
PRACTI Replication

Mike Dahlin, Lei Gao, Amol Nayate, Arun Venkataramani
Praveen Yalagandula, Jiandan Zheng

University of Texas at Austin University of Massachusettes at Amherst

Draft – May 2005
See http://www.cs.utexas.edu/users/dahlin/papers.html for the current version.

Abstract
We present the first PRACTI (Partial Replication, Arbi-
trary Consistency, and Topology Independent) replica-
tion toolkit. PRACTI mechanisms can replicate or cache
any data on any node (PR), provide a broad range of
consistency and coherence guarantees (AC), and permit
any node to communicate with any other node at any
time (TI). Compared to existing mechanisms that force
a system designer to compromise a system’s replica-
tion, topology, or consistency policy, PRACTI yields two
significant advantages:flexibility and improved trade-
offs. PRACTI’s flexibility simplifies the design of repli-
cation systems by allowing a single framework to sub-
sume a broad range of existing approaches. At the same
time, PRACTI provides better trade-offs than the point-
solution policies embedded in existing mechanisms: for
workloads of interest, our PRACTI design dominates ex-
isting approaches by providing an order of magnitude
better bandwidth and storage efficiency than replicated
server systems (AC-TI), an order of magnitude better
synchronization delay compared to hierarchical systems
(PR-AC), and consistency guarantees not achievable by
per-object replication systems (PR-TI).

1 Introduction
Data replication is a building block for a broad range of
large-scale distributed systems such as mobile file sys-
tems, web service replication systems, enterprise file sys-
tems, or grid replication systems. Because there is a
fundamental trade-off between performance and consis-
tency [27] as well as between availability and consis-
tency [8, 32], systems make different trade-offs among
these factors by implementing different consistency poli-
cies, placement policies, and topology policies for differ-
ent environments. Informally,consistency policiessuch
as sequential [26] or causal [20] define which reads must
see which writes,placement policiessuch as demand-
caching, prefetching, push-caching, or replicate-all de-
fine which nodes store local copies of which data, and
topology policiessuch as client-server, hierarchy, or ad-
hoc define the paths along which communication flows.

This paper describes a set of mechanisms that for the
first time simultaneously provide all three PRACTI (Par-

tial Replication, Arbitrary Consistency, and Topology In-
dependence) properties.Partial replication means that
a system can place any subset of data on any node. In
contrast, some systems require a node to maintain copies
of all objects in all volumes they export [30, 44].Ar-
bitrary consistencymeans that the system provides flex-
ible semantic guarantees, including the ability to selec-
tively enforce bothconsistencyand coherenceguaran-
tees.1 In contrast, some systems can only enforce co-
herence guarantees but make no guarantees about con-
sistency [17, 31]. Topology independencemeans that
any node can communicate with any other node. In
contrast, many systems restrict communication to client-
server [19, 22, 29] or hierarchical [7, 42] patterns.

We base PRACTI on log exchange mechanisms that
support a range of consistency guarantees and topology
independence but that fundamentally assume full repli-
cation [30, 44]. We adapt these mechanisms to support
partial replication using two principles.

• First, in order to allow partial replication of data, we
separate the control path from the data pathby sep-
arating invalidation messages that identify what has
changed from body messages that encode the changes
to the contents of files.

• Second, in order to allow partial replication of update
metadata, we useexplicit conservative encodingvia
imprecise invalidations, which allow a single invalida-
tion to summarize a set of invalidations.

We have constructed and evaluated a prototype. Our
primary conclusion is that by disentangling mechanism
from policy and simultaneously supporting the three
PRACTI properties,PRACTI replication enables better
trade-offs for system designers than possible with exist-
ing mechanisms.For example, for some workloads in our
mobile storage and grid computing case studies, PRACTI
dominates existing approaches by providing more than

1Although the operating systems and distributed systems literature
often use the terms consistency and coherence interchangeably, the ar-
chitecture literature is more precise [18]: consistency semantics con-
strain the order that updates across multiple objects become observable
to readers. Coherence semantics constrain the order that updates to a
single object become observable but do not additionally constrain the
ordering of updates across different objects. We find this precision use-
ful and follow that terminology in this paper.

1

Draft – See http://www.cs.utexas.edu/users/dahlin/papers.html for the current version 2

an order of magnitude better bandwidth and storage effi-
ciency than replicated server systems (AC-TI), by provid-
ing more than an order of magnitude better synchroniza-
tion delay compared to hierarchical systems (PR-AC),
and by providing consistency guarantees not achievable
by per-object replication systems (PR-TI).

More broadly, by subsuming a large portion of the de-
sign space, the PRACTI toolkit can simplify the design
of replication systems. At present, because mechanisms
and policies are entangled, when a replication system is
built for a new environment, it must often be built from
scratch or must modify existing mechanisms to accom-
modate new policy trade-offs. In contrast, PRACTI can
be thought of as a “replication microkernel” that defines
a common substrate of core mechanisms over which a
broad range of systems can be constructed by selecting
appropriate policies.

This paper makes three contributions. First, it de-
scribes novel mechanisms that support efficient and scal-
able PRACTI replication. To our knowledge past systems
have provided at most two of the PRACTI properties.
Second, it provides a prototype replication toolkit based
on PRACTI that cleanly separates mechanism from pol-
icy and thereby allows nearly arbitrary replication, con-
sistency, and topology policies. Third, it demonstrates
that PRACTI replication provides two significant ad-
vantages over existing replication mechanisms:flexibil-
ity to simplify the design and deployment of replica-
tion systems andbetter trade-offsamong performance,
availability, and consistency than supported by existing
mechanism-defined point-solution policies.

The rest of this paper is organized as follows. Sec-
tion 2 describes the PRACTI mechanisms, and Section 3
details our implementation. Section 4 experimentally
evaluates the prototype. Finally, Section 5 surveys re-
lated work and Section 6 highlights our conclusions.

2 PRACTI design
This section provides an overview of the PRACTI mech-
anisms. It focuses on PRACTI’s basic mechanisms for
transmitting updates among nodes while supporting par-
tial replication, arbitrary consistency, and topology in-
dependence. Section 3 details how our prototype im-
plements these mechanisms and also discusses important
additional features such as our support for tunable consis-
tency, hooks for enforcing a minimum degree of replica-
tion, implementation of conflict detection and resolution,
and garbage collection of the logs.

2.1 Design overview
The backbone of the PRACTI protocol is a log-exchange
framework that is similar to that of Bayou [30]: nodes ex-
change portions of their logs in order to propagate writes

Inval Streams

Controller

Requests to

PRACTI Core

Mgmt.Inform

Inval Streams

Body Streams Body Streams

Log

(read(), write(), delete())
Local API

Requests from

remote controllersremote cores

Send

Apply

Interface
Inval

Body

Apply

Interface
Body

Local
Interface

Random
Access

State

Send
Inval

Control Interface

Fig. 1: High level PRACTI architecture for one node.

through the system. The use of log exchange supports ar-
bitrary communication patterns among nodes, and it pro-
vides a basis for providing a range of consistency guar-
antees [44]. Unfortunately, existing log exchange mech-
anisms fundamentally assume full replication in order to
maintain the invariant that each node’s log represents a
causally-consistent prefix of the system’s writes.

The PRACTI mechanisms therefore differ from exist-
ing protocols in two key ways. First, in order to allow
any node to efficiently receive updates about and store
any subset of data, PRACTI mechanismsseparate the
control path from the data pathby separating invalida-
tion and body messages. Second, in order to allow any
node to receive and store invalidations about any subset
of data, PRACTI usesexplicit conservative encodingvia
imprecise invalidations. The rest of this subsection first
provides an overview of PRACTI’s main data structures
and interfaces and then describes these two mechanisms.

Data structures and interfaces. Figure 1 provides a
high-level view of the PRACTI design. Each PRACTI
node has two main components: thecore and thecon-
troller. Thecore instantiates the basic PRACTImecha-
nismsby processing incoming messages and maintaining
a local view of the system’s state. Thecontroller em-
bodies a system’spolicies by initiating communication
among nodes; different PRACTI deployments will use
different controllers to implement different replication,
topology, and consistency policies. This paper focuses
on the core; Section 3 includes an overview of the con-
troller, and the Evaluation section describes several ex-
ample controllers.

The two main data structures in the core are theran-
dom access stateand thelog. The random access state
(RAS) stores the current state of objects indexed by ob-
ject ID.2 A node uses its RAS for local reads and for
sending data to other nodes. Thelog maintains a causally
ordered list of updates that have been applied to the RAS.

2For simplicity, we describe the protocol in terms of full-object
writes. In practice, we track RAS state, invalidations, and bodies on
arbitrary byte ranges.

Draft – See http://www.cs.utexas.edu/users/dahlin/papers.html for the current version 3

A node uses its log as a replay log for reliability and also
for transmitting updates to other nodes. Additionally, as
indicated in the figure and discussed in more detail be-
low, a node maintains four interfaces—local, applyInval,
applyBody, andcontrol—for processing incoming mes-
sages. Finally, a node’ssendInvalandsendBodymodules
assemble and transmit outgoing messages.

