)éceh da?cﬂeagoé]:?frfozigoﬁi:;’{@::(;fmd
no longer guaranteed to observe a causally consiste@ Vol . . 't .

sure that late-arriving writes (which can include detec-

view—if a node reads version, of objecta and then tion/resolution “programs” that can arbitrarily disrupt the
writes versiory, of objectb, a node that reads versiop prog . y P
current state) are placed after committed writes.

of objectb using an imprecise read may still observe a
version of object: older thanv,,. .
The potential benefit of doing an imprecise read is3 Implementatlon

that a node can read an object from a currently-imprecis@ur PRACTI techniques cleanly separate mechanism
interest set without communicating with other nodes tdrom policy in order to support a broader range of repli-

make that interest set precise. Imprecise reads can thereation policies than made available by current techniques
fore reduce bandwidth consumption, improve responsthat entangle policy choices with their mechanisms for
time, or improve availability. Note that even if a node replication, consistency, or topology. Our implemen-

« executes one or more imprecise reads and then issutsgion therefore seeks to serve as a “replication micro-
some writes, the protocol ensures thét log contains  kernel” that provides basic low level mechanisms over
sufficient imprecise invalidations to put all of its invali- Which higher-level services can be built.

dations into a causally consistent order: even gends The PRACTI mechanisms ensure safety. Our pro-
its log to 3, # can continue to provide causal consistencytotype uses an asynchronous style of communica-
across all objects. tion in which incoming messages or streams are self-

Strengthening consistency. A library interface built describing—the rules for processing each incoming mes-
over the low-level mechaﬁisms provided by the basicsage are completely defined, and mterpre‘ung_a message
) does not require knowledge of what request triggered its
tees. In particular, theync()interface described above Nransmission. Becau_se message handling rules are based
' ' on the PRACTI algorithms, they ensure safety regardless

allows the construction of a write() that blocks until : : ) i
the update has propagated to a specified set of m%—f the policy used for sending messages: any machine

chines [22, 33]. Another option for strengthening con- an send any legal protocol message to any other ma-

sistency that we plan to explore is lavering TACT OVerchine at any time, and the receiver’s rules for processing
yu piar P IS layering . incoming messages embed no assumptions about who
these basic mechanisms to provide tunable consisten

guarantees [44] %mmunic_ates with whom, make no stumptions about
' what data is replicated to which machines as well as en-
Conflict detection and resolution. The simple proto- force rules that track each object or interest set’s consis-
col described above provides incremental log exchangency state based on all messages received.
and last-writer-wins conflict resolution with global even-  Because the low-level mechanisms enforce safety in-
tual consistency in the case of concurrent writes. Howdependent of policy, higher level policies can focus on
ever, it is useful to not only resolve conflicts in a globally liveness (including performance and availability con-
consistent way but also to flag them and provide informaeerns.) Essentially, the policy layer’s job is to ensure that
tion about conflicting writes to a more flexible manual the right nodes send useful data at the right time in order
or programmatic conflict resolution procedure. As weto do such things as to satisfy a read miss, prefetch data
discuss in an extended technical report [8], we augmertb improve performance, or provision a node’s local stor-
the protocol described above by including hooks to detecige so that it can make its data available while discon-



Local API | (read), write(), delete() Our log implementation has two components. First,

R N A - it has a single on-disk append-only replay log in which
inval Sreams PRACTI Core " inval Streams invalidation messages, local updates, and unbind mes-
— — sages are stored in the order they are received. Second,
- Log Locd I it maintains an in-memory per-writer log of invalidations
Body Streams _ BodySreans and local updates sorted by accept stamp. Incoming mes-
R e sages are first appended to the on-disk replay log and
e Streams Inform Mgnt. /f_ _____ an c Sreams then, as described in Section 2.3, they are decomposed
Requests to Requests from into single-writer invalidations that are merged with the
remote cores | Controller remote cores single writer logs usingap filling andintersectiorto en-
force the invarient that each per-writer log contains a gap-
Fig. 2: High level architecture of PRACTI prototype. free list of elements that do not overlap in time.

