
PRISM: PRecision-Integrated Scalable Monitoring
Navendu Jain, Dmitry Kit, Prince Mahajan, Praveen Yalagandula†, Mike Dahlin, and Yin Zhang

Department of Computer Sciences †Hewlett-Packard Labs
University of Texas at Austin Palo Alto, CA

Abstract
This paper describes PRISM, a scalable monitoring ser-
vice that makesimprecisiona first-class abstraction. Ex-
posing imprecision is essential for both correctness in the
face of network and node failures and for scalability to
large systems. PRISM quantifies imprecision along a three-
dimensional vector:arithmetic imprecision(AI) and tem-
poral imprecision(TI) balance precision against monitor-
ing overhead whilenetwork imprecision(NI) addresses the
challenge of providing consistency guarantees despite fail-
ures. Our implementation provides these metrics in a scal-
able way via (1) self-tuning of AI budgets to shift impre-
cision to where it is useful, (2) pipelining of TI delays to
maximize batching of updates, and (3) dual-tree prefix ag-
gregation which exploits regularities in our DHT’s topology
to drastically reduce the cost of the active probing needed
to maintain NI. PRISM’s careful management of impreci-
sion qualitatively improves its capabilities. For example, by
introducing a 10% AI, PRISM’s PlanetLab monitoring ser-
vice reduces network overheads by an order of magnitude
compared to PlanetLab’s CoMon service, and by using NI
metrics to automatically select the best aggregation results,
PRISM reduces the observed worst-case inaccuracy of our
measurements by nearly a factor of five.

1 Introduction
Scalable system monitoring is a fundamental abstraction for
large-scale networked systems. It serves as a basic building
block for applications such as network monitoring and man-
agement [9, 23, 51], contractible monitors [29], resource lo-
cation [26, 50], efficient multicast [48], sensor networks [26,
50], resource management [50], and bandwidth provision-
ing [15]. To provide a real-time view of global system state
for these distributed applications, the central challengefor a
monitoring system is scaling to keep track of thousands or
millions of dynamic attributes (e.g., per-flow or per-object
state) spanning tens of thousands of nodes.

Recent work on aggregation [26, 33, 48, 50] and DHTs [8,
38, 40, 41, 45, 56] seeks to provide monitoring at such scale.
However, to fully realize the goal of scalable system moni-
toring, the underlying monitoring infrastructure must expose
imprecision in a controlled manner for two reasons.

First, introducing controlled amounts ofarithmetic impre-
cision (AI) and temporal imprecision(TI) can reduce moni-
toring load by an order of magnitude or more for some appli-
cations. Studies suggest [30, 34, 44, 48, 54] that real-world
applications often can tolerate some inaccuracy as long as
the maximum error is bounded and that small amounts of
imprecision can provide substantial bandwidth reductions.

Second, a monitoring service that fails to exposenet-

work imprecision(NI) due to failed/slow nodes and network
paths risks delivering arbitrarily incorrect results. In par-
ticular, failures and reconfigurations can prevent nodes ina
large-scale system from delivering important updates, which
makes it fundamentally difficult to ensure that a reported
value corresponds to the system’s actual state [19]. This
problem is heightened in a hierarchical aggregation system
because of thefailure amplification effect[33]: if a non-leaf
node fails, an entire subtree rooted at that node is affected.
For example, failure of a level-3 node in a degree-8 aggrega-
tion tree can cut off updates from 512 leaf nodes.

To address these needs, we have developed PRecision-
Integrated Scalable Monitoring (PRISM). PRISM builds on
recent work that uses DHTs to construct scalable, load-
balanced forests of self-organizing aggregation trees [8,17,
39, 42, 50]. However, to realize the vision of scalable moni-
toring, PRISM should address two key technical challenges
to provide a controlled tradeoff between imprecision and
load. First, although it is relatively straightforward to re-
duce load by filtering some updates, doing so while ensur-
ing bounds on the accuracy of the reported results is diffi-
cult. Second, PRISM must provide implementations of AI,
TI, and NI that scale to tens of thousands of nodes and mil-
lions of attributes. PRISM meets these challenges using four
novel techniques:

• The central principle guiding the design of PRISM is the
notion of conditioned consistency: the AI and TI results
are calculated optimistically, assuming that the network is
“well behaved” (e.g., no node failures, slow links, or tree
reconfigurations have affected the results). The NI metric
then qualifies AI and TI metrics by quantifying how “well
behaved” the network actually has been during the period
when these metrics are calculated. Conditioned consis-
tency is vital because it (1) simplifies our implementa-
tions of AI and TI because they can ignore the difficult
corner cases that arise due to failures and (2) provides a
clean way to address the fundamental problem of network
churn distorting monitoring results.

• For AI, PRISM employs a hierarchical self-tuning algo-
rithm that directs imprecision slack to where it is most
needed. Self-tuning distribution of AI budgets can reduce
monitoring costs by more than a factor of two over static
uniform distribution.

• For TI, PRISM pipelines the available slack across levels
of the aggregation hierarchy to maximize the number of
updates batched together. Batching reduces monitoring
load by an order of magnitude for some workloads.

• For NI, PRISM introduces a noveldual-tree prefix aggre-
gation that exploits symmetry in our DHT-based aggre-

gation topology to reduce NI monitoring overhead by or-
ders of magnitude. Specifically, NI must track how many
nodes’ current updates are reflected in each aggregation
tree in our scalable DHT-based system. This tracking is
difficult because (a) any failed node or link potentially
affects different aggregation trees in different ways and
(b) detecting failures in the presence of AI caching and
TI constraints requires frequent active probing of nodes.
By using dual-tree prefix aggregation, PRISM reduces the
per-node overhead of tracking NI fromO(n) to O(log n)
messages per second in ann-node system.
Experience with a Distributed Heavy Hitter detection

(DHH) application, a Ulim library for resource isolation
between distributed services, and a PrMon monitoring ser-
vice for PlanetLab built on PRISM illustrate how explicitly
managing imprecision can qualitatively enhance a monitor-
ing service. The most obvious benefit is improved scalabil-
ity: for both PrMon and DHH applications, small amounts
of imprecision drastically reduce monitoring load or allow
more extensive monitoring for a given load budget. For ex-
ample, in PrMon, a 10% AI allows us to reduce network
load by an order of magnitude compared to the widely used
CoMon [10] service. A subtler but perhaps more important
benefit is the ability to quantify and improve confidence in
the accuracy of outputs by addressing network imprecision
and the amplification effect. For example, by using NI met-
rics to automatically select the best of four redundant aggre-
gation results, we can reduce the observed worst-case inac-
curacy by nearly a factor of five.

The key contributions of this paper are as follows. First,
we present PRISM, the first DHT-based system that enables
imprecision for scalable aggregation by introducing a new
conditioned consistency metric that bounds the arithmetic,
temporal, and network imprecision. Second, we provide
a scalable implementation of each precision metric via (1)
self-tuning of AI budgets, (2) pipelining of TI delays, and
(3) dual-tree prefix aggregation for NI. Third, our evaluation
demonstrates that imprecision is vital for enabling scalable
aggregation: a system that ignores imprecision can silently
report arbitrarily incorrect results and a system that fails to
exploit imprecision can incur unacceptable overheads.

2 Background
PRISM builds on two ongoing research efforts for scalable
monitoring: aggregation and DHT-based aggregation.

Aggregation is a fundamental abstraction for scalable
monitoring [8, 17, 26, 38, 48, 50] because it allows applica-
tions to access summary views of global information and
detailed views of rare events and nearby information.

PRISM’s aggregation abstraction defines a tree spanning
all nodes in the system. As Figure 1 illustrates, each physical
node in the system is a leaf and each subtree represents a log-
ical group of nodes. Note that logical groups can correspond
to administrative domains (e.g., department or university) or
groups of nodes within a domain (e.g., a /28 subnet with14
hosts on a LAN in the CS department) [22, 50]. An inter-

000 111010 101
Physical Nodes (Leaf Sensors)

Virtual Nodes (Internal Aggregation Points)

L0

L1

L2

L3

3 4 2 9 6 1 9 3

7 11 7 12

18 19

37

100 110 001 011

Fig. 1: The aggregation tree for key 000 in an eight node system.
Also shown are the aggregate values for a simple SUM() aggrega-
tion function.

nal non-leaf node, which we call avirtual node, is simulated
by one or more physical nodes at the leaves of the subtree
rooted at the virtual node.

The tree-based aggregation in the PRISM framework is
defined in terms of an aggregation function installed at all
the nodes in the tree. Each leaf node (physical sensor) in-
serts or modifies its local value for anattribute defined as
an{attribute type, attribute name} pair which is recursively
aggregated up the tree. For each level-i subtreeTi in an
aggregation tree, PRISM defines anaggregate valueVi,attr

for each attribute: for a (physical) leaf nodeT0 at level0,
V0,attr is the locally stored value for the attribute or NULL
if no matching tuple exists. The aggregate value for a level-i
subtreeTi is the result returned by the aggregation function
computed across the aggregate values ofTi’s children. Fig-
ure 1, for example, illustrates the computation of a simple
SUM aggregate.

