PRISM: PRecision-Integrated Scalable Monitoring

Navendu Jain, Dmitry Kit, Prince Mahajan, Praveen YalagdaidMike Dahlin, and Yin Zhang

Department of Computer Sciences THewlett-Packard Labs
University of Texas at Austin Palo Alto, CA

Abstract work imprecision(NI) due to failed/slow nodes and network
This paper describes PRISM, a scalable monitoring ser- paths risks delivering arbitrarily incorrect results. larp
vice that makesmprecisiona first-class abstraction. EX- ticular, failures and reconfigurations can prevent nodes in
posing imprecision is essential for both correctness in the |arge-scale system from delivering important updatesgtvhi
face of network and node failures and for scalability to makes it fundamentally difficult to ensure that a reported
large systems. PRISM quantifies imprecision along a three-yajue corresponds to the system’s actual state [19]. This
dimensional vector:arithmetic imprecision(Al) and tem- problem is heightened in a hierarchical aggregation system
poral imprecision(Tl) balance precision against monitor- pecause of thdailure amplification effect33]: if a non-leaf

ing overhead whileetwork imprecisior{NI) addresses the node fails, an entire subtree rooted at that node is affected
challenge of providing consistency guarantees despike fai For example, failure of a levelnode in a degres-aggrega-
ures. Our implementation provides these metrics in a scal-tion tree can cut off updates from 512 leaf nodes.

able way via (1) self-tuning of Al budgets to shift impre- 7o address these needs, we have developed PRecision-
cision to where it is useful, (2) pipelining of Tl delays to |ntegrated Scalable Monitoring (PRISM). PRISM builds on
maximize batching of updates, and (3) dual-tree prefix ag- recent work that uses DHTs to construct scalable, load-
gregation which exploits regularities in our DHT's topoJog palanced forests of self-organizing aggregation treet78,

to drastically reduce the cost of the active probing needed 39 42, 50]. However, to realize the vision of scalable moni-
to maintain NI. PRISM's careful management of impreci- toring, PRISM should address two key technical challenges

sion qualitatively improves its capabilities. For examjhig
introducing a 10% Al, PRISM’s PlanetLab monitoring ser-

to provide a controlled tradeoff between imprecision and
load. First, although it is relatively straightforward te-r

vice reduces network overheads by an order of magnitudeqyce load by filtering some updates, doing so while ensur-

compared to PlanetLab’s CoMon service, and by using NI
metrics to automatically select the best aggregation tgsul

ing bounds on the accuracy of the reported results is diffi-
cult. Second, PRISM must provide implementations of Al,

PRISM reduces the observed worst-case inaccuracy of ourT| and NI that scale to tens of thousands of nodes and mil-

measurements by nearly a factor of five.

1 Introduction
Scalable system monitoring is a fundamental abstraction fo

large-scale networked systems. It serves as a basic kgildin
block for applications such as network monitoring and man-
agement [9, 23, 51], contractible monitors [29], resoucce |
cation [26, 50], efficient multicast [48], sensor networR6,[
50], resource management [50], and bandwidth provision-
ing [15]. To provide a real-time view of global system state
for these distributed applications, the central challeioga
monitoring system is scaling to keep track of thousands or
millions of dynamic attributes (e.g., per-flow or per-olijec
state) spanning tens of thousands of nodes.

Recent work on aggregation [26, 33,48, 50] and DHTs [8,

38,40, 41, 45, 56] seeks to provide monitoring at such scale.

However, to fully realize the goal of scalable system moni-
toring, the underlying monitoring infrastructure must ezp
imprecision in a controlled manner for two reasons.

First, introducing controlled amounts afithmetic impre-
cision (Al) and temporal imprecisiorfTI) can reduce moni-
toring load by an order of magnitude or more for some appli-
cations. Studies suggest [30, 34, 44,48, 54] that realdvorl

applications often can tolerate some inaccuracy as long as

the maximum error is bounded and that small amounts of
imprecision can provide substantial bandwidth reductions
Second, a monitoring service that fails to expos-

lions of attributes. PRISM meets these challenges using fou
novel techniques:

e The central principle guiding the design of PRISM is the
notion of conditioned consistencythe Al and TI results
are calculated optimistically, assuming that the netwsrk i
“well behaved” (e.g., no node failures, slow links, or tree
reconfigurations have affected the results). The NI metric
then qualifies Al and TI metrics by quantifying how “well
behaved” the network actually has been during the period
when these metrics are calculated. Conditioned consis-
tency is vital because it (1) simplifies our implementa-
tions of Al and Tl because they can ignore the difficult
corner cases that arise due to failures and (2) provides a
clean way to address the fundamental problem of network
churn distorting monitoring results.

