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Abstract tial Replication, Arbitrary Consistency, and Topology In-
We present the first PRACTI (Partial Replication, Arbi- dependence) properties?artial replication means that
trary Consistency, and Topology Independent) replicad System can place any subset of data on any node. In
tion toolkit. PRACTI mechanisms can replicate or cachecontrast, some systems require a node to maintain copies
any data on any node (PR), provide a broad range d¥f all objects in all volumes they export [30, 44Rr-
consistency and coherence guarantees (AC), and pernfittrary consistencyneans that the system provides flex-
any node to communicate with any other node at an}?ble semantic guarantees, inClUding the ablllty to selec-
time (T1). Compared to existing mechanisms that forceively enforce bothconsistencyand coherenceguaran-

a system designer to compromise a system’s replicd€€s’ In contrast, some systems can only enforce co-
tion, topology, or consistency policy, PRACT]I yields two herence guarantees but make no guarantees about con-
significant advantagesflexibility and improved trade-  Sistency [17, 31]. Topology independenceeans that
offs. PRACT!s flexibility simplifies the design of repli- any node can communicate with any other node. In
cation systems by allowing a single framework to sub-ontrast, many systems restrict communication to client-
sume a broad range of existing approaches. At the sanf&rver [19, 22, 29] or hierarchical [7, 42] patterns.

time, PRACT!I provides better trade-offs than the point- We base PRACTI on log exchange mechanisms that
solution policies embedded in existing mechanisms: fopupport a range of consistency guarantees and topology
workloads of interest, our PRACTI design dominates exindependence but that fundamentally assume full repli-
isting approaches by providing an order of magnitudecation [30, 44]. We adapt these mechanisms to support
better bandwidth and storage efficiency than replicate@artial replication using two principles.

server systems (AC-TI), an order of magnitude bettes First, in order to allow partial replication of data, we
synchronization delay compared to hierarchical systems separate the control path from the data pdip sep-
(PR-AC), and consistency guarantees not achievable by arating invalidation messages that identify what has

per-object replication systems (PR-TI). changed from body messages that encode the changes
to the contents of files.
1 Introduction e Second, in order to allow partial replication of update

Data replication is a building block for a broad range of metadata, we usexplicit conservative encodinga

large-scale distributed systems such as mobile file sys- Imprecise |nvaI|_dat|on3Nh|9h all_owz_asmgle invalida-
tems, web service replication systems, enterprise file sys- tion to summarize a set of invalidations.

tems, or grid replication systems. Because there is a We have constructed and evaluated a prototype. Our
fundamental trade-off between performance and consig¥imary conclusion is that by disentangling mechanism
tency [27] as well as between availability and consisfrom policy and simultaneously supporting the three
tency [8' 32]’ Systems make different trade-offs amondDRACTl prOpertieSPRACTl replication enables better
these factors by implementing different consistency poliirade-offs for system designers than possible with exist-
cies, placement policies, and topology policies for differ-iNg mechanisms-or example, for some workloads in our
ent environments. Informallgonsistency policiesuch ~ mobile storage and grid computing case studies, PRACTI
as sequential [26] or causal [20] define which reads mugiominates existing approaches by providing more than

see \.NhICh ertesplacement pOlIgleSUCh as .demand- 1Although the operating systems and distributed systems literature
caching, prefetching, push-caching, or replicate-all debften use the terms consistency and coherence interchangeably, the ar-
fine which nodes store local copies of which data, an@hitecture literature is more precise [18]: consistency semantics con-
topology policiessuch as client-server, hierarchy, or ad-strain the order that updates across multiple objects become observable

hoc define the paths a|0ng which communication flows to readers. Coherence semantics constrain the order that updates to a
" single object become observable but do not additionally constrain the

) Th_is paper describes a Set_ of mechanisms that for th(§?dering of updates across different objects. We find this precision use-
first time simultaneously provide all three PRACTI (Par-ful and follow that terminology in this paper.
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an order of magnitude better bandwidth and storage effi- (reatl), write(), Sueey
ciency than replicated server systems (AC-TI), by provid- PRACTI Core Toa
ing more than an order of magnitude better synchroniza- |
tion delay cpmpared t_o hierarchical systems (PR-AC), Body Srears, || A% - [Rencom] [ sen || mocly Seams
and by providing consistency guarantees not achievable e T e | 1B
. . . : v
by per-object replication systems (PR-TI). et sremrs| [ 2 | [ ] o || vl sueams
More broadly, by subsuming a large portion of the de- il 9 Inva
sign space, the PRACTI toolkit can simplify the design ool
of replication systems. At present, because mechanisms i
and policies are entangled, when a replication system is Inform Mgmt.  lo._._._. -
. . . . Requeststo Requests from
built for a new environment, it must often be built from remote Cores Controller remote controllers
scratch or must modify existing mechanisms to accom- =

modate new policy trade-offs. In contrast, PRACTI can  Fig. 1: High level PRACTI architecture for one node.

be thought of as a “replication microkernel” that defines
a common substrate of core mechanisms over which drough the system. The use of log exchange supports ar-

broad range of systems can be constructed by selectifit"ay communication patterns among nodes, and it pro-
appropriate policies. vides a basis for providing a range of consistency guar-

This paper makes three contributions. First, it de2ntees [44]. Unfortunately, existing log exchange mech-

scribes novel mechanisms that support efficient and Sca?_ni_sms_ funda_men'FaIIy assume full replication in order to
able PRACTI replication. To our knowledge past systemémJllntaln the Invariant that each node’s log represents a
have provided at most two of the PRACTI propemes_causally-conS|stent pref|_x of the system’s_ writes. .
Second, it provides a prototype replication toolkit based The PRACTI mechanisms therefore differ from exist-

on PRACTI that cleanly separates mechanism from pol'—ng pro(tjocols '?f. tyvo l|<ey ways. F'LSt’ n ogder o 3”OW
icy and thereby allows nearly arbitrary replication, con-2nYy node to efliciently receive updates about and store

sistency, and topology policies. Third, it demonstrate£Y subset of data, PRACTI mechanisseparate the

that PRACTI replication provides two significant ad- c_ontrol path from the data pathy S€ep arating invalida-
vantages over existing replication mechanisiexibil- tion and body Messages. _Secc_)nd,_ in order to allow any
ity to simplify the design and deployment of replica- node to receive and store invalidations about any subset

tion systems andetter trade-offsamong performance, of data, PRACTI usesxplicit conservative encodinga

availability, and consistency than supported by existin imprecise invalidations The rest of this subsection first
mechanism-defined point-solution policies rovides an overview of PRACTI's main data structures

. : . and interfaces and then describes these two mechanisms.
The rest of this paper is organized as follows. Sec-

tion 2 describes the PRACTI mechanisms, and Section Bata structures and interfaces. Figure 1 provides a
details our implementation. Section 4 experimentallynigh-level view of the PRACTI design. Each PRACTI
evaluates the prototype. Finally, Section 5 surveys renode has two main components: thare and thecon-
lated work and Section 6 highlights our conclusions.  troller. The coreinstantiates the basic PRACTecha-
nismsby processing incoming messages and maintaining
; a local view of the system’s state. Tleentroller em-
2 PRACTI deSIQn bodies a system’policies by initiating communication
This section provides an overview of the PRACTI mech-among nodes; different PRACTI deployments will use
anisms. It focuses on PRACTI's basic mechanisms fogjifferent controllers to implement different replication,
transmitting updates among nodes while supporting patopology, and consistency policies. This paper focuses
tial replication, arbitrary consistency, and topology in-on the core; Section 3 includes an overview of the con-

dependence. Section 3 details how our prototype imtroller, and the Evaluation section describes several ex-
plements these mechanisms and also discusses importaptple controllers.

additional features such as our support for tunable consis- The two main data structures in the core arerte
tency, hooks for enforcing a minimum degree of replicadom access statnd thelog. Therandom access state
tion, implementation of conflict detection and resolution,(RAS) stores the current state of objects indexed by ob-

and garbage collection of the logs. ject ID2 A node uses its RAS for local reads and for
) . sending data to other nodes. Tlhg maintains a causally
2.1 Design overview ordered list of updates that have been applied to the RAS.