DHT-based aggregation. PRISM leverages DHTs [38,
40, 41, 45, 56] to construct a forest of aggregation trees and
maps different attributes to different trees [8, 17, 38, 42,50]
for scalability and load balancing. DHT systems assign a
long (e.g., 160 bits), random ID to each node and define
a routing algorithm to send a request for keyk to a node
rootk such that the union of paths from all nodes forms a
treeDHTtreek rooted at the noderootk. By aggregating an
attribute with keyk = hash(attribute) along the aggregation
tree corresponding toDHTtreek, different attributes are load
balanced across different trees. Studies suggest that thisap-
proach can provide aggregation that scales to large numbers
of nodes and attributes [8, 17, 38, 42, 50].

3 Example Applications
Aggregation is a building block for many distributed appli-
cations such as network management [51], service place-
ment [18], sensor monitoring and control [30], multicast tree
construction [48], and naming and request routing [12]. In
this paper, we focus on three case-study examples: a dis-
tributed heavy hitter detection, a distributed monitoringser-
vice for PlanetLab modeled on CoMon [10], and a “Ulim”
library for resource isolation between distributed services.

Heavy Hitter detection: Our first application is identi-
fying heavy hitters in a distributed system—for example, the
top 10 IPs that account for a significant fraction of total in-
coming traffic in the last 10 minutes [15]. The key challenge

2

for this distributed query is scalability for aggregating per-
flow statistics for millions of concurrent flows in real-time.
For example, the Abilene [2] traces used in our experiments
include up to 3.4 million flows per hour.

To scalably compute the global heavy hitters list, we chain
two aggregations where the results from the first feed into
the second. First, PRISM calculates the total incoming traf-
fic for each destination from all nodes in the system using
SUM as the aggregation function and hash(HH-Step1, des-
tIP) as the key. For example, tuple (H = hash(HH-Step1,
128.82.121.7), 700 KB) at the root of the aggregation tree
TH indicates that a total of 700 KB of data was received for
128.82.121.7 across all vantage points during the last time
window. In the second step, we feed these aggregated total
bandwidths for each destination IP into a SELECT-TOP-10
aggregation with key hash(HH-Step2, TOP-10) to identify
the TOP-10 heavy hitters among all flows.

Real-time Network Monitoring: The second applica-
tion is our PrMon monitoring service that is representativeof
monitoring Internet-scale distributed systems such as Plan-
etLab [37] and Grid systems [47] that provide open plat-
forms for developing, deploying, and hosting global-scale
services. For instance, to manage a wide array of user ser-
vices running on the PlanetLab testbed, the system adminis-
trators need a global view of the system to identify problem-
atic experiments (slices in PlanetLab terminology) to iden-
tify, for example, any slice consuming more than 10GB of
memory across all nodes on which it is running. Similarly,
users require system state information to query for “lightly-
loaded” nodes for deploying new experiments or to track the
resource consumption of their running experiments.

To provide such information in a scalable way and in real-
time, PRISM computes the per-slice aggregates for each re-
source attribute (e.g., CPU, MEM, etc.) along different ag-
gregation trees. This aggregate usage of each slice across all
PlanetLab nodes for a given resource attribute (e.g., CPU)
is then input to a per-resource SELECT-TOP-100 aggregate
(e.g.,{SELECT-TOP-100, CPU}) to compute the list of top-
100 slices in terms of consumption of the resource. Al-
though there exist other centralized monitoring services,in
Section 5 we show that PRISM can monitor a large number
of attributes at much finer time scales while incurring signif-
icantly lower network costs.

Ulim Library: The final application we implement in
the PRISM framework is an application-level “Ulim library”
that monitors and enforces the global resource usage of a
distributed service or experiment deployed on a large-scale
networked system e.g., PlanetLab [37]. The goal is to pro-
vide a distributed bounding box that increases resource iso-
lation between different services, thereby safeguarding the
system against anomalies such as denial of service attacks
and buggy experiments [5]. A user attaches her experiment
to Ulim and specifies a resource usage policy describing its
expected traffic rates, CPU requirements, memory usage,

etc. The Ulim library leverages PRISM monitoring to en-
force this policy across the system; if an experiment exceeds
its pre-specified resource limits, then (1) the user gets an
email notification of the policy violation and (2) the experi-
ment is terminated using a user-provided security key. We
further envision that the Ulim framework will provide a key
building block for specification-based intrusion detection in
future networks like GENI [4].

4 PRISM Design
In this section we present the system design and describe
how to enforce imprecision limits and quantify the consis-
tency guarantees in PRISM. PRISM’s core architecture is a
DHT-based aggregation system that achieves scalability by
mapping different attributes to different aggregation trees [8,
17, 38, 42, 50]. PRISM then introduces controlled tradeoffs
between precision guarantees and load.

4.1 Overview
PRISM quantifies imprecision along a three-dimensional
vector: (Arithmetic, Temporal, Network).Arithmetic im-
precision(AI) bounds the numeric difference between a re-
ported value of an attribute and its true value [35, 55], and
temporal imprecision(TI), bounds the delay from when an
update is input at a leaf sensor until the effects of the update
are reflected in the root aggregate [44, 55]. These aspects of
imprecision provide means to (a) expose inherent impreci-
sion in a monitoring system stemming from sensor inaccu-
racy and update propagation delays and (b) reduce system
load by introducing additional filtering and batching on up-
date propagation.

Network imprecision(NI) characterizes the uncertainty in-
troduced by node crashes, slow network paths, unreachable
nodes, and DHT topology reconfigurations. If these issues
are not addressed by a monitoring system, the results it re-
ports may bearbitrarily incorrect. Unfortunately, ensuring
that a reported value reflects all recent updates is fundamen-
tally hard [19], and coping with these sources of error is par-
ticularly challenging for PRISM for three reasons. First, be-
cause PRISM uses AI caching, if a subtree is silent over an
interval, PRISM must distinguish two cases: (a) the subtree
has sent no updates because the inputs have not significantly
changed from the cached AI values or (b) the inputs have sig-
nificantly changed but the subtree is unable to transmit its re-
port. Second, because PRISM uses TI to batch updates, there
are windows of time in which a short disruption can block a
large batch of updates and greatly perturb the system’s state
and outputs. Third, in any hierarchical aggregation system
the problem of dealing with failures is made worse by the
amplification effect: if a non-leaf node fails, then the entire
subtree rooted at that node can be affected. For example,
failure of a level-3 node in a degree-8 aggregation tree can
interrupt updates from 512 (83) leaf node sensors.

The key idea of NI is that because no system can guaran-
tee to always provide the “right” answer [19, 43], it instead
must report the extent to which a calculation could have been
disrupted by network and node problems.This information

3

allows applications to filter out or take action to correct mea-
surements with unacceptable uncertainty. To that end, NI
comprises three metrics,Nall, Nreachable, andNdup.
• Nall is an estimate of the number of nodes that are mem-

bers of the system.
• Nreachable is a lower bound on the number of nodes

for which input propagation is guaranteed to meet an at-
tribute’s TI bound.

• Ndup provides an upper bound on the number of nodes
whose contribution to an attribute may be doubly-counted.
Double-counting can occur when reconfiguration of an
aggregation tree’s topology causes a leaf node or virtual
internal node to switch to a new parent while its old par-
ent retains the node’s inputs as soft state until a timeout.

PRISM’s design explicitly separates the mechanism for de-
tecting and quantifying NI via these metrics from the policy
question of how to minimize the damage caused by network
and node failures. In particular, different applications will
react to NI values according to their different requirements.
We discuss several examples of how applications use NI in
Section 4.4.4.

Conditioned Consistency. These three metrics condition
the arithmetic and temporal consistency guarantees. In par-
ticular, reading an attribute’s value from the system returns
a tuple[Vmin, Vmax, TI, Nall, Nreachable, Ndup] that means
“The system estimates the value to be betweenVmin and
Vmax. This estimate may omit some inputs that occurred in
the lastTI seconds and it may also omit some inputs from
Nall − Nreachable of theNall nodes in the system. This es-
timate may double count inputs from at mostNdup nodes.”

Integrating AI, TI, and NI is central to PRISM’s design.
The AI and TI implementations are simple because they
can assume that aggregation trees never reconfigure and that
nodes and network paths never fail and are never slow de-
spite the long tail of Internet RTTs [3, 13, 36]. The NI metric
then addresses these challenging real-world issues.

4.2 Arithmetic Imprecision (AI)
We first describe the basic mechanism for enforcing AI for
each aggregation subtree in the system. Then we describe
how our system uses a self-tuning algorithm to address the
policy question of distributing an AI budget across subtrees
to minimize system load.

4.2.1 Mechanism
To enforce AI, each aggregation subtreeT for an attribute
has an error budgetδT which defines the maximum inac-
curacy of any result the subtree will report to its parent
for that attribute. The root of each subtree divides this
error budget among itselfδself and its childrenδc (with
δT ≥ δself +

∑
c∈children δc), and the children recursively

do the same. Here we present the AI mechanism for the
SUM aggregate; other standard aggregation functions (e.g.,
MAX, MIN, AVG) are similar [1].