For Al, PRISM employs a hierarchical self-tuning algo-
rithm that directs imprecision slack to where it is most
needed. Self-tuning distribution of Al budgets can reduce
monitoring costs by more than a factor of two over static
uniform distribution.

For TI, PRISM pipelines the available slack across levels
of the aggregation hierarchy to maximize the number of
updates batched together. Batching reduces monitoring
load by an order of magnitude for some workloads.

For NI, PRISM introduces a novdual-tree prefix aggre-
gation that exploits symmetry in our DHT-based aggre-

gation topology to reduce NI monitoring overhead by or-
ders of magnitude. Specifically, NI must track how many

nodes’ current updates are reflected in each aggregation

tree in our scalable DHT-based system. This tracking is
difficult because (a) any failed node or link potentially

affects different aggregation trees in different ways and
(b) detecting failures in the presence of Al caching and
Tl constraints requires frequent active probing of nodes.

3703 Virtual Nodes (Internal Aggregation Points) L3

S

7 W 1173 705 1273
A R A

000 100 010 110 001 101 011 111
Physical Nodes (Leaf Sensors)

L2

L1

LO

By using dual-tree prefix aggregation, PRISM reduces the Fig. 1: The aggregation tree for key 000 in an eight node gyste

per-node overhead of tracking NI frof(n) to O(logn)

messages per second iniamode system.

Experience with a Distributed Heavy Hitter detection
(DHH) application, a Ulim library for resource isolation
between distributed services, and a PrMon monitoring ser-
vice for PlanetLab built on PRISM illustrate how explicitly
managing imprecision can qualitatively enhance a monitor-
ing service. The most obvious benefit is improved scalabil-
ity: for both PrMon and DHH applications, small amounts
of imprecision drastically reduce monitoring load or allow
more extensive monitoring for a given load budget. For ex-
ample, in PrMon, a 10% Al allows us to reduce network
load by an order of magnitude compared to the widely used
CoMon [10] service. A subtler but perhaps more important
benefit is the ability to quantify and improve confidence in
the accuracy of outputs by addressing network imprecision
and the amplification effect. For example, by using NI met-
rics to automatically select the best of four redundanteggr

gation results, we can reduce the observed worst-case inac-

curacy by nearly a factor of five.
The key contributions of this paper are as follows. First,

Also shown are the aggregate values for a simple SUM() aggreg

tion function.

nal non-leaf node, which we calh@rtual node is simulated
by one or more physical nodes at the leaves of the subtree
rooted at the virtual node.

The tree-based aggregation in the PRISM framework is
defined in terms of an aggregation function installed at all
the nodes in the tree. Each leaf node (physical sensor) in-
serts or modifies its local value for aitribute defined as
an {attribute type, attribute namigoair which is recursively
aggregated up the tree. For each levslibtreeT; in an
aggregation tree, PRISM defines aggregate valud’; ;.
for each attribute: for a (physical) leaf nodg at level0,
Vo,attr 1S the locally stored value for the attribute or NULL
if no matching tuple exists. The aggregate value for a lével-
subtre€T; is the result returned by the aggregation function
computed across the aggregate values;&f children. Fig-
ure 1, for example, illustrates the computation of a simple
SUM aggregate.

DHT-based aggregation. PRISM leverages DHTs [38,

we present PRISM, the first DHT-based system that enables40 41,45, 56] to construct a forest of aggregation trees and

imprecision for scalable aggregation by introducing a new
conditioned consistency metric that bounds the arithmetic
temporal, and network imprecision. Second, we provide
a scalable implementation of each precision metric via (1)
self-tuning of Al budgets, (2) pipelining of Tl delays, and
(3) dual-tree prefix aggregation for NI. Third, our evaloati
demonstrates that imprecision is vital for enabling sdalab
aggregation: a system that ignores imprecision can sjientl
report arbitrarily incorrect results and a system thasftol
exploit imprecision can incur unacceptable overheads.
2 Background
PRISM bullds on two ongoing research efforts for scalable
monitoring: aggregation and DHT-based aggregation.
Aggregation is a fundamental abstraction for scalable
monitoring [8, 17, 26, 38, 48, 50] because it allows applica-
tions to access summary views of global information and
detailed views of rare events and nearby information.

maps different attributes to different trees [8,17, 3850,

for scalability and load balancing. DHT systems assign a
long (e.g., 160 bits), random ID to each node and define
a routing algorithm to send a request for keyo a node
root;, such that the union of paths from all nodes forms a
treeDHTtreg, rooted at the nodmot,. By aggregating an
attribute with keyk = hash(attribute) along the aggregation
tree corresponding tOHTtreg,, different attributes are load
balanced across different trees. Studies suggest thathis
proach can provide aggregation that scales to large numbers
of nodes and attributes [8,17, 38,42, 50].