The backbone of the PRACTI protocol is a log-exchange—; — 4 . ,

L ; For simplicity, we describe the protocol in terms of full-object
framework that IS 5|m||<'f“' to th‘fﬂ of Bayou [30]: nodes €X-writes. In practice, we track RAS state, invalidations, and bodies on
change portions of their logs in order to propagate writegrbitrary byte ranges.
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A node uses its log as a replay log for reliability and alsathe objectVALID and stores the body.
for transmitting updates to other nodes. Additionally, as The separation of bodies from invalidations affects lo-
indicated in the figure and discussed in more detail becal read requests. The system blocks a local read request
low, a node maintains four interfacedeeal, applylnval  until the requested object’s statusMALID. Of course,
applyBody andcontrol—for processing incoming mes- to ensure liveness, when #NVALID object is read, an
sages. Finally, a nodegendinvabndsendBodynodules  implementation should arrange for someone to send the
assemble and transmit outgoing messages. body. A controller can implement any policy for doing
this from a static hierarchy (i.e., ask your parent or a cen-
Separate invalidations from bodies. The separation tral server for the missing data) to a separate, centralized
of invalidations from bodies allows partial replication directory [13], to a DHT-based directory [36], to a hint-
of data: a controller can choose any policy for distrib-based search strategy, to a push-all strategy [30] (i.e.,
uting bodies to nodes. To accomplish this separatiorfjust wait and the data will come.”) In addition to dis-
the PRACTI architecture splitarite messageto two  tributing bodies in response to demand reads, controllers
parts: (1)invalidation messageilentify what objects can also prefetch bodies, pre-push bodies, or pre-position
were written and when the writes occurred and@j)ly ~ bodies according to a global placement policy.
messagesontain the bodies of the writes. Figure 2 in
Section 3 defines the message types in more detail.  Imprecise invalidations and interest sets. Where sep-
PRACTI distributes invalidations using a straightfor- aration of invalidations from bodies supports partial
ward variation of Bayou’s log exchange protocol thatreplication of data, imprecise invalidations allow partial
operates on invalidations rather than complete writegeplication of metadata: nodes receive precise invalida-
When a node receives a new invalidation message, it apions for objects they plan to access but receive only sum-
plies the message to its log, and when it sends its log ttharies of invalidations for other objects. Although each
another node, this log contains invalidations rather thainvalidation is small, imprecise invalidations are crucial
complete writes. When a node receives an invalidationfor large systems: our data in Sec. 4 show that imprecise
then if the invalidation’s logical timestamp exceeds theinvalidations can reduce replication costs by an order of
logical time for the object in the RAS, the node updategnagnitude compared to requiring every node to see every
the object's RAS state by marking IiNVALID and up-  invalidation of every object.
dating its logical timestamp. PRACTI thus retains three  An imprecise invalidatioris a conservative summary
key invariants on invalidations [30]. First tipeefix prop-  of a group of ordinary invalidations, which we refer to as
ertyrequires that a node’s state always reflects a prefix grecise invalidationsWe use the terngeneral invalida-
the sequence of invalidations by each node in the systertion to refer to either a precise or imprecise invalidation.
Second, each node’s local state always refleatssally ~ An imprecise invalidation includes a set @irgetsand
consistent[20] view of all invalidations that have oc- a range of logical times defined by somsgrt andend
curred. This property follows from the prefix property times, and it denotes that “One or more object¢an
and from the use of Lamport clocks [25] to ensure thaigetswas updated betweesiart andend” An imprecise
once a node has observed the invalidation for writ@ll  invalidation mustcover all summarized invalidations—
of its subsequent writes’ logical timestamps will exceedany invalidation summarized by an imprecise invalida-
w's. Third, the system ensuresentual consistencyll  tioni must have its target ID included irtargets and its
connected nodes eventually agree on the same total ordegical time included betweenstart andi.end. Notice
of all invalidations. Given this basis, we can enforce athat a general invalidation’s start and end times are par-
broad range of consistency semantics [44]. tial version vectors with as few as one element (to cover
Although invalidations must be sent and applied ininvalidations by one node) and as manyraglements
causal, logical timestamp order, PRACTI nodes can distto cover invalidations by all nodes in the system). Also
tribute bodies according to arbitrary policies, in arbitrarynote that an imprecise invalidatiétan be conservative:
order, across arbitrary topologies. A PRACTI node must.targets can include objects that were not invalidated
therefore synchronize arriving bodies with the invalida-betweeni.start andi.end. This rule supports concise
tion streams before applying bodies to its local stateencodings of large numbers of files (e.g., a list of subdi-
PRACTI maintains the invariant that update bodies argectories or a Bloom filter of object IDs).
not applied to the RAS until after the corresponding in- When a nodex receives an imprecise invalidation
validation message. To ensure this invariant, the core’appliesi to both its log and its RAS. For the logserves
applyBody interface buffers updates until they may beas a “placeholder” so that i sends its log to another
safely applied. When a node finally can apply a bodynode,i indicates which precise invalidations are omitted.
message, if the logical time for the object in the RAS had.ogs thus still maintain the prefix property, causal con-
not advanced past the body'’s logical time, the RAS marksistency, and eventual consistency invariants. The benefit
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of imprecision is efficiency: when a controller tells node AC-TIl.  Server-replication systems such as Bayou [30],
« to send invalidations to nod@, the request indicates TACT [44], and lazy replication [24] allow arbitrary
subsets of the object ID space for whighshould sum- communication between nodes and can provide flexible
marize invalidations using imprecise invalidations beforeconsistency, but they fully replicate all objects in a vol-
sending them. ume and send all updates to all nodes that serve the vol-
Imprecise invalidation must also update the RAS. ume. In the PRACTI framework, these AC-TI protocols
A naive strategy would mark every object covered bycan be viewed as using a replicate-all strategy for both
i.target asINVALID to logical timei.end. Such an ap- Pprecise invalidations and bodies, never sending or receiv-
proach has two problems. The first is performance: thé"g imprecise invalidations, and not implementing any
cost to process an imprecise invalidation would be promechanism to handle read misses because objects are al-
portional to itstarget set size. The second problem waysPRECISEandVALID.
is liveness: each invalidated objectvould remainiN-
VALID until the node receives a body forwith a logi-
cal time at least.end. Note that typically, only one ob-
ject ini.targets actually was written as late ds:nd by

PR-AC. Client-server and hierarchical systems such as
AFS [19], Sprite [29], and Coda [22] allow nodes to
cache or prefetch arbitrary subsets of data and in prin-

the summarized invalidations; for any other objgdh ciple COUI.d support a range of consiste_ncy p(_)licies [41]
i.target, there may exist no W,rite in the system that can(thOUQh’. N pra_ct|ce, SUCh. systems typically implement
makep VALID. a specific consistency policy). But. these protopols fun-
. damentally assume a topology policy that restricts com-

To address these perfprmance and liveness problemg, \ications to hierarchical paths. Even when client-
nodgs use a more soph|st|cated approach: nodes "fllloé’}érver systems permit limited client-client communica-

p°”'9”3. of the RAS to include stale statg after an 'Mion for cooperative caching [12] serialization of con-
precise invalidation, but they ensure consistency by Pr&ol messages at the server is vital for reasoning about
venting observation of stale RAS entries. To do this, aconsistency [9]. In the PRACTI framework, these PR-

hode partitions its RAS into one or monaterest sets ¢ protocols can be viewed as using separate invalida-

