
NPS: A Non-interfering Deployable Web Prefetching System∗

Ravi Kokku Praveen Yalagandula Arun Venkataramani Mike Dahlin
Department of Computer Sciences, University of Texas at Austin

{rkoku, ypraveen, arun, dahlin}@cs.utexas.edu

Abstract

We present NPS, a novel non-intrusive web
prefetching system that (1) utilizes only spare re-
sources to avoid interference between prefetch and de-
mand requests at the server as well as in the net-
work , and (2) is deployable without any modifica-
tions to servers, browsers, network or the HTTP pro-
tocol. NPS’s self-tuning architecture eliminates the
need for traditional “thresholds” or magic numbers
typically used to limit interference caused by prefetch-
ing, thereby allowing applications to improve benefits
and reduce the risk of aggressive prefetching.

NPS avoids interference with demand requests by
monitoring the responsiveness of the server and ac-
cordingly throttling the prefetch aggressiveness, and
by using TCP-Nice, a congestion control protocol
suitable for low priority transfers. NPS avoids the
need to modify existing infrastructure by modifying
HTML pages to include JavascriptTM code that is-
sues prefetch requests and by wrapping the server in-
frastructure with several simple external modules that
require no knowledge of or no modifications to the in-
ternals of existing servers. Our measurements of the
prototype under a web trace indicate that NPS is both
non-interfering and efficient under different network
load and server load conditions. For example, in our
experiments with a loaded server with little spare ca-
pacity, we observe that a threshold-based prefetching
scheme causes response times to increase by a fac-
tor of 2 due to interference, whereas prefetching using
NPS decreases response times by 25%.

1 Introduction

A number of studies have demonstrated the bene-
fits of web prefetching [12, 17, 24, 25, 32, 33, 42, 52].
And the attractiveness of prefetching appears likely

∗This work was supported in part by the Texas Advanced
Research Program, the IBM Center for Advanced Studies, and
an IBM University Partnership Award. Dahlin was also sup-
ported by a Sloan Research Fellowship.

to rise in the future as the falling prices of disk stor-
age [14] and network bandwidth [41] make it increas-
ingly attractive to trade increased consumption of
these resources to improve response time and avail-
ability and thus reduce human wait time [7].

Despite these benefits, prefetching systems have
not been widely deployed because of two concerns:
interference and deployability. First, if a prefetch-
ing system is too aggressive, it may interfere with de-
mand requests to the same service (self-interference)
or to other services (cross-interference) and hurt over-
all system performance. Such interference may occur
at the server, in the communication network or at
the client. Second, if a system requires modifications
to the existing HTTP protocol [19] , it may be im-
practical to deploy. The large number of deployed
clients and networks in the Internet makes it difficult
to change clients, and the increasing complexity of
servers [23, 26, 28, 46, 55] makes it difficult to change
servers. What we therefore need is a prefetching sys-
tem that (a) avoids interference at clients, networks,
and servers and (b) does not require changes to the
HTTP protocol and the existing infrastructure (client
browsers, networks and servers).

In this paper, we make three contributions. First,
we present NPS, a novel non-interfering prefetching
system for the web that – (1) avoids interference by
effectively utilizing only spare resources on the servers
and the network and (2) is deployable with no mod-
ifications to the HTTP protocol and existing infras-
tructure. To avoid interference at the server, NPS
monitors the server load externally and restricts the
prefetch load imposed on it accordingly. To avoid in-
terference in the underlying network, NPS uses TCP-
Nice for low-priority network transfers [51]. Finally,
it uses a set of heuristics to control resource usage at
the client. To work with existing infrastructure, NPS
modifies HTML pages to include JavaScriptTM code
to issue prefetch requests, and wraps the server infras-
tructure with simple external modules that require no
knowledge of, or no modifications to the internals of
existing servers. Our measurements of the prototype
under real web load trace indicate that NPS is both
non-interfering and efficient under different network

and server load conditions. For example, in our exper-
iments on a heavily loaded network with little spare
capacity, we observe that a threshold-based prefetch-
ing scheme causes response times to increase by a fac-
tor of 7 due to interference, whereas prefetching using
NPS contains this increase to less than 30%.

Second, and on a broader note, we propose a self-
tuning architecture for prefetching that eliminates
the need for traditional “threshold” magic numbers
that are typically used to limit the interference that
prefetching inflicts on demand requests. This archi-
tecture divides prefetching into two separates tasks –
(i) prediction and (ii) resource management. The pre-
dictor proposes prioritized lists of high-valued docu-
ments to prefetch. The resource manager limits the
number of documents to prefetch and schedules the
prefetch requests to avoid interference with demand
requests and other applications. This separation of
concerns has three advantages − (i) it simplifies the
design and deployment of prefetching systems by elim-
inating the need to choose appropriate thresholds for
an environment and update them with changing con-
ditions, (ii) it reduces the risk of interference caused
by prefetching that relies on manually set thresholds,
especially during periods of unanticipated high load,
(iii) it increases the benefits of prefetching by prefetch-
ing more aggressively than would otherwise be safe
during periods of low or moderate load. We believe
that these advantages would also apply to prefetching
systems in many environments beyond the web.

Third, we explore the design space for building
a web prefetching system, given the requirement of
avoiding or minimizing changes to existing infrastruc-
ture. We find that it is straightforward to deploy
prefetching that ignores the problem of interference,
and it is not much more difficult to augment such a
system to avoid server interference. Extending the
system to also avoid network interference is more in-
volved, but doing so appears feasible even under the
constraint of not modifying current infrastructure.
Unfortunately, we were unable to devise a method
to completely eliminate prefetching’s interference at
existing clients: in our system prefetched data may
displace more valuable data in a client cache. It ap-
pears that a complete solution may eventually require
modifications at the client [6, 8, 44]. For now, we de-
velop simple heuristics that reduce this interference.

The rest of the paper is organized as follows. Sec-
tion 2 discusses the requirements and architecture of
a prefetching system. Sections 3, 4 and 5 present the
building blocks for reducing interference at servers,
networks and clients. Section 6 presents the prefetch
mechanisms that we develop to realize the prefetch-
ing architecture. Section 7 discusses the details of our
prototype and evaluation. Section 8 presents some
related work and section 9 concludes.

2 Requirements and Alternatives

There appears to be a consensus among researchers
on a high level architecture for prefetching in which
a server sends a list of objects to a client and the
client issues prefetch requests for the objects on the
list [9, 36, 42] . This division of labor allows servers to
use global object access patterns and service-specific
knowledge to determine what should be prefetched,
and it allows clients to filter requests through their
caches to avoid repeatedly fetching objects. In this
paper, we develop a framework for prefetching that
follows this organization and that seeks to meet two
other important requirements: self tuning resource
management and deployability without modifying ex-
isting protocols, clients, proxies, or servers.

2.1 Resource Management

Services that prefetch should balance the benefits
against the risk of interference. Interference can take
the form of self-interference, where a prefetching ser-
vice hurts its own performance by interfering with its
demand requests, and cross-interference, where the
service hurts the performance of other applications
on the prefetching client, other clients, or both.

Limiting interference is essential because many
prefetching services have potentially unlimited band-
width demand, where incrementally more bandwidth
consumption provides incrementally better service.
For example, a prefetching system can improve hit
rate and hence response times by fetching objects
from a virtually unlimited collection of objects that
have non-zero probabilities of access [5, 8], or by up-
dating cached copies more frequently [10, 50, 52].

Interference can occur at any of the critical re-
sources in the system.

• Server: Prefetching consumes extra resources on
the server such as processing time, memory space
and disk.

• Network: Prefetching causes extra data packets
to be transmitted over the network, potentially
increasing queuing delays and packet drops.

• Client: Prefetching results in extra processing at
clients. Furthermore, aggressive prefetching can
pollute a browser’s memory and disk caches.