nected. Each node provides an interface for requesting ta st The data st intai int t set
that the node send invalidations or bodies to other node ata store. € dala store maintains per-interest se

but these requests can be regarded as hints: the Ioss%?tusWh'Ch tracks the last precise version vecipiy)

messages or the introduction of extra messages can affegfd current version vectocYV) for each interest set as

system performance but not the correctness of responsegf’gz,?iesdi('jneﬁﬁﬁggnbz'z'slﬂbo dﬂ:;ggienglzmzt';’:a ?:C'Ittg;
to application read and write requests. y y

Figure 2 illustrates the division of labor betweenthe path from the root to that subdirectory as well as all

mechanism and policy in our system. A PRACIdre en?rlﬁsedd tsubglrect?rles. intai biect metadat d
maintains local state in lag for reliability and commu- € data store also maintains per-object metadata an

nication and aocal storefor random access. A core body information. For each object in the system, one file

receives and generates streams of general invalidatior?g fthﬁ I?_Ical disk holdz_the bc;)dy 0‘; t?]e ok;j.ect, V'X\ith byte
(precise, imprecise, and bound invalidations), bodied ! the file corresponding to byteot the object. A sec-

(demand replies and prefetched/pushed data), and syﬂ@d file holds the object’s consistency state: a series of

replies (to support unbind and consistency policies as dé_ecordg With a_roffsetandlengthidentifying a byterange,
accepudentlfymg accept stamp of the most recent inval-
i

scribed in Sections 2.2 and 2.4.) The core also providesa™ lied he b A dentifyi
remote request interface that allows remotely-generate ation applied to t feh yterag.@,rev ce ept ef?ufgmg
requests to trigger outgoing streams or individual mest1® accept stamp_o the previous yvnte tq the byterage
sages (for conflict detection as described in Section 2.4), and a
A controllers purpose is to send requests asking othet};Iid flag indicating whet_her the body fiIe_’s cpr_ltents are
nodes’ cores to trigger streams or messages. To aid th] LID or INVALID for this range. For simplicity, we

task, the core informs its local controller of important!mpl(:"ment each object's consistency state as a Java ob-

events (e.g., connection initiation/termination, local reJeCt_' Mmanage an in-memory caphe o_f thgse objects, and
quests, and message arrivals.) To customize a repIiCg_enallze dirty objects to per-object disk files for check-

tion system to an environment, different controllers usd0Nts:

different policies. For example, we implement a Static-Qperation. Section 2 outlines how a core processes in-
TopologyController that creates a static topology amongoming invalidation and body messages as well as lo-
its nodes for propagating invalidations and bodies and fogg| read requests. Local write and delete requests are
satisfying demand requests, a BayouController that pefreated like incoming invalidation requests—they are first
manently leaves all invalidations in the bound state, angpp”ed to the log and then to the local store. Incoming
a SDIMSController that uses the DHT-based Scalable |”Sync replies have no effect on the core’s state.

formation Management System [40] to track the state of  £5ch core has an interface to trigger outgoing streams
the distributed system. of invalidations. A request to start an invalidation stream
3.1 Core implementation includes thedestinationnode 1D to which to send the

The core implements procedures applving incomin re(_jata, astartVVversion vector indicating the desired start-
P P pplying gre point, and a precise sétlisting subdirectories for

. n
gz::i?ezsfsgii;%intszk;(r:g;r:?;?cteh;t 2n(zsgrree’sﬂ:§(t:g|]2 tr;tl:ﬁgi_ch the receiver would prefer to r_eceive precise invali-
has two main parts: a lod and a data. store Gations if the sen_der has them available. A sender thread

as parts: 9 ' has two tasks: First, it must draw requests from the per-
Log. A core’s log has two main purposes. First, it writer logs in a causally consistent order, and second it
acts as a replay log for reliability. Second, it maintainsshould reduce network overhead by combining some in-
causally-ordered lists of invalidations for communicatonvalidations into imprecise invalidations and sending the
with other nodes. resulting stream of general invalidations in a causally