An interest sets a portion of the object ID space that ;g body messages, with invalidations sent by par-
is eitherPRECISEor IMPRECISE An interest selS'is g s g children and bodies fetched by children from par-

PR.EC!SEf and onIy. if thg RAS reflects all precise in- ents. Their callback protocols can be viewed as special-
vaI|'dat|o.ns for all objeqts IS up to the node’s currer)t ized instances of PRACTI's sendinval module that ac-
logical time. F_or con5|sten_cy, a local read of an ObJEECTtively track which objects a child caches and that send
must block until the enclosing interest S.GFRECIS_E_ recise invalidations only for those objects. Note that in
when a r(_aad.bloc.:ks, the controller musfc initiate sufficien RACTI, the module would also send imprecise inval-
communication in order to make the interest EﬁE idations covering any omitted precise invalidations, but
CISE'and to aIIow.the. read to complete: we Qetall thethe hierarchical topology allows PR-AC protocols to omit
algorithm for tracking interest set status in Section 3.2. these implicit imprecise invalidations. Interestingly, re-
Note that enforcing stronger consistency than requirego\,ery when a server loses callback state [4] or when
can hurt availability [8, 43]. Therefore, as an optimiza-4 topology changes [42] falls back on what are essen-
tion, PRACTI provides an additional local interface to tjg|ly explicit imprecise invalidations: the client receives
issue animprecise readhat skips thePRECISEcheck 3 message (i.e., an imprecise invalidation covering all ob-
just described and returns as soon as the requested objg&its) indicating that it should treat all of its consistency

is VALID. state as suspect (. dMPRECISE and the client then
revalidates all objects with its server (i.e., make the inter-
2.2 General framework est set precise).

PRACTI mechanisms represent a general framework foPR-TI.  Object replication systems such as Ficus [17]
implementing a broad range of replication systems thaand Pangaea [31] maintain synchronization information
specify their own policies for distributing bodies, han-separately for each object and support arbitrary topol-
dling read misses, sending invalidations, and enforcinggy policies and arbitrary placement of objects on nodes.
consistency. For example, existing 2-of-3 protocols (AC-However, although these systems can provide sooe

TI, PR-AC, and PR-TI) can be viewed as special cases drerencegguarantees on the order of reads and writes when
projections of the PRACTI protocol with certain featuresan individual object is considered, they provide limited
“optimized out” of the mechanisms by embedding re-consistencyguarantees regarding the ordering of reads
strictive policy assumptions. At the same time, the moreand writes across objects. Furthermore, these systems
general PRACTI mechanisms allow new trade-offs thatleanly separate invalidations and body messages: for
existing protocols can not accommodate. any given objecb and node; they either propagate's
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a‘é"crggjgtra@l:q‘p "lgléfcgigslgék'e:gézl g covery. For simplicity, we continue to describe the pro-
preciselnvalidation  writeTarget, acceptStamp, prevAccept, realTime tocol in terms of whole-object reads and writes, but our
impt:gggiluﬂ\ﬂl'gz?i%z g;geezggegtift"ﬂe‘gféa'ﬁga Fl)[]re"Accep" realTime, b"‘i:’!rotot_ype actually tracks object state on the granularity
invalStream  startVV [generallnval]* of arbltrary byte-ranges.
bodyMsg _ writeTarget, acceptStamp, body Section 3.1 first provides an overview of a number of
Fig. 2: Basic data types and messages. . . .
basic features that are implemented using standard tech-
update bodies te or propagate no information at all niques from the literature as well as two novel but gen-
abouto’s updates tg). In the PRACTI framework, these erally applicable enhancements on existing techniques:
PR-TI protocols can be viewed as using a replication polincremental log propagation and self-tuning body prop-
icy that sends invalidations and bodies for a given objechgation. Then, Sections 3.2 and 3.3 dive into low-level
to the same policy-specified subset of nodes and also altails of the Core and Controller implementation.
omitting all imprecise invalidations and thereby giving
up the ability to consistently order writes across different3_1 Basic features
objects.
. Because the system is built over a solid and well-explored
PRACTI.  In comparing PRACTI to these protocols, & framework of causally consistent log exchange, it is
key distinction is how consistent ordering of writes is strajghtforward to include most of the following features
achieved. Server-replication (AC-TI) and client-serveryy axiending techniques described in the literature. Due
(PR-AC) systems order invalidations across objects by, space constraints, we will only briefly outline these as-

enforcing aninclusion property—any node that receives nects of the implementation here and defer details to an
and then transmits updates must see all updates for all OEXtended technical report [11].

jects about which it may speak. Server-replication mech-

anisms enforce this property by replicating all update .
to all nodes, and client-server systems meet this Ob”gj_ncremental log propagation.  The PRACTI prototype

Implements a novel incremental variation on existing

tion by assuming hierarchical inclusion. Because thes . :
. . . atch log exchange protocols. In particular, in the batch
policy assumptions are deeply embedded in these mecp-

anisms it is difficult to, for example, “tweak” Bayou to . . :
support partial replication or to “tweak” Coda to supportOf updates comprising a start timénr V'V and a series
of writes, it then rolls back its RAS to beforgartVV

arbitrary topologies. Conversely, PRACTI introduces ex-" . . .
L oS L . using an undo log, and finally it rolls forward, merg-
plicit imprecise invalidations to allow ordering of all up- . . . o o
. : o . . _ing the newly received batch of writes with its existing
dates without assuming full replication or hierarchical

I . . L redo log and applying updates to the RAS. In contrast,
communication. Alternatively, object replication SyStemSPRACTI'S incremental loa exchanae protocol. which we
(PR-TI) dispense with this requirement by not providing 9 gep '

. . detail in the next subsection, applies each incoming write
cross-object ordering guarantees. . L
- ) . . to the current RAS state without requiring roll-back and
In addition to subsuming existing mechanisms,

PRACTI exposes new regions of the design space anrébll—forward of §X|st|r?g yvntgs.
Note that this variation is orthogonal to the PRACTI

potentially offers better trade-offs than existing protocol o
families. For example, a designer who wants consistenc pproac_h_: afull rephcatlon_ system such as Bayou CO.UId
is no longer forced to choose between using a desired® Medified to use our incremental log propagation
topology but with full replication on one hand versus mechanism, and PRACTI could be modified to use batch

using a desired replication strategy but with restricted®9 €xchange with roll-back and roll-forward. The ad-

topology on the other. Section 4 examines several exyantages of the incremental approach are efficiency (each

amples in detail and demonstrate that PRACTI can gait}/t€ is only applied to the RAS once) and concurrency

significant advantages compared to the alternatives. (@ N0de can process information from multiple contin--
uous streams.) The advantage of the batch approach is

. flexible conflict detection: Bayou writes containl@pen-
3 Implementatlon dencycheckprocedure that can read any object to deter-
We have constructed a prototype of the PRACTI systenmine if a conflict has occurred [35]; this works in a batch
written in Java and using BerkeleyDB [34] for per-nodesystem because rollback takes all of the system’s state
local storage. The prototype is fully functional but notto a specified moment in time at which these checks can
performance tuned. All features described in this papebe re-executed. For our incremental algorithm, we sim-
are implemented including local read/write/delete, flexi-ply detect write/write conflicts when a writgsevAccept
ble consistency, incremental log exchange, bound invalistamp (set by the original writer to equal the accept stamp
dations, remote read and prefetch, garbage collection aff the overwritten value) differs from the accept stamp
the log, checkpoint transfer between nodes, and crash rée invalidation overwrites in the RAS.