Separate invalidations from bodies. The separation
of invalidations from bodies allows partial replication
of data: a controller can choose any policy for distrib-
uting bodies to nodes. To accomplish this separation,
the PRACTI architecture splitswrite messagesinto two
parts: (1) invalidation messagesidentify what objects
were written and when the writes occurred and (2)body
messagescontain the bodies of the writes. Figure 2 in
Section 3 defines the message types in more detail.

PRACTI distributes invalidations using a straightfor-
ward variation of Bayou’s log exchange protocol that
operates on invalidations rather than complete writes.
When a node receives a new invalidation message, it ap-
plies the message to its log, and when it sends its log to
another node, this log contains invalidations rather than
complete writes. When a node receives an invalidation,
then if the invalidation’s logical timestamp exceeds the
logical time for the object in the RAS, the node updates
the object’s RAS state by marking itINVALID and up-
dating its logical timestamp. PRACTI thus retains three
key invariants on invalidations [30]. First theprefix prop-
erty requires that a node’s state always reflects a prefix of
the sequence of invalidations by each node in the system.
Second, each node’s local state always reflectscausally
consistent[20] view of all invalidations that have oc-
curred. This property follows from the prefix property
and from the use of Lamport clocks [25] to ensure that
once a node has observed the invalidation for writew, all
of its subsequent writes’ logical timestamps will exceed
w’s. Third, the system ensureseventual consistency: all
connected nodes eventually agree on the same total order
of all invalidations. Given this basis, we can enforce a
broad range of consistency semantics [44].

Although invalidations must be sent and applied in
causal, logical timestamp order, PRACTI nodes can dis-
tribute bodies according to arbitrary policies, in arbitrary
order, across arbitrary topologies. A PRACTI node must
therefore synchronize arriving bodies with the invalida-
tion streams before applying bodies to its local state.
PRACTI maintains the invariant that update bodies are
not applied to the RAS until after the corresponding in-
validation message. To ensure this invariant, the core’s
applyBody interface buffers updates until they may be
safely applied. When a node finally can apply a body
message, if the logical time for the object in the RAS has
not advanced past the body’s logical time, the RAS marks

the objectVALID and stores the body.
The separation of bodies from invalidations affects lo-

cal read requests. The system blocks a local read request
until the requested object’s status isVALID. Of course,
to ensure liveness, when anINVALID object is read, an
implementation should arrange for someone to send the
body. A controller can implement any policy for doing
this from a static hierarchy (i.e., ask your parent or a cen-
tral server for the missing data) to a separate, centralized
directory [13], to a DHT-based directory [36], to a hint-
based search strategy, to a push-all strategy [30] (i.e.,
“just wait and the data will come.”) In addition to dis-
tributing bodies in response to demand reads, controllers
can also prefetch bodies, pre-push bodies, or pre-position
bodies according to a global placement policy.

Imprecise invalidations and interest sets. Where sep-
aration of invalidations from bodies supports partial
replication of data, imprecise invalidations allow partial
replication of metadata: nodes receive precise invalida-
tions for objects they plan to access but receive only sum-
maries of invalidations for other objects. Although each
invalidation is small, imprecise invalidations are crucial
for large systems: our data in Sec. 4 show that imprecise
invalidations can reduce replication costs by an order of
magnitude compared to requiring every node to see every
invalidation of every object.

An imprecise invalidationis a conservative summary
of a group of ordinary invalidations, which we refer to as
precise invalidations.We use the termgeneral invalida-
tion to refer to either a precise or imprecise invalidation.
An imprecise invalidation includes a set oftargetsand
a range of logical times defined by somestart andend
times, and it denotes that “One or more objects intar-
getswas updated betweenstart andend.” An imprecise
invalidation mustcoverall summarized invalidations—
any invalidation summarized by an imprecise invalida-
tion i must have its target ID included ini.targets and its
logical time included betweeni.start andi.end. Notice
that a general invalidation’s start and end times are par-
tial version vectors with as few as one element (to cover
invalidations by one node) and as many asn elements
(to cover invalidations by all nodes in the system). Also
note that an imprecise invalidationi can be conservative:
i.targets can include objects that were not invalidated
betweeni.start and i.end. This rule supports concise
encodings of large numbers of files (e.g., a list of subdi-
rectories or a Bloom filter of object IDs).

When a nodeα receives an imprecise invalidationi, α
appliesi to both its log and its RAS. For the log,i serves
as a “placeholder” so that ifα sends its log to another
node,i indicates which precise invalidations are omitted.
Logs thus still maintain the prefix property, causal con-
sistency, and eventual consistency invariants. The benefit

Draft – See http://www.cs.utexas.edu/users/dahlin/papers.html for the current version 4

of imprecision is efficiency: when a controller tells node
α to send invalidations to nodeβ, the request indicates
subsets of the object ID space for whichα should sum-
marize invalidations using imprecise invalidations before
sending them.

Imprecise invalidationi must also update the RAS.
A naive strategy would mark every object covered by
i.target asINVALID to logical timei.end. Such an ap-
proach has two problems. The first is performance: the
cost to process an imprecise invalidation would be pro-
portional to its target set size. The second problem
is liveness: each invalidated objecto would remainIN-
VALID until the node receives a body foro with a logi-
cal time at leasti.end. Note that typically, only one ob-
ject in i.targets actually was written as late asi.end by
the summarized invalidations; for any other objectp in
i.target, there may exist no write in the system that can
makep VALID.

To address these performance and liveness problems,
nodes use a more sophisticated approach: nodes allow
portions of the RAS to include stale state after an im-
precise invalidation, but they ensure consistency by pre-
venting observation of stale RAS entries. To do this, a
node partitions its RAS into one or moreinterest sets.
An interest setis a portion of the object ID space that
is eitherPRECISEor IMPRECISE. An interest setIS is
PRECISEif and only if the RAS reflects all precise in-
validations for all objects inIS up to the node’s current
logical time. For consistency, a local read of an object
must block until the enclosing interest set isPRECISE;
when a read blocks, the controller must initiate sufficient
communication in order to make the interest setPRE-
CISEand to allow the read to complete. We detail the
algorithm for tracking interest set status in Section 3.2.

Note that enforcing stronger consistency than required
can hurt availability [8, 43]. Therefore, as an optimiza-
tion, PRACTI provides an additional local interface to
issue animprecise readthat skips thePRECISEcheck
just described and returns as soon as the requested object
is VALID.

2.2 General framework

PRACTI mechanisms represent a general framework for
implementing a broad range of replication systems that
specify their own policies for distributing bodies, han-
dling read misses, sending invalidations, and enforcing
consistency. For example, existing 2-of-3 protocols (AC-
TI, PR-AC, and PR-TI) can be viewed as special cases or
projections of the PRACTI protocol with certain features
“optimized out” of the mechanisms by embedding re-
strictive policy assumptions. At the same time, the more
general PRACTI mechanisms allow new trade-offs that
existing protocols can not accommodate.

AC-TI. Server-replication systems such as Bayou [30],
TACT [44], and lazy replication [24] allow arbitrary
communication between nodes and can provide flexible
consistency, but they fully replicate all objects in a vol-
ume and send all updates to all nodes that serve the vol-
ume. In the PRACTI framework, these AC-TI protocols
can be viewed as using a replicate-all strategy for both
precise invalidations and bodies, never sending or receiv-
ing imprecise invalidations, and not implementing any
mechanism to handle read misses because objects are al-
waysPRECISEandVALID.

PR-AC. Client-server and hierarchical systems such as
AFS [19], Sprite [29], and Coda [22] allow nodes to
cache or prefetch arbitrary subsets of data and in prin-
ciple could support a range of consistency policies [41]
(though, in practice, such systems typically implement
a specific consistency policy). But these protocols fun-
damentally assume a topology policy that restricts com-
munications to hierarchical paths. Even when client-
server systems permit limited client-client communica-
tion for cooperative caching [12] serialization of con-
trol messages at the server is vital for reasoning about
consistency [9]. In the PRACTI framework, these PR-
AC protocols can be viewed as using separate invalida-
tion and body messages, with invalidations sent by par-
ents to children and bodies fetched by children from par-
ents. Their callback protocols can be viewed as special-
ized instances of PRACTI’s sendInval module that ac-
tively track which objects a child caches and that send
precise invalidations only for those objects. Note that in
PRACTI, the module would also send imprecise inval-
idations covering any omitted precise invalidations, but
the hierarchical topology allows PR-AC protocols to omit
these implicit imprecise invalidations. Interestingly, re-
covery when a server loses callback state [4] or when
a topology changes [42] falls back on what are essen-
tially explicit imprecise invalidations: the client receives
a message (i.e., an imprecise invalidation covering all ob-
jects) indicating that it should treat all of its consistency
state as suspect (i.e.,IMPRECISE) and the client then
revalidates all objects with its server (i.e., make the inter-
est set precise).