A common way of achieving balance between the
benefits and costs of prefetching is to select a thresh-
old and prefetch objects whose estimated probability
of use before modification or eviction from the cache
exceeds that threshold [17, 29, 42, 52]. There are at
least two problems with such “magic number”-based
approaches. First, it is difficult for even an expert
to set thresholds to optimum values to balance costs
and benefits—although thresholds relate closely to the

benefits of prefetching, they have little obvious rela-
tionship to the costs of prefetching [7, 21]. Second, ap-
propriate thresholds to balance costs and benefits may
vary over time as client, network, and server load con-
ditions change over seconds (e.g., changing workloads
or network congestion [56]), hours (e.g., diurnal pat-
terns), and months (e.g., technology trends [7, 41]).

Our goal is to construct a self-tuning resource mod-
ule that prevents prefetch requests from interfering
with demand requests. Such an architecture will
simplify the design of prefetching systems by sepa-
rating the tasks of prediction and resource manage-
ment. Prediction algorithms may specify arbitrarily
long lists of the most beneficial objects to prefetch
sorted by benefit, and the resource management mod-
ule issues requests for these objects and ensures that
these requests do not interfere with demand requests
or other system activities. In addition to simplifying
system design, such an architecture could have two
performance advantages over statically set prefetch
thresholds. First, such a system can reduce inter-
ference − when resources are scarce, it would re-
duce prefetching aggressiveness. Second, such a sys-
tem may increase the benefits of prefetching when
resources are plentiful by allowing more aggressive
prefetching than would otherwise be considered safe.

2.2 Deployability

Many proposed prefetching mechanisms suggest
modifying the HTTP/1.1 protocol [4, 15, 17, 42], to
create a new request type for prefetching. An advan-
tage of extending the protocol is that clients, proxies,
and servers could then distinguish prefetch requests
from demand requests and potentially schedule them
separately to prevent prefetch requests from interfer-
ing with demand requests [15]. However, such mech-
anisms are not easily deployable because modifying
the protocol implies modifying the widely-deployed
infrastructure that supports the current protocol in-
cluding existing clients, proxies, and servers. As web
servers evolve and increase in their complexity, re-
quests may traverse not only a highly optimized web
server [43, 49, 54, 55] but also a number of other
complex modules such as commercial databases, ap-
plication servers or virtual machines for assembling
dynamic content (e.g., Apache tomcat for executing
Java Servlets and JavaServer pages), distributed clus-
ter services [2, 23], and content delivery networks.
Modifying servers to separate prefetch requests from
demand requests maybe complex or infeasible under
such circumstances.

If interference were not a concern, a simple
prefetching system could easily be built with the
present infrastructure, where clients can be made to
prefetch without any modifications to the protocol.
For example, servers can embed JavaScript code or

a Java applet [20], to fetch specified objects over the
network and load them into the browser cache. An
alternative way is to add invisible frames to the de-
mand content that include and thereby preload the
prefetch content.

In this paper, we adapt such techniques to avoid
interference while maintaining deployability.

2.3 Architectural Alternatives

In this subsection, we present an overview of two al-
ternative architectures to build a prefetching system.
The high-level description in this section is intended
only to provide a framework for discussing resource
management strategies at the server, network, and
client in sections 3 through 5. These architectures
and resource management strategies are pertinent re-
gardless of whether prefetching is implemented using
a new protocol or by exploiting existing infrastruc-
ture. In Section 6, we describe how our implemen-
tation realizes one of these architectures in an easily
deployable way.

We begin by making the following assumptions
about client browsers:

• For easy deployability of the prefetching system,
browsers should be unmodified.

• Browsers match requests to documents in their
caches based on (among other parameters) the
server name and the file name of the object on the
server. Thus files of the same name served from
different servers are considered to be different.

• Browsers may multiplex multiple client requests
to a given server on one or more persistent con-
nections [19].

Figure 1 illustrates what we call the one-connection
and two-connection architectures respectively. In
both architectures, clients send their access histories
to the hint server and get a list of documents to
prefetch. The hint server uses either online or offline
prediction algorithms to compute the hint lists con-
sisting of the most probable documents that the users
might request in the future.

Client

Hint Lists

Demand/Prefetch
Requests

Content
Server

Hint
Server

Access History

Hint
Server

Client Prefetch
Requests

Prefetch
Server

Demand
ServerRequests

Demand

Hint Lists Access History

(a) One Connection (b) Two Connection

Figure 1. Design Alternatives for a Prefetch-
ing System

2.3.1 One Connection

In the one connection architecture (Figure 1(a)), a
client fetches both demand and prefetch requests from
the same content server. Since browsers multiplex
requests over established connections to servers, and
since browsers do not differentiate between demand
and prefetch requests, each TCP connection may in-
terleave prefetch and demand requests and responses.

Sharing connections can cause prefetch requests to
interfere with demand requests for network and server
resources. If interference can be avoided, this sys-
tem is easily deployable. In particular, objects fetched
from the same server share the domain name of the
server. So, unmodified client browsers can use cached
prefetched objects to service demand requests.

2.3.2 Two Connection

In the two connection architecture(Figure 1(b)), a
client fetches demand and prefetch requests from dif-
ferent servers or from different ports on the same
server. This architecture thus segregates demand and
prefetch requests on separate network connections.

Although the two connection architecture simpli-
fies the mechanisms for reducing interference at the
server by segregation, this solution appears to compli-
cate the deployability of the system. Objects with the
same names fetched from different servers are consid-
ered different by the browsers. So, browsers can not
directly use the prefetched objects to service demand
requests.

2.3.3 Comparison

In the following sections, we show how to address the
limitations of both architectures.

• Some of the techniques we develop for avoiding
interference are useful for the one connection ar-
chitecture, but some are less so. In particular,
our strategy for reducing interference at servers
is based on end-to-end performance and is equally
applicable to the one and two connection archi-
tectures. Conversely, the techniques we use to
avoid network interference appear much easier
to apply to the two-connection than the one-
connection architecture.

• Despite the apparent deployability challenges to
the two connection architecture discussed above,
we find that the same basic technique we use to
make unmodified browsers prefetch data for the
one connection architecture can be adapted to
support the two connection architecture as well.

We conclude that both architectures are tenable in
some circumstances. If server load is the primary con-
cern and if network load is known not to be a major

0

20

40

60

80

100

120

140

160

180

0 14400 28800 43200 57600 72000 86400

R
eq

ue
st

s
pe

r
se

co
nd

Interval

One second intervals

0

20

40

60

80

100

120

140

160

180

0 240 480 720 960 1200 1440

A
ve

ra
ge

 r
eq

ue
st

s
pe

r
se

co
nd

Interval

One minute intervals

(a) (b)

Figure 2. Server loads averaged over (a) 1-
second and (b) 1-minute intervals for the IBM
sporting event workload.

issue, then the one connection prototype may be sim-
pler than the two connection prototype. At the same
time, the two connection prototype is feasible and de-
ployable and manages both network and server inter-
ference. Given that networks are a globally shared
resource, we recommend the use of two connection
architecture in most circumstances.

3 Server Interference

An ideal system for avoiding server interference
would cause no delay to demand requests in the sys-
tem and utilize significant amounts of any spare re-
sources on servers for prefetching. Such a system
needs to cope with, and take advantage of, changing
workload patterns over various time scales. HTTP re-
quest traffic arriving at a server often is bursty with
the burstiness being observable at several scales of
observation [13] and with peak rates exceeding the
average rate by factors of 8 to 10 [37]. For example,
Figure 2 shows the request load on an IBM server
hosting a major sporting event during 1998 averaged
over 1-second and 1-minute intervals. It is crucial for
the prefetching system to be responsive to such bursts
to balance utilization and risk of interference.