0g exchange used in Bayou, a node first receives a batch
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Self-tuning body propagation. In addition to support- that the loss of a node or a local cache replacement deci-
ing demand-fetch of particular objects, our prototypesion does not render some data unavailable or the storage
provides a novel self-tuning prefetching mechanism. Asystem unreliable. We provide a simple, low-level mech-
node« subscribes to updates from a ng@éy sending anism that supports a broad range of high-level policies
a list L of directories of interest along with #artVV  from maintaining a fixed number of “gold” copies of each
version vectors will then sendx any bodies it sees that object [31] to propagating all data to a well-provisioned
are in L and that are newer thartartVV. To do this, central server [19] or replicated server “core” [22, 23] to
(£ maintains a priority queue of pending sends: when aeplicating everything to everyone [30]. When an appli-
new eligible body arrives; deletes any pending sends of cation issues a bound write, it createbaund invalida-
older versions of the same object and then inserts a refion that includes the body of the write. Bound invalida-
erence to the updated object. This priority queue drainsons propagate through the system using log exchange
to « via a low-priority network connection that ensuresand controllers manage this propagation to meet replica-
that prefetch traffic does not consume network resourcetfon requirements. A controller can later issue messages
that regular TCP connections could use [37]. When do unbind a write, after which the invalidation can propa-
lot of “spare bandwidth” is available, the queue drainsgate without the body.

quickly and nearly all bodies are sent as soon as they are

inserted. But, when little “spare bandwidth” is available, Crash recovery. The RAS stores per-object state and
the buffer sends only high priority updates and absorbger-interest set state and acts as a checkpoint. The log
repeated writes to the same object. acts as a replay log to recover events not yet reflected in

. . . . _ the checkpoint.
Flexible consistency. We provide flexible consistency P

on a per-read/per-write basis by providing several rea :
and write interfaces. We provide the TACT flexible con-%'2 Core details _ o
sistency interface to bound order error and temporal erThe PRACTI core draws heavily from existing log-
ror [44]; we have not yet implemented TACT numerical €xchange literature [30, 44] with two key changes: the
error, but we see no fundamental barriers. AdditionallySeparation of invalidations and update bodies and the use
we include the option of a two phase write that first dis-Of imprecise invalidations. o .
tributes invalidations and later distributes bodies [24, 44]; Separating invalidations and bodies is straightforward.
using this optional interface, one can ensure that once As Section 2.1 describes, the system transmits causally-
write returns, no subsequent read can return the datagonsistent streams of invalidations using a streaming ver-
old value and that once a read returns the new value n&jon of the Bayou protocol, maintains/ALID/INVALID
read will return the old value. Additionally, as describedflag for each stored object, transmits prefetched and de-
above, arimprecise readskips consistency checks and mand fetched bodies in arbitrary orders, and delays ap-
provides causal coherence (ordering of updates for a sifplying bodies to the RAS until the corresponding invali-
gle item) rather than causal consistency. dation has been applied.
Write commitment.  As in Bayou [30], PRACTI pro- Imprecise invalidations, however, raise four additional
. C ) Y ” P issues that we address in the rest of this subsection: We
vides eventual consistency: for any wriie eventually L SN .
. . first define imprecise invalidations and describe how to
all nodes will agree on a total order of all writes pre- . .
. : . . form them. We next describe how nodes track which
cedingw. A node considers a writee committedwhen . .
o L interest sets ar®RECISEto enforce consistency. We
the node knowsu’s final position in the global total or-

der. For simplicity, we use Golding’s algorithm [15]: then describe how systems manage their local logs using

each node) maintains aurrentV'V version vector, and per-writer logs m_tersectpr,] andggp f|I.I|ng.to properly .
. merge data received on different invalidation streams. Fi-
each entryurrentV'V, stores the highest accept stamp . . o .
: S nally, we describe how imprecise invalidations allow in-
of any invalidation byn thatn has processed. Then, any

write whose accept stamp is less than the lowest entry iﬁremental checkpoint transfer among nodes.

currentV'V' is committed Supporting other write Com- g4 ming imprecise invalidations. PRACTI forms an
mitment protocols sugh as primary commit [30] or ‘_’Ot'imprecise invalidation/ by combining generalized in-
ing [21] would be str.a|ghtforward, but we have not im- validationsA and B. [ hasstart and end arrays with
plemented these variations yet. entries for every node in either A or B’s start, and
Bound writes. Separating invalidations from updates I.start, = min(A.start,, B.start,), andI.end, =
enables partial replication but also raises the issue of renax(A.end,, B.end,). Finally, I.target encompasses
liability: in Bayou, all nodes have copies of all data, butall objects encompassed bBlyand B’s targets

a PRACTI system must enforce an explicit policy deci- When a controller asks node to send a stream
sion about the minimum acceptable level of replication s®f invalidations to node3, the controller specifies two
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parameters that each filter the transmitted informagican advancéS.ipV'V. stream.prevV'V isinitialized
tion: startVV provides a filter on logical time, and to the stream’startV'V and advanced to includg.end
preciseFilter provides afilter on the ID space.replies  as eachyi is processed.

with a causally consistent stream of all invalidations For each general invalidatiog:, the log, the per-

it knows about that logically occurred aftetartV'V.  object state, and the interest set status must be up-
Invalidations whose target intersegtseciseFilter are  dated. Updating the per-object state was described in
sent as is (typically they are precise, but some may bgection 2.1, and we will discuss updating the log in a
imprecise), butx combines other invalidations into im- moment. The remaining issue is updating the per-interest
precise summaries as just described. This process is iBetPRECISEstate (i.e., updatingurrentV'V and one or
cremental and continuous—as new invalidations arrive ahorelpV V's). This state is updated in two phases.

a, a sends them on tG once all causally prior invalida-  First, gi's presence in the causal invalidation stream
tions have been sent. means that any interest set that WARECISEbefore
Interest set status. As Section 2.1 indicates, each nodeg\falsspségcﬁgga?{isniz t%;fs;ief‘?"/I;‘gf&f:;jggg ce

groups its objects intmterest setgind applies imprecise [S.IpVV. We advancd S.ipV' V" differently depending
invalidations to interest sets rather than individual object%n whethergi is a precise or imprecise invalidation. If

to (a) improve performance and (b) ensure liveness. Toi is precise, then there have been no imprecise invali-
accommodate different workloads across nodes, our pr‘g’ations bet\N’eetream prevVV andgi.start, and we
totype allows each node to independently group object ' . ’

into int t set dtod all lit and ioin int gdvanceTS.lpVV to includegi.end (note: gi.start =
INto Interest Sets and to dynamically Spit and join nter-; ., ;¢ gi is precise.) Conversely, ifi is imprecise, we

est sets in response to workload changes. To ensure Coﬁin only advancéS.IpV'V to just beforegi.start (i.e
sistency, a node must mark an interest|8&#PRECISE Vo : ISIpVV, = méf(IS IpVV,, gi Smﬁ' ~1)) 'Fi'_’
:IS. "= : s gt fo .

when a new imprecise invalidation intersects with it. Tonally, because the system now reflects informatiogiin

ensure I|v_ene_ss, when anode h_as later seen sufficient Pife always advanceurrentV'V to include theend time
cise invalidations, it must mark interest set as PRECISE ;

To explain how interest set status is tracked, we now

detail a ngdes_ algonthm for_processmg an NCoMING, 4 ancecurrentVV to includegi’s endtime but can at
stream of invalidation3. As indicated in Figure 2, each . Y :
; N o . . most advancé S.startV'V to just beforeyi’s starttime.
incoming invalidation stream consists of a logical S’tartlt is this difference that allows imprecise invalidations
time startV'V followed by a series of general invalida- .
tions i+ - ai such that anv invalidation whose start to make interest setd/PRECISE If we stopped here,
NS gL, gl - y _>~ > an imprecise invalidation would make both interest sets
time logically occurs aftestartVV and on whichgi; . . ) ]
causally depends appears befoi it overlaps and interest sets it does not ovellPRE