This arrangement reduces system load by filtering small
updates that fall within the range of values cached by a sub-
tree’s parent. In particular, after a node A with error budget

δT reports a range [Vmin, Vmax] for an attribute value to its
parent (whereVmax ≤ Vmin +δT), if the node A receives an
update from a child, the node A can skip updating its parent
as long as it can ensure that the true value of the attribute for
the subtree lies betweenVmin andVmax, i.e., if

Vmin ≤ ∑
c∈children V c

min

Vmax ≥ ∑
c∈children V c

max
(1)

whereV c
min and V c

max denote the most recent update re-
ceived from childc.

Note the trade-off in splittingδT betweenδself and δc.
Largeδc allows children to filter updates before they reach
a node. Conversely, by settingδself > 0, a node can set
Vmin <

∑
V c

min, setVmax >
∑

V c
max, or both to avoid

further propagating some updates it receives from its chil-
dren.

PRISM maintains per-attributeδ values so that different
attributes with different error requirements and different up-
date patterns can use differentδ budgets in different subtrees.
PRISM implements this mechanism by defining adistribu-
tion function; just as an attribute type’s aggregation function
specifies how aggregate values are aggregated from children,
an attribute type’s distribution value specifies howδ budgets
are distributed among children andδself .

4.2.2 Self-tuning error budgets
The key AI policy question is how to divide a given error
budgetδroot across the nodes in an aggregation tree.

A simple approach is a static policy that divides the er-
ror budget uniformly among all the children. E.g., a node
with budgetδT could setδself = 0.1δ and then divide the
remaining0.9δT evenly among its children. Although this
approach is simple, it is likely to be inefficient because dif-
ferent aggregation subtrees may experience different loads.

To make cost/accuracy tradeoffsself-tuning, PRISM pro-
vides an adaptive algorithm. The high-level idea is simple:
increaseδ for nodes with high load and lowδ and decrease
δ for nodes with low load and highδ.

Unfortunately, a naive rebalancing algorithm could eas-
ily spend more network messages redistributingδs than it
saves by filtering updates. Limiting redistribution overhead
is a particular concern for applications like distributed heavy
hitter that monitor a large number of attributes, only a few of
which are active enough to be worth optimizing. To address
this challenge, PRISM uses a two-step algorithm:

1. Estimate optimal distribution ofδT acrossδself andδc.

Each node tracks the number of messages sent to its parent
per time unit (Mself) and the aggregate number of messages
per time unit reported by each childc’s subtree (Mc). Note
that Mc reports are accumulated by a child until they can
be piggy-backed on an update message to its parent. Given
this information each noden estimates the optimal values
δopt
v that minimizes the total system load

∑
v Mopt

v , where
Mopt

v is an estimate of the load generated by nodev under
optimal error budgetδopt

v . In particular, for anyv ∈ {self}∪

4

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

M
es

sa
ge

 C
os

t p
er

 s
ec

on
d

AI Budget (%)

Self-tuning
Uniform Allocation

Fig. 2: Self-tuning vs. uniform static AI error distribution using
simulator.

child(n) we estimate

δopt
v = δT ∗

√
Mv ∗ δv

∑
v∈{self}∪child(n)

√
Mv ∗ δv

(2)

which is optimal [1] assuming that load is inversely propor-
tional to error budget. However, not all workloads exhibit
this property. Nonetheless, this heuristic seems reasonable
for estimating the impact of small changes inδ for a range
of workloads, and we find that it works well in practice.

2. Redistribute deltas iff the expected benefit exceeds the re-
distribution overhead.

At any time, a noden computes achargemetric for each
child subtreec, which estimates the number of extra mes-
sages sent byc due to sub-optimalδ. Chargec = (Tcurr −
Tadjust)∗ (Mc−Mopt

c), whereTadjust is the last timeδ was
adjusted atn. Notice that a subtree’s charge will be large
if (a) there is a large load imbalance (e.g.,Mc − Mopt

c is
large) or (b) there is a stable, long-lasting imbalance (e.g.,
Tcurr − Tadjust is large.)

We only send messages to redistribute deltas when doing
so is likely to save at least k messages (i.e., ifchargec > k).
To ensure the invariant thatδT ≥ δself +

∑
c δc, we make

this adjustment in two steps. First, we loan some of the
δself budget to the nodec that has accumulated the largest
charge by incrementingc’s budget by min(0.1δc, δopt

c − δc,
max(0.1δself , δself - δopt

self)). Second, we replenishδself

from the child whoseδc is the farthest aboveδopt
c by ordering

c to reduceδc by min(0.1δc, δc - δopt
c).

A node responds to a request from its parent to updateδT

using a similar approach.
Figure 2 shows the communication cost for the self-tuning

algorithm compared to uniform static distribution of AI bud-
gets using a simulator for 256 leaf nodes in a 4 level degree-4
tree, accounting for the redistribution overhead. We gener-
ate the leaf data values using a random walk model, using
randomly assigned step size. We observe that self-tuning
reduces overhead by more than a factor of two for this work-
load.

4.2.3 Implementation details
Given these mechanisms, we still have plenty of freedom to
(i) setδroot to an appropriate value for each attribute, and (ii)
computeVmin andVmax when updating a parent.

Settingδroot. Note that the aggregation queries can set the
root error budgetδroot to any non-negative value. For some
applications, an absolute constant value may be known a pri-
ori (e.g., count the number of connections per second±10 at
port 1433.) For other applications, it may be appropriate to
set the tolerance based on measured behavior of the aggre-
gate in question (e.g., setδroot for an attribute to be at most
10% of the maximum value observed) or the measurements
of a set of aggregates (e.g., in our heavy hitter application,
setδroot for each flow to be at most 1% of the bandwidth of
the largest flow measured in the system). Our algorithm sup-
ports all of these approaches by allowing new absoluteδroot

values to be introduced at any time and then distributed down
the tree via a distribution function. We have prototyped sys-
tems that use each of these three policies.

Computing [Vmin, Vmax]. When either
∑

c V c
min or∑

c V c
max goes outside of the last [Vmin, Vmax] that was re-

ported to the parent, a node needs to report a new range.
Given a δself budget at an internal node, we have some
flexibility on how to center the[Vmin, Vmax] range. Our
approach is to adopt a per-aggregation-function range pol-
icy that reportsVmin = (

∑
c V c

min) − bias ∗ δself and
Vmax = (

∑
c V c

max)+ (1− bias) ∗ δself to the parent. The
biasparameter can be set as follows:
• bias ≈ 0.5 if inputs expected to be roughly stationary
• bias ≈ 0 if inputs expected to be generally increasing
• bias ≈ 1 if inputs expected to be generally decreasing
For example, suppose a node with totalδT of 10 andδself of
3 has two children reporting ([V c

min, V c
max]) of [1, 2] and [2,

8], respectively, and reports [0, 10] to its parent. Then, the
first child reports a new range [10, 11], so the node must re-
port to its parent a range that includes [12, 19]. Ifbias = 0.5,
then report to parent [10.5, 20.5] to filter out small deviation
around the current position. Conversely, ifbias = 0, re-
port [12, 22] to filter out the maximal number of updates of
increasing values.

4.3 Temporal Imprecision
Temporal imprecision provides a bound on the delay from
when an update occurs at a leaf node to when it is reflected
in the aggregated result reported by the root. A temporal
imprecision ofTI seconds guarantees that every event that
occurredTI or more seconds ago is reflected in the reported
result; events younger thanTI may or may not be reflected.

Temporal imprecision benefits monitoring applications in
two ways. First, it accounts for inherent network and pro-
cessing delays in the system; given a worst case per-hop
costhopmax even immediate propagation provides a tem-
poral guarantee no better thanℓ ∗ hopmax whereℓ is the
maximum number of hops from any leaf to the root of the
tree. Second, explicitly exposing TI provides an opportu-
nity to combine multiple updates to improve scalability by

5

Event
level 0

level 1

level 2

level 3

level 4

Next TI
interval
starts here

TI−∆

Event
level 0

level 1

level 2

level 3

level 4

l

...

...

...

...

0 TI

(a) Send synchronized updates every TI − seconds.∆

...

...

...

...

0 TI3TI/4TI/2TI/4

(b) Send unsynchronized updates every TI/ seconds.

Fig. 3: For a given TI bound, pipelined delays with synchronized
clocks (a) allows nodes to send less frequently than unpipelined
delays without synchronized clocks (b).

reducing processing and network load.
To maximize the possibility of batching updates, when

clocks are synchronized1, we pipeline delays as shown in
Figure 3(a) so that each node sends once every(TI − ∆)
seconds with each level’s sending time staggered so that the
updates from leveli arrive just before leveli + 1 can send.
The extended technical report [1] details how we set each
level’s sending time while coping with transmission delays
and clock skew across nodes. As detailed there, accounting
for the worst case delayshopmax and skewsskewmax yields
∆ = ℓ ∗ (hopmax +2 ∗ skewmax), and it guarantees the fol-
lowing property: an event at a leaf node at local timeX is
reflected at the root no later than time(X + TI) according to
the local time at the leaf node.