consistent order. It accomplishes the first task by initial-has no semantic effect at the receiver, but which will gen-
izing sentVV = startVydrawing from the per-writer logs erate an event the receiver’s controller can use as a hint
the element with the lowest accept stamp that exceedbat it should retry (perhaps to a different node); if the
sentVV and updatingentVVto include the end time of data store does not have a record for that object/offset,
the element. Key to accomplishing the second task is ththe node generates an impossibly low-numbered accept
following observation: stamp for its reply which has the same effect. For effi-
ciency, our prototype maintains a pool of TCP connec-
tions for body messages to amortize TCP setup costs and
to pipeline sends when multiple bodies are sent to a node.
A core also provides an interface to request that a
nodea push bodies newer than some version vector to
another nodes for some specified object or subtree in
the object name space. In our implementatiomllo-
cates a bounded-size priority queue which drains update
body messages 16 over a low-priority network connec-
tion [37], andwx inserts into this priority queue a reference
to each new body matching the subtree using a per-object

This property follows from the fact that if the imprecise Priority supplied bya’s controller.
invalidation intersects a receiver’s interest g&, then
when it arrives, the receiver advancEscV'V to I.end
but does not advancéS.ipV'V'; conversely, ifl does
not intersect S, then when it arrives, the receiver waits
until at least/.end before advancing eithelS.cV'V or
I1S.lpV'V. In the either case, when processing each me
sageg; from S,, I1S.I[pV'V is no higher than it would
have been ifj; were processed as part of the original se
qguenceS, andIS.cV'V is at least as high, sbS is only

Given a causally consistent sequescef gen-
eral invalidationsS = (go, 91, -+, 9n—1), S€-
lect any two subsequencss and.S; such that
go appears inS;, each element of appears
in eitherS; or S,, and all elements i$; and
S, appear in the same relative order asSin
Form an imprecise invalidatiof that is the
union of all invalidations inS; (as defined in
Section 2.3.) Then, the sequenge= (I, S,)

represents a causally consistent sequence.

Recovery and garbage collection. In order to allow
trimming of update logs, nodes checkpoint their local
store state. A checkpoint compriseswarentVVversion
vector that indicates the on-disk state reflects at least the
application of general invalidations up ¢arrentV\, the

ist of interest sets, a per interest &'V version vector
indicating the last time the interest set was precise, the
per-object metadata (current to at lel@dtV for each ob-

precise after processing messagender., if it would ject’s interest set), and the per-object body for at least any

have been precise after processing the message Hnderbound invalidations that are reflected in the checkpoint
To save bandwidth while avoiding unnecessarily mak-(a node’s controller is always free to direct the node to

ing interest sets imprecise, a sender therefore buffers ou(i]-'scard any unbound body to limit space consumption.)

going invalidations and aggregates ones that do not inC_)nce such a checkpoint is stored, the prefix of the log be-

tersectP. When an outgoing stream draws a sequencéOre currenthay_bg truncated, tho“!gh in practice we
S of invalidations out of the log, it adds eaghto I if eep a anggr prefix in the log to facilitate incremental
g; does not intersect the precise $etand it appendg; synchronization among nodes [31].
to a sequence of pending invalidatiofis otherwise. A . .
node sends and cleafsand thenS; after one of two 3.2 Controller implementation
timeouts occurs: eithef),...;se Ms have elapsed since Each core has a controller that initiates the communica-
the first element was placed in this instanceSafor  tion that the core needs such as subscriptions to invalida-
Timprecise MS have elapsed sindebecame non-empty. tion streams, subscriptions to prefetch body streams, and
Typically T precise > Tprecise SINCE NOdes may tolerate requests for bodies to satisfy demand read misses. Con-
longer delays for updates about information they don’trollers also issue maintenance directives to the local core
care about. Note that our current prototype implements for issues like cache replacement and garbage collection.
limited version of this logic that allow®;,,,ccis. to be The controller subsystem is defined by its interface.
set by the trigger request but that assuffigs...c == 0.  Within this interface, we anticipate a wide range of dif-
Generating outgoing body streams is similar but simferent implementations providing different policies.
pler because the safety of the system does not depend on
the order of body messages or sync replies. When a nodeterface and operation. Controllers use three inter-
receives a request for a body, the node uses data in iftaces to accomplish their work: a core calls a con-
local store to generate and send a body message with th®ller’s inform interface to inform the controller of im-
object ID, byte range, the range’s accept stamp, and gmortant events, a controller calls a remote coreimote
much data beginning at the requested offset as is validequestinterface to trigger sends, and a controller calls
Note that if the local data is in the INVALID state, the its core’s managemeninterface for maintenance func-
node’s reply would indicate a zero-length body, whichtions like cache control. Additionally, a set of controllers