At thy P fthppl ith gf,e imple idea: . CISE The algorithm addresses this issue by buffering
¢ i etggeRé)CISeE?'?ﬁn m IS adS|mp € 10€a. an l'.n'each imprecise invalidation after it is first applied at its
erest set >tIT It has MISSed o Precise Invall- 141t time and applying a buffered invalidatibhagain
dations. Three variables are therefore central to Process: o ciream prevVV includesbi's end time (i.e., once

ing an invalidation stream: (1) Thglobal currentV'V ’_1?” gis whose start times precekis end time have been

Notice that an imprecise invalidatiofi will always

\t/)erilon vec;tor holds thellhyghe-l.s(; Itc?g|cal time obze;ve rocessed.) Buffered invalidatidi advanced S.ipV'V/
y the system across afl invalidations processed 1ro 0 includebi.end for any interest sekS that (a)bi.target

a.II strea{ns.l S(ZZ)VT‘?ep_e:j—.lnt?resttr—]sert].laﬁt ptrFC'.Se Ivtgr— doesnot intersect and that (b) iIPRECISEas of logi-
sion vector5.ipV'V) indicates the highest logical time cal time stream.prevV'V. Notice that by waiting until

for which interest set/'S' is PRECISE In particular , ; Lk P ;
) . . ' bi’s end time before advancing “nonoverlapping” invali-
I5.ipV'V holds the highest logical time such that all ob- dations to the end time, we avoid erroneously advancing

jects in interest sefS reflect all writes up ta S.lpV' V. IS.IpVV for an interest set that becomBdPRECISE
An interest set/ S is regarded a®RECISEif and only beﬁ/{/?eerbz‘ start andbi.end

if IS.IpVV = currentVV. Otherwise, the interest set . . .
. T - Finally notice that the algorithm above ensures that
may have missed one or more precise invalidations, anfti

we regard the interest set ’dPRECISE (3) Theper- T an mtergst setr5 b_e_comeslMPRECISE It can be
. . made precise by receiving a stream that contains all pre-
stream stream.prevV'V variable always holds the logi-

cal time justbeforethe next invalidation in the stream is cise invalidations that occurred betweé./pV’V and

applied. Each invalidationi is processed in the context currentVV and that targetsS.

of the logical time at which it was applied to determine if L R .
Log update. Imprecise invalidations complicate log

3The extended technical report [11] includes detailed pseudo-coddPdates. EOI’ example, a noqemay receive different
for this invalidation stream processing algorithm. subsets of information from different peefsand 5. n
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startVV[y: 0
gi:<ly § (AB)

sartyV[y:0 Ol
gi<y y A =
gi:<l &y (A.B)> currenty'V 100,0mitvV 1000 T 00 omitvy 0

CUNVVY =8 | gi: <4y g (B,C)> | CUVVY =8 {Ip\//CqOO,O}[Ip\//\EI;qOO,O}[lp\//\?/ 100,0 77777777777777777777777777 {Ipv/e/;,o Mlp\//\E/!/;,D Mlp\//\%,o }
AlpVW[} = 8 AlpW[§=1 | IMPRECISE  |lid.acoep?\ id. accept?)| [d. accepl®| g = st piancsiontaganr> L. accept)) fic accep\ i eccep
/ B.IpVV[yl = 3 B.IpVV[yl = 3 | IMPRECISE ST | )
AVV[Y: 0 ClpVV[y = 5 | IMPRECISE e acoentl e e
gii<ly I A> . X PRECISE IpVV 1000|| IpVV 00 || IpVV 0,0
gi: <4y 8 (B,C)> \;'g| = 0,0 end=100,0 targete+>  \ 1, accept]*}{ [id, accept]}{ [id, accept]?
HES :
(a) Naive log exchange. preeee K ¥ Ilm/igelggo ,,,,,,,,,,,,,,,, T [ T o
FH Y ey vy o B T
3 <4 5 & [ -romimomss e s oY s 00
curVV[ = 8 i- curVV[y =8 _ .
A.IpVV\[J _g| S BO A.IpW\[]\}: 8 | PRECISE @l - s {'{f’ﬂcg{fﬂ'{ﬁ%fl'@{%ﬁ
B.IpVV[\] = 3 B.IpVV[\] = 3 | IMPRECISE . .
@M oo c_,';w%‘fa - & | IMPREGISE Fig. 4: Incremental checkpoints fromto 3.
g:<y ¥ A> | p. D.IpVV[l = 8 ) PRECISE . . . . .
g <y & (BO> bine information received across multiple streams. In
(b) Log exchange with gap-filling and intersection. particular, we maintain the invariant that there is at most

Fig. 3: Example log exchange when nogéirst receives a  gne invalidation that covers any moment in time in a per-
log from «, then receives a log frond, and then sends the \yriter log. We intersect two general invalidatiomandb
combined log t@y. Generalized mvahqlatlons ha_lve three fields: by replacing them with up to three general invalidations:
<§:ériz7ruggrritg etw>e' Sth:)te thalt all writes Wer? ;Ssu'fld bynode o first covers the time from the earlier start to the later
Jector‘s. Y W only's component for alt VrsIon  giart and targets the objects targeted by the earlier start;
) o o . the second covers the time from the later start to the ear-
must ensure that imprecise invalidations received feom |ier end and covers targets represented by the intersection
do not “mask” precise invalidations received frghand ot ; andb’s targets; and the third covers the time from the

vice versa. Notice that the algorithm just described Upggylier end to the later end and covers the targets of the
dates a node’s local state by interpreting egchelative  |5¢er end.

to a per-streanstream.prevV'V, which allows the al- As Figure 3-(b) illustrates, when a node sends a

gorithm to infer that there are no missing invalidationsgiream of invalidations to another node, it discards gap-

betweenstream.prevVV andgi. But, if 7 were sim-  fiing invalidations and it combines per-writer invalida-
ply to store eaclyi in its log, some of this valuable “no  ions into multi-writer invalidations.

missing invalidations” information could be lost. Then,
as Figure 3-(a) illustrates, ifwere to send its log to some Incremental checkpoint transfer. Imprecise invalida-
other node’, then even ify receives the samg@s asn, §  tions yield an unexpected benefit: incremental check-
could end udMPRECISEwheren is PRECISHe.g., for  point transfer.
objectsA). As in Bayou, PRACTI nodes can garbage collect any
In order to ensure that a node can transmit all informaeommitted prefix of their logs [30]. Under Bayou, if a
tion received including both the generalized invalidationshode« garbage collects log entries older thanmitV'V
and the information implicit in the incoming invalidation and another nodg requests a log exchange beginning
stream, we augment our logs in three ways. before «.omitV'V, thena must perform a full check-
First, each node maintains separpt-writer logs  point transfer of its state for all objects; this transfer
when a node insertg: into its log, it first decomposes bringsg’s state up tax.currentVV.
gi into per-writer general invalidations and then inserts Rather than transferring information about all ob-
the per-writer pieces into separate logs. Decompoging jects, PRACTI incremental checkpoints can include log-
into per-writer general invalidationgi,, is simple: for ical timestamp information for individual interest sets.
each server in gi.start, generateyi, with start =  As Figure 4 illustrates, each incremental checkpoint
gi.start,, end = gi.end,, andtarget = gi.target. includes an imprecise invalidation that covers all ob-
Second, each per-writer log usgap fillingto explic-  jects from the receiver'surrentVV up to the sender’s
itly encode the knowledge that each incoming stream isurrentV'V and an interest set tranfer that includes the
causally consistent and is therefore FIFO consistent fosender'sipV'V and per-object logical timestamps for
each writer. When a node insets, into its per-writer  some interest sefS. The receiver'scurrentVV and
log for a, if gi, is newer than the newest element in the/S.IpV'V' are thus brought up to include the sender’s
log, it fills any gap betweepi,.start and the existing currentVV andIS.[pVV.
element by inserting a new gap-filling invalidation witha  Overall, this approach makes checkpoint transfer
start stamp one larger than the highest existing end stamp, much smoother process under PRACTI than under
an end stamp one smaller thai),.start, and an empty Bayou: the receiver can receive an incremental check-
target. point for a small portion of its ID space and then ei-
Third, each per-writer log usdatersectionto com-  ther background fetch checkpoints of other interest sets
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or fault them in “on demand” as Figure 4 illustrates. .| Full Replication ]
3.3 Controller -