3.1 Alternatives

There are a variety of ways to prevent prefetch
requests from interfering with demand requests at
servers.

Local scheduling Server scheduling can help use
the spare capacity of existing infrastructure for
prefetching in a non-interfering manner. In principle,
existing schedulers for processor, memory [29, 31, 44],
and disk [35] could prevent low-priority prefetch re-
quests from interfering with high-priority demand re-
quests. Furthermore, as these schedulers are inti-
mately tied to the operating system, they should be
highly efficient in delivering whatever spare capacity
exists to prefetch requests even over fine time scales.

Note that local scheduling is equally applicable to
both one- and two-connection architectures.

For many services, however, server scheduling may
not be easily deployable for two reasons. First, al-
though several modern operating systems support
process schedulers that can provide strict priority
scheduling, few provide memory, cache or disk sched-
ulers that isolate prefetch requests from demand re-
quests. Second, even if an operating system provides
the needed support, existing servers would have to
be modified to differentiate between prefetch and de-
mand requests with scheduling priorities as they are
serviced [3]. This second requirement appears par-
ticularly challenging given the increasing complexity
of servers, in which requests may traverse not only
a highly-tuned web server [43, 49, 54, 55] but also a
number of other complex modules such as commercial
databases, application servers or virtual machines for
assembling dynamic content (e.g., Apache tomcat for
executing Java Servlets and JavaServer pages), dis-
tributed cluster services [2, 23], and content delivery
networks.

Separate prefetch infrastructure An intuitively
simple way of avoiding server interference is to use
separate servers to achieve complete isolation of
prefetch and demand requests. In addition to the
obvious strategy of providing separate demand and
prefetch machines in a centralized cluster, a natu-
ral use of this strategy might be for a third-party
“prefetch distribution network” to supply geographi-
cally distributed prefetch servers in a manner analo-
gous to existing content distribution networks. Note
that this alternative is not available to the one-
connection architecture.

However, separate infrastructure needs extra hard-
ware and hence may not be an economically viable
solution for many web sites.

End-to-end monitoring A technique based on
end-to-end monitoring estimates the overall load (or
spare capacity) on the server by periodically probing
the server with representative requests and measur-
ing the response times of the replies. Low response
times indicate that the server has spare capacity and
high response times indicate that the server is loaded.
Based on such an estimate, the monitor utilizes the
spare capacity on the server by controlling the number
and aggressiveness of prefetching clients.

An advantage of end-to-end monitoring is that it
requires no modifications to existing servers. Further-
more, it can be used by both one- and two- connection
prefetching architectures. The disadvantage of such
an approach is that its scheduling precision is likely
to be less than that of a local scheduler that has ac-
cess to the internal state of the server and operating
system. Moreover, an end-to-end monitor may not

be responsive enough to bursts in load over fine time
scales.

In the following subsections, we discuss issues in-
volved in designing an end-to-end monitor in greater
detail, present our simple monitor design, and evalu-
ate its efficacy in comparison to server scheduling.

3.2 End-to-end Monitor Design

Figure 3 illustrates the architecture of our monitor-
controlled prefetching system. The monitor esti-
mates the server’s spare capacity and sets a budget
of prefetch requests permitted for an interval. The
hint server adjusts the load imposed by prefetching
on the server by ensuring that the sum across the
hint lists returned to clients does not exceed the bud-
get. Our monitor design must adress two issues: (i)
budget estimation and (ii) budget distribution across
clients.

Demand/Prefetch
Requests

Samples
Request

Client Content
Server

MonitorServer
Hint

Budget

Hint Lists
Request for

Figure 3. A Monitored Prefetching System

Budget estimation The monitor periodically
probes the server with HTTP requests to represen-
tative objects and measures the response times. The
monitor increases the budget when the response times
are below the objects’ threshold values and decreases
the budget otherwise.

As probing is an intrusive technique, choosing an
appropriate rate of probing is a challenge. A high
rate makes the monitor more reactive to load on the
server, but also adds extra load on the server. On the
other hand, a low rate makes the monitor react slowly,
and can potentially lead to interference to the demand
requests. Similarly, the exact policy for increasing
and decreasing the budget must balance the risk of
causing interference against underutilization of spare
capacity.

Budget distribution The goal of this task is to
distribute the budget among the clients such that (i)
the load due to prefetching on the server is contained
within the budget for that epoch and is distributed
uniformly over the interval, (ii) a significant fraction
of the budget is utilized over the interval, and (iii)
clients are responsive to changing load patterns at the

server. The two knobs that the hint server can manip-
ulate to achieve these goals are (i) the size of the hint
list returned to the clients and (ii) the subset of clients
that are given permission to prefetch. This flexibility
provides a freedom to choose from many policies.

3.3 Monitor Prototype

Our prototype uses simple, minimally tuned poli-
cies for budget estimation and budget distribution.
Future work may improve the performance of our
monitor.

The monitor probes the server in epochs, each ap-
proximately 100 ms long. In each epoch, the monitor
collects a response time sample for a representative re-
quest. In the interest of being conservative − choosing
non-interference even at the potential cost of reduced
utilization − we use an additive increase(increase by
1), multiplicative decrease (reduce by half) policy.
AIMD is commonly used in network congestion con-
trol [30] to conservatively estimate spare capacity in
the network and be responsive to congestion. If in five
consecutive epochs, the five response time samples lie
below a threshold, the monitor increases the budget
by 1. While taking the five samples, if any sample ex-
ceeds the threshold, the monitor sends another probe
immediately to check if the sample was an outlier. If
even the new sample exceeds the threshold, indicating
a loaded server, the monitor decreases the budget by
half and restarts collecting the next five samples.

In our simple prototype, we manually supply
the representative objects’s threshold response times.
However, it is straightforward because of the pre-
dictable pattern in which response times vary with
load on server systems – a nearly constant value of
response time for low load followed by a sharp rise be-
yond the “knee” for high load. As part of our future
work, we intend to make the monitor automatically
pick thresholds in a self-tuning manner.

The hint server distributes the current budget
among client requests that arrive in that epoch. We
choose to set the hint list size to the size of one docu-
ment (a document corresponds to a HTML page and
all embedded objects). Our policy lets clients to re-
turn quickly for more hints and thus be more respon-
sive to changing load patterns on the server. Note
that returning larger hint lists would reduce the load
on the hint server, but it would reduce the system’s
responsiveness and its ability to avoid interference.
We control the number of simultaneously prefetching
clients, and thus the load on the server, by returning
to some clients a hint list of zero size and a direc-
tive to wait until the next epoch to fetch the next
hint list. For example, if B denotes the budget in the
current epoch, and N the expected number of clients
in that epoch, D the number of files in a document,

and τ the epoch length, the hint server accepts a frac-
tion p = min(1, B·τ

N ·D) of requests to prefetch on part
of clients in that epoch and returns hintlists of zero
length for other requests. Note that other designs are
possible. For example, the monitor can integrate with
the prefetch prediction algorithm to favor prefetching
by clients for which the predictor can identify high-
probability items and defer prefetching by clients for
which the predictor identifies few high-value targets.

Since the hint server does not a priori know the
number of client requests that will come in an epoch,
it estimates that value with the number of requests
that come in the previous epoch. If more than the
estimated number of requests arrive in a epoch, the
hint server replies with list of size zero and a directive
to retry in the next epoch to those extra requests.
If fewer clients arrive, some of the budget can get
wasted. However, in the interest of avoiding interfer-
ence, we choose to allow such wastage of budget.

In the following Section 3.3.1, we evaluate the per-
formance of our prototype with respect to the goals
of reducing interference and reaping significant spare
bandwidth and compare it with the other resource
management alternatives.