10



implementing a specific distributed policy may commu- S

nicate with one another using policy-specific interfaces.

inform the controller of events of interest. In our imple- 2

mentation, a core informs it local controller of @yeam

connectioninitiation or termination for invalidations or 2 3 4

and (3)local eventdike read hit, read miss, read impre- S \’tgparémpammgtree

cise (a read that blocks accessing an imprecise intere§i3: 3: ExamFl’lle '?Va"dat,"’”/“pdate Spa””'r}? tr/%e f/grmedhby

set), and write. SDIMSController for an interest set (e.g., /foo/bar/*). The
Controllers can respond to Inform’ events by sendm%st set /foo/bar/*, the solid nodes represent nodes interested in

request messages to a remote core’s remote request ffso/par/+, the numbers denote the ID of the node selected by

terface. For example, when informed of a read miss, &pIMS as the spanning tree root for each SDIMS subtree, and

node that can supply the miss and sends a request to th&bIMS's guidance.

node for the body. Then, one of three things will hap- . ) .

pen: (1) the body arrives at the core, unblocks the waitinderest setfoo/bar/* are relevant to the interest Jé&to/

of the body arrive event, (2) an empty body arrives at/> S€lects as its parent any node in the spanning tree for

the core (signifying that the sender does not have the déb€ shortepath’ formed by deleting after the last */” in

sired data), the controller receives a body arrive event fof S'S Path A controller maintains spanning tree connec-

controller and the controller issues another body read rél€€ has changed.

quest. We use a similar approach for maintaining a dis-

allows the controller to query the core to learn about infode informs SDIMS of the valid byte ranges it caches

ternal state (e.g., the intererest set status, per-object stafld queries SDIMS on misses to find a nearby copy of

log status, and connection status) and to manage that |§ata [32, 36].

as invalid and garbage collect its body storage, or begigo a spanning tree parent or body supplier suggested by

trackinglpVV andcVVfor a new interest set.) SDIMS may not be the correct parent, may not have the

desired data, or may be unreachable. The first problem

interactions between the controller and the core, we deface to notify a controller when its parent changes. A

scribe one of the controllers we have built. The SDIMScontroller handles stale values and timeouts by retrying

controller uses the DHT-based SDIMS system [40] toSDIMS queries with a flag toeaggregatestored values

that the current SDIMS Controller is intended as a proof A complete version of an SDIMS-based distributed

of concept for the PRACTI mechanisms rather than agile system would require several additional features.

a full-fledged replication system. Although we intendFirst, we plan to use SDIMS to allow a node to locate

PRACTI, some desirable features are not yet impleest set is precise up to a specified point in time. This

mented as we detail below. information is useful for “filling holes” when a node re-
Our prototype uses SDIMS to maintain per-interest-ceieves an imprecise invalidation for an interest set it

streams. As Figure 3 illustrates, for a given interest sewill entail maintaining per-interest set, per-writer aggre-

1S, a node informs SDIMS of its interest ihS, and  gation functions so that an SDIMS subtree will identify

SDIMS aggregates this information across locality-awarehe node in the subtree with the highest accept stamp for

ested node from each subtree to function as the subtree8DIMS to track the read and write rates to different ob-

root. A node then finds its parent using SDIMS and crejects. Prefetch algorithms use this information to prior-

ates invalidation (and optionally, update) streams to andize replication [38, 39]. Third, a complete controller

A core uses its local controller’s inform interface to > 3
5 6 7
updates, (2) inval, sync, and boohessage arrivagvents, NN T
circles represent the virtual tree formed by SDIMS for inter-

controller uses some policy-specific strategy to identify ahe arrows show the node-to-node connections made based on
read request, and causes the core to inform its controlldfnd vice versa), so the root node of the spanning tree for
the empty body, and the controller sends another bod{jons by retrying on communication failures and when