Our PRACTI techniques cleanly separate mechanism ;S) —

from policy in order to support a broader range of replica-  § | SeParate nvalidationsibata_—

tion, topology, and consistency policies than made avail- E

able by current techniques. Our implementation there- z ¢

fore seeks to serve as a “replication microkernel” that

provides basic low level mechanisms over which higher- imprecise Invalidations

level services can be built. As Figure 1 illustrates, the o Files of Interest (96)
PRACTI prototype achieves this goal by splitting the de- Fig. 5: Impact of locality on replication cost.

sign into acoreand acontroller.

The PRACTI core’s mechanisms enforce their Safenpetter trade-offs than are available to any existing system
properties regardless of what incoming messages thd@' SOme important environments.
see. Our cores use an asynchronous style of communi- 10 provide a framework for exploring these issues, we
Cation in Wh|Ch incoming messages or streams are Selfirst fOCUS on partial rep|icati0n in 4.1. We then examine
describing—the rules for processing each incoming megopology independence in 4.2. Finally, we examine the
sage are completely defined, and interpreting a messa§€sts and benefits of flexible consistency in 4.3.
does not require knowledge of what request triggered it . ..
transmissio?w. Any machilge can therefgre sendgegmy Iege%'l Partial replication
protoco| message to any other machine at any time. In this section, we focus on partial replication. We find

The controller implements policies that focus on live-that PRACTI’s support for partial replication dramati-
ness (including performance and availability.) The con-cally improves its performance compared to the full repli-
troller's basic job is to ensure that the right cores sendation protocols from which it descends for three rea-
useful data at the right times in order to do such thing$ons:
as satisfy a read miss, prefetch data to improve perfot- Locality of Referencepartial replication of bodies and
mance, or provision a node’s local storage for discon- invalidations careachreduce storage and bandwidth
nected operation. Controllers accomplish this by sending costs by an order of magnitude for nodes that care
requests to trigger communication between cores. about only a subset of the system’s data.

The controller is defined by its interface. Within2. Bytes Die Young:partial replication of bodies can
this interface, different implementations provide differ- ~ significantly reduce bandwidth costs when “bytes die
ent policies. Controllers use three sets of interfaces to ac- young” [5].
complish their work: a core calls a controlleirgormin- 3. Self-tuning Replicationself-tuning replication mini-
terface to inform the controller of important local events Mizes response time for a given bandwidth budget.
like message arrival or read miss, a controller calls a rer

mot re'gemote r sinter to triqger sends of Locality of reference. Different devices in a distrib-
mote core semote requestieriace 1o trigger Sends ol 0 system often access different subsets of the sys-
invalidation streams or bodies, and a controller calls it

, . . . Yem’s data because (a) different users use different de-
core’smanagemeninterface for maintenance functions

; . . o > vices (e.g., in a corporation, user A's laptop may access
like garbage collection and interest set split/join. Addi- (€. P ptop may

tionallv. a set of controllers implementing a specific d.S_dif'ferent files than user B’s laptop) and (b) different de-
: Y, 'mp NG & SPECINC IS~ ;00 may have capacity or functionality constraints that

tributed policy may communicate with one another usmqnfluence the data that they access (e.g., a palmtop de-

policy-specific interfaces. We provide several concret:.?/ice may be useful for storing phone numbers and text
example controllers in Section 4 and describe the inter-

, - notes but it may be less well suited for browsing a spread-
face in more detall in the extended report [11). sheet or editing a home video.) In such environments,

. some nodes may access 10%, 1%, or less of the sys-
4 Evaluation tem’s data, and partial replication may yield significant
In this section we evaluate the properties of our PRACTimprovements in both bandwidth to distribute updates
prototype. The flexibility provided by the PRACTI and space to store data.
mechanisms provides two significant advantages over Figure 5 examines the impact of locality on replica-
past systems. First, by disentangling mechanism frontion cost for three systems: a full replication system sim-
policy, PRACTI represents a single flexible system thatlar to Bayou, a partial-body replication system that sends
can match systems that have been optimized for specifall precise invalidations to all nodes but that only sends
topology, replication, or consistency environments. Secsome bodies to a node, and a partial-replication system
ond, by providing a general substrate, PRACTI enablethat sends some bodies and some precise invalidations to
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Fig. 6: Bandwidth cost of distributing updates as the number ofig 7. Read response time as available bandwidth varies for
writes to a file between reads varies. full replication, demand reads, and self-tuning replication.

a node but that summarizes other invalidations using im\?\/hen bytes die young. For example, when the write to
precise invalidations. In this benchmark, we overwrite dead ratio is 2. PRACTI uses 55% 0} the bandwidth of
collection of 1000 files of 10KB each. A node subscribes replication’ and when the ratio is 5. PRACTI uses

to invalidations and updates for the subset of the files tha§ 40, * At ratios exceeding 20, PRACTI's gains exceed an
are “of interest” to that node. The x axis shows the frac- '

. order of magnitude.
tion of updates that belong to a node’s subset, and the y
axis shows the total bandwidth required to transmit thes&elf-tuning replication. PRACTI's separation of in-
updates to the node as measured on the prototype. validations from bodies enables a novel self-tuning data
This experiment shows that partial replication of bothprefetching mechanism described in Section 3. As a re-
bodies and invalidations is important when devices exsult, systems can replicate bodies aggressively when net-
hibit locality of interest—each of these factors can yieldwork capacity is plentiful and replicate less aggressively
order of magnitude improvements. When a node subwhen network capacity is scarce.
scribes to between 10% and 100% of data, partial repli- Figure 7 illustrates the benefits of this approach by
cation of bodies allows the bandwidth cost of replicationcomparing the read response time for three replication
to fall nearly linearly with the size of the subscription policies: Demand Fetclreplicates precise invalidations
set. But, for smaller subscription sets full replication ofto all nodes but sends new bodies only in response to de-
30 to 50-byte precise invalidations limits gains. Con-mand requestReplicate Allreplicates both precise in-
versely, PRACTI's imprecise invalidations allow replica- validations and all bodies to all nodes by marking all in-
tion bandwidth cost to fall nearly linearly with subscrip- validations asound andSelf Tuningreplicates precise
tion set size. invalidations to all nodes and has all nodes subscribe for
Note that Figure 5 shows bandwidth costs of repncaall new bodies via the self-tuning mechanism. For this
tion. Partial replication provides similar improvements€experiment, we model a producer/consumer access pat-
for space requirements (graph omitted for space.) A€rn where one node writes and another reads. We use
PRACTI node need not store a body if an object lies ind synthetic workload where the read:write ratio is 1:1,
anIMPRECISEinterest set or if the object BNVALID. ~ reads are Zipf distributed across files£ 1.1), and writes
Similarly, a node does not track per-object metadata fo@re uniformly distributed across files. We use Dummynet

IMPRECISEnterest sets that it does not plan to access.to vary the available network bandwidth from 0.75t0 5.0
times the system'’s average write throughput.