PR-TI. Object replication systems such as Ficus [17]
and Pangaea [31] maintain synchronization information
separately for each object and support arbitrary topol-
ogy policies and arbitrary placement of objects on nodes.
However, although these systems can provide someco-
herenceguarantees on the order of reads and writes when
an individual object is considered, they provide limited
consistencyguarantees regarding the ordering of reads
and writes across objects. Furthermore, these systems
cleanly separate invalidations and body messages: for
any given objecto and nodeη they either propagateo’s

Draft – See http://www.cs.utexas.edu/users/dahlin/papers.html for the current version 5

writeTarget objId, offset, length
acceptStamp logicalClock, nodeId

preciseInvalidation writeTarget, acceptStamp, prevAccept, realTime
boundInvalidation writeTarget, acceptStamp, prevAccept, realTime, body

impreciseInvalidation targetSet, start[], end[], real[]
invalStream startVV [generalInval]*

bodyMsg writeTarget, acceptStamp, body

Fig. 2: Basic data types and messages.

update bodies toη or propagate no information at all
abouto’s updates toη. In the PRACTI framework, these
PR-TI protocols can be viewed as using a replication pol-
icy that sends invalidations and bodies for a given object
to the same policy-specified subset of nodes and also as
omitting all imprecise invalidations and thereby giving
up the ability to consistently order writes across different
objects.

PRACTI. In comparing PRACTI to these protocols, a
key distinction is how consistent ordering of writes is
achieved. Server-replication (AC-TI) and client-server
(PR-AC) systems order invalidations across objects by
enforcing aninclusion property—any node that receives
and then transmits updates must see all updates for all ob-
jects about which it may speak. Server-replication mech-
anisms enforce this property by replicating all updates
to all nodes, and client-server systems meet this obliga-
tion by assuming hierarchical inclusion. Because these
policy assumptions are deeply embedded in these mech-
anisms it is difficult to, for example, “tweak” Bayou to
support partial replication or to “tweak” Coda to support
arbitrary topologies. Conversely, PRACTI introduces ex-
plicit imprecise invalidations to allow ordering of all up-
dates without assuming full replication or hierarchical
communication. Alternatively, object replication systems
(PR-TI) dispense with this requirement by not providing
cross-object ordering guarantees.

In addition to subsuming existing mechanisms,
PRACTI exposes new regions of the design space and
potentially offers better trade-offs than existing protocol
families. For example, a designer who wants consistency
is no longer forced to choose between using a desired
topology but with full replication on one hand versus
using a desired replication strategy but with restricted
topology on the other. Section 4 examines several ex-
amples in detail and demonstrate that PRACTI can gain
significant advantages compared to the alternatives.

3 Implementation
We have constructed a prototype of the PRACTI system
written in Java and using BerkeleyDB [34] for per-node
local storage. The prototype is fully functional but not
performance tuned. All features described in this paper
are implemented including local read/write/delete, flexi-
ble consistency, incremental log exchange, bound invali-
dations, remote read and prefetch, garbage collection of
the log, checkpoint transfer between nodes, and crash re-

covery. For simplicity, we continue to describe the pro-
tocol in terms of whole-object reads and writes, but our
prototype actually tracks object state on the granularity
of arbitrary byte-ranges.

Section 3.1 first provides an overview of a number of
basic features that are implemented using standard tech-
niques from the literature as well as two novel but gen-
erally applicable enhancements on existing techniques:
incremental log propagation and self-tuning body prop-
agation. Then, Sections 3.2 and 3.3 dive into low-level
details of the Core and Controller implementation.

3.1 Basic features

Because the system is built over a solid and well-explored
framework of causally consistent log exchange, it is
straightforward to include most of the following features
by extending techniques described in the literature. Due
to space constraints, we will only briefly outline these as-
pects of the implementation here and defer details to an
extended technical report [11].

Incremental log propagation. The PRACTI prototype
implements a novel incremental variation on existing
batch log exchange protocols. In particular, in the batch
log exchange used in Bayou, a node first receives a batch
of updates comprising a start timestartV V and a series
of writes, it then rolls back its RAS to beforestartV V
using an undo log, and finally it rolls forward, merg-
ing the newly received batch of writes with its existing
redo log and applying updates to the RAS. In contrast,
PRACTI’s incremental log exchange protocol, which we
detail in the next subsection, applies each incoming write
to the current RAS state without requiring roll-back and
roll-forward of existing writes.

Note that this variation is orthogonal to the PRACTI
approach: a full replication system such as Bayou could
be modified to use our incremental log propagation
mechanism, and PRACTI could be modified to use batch
log exchange with roll-back and roll-forward. The ad-
vantages of the incremental approach are efficiency (each
write is only applied to the RAS once) and concurrency
(a node can process information from multiple contin-
uous streams.) The advantage of the batch approach is
flexible conflict detection: Bayou writes contain adepen-
dencycheckprocedure that can read any object to deter-
mine if a conflict has occurred [35]; this works in a batch
system because rollback takes all of the system’s state
to a specified moment in time at which these checks can
be re-executed. For our incremental algorithm, we sim-
ply detect write/write conflicts when a write’sprevAccept
stamp (set by the original writer to equal the accept stamp
of the overwritten value) differs from the accept stamp
the invalidation overwrites in the RAS.

Draft – See http://www.cs.utexas.edu/users/dahlin/papers.html for the current version 6

Self-tuning body propagation. In addition to support-
ing demand-fetch of particular objects, our prototype
provides a novel self-tuning prefetching mechanism. A
nodeα subscribes to updates from a nodeβ by sending
a list L of directories of interest along with astartV V
version vector.β will then sendα any bodies it sees that
are inL and that are newer thanstartV V . To do this,
β maintains a priority queue of pending sends: when a
new eligible body arrives,β deletes any pending sends of
older versions of the same object and then inserts a ref-
erence to the updated object. This priority queue drains
to α via a low-priority network connection that ensures
that prefetch traffic does not consume network resources
that regular TCP connections could use [37]. When a
lot of “spare bandwidth” is available, the queue drains
quickly and nearly all bodies are sent as soon as they are
inserted. But, when little “spare bandwidth” is available,
the buffer sends only high priority updates and absorbs
repeated writes to the same object.

Flexible consistency. We provide flexible consistency
on a per-read/per-write basis by providing several read
and write interfaces. We provide the TACT flexible con-
sistency interface to bound order error and temporal er-
ror [44]; we have not yet implemented TACT numerical
error, but we see no fundamental barriers. Additionally,
we include the option of a two phase write that first dis-
tributes invalidations and later distributes bodies [24, 44];
using this optional interface, one can ensure that once a
write returns, no subsequent read can return the data’s
old value and that once a read returns the new value no
read will return the old value. Additionally, as described
above, animprecise readskips consistency checks and
provides causal coherence (ordering of updates for a sin-
gle item) rather than causal consistency.

Write commitment. As in Bayou [30], PRACTI pro-
vides eventual consistency: for any writew, eventually
all nodes will agree on a total order of all writes pre-
cedingw. A node considers a writew committedwhen
the node knowsw’s final position in the global total or-
der. For simplicity, we use Golding’s algorithm [15]:
each nodeη maintains acurrentV V version vector, and
each entrycurrentV Vα stores the highest accept stamp
of any invalidation byα thatη has processed. Then, any
write whose accept stamp is less than the lowest entry in
currentV V is committed. Supporting other write com-
mitment protocols such as primary commit [30] or vot-
ing [21] would be straightforward, but we have not im-
plemented these variations yet.

Bound writes. Separating invalidations from updates
enables partial replication but also raises the issue of re-
liability: in Bayou, all nodes have copies of all data, but
a PRACTI system must enforce an explicit policy deci-
sion about the minimum acceptable level of replication so

that the loss of a node or a local cache replacement deci-
sion does not render some data unavailable or the storage
system unreliable. We provide a simple, low-level mech-
anism that supports a broad range of high-level policies
from maintaining a fixed number of “gold” copies of each
object [31] to propagating all data to a well-provisioned
central server [19] or replicated server “core” [22, 23] to
replicating everything to everyone [30]. When an appli-
cation issues a bound write, it creates abound invalida-
tion that includes the body of the write. Bound invalida-
tions propagate through the system using log exchange
and controllers manage this propagation to meet replica-
tion requirements. A controller can later issue messages
to unbind a write, after which the invalidation can propa-
gate without the body.

Crash recovery. The RAS stores per-object state and
per-interest set state and acts as a checkpoint. The log
acts as a replay log to recover events not yet reflected in
the checkpoint.

3.2 Core details
The PRACTI core draws heavily from existing log-
exchange literature [30, 44] with two key changes: the
separation of invalidations and update bodies and the use
of imprecise invalidations.

Separating invalidations and bodies is straightforward.
As Section 2.1 describes, the system transmits causally-
consistent streams of invalidations using a streaming ver-
sion of the Bayou protocol, maintains aVALID/INVALID
flag for each stored object, transmits prefetched and de-
mand fetched bodies in arbitrary orders, and delays ap-
plying bodies to the RAS until the corresponding invali-
dation has been applied.

Imprecise invalidations, however, raise four additional
issues that we address in the rest of this subsection: We
first define imprecise invalidations and describe how to
form them. We next describe how nodes track which
interest sets arePRECISEto enforce consistency. We
then describe how systems manage their local logs using
per-writer logs, intersection, andgap filling to properly
merge data received on different invalidation streams. Fi-
nally, we describe how imprecise invalidations allow in-
cremental checkpoint transfer among nodes.