3.3.1 Evaluation

In evaluating resource management algorithms, we
are mainly concerned with interference that prefetch-
ing could cause and less with the benefits obtained.
We therefore abstract away prediction policies used
by services by prefetching sets of dummy data from
arbitrary URLs at the server. The goal of the ex-
periments is to compare the effectiveness of different
resource management alternatives in avoiding server
interference against the ideal case (when no prefetch-
ing is done) with respect to the following metrics: (i)
cost: the amount of interference in terms of demand
response times and (ii) benefit: the prefetch band-
width.

We consider the following resource management al-
gorithms for this set of experiments:

1. No-Prefetching: Ideal case, when no prefetching
is done or when we use a separate prefetching
infrastructure.

2. No-Avoidance: Prefetching with no interference
avoidance with fixed aggressiveness. We set the
aggressiveness by setting pfrate, which is the
number of documents prefetched for each demand
document. For a given service, a given prefetch
threshold will correspond to some average pfrate.
We use fixed pfrate values of 1 and 5.

3. Scheduler: As a simple local server scheduling
policy, we choose nice, the process scheduling
utility in Unix. We again use fixed pfrate val-
ues of 1 and 5. This simple server scheduling al-

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 100 200 300 400 500 600 700 800

A
vg

 D
em

an
d

R
es

po
ns

e
T

im
e(

se
c)

Demand Connection Rate(Conns/sec)

Scheduler, pfrate=1

Scheduler, pfrate=5

Monitor, thres=3ms

Monitor, thres=10ms

No-Avoidance,
pfrate=1

No-Avoidance,
pfrate=5

No-Prefetching

Figure 4. Effect of prefetching on demand
throughput and response times with various
resource management policies

gorithm is only intended as a comparison; more
sophisticated local schedulers may better approx-
imate the ideal case.

4. Monitor: We perform experiments for two
threshold values of 3ms and 10ms.

For evaluating algorithms 2 and 4, we set up one
server serving both demand and prefetch requests.
These algorithms are applicable in both one connec-
tion and two connection architectures. Our prototype
implementation of algorithm 3 requires that the de-
mand and prefetch requests be serviced by different
processes and thus is applicable only to the two con-
nection architecture. We use two different servers lis-
tening on two ports on the same machine, with one
server run at a lower priority using the Linux nice.
Note that the general local scheduling approach is
equally applicable to the one-connection architecture
with more intrusive server modifications.

Our experimental setup includes Apache HTTP
server [1] running on a 450MHz Pentium II, with
128MB of memory. To generate the client load, we
use httperf [38] running on four different Pentium III
930MHz machines. All machines run the Linux oper-
ating system.

We use two workloads in our experiments. Our first
workload generates demand requests to the server at
a constant rate. The second workload is a one hour
subset of the IBM sporting event server trace, whose
characteristics are shown in Figure 2. We scale up the
trace in time by a factor of two, so that requests are
generated at twice the original rate, as the original
trace barely loads our server.

Constant workload Figure 4 shows the demand
response times with varying demand request arrival
rate. The graph shows that both Monitor and Sched-
uler algorithms closely approximate the behavior of

0

20

40

60

80

100

0 100 200 300 400 500 600 700 800

B
an

dw
id

th
 (

M
bp

s)

Rate(conns/sec)

Prefetch:No-Avoidance
pfrate=1

Demand:No-Avoidance, pfrate=1

Prefetch:Scheduler,
pfrate=1

Demand:Scheduler, pfrate=1

Demand:Monitor, thres=10ms
Demand:Monitor, thres=3ms

No-Prefetching

Prefetch:Monitor, thres=10ms

Prefetch:Monitor, thres=3ms

Figure 5. Prefetch and demand bandwidths
achieved by various algorithms

No-
Pre

fe
tch

ing

pf
ra

te
=1

pf
ra

te
=5

pf
ra

te
=1

0

pf
ra

te
=1

5

pf
ra

te
=1

pf
ra

te
=5

pf
ra

te
=1

0

pf
ra

te
=1

5

th
re

s=
2m

s

th
re

s=
10

m
s

th
re

s=
20

m
s

0.000

0.010

0.020

0.030

A
vg

 D
em

an
d

R
es

po
ns

e
T

im
e

(s
ec

on
ds

)

Avg Response Time

(0
.1

45
 s

ec
)

No-Avoidance Scheduler Monitor

0

20

40

60

80

P
refetch B

andW
idth (M

bps)

Prefetch BW (in Mbps)

Figure 6. Performance of No-Avoidance,
Scheduler and Monitor schemes on the IBM
server trace

No-Prefetching in not affecting the demand response
times. Whereas, the No-Avoidance algorithm with
fixed pfrate values significantly damages both the
demand response times and the maximum demand
throughput.

Figure 5 shows the bandwidth achieved by the
prefetch requests and their effect on the demand
bandwidth. The figure shows that No-Avoidance ad-
versely affects the demand bandwidth. Conversely,
both Scheduler and Monitor reap spare bandwidth
for prefetching without much decrease in the demand
bandwidth. Further, at low demand loads, a fixed
pfrate prevents No-Avoidance from utilizing the full
available spare bandwidth. The problem of too lit-
tle prefetching when demand load is low and too
much prefetching when demand load is high illustrates
the problem with existing threshold strategies. As
hoped, the Monitor tunes prefetch aggressiveness of
the clients such that essentially all of the spare band-
width is utilized.

IBM server trace In this set of experiments, we
compare the performance of the four algorithms for
the IBM server trace. Figure 6 shows the demand
response times and prefetch bandwidth in each case.
The graph shows that the No-Avoidance case affects
the demand response times significantly as pfrate in-
creases. The Scheduler and Monitor cases have less
adverse effects on the demand response times.

These experiments show that resource manage-
ment is an important component of a prefetching
system because overly aggressive prefetching can sig-
nificantly hurt demand response time and through-
put while timid prefetching gives up significant band-
width. They also illustrate a key problem with con-
stant non-adaptive magic numbers in prefetching such
as the threshold approach that is commonly proposed.
The experiments also provide evidence of the effective-
ness of the monitor in tuning prefetch aggressiveness
of clients to reap significant spare bandwidth while
keeping interference at a minimum.

4 Network Interference

Mechanisms to reduce network interference could,
in principle, be deployed at clients, intermediate
routers, or servers. For example, clients can reduce
the rate at which they receive data from the servers
using TCP flow control mechanisms [48]. However, it
is not clear how to set the parameters to such mecha-
nisms or how to deploy them given existing infrastruc-
ture. Prioritization in routers that provide differenti-
ated service to prefetch and demand packets can avoid
interference effectively [47]. However, router prioriti-
zation is not easily deployable in the near future. We
focus on server based control because of the relative
ease of deployability of server based mechanisms and
their effectiveness in avoiding both self- and cross-
interference.

In particular, we use a transport level solution at
the server − TCP-Nice [51]. TCP-Nice is a conges-
tion control mechanism at the sender that is specifi-
cally designed to support background data transfers
like prefetching. Background connections using Nice
operate by utilizing only spare bandwidth in the net-
work. They react more sensitively to congestion and
backoff when a possibility of congestion is detected,
giving way to foreground connections. In our previous
study [51], we provably bound the network interfer-
ence caused by Nice under a simple network model.
Furthermore, our experimental evidence under wide
range of conditions and workloads shows that Nice
causes little or no interference and at the same time
reaps a large fraction of the spare capacity in the net-
work.

Nice is deployable in the two connection context
without modifying the internals of servers by config-
uring systems to use Nice for all connections made

to the prefetch server. A prototype of Nice runs on
Linux currently, and it should be straight-forward to
port Nice to other operating systems. The other way
to use Nice in non-Linux environments is to put a
Linux machine running Nice in front of the prefetch
server and make the Linux machine serve as a reverse
proxy or a gateway.