Finally, the core has a local management interface thdtibuted directory for satisfying local read misses. Each
cal state (e.g., shut down a connection, mark an object Note that SDIMS ensures only eventual consistency,
SDIMS Controller To more concretely illustrate the is handled by using SDIMS’sontinuous probenter-
coordinate a distributed collection of controllers. Notefrom children in the distributed tree [40].
to build complete replication system using SDIMS anda nearby node whose interest set status for some inter-
set spanning trees for both invalidation and updatavishes to maintain as precise. Providing this information
and administrative-unit-aware trees, selecting an intera given interest set and writer. Second, we plan to use
from its parent for/.S. Note that some updates to the in- should implement policies for local cache replacement

11



Invalidate traffic

10 4 - Data traffic

Invalidate traffic

23 - Data traffic

Total Bytes Transterred (MB)
‘T'otal Bytes 1ransferred (MB)

/%//, %/a A% A"’/fo &% %%
%46 $/,& @/,@ 'O//c; /,% 4 /,%4
% % “% %% S %,
(X % % 0/ %, %,
O/)O o,)/(\ %ﬁ "o, 24,
% %, % % %
Fig. 4: Scalability of PRACTI Fig. 5: Scalability of PRACTI
and garbage collection of the log. We evaluate the bandwidth consumed by PRACTI
) under 3 configurations: (Iull replication, where the
4 Evaluation sender sends precise invalidates for all modified files, (2)

In this section we evaluate the properties of our PRACTFartial replication Dirs where the sender sends a pre-
prototype. The flexibility provided by the PRACTI _c:lse mvahdate mesgage fpr each m0d|f|ed_1flléf lies .
mechanisms provides two significant advantages ovdp & directoryd that is replicated at the receiver (even if
past systems. First, by disentangling mechanism fror@"ly @ subset ofl is replicated at the receiver) and (3)
policy, PRACTI represents a single flexible system thafar“f"‘l replication Files where the sender sends precise
can match systems that have been optimized for speciflgvalidate messages for exactly only those files that are
topology, replication, or consistency environments. Secreplicated at the receiver.
ond, by providing a clean general substrate, PRACTI en- In figure 4 we evaluate the bandwidth consumed
ables better trade-offs than are available to any existingy PRACTI underconservativealgorithms, where the
system for some important environments. sender does not push any files to the receiver but instead
Based on our experimentsl our primary Conc|usi0né0rces the receiver to demand-fetch files as necessary. We
are (1) the separation of invalidations from updates cafiote that by restricting the sender to sending precise in-
reduce bandwidth consumption by an order of magnivalidate messages for only those files that lie in replicated
tude compared to full-replication systems when work-directories, we successfully reduce bandwidth consump-
loads have locality of interest, (2) the use of imprecisdion by a factor of 3.1. When we restrict the sender to
invalidations can provide a further significant reductionsending invalidate messages only for exactly those files
in synchronization overheads in systems with large numthat lie in the receiver’s interest set, we successfully re-
bers of files when some nodes only care about subseg#ice bandwidth consumption by a factor of 8.1. Due to
of those files, (3) flexible topologies can significantly re-the large difference between the number of files written at
duce synchronization delays, particularly in mobile orthe sender and the number of reads at the receiver, most
low-bandwidth environments, and (4) imprecise invalida-0f the bandwidth £ 97.6%) is spent sending invalidate
tions make the bandwidth cost of providing consistencynessages; as a result, themand Databar is not visi-
guarantees approach the cost of providing weaker cohelle. If transferring file data consumes more bandwidth,
ence guarantees. the relative benefits yielded by sending imprecise invali-
We show in figure 4 and 5 the number of bytes transdates would be reduced.
ferred for each of our various replication strategies. We Figure 5 shows the bandwidth consumed by PRACTI
run our experiments on two machines - a sender, whiclwvhen usingaggressivalgorithms, where for each modi-
writes to random files, and a receiver that reads randorfied file for which the sender sends an invalidate message
files. At the sender, we generate 1000 files with 10000 also sends the modified data. The first line in the figure
bytes each, and perform 10000 random writes. The rerepresents the case where the sender pushes all updates
ceiver then reads 10 of those files. We assume that the the receiver, as is done Bayou[31]. However, we
receiver replicates 10% of the directories in the systemrmote that by restricting the sender to sending only those
and for each directory, we assume that the receiver replispdates that occur in files that lie in replicated directo-
cates 10% of the files in that directory. ries, the sender consumes a factor of 8.7 less bandwidth.