Forming imprecise invalidations. PRACTI forms an
imprecise invalidationI by combining generalized in-
validationsA and B. I hasstart and end arrays with
entries for every nodeη in either A or B’s start, and
I.startη = min(A.startη, B.startη), and I.endη =
max(A.endη, B.endη). Finally, I.target encompasses
all objects encompassed byA andB’s targets.

When a controller asks nodeα to send a stream
of invalidations to nodeβ, the controller specifies two

Draft – See http://www.cs.utexas.edu/users/dahlin/papers.html for the current version 7

parameters that each filter the transmitted informa-
tion: startV V provides a filter on logical time, and
preciseF ilter provides a filter on the ID space.α replies
with a causally consistent stream of all invalidations
it knows about that logically occurred afterstartV V .
Invalidations whose target intersectspreciseF ilter are
sent as is (typically they are precise, but some may be
imprecise), butα combines other invalidations into im-
precise summaries as just described. This process is in-
cremental and continuous—as new invalidations arrive at
α, α sends them on toβ once all causally prior invalida-
tions have been sent.

Interest set status. As Section 2.1 indicates, each node
groups its objects intointerest setsand applies imprecise
invalidations to interest sets rather than individual objects
to (a) improve performance and (b) ensure liveness. To
accommodate different workloads across nodes, our pro-
totype allows each node to independently group objects
into interest sets and to dynamically split and join inter-
est sets in response to workload changes. To ensure con-
sistency, a node must mark an interest setIMPRECISE
when a new imprecise invalidation intersects with it. To
ensure liveness, when a node has later seen sufficient pre-
cise invalidations, it must mark interest set as PRECISE.

To explain how interest set status is tracked, we now
detail a node’s algorithm for processing an incoming
stream of invalidations.3 As indicated in Figure 2, each
incoming invalidation stream consists of a logical start
time startV V followed by a series of general invalida-
tionsgi1, gi2, . . . such that any invalidation whose start
time logically occurs afterstartV V and on whichgii
causally depends appears beforegii.

At the core of the algorithm is a simple idea: an in-
terest set isPRECISEif it has missed no precise invali-
dations. Three variables are therefore central to process-
ing an invalidation stream: (1) Theglobal currentV V
version vector holds the highest logical time observed
by the system across all invalidations processed from
all streams. (2) Theper-interest-set last precise ver-
sion vector(IS.lpV V) indicates the highest logical time
for which interest setIS is PRECISE. In particular,
IS.lpV V holds the highest logical time such that all ob-
jects in interest setIS reflect all writes up toIS.lpV V .
An interest setIS is regarded asPRECISEif and only
if IS.lpV V = currentV V . Otherwise, the interest set
may have missed one or more precise invalidations, and
we regard the interest set asIMPRECISE. (3) Theper-
streamstream.prevV V variable always holds the logi-
cal time justbeforethe next invalidation in the stream is
applied. Each invalidationgi is processed in the context
of the logical time at which it was applied to determine if

3The extended technical report [11] includes detailed pseudo-code
for this invalidation stream processing algorithm.

gi can advanceIS.lpV V . stream.prevV V is initialized
to the stream’sstartV V and advanced to includegi.end
as eachgi is processed.

For each general invalidationgi, the log, the per-
object state, and the interest set status must be up-
dated. Updating the per-object state was described in
Section 2.1, and we will discuss updating the log in a
moment. The remaining issue is updating the per-interest
setPRECISEstate (i.e., updatingcurrentV V and one or
morelpV V ’s). This state is updated in two phases.

First, gi’s presence in the causal invalidation stream
means that any interest set that wasPRECISEbefore
gi is still PRECISEto gi.start. So, if interest setIS
wasPRECISEat timestream.prevV V then we advance
IS.lpV V . We advanceIS.lpV V differently depending
on whethergi is a precise or imprecise invalidation. If
gi is precise, then there have been no imprecise invali-
dations betweenstream.prevV V andgi.start, and we
advanceIS.lpV V to includegi.end (note: gi.start =
gi.end if gi is precise.) Conversely, ifgi is imprecise, we
can only advanceIS.lpV V to just beforegi.start (i.e.,
∀α : IS.lpV Vα = max(IS.lpV Vα, gi.startα − 1)). Fi-
nally, because the system now reflects information ingi,
we always advancecurrentV V to include theend time
of gi.

Notice that an imprecise invalidationgi will always
advancecurrentV V to includegi’s endtime but can at
most advanceIS.startV V to just beforegi’s start time.
It is this difference that allows imprecise invalidations
to make interest setsIMPRECISE. If we stopped here,
an imprecise invalidation would make both interest sets
it overlaps and interest sets it does not overlapIMPRE-
CISE. The algorithm addresses this issue by buffering
each imprecise invalidation after it is first applied at its
start time and applying a buffered invalidationbi again
oncestream.prevV V includesbi’s end time (i.e., once
all gis whose start times preceedbi’s end time have been
processed.) Buffered invalidationbi advancesIS.lpV V
to includebi.end for any interest setIS that (a)bi.target
doesnot intersect and that (b) isPRECISEas of logi-
cal timestream.prevV V . Notice that by waiting until
bi’s end time before advancing “nonoverlapping” invali-
dations to the end time, we avoid erroneously advancing
IS.lpV V for an interest set that becomesIMPRECISE
betweenbi.start andbi.end.

Finally notice that the algorithm above ensures that
if an interest setIS becomesIMPRECISE, it can be
made precise by receiving a stream that contains all pre-
cise invalidations that occurred betweenIS.lpV V and
currentV V and that targetsIS.

Log update. Imprecise invalidations complicate log
updates. For example, a nodeη may receive different
subsets of information from different peersα andβ. η

Draft – See http://www.cs.utexas.edu/users/dahlin/papers.html for the current version 8

γ

γ
gi: <1 5 (A,B)>γγ

gi: <1 1 A>
gi: <1 5 (A,B)>
gi: <4 8 (B,C)>

γ γ
γγ

γ γ

startVV[]: 0γα

β IMPRECISEC.lpVV[] = 5γC.lpVV[] = 5γ
PRECISED.lpVV[] = 8γD.lpVV[] = 8γ

IMPRECISEγA.lpVV[] = 8γ A.lpVV[] = 1

η δ
IMPRECISEB.lpVV[] = 3γB.lpVV[] = 3γ

startVV[]: 0γ
gi: <1 1 A>
gi: <4 8 (B,C)>

γ γ
γ γ

curVV[] = 8curVV[] = 8γ

startVV[]: 0

(a) Naive log exchange.

γ

γ
gi: <1 5 (A,B)>γγ

gi: <1 1 A>
gi: <4 5 B>
gi: <6 8 (B,C)>

γ γ
γγ

γ γ

startVV[]: 0γα

β

η δ
A.lpVV[] = 8 PRECISEA.lpVV[] = 8γ γ

IMPRECISEC.lpVV[] = 5γ C.lpVV[] = 5γ
PRECISED.lpVV[] = 8γ D.lpVV[] = 8γ

IMPRECISEB.lpVV[] = 3γ
startVV[]: 0γ
gi: <1 1 A>
gi: <4 8 (B,C)>

γ γ
γ γ

B.lpVV[] = 3γ

curVV[] = 8curVV[] = 8γ

startVV[]: 0

(b) Log exchange with gap-filling and intersection.

Fig. 3: Example log exchange when nodeη first receives a
log from α, then receives a log fromβ, and then sends the
combined log toδ. Generalized invalidations have three fields:
< startendtarget >. Note that all writes were issued by node
γ and, for clarity, we show onlyγ’s component for all version
vectors.

must ensure that imprecise invalidations received fromα
do not “mask” precise invalidations received fromβ and
vice versa. Notice that the algorithm just described up-
dates a node’s local state by interpreting eachgi relative
to a per-streamstream.prevV V , which allows the al-
gorithm to infer that there are no missing invalidations
betweenstream.prevV V andgi. But, if η were sim-
ply to store eachgi in its log, some of this valuable “no
missing invalidations” information could be lost. Then,
as Figure 3-(a) illustrates, ifη were to send its log to some
other nodeδ, then even ifδ receives the samegis asη, δ
could end upIMPRECISEwhereη is PRECISE(e.g., for
objectsA).

In order to ensure that a node can transmit all informa-
tion received including both the generalized invalidations
and the information implicit in the incoming invalidation
stream, we augment our logs in three ways.

First, each node maintains separateper-writer logs:
when a node insertsgi into its log, it first decomposes
gi into per-writer general invalidations and then inserts
the per-writer pieces into separate logs. Decomposinggi
into per-writer general invalidationsgiα is simple: for
each serverα in gi.start, generategiα with start =
gi.startα, end = gi.endα, andtarget = gi.target.

Second, each per-writer log usesgap filling to explic-
itly encode the knowledge that each incoming stream is
causally consistent and is therefore FIFO consistent for
each writer. When a node insertsgiα into its per-writer
log for α, if giα is newer than the newest element in the
log, it fills any gap betweengiα.start and the existing
element by inserting a new gap-filling invalidation with a
start stamp one larger than the highest existing end stamp,
an end stamp one smaller thangiα.start, and an empty
target.