3 Example Applications

Aggregation is a building block for many distributed appli-
cations such as network management [51], service place-
ment [18], sensor monitoring and control [30], multicasktr
construction [48], and naming and request routing [12]. In
this paper, we focus on three case-study examples: a dis-

PRISM'’s aggregation abstraction defines a tree Spanningtributed heavy hitter detection, a distributed monitorseg-

all nodes in the system. As Figure 1 illustrates, each phl/sic

vice for PlanetLab modeled on CoMon [10], and a “Ulim”

node in the system is a leaf and each subtree represents a lodibrary for resource isolation between distributed sesic

ical group of nodes. Note that logical groups can correspond Heavy Hitter detection:

to administrative domains (e.g., department or univeysity
groups of nodes within a domain (e.g.,2& Subnet with14
hosts on a LAN in the CS department) [22,50]. An inter-

Our first application is identi-
fying heavy hitters in a distributed system—for example, th
top 10 IPs that account for a significant fraction of total in-
coming traffic in the last 10 minutes [15]. The key challenge

for this distributed query is scalability for aggregatingrp etc. The Ulim library leverages PRISM monitoring to en-
flow statistics for millions of concurrent flows in real-time force this policy across the system; if an experiment exseed
For example, the Abilene [2] traces used in our experimentsits pre-specified resource limits, then (1) the user gets an
include up to 3.4 million flows per hour. emalil notification of the policy violation and (2) the experi
To scalably compute the global heavy hitters list, we chain ment is terminated using a user-provided security key. We
two aggregations where the results from the first feed into further envision that the Ulim framework will provide a key
the second. First, PRISM calculates the total incoming traf building block for specification-based intrusion detestio
fic for each destination from all nodes in the system using future networks like GENI [4].
SUM as the aggregation function and hash(HH-Stepl, des-4 PRISM Design
tIP) as the key. For example, tuple (H = hash(HH-Step1, In this section we present the system design and describe
128.82.121.7), 700 KB) at the root of the aggregation tree how to enforce imprecision limits and quantify the consis-
Ty indicates that a total of 700 KB of data was received for tency guarantees in PRISM. PRISM’s core architecture is a
128.82.121.7 across all vantage points during the last time DHT-based aggregation system that achieves scalability by
window. In the second step, we feed these aggregated totamapping different attributes to different aggregatioes{,
bandwidths for each destination IP into a SELECT-TOP-10 17, 38,42,50]. PRISM then introduces controlled tradeoffs
aggregation with key hash(HH-Step2, TOP-10) to identify between precision guarantees and load.
the TOP-10 heavy hitters among all flows. 4.1 Overview
PRISM quantifies imprecision along a three-dimensional
vector: (Arithmetic, Temporal, Network)Arithmetic im-
a precision(Al) bounds the numeric difference between a re-
etLab [37] and Grid systems [47] that provide open plat- ported va!ue of an attribute and its true value [35, 55], and
forms for developing, deploying, and hosting global-scale tempore_ll |_mpreC|S|or(TI), bounds the delay from when an
update is input at a leaf sensor until the effects of the updat

services. For instance, to manage a wide array of user ser flected in th i te [44 55] Th s of
vices running on the PlanetLab testbed, the system adminis2'€ retiected in the root aggregate [44,55]. These aspects o

trators need a global view of the system to identify problem- MPrecision provide means to (a) expose inherent impreci-

atic experiments (slices in PlanetLab terminology) to iden sion in a monitoring SySte'_“ stemming from sensor inaccu-
tify, for example, any slice consuming more than 10GB of racy and update propagation delays and (b) reduce system

memory across all nodes on which it is running. Similarly, load by introducing additional filtering and batching on up-

users require system state information to query for “lightl date propagation.

loaded” nodes for deploying new experiments or to track the ¢ getwc;rlg Impt'gCISIOIQED challracter![\zis tkhe l:gcertamty 'Q' bl
resource consumption of their running experiments. roduced by node crashes, slow network paths, unreachable

. : L . nodes, and DHT topology reconfigurations. If these issues
To provide such information in a scalable way and in real- pology g

time. PRISM computes the per-slice aaareaates for each re_are not addressed by a monitoring system, the results it re-
' P P ggreg ports may bearbitrarily incorrect. Unfortunately, ensuring