12



Laptop/PDA/Phone All Laptop/PDA/Phone All
BW BW Sync Time Sync Time
Replicate all 2521KB 35125KB Replicate all 26s >1200s(*)
All-inval, interest-update 483KB 3612KB All-inval, interest-update 7.5s 402.2s
Interest-update, interest-inva 443KB 2991KB Interest-update, interest-inva 7.4s 400.3s
Hierarchy impossible 1588KB Hierarchy impossible 427 .4s
Table 1: Bandwidth consumption for synchronization. Table 2: Synchronization delays. (*) Due to time limitations,

we were unable to complete the replicate-all run over the slow

Furthermore, by restrlctlng_ the Sender to sending O_n|¥1etwork link for this submission, and we cut the run short after
those updates that are to files replicated at the receivefpgg geconds. Given these bandwidth constraints, the full run
the sender uses a factor of 20 less bandwidth comparggst take at least 1873 seconds.

to the fully replicated configuration.

Table 4 shows the bandwidth costs of SynchronizinqZome replication systems would force the user in this sce-

. : . . : ario to dial in in order to synchronize her PDA and lap-
a collection of machines using various mechanisms an . 0 sy ) P
op, even if the two devices are in the same room, thou-

policies. In this (emulated via NistNet) scenario, a use} ands of miles away from the server- clearly such restric-
in a hotel room has a laptop, PDA, and phone that shar® y ' y
ns are burdensome.

a 1Mbit/s wireless connection, and the user also has atano _ . : .

account on a fixed server that the laptop can access Vi Table 4 further illustrates this scenario. This table
a 50Kbit/s modem link (when it is available). We useS%OWS the synchronization times for an unoptimized ver-
a synthetic workload in which 100K files each of 10KB sion of our sys.tem, using NistNet to restrict bandwidths
size exist at the server, with 10K of those files at the Iap:[0 the vaIues'hsted gbqve. Compared to a rgphgate-all
top, 1K at the PDA, and 100 at the phone. We assumftrategy' partial repllcgtlon reduces synchronization de-
that since the last synchronization event, 1% of the file Ay by over a factor of five, and we would expect that gap

at each location have changed. We compare synchroniz%?— Widen as we tune our system. The optimized peer-to-

tion costs under two scenarios: (1) no connection to th eer exc_hange of data also reduces time compared 10 a
server is available and the laptop, PDA, and phone ar ierarchical system, even when the network to the server

. ) ilable.
only able to communicate with one another and (2) a con®™> &V& . . .
y @ The following table illustrates the efficiencies that

nection to the server is available. : S o
come from imprecise invalidations as well as the bene-

The table compares four protocols for synchronizing, _ - :
the devices. First, the replicate-all approach replicates %ES d(;:iﬁvmg the flexibility to choose which data to track