Third, each per-writer log usesintersectionto com-

lpVV=100,0
[id,accept]*

gi = <start=0,0 end=100,0 target=*>
IS= /A/*
lpVV=100,0
[id,accept]*

gi = <start=0,0 end=100,0 target=*>
IS= /A/*
lpVV=100,0
[id,accept]*

β
omitVV 0,0currentVV 0,0

omitVV 100,0currentVV 100,0
/B/*

lpVV 0,0
[id, accept]*

/A/* /C/*
lpVV 0,0
[id, accept]*

lpVV 100,0
[id, accept]*

omitVV 100,0currentVV 100,0
/C/*

[id, accept]*
lpVV 0,0

/A/*
lpVV 100,0
[id, accept]*

/B/*
lpVV 100,0

omitVV 100,0

[id, accept]*

omitVV 100,0currentVV 100,0

α

/A/*
lpVV 100,0
[id, accept]*

/B/*
lpVV 100,0
[id, accept]*

/C/*
lpVV 100,0
[id, accept]*

= Precise Interest Set

Key

= Incremental Checkpoint

= Imprecise Interest Set

/A/*
lpVV 100,0
[id, accept]*

/C/*/B/*
lpVV 100,0
[id, accept]*

lpVV 100,0
[id, accept]*

/A/*
lpVV 0,0
[id, accept]*

/C/*/B/*
currentVV 100,0

lpVV 0,0
[id, accept]* [id, accept]*

lpVV 0,0

gi = <start=0,0 end=100,0 target=*>
IS= /A/*

Fig. 4: Incremental checkpoints fromα to β.

bine information received across multiple streams. In
particular, we maintain the invariant that there is at most
one invalidation that covers any moment in time in a per-
writer log. We intersect two general invalidationsa andb
by replacing them with up to three general invalidations:
the first covers the time from the earlier start to the later
start and targets the objects targeted by the earlier start;
the second covers the time from the later start to the ear-
lier end and covers targets represented by the intersection
of a andb’s targets; and the third covers the time from the
earlier end to the later end and covers the targets of the
later end.

As Figure 3-(b) illustrates, when a node sends a
stream of invalidations to another node, it discards gap-
filling invalidations and it combines per-writer invalida-
tions into multi-writer invalidations.

Incremental checkpoint transfer. Imprecise invalida-
tions yield an unexpected benefit: incremental check-
point transfer.

As in Bayou, PRACTI nodes can garbage collect any
committed prefix of their logs [30]. Under Bayou, if a
nodeα garbage collects log entries older thanα.omitV V
and another nodeβ requests a log exchange beginning
beforeα.omitV V , thenα must perform a full check-
point transfer of its state for all objects; this transfer
bringsβ’s state up toα.currentV V .

Rather than transferring information about all ob-
jects, PRACTI incremental checkpoints can include log-
ical timestamp information for individual interest sets.
As Figure 4 illustrates, each incremental checkpoint
includes an imprecise invalidation that covers all ob-
jects from the receiver’scurrentV V up to the sender’s
currentV V and an interest set tranfer that includes the
sender’slpV V and per-object logical timestamps for
some interest setIS. The receiver’scurrentV V and
IS.lpV V are thus brought up to include the sender’s
currentV V andIS.lpV V .

Overall, this approach makes checkpoint transfer
a much smoother process under PRACTI than under
Bayou: the receiver can receive an incremental check-
point for a small portion of its ID space and then ei-
ther background fetch checkpoints of other interest sets

Draft – See http://www.cs.utexas.edu/users/dahlin/papers.html for the current version 9

or fault them in “on demand” as Figure 4 illustrates.

3.3 Controller
Our PRACTI techniques cleanly separate mechanism
from policy in order to support a broader range of replica-
tion, topology, and consistency policies than made avail-
able by current techniques. Our implementation there-
fore seeks to serve as a “replication microkernel” that
provides basic low level mechanisms over which higher-
level services can be built. As Figure 1 illustrates, the
PRACTI prototype achieves this goal by splitting the de-
sign into acoreand acontroller.

The PRACTI core’s mechanisms enforce their safety
properties regardless of what incoming messages they
see. Our cores use an asynchronous style of communi-
cation in which incoming messages or streams are self-
describing—the rules for processing each incoming mes-
sage are completely defined, and interpreting a message
does not require knowledge of what request triggered its
transmission. Any machine can therefore send any legal
protocol message to any other machine at any time.

The controller implements policies that focus on live-
ness (including performance and availability.) The con-
troller’s basic job is to ensure that the right cores send
useful data at the right times in order to do such things
as satisfy a read miss, prefetch data to improve perfor-
mance, or provision a node’s local storage for discon-
nected operation. Controllers accomplish this by sending
requests to trigger communication between cores.

The controller is defined by its interface. Within
this interface, different implementations provide differ-
ent policies. Controllers use three sets of interfaces to ac-
complish their work: a core calls a controller’sinform in-
terface to inform the controller of important local events
like message arrival or read miss, a controller calls a re-
mote core’sremote requestinterface to trigger sends of
invalidation streams or bodies, and a controller calls its
core’smanagementinterface for maintenance functions
like garbage collection and interest set split/join. Addi-
tionally, a set of controllers implementing a specific dis-
tributed policy may communicate with one another using
policy-specific interfaces. We provide several concrete
example controllers in Section 4 and describe the inter-
face in more detail in the extended report [11].

4 Evaluation
In this section we evaluate the properties of our PRACTI
prototype. The flexibility provided by the PRACTI
mechanisms provides two significant advantages over
past systems. First, by disentangling mechanism from
policy, PRACTI represents a single flexible system that
can match systems that have been optimized for specific
topology, replication, or consistency environments. Sec-
ond, by providing a general substrate, PRACTI enables

 10000

 100000

 1e+06

 1e+07

 0.1 1 10 100

B
yt

es
 T

ra
ns

fe
rr

ed

Files of Interest (%)

Full Replication

Separate Invalidations/Data

Imprecise Invalidations

Fig. 5: Impact of locality on replication cost.

better trade-offs than are available to any existing system
for some important environments.

To provide a framework for exploring these issues, we
first focus on partial replication in 4.1. We then examine
topology independence in 4.2. Finally, we examine the
costs and benefits of flexible consistency in 4.3.

4.1 Partial replication
In this section, we focus on partial replication. We find
that PRACTI’s support for partial replication dramati-
cally improves its performance compared to the full repli-
cation protocols from which it descends for three rea-
sons:
1. Locality of Reference:partial replication of bodies and

invalidations caneachreduce storage and bandwidth
costs by an order of magnitude for nodes that care
about only a subset of the system’s data.

2. Bytes Die Young:partial replication of bodies can
significantly reduce bandwidth costs when “bytes die
young” [5].

3. Self-tuning Replication:self-tuning replication mini-
mizes response time for a given bandwidth budget.

Locality of reference. Different devices in a distrib-
uted system often access different subsets of the sys-
tem’s data because (a) different users use different de-
vices (e.g., in a corporation, user A’s laptop may access
different files than user B’s laptop) and (b) different de-
vices may have capacity or functionality constraints that
influence the data that they access (e.g., a palmtop de-
vice may be useful for storing phone numbers and text
notes but it may be less well suited for browsing a spread-
sheet or editing a home video.) In such environments,
some nodes may access 10%, 1%, or less of the sys-
tem’s data, and partial replication may yield significant
improvements in both bandwidth to distribute updates
and space to store data.

Figure 5 examines the impact of locality on replica-
tion cost for three systems: a full replication system sim-
ilar to Bayou, a partial-body replication system that sends
all precise invalidations to all nodes but that only sends
some bodies to a node, and a partial-replication system
that sends some bodies and some precise invalidations to

Draft – See http://www.cs.utexas.edu/users/dahlin/papers.html for the current version 10

 100000

 1e+06

 1e+07

 1 10 100

B
yt

es
 T

ra
ns

fe
rr

ed

Write/Read Ratio

Full Replication

PRACTI

Fig. 6: Bandwidth cost of distributing updates as the number of
writes to a file between reads varies.

a node but that summarizes other invalidations using im-
precise invalidations. In this benchmark, we overwrite a
collection of 1000 files of 10KB each. A node subscribes
to invalidations and updates for the subset of the files that
are “of interest” to that node. The x axis shows the frac-
tion of updates that belong to a node’s subset, and the y
axis shows the total bandwidth required to transmit these
updates to the node as measured on the prototype.

This experiment shows that partial replication of both
bodies and invalidations is important when devices ex-
hibit locality of interest—each of these factors can yield
order of magnitude improvements. When a node sub-
scribes to between 10% and 100% of data, partial repli-
cation of bodies allows the bandwidth cost of replication
to fall nearly linearly with the size of the subscription
set. But, for smaller subscription sets full replication of
30 to 50-byte precise invalidations limits gains. Con-
versely, PRACTI’s imprecise invalidations allow replica-
tion bandwidth cost to fall nearly linearly with subscrip-
tion set size.