S?urci ar:ttr:bute Sreh|g CPrU’ N:EM’ etc.) falonﬂ dlliﬁeregrt a9 thata reported value reflects all recent updates is fundamen
glzg:tl?ab ﬁgjés fo‘c; Zggivefegnari::ossgcioatter?;u t;’ ((;ega g;z?tally hard [19], and coping with these sources of error is par
is then input to a per-resource SELECT-TOP-100 aggregatetlcmarly challenging for PRISM for three reasons. Firs; b

. cause PRISM uses Al caching, if a subtree is silent over an
(e.g.{SELECT-TOP-100, CPY) to compute the list of top- interval, PRISM must distinguish two cases: (a) the subtree
100 slices in terms of consumption of the resource. Al-

though there exist other centralized monitoring serviges has sent no updates because the inputs have not significantly
; . ' han fromth hed Al val r hein have sig-
Section 5 we show that PRISM can monitor a large number changed from the cached alues or (b) the inputs have sig

of attributes at much finer time scales while incurring signi nificantly changed but the subtree is unable to transmigits r
) 9 port. Second, because PRISM uses Tl to batch updates, there
icantly lower network costs.

are windows of time in which a short disruption can block a
Ulim Library: The final application we implement in large batch of updates and greatly perturb the systemis stat
the PRISM framework is an application-level “Ulim library” and outputs. Third, in any hierarchical aggregation system
that monitors and enforces the global resource usage of athe problem of dealing with failures is made worse by the
distributed service or experiment deployed on a largeescal amplification effectif a non-leaf node fails, then the entire
networked system e.g., PlanetLab [37]. The goal is to pro- subtree rooted at that node can be affected. For example,
vide a distributed bounding box that increases resouree iso failure of a level-3 node in a degree-8 aggregation tree can
lation between different services, thereby safeguardieg t interrupt updates from 513%) leaf node sensors.
system against anomalies such as denial of service attacks The key idea of NI is that because no system can guaran-
and buggy experiments [5]. A user attaches her experimenttee to always provide the “right” answer [19,43], it instead
to Ulim and specifies a resource usage policy describing its must report the extent to which a calculation could have been
expected traffic rates, CPU requirements, memory usagedisrupted by network and node problems.This information

Real-time Network Monitoring: The second applica-
tion is our PrMon monitoring service that is representative
monitoring Internet-scale distributed systems such as-PI

allows applications to filter out or take action to correceme
surements with unacceptable uncertainty. To that end, NI
comprises three metricd/,;;, Nreachabic; @NAN gyp.

N, is an estimate of the number of nodes that are mem-

bers of the system.
Nycachable 1S @ lower bound on the number of nodes

for which input propagation is guaranteed to meet an at-

tribute’s T bound.
Ngup provides an upper bound on the number of nodes

whose contribution to an attribute may be doubly-counted.

Double-counting can occur when reconfiguration of an

aggregation tree’s topology causes a leaf node or virtual

internal node to switch to a new parent while its old par-

ent retains the node’s inputs as soft state until a timeout.
PRISM's design explicitly separates the mechanism for de-
tecting and quantifying NI via these metrics from the policy
guestion of how to minimize the damage caused by network
and node failures. In particular, different applicationdi w
react to NI values according to their different requirensent
We discuss several examples of how applications use NI in
Section 4.4.4.

Conditioned Consistency. These three metrics condition
the arithmetic and temporal consistency guarantees. i par
ticular, reading an attribute’s value from the system iegur
a tuple[vmina Vmawa T|, Nalla Nreachablea Ndup] that means
“The system estimates the value to be betw&gp, and
Vimaz- This estimate may omit some inputs that occurred in
the lastTl seconds and it may also omit some inputs from
Nait — Nreachapie Of the Ny nodes in the system. This es-
timate may double count inputs from at magf,,,, nodes.”
Integrating Al, Tl, and NI is central to PRISM’s design.
The Al and Tl implementations are simple because they
can assume that aggregation trees never reconfigure and th
nodes and network paths never fail and are never slow de-
spite the long tail of Internet RTTs [3, 13, 36]. The NI metric
then addresses these challenging real-world issues.

4.2 Arithmetic Imprecision (Al)
We first describe the basic mechanism for enforcing Al for

how our system uses a self-tuning algorithm to address th
policy question of distributing an Al budget across suldree
to minimize system load.