It appears to be more challenging to use Nice in
the one connection case. In principle, the Nice imple-
mentation allows flipping a connection’s congestion
control algorithm between standard TCP (when serv-
ing demand requests) and Nice (when serving prefetch
requests). However, using this approach for prefetch-
ing faces a number of challenges: (1) Flipping modes
causes packets already queued in the TCP socket
buffer to inherit the new mode. Thus, demand pack-
ets queued in the socket buffer may be sent at low-
priority while prefetch packets may be sent at normal-
priority, thus causing network interference. Ensuring
that demand and prefetch packets are sent in the ap-
propriate modes would require an extension to Nice
and a fine-grained coordination between the applica-
tion and the congestion control implementation. (2)
Nice is designed for long network flows. It is not clear
if flipping back and forth between congestion control
algorithms will still avoid interference and gain sig-
nificant spare bandwidth. (3) HTTP/1.1 pipelining
requires replies to be sent in the order requests were
received, so demand requests may be queued behind
prefetch requests, causing demand requests to per-
ceive increased latencies. One way to avoid such in-
terference may be to quash all the prefetch requests
queued in front of the demand request. For exam-
ple, we could send a small error message (eg. HTTP
response code 307 – “Temporary Redirect” with a
redirection to the original URL) as a response to the
quashed prefetch requests.

Based on these challenges, it appears simpler to use
the two connection architecture when the network is
a potential bottleneck. A topic for future work is to
explore these challenges and determine if a deploy-
able one connection architecture that avoids network
interference can be devised.

5 Client Interference

Prefetching may interfere with the performance of
a client in at least two ways. First, prefetch requests
consume processing cycles and may, for instance, de-
lay rendering of demand pages. Second, prefetched
data may displace demand data from the cache and
thus hurt demand hit rates for the prefetching service
or other services.

As with the interference at the server discussed
above, interference between client processes could,
in principle, be addressed by modifying the client

browser (and, perhaps, the client operating system) to
use a local processor scheduler to ensure that process-
ing of prefetch requests never interferes with process-
ing of demand requests. Lacking that option, we re-
sort to a simpler approach: as described in Section 6,
we structure our prefetch mechanism to ensure that
processing prefetch requests does not begin until after
the loading and rendering of the demand page, includ-
ing all inline images and recursive frames. Although
this approach will not help reduce cross-interference
with other applications at the client, it may avoid
a potentially common case of self-interference of the
prefetches triggered by a page delaying the rendering
of that page.

Similarly, a number of storage scheduling algo-
rithms exist that balance caching prefetched data
against caching demand data [6, 8, 31, 44]. Unfor-
tunately, all of these algorithms require modifications
to the cache replacement algorithm.

Because we assume that the client cannot be mod-
ified, we resort to two heuristics to limit cache pol-
lution caused by prefetching. First, in our system,
services place a limit on the ratio of prefetched bytes
to demand bytes sent to a client. Second, services
can set the Expires HTTP header to a value in the
relatively near future (e.g., one day in the future) to
encourage clients to evict prefetched document earlier
than they may otherwise have done. These heuristics
have an obvious disadvantage: they resort to magic
numbers similar to those in current use, and they suf-
fer from the same potential problems: if the magic
numbers are too aggressive, prefetching services will
interfere with other services, and if they are too timid,
prefetching services will not gain the benefits they
might otherwise gain. Fortunately, there is reason to
hope that performance will not be too sensitive to this
parameter. First, disks are large and growing larger at
about 100% per year [14] and relatively modest-sized
disks are effectively infinite for many client web cache
workloads [52]. So, disk caches may absorb relatively
large amounts of prefetch data with little interference.
Second, hit rates fall relatively slowly as disk capaci-
ties shrink [5, 52], which would suggest that relatively
large amounts of polluting prefetch data will have rel-
atively small effects on demand hit rate.

Figure 7 illustrates the extent to which our heuris-
tics can limit the interference of prefetching on hit
rates. We use the 28-day UCB trace of 8000 unique
clients from 1996 [22] and simulate the hit rates of
1 MB, 10 MB and 30 MB per-client caches. Note
that these cache sizes are small given, for example,
Internet Explorer’s defaults of using 3% of a disk’s
capacity (e.g., 300 MB of a 10 GB disk) for web
caching. On the x-axis, we vary the number of bytes
of dummy prefetch data per byte of demand data that
are fetched after each demand request. In this exper-

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 10

H
it

R
at

e

Prefetch Aggressiveness

Ideal LRU 1MB
LRU 1MB

LRU-24hr 1MB

Ideal LRU 10MB
LRU-24hr 10MB

 LRU 10MB

Ideal LRU 30MB LRU-24hr 30MB LRU 30MB

Figure 7. Effect of prefetching on demand hit
rate

iment, 20% of services use prefetching at the speci-
fied aggressiveness and the remainder do not, and we
plot the demand hit rate of the non-prefetching ser-
vices. Ideally, these hit rates should be unaffected by
prefetching. As the graph shows, hit rates fall gradu-
ally as prefetching increases, and the effect shrinks
as cache sizes get larger. For example, if a client
cache is 30 MB and 20% of services prefetch aggres-
sively enough that each prefetches ten times as much
prefetch data as the client references demand data,
demand hit rates fall from 29.9% to 28.7%.

6 Prefetching Mechanism
Figure 8 illustrates the key components of the

one and two connection architectures. The one-
connection mechanism consists of an unmodified
client, a content server that serves both demand and
prefetch requests, a munger that modifies content on
the content server to activate prefetching and a hint
server that gives out hint lists to the client to prefetch.
The hint server also includes a monitor that probes
the content server and estimates the spare capacity
at the server and accordingly controls the number of
prefetching clients.

The two-connection prototype, along with the com-
ponents above, also consists of a prefetch server that
is a copy of the demand server (running either on a
separate machine or on a different port on the same
machine) and a front-end that intercepts certain re-
quests to the demand server and returns appropriate
redirection objects as described later, thereby obviat-
ing any need to modify the original demand server.

In the following subsections, we describe the
prefetching mechanisms for the one and two connec-
tion architectures.
6.1 One-connection Prefetching Mechanism
Content modification The munger augments
each HTML document with pieces of JavaScript and
HTML code that cause the client to prefetch.

Client

Hint Lists

Demand/Prefetch
Requests

Munger

Fileset

Hint
Server

Content
Server

Fileset

FilesetHint
Server

Client

Hint Lists

Munger

Prefetch
Server

Demand
ServerFE

Requests
Demand

Prefetch
Requests

(a) (b)

Figure 8. Prefetching mechanisms for (a) one connection and (b) two connection architectures.
On demand fetch

1. Client requests an augmented HTML document.
2. When an augmented HTML document (Fig-

ure 9) finishes loading into the browser, the
pageOnLoad() function is called. This func-
tion calls getPfList(), a function defined
in pfalways.html (Figure 10). The file
pfalways.html is loaded within every aug-
mented HTML document. pfalways.html is
cacheable and hence does not need to be fetched
everytime a document gets loaded.

3. getPfList() sends a request for pflist.html
to the hint server with the name of the enclosing
document, the name of the previous document
in history (the enclosing document’s referer) and
TURN=1 as extra information embedded in the
URL.

4. The hint server receives the request for
pflist.html. Since the client fetches a
pflist.html for each HTML document (even
if the HTML document is found in the cache),
the client provides the hint server with a his-
tory of accesses to aid in predicting hint lists.
In Figure 10, PFCOOKIE contains the present
access (document.referrer) and the last access
(prevref) by the client. The hint updates the
history and predicts a list of documents to be
prefetched by the client based on that client’s his-
tory and the global access patterns. It puts these
predictions into the response pflist.html such
as shown in 11, which it returns to the client.

5. pflist.html replaces pfalways.html on the
client. After pflist.html loads, the preload()
function in its body preloads the documents to
be prefetched from the prefetch server (which is
same as the demand server in the one connection
case).