Note that Figure 5 shows bandwidth costs of replica-
tion. Partial replication provides similar improvements
for space requirements (graph omitted for space.) A
PRACTI node need not store a body if an object lies in
an IMPRECISEinterest set or if the object isINVALID.
Similarly, a node does not track per-object metadata for
IMPRECISEinterest sets that it does not plan to access.

Bytes die young. Bytes are often overwritten or deleted
soon after creation. For example, in an academic envi-
ronment, between 50% and 70% of written data survive
for more than 1 minute, and between 10% and 60% sur-
vive for more than 10 minutes [5]. Full replication sys-
tems send all writes to all servers, even if some of the
writes are quickly made obsolete. In contrast, PRACTI
replication can send invalidations separately from bod-
ies: if a file is written multiple times on one node before
being read on another, overwritten bodies need never be
sent.

To examine this effect, we randomly write a set of files
on one node and randomly read the same files on another
node. As Figure 6 shows, PRACTI’s gains are significant

 1

 10

 100

 1000

 0 1 2 3 4 5

M
ea

n
re

sp
on

se
 ti

m
e

(m
s)

Bandwidth Factor

Replicate All

Self Tuning

Demand Fetch

Fig. 7: Read response time as available bandwidth varies for
full replication, demand reads, and self-tuning replication.

when bytes die young. For example, when the write to
read ratio is 2, PRACTI uses 55% of the bandwidth of
full replication, and when the ratio is 5, PRACTI uses
24%. At ratios exceeding 20, PRACTI’s gains exceed an
order of magnitude.

Self-tuning replication. PRACTI’s separation of in-
validations from bodies enables a novel self-tuning data
prefetching mechanism described in Section 3. As a re-
sult, systems can replicate bodies aggressively when net-
work capacity is plentiful and replicate less aggressively
when network capacity is scarce.

Figure 7 illustrates the benefits of this approach by
comparing the read response time for three replication
policies: Demand Fetchreplicates precise invalidations
to all nodes but sends new bodies only in response to de-
mand requests,Replicate Allreplicates both precise in-
validations and all bodies to all nodes by marking all in-
validations asbound, andSelf Tuningreplicates precise
invalidations to all nodes and has all nodes subscribe for
all new bodies via the self-tuning mechanism. For this
experiment, we model a producer/consumer access pat-
tern where one node writes and another reads. We use
a synthetic workload where the read:write ratio is 1:1,
reads are Zipf distributed across files (α = 1.1), and writes
are uniformly distributed across files. We use Dummynet
to vary the available network bandwidth from 0.75 to 5.0
times the system’s average write throughput.

As Figure 7 shows, when sufficient bandwidth is
available, self-tuning replication can improve response
time by up to a factor of 20 compared toDemand-Fetch.
A key challenge, however is ensuring that prefetching
does not overload the system. Whereas PRACTI’s self-
tuning approach adapts bandwidth consumption to avail-
able resources,Replicate Allsends all updates regardless
of workload or environment. This makesReplicate Alla
“poor neighbor”—it attempts to consume bandwidth cor-
responding to the current write rate for prefetching even
if other applications could make better use of the net-
work. And even the replication system suffers: when
bandwidth equals the average write rate, 37% ofRepli-
cate All’s requests see stale data (compared to less than

Draft – See http://www.cs.utexas.edu/users/dahlin/papers.html for the current version 11

 0

 20

 40

 60

 80

 100

Office->AllLap->HomePalm<->HomePalm<->Lap

T
im

e(
s)

1.7 NA NA NANA NA NA NA

81

NA NA NA

P
R

A
C

T
I

C
lie

nt
-S

er
ve

r
B

ay
ou

 0

 400

 800

 1200

 1600

 2000

Office->AllLap->HomePalm<->HomePalm<->Lap

T
im

e(
s)

1.7 35

1610 1610

66 35

1610 1610

81

1690
1610

16909

P
R

A
C

T
I

C
lie

nt
-S

er
ve

r
B

ay
ou

 0

 50

 100

 150

 200

Office->AllLap->HomePalm<->HomePalm<->Lap

T
im

e(
s)

1.7 1.8
8.4

90

5.1 5.2

169

90

81

9.2 8.4

1699

P
R

A
C

T
I

C
lie

nt
-S

er
ve

r
B

ay
ou

(a) Plane (b) Hotel (c) Home

Fig. 8: Synchronization time among devices for different network topologies and protocols.

4% forSelf-Tuning.)

4.2 Topology independence
In this section we examine topology independence by ex-
amining two environments, a mobile data access system
that is distributed across multiple devices and a wide-
area-network file system designed to make it easy for
PlanetLab and Grid researchers to run experiments that
rely on distributed state. In both cases, PRACTI’s com-
bined partial replication and topology independence al-
lows it to dominate client-server and full replication ap-
proaches. In particular, PRACTI’s support for topology
independence yields advantages over hierarchical topolo-
gies for two reasons:

1. Adapt to changing topologies: PRACTI can make use
of the best paths among nodes that want to synchronize
their data.

2. Adapt to changing workloads: PRACTI can optimize
communication paths to, for example, use direct node-
to-node transfers for some objects and distribution
trees for others.

This section focuses on topology, and demonstrates
PRACTI’s advantages over topology-restricted hierarchi-
cal systems. For completeness, our graphs also com-
pare against topology-independent, full replication sys-
tems; the data indicate that topology independence with-
out partial replication is not an attractive alternative. Due
to space limits, we do not further discuss this subset of
the results.

Mobile storage. Figure 8 evaluates PRACTI in the
context of a mobile storage system that distributes data
across palmtop, laptop, home desktop, and office server
machines. We compare PRACTI to a client-server Coda-
like system (that supports partial replication but that dis-
tributes updates via a central server) [22] and to a full-
replication Bayou-like system (that can distribute up-
dates directly between interested nodes but that requires
full replication) [30]. All three systems are realized by
implementing different controller policies over PRACTI.

As summarized in Figure 9 our synthetic workload
models a department file system that supports mobility:
an office server stores data for 100 users, a user’s home

Storage Dirty Data Wireless Internet

Office server 1000GB 100MB 10Mb/s 100Mb/s
Home desktop 10GB 10MB 10Mb/s 1Mb/s
Laptop 10GB 10MB 10Mb/s 50Kb/s

1Mb/s Hotel only
Palmtop 100MB 100KB 1Mb/s N/A

Fig. 9: Configuration for “mobile storage” experiments.

machine and laptop each store 1% of that data, and a
user’s palmtop stores 1% of a user’s data. Note that due
to resource limitations, we store only the “dirty data” on
our test machines, and we use desktop-class machines
for all nodes; we control the network bandwidth of each
scenario using a library that throttles transmission.

Figure 8 charts the time to synchronize dirty data
among machines in four scenarios: (a)Plane—the user
is on a plane with no Internet connection, (b)Hotel—
the user’s laptop has a 50Kb/s modem connection to the
Internet, and (c)Home—the user’s home machine has a
1Mb/s connection to the Internet. (Due to space con-
straints, we omit case (d)Office—the user’s office has
a 100Mb/s connection to the Internet.) The user carries
her laptop and palmtop to each of these locations and co-
located machines communicate via wireless network at
speeds indicated in Figure 9. For each location, we mea-
sure time for machines to exchange updates: (1) P↔L:
the palmtop and laptop exchange updates, (2) P↔L: the
palmtop and home machine exchange updates, (3) L→H:
the laptop sends updates to the home machine, (4) O→*:
the office server sends updates to all other machines.

In comparing the optimized PRACTI system to a
client-server system, topology independence has signif-
icant gains when the machines that need to synchronize
are near one another but far from the server: in the iso-
latedPlanelocation, the palmtop and laptop can not syn-
chronize at all in a client-server topology; in theHotel
location, direct synchronization between these two de-
vices is an order of magnitude faster than synchronizing
via the server (1.7s v. 66s); and in the home location di-
rectly synchronizing co-located devices is between 3 and
20 times faster than client-server synchronization.

WAN-FS for Researchers. Figure 10 evaluates a
wide-area-network file system called PLFS designed for
PlanetLab and Grid researchers. The controller for PLFS

Draft – See http://www.cs.utexas.edu/users/dahlin/papers.html for the current version 12

 0

 200

 400

 600

 800

 1000

Client/ServerCoopBayouPLFS

T
im

e(
s)

Post-process

Process

Disseminate

177

475

282

915

 0

 50

 100

 150

 200

 250

Client/ServerCoopBayouPLFS

T
im

e(
s)

Post-process
Process

Disseminate
24

221

37

71

(a) 50 distributed nodes + remote server (b) 50 cluster nodes + remote server

Fig. 10: Execution time for the WAN-Experiment benchmark.

is simple: for invalidations, PLFS forms a multicast tree
to distribute all precise invalidations to all nodes. And,
when anINVALID file is read, PLFS uses a DHT-based
system [40] to find the nearest copy of the file; not only
does this approach minimize transfer latency, it effec-
tively forms a multicast tree when multiple concurrent
reads of a file occur [3]. Like Shark [3], PLFS is de-
signed to be convenient for allowing a user to export data
from her local file system to a collection of remotely run-
ning nodes. However, unlike the read-only Shark system,
PLFS supports read/write data.