Conversely, if clocks are not synchronized, then we fall
back on a simple but less efficient approach of having each
node send updates to its parents once perTI/ℓ seconds as
illustrated in Figure 3(b).

4.4 Network Imprecision
In this section we describe how PRISM provides a scalable
implementation of the NI metrics and how applications use
these metrics to interpret global aggregate results. It is im-
portant to note that whereas AI and TI are calculated and
enforced on a per-attribute basis, NI is maintained by the
system for each aggregation tree and shared across all at-
tributes mapped to each tree. This arrangement both amor-
tizes the cost of maintaining NI and simplifies the definition
of attributes’ aggregation functions.

Although monitoring connectivity to nodes to com-
pute the NI metricsNall, Nreachable, and Ndup appears
straightforward—the metrics are all conceptually aggregates
across the state of the system—in practice two challenges
arise. First, the system must cope with reconfiguration
of dynamically-constructed aggregation trees; otherwisethe
aggregate result might include reports of disconnected sub-
trees as well as double count the contribution of rejoined
subtrees.econd, the system must scale to large numbers of

1Algorithms in the literature can achieve clock synchronization among
nodes to within one millisecond [49].

t_haveLease[n2] = t_send + (d_grantLease * (1−max_drift))

2 t_recv

1 t_send

3 d_grantLease = t_haveLease − t_recv

4

5 t_haveLease = min_c (t_haveLease[c])

LEASE_RENEW

n2

n1

t_grantLease = max(t_grantLease, t_haveLease)

d_grantLease

Fig. 4: Protocol for a parent to renew a lease on the right to hold as
soft state a child’s contribution to an aggregate.

nodes despite (a) the need for active probing to measure
liveness between each parent-child pair and (b) the need to
compute distinct NI values for each of the large number of
distinct aggregation trees in the underlying DHT forest ; oth-
erwise the system will incur excessive monitoring overhead
as we show in Section 4.4.3.

In the rest of this section, we first provide a simple algo-
rithm for computingNall andNreachable for a single, static
tree. Then, in Section 4.4.2 we explain how PRISM com-
putesNdup to account for dynamically changing aggrega-
tion topologies. Later, in Section 4.4.3 we describe how to
scale the approach to work with the large number of distinct
trees constructed by PRISM’s DHT framework. Finally,
Section 4.4.4 describes how NI characterizes the “complete-
ness” of results and how applications can use this informa-
tion in different ways.

4.4.1 Single tree, static topology
This section considers calculatingNall andNreachable for a
single, static-topology aggregation tree.

Nall is simply a count of all nodes in the system, which
serves as a baseline for evaluatingNreachable and Ndup.
Nall is easily computed using PRISM’s aggregation abstrac-
tion. Each leaf node inserts 1 to theNall aggregate, which
has SUM as its aggregation function. Note that even if a
node becomes disconnected from the DHT, its contribution
to this aggregate remains cached as soft state by its ancestors
for a long timeoutTdeclareDead.

Nreachable for a subtree is a count of the number of leaves
that have agood pathto the root of the subtree where a good
path is a path in which no hop takes longer thanhopmax.
Recall that TI is calculatedassuminggood connectivity and
bounds on message delay.Nall − Nreachable represents the
number of nodes whose inputs may fail to meet these as-
sumptions. Nodes computeNreachable in two steps:

1. Basic aggregation: PRISM creates a SUM aggregate and
each leaf inserts local value of 1. The root of the tree then
gets a count of all nodes.

2. Aggressive pruning: In contrast with the default behavior
of retaining aggregate values of children as soft state for
up toTdeclareDead, Nreachable must immediately change
if the connection to a subtree is no longer a good path.
Therefore, each internal node periodically probes each of
its children. If a child is not responsive, the node removes
c’s subtree contribution from theNreachable aggregate and
immediately sends the new value up towards the root of
theNreachable aggregation tree [1].

6

A B C D E F G
H fails

H

f(H)f(G)f(E) f(F)f(D)f(C)f(B)f(A)

f(A,B) f(C,D)

f(A..D) f(E..H)

f(E,F) f(G,H)

attribute = f(A.H)

f(A)

A B C D E F G H
H fails

f(H)f(G)f(F)f(E)f(D)f(C)f(B)

f(A,B) f(C,D) f(E,F) f(G,H)

attribute = f(A..D)
f(A..D)

f(A..D) LEASE EXPIRED

(i) (ii)

A B C D E F G H
H fails

f(H)f(G)f(F)f(E)f(D)f(C)f(B)f(A)

f(A,B) f(C,D) f(E,F)

f(E,F)f(A..D)

f(A..F)
attribute = f(A..F)

EXPIRED
LEASE

f(F)f(E)f(A)

f(A,B) f(G)

H fails
H

f(G)

GFE

f(E,F)

f(E..G)

attribute = f(A..G)
f(A..G)

f(A..D)

f(C,D)

C D

f(D)f(C)

B

f(B)

A

LEASE
EXPIRED

(iii) (iv)
(a) Impact of leaf failure without early expiration

A B C D E F G
H fails

H

f(H)f(G)f(E) f(F)f(D)f(C)f(B)f(A)

f(A,B) f(C,D)

f(A..D) f(E..H)

f(E,F) f(G,H)

attribute = f(A.H)

B C D E F G H

f(E..G)

attribute = f(A..G)
f(A..G)

f(A..D)

f(A,B)

f(A) f(B)

A

f(C) f(D) f(E)

f(C,D) f(E,F)

f(F) f(G)

f(G)

EXPIRE

H fails

EARLY

(b) Impact of leaf failure with early expiration

Fig. 5: Recalculation of aggregate function across values A, B, ...,
H after the node with input H fails (a) without and (b) with early
expiration.

Nreachable v. TI The difference betweenNall and
Nreachable characterizes the count of nodes that may cur-
rently be violating their TI bounds. However, past connectiv-
ity disruptions could affect attributes with large TI. In partic-
ular, to maximize batching, our TI algorithm defines a small
window of time during which a node must propagate updates
to its parents, so any attribute’s subtree that was unreach-
able over the lastTIattr could have been unlucky and missed
its window even though the subtree nodes are currently all
counted as reachable. We must either (a) modify the proto-
col to ensure that such a subtree’s updates are reflected in the
aggregate so that the promised TI bound is met or (b) ensure
thatNreachable counts such subtrees as unreachable because
they may have violated their TI bound.

We take the former approach to avoid having to calculate
a multitude ofNreachable values for different TI bounds. In
particular, when a node receives updates from a child marked
unreachable, it knows those updates may be late and may
have missed their window for TI propagation. It therefore
marks such updates as NODELAY. When a node receives a
NODELAY update, it processes it immediately and propa-
gates the result with the NODELAY flag so that TI delays
are temporarily ignored for that attribute. This modification
may send extra messages in the (hopefully) uncommon case
of a link performance failure and recovery, but it ensures that
the currentNreachable value counts nodes that are meeting
all of their TI contracts.

4.4.2 Dynamic topology
Each virtual node in PRISM caches state from its children
so that when a new input from one child comes in, it can use
local information to compute new values to pass up. This

information is soft state—a parent discards it if a client is
unreachable for a long time. But because reconstructing
this state is expensive (there may be tens of thousands of
attributes for aggregation functions like “where is the near-
est copy of file foo” [46]), we use long timeouts to avoid
spurious garbage collection (e.g., we useTdeclareDead ≈ 10
minutes in our prototype.)

As a result, when a subtree chooses a new parent, that sub-
tree’s inputs may still be stored by a former parent and thus
may be counted multiple times in the aggregate. Note that
our implementation also allows a user to define duplicate-
insensitive aggregation functions where possible [11, 33].
However, to support a broader range of aggregation func-
tions, PRISM computesNdup for each aggregation tree.
Ndup bounds the number of leaf inputs that might be in-
cluded multiple times in an aggregate calculation.

The basic aggregation function forNdup is simple: keep
a countk of the number of leaves in each subtree using the
obvious aggregation function. Then, if a subtree root span-
ningk leaf nodes switches to a new parent, that subtree root
inserts the valuek into theNdup aggregate, which has SUM
as its aggregation function. Later, when the node is certain
sufficient time has elapsed that its old parent has safely re-
moved its soft state, it updates its input ofNdup to 0.

Our implementation must deal with two issues. First,
for correctness, we must maintain the invariant thatNdup

bounds the number of nodes whose inputs are double-
counted despite failures and network delays. Second, for
good performance, we must minimize the disruption when
nodes near the leaves of a tree fail or move.

Lease aggregation. For correctness, our implementation
uses alease aggregationalgorithm that extends the concept
of leases [20] to hierarchical aggregation.

Figure 4 details the protocol used when a noden1 updates
a lease on the inputs from a set of descendants rooted atn2.
The algorithm makes use of local clocks atn1 andn2, but it
is not sensitive to skew and tolerates a maximum drift rate
of maxdrift (e.g., 5%). In this protocol, a node maintains
thaveLease, the latest time for which it holds leases for all
descendants, andtgrantLease, the latest time for which it has
granted a lease to its ancestors. The key to the protocol is
that the childn2 extends the lease by a durationdgrantLease,
but the child interprets thedgrantLease interval starting from
trecv, the time it received the renewal request, while the par-
ent interprets the interval starting fromtsend. As a result,
a lease always expires at a parent before expiring at a child
regardless of the skew between their clocks [52].