Bytes die young. Bytes are often overwritten ordeleted  As Figure 7 shows, when sufficient bandwidth is
soon after creation. For example, in an academic enviavailable, self-tuning replication can improve response
ronment, between 50% and 70% of written data surviveéime by up to a factor of 20 compared Bemand-Fetch
for more than 1 minute, and between 10% and 60% surA key challenge, however is ensuring that prefetching
vive for more than 10 minutes [5]. Full replication sys- does not overload the system. Whereas PRACT!’s self-
tems send all writes to all servers, even if some of theuning approach adapts bandwidth consumption to avail-
writes are quickly made obsolete. In contrast, PRACTlable resourcefReplicate Allsends all updates regardless
replication can send invalidations separately from bodef workload or environment. This mak&eplicate Alla
ies: if a file is written multiple times on one node before“poor neighbor"—it attempts to consume bandwidth cor-
being read on another, overwritten bodies need never hesponding to the current write rate for prefetching even
sent. if other applications could make better use of the net-
To examine this effect, we randomly write a set of fileswork. And even the replication system suffers: when
on one node and randomly read the same files on anothbandwidth equals the average write rate, 37%Repli-
node. As Figure 6 shows, PRACTI’s gains are significantate Alls requests see stale data (compared to less than
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Fig. 8: Synchronization time among devices for different network topologies and protocols.
4% forSeIf-Tuning) [ [ Storage [ Dirty Data [ Wireless [ Internet |
Office server 1000GB 100MB 10Mb/s 100Mb/s
. Home desktop| 10GB 10MB 10Mb/s 1Mb/s
4.2 TOpOlOgy mdependence Laptop 10GB 10MB 10Mb/s | 50Kb/s
; ; ; ; _ 1Mb/s Hotel only
In this section we examine topology independence by ex Paimiop THoME | I50KE Vb A

amining two environments, a mobile data access system
that is distributed across multiple devices and a wide-
area-network file system designed to make it easy fomachine and laptop each store 1% of that data, and a
PlanetLab and Grid researchers to run experiments thatser’'s palmtop stores 1% of a user’s data. Note that due
rely on distributed state. In both cases, PRACTI's com+o resource limitations, we store only the “dirty data” on
bined partial replication and topology independence aleur test machines, and we use desktop-class machines
lows it to dominate client-server and full replication ap- for all nodes; we control the network bandwidth of each
proaches. In particular, PRACTI's support for topologyscenario using a library that throttles transmission.
independence yields advantages over hierarchical topolo- Figure 8 charts the time to synchronize dirty data
gies for two reasons: among machines in four scenarios: Riane—the user
1. Adapt to changing topologie®RACTI can make use iS 0n a plane with no Internet connection, Hptel—
of the best paths among nodes that want to synchroniZ8e user’s laptop has a 50Kb/s modem connection to the
their data. Internet, and (CHome—the user’s home machine has a
2. Adapt to changing workloadsPRACTI can optimize 1Mb/s connection to the Internet. (Due to space con-
communication paths to, for example, use direct nodestraints, we omit case (dpffice—the user’s office has
to-node transfers for some objects and distributiora 100Mb/s connection to the Internet.) The user carries
trees for others. her laptop and palmtop to each of these locations and co-

This section focuses on topology, and demonstratecated .ma_chines_ communicate via wireles_s network at
PRACT!I's advantages over topology-restricted hierarchiSPeeds indicated in Figure 9. For each location, we mea-
cal systems. For completeness, our graphs also corgyre time for machines to exchange updates: ()P
pare against topology-independent, full replication systh® palmtop and laptop exchange updates, (2)Pthe
tems; the data indicate that topology independence witH?@lmtop and home machine exchange updates (3L

out partial replication is not an attractive alternative. Dugtn€ laptop sends updates to the home machine, {4):0

to space limits, we do not further discuss this subset of€ office server sends updates to all other machines.
the results. In comparing the optimized PRACTI system to a

client-server system, topology independence has signif-
Mobile storage. Figure 8 evaluates PRACTI in the jcant gains when the machines that need to synchronize
context of a mobile storage system that distributes datgye near one another but far from the server: in the iso-
across palmtop, laptop, home desktop, and office servgstedplanelocation, the palmtop and laptop can not syn-
machines. We compare PRACTI to a client-server Codachronize at all in a client-server topology; in thiotel
like system (that supports partial replication but that dis{pcation, direct synchronization between these two de-
tributes updates via a central server) [22] and to a fullyices is an order of magnitude faster than synchronizing
replication Bayou-like system (that can distribute Up-yia the server (1.7s v. 66s); and in the home location di-
dates directly between interested nodes but that requiregctly synchronizing co-located devices is between 3 and

full replication) [30]. All three systems are realized by 20 times faster than client-server synchronization.
implementing different controller policies over PRACTI.

As summarized in Figure 9 our synthetic workloadWAN-FS for Researchers. Figure 10 evaluates a
models a department file system that supports mobilitywide-area-network file system called PLFS designed for
an office server stores data for 100 users, a user’s honilanetLab and Grid researchers. The controller for PLFS

Fig. 9: Configuration for “mobile storage” experiments.
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mproved consistency trade-offs. PRACTI improves
he range of consistency available for replication.
Gray [16] and Yu and Vahdat [43] show a trade-off:
aggressive propagation of updates improves consistency
and availability but can also increase system load. Yu's
study finds an order of magnitude improvement in un-
=gvailability for some workloads when using aggressive
(a) 50 distributed nodes + remote server ELIS 50 cluster nodes anuzivﬁote wmagation of updates Compared to Iazy propagation and
Fig. 10: Execution time for the WAN-Experiment benchmark. Gray shows that the number of conflicts can rise with the
square of propagation delay.
is simple: for invalidations, PLFS forms a multicast tree  pRACT] has three features that improve the overhead
to distribute all preCise invalidations to all nodes. And,versus Consistency and avaiiabiity trade-offs: (1) Sepa_
when anINVALID file is read, PLFS uses a DHT-based ration of invalidations from bodies allows invalidations
system [40] to find the nearest copy of the file; not onlyto propagate aggressively, (2) streaming log exchange
does this approach minimize transfer latency, it effec{rather than batch [30]) allows nodes to continuously
tively forms a multicast tree when multiple concurrentypdate one another when they are connected, and (3)
reads of a file occur [3]. Like Shark [3], PLFS is de- self-tuning body propagation maximizes the amount of
signed to be convenient for allowing a user to export dat&a||D data at a node for a given consistency requirement
from her local file system to a collection of remotely run- gng pandwidth budget.
ning nodes. However, u_nlike the read-only Shark system, \ne examine a range of consistency requirements and
PLFS supports read/write data. network failure scenarios via simulation (all other exper-
We examine a 3-phase benchmark that represents ruinents in this paper are prototype measurements.) We
ning an experiment: in phaselisseminateeach node use a synthetic read/write workload with the same para-
fetches 10MB of new executables and input data fronimeters as the workload used in Fig 7. We use an average
the user's home node; in phaseP2ocess each node network path unavailability of 0.1% with Pareto distrib-
writes 10 files each of 100KB and then reads 10 filesuted repair time R(t) 2 — 15¢=°8 [10].
from randomly selected peers; in phaseé8st-process In Figure 11-a we measure the best order error that
eaCh node WriteS a 1MB Output f||e and the home nod%an be maintained for a given bandw|dth budget Or-
reads all of these output files. We compare PLFS to threger error constrains the number of oustanding uncom-
systems: a client-server system, client-server with coopmitted writes [44]. We compare tHEACT Aggressive
erative caching of read-only data (e.g., a Shark-like syspolicy [43] to aPRACTI Prefetclpolicy that aggressively
tem [3]), and server-replication (e.g., a Bayou-like sys-jstributes invalidations as in TACT’s policy but that dis-
tem [30]). All 4 systems are implemented over PRACTI.tributes bodies using the self-tuning approach. PRACT!I
Figure 10 shows performance for an experiment runreduces the bandwidth needed to maintain reasonable
ing on (a) 50 distributed nodes each with a 5.6Mb/s coneonsistency by a factor of 3 compared®aCT Aggres-
nection to the Internet (we emulate this case by throttlingiveand improves the consistency bounds attainable for
bandwidth) and (b) 50 “cluster” nodes at universky  some bandwidth budgets by orders of magnitude.
with a switched 100Mbit/s network among them and a Figure 11-b plots system unavailability for an order
shared path via Internet2 to the origin server at univererror of 100 as bandwidth varies. Following Yu and Vah-
sity Y. PLFS’s combination of partial replication and dat’s methodology [43], we say the the systenavsil-
topology independence allows it to dominate the othegble to a read or write request if the request can issue
designs. Compared to client/server, it is faster in botlwithout blocking and the system imavailableif the re-
the Dissemination and Process phases due to its muliguest must block in order to meet the consistency target.
cast transmission and direct data transfer. Compared hen bandwidth is limited, PRACTI dramatically im-
full replication, itis faster in the Process and Post-procesgroves system availability under consistency constraints
phases because it only sends the required data. And coempared to full replication.
pared to cooperative caching of read only data, it is faster
in the Processing phase because data can be transfer@dnsistency overheads. Different applications require
directly between nodes. different consistency and coherence guarantees. Provid-
ing stronger guarantees than needed may hurt system
. . availablity [8] or response time [27], and distributing
4.3 Arbitrary consistency more consistency information than needed can increase
This subsection first examines the benefits and then exetwork overheads.
amines the costs of supporting flexible consistency. Our PRACTI prototype addresses the first two issues
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Fig. 11: Consistency trade-offs (a-b) and costs (c).