6. After all the prefetch documents are preloaded,
the myOnLoad() function calls getMore() that
replaces the current pflist.html by fetching a
new version with TURN=TURN+1.

Steps 5 and 6 repeat until the hint server has sent
everything it wants, at which point the hint server re-
turns a pflist.html with no getMore() call. When
there is not enough budget left at the server, the hint
server sends a pflist.html with no files to prefetch

<HTML> <HEAD> <! -- existing header goes here -- >
<SCRIPT LANGUAGE="JavaScript">
function pageOnLoad() {
myiframe.getPFlist(document.referrer);
} </SCRIPT> </HEAD> <BODY>

<! -- existing body goes here -- >
if(null == window.onload) {
window.onload = pageOnLoad();}
else {
var origfn = window.onload;
window.onload = function(){origfn();pageOnLoad();};}

<IFRAME SRC="pfalways.html" name="myiframe"
width=0 height=0 frameborder=0>

</IFRAME> </BODY> </HTML>

Figure 9. Augmentation of HTML pages

<HTML> <HEAD> <SCRIPT LANGUAGE="JavaScript">
function getPFList(var prevref) {
document.location="HINT-SERVER/pflist.html+PCOOKIE="

+ document.referrer + "+" + prevref + TURN=1;
document.close();
} </SCRIPT> </HEAD> </HTML>

Figure 10. pfalways.html

and a delay, after which the getMore() function gets
called. The information TURN breaks the (possibly)
long list of prefetch suggestions into a “chain” of short
lists.

On demand fetch of a prefetched document
The client browser fetches it from the cache as if it
is a cache hit.

6.2 Two-connection Prefetching Mechanism

The two-connection prototype employs the same
basic mechanism for prefetching as the one-connection
prototype. However, since browsers identify cached
documents using both the server name and document
name, documents fetched from prefetch server are not
directly usable to serve demand requests. In order to
fix this problem, we modify step 6 such that before
calling getMore(),

6.a The myOnLoad() function (Figure 11) requests
a wrapper (redirection object) from the demand
server for the document that was prefetched.

<HTML> <HEAD> <SCRIPT LANGUAGE="JavaScript">

function myOnLoad() { //exeutes after body loads
preload("DEMAND-SERVER/c.html"); //For two-conn only
getMore() ;
}
function getMore() {
document.location="HINT-SERVER/pflist.html +

PCOOKIE=" + document.referrer +
"+" + prevref + "+" + "TURN=2";

document.close();
}

var myfiles=new Array()
function preload(){
for (i=0;i<preload.arguments.length;i++){
myfiles[i]=new Image() ;
myfiles[i].src=preload.arguments[i] ;
}
} </SCRIPT> </HEAD>

<BODY onload="myOnLoad()">
<SCRIPT LANGUAGE="JavaScript">
preload("PREFETCH-SERVER/a.jpg",

"PREFETCH-SERVER/b.jpg",
"PREFETCH-SERVER/c.html");

</SCRIPT> </BODY> </HTML>

Figure 11. An example pflist.html returned
by the hint server

<HTML> <SCRIPT LANGUAGE="JavaScript">
if (document.referrer.indexOf ("pflist") < 0)

document.location="PREFETCH-SERVER/c.html";
document.close();
</SCRIPT> </HTML>

Figure 12. Wrapper for c.html, stored in
cache as DEMAND-SERVER/c.html

6.b The frontend intercepts the request (based on the
referer field) and responds with the wrapper (Fig-
ure 12) that loads the prefetched document in
response to a client’s demand request.

The prefetch server serves a modified copy of the
content on the demand server. Note that the rela-
tive links in a webpage on the demand server point
to pages on demand server. Hence, all relative links
in the prefetch server’s content are changed to abso-
lute links, such that when client clicks on a link in the
prefethed web page, the request is sent to the demand
server. Also, all absolute links to inline objects in the
page are changed to be absolute links to the prefetch
server, so that prefetched inline objects are used.
Since prefetch and demand servers are considered as
different domains by the client browser, JavaScript se-
curity models [40] prevent scripts in prefetched docu-
ments to access private information of the demand
documents and vice versa. However, to fix this
problem, JavaScript allows us to explicitly set the
document.domain property of each HTML document
to a common suffix of prefetch and demand servers.
For example, for servers demand.cs.utexas.edu
and prefetch.cs.utexas.edu, all the HTML doc-

uments can set their document.domain property to
cs.utexas.edu.

On demand fetch of a prefetched document: (i)
a hit results for the wrapper in the cache, (ii) at
the loading time, the wrapper replaces itself with the
prefetched document from the cache, (iii) inline ob-
jects in the prefetched document point to objects from
the prefetch server and hence are found in the cache as
well, and (iv) links in the prefetched document point
to the demand server.

This mechanism has two limitations. First,
prefetched objects might get evicted from the cache
before their wrappers. In such a case, when the wrap-
per loads for a demand request, a new request will be
sent to the prefetch server. Since sending a request to
the prefetch server in response to a demand request
could cause undesirable delay, we reduce such occur-
rences by setting the expiration time of the wrapper to
a value smaller than the expiration of the prefetched
object itself. Second, but not a significant limitation
is that some objects may be fetched twice, once as
demand and once as prefetch objects as the browser
cache considers them as different objects.

6.3 Prediction

For our experiments, we use prediction by partial
matching [11] (PPM-n/w) to generate hint lists for
prefetching. The algorithm uses a client’s n most
recent requests to the server for non-image data to
predict URLs that will appear during a subsequent
window that ends after the w’th non-image request to
the server. Our prototype uses n=2 and w=10.

In general, the hint server can be made to use any
prediction algorithm. It can be made to use standard
algorithms proposed in the literature [17, 18, 24, 42]
or others that utilize more service specific information
such as a news site that prefetches stories relating to
topics that interest a given user.

6.4 Alternatives

We explored other alternatives for prefetching in
the two-connection architecture. We could have used
a Java Applet instead of the JavaScript in Figure 9.
One could also use a zero-pixel frame that loads the
prefetched objects instead of JavaScript. The refresh
header in HTTP/1.1 could be exploited to iteratively
prefetch a list of objects by setting the refresh time to
a small value.

As an alternative to using wrappers, we also consid-
ered maintaining state explicitly at the client to store
information about whether a document has already
been prefetched. Content could be augmented with
a script to execute on a hyperlink’s onClick event

that checks this state information before requesting a
document from the demand server or prefetch server.
Similar augmentation could be done for inline objects.
Tricks to maintain state on the client can be found in
[45].

7 Prototype and Evaluation

Our prototype uses the two connection architec-
ture whose prefetching mechanism is shown in Fig-
ure 8(b). We use Apache 2.0.39 as the server, hosted
on a 450MHz Pentium II, serving demand requests on
one port and prefetch requests on the other. As an
optimization, we implemented the frontend as a mod-
ule within the Apache server rather than as a separate
process. The hint server is implemented in Java and
runs on a separate machine with 932 MHz Pentium III
proessor, and connects to the server over a 100 Mbps
LAN. The hint server uses prediction lists generated
offline using the PPM algorithm [42] over a complete
24 hour IBM server trace. The monitor runs as a
separate thread of the hint server on same machine.
The content munger is also written in Java and mod-
ifies the content offline (as shown in Figure 9). We
have successfully tested our prefetching system with
popular web browsers inluding Netscape, Internet Ex-
plorer, and Mozilla. 1

7.1 End to End Performance

In this section, we evaluate NPS under various se-
tups and evaluate the importance of each component
in our system. In all setups, we consider three cases:
(1) No-Prefetching, (2) No-Avoidance scheme with
fixed pfrate, and (3) NPS (with Monitor and TCP-
Nice). In these experiments, the client connects to
the server over a wide area network through a com-
mercial cable modem link. On an unloaded network,
the round trip time from the client to the server is
about 10 ms and the bandwidth is about 1 Mbps.