A node that roots ak-leaf subtree that switches to a new
parent then contributesk to Ndup until tgrantLease, after
which it may reset its contribution ofNdup to 0 because its
former parent is guaranteed to have cleared from its soft state
all inputs from the node.

Early expiration. PRISM usesearly expirationto mini-
mize the scope of disruption when a tree’s topology reconfig-

7

000 111010 101
L0

L1

L2

L3

100 110 001 011
1 1 1 111 1 1

22 2 2 2 2 2 2

4

4 7

34 4

1

Fig. 6: The failure of a physical node has different effects on differ-
ent aggregations depending on which virtual nodes are mapped to
the failed physical node. The numbers next to virtual nodes show
the value ofNreachable for each subtree after the failure of physical
node 001, which acts as a leaf for one tree but as a level-2 subtree
root for another.

ures. In particular, the lease aggregation mechanism ensures
the invariant that leases near the root of a tree are shorter
than leases near the leaves. As a result, a naive implementa-
tion that removes cached soft state exactly when a lease ex-
pires would exhibit the perverse behavior illustrated in Fig-
ure 5(a): each node from the root to the parent of a failed
node will successively expire its problematic child’s state,
recalculate its aggregates without that child, update its par-
ent, renew its parent’s lease, and then repeatedly receive and
propagate updated aggregates from its child as the process
ripples down the tree. Not only is that process expensive,
but it may significantly and unnecessarily perturb values re-
ported at the root for all attributes by removing and re-adding
large subtrees of inputs. Furthermore, note that the example
in Figure 5 is the common case: in a randomly constructed
tree, the vast majority of nodes (and failures) are near the
leaves. Failing to address this problem would transform the
common-case of leaf failures into significant disruptions and
bring into play the amplification effect.

Early expiration avoids this unwarranted disruption as
Figure 5(b) illustrates. A node at leveli of the tree dis-
cards the state of an unresponsive subtree (maxLevels - i)
* dearly before its lease expires. Once the node has removed
the problematic child’s inputs from the aggregates values it
has reported to its parent, the node can renew leases to its
parent that are no longer limited by the ever-shortening lease
held on the problematic child. As the figure illustrates, this
technique minimizes disruption by allowing a node near the
trouble spot to prune the tree, update its ancestors, and re-
sume granting long leasesbeforeany ancestor acts.

4.4.3 Scaling to large systems
Scaling NI is a challenge. To scale monitoring to large num-
bers of nodes and attributes, PRISM constructs a forest of
trees using an underlying DHT and then uses different aggre-
gation trees for different attributes. As Figure 6 illustrates,
a failure affects different trees differently so we need to cal-
culate NI metrics for each of then distinct global trees in an
n-node system. Making matters worse, as Section 4.4.1 ex-
plained, maintaining the NI metrics requires frequent active
probing along each edge of each tree’s graph.

00*

000 111010 101
L0

L1

L2

L3

100 110 001 011
Fig. 7: Plaxton tree topology is an approximate butterfly network.
The bold connections illustrate how a virtual node 00* uses the dual
tree prefix aggregation abstraction to aggregate values from a tree
below it and distribute the results up a tree above it.

As a result of these factors, the straightforward algorithm
for maintaining NI metrics separately for each tree is not ten-
able: the DHT forest ofn degree-d aggregation trees with
n physical nodes and each tree havingn−1/d

1−1/d edges (d¿1),

have totalΘ(n2) edges that must be monitored; such mon-
itoring would requireΘ(n) messages per node every probe
interval (p = 10s in our prototype). To put this in perspec-
tive, consider an = 512-node system withd = 16-ary trees
(i.e., a DHT with 4-bit correction per hop). The straightfor-
ward algorithm then has each node sending over roughly 50
probes per second. As the system grows, the situation dete-
riorates rapidly—a 1024-node system requires each node to
send roughly 100 probes per second.

Our solution, described below, reduces active monitoring
work toΘ(d log n) probes per node perp seconds. The 512-
node system in the example will require each node to send
about 5 probes per second; the 1024-node system will re-
quire each node to send about 5.8 probes per second.

Dual tree prefix aggregation. To make it practical to
maintain the NI values, we take advantage of the underly-
ing structure of our Plaxton-tree-based DHT [38] to re-use
common sub-calculations across different aggregation trees
using a noveldual tree prefix aggregationabstraction.

As Figure 7 illustrates, this DHT construction forms an
approximate butterfly network. For a degree-d tree, the vir-
tual node at leveli has an id that matches the keys that it
routes inlog d∗i bits. It is the root of exactly one tree, and its
children are approximatelyd virtual nodes that match keys
in log d∗(i−1) bits. It hasd parents, each of which matches
different subsets of keys inlog d∗(i+1) bits. But notice that
for each of these parents, this tree aggregates inputs fromthe
same subtrees.

Whereas the standard aggregation abstraction computes
a function across a set of subtrees and propagates it to one
parent, adual tree prefix aggregationcomputes an aggrega-
tion function across a set of subtrees and propagates it toall
parents. As Figure 7 illustrates, each node in a dual tree pre-
fix aggregation is the root of two trees: an aggregation tree
below that computes an aggregation function across a set of
leaves and a distribution tree above that propagates the result
of this computation to a collection of enclosing aggregates
that depend on this sub-tree for input.

8

For example in Figure 7, consider the level 2 virtual node
00* mapped to node 000. This node’sNreachable count of 4
represents the total number of leaves included in that virtual
node’s subtree. This node aggregates this singleNreachable

count from its descendents and propagates this value to both
of its level-3 parents, 000 and 001. For simplicity, the figure
shows a binary tree; by default PRISM corrects 4 bits per
hop andd=16, so each subtree is common to 16 parents.

4.4.4 Using NI
PRISM’s formulation of NI explicitly separates the basic
mechanism for detecting and quantifying NI from the pol-
icy for dealing with it. This separation is needed because
the impact of omitted updates (whenNreachable < Nall) or
duplicated updates (whenNdup > 0) depends on the sever-
ity of the disruption (e.g., a leaf node failure may have less
impact than an internal node failure), the nature of the ag-
gregation function (e.g., some aggregation functions are in-
sensitive to duplicates [11]), the variability of the sensor in-
puts (e.g., when inputs change slowly, using a cached up-
date for longer than desired may have a modest impact),
and application requirements (e.g., some applications may
prize availability over correctness and live with best effort
answers while others may prefer not to act when the accu-
racy of information is suspect.) Therefore, given the broad
range of factors that determine the significance of NI disrup-
tions, PRISM reportsNall, Nreachable, andNdup and allows
applications to evaluate the significance of disruptions and to
take application-appropriate actions to manage this impact.

The simple mechanism of providing these three metrics
is nonetheless powerful—it supports a broad range of tech-
niques for coping with NI from network and node disrup-
tions. Examples include

• Filtering or flagging unacceptably uncertain answers—
systems can manage the trade-off between consistency
and availability [19] by sacrificing availability (e.g.,
throwing an exception rather than returning an answer
when NI exceeds some threshold). Conversely, a system
could maximize availability by always returning an an-
swer based on the best available information but flagging
that answer’s quality as high, medium, or low depending
on the current NI.

• Increasing reported TI—short bursts of lowNreachable

mean that an aggregated value may not reflect some re-
cent updates. Rather than report a “low quality” result for
the current period, a system can report a “high quality”
result with explicitly less temporal precision.

• On-demand reaggregation—given a signal that current re-
sults may be missing updates from some sensors, a sys-
tem can trigger a full on-demand reaggregation to gather
current reports (without AI caching or TI buffering) from
whatever sensors are available.

• Duplicate-insensitive aggregation—some systems can be
designed with duplicate-insensitive aggregation func-
tions. For example, MAX is inherently duplicate-
insensitive [30], and duplicate-insensitive approximations

of some other functions exist [11, 31, 33].
• Redundant aggregation—systems can aggregate an at-

tribute using several different keys so that one of the keys
is likely to find a route around the disruption. Our the-
oretical analysis shows that underf independent failures
in anℓ-leveld-ary aggregation tree, the expected number
of disconnected nodes isf ∗ (ℓ + 1) with high standard
deviationf ∗ d

ℓ
2 . However, by aggregating an attribute

along a (small) constant number of trees, all failure occur
at level≤ i (i << ℓ) with meanf ∗ (i + 1) and standard
deviationf ∗ d

i
2 with high probability. For example, forℓ

= 2, d = 16,f = 10, i = 1, aggregating an attribute along
4 trees decreases deviation from 160 for a single tree to
40; detailed proofs are in the technical report [1]. Later
in section 5.4, we show that by aggregating an attribute
upk paths and using the answer corresponding to the path
with the lowest overall NI disruption, we can reduce inac-
curacy by nearly a factor of five fork = 4.