We examine a 3-phase benchmark that represents run-
ning an experiment: in phase 1Disseminate, each node
fetches 10MB of new executables and input data from
the user’s home node; in phase 2Process, each node
writes 10 files each of 100KB and then reads 10 files
from randomly selected peers; in phase 3,Post-process,
each node writes a 1MB output file and the home node
reads all of these output files. We compare PLFS to three
systems: a client-server system, client-server with coop-
erative caching of read-only data (e.g., a Shark-like sys-
tem [3]), and server-replication (e.g., a Bayou-like sys-
tem [30]). All 4 systems are implemented over PRACTI.

Figure 10 shows performance for an experiment run-
ing on (a) 50 distributed nodes each with a 5.6Mb/s con-
nection to the Internet (we emulate this case by throttling
bandwidth) and (b) 50 “cluster” nodes at universityX
with a switched 100Mbit/s network among them and a
shared path via Internet2 to the origin server at univer-
sity Y . PLFS’s combination of partial replication and
topology independence allows it to dominate the other
designs. Compared to client/server, it is faster in both
the Dissemination and Process phases due to its multi-
cast transmission and direct data transfer. Compared to
full replication, it is faster in the Process and Post-process
phases because it only sends the required data. And com-
pared to cooperative caching of read only data, it is faster
in the Processing phase because data can be transferred
directly between nodes.

4.3 Arbitrary consistency

This subsection first examines the benefits and then ex-
amines the costs of supporting flexible consistency.

Improved consistency trade-offs. PRACTI improves
the range of consistency available for replication.
Gray [16] and Yu and Vahdat [43] show a trade-off:
aggressive propagation of updates improves consistency
and availability but can also increase system load. Yu’s
study finds an order of magnitude improvement in un-
availability for some workloads when using aggressive
propagation of updates compared to lazy propagation and
Gray shows that the number of conflicts can rise with the
square of propagation delay.

PRACTI has three features that improve the overhead
versus consistency and availablity trade-offs: (1) sepa-
ration of invalidations from bodies allows invalidations
to propagate aggressively, (2) streaming log exchange
(rather than batch [30]) allows nodes to continuously
update one another when they are connected, and (3)
self-tuning body propagation maximizes the amount of
VALID data at a node for a given consistency requirement
and bandwidth budget.

We examine a range of consistency requirements and
network failure scenarios via simulation (all other exper-
iments in this paper are prototype measurements.) We
use a synthetic read/write workload with the same para-
meters as the workload used in Fig 7. We use an average
network path unavailability of 0.1% with Pareto distrib-
uted repair time R(t) =1− 15t−0.8 [10].

In Figure 11-a we measure the best order error that
can be maintained for a given bandwidth budget. Or-
der error constrains the number of oustanding uncom-
mitted writes [44]. We compare theTACT Aggressive
policy [43] to aPRACTI Prefetchpolicy that aggressively
distributes invalidations as in TACT’s policy but that dis-
tributes bodies using the self-tuning approach. PRACTI
reduces the bandwidth needed to maintain reasonable
consistency by a factor of 3 compared toTACT Aggres-
siveand improves the consistency bounds attainable for
some bandwidth budgets by orders of magnitude.

Figure 11-b plots system unavailability for an order
error of 100 as bandwidth varies. Following Yu and Vah-
dat’s methodology [43], we say the the system isavail-
able to a read or write request if the request can issue
without blocking and the system isunavailableif the re-
quest must block in order to meet the consistency target.
When bandwidth is limited, PRACTI dramatically im-
proves system availability under consistency constraints
compared to full replication.

Consistency overheads. Different applications require
different consistency and coherence guarantees. Provid-
ing stronger guarantees than needed may hurt system
availablity [8] or response time [27], and distributing
more consistency information than needed can increase
network overheads.

Our PRACTI prototype addresses the first two issues

Draft – See http://www.cs.utexas.edu/users/dahlin/papers.html for the current version 13

 0

 200

 400

 600

 800

 1000

 0 0.5 1 1.5 2

B
es

t A
ch

ie
va

bl
e

O
rd

er
 E

rr
or

Available Bandwidth/Write Bandwidth

Periodic (500s)

TACT-Aggressive

PRACTI-Demand
PRACTI-Prefetch

 0.0001

 0.001

 0.01

 0.1

 1

 0 0.5 1 1.5 2

A
ve

ra
ge

 U
na

va
ila

bi
lit

y

Available Bandwidth/Write Bandwidth

Periodic (500s)

TACT-Aggressive

PRACTI-Demand
PRACTI-Prefetch

 0

 10

 20

 30

 40

 50

 60

 0 0.2 0.4 0.6 0.8 1

In
va

l B
yt

es
 P

er
 W

rit
e

Interest Set Fraction

All precise

Coherence only

Prec+Imp (burst=10)
Prec+Imp (no locality)

(a) Best consistency (order error) achievable
for a given bandwidth cost.

(b) Best unavailability achievable while
meeting a required order error of 100.

(c) Bandwidth cost of distributing consis-
tency information.

Fig. 11: Consistency trade-offs (a-b) and costs (c).

by shipping bookkeeping information around the system
for all updates in the form of precise invalidations and
imprecise invalidations but then only enforcing consis-
tency constraints on a flexible, per-request basis by speci-
fying whether a read should be precise (consistent) or im-
precise (coherent) and by specifying TACT requirements
on reads and writes [44].

Distributing sufficient bookkeeping information to
support demanding requests does impose a modest cost
whether requests require the information or not. In par-
ticular, object replication systems [17, 31] do not pro-
vide cross-object consistency guarantees. In the context
of the PRACTI protocol, if all applications in a system
only care about coherence guarantees, the system could
completely omit imprecise invalidations.

Figure 11-c quantifies the prototypes cost to distribute
both precise and imprecise invalidations (in order to sup-
port consistency) versus the cost to distribute only pre-
cise invalidations for the subset of data of interest and
omitting the imprecise invalidations (and thus only sup-
porting coherence.) Note that the cost of imprecise inval-
idations depends on the workload: if there is no locality
and writers tend to quickly alternate between writing ob-
jects of interest and objects not of interest, then the im-
precise invalidations “between” the precise invalidations
will cover relatively few updates and save relatively lit-
tle overhead but if writes to different interest sets arrive
in bursts then the system will generally be able to accu-
mulate large numbers of updates into imprecise invalida-
tions. We vary the fraction of data “of interest” to a node
on the x axis and show the invalidation bytes received per
write on the y axis. All objects are equally likely to be
written by a set of remote nodes, but the locality of writes
varies: the “No Locality” line shows the worst case sce-
nario, with no locality across writes, and the “Locality
burst=10” line shows the case when a write is ten times
more likely to hit the same interest set as the previous
write than to hit a new interest set.

When there is significant locality for writes, the cost
of distributing imprecise invalidations is small: impre-
cise invalidations to support consistency never add more
than 20% to the bandwidth cost of supporting only co-

herence. When there is no locality, the cost is higher, but
in the worst case in these experiments imprecise invali-
dations contribute an additional 20 bytes per average up-
date. Overall, the difference in invalidation cost is likely
to be small relative to the toal bandwidth consumed by
the system to distribute bodies.

5 Related work
Replication is fundamentally difficult. For example
Siegel [32] proves what has come to be known as
the CAP dilemma [8]: a replication system that pro-
vides sequentialConsistency cannot simultaneously pro-
vide 100%Availability in an environment that can be
Partitioned. Similarly, Lipton and Sandberg describe
fundamental performance limitations for distributed sys-
tems that provide sequential consistency [27]. As a
result, systemsmust make compromises or optimize
for specific workloads. Unfortunately, these workload-
specific compromises are often reflected in system mech-
anisms, not just their policies.

In particular, state of the art mechanisms allow a de-
signer to retain full flexibility along at most two of the
three dimensions of replication, consistency, or topology
policy. Section 2.2 compares PRACTI with existing PR-
AC [2, 7, 12, 19, 22, 29], AC-TI [15, 21, 24, 30, 44], and
PR-TI [17, 31] approaches. As noted there, these sys-
tems can be seen as special case “projections” of the gen-
eral PRACTI mechanisms, so ideas relating to PRACTI’s
mechanisms can be seen in these systems. For example,
the separation of invalidations from bodies is standard
in client-server systems [19, 29], and imprecise invalida-
tions are closely related to messages sent by client-server
systems during callback-state recovery [4, 41]. Several
systems have noted the value of separating data and meta-
data paths [2, 31].

Like PRACTI, the Deceit file system [32, 33] provides
a flexible substrate that subsumes a range of its contem-
porary replication systems. Deceit, however, focuses on
replication across a handful of well-connected servers,
and it therefore makes very different design decisions
than PRACTI. For example, each Deceit server maintains
a list of all files and of all nodes replicating each file,
communication among servers is via an Isis [6] group for

Draft – See http://www.cs.utexas.edu/users/dahlin/papers.html for the current version 14

each distinct subset of servers, and all nodes replicating
a file receive all bodies for all writes to the file.