data and distributes all updates to all devices (similar t
Bayou). The second strategy separates invalidations and Precise Imprecise
updates, has the devices subscribe for all invalidations, Subscribe 10004 349723 bytes, 1769 bytes
but has them only subscribe to (i.e., hoard [21]) updates Subscribe 1000 | 4546 bytes | 3122 bytes
for the files in their interest sets. The third strategy re-
stricts subscriptions to the interest sets for both metadata this experiment, a node that had been imprecise for
and data. And, the fourth strategy requires all communia directory subtree containing 100,000 files references a
cation to be between the server and a client as in tradfile in that subtree. To do so, the node must become pre-
tional client-server systems; like the third approach, oucise for at least the file in question, but since the process
client-server toplogy system restricts subscriptions to thés likely to reference other data in that subtree, it may
interest set for both data and metadata. also make the directories that include that file precise for
As the table illustrates, separating invalidations fromseveral levels of ancestors. We show two cases: where
update bodies and providing nodes with the flexabity tahe node makes the nearest 10,000 files (10% of the data)
only access the bodies they care about significantly reprecise and where the node makes the nearest 1,000 files
duces bandwidth requirements. In this example, the se¢1% of the data) precise. Note that the first case requires
ond strategy uses about an order of magnitude less bandbout an order of magnitude more bandwidth than the
width than the first. Also note that allowing nodes tosecond approach due to imprecise invalidations’ ability
observe only subsets of invalidations provides significanto stand in for large numbers of precise invalidations.
further reductions. In this example, where the laptop andNote also that the additional overheads required to carry
server share 10% of their data, the third strategy reducémprecise invalidations (and thereby provide consistency,
bandwidth by about 10%; if the universe of data werenot just coherence) are small compared to both the pre-
larger than the 1GB used here and as if devices sharagise information and (not shown) compared to the body
smaller subsets of data, this number would increase. data of the files being accessed. And finally note that the
Finally note the advantage of topology independenceimprecise invalidations reduce the metadata bandwidth
The centralized synchronization of metadata required bgost of synchronizing a subset of this volume by orders
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of magnitude compared to synchronizing all items pre-These new mechanisms allow construction of systems
cisely. that replicate or cache any data on any node, that pro-
The experiments described above demonstrate the keyde a broad range of consistency and coherence guaran-
properties of the PRACTI approach. Our evaluation ef{ees, and that allow any node to communicate with any
forts are ongoing and we expect to complete additionabther node at any time. Our evaluation of our prototype
experiments in the immediate future. suggests thaby disentangling mechanism from policy,

5 Related work PRACTI replication epable; bettgr 'trade—offs fqr system
oo ) o designers than possible with existing mechanisiBsg.
Replication is fundamentally difficult. For example ¢jeanly separating mechanism from policy, we speculate

Brewer describes the CAP dilemma [5]: a repllcat!onthat PRACTI may serve as the basis fourified repli-

system that provides Seq‘;ent@”?_'St?”Cy cannot si-  cation architecturdhat simplifies the design and deploy-
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Algorithm 2 ProcesslInvalStream s = {startVV, giy,

gig, }

/I First, process the startVV token.
svv = s.next()
forall 1.5 in allISs do
startV'Vsrg = svv;
if 3o | svvg > IS.currentVV, then
/I Create and apply “gap filling” imprecise inval
Vo : gapInv.starta = MIN(svva, IS.currentV'Vy)
Va : gapInv.endo = MAX (svva, gapInv.starty)
gapInv.target = 1S.path Il Any target that overlaps IS
applyOverlappingAtStrtTni(S, gapInv, IS.currentV'V)
/I Now, process each general invalidation in stream.
pending = new Set()
gi = s.next()
while (gi # null) do
Vo : nextStartVVy = MAX (startV Vg, gi.starta)
if 1(3p € pending | (Va : p.enda < nextStartVVy)) then
log.insertgi)
forall IS inalllISsdo
if gi.target intersectd S then
applyOverlappingAtStrtTni(S, gi, startVVsrg)
startVVsrg = nextStartVV
if gi.isPrecise() then
storeg;.opjrq-updat€gi.start, INVALID)
pending.inser{g:)
gt = s.next()
else/l Apply non-overlapping from pending at end time
forall IS inalllISsdo
if I(p.target intersectd S) then
applyNonOverlappingAtEndTimég, p, startVVsrg)
pending.removep)
ProcedureapplyOverlappingAtStrtTni(S, gi, startV'V)
if gi.isPrecise() AND Vo : IS.lpVVy > startV'V, then
/I If no gaps to this precise inval, update IpVV
Va: I1S.IpVVy =MAX (IS.lpV Vg, gi.starty)
Va : IS.currentVVy = MAX (IS.currentV Ve, gi.endq)
Procedure applyNonOverlappingAtEndTimég, p, startV'V)
if Vo : IpV' Vy > startV'V, then
Va : lpV Ve =MAX (IpV Vy, p.endV Vy,)
Va : currentVVy =MAX (currentV Vg, p.endV'Vy)

approach is that it can detect both write-write and read-
write conflicts. We chose to use the simpler last-writer-

wins and compensating transaction approach for two rea-
sons.