These examples illustrate how to use NI. More generally,
given information about the quality of a reported answer,
different applications can take different actions to cope with
network disruptions.

5 Experimental Evaluation
We have developed a prototype of the PRISM monitoring
system on top of FreePastry [41].

Our experiments characterize the performance and scala-
bility of the AI, TI, and NI metrics. First, we quantify the
reduction in monitoring overheads due to AI and TI. Sec-
ond, we analyze the deviation in the PRISM’s reported val-
ues with respect to both the ground truth based on sensor
readings and the guarantees defined by AI and TI. Finally,
we investigate the consistency/availability trade-offs that NI
exposes. In summary, our experimental results show that
PRISM is an effective substrate for scalable monitoring: in-
troducing small amounts of AI and TI significantly reduces
monitoring load, and the NI metrics both successfully char-
acterize system state and reduce measurement inaccuracy.

5.1 Load vs. Imprecision
In this subsection we quantify the reduction in monitoring
load due to AI and TI for two applications: the PRISM Mon-
itoring service PrMon and Distributed Heavy Hitter (DHH).

5.1.1 PrMon
We begin by comparing the monitoring cost of PrMon dis-
tributed monitoring service to the centralized CoMon ser-
vice, which uses a fixed TI of 5 minutes and which does not
exploit AI. We gathered CoTop [10] data from 200 Planet-
Lab nodes at 1-second intervals for 1 hour. The CoTop data
provide the per-slice usage of 9 CPU, NW, and memory re-
sources for all slices running on each node. Using these logs
as sensor input, we run PRISM on 200 servers mapped to 50
Emulab machines. Note that for comparison with CoMon,
the baseline is set to AI of -1 (no AI caching) and TI of 5
minutes.

9

 0.001

 0.01

 0.1

 1

 0 50 100 150 200 250 300

T
ot

al
 #

 m
es

sa
ge

s
(n

or
m

al
iz

ed
)

TI (seconds)

AI = -1
AI = 0

AI = 10%
AI = 20%

Fig. 8: Load vs. AI and TI for PrMon ap-
plication.

 0.001

 0.01

 0.1

 1

 0 50 100 150 200 250 300

T
ot

al
 #

 m
es

sa
ge

s
(n

or
m

al
iz

ed
)

TI (seconds)

AI = 0
AI = 1%

AI = 10%
AI = 20%

Fig. 9: Load vs. AI and TI for DHH appli-
cation.

 0.01

 0.1

 1

 0 50 100 150 200 250 300

T
ot

al
 #

 m
es

sa
ge

s
(n

or
m

al
iz

ed
)

TI (seconds)

AI = -1
AI = 0

AI = 10
AI = 20

Fig. 10: Load vs. AI and TI for PrMon’s
CPU attribute

Figure 8 shows the combined effect of AI and TI in reduc-
ing PrMon’s load for monitoring all the running PlanetLab
slices in our CoTop trace data. The x-axis shows the TI bud-
get and the y-axis shows the total message load during the
1-hour run normalized with respect to AI of -1 and TI = 10
seconds. We observe that for AI of -1, there is more than
one order of magnitude load reduction for TI of 5 minutes
compared to 10 seconds; the corresponding message over-
head per node is about 90 messages per second (TI = 10s)
and 4 messages per second (TI = 5 minutes). Likewise, for
a fixed TI of 10 seconds, AI of 20% reduces load by two
orders of magnitude (to 0.7 messages per node per second)
compared to AI = -1. By combining AI of 20% and TI of 30
seconds, we get both an order of magnitude load reduction
(to 0.3 messages per node per second) and an order of mag-
nitude reduction in the time lag between updates compared
to CoMon’s AI of -1 and TI of 5 minutes. Alternatively, for
approximately the same bandwidth cost as CoMon with TI
of 5 minutes and AI of -1 for 200 nodes, PRISM provides
highly time-responsive and accurate monitoring with TI of
10 seconds and AI of 0.

5.1.2 Detecting Heavy Hitters
For DHH application, we use multiple netflow traces ob-
tained from the Abilene [2] Internet2 backbone network.
The data was collected from 3 Abilene routers for 1 hour;
each router logged per-flow data every 5 minutes, and we
split these logs into 400 buckets based on the hash of source
IP. As described in Section 3, our DHH application executes
a Top-10 query on this dataset for tracking the top 10 flows
(destination IP as key) in terms of bytes received over a 15
second moving window shifted every 5 seconds.

Figure 9 shows the precision-performance results for the
top-10 DHH query for 400 nodes mapped to 100 Emulab
machines. The total monitoring load is normalized relative
to the load for AI of 0 and TI of 10 seconds. The AI bud-
get is varied from 1% to 20% of the maximum flow’s global
traffic volume. We observe that AI of 10% reduces moni-
toring load by an order of magnitude compared to AI of 0
for a fixed TI of 10 seconds, by (a) culling all updates for
large numbers of “mice” flows whose total bandwidth is less
than this value and (b) filtering small changes in the remain-
ing elephant flows. Similarly, TI of 5 minutes reduces load
by about 80% compared to TI of 10 seconds. For DHH ap-

plication, AI filtering is more effective than TI batching for
reducing load because of the large fraction of mice flows in
Abilene traces.

In summary, our evaluation shows that small AI and TI
budgets can provide large bandwidth savings to enable scal-
able monitoring.

5.2 Setting Monitoring Budget
Finally, to reduce bandwidth, one can either increase AI or
TI. We provide two guidelines: (1) for attributes that exhibit
large variation in consecutive updates (e.g., CPU), band-
width falls roughly proportionally with increasing TI but in-
creasing AI may have little impact because it most updates
will bypass AI filtering under modest error budgets as shown
in Figure 10 and (2) for attributes that show small variance
(e.g., number of processes), increasing the AI budget may be
effective.

5.3 Promised vs. Realized Accuracy
A central goal of PRISM is to go beyond providing best ef-
fort imprecision estimates to ensuring worst-case guarantees
conditioned by NI. In this subsection, we experimentally in-
vestigate PRISM’s accuracy by using the CoTop trace for the
“CPU” attribute, configuring PRISM with different AI and
TI values, playing that trace through PRISM on 200 servers
mapped to 50 Emulab nodes, logging the value reported for
the attribute at each second, and doing an off-line compari-
son between the PRISM’s reported values and trace inputs.

First, we experimentally test whether the results delivered
by PRISM do, in fact, remain within the range promised by
PRISM’s imprecision guarantees. We compare PRISM’s ac-
tual output at every second to theoracle output computed
across the input traces for AI values of 0, 1%, 5%, and 10%
with TI values of 1s and 10s. In 99.9% (3596 of 3600) of
the 1-second periods at the various levels of AI and TI, the
reported value lies within the range promised by PRISM; the
inaccuracy of less than 1% in the remaining 0.1% of reports
stems from disruptions captured by the NI metrics as we dis-
cuss in detail in Section 5.4.

Next, we examine how different levels of AI and TI affect
the actual end-to-end imprecision delivered to applications
relative to the instantaneous oracle value computed across
the input traces. Figure 11 and 12 show for different val-
ues of AI, the CDF of deviation between PRISM’s reports
compared to the oracle truth for fixed TI of 1s and 10s, re-

10

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

C
D

F
 (

%
)

Difference (%)

ORACLE-AI=0
ORACLE-AI=1%
ORACLE-AI=5%

ORACLE-AI=10%

Fig. 11: CDF for difference between PRISM’s reported values
and oracle truth for fixed TI of 1 second.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

C
D

F
 (

%
)

Difference (%)

ORACLE-AI=0
ORACLE-AI=1%
ORACLE-AI=5%

ORACLE-AI=10%

Fig. 12: CDF for difference between PRISM’s reported values
and oracle truth for fixed TI of 10 seconds.

spectively. We make two observations here: First, for AI of
5% and 1 second TI, more than 90% of reports have less than
16% difference from the oracle. Notice, however, that even
with AI of 0 and immediate propagation, any aggregation
system’s reports can differ from the oracle truth due to prop-
agation delays. As illustrated in Figure 12, increasing theTI
to 10 seconds results in a larger deviation between PRISM’s
reported results and the oracle. Second, for AI of 5% AI and
10s TI, more than 90% reports differ by less than 27% from
the oracle. The relatively large errors relative to AI are due
to the low temporal locality of the CPU attribute.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2 4 6 8 10 12 14 16 18

V
al

ue

Time (hours)

Nreachable
Nall

Ndup

Fig. 13: NI metrics reflecting PlanetLab state (85 nodes).

5.4 NI: Coping With Disruption
Next, we analyze the effectiveness of NI metrics in reflecting
network state and filtering inaccurate reports.

Whereas Sections 5.1 and 5.3 show system performance
under stable conditions (low NI), in the rest of this section
we focus on NI’s effectiveness during periods of instability.
In particular, we run experiments on PlanetLab nodes. Be-
cause these nodes show heavy load, unexpected delays, and
relatively frequent reboots (especially prior to deadlines!),
we expect these nodes to exhibit more NI than in a typical
distributed environment, which makes a convenient stress
test of our system.