Microsoft has announced that a new replication sys-
tem, WinFS, will appear at some future date [38]. It
will reportedly support synchronization across multiple
nodes, however no detailed technical description of the
protocol have been published. One report [39] suggests
that the system transfers sets of updated items “rather
than maintaining and synchronizing a log of each indi-
vidual action,” which may indicate that WinFS takes a
PR-TI approach.

The current PRACTI mechanisms support a broad
range of replication techniques such as client/server,
server replication, object replication, 2-phase commit,
and TACT, but it is not clear if the current protocols
can easily support some other replication techniques such
as quorum replication [14] or Byzantine storage [1, 28].
Broadening the PRACTI approach to include such tech-
niques may be interesting future work.

6 Conclusion
In this paper, we present the first PRACTI (Partial Repli-
cation, Arbitrary Consistency, and Topology Indepen-
dence) mechanism for replication in large scale systems.
These new mechanisms allow construction of systems
that replicate or cache any data on any node, that pro-
vide a broad range of consistency and coherence guar-
antees, and that allow any node to communicate with
any other node at any time. Evaluation of our prototype
suggests thatby disentangling mechanism from policy,
PRACTI replication enables better trade-offs for system
designers than possible with existing mechanisms.By
cleanly separating mechanism from policy, we speculate
that PRACTI may serve as the basis for aunified repli-
cation architecturethat simplifies the design and deploy-
ment of large-scale replication systems.

References
[1] A. Adya, W. Bolosky, M. Castro, G. Cermak, R. Chaiken,

J. Douceur, J. Howell, J. Lorch, M. Theimer, and R. Wattenhofer.
Farsite: Federated, available, and reliable storage for an incom-
pletely trusted environment. InProc. OSDI, Dec. 2002.

[2] T. Anderson, M. Dahlin, J. Neefe, D. Patterson, D. Roselli, and
R. Wang. Serverless Network File Systems.ACM Trans. on Com-
puter Systems, 14(1):41–79, Feb. 1996.

[3] S. Annapureddy, M. Freedman, and D. Mazires. Shark: Scaling
file servers via cooperative caching. InProc NSDI, May 2005.

[4] M. Baker. Fast Crash Recovery in Distributed File Systems. PhD
thesis, University of California at Berkeley, 1994.

[5] M. Baker, S. Asami, E. Deprit, J. Ousterhout, and M. Seltzer.
Non-Volatile Memory for Fast, Reliable File Systems. InProc.
ASPLOS, pages 10–22, Sept. 1992.

[6] K. Birman and T. Joseph. Exploiting virtual synchrony in distrib-
uted systems. InProc. SOSP, Nov. 1987.

[7] M. Blaze and R. Alonso. Dynamic Hierarchical Caching in
Large-Scale Distributed File Systems. InICDCS, June 1992.

[8] E. Brewer. Lessons from giant-scale services.IEEE Internet
Computing, July/August 2001.

[9] S. Chandra, M. Dahlin, B. Richards, R. Wang, T. Anderson, and
J. Larus. Experience with a Language for Writing Coherence Pro-
tocols. InUSENIX Conf. on Domain-Specific Lang., Oct. 1997.

[10] M. Dahlin, B. Chandra, L. Gao, and A. Nayate. End-to-end
WAN service availability.ACM/IEEE Transactions on Network-
ing, 11(2), Apr. 2003.

[11] M. Dahlin, L. Gao, A. Nayate, A. Venkataramani, P. Yalagan-
dula, and J. Zheng. ”PRACTI replication for large-scale systems”.
Technical Report UTCS-04-28, University of Texas Department
of Computer Sciences, June 2004.

[12] M. Dahlin, R. Wang, T. Anderson, and D. Patterson. Cooperative
Caching: Using Remote Client Memory to Improve File System
Performance. InProc. OSDI, pages 267–280, Nov. 1994.

[13] S. Gadde, J. Chase, and M. Rabinovich. A taste of crispy squid.
In Wkshp. on Internet Svr. Perf., June 1998.

[14] D. Gifford. Weighted voting for replicated data. InProc. SOSP,
pages 150–162, Apr. 1979.

[15] R. Golding. A weak-consistency architecture for distributed in-
formation services.Computing Systems, 5(4):379–405, 1992.

[16] J. Gray, P.Helland, P. E. O’Neil, and D. Shasha. Dangers of repli-
cation and a solution. InProc. SIGMOD, pages 173–182, 1996.

[17] R. Guy, J. Heidemann, W. Mak, T. Page, G. J. Popek, and
D. Rothmeier. Implementation of the Ficus Replicated File Sys-
tem. InUSENIX Summer Conf., pages 63–71, June 1990.

[18] J. Hennessy and D. Patterson.Computer Architecture A Quanti-
tative Approach. Morgan Kaufmann Publishers, Inc., 2nd edition,
1996.

[19] J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satyanarayanan,
R. Sidebotham, and M. West. Scale and Performance in a Distrib-
uted File System.ACM Trans. on Computer Systems, 6(1):51–81,
Feb. 1988.

[20] P. Hutto and M. Ahamad. Slow memory: Weakening consis-
tency to enhance concurrency in distributed shared memories. In
ICDCS, pages 302–311, 1990.

[21] P. Keleher. Decentralized replicated-object protocols. InPODC,
pages 143–151, 1999.

[22] J. Kistler and M. Satyanarayanan. Disconnected Operation in the
Coda File System.ACM Trans. on Computer Systems, 10(1):3–
25, Feb. 1992.

[23] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton,
D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer,
C. Wells, and B. Zhao. Oceanstore: An architecture for global-
scale persistent storage. InProc. ASPLOS, Nov. 2000.

[24] R. Ladin, B. Liskov, L. Shrira, and S. Ghemawat. Providing high
availability using lazy replication.ACM Trans. on Computer Sys-
tems, 10(4):360–391, 1992.

[25] L. Lamport. Time, clocks, and the ordering of events in a distrib-
uted system.Comm. of the ACM, 21(7), July 1978.

[26] L. Lamport. How to make a multiprocessor computer that cor-
rectly executes multiprocess programs.IEEE Transactions on
Computers, C-28(9):690–691, Sept. 1979.

[27] R. Lipton and J. Sandberg. PRAM: A scalable shared memory.
Technical Report CS-TR-180-88, Princeton, 1988.

[28] D. Malkhi and M. Reiter. Byzantine quorum systems.Distributed
Computing, pages 203–213, 1998.

[29] M. Nelson, B. Welch, and J. Ousterhout. Caching in the Sprite
Network File System.ACM Trans. on Computer Systems, 6(1),
Feb. 1988.

[30] K. Petersen, M. Spreitzer, D. Terry, M. Theimer, and A. Demers.
Flexible Update Propagation for Weakly Consistent Replication.
In Proc. SOSP, Oct. 1997.

[31] Y. Saito, C. Karamanolis, M. Karlsson, and M. Mahalingam.
Taming aggressive replication in the pangaea wide-area file sys-
tem. InProc. OSDI, Dec. 2002.

[32] A. Siegel.Performance in Flexible Distributed File Systems. PhD
thesis, Cornell, 1992.

[33] A. Siegel, K. Birman, and K. Marzullo. Deceit: A flexible distrib-
uted file system. Technical Report 89-1042, Cornell, Nov. 1989.

Draft – See http://www.cs.utexas.edu/users/dahlin/papers.html for the current version 15

[34] Sleepycat Software.Getting Started with BerkeleyDB for Java,
Sept. 2004.

[35] D. Terry, M. Theimer, K. Petersen, A. Demers, M. Spreitzer, and
C. Hauser. Managing Update Conflicts in Bayou, a Weakly Con-
nected Replicated Storage System. InProc. SOSP, Dec. 1995.

[36] R. Tewari, M. Dahlin, H. Vin, and J. Kay. Design Considerations
for Distributed Caching on the Internet. InICDCS, May 1999.

[37] A. Venkataramani, R. Kokku, and M. Dahlin. TCP-Nice: A
mechanism for background transfers. InProc. OSDI, Dec. 2002.

[38] http://msdn.microsoft.com/data/winfs/, Mar. 2005.
[39] http://longhorn.msdn.microsoft.com/lhsdk/winfs/consynchronizationoverview.aspx,

Mar. 2005.
[40] P. Yalagandula and M. Dahlin. A scalable distributed information

management system. InProc SIGCOMM, Aug. 2004.
[41] J. Yin, L. Alvisi, M. Dahlin, and A. Iyengar. Engineering web

cache consistency.ACM Trans. on Internet Tech., 2(3), 2002.
[42] J. Yin, L. Alvisi, M. Dahlin, and C. Lin. Hierarchical Cache Con-

sistency in a WAN. InProc USITS, Oct. 1999.
[43] H. Yu and A. Vahdat. The costs and limits of availability for

replicated services. InProc. SOSP, 2001.
[44] H. Yu and A. Vahdat. Design and evaluation of a conit-based con-

tinuous consistency model for replicated services.ACM Trans. on
Computer Systems, 20(3), Aug. 2002.