by shipping bookkeeping information around the systenherence. When there is no locality, the cost is higher, but
for all updates in the form of precise invalidations andin the worst case in these experiments imprecise invali-
imprecise invalidations but then only enforcing consis-dations contribute an additional 20 bytes per average up-
tency constraints on a flexible, per-request basis by spedaitate. Overall, the difference in invalidation cost is likely
fying whether a read should be precise (consistent) or imto be small relative to the toal bandwidth consumed by
precise (coherent) and by specifying TACT requirementshe system to distribute bodies.

on reads and writes [44].
o - o _ 5 Related work
Distributing sufficient bookkeeping information to o ) .

support demanding requests does impose a modest ng(?pllcatlon is fundamentally difficult. For example

whether requests require the information or not. In par>i€9€! [32] proves vvhat has come to be known as
ticular, object replication systems [17, 31] do not pro-the CAP dilemma [8]: a replication system that pro-
vide cross-object consistency guarantees. In the conte}{des sequentialonsistency cannot simultaneously pro-
of the PRACTI protocol, if all applications in a system vide 100%Availability in an environment that can be

only care about coherence guarantees, the system codi@titioned. Similarly, Lipton and Sandberg describe
completely omit imprecise invalidations. fundamental performance limitations for distributed sys-

. . .. tems that provide sequential consistency [27]. As a
Figure 11-c quantifies the prototypes cost to dlstnbutqesun' systemgnust make compromises or optimize

both precise and imprecise invalidations (in order to SUPtr gpecific workloads. Unfortunately, these workload-

port consistency) versus the cost to distribute only pregpeific compromises are often reflected in system mech-
cise invalidations for the subset of data of interest and,,isms not just their policies.

omitting the imprecise invalidations (and thus only Sup- |5 particular, state of the art mechanisms allow a de-
porting coherence.) Note that the cost of imprecise invalgigner o retain full flexibility along at most two of the
idations depends on the workload: if there is no localityy e dimensions of replication, consistency, or topology
and writers tend to quickly alternate between writing Ob'policy. Section 2.2 compares PRACTI with existing PR-
jects of interest and objects not of interest, then the imp [2,7,12, 19, 22, 29], AC-TI [15, 21, 24, 30, 44], and
precise invalidations “between” the precise invalidationsp ./ [1'7 él] épp,roac,hes. As noted there  these sys-
will cover relatively few updates and save relatively lit- tams can be seen as special case “projections” of the gen-
tle overhead but if writes to different interest sets arriveg 5] PRACTI mechanisms. so ideas relating to PRACTI's
in bursts then the system will generally be able to accupechanisms can be seen in these systems. For example,
mulate large numbers of updates into imprecise invalidag,e separation of invalidations from bodies is standard
tions. We vary the fraction of data “of interest” to a node;, gjient-server systems [19, 29], and imprecise invalida-
on the x axis and show the invalidation bytes received pefions are closely related to messages sent by client-server
write on the y axis. All objects are equally likely to be gysiems during callback-state recovery [4, 41]. Several
written by a set of remote nodes, but the locality of W”tessystems have noted the value of separating data and meta-
varies: the “No Locality” line shows the worst case sce-y5i4 paths [2, 31].
nario, With_no locality across writes, and_the_z “Locqlity Like PRACTI, the Deceit file system [32, 33] provides
burst=10" line shows the case when a write is ten timeg, qexihle substrate that subsumes a range of its contem-
more likely to hit the same interest set as the previou,rary replication systems. Deceit, however, focuses on
write than to hit a new interest set. replication across a handful of well-connected servers,
When there is significant locality for writes, the costand it therefore makes very different design decisions
of distributing imprecise invalidations is small: impre- than PRACTI. For example, each Deceit server maintains
cise invalidations to support consistency never add mora list of all files and of all nodes replicating each file,
than 20% to the bandwidth cost of supporting only co-communication among servers is via an Isis [6] group for



Draft — See http://www.cs.utexas.edu/users/dahlin/papers.html for the current version

each distinct subset of servers, and all nodes replicatingo]
a file receive all bodies for all writes to the file.

Microsoft has announced that a new replication sys
tem, WIinFS, will appear at some future date [38].
will reportedly support synchronization across multiple

It

(10]

nodes, however no detailed technical description of thé'll
protocol have been published. One report [39] suggests
that the system transfers sets of updated items “rather
than maintaining and synchronizing a log of each indi-[12]

vidual action,” which may indicate that WIinFS takes a
PR-TI approach.
The current PRACTI mechanisms support a broal

élB]

range of replication techniques such as client/servefl4]

server replication, object replication, 2-phase commit

and TACT, but it is not clear if the current protocols
can easily support some other replication techniques sughe]
as quorum replication [14] or Byzantine storage [1, 28].

Broadening the PRACTI approach to include such techl*’]
nigues may be interesting future work.

6

Conclusion

[15]

(18]

In this paper, we present the first PRACTI (Partial Repli-[19]
cation, Arbitrary Consistency, and Topology Indepen-
dence) mechanism for replication in large scale systems.
These new mechanisms allow construction of systemg0]
that replicate or cache any data on any node, that pro-
vide a broad range of consistency and coherence guasy)
antees, and that allow any node to communicate with
any other node at any time. Evaluation of our prototypd22]
suggests thaby disentangling mechanism from policy,
PRACTI replication enables better trade-offs for system,;
designers than possible with existing mechanisiBg.
cleanly separating mechanism from policy, we speculate
that PRACTI may serve as the basis fourified repli-
cation architecturehat simplifies the design and deploy-
ment of large-scale replication systems.
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