Figure 13 shows how NI reflects network state for a 85-
node PlanetLab experiment for a 18-hour run. We ob-

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100
C

D
F

 (
%

 a
ns

w
er

s)
Difference from truth (%)

NI unbounded
NI < 5%

NI < 10%
NI < 50%
NI < 75%
NI < 90%

Fig. 14: CDF for reported answers filtered for different NI thresh-
olds and K = 1.

serve that even without any induced failures, there are short-
term instabilities in values reported byNreachable, Nall,
andNdup due to missing/delayed ping reply messages for
Nreachable and lease expirations triggered by DHT reconfig-
urations forNdup. During the course of the run, 5 of the 85
nodes became unresponsive; hence the finalNreachable and
Nall values stabilize to 80.

5.5 Consistency v. Availability
Next we quantify the risks of reporting global aggregate re-
sults without incorporating NI. We run a 1 hour experiment
on 94 PlanetLab nodes for an attribute with AI = 0 and TI =
10 seconds. Figure 14 shows the CDF of reported answers
showing the deviation in reports with respect to an oracle.
The different lines in the graph correspond to the reported
answers filtered for different NI thresholds. For simplicity,
we condense NI to a single parameter MAX(Nall−Nreachable

Nall
,

Ndup

Nall
). We observe that NI effectively reflects the stability of

network state: when NI< 5%, 80% answers have less than
20% deviation from the true value. Conversely, for moni-
toring systems that ignore NI (no filtering line), half of their
reports differ from the truth by more than 60%. As discussed
in Section 4.4.4, applications can filter results using differ-
ent NI thresholds and take an appropriate action to correct
distorted results.

11

In Figure 15 we explore the effectiveness of redundant
aggregation (Section 4.4.4) i.e., using K redundant trees
to compute an attribute and then using NI to identify the
highest-quality result. Figure 15 shows the CDF of results
with respect to the deviation from oracle as we vary K from
1 to 4. When deviation is less than 10% (small NI), retriev-
ing results from the root of one aggregation tree (K = 1) suf-
fices. However, for large deviation, fetching the reports from
only one aggregation tree can introduce deviation as high as
100% whereas choosing the result from the most stable of 4
trees reduces the deviation to at most 22% thereby reducing
the worst-case inaccuracy by nearly a factor of 5. Note that
PRISM enables a trade-off: for a given bandwidth budget, a
system may be able to use small increases in AI and TI to
increase K and thereby greatly reduce NI.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

C
D

F
 (

%
 a

ns
w

er
s)

Difference from truth (%)

K = 1
K = 2
K = 3
K = 4

Fig. 15: CDF of NI values for different K.

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

C
D

F
 (

%
 a

ns
w

er
s)

NI

K = 1
K = 2
K = 3
K = 4

Fig. 16: CDF of NI values for K duplicate keys.

Filtering answers during periods of high churn exposes
a fundamental consistency versus availability tradeoff [19].
Figure 16 shows how varying K allows us to increase mon-
itoring load to improve this tradeoff. As K increases, the
fraction of time during which NI is low increases. The in-
tuition is that because the vast majority of nodes in any 8-
ary tree are near the leaves, sampling several trees rapidly
increases the probability that at least one tree avoids en-
countering many near-root failures. We provide an analytic
model formalizing this intuition in our technical report [1].

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 16 32 64 128 256 512 1024

M
es

sa
ge

s
pe

r
no

de
 p

er
 s

ec
on

d

Number of nodes

Dual-tree Prefix Aggregation
Per-tree Aggregation

Fig. 17: NI monitoring overhead for dual-tree prefix aggregation
compared to computing NI per aggregation tree; x-axis is on alog
scale.

5.6 NI Scalability
Finally, we empirically quantify the monitoring overhead of
tracking NI via (1) each aggregation tree and (2) dual-tree
prefix aggregation. Figure 17 shows the per-node message
cost for NI monitoring varying network size from 16 to 1024
nodes. We observe that the overhead using per aggregation
tree scales linearly with the network size whereas it scales
logarithmically using dual-tree prefix aggregation.

6 Related Work
Aggregation systems commonly use some form of AI or TI
to reduce monitoring overheads. Olston et al. [6, 34] use
adaptive filters at the data sources that compute approximate
answers for continuous queries in single-level communica-
tions topologies. Manjhi et al. [32] determine an optimal
but staticdistribution of slack to the internal and leaf nodes
of an tree for the special case of finding frequent items in
database streams. In comparison, PRISM supports general
aggregation functions and employs a self-tuning algorithm
for distributing the error budgets in a general communication
hierarchy. IrisNet [14] filters sensors at leaves and caches
timestamped results in a hierarchy with queries that spec-
ify the maximum staleness they will accept and that trig-
ger re-transmission if needed. In contrast, PRISM coordi-
nates transmission of push-based continuous query results
to support in-network aggregation, allowing it to more ag-
gressively optimize the TI batching. TAG [30] bounds TI
by partitioning time into intervals of durationTI

l (l: maxi-
mum tree level) with nodes at leveli transmitting during the
ith interval. In comparison, PRISM increases the batching
interval from TI

l to (TI − l ∗ ǫ) to significantly reduce com-
munication overhead.

Traditionally, DHT-based aggregation is event-driven and
best-effort, i.e., each update event triggers re-aggregation for
affected portions of the aggregation tree. Further, systems
often only provide eventual consistency guarantees on its
data [48, 50], i.e., updates by a live node will eventually be
visible to probes by connected nodes.

Bawa et. al [7] survey previous work on measuring the
validity of query results in faulty networks. Their “single-

12

site validity” semantic is equivalent to PRISM’sNreachable

metric. Completeness[21] defined as the percentage of net-
work hosts whose data contributed to the final query result,
is similar to the ratio ofNreachable andNall. Relative Er-
ror [11, 53] between the reported and the “true” result at any
instant can only be computed by an oracle with a perfect
view of the dynamic network. To address this fundamental
problem, PRISM uses NI to condition AI and TI guarantees.

Several aggregation systems have worked to address the
failure amplification effect. To mask failures, TAG [30] pro-
poses (1) reusing previously cached values and (2) divid-
ing the aggregate value into fractions equal to the number
of parents and then sending each fraction to a distinct par-
ent. This approach only reduces the variance but not the
expected value of the aggregate value at the root. Other stud-
ies have proposed multi-path routing methods [11, 21, 27,
31, 33] for fault-tolerant aggregation. In broadcast wireless
networks, multi-routing may be relatively inexpensive com-
pared to wired networks where these aggregation topolo-
gies incur bandwidth overhead proportional to the number of
multiple paths. Furthermore, in both cases, double-counting
can occur for duplicate-sensitive aggregates such as SUM.
In comparison, PRISM uses redundant aggregation trees for
improving availability and NI to quantify consistency of the
aggregation result.

Recent proposals [7, 11, 31, 33] have combined multipath
routing with order- and duplicate-insensitive data structures
to tolerate faults in sensor network aggregation. The key idea
is to use probabilistic counting [16] to approximately count
the number of distinct elements in a multi-set. PRISM takes
a complementary approach: whereas multipath duplicate-
insensitive (MDI) aggregation seeks to reduce the effects of
network disruption, PRISM’s NI metric seeks to quantify the
network disruptions that do occur. In particular, although
MDI aggregation can, in principle, reduce network-induced
inaccuracy to any desired target if losses are independent
and sufficient redundant transmissions are made [33], the
systems studied in the literature are still subject to non-zero
network-induced inaccuracy due to efforts to balance trans-
mission overhead with loss rates, insufficient redundancy in
a topology to meet desired path redundancy, or correlated
network losses across multiple links. These issues may be
more severe in our environment than in the wireless sensor
networks targeted by MDI approaches because the dominant
loss model may differ (e.g., link congestion and DHT re-
configurations in our environment versus distance-sensitive
loss probability for the wireless sensors) and because the
transmission cost model differs (for some wireless networks,
transmission to multiple destinations can be accomplished
with a single broadcast.) These techniques are also comple-
mentary in that PRISM’s infrastructure provides NI infor-
mation that is common across attributes while the MDI ap-
proach modifies the computation of individual attributes. As
Section 4.4.4 discussed, NI provides a basis for integrating a
broad range of techniques for coping with network error, and

MDI aggregation may be a useful technique in cases when
(a) an aggregation function can be recast to be order- and
duplicate-insensitive and (b) the system is willing to pay the
extra network cost to transmit each attribute’s updates. Fur-
ther, to realize this promise, additional work is required to
extend MDI approach to bounding the approximation error
while still minimizing network load via AI and TI filtering.

Some recent studies [24, 25, 28] have proposed monitor-
ing systems with distributed triggers that fire when an ag-
gregate of remote-site behavior exceeds an a priori global
threshold. These systems are based on a single-level tree hi-
erarchy where the central coordinator tracks aggregate time-
series data by setting local filters at remote sites. PRISM
may enhance such efforts by providing a scalable way to
track top-k and other significant events.

7 Conclusions
Without precision guarantees, large scale network monitor-
ing systems may be too expensive to implement (because
too many events flow through the system) or too dangerous
to use (because data output by such systems may be arbi-
trarily wrong.) PRISM provides arithmetic imprecision to
bound numerical accuracy, temporal imprecision to bound
staleness, and network imprecision to expose cases when
first two bounds can not be trusted.