First, our more restrictive approach allows efficient in-
cremental application of interleaved streams of updates
because it does not require “roll back” of the current ran-
dom access state to process an arriving write: the deter-
mination of whether a conflict occurred and the decision
about the final state of the object can be made by com-
paring the write’sacceptStampndprevWritefields with
the local object'sacceptStamp@and prevWritefields. In
contrast, Bayou’s conflict detection and resolution code
logically run at the point in time when the write occurs,
so they must be able to read the state of the system at
that time. As a result, to apply a newly-arriving write,
the system first rolls back its state to the logical time of
the write; it then applies the write and reapplies all sub-
sequent writes. This cost is tenable in Bayou because
Bayou was designed for batch application of updates,
which amortizes the cost of rolling back and reapplying
updates across a batch of newly arrived updates.

Second, our simpler approach allows us to avoid the
need for a “commit protocol” that can establish a final
write order that differs from the natural order on accept
stamps. Bayou’s “in line” execution of powerful conflict
resolution code introduces the possibility of a “butterfly
effect” in which the introduction of a single, previously
unseen, low-timestamped write into a log can cause any
or all newer writes in the log to execute a different con-
flict detection or resolution code path and to therefore
write different values to different objects. In principle,
whenever a previously unseen old write is applied, the
resulting system state can look arbitrarily different from
the previous system state. Bayou limits this problem

causally—independent series. For example, consider tHyy using a primary commit protocol so that connected
case of two causal chains of writes to one location byrodes can establish an order on writes that causes “late-
the nodesy, 3, and~: (1) w0, wlB, w23, w3F and (2)  arriving” writes to be sorted after “on-time” writes. Con-
w0, wdy. The protocol guarantees that eventually anyversely, a last-writer-wins approach is less vulnerable to
precise node will agree that the final state of the write idate-arriving writes: either (a) despite the delay the late-
the result ofy’s write at time 4 and that there was a write- arriving write is logically the newest write to the object
write conflict thatw3/3 lost, and but different nodes may and the object is updated or (b) the late-arriving write is
see different subsets ofl 3, w23, w33, which seems ac- logically older than other writes that have been applied
ceptable in that neither causal chain regards eitiig# ~ and it has no effect other than being logged as a conflict.
or w2/ as important values for the final state of the sys- Neither of these considerations is fundamental to
tem. PRACTI, and these trade-offs would apply to existing
systems as well. One factor that may be more relevant to
Alternative: Per-write conflict detection and resolu- PRACTI is that the centralized commit protocol used in
tion code. The PRACTI mechanisms are also compat-Bayou may limit scalability under PRACTI because it re-
ible with Bayou’s more powerful strategy of associat-quires the primary node to see all invalidation messages;
ing application-specific conflict detection and resolutionthis issue does not limit Bayou because Bayou already
code with each writev and re-executing this code each requires all nodes to see all updates. An open question
time the set of writes preceding is changed by a log is whether there exists a suitalslealablecommit proto-
exchange operation. An advantage of this more flexibleol that can avoid the need for any node to see all of the
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invalidations.

A.3 Implementation: Checkpoint recovery

When a node boots, it first recovers the local store from
the checkpoint and the in-memory per-writer log from
the on-disk log. Then, the node simply issues a request to
its own network request interface asking the log to send a
stream of invalidations with a precise set comprising the
union of the node’s interest sets and startingLettentV/\/

The node then receives a causally consistent stream of all
of the updates it has in the log but has not yet applied to
its checkpoint, and it processes those requests normally,
which adds them to the log (where they are ignored as
redundant) and to the data store.

If a node receives a request for a stream of updates be-
ginning earlier than the start of the node’s log, the node’s
responds by sending its checkpoint of the requested in-
terest set followed by the normal stream of invalidations.
To apply a remote checkpoint to a node’s local state for
interest set/ S, the node first treats the checkpoint as
an imprecise invalidation that intersects all of its inter-
est sets and that starts at node’s cur@ntentVVand
that ends at max(the nodesirrentV\, the checkpoint’s
currentV\j and applies that inferred imprecise invalida-
tion to its log and interest set status. The node then
update’s the state of S by updating it's/S.jpV'V to
max( S.ipV'V, checkpointpV' V') and by applying each
invalidation stored in the checkpoint’s per-object state as
a precise invalidation to the local log and local state.
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