We use httperf to replay a subset of the IBM server
trace. The trace is one hour long and consists of de-
mand accesses made by 42 clients. This workload con-
tains a total of 14044 file accesses of which 7069 are
unique; the demand network bandwidth is about 92
Kbps. We modify httperf to simulate the execution of
JavaScript as shown in Figures 9, 10 and 11. Also, we
modify httperf to implement a large cache per client
that never evicts a file that is fetched or prefetched
during a run of an experiment. In No-Avoidance case,
we set the pfrate to 70, i.e. it gets a list of 70 files to
prefetch, fetches them and stops. This pfrate is such
that neither the server nor the network becomes a
bottleneck even for the No-Avoidance case. For NPS,

1Source code for NPS prototype can be downloaded from
http://www.cs.utexas.edu/users/rkoku/RESEARCH/NPS/

we assume that each document will consist of ten files
(a document is a HTML page along with the embed-
ded objects). Thus the hint server gives out hint lists
of size 10 to the requesting clients. Note that many
of the files given as hints could be cache hits at the
client.

Unloaded resources In this experiment, we use
the setup explained above. Figure 13(a) shows that
when the resources are abundant, both No-Avoidance
and NPS cases significantly reduce the average re-
sponse times by prefetching. The graph also shows
the bandwidth achieved by No-Avoidance and Nice.

Loaded server This experiment demonstrates the
effectiveness of the monitor as an important compo-
nent of NPS. To create a loaded server condition,
we use a client machine connected on a LAN to the
server running httperf that replays a heavier subset
of the IBM trace and also prefetches like the WAN
client. Figure 13(b) plots the average demand re-
sponse times and the bandwidth used in the three
cases. As expected, even though the server is loaded,
the clients prefetch aggressively in the No-Avoidance
case, thus causing the demand response times to in-
crease by more than a factor of 2 rather than decrease.
NPS, being controlled by the monitor, prefetches less
data and hence avoids any damage to the demand re-
sponse times. NPS in fact benefits from prefetching,
as shown by the decrease in the average demand re-
sponse time.

Loaded network This experiment demonstrates
the effectiveness of TCP-Nice as a building block of
NPS. In order to create a heavily loaded network with
little spare capacity, we set up another client ma-
chine running httperf that shares the cable modem
connection with the original client machine, replays
the same trace, and also prefetches like the original
client. Figure 13(c) plots the average demand re-
sponse times, demand bandwidth, and prefetch band-
width in all three cases. The results show that when
the network is loaded, No-Avoidance causes signifi-
cant interference to demand requests, thereby increas-
ing the average demand response times by a factor of
7. Although NPS doesn’t show any improvements, it
contains the increase in demand response times to less
than 30%, which shows the effectiveness of TCP-Nice
in avoiding network interference. The damage is be-
cause TCP-Nice is primarily designed for long flows.

8 Related Work

Several studies have published promising re-
sults that suggest that prefetching (or pushing)

No-Prefetching Prefetching NPS0.000

0.020

0.040

0.060

0.080

0.100

A
vg

 D
em

an
d

R
es

po
ns

e
T

im
e

(s
ec

on
ds

)

Avg Response Time

No-Avoidance

0

50

100

150

200

B
andw

idth (K
bps)

Demand Bandwidth
Prefetch Bandwidth

No-Prefetching Prefetching NPS0.000

0.020

0.040

0.060

0.080

0.100

A
vg

 D
em

an
d

R
es

po
ns

e
T

im
e

(s
ec

on
ds

)

Avg Response Time

No-Avoidance

0

50

100

150

200

B
andw

idth (K
bps)

Demand Bandwidth
Prefetch Bandwidth

No-Prefetching Prefetching NPS0.000

0.020

0.040

0.060

0.080

0.100

A
vg

 D
em

an
d

R
es

po
ns

e
T

im
e

(s
ec

on
ds

)

Avg Response Time

No-Avoidance

(0
.2

21
 s

ec
)

0

50

100

150

200

B
andw

idth (K
bps)

Demand Bandwidth
Prefetch Bandwidth

(a) Unloaded Resources (b) Loaded Server (c) Loaded Network

Figure 13. Effect of prefetching on demand response times.

content could significantly improve web cache hit
rates by reducing compulsory and consistency
misses [12, 17, 24, 25, 32, 33, 42, 52]. However, exist-
ing systems either suffer from a lack of deployability
or use threshold-based magic numbers to address the
problem of interference. Several existing commercial
client-side prefetching agents that require new code
to be deployed to clients are available [39, 27, 53]. At
least one system makes use of Java applets to avoid
modifying browsers [20]. It is not clear however,
what, if any, techniques are used by these systems to
avoid self- and cross-interference.

Duchamp [17] proposes a fixed bandwidth limit for
prefetching data. Markatos [36] adopts a popularity-
based approach where servers forward the N most
popular documents to clients. Many of these studies
[17, 29, 52] propose prefetching an object if the prob-
ability of its access before it gets modified is higher
than a threshold. The primary performance metric
in these studies is increase in hit rate. However,
the right measures of performance are end-to-end
latency when many clients are actively prefetching,
and interference to other applications.

Davison et. al [16] propose using a connectionless
transport protocol and using low priority datagrams
(the infrastructure for which is assumed) to reduce
network interference. Servers speculatively push
documents chunked into datagrams of equal size and
(modified) clients use range requests as defined in
HTTP/1.1 for missing portions of the document.
Servers maintain state information for prefetching
clients and use coarse-grained estimates of per-client
bandwidth to limit the rate at which data is pushed
to the client. Their simulation experiments do not
explicitly quantify interference and use lightly loaded
servers in which only a small fraction of clients
are prefetching. Crovella et. al [12] show that a
window-based rate controlling strategy for sending
prefetched data leads to less bursty traffic and smaller
queue lengths.

In the context of hardware prefetching, Lin et.
al [34] propose issuing prefetch requests only when

bus channels are idle and giving them low replace-
ment priorities so as to not degrade the performance
of regular memory accesses and avoid cache pollu-
tion. Several algorithms for balancing prefetch and
demand use of memory and storage system have been
proposed [6, 8, 31, 44]. Unfortunately, applying any
of these schemes in the context of Web prefetching
would require modification of existing clients.

9 Conclusion

We present a prefetching mechanism that (1) sys-
tematically avoids interference and (2) is deployable
without any modifications to the HTTP/1.1 protocol,
existing clients, existing servers, or existing networks.

References

[1] Apache HTTP Server Project. http://httpd.apache.org.
[2] M. Aron, P. Druschel, and W. Zwaenepoel. Cluster re-

serves: a mechanism for resource management in cluster-
based network servers. In Measurement and Modeling of
Computer Systems, pages 90–101, 2000.

[3] G. Banga, P. Druschel, and J. Mogul. Resource Contain-
ers: A New Facility for Resource Management in Server
Systems. In OSDI, 1999.

[4] C. Bouras and A. Konidaris. Web Components: A Con-
cept for Improving Personalization and Reducing User
Perceived Latency on the World Wide Web. In The 2nd
International Conference on Internet Computing, 2001.

[5] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker.
Web Caching and Zipf-like Distributions: Evidence and
Implications. In Proceedings of IEEE Infocom, 1999.

[6] P. Cao, E. W. Felten, A. R. Karlin, and K. Li. A Study
of Integrated Prefetching and Caching Strategies. In SIG-
METRICS, 1995.

[7] B. Chandra. Web Workloads Influencing Disconnected
Service Access. Master’s thesis, University of Texas at
Austin, May 2001.

[8] B. Chandra, M. Dahlin, L. Gao, A. Khoja, A. Razzaq,
and A. Sewani. Resource Management for Scalable Dis-
connected Access to Web Services. In WWW10, May 2001.