References
[1] Details omitted for double-blind reviewing, see

http://prism2007.googlepages.com for technical report.
[2] Abilene internet2 network.

http://abilene.internet2.edu/.
[3] D. Andersen, H. Balakrishnan, M. Kaashoek, and R. Morris.

Resilient overlay networks. InProc. SOSP, pages 131–145.
ACM Press, 2001.

[4] T. Anderson and M. Reiter. Geni facility security. InDraft
GDD-6-23, GENI Distributed Services Working Group, 2006.

[5] T. Anderson and T. Roscoe. Learning from planetlab. In
WORLDS, 2006.

[6] B. Babcock and C. Olston. Distributed top-k monitoring.In
ACM SIGMODInternational Conference on Management of
Data, pages 28–39, June 2003.

[7] M. Bawa, A. Gionis, H. Garcia-Molina, and R. Motwani. The
price of validity in dynamic networks. InSIGMOD, 2004.

[8] A. Bharambe, M. Agrawal, and S. Seshan. Mercury: Support-
ing Scalable Multi-Attribute Range Queries. InSIGCOMM,
Portland, OR, August 2004.

[9] D. D. Clark, C. Partridge, J. C. Ramming, and J. Wroclawski.
A knowledge plane for the internet. InSIGCOMM, 2003.

[10] http://comon.cs.princeton.edu/.
[11] J. Considine, F. Li, G. Kollios, and J. Byers. Approximate

aggregation techniques for sensor databases. InICDE, 2004.
[12] R. Cox, A. Muthitacharoen, and R. T. Morris. Serving DNS

using a Peer-to-Peer Lookup Service. InIPTPS, 2002.
[13] M. Dahlin, B. Chandra, L. Gao, and A. Nayate. End-to-end

wan service availability. IEEE/ACM Transactions on Net-
working, 2003.

[14] A. Deshpande, S. Nath, P. Gibbons, and S. Seshan. Cache-
and-query for wide area sensor databases. InProc. SIGMOD,
2003.

13

[15] C. Estan and G. Varghese. New directions in traffic measure-
ment and accounting. InSIGCOMM, pages 323–336. ACM,
2002.

[16] P. Flajolet and G. N. Martin. Probabilistic counting algo-
rithms for data base applications.Journal of Computer and
System Sciences,, 31(2):182–209, Oct. 1985.

[17] M. J. Freedman and D. Mazires. Sloppy Hashing and Self-
Organizing Clusters. InIPTPS, Berkeley, CA, February 2003.

[18] Y. Fu, J. Chase, B. Chun, S. Schwab, and A. Vahdat. SHARP:
An architecture for secure resource peering. InProc. SOSP,
Oct. 2003.

[19] S. Gilbert and N. Lynch. Brewer’s conjecture and the feasibil-
ity of Consistent, Available, Partition-tolerant web services.
In ACM SIGACT News, 33(2), Jun 2002.

[20] C. Gray and D. Cheriton. Leases: An Efficient Fault-Tolerant
Mechanism for Distributed File Cache Consistency. InSOSP,
pages 202–210, 1989.

[21] I. Gupta, R. van Renesse, and K. P. Birman. Scalable fault-
tolerant aggregation in large process groups. InDSN, 2001.

[22] N. J. A. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and
A. Wolman. SkipNet: A Scalable Overlay Network with
Practical Locality Properties. InUSITS, March 2003.

[23] J. M. Hellerstein, V. Paxson, L. L. Peterson, T. Roscoe,
S. Shenker, and D. Wetherall. The network oracle.IEEE
Data Eng. Bull., 28(1):3–10, 2005.

[24] L. Huang, M. Garofalakis, J. Hellerstein, A. Joseph, and
N. Taft. Toward sophisticated detection with distributed trig-
gers. InMineNet, pages 311–316, New York, NY, USA, 2006.
ACM Press.

[25] L. Huang, M. Garofalakis, A. D. Joseph, and N. Taft.
Communication-efficient tracking of distributed cumulative
triggers. Technical Report UCB/EECS-2006-139, EECS De-
partment, University of California, Berkeley, October 30
2006.

[26] R. Huebsch, J. M. Hellerstein, N. Lanham, B. T. Loo,
S. Shenker, and I. Stoica. Querying the Internet with PIER.
In VLDB, 2003.

[27] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed
diffusion: a scalable and robust communication paradigm for
sensor networks. InMobiCom, 2000.

[28] A. Jain, J. M. Hellerstein, S. Ratnasamy, and D. Wetherall.
A wakeup call for internet monitoring systems: The case for
distributed triggers. InHotNets, San Diego, CA, November
2004.

[29] P. Laskowski and J. Chuang. Network monitors and con-
tracting systems: competition and innovation. InSIGCOMM,
2006.

[30] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong.
TAG: a Tiny AGgregation Service for Ad-Hoc Sensor Net-
works. InOSDI, 2002.

[31] A. Manjhi, S. Nath, and P. B. Gibbons. Tributaries and deltas:
efficient and robust aggregation in sensor network streams.In
SIGMOD, 2005.

[32] A. Manjhi, V. Shkapenyuk, K. Dhamdhere, and C. Ol-
ston. Finding (Recently) Frequent Items in Distributed Data
Streams. InICDE, pages 767–778. IEEE Computer Society,
2005.

[33] S. Nath, P. B. Gibbons, S. Seshan, and Z. R. Anderson. Syn-
opsis diffusion for robust aggregation in sensor networks.In
SenSys, 2004.

[34] C. Olston, J. Jiang, and J. Widom. Adaptive filters for con-
tinuous queries over distributed data streams. InSIGMOD,
2003.

[35] C. Olston and J. Widom. Offering a precision-performance
tradeoff for aggregation queries over replicated data. In
VLDB, pages 144–155, Sept. 2000.

[36] V. Paxson. End-to-end Routing Behavior in the Internet. In
SIGCOMM, Aug. 1996.

[37] Planetlab.http://www.planet-lab.org.
[38] C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing

Nearby Copies of Replicated Objects in a Distributed Envi-
ronment. InACM SPAA, 1997.

[39] G. Plaxton, R. Rajaram, and A. Richa. Accessing nearby
copies of replicated objects in a distributed environment.In
SPAA, pages 311–320, June 1997.

[40] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A Scalable Content Addressable Network. In
SIGCOMM, 2001.

[41] A. Rowstron and P. Druschel. Pastry: Scalable, Distributed
Object Location and Routing for Large-scale Peer-to-peer
Systems. InMiddleware, 2001.

[42] J. Shneidman, P. Pietzuch, J. Ledlie, M. Roussopoulos,
M. Seltzer, and M. Welsh. Hourglass: An infrastructure for
connecting sensor networks and applications. Technical Re-
port TR-21-04, Harvard Technical Report, 2004.

[43] A. Siegel.Performance in Flexible Distributed File Systems.
PhD thesis, Cornell, 1992.

[44] A. Singla, U. Ramachandran, and J. Hodgins. Temporal no-
tions of synchronization and consistency in Beehive. InProc.
SPAA, 1997.

[45] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakr-
ishnan. Chord: A scalable Peer-To-Peer lookup service for
internet applications. InACM SIGCOMM, 2001.

[46] R. Tewari, M. Dahlin, H. Vin, and J. Kay. Design Considera-
tions for Distributed Caching on the Internet. InICDCS, May
1999.

[47] http://www.globus.org/.
[48] R. van Renesse, K. Birman, and W. Vogels. Astrolabe: A

robust and scalable technology for distributed system moni-
toring, management, and data mining.TOCS, 21(2):164–206,
2003.

[49] D. Veitch, S. Babu, and A. Pasztor. Robust synchronization
of software clocks across the internet. InIMC, 2004.

[50] P. Yalagandula and M. Dahlin. A scalable distributed infor-
mation management system. InProc SIGCOMM, Aug. 2004.

[51] P. Yalagandula, P. Sharma, S. Banerjee, S.-J. Lee, and
S. Basu. S3: A Scalable Sensing Service for Monitoring
Large Networked Systems. InProceedings of the SIGCOMM
Workshop on Internet Network Management, 2006.

[52] J. Yin, L. Alvisi, M. Dahlin, and C. Lin. Hierarchical Cache
Consistency in a WAN. InProc USITS, Oct. 1999.

[53] R. G. Yonggang Jerry Zhao and D. Estrin. Computing ag-
gregates for monitoring wireless sensor networks. InSNPA,
2003.

[54] H. Yu and A. Vahdat. Design and evaluation of a continuous
consistency model for replicated services. InOSDI, pages
305–318, 2000.

[55] H. Yu and A. Vahdat. Design and evaluation of a conit-based
continuous consistency model for replicated services.ACM
Trans. on Computer Systems, 20(3), Aug. 2002.

14

[56] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry:
An Infrastructure for Fault-tolerant Wide-area Location and
Routing. Technical Report UCB/CSD-01-1141, UC Berkeley,
Apr. 2001.

15