[9] X. Chen and X. Zhang. Coordinated Data Prefetching by
Utilizing Reference Information at Both Proxy and Web
Servers. In PAWS 2001.

[10] J. Cho and H. Garcia-Molina. Synchronizing a Database
to Improve Freshness. In 2000 ACM International Con-
ference on Management of Data, May 2000.

[11] J. Cleary and I. Witten. ”Data compression using adap-
tive coding and partial string matching”. IEEE Trans.
Commun., 1984.

[12] M. Crovella and P. Barford. The Network Effects of
Prefetching. In Proceedings of IEEE Infocom, 1998.

[13] M. Crovella and A. Bestavros. Self-Similarity in World
Wide Web Traffic: Evidence and Possible Causes. In SIG-
METRICS, May 1996.

[14] M. Dahlin. Technology trends data.
http://www.cs.utexas.edu/users/dahlin/techTrends
/data/diskPrices/data, January 2002.

[15] B. Davison. Assertion: Prefetching with GET is Not
Good. Web Caching and Content Distribution Workshop,
June 2001.

[16] B. D. Davison and V. Liberatore. Pushing Politely:
Improving Web Responsiveness One Packet at a Time
(Extended Abstract). Performance Evaluation Review,
28(2):43–49, September 2000.

[17] D. Duchamp. Prefetching Hyperlinks. In Second USITS,
October 1999.

[18] L. Fan, P. Cao, W. Lin, and Q. Jacobson. Web Prefetching
between Low-Bandwidth Clients and Proxies: Potential
and Performance, 1999.

[19] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masin-
ter, P. Leach, and T. Berners-Lee. HTTP/1.1. Technical
Report RFC-2616, IETF, June 1999.

[20] Fireclick. Netflame. http://www.fireclick.com.
[21] J. Gray and P. Shenoy. Rules of Thumb in Data Engineer-

ing. In Proceedings of the 16th International Conference
on Data Engineering, pages 3–12, 2000.

[22] S. Gribble and E. Brewer. System Design Issues for Inter-
net Middleware Services: Deductions from a Large Client
Trace. In USITS97, Dec 1997.

[23] S. D. Gribble, E. A. Brewer, J. M. Hellerstein, and
D. Culler. Scalable Distributed Data Structures for In-
ternet Service Construction. In OSDI, 2002.

[24] J. Griffioen and R. Appleton. Automatic Prefetching in a
WAN. In IEEE Workshop on Advances in Parallel and
Distributed Systems, October 1993.

[25] J. S. Gwertzman and M. Seltzer. The Case for Geographi-
cal Push-Caching. In Proceedings of the Workshop on Hot
Topics in Operating Systems, May 1995.

[26] IBM. Websphere. http://www.ibm.com/websphere.
[27] IMSI Net Accelerator.

http://nct.digitalriver.com/fulfill/0002.3.
[28] Intel. N-tier Architecture improves scalability and ease of

integration. http://www.intel.com/eBusiness/pdf
/busstrat/industry/wp012302.pdf.

[29] Q. Jacobson and P. Cao. Potential and Limits of Web
Prefetching Between Low-Bandwidth Clients and Proxies.
In Third International WWW Caching Workshop, 1998.

[30] V. Jacobson. ”Congestion avoidance and control”. In Pro-
ceedings of the ACM SIGCOMM ’88 Conference on Ap-
plications, Technologies, Architectures, and Protocols for
Computer Communication, 1988.

[31] T. Kimbrel, A. Tomkins, R. H. Patterson, B. Bershad,
P. Cao, E. Felten, G. Gibson, A. R. Karlin, and K. Li.
A Trace-Driven Comparison of Algorithms for Parallel
Prefetching and Caching. In OSDI, pages 19–34, 1996.

[32] M. Korupolu and M. Dahlin. Coordinated Placement
and Replacement for Large-Scale Distributed Caches. In
Workshop On Internet Applications, June 1999.

[33] T. M. Kroeger, D. E. Long, and J. C. Mogul. Exploring
the Bounds of Web Latency Reduction from Caching and
Prefetching. In USITS, 1997.

[34] W.-F. Lin, S. Reinhardt, and D. Burger. Designing a
Modern Memory Hierarchy with Hardware Prefetching. In
IEEE Transactions on Computers special issue on com-
puter systems, volume Vol.50 NO.11, November 2001.

[35] C. Lumb, J. Schindler, G. R. Ganger, E. Riedel, and D. F.
Nagle. Towards Higher Disk Head Utilization: Extracting
“Free” Bandwidth from Busy Disk Drives. In OSDI 2000.

[36] E. Markatos and C. Chronaki. A Top-10 Approach to
Prefetching on the Web. In INET 1998.

[37] J. C. Mogul. Network Behavior of a Busy Web Server and
its Clients. Technical Report WRL 95/5, DEC Western
Research Laboratory, Palo Alto, California, 1995.

[38] D. Mosberger and T. Jin. httperf: A Tool for Measuring
Web Server Performance. In First Workshop on Internet
Server Performance, pages 59—67. ACM, June 1998.

[39] Naviscope. http://www.naviscope.com.
[40] Netscape Communications Corporation. JavaScript Secu-

rity.
http://developer.netscape.com/docs/manuals/
communicator/jsguide4/sec.htm.

[41] A. Odlyzko. Internet Growth: Myth and Reality, Use
and Abuse. Journal of Computer Resource Management,
pages 23–27, 2001.

[42] V. N. Padmanabhan and J. C. Mogul. Using Predictive
Prefetching to Improve World-Wide Web Latency. In Pro-
ceedings of the SIGCOMM, 1996.

[43] V. S. Pai, P. Druschel, and W. Zwaenepoel. Flash: An
Efficient and Portable Web Server. In USENIX Annual
Technical Conference, 1999.

[44] R. H. Patterson, G. A. Gibson, E. Ginting, D. Stodolsky,
and J. Zelenka. Informed Prefetching and Caching. In
SOSP, 1995.

[45] R. Rajamony and M. Elnozahy. Measuring Client-
Perceived Resonse Times on the WWW. In USITS, 2001.

[46] Resonate Inc. http://www.resonate.com.
[47] RFC 2475. An Arhitecture for Differentiated services.

Technical Report RFC-2475, IETF, June 1999.
[48] N. T. Spring, M. Chesire, M. Berryman, V. Sahasrana-

man, T. Anderson, and B. N. Bershad. Receiver Based
Management of Low Bandwidth Access Links. In INFO-
COM, pages 245–254, 2000.

[49] C. S. Systems. http://www.cheetah.com.
[50] A. Venkataramani, M. Dahlin, and P. Weidmann. Band-

width Constrained Placement in a WAN. In Symposium
on the Principles of Distributed Computing, Aug 2001.

[51] A. Venkataramani, R. Kokku, and M. Dahlin. TCP-Nice:
A Mechanism for Background Transfers. In OSDI, Decem-
ber 2002.

[52] A. Venkataramani, P. Yalagandula, R. Kokku, S. Sharif,
and M. Dahlin. The Potential Costs and Benefits of Long
Term Prefetching for Content Distribution. In Sixth Web
Caching and Content Distribution Workshop, June 2001.

[53] Wcol.
http://shika.aist-nara.ac.jp/products/wcol/wcol.html.

[54] M. Welsh, D. E. Culler, and E. A. Brewer. SEDA: An
Architecture for Well-Conditioned, Scalable Internet Ser-
vices. In SOSP, 2001.

[55] Zeus Technology. http://www.zeus.com.
[56] Y. Zhang, V. Paxson, and S. Shenkar. The Stationarity of

Internet Path Properties: Routing, Loss, and Throughput.
Technical report, AT&T Center for Internet Research at
ICSI, http://www.aciri.org/, May 2000.