4.2.1 Mechanism))
To enforce Al, each aggregation subtfEdor an attribute

has an error budge which defines the maximum inac-

e

4

o7 reports a rangelf,in , Vinaz] for an attribute value to its
parent (wheré’,,, ... < Vinin +07), if the node A receives an
update from a child, the node A can skip updating its parent
as long as it can ensure that the true value of the attribute fo
the subtree lies betweén,;,, andV,, .z, i.€., if

Vmin < Z(:Echildren Vrfnn (1)
Vmaa: > . d :
= cechildren " max
where VS, and V¢ denote the most recent update re-

ceived from childe.

Note the trade-off in splitting; betweend..;; andJ..
Larged, allows children to filter updates before they reach
a node. Conversely, by setting.;; > 0, a node can set
Vinin < Y VE.., S€tViee > > VS, ., or both to avoid
further propagating some updates it receives from its chil-
dren.

PRISM maintains per-attribut& values so that different
attributes with different error requirements and diffenep-
date patterns can use differériudgets in different subtrees.
PRISM implements this mechanism by definingdistribu-
tion function just as an attribute type’s aggregation function
specifies how aggregate values are aggregated from children
an attribute type’s distribution value specifies hbtwdgets
are distributed among children angl, ;.

4.2.2 Self-tuning error budgets
The key Al policy question is how to divide a given error
budget),.,,; across the nodes in an aggregation tree.

A simple approach is a static policy that divides the er-
ror budget uniformly among all the children. E.g., a node
with budgetér could setd,.;; = 0.16 and then divide the
remaining0.947 evenly among its children. Although this
a}pproach is simple, it is likely to be inefficient because dif
erent aggregation subtrees may experience differensload

To make cost/accuracy tradeoffslf-tuning PRISM pro-
vides an adaptive algorithm. The high-level idea is simple:
increase) for nodes with high load and lowand decrease
0 for nodes with low load and high

Unfortunately, a naive rebalancing algorithm could eas-

efly spend more network messages redistributdisgthan it

saves by filtering updates. Limiting redistribution oveatie

is a particular concern for applications like distributezhty
hitter that monitor a large number of attributes, only a féw o
which are active enough to be worth optimizing. To address
this challenge, PRISM uses a two-step algorithm:

curacy of any result the subtree will report to its parent 1. Estimate optimal distribution a¥ acrossisc;y andd..

for that attribute. The root of each subtree divides this
error budget among itseli,.;; and its childrend. (with
07 > dseif + Y ccchitaren Oc), @nd the children recursively

Each node tracks the number of messages sent to its parent
per time unit (/,.;r) and the aggregate number of messages
per time unit reported by each chilts subtree {/.). Note

do the same. Here we present the Al mechanism for thethat M. reports are accumulated by a child until they can

SUM aggregate; other standard aggregation functions (e.g. be piggy-backed on an update message to its parent. Given

MAX, MIN, AVG) are similar [1]. this information each node estimates the optimal values
This arrangement reduces system load by filtering small §7* that minimizes the total system load, M2F*, where

updates that fall within the range of values cached by a sub- M¢?! is an estimate of the load generated by nodender
tree’s parent. In particular, after a node A with error budge optimal error budgeto?:. In particular, forany € {sel f}U

4.2.3 Implementation details

Uni Self-tuning —a— Given these mechanisms, we still have plenty of freedom to
niform Allocation —&—) i i .
T gl (i) setd...o: to an appropriate value for each attribute, and (ii)
S computeV,,.;,, andV,, .. when updating a parent.
:,é 06 I Settingd,..o¢. Note that the aggregation queries can set the
3 root error budget,...: to any non-negative value. For some
O o4t applications, an absolute constant value may be known a pri-
g ori (e.g., count the number of connections per secoh@lat
§ 02 L port 1433.) For other applications, it may be appropriate to
set the tolerance based on measured behavior of the aggre-
0 ‘ ‘ ‘ gate in question (e.g., sét,,; for an attribute to be at most
0 5 10 15 20 10% of the maximum value observed) or the measurements
Al Budget (%) of a set of aggregates (e.g., in our heavy hitter application
Fig. 2: Self-tuning vs. uniform static Al error distributiaising setd,..; for each flow to be at most 1% of the bandwidth of
simulator. the largest flow measured in the system). Our algorithm sup-
child(n) we estimate ports all of these approaches by allowing new absadiLyg
valuesto be introduced at any time and then distributed down
57t — §r VM, * 6, the tree via a distribution function. We have prototyped sys

IV (2) tems that use each of these three policies
Zve{self}Uchild(n) M, 0, X b .)
Computing [Vinin, Vinaz)- When either> . Ve . or

c 'min

which is optimal [1] assuming that load is inversely propor- >_. Vina. 90€s outside of the last],in, Vina] that was re-
tional to error budget. However, not all workloads exhibit Ported to the parent, a node needs to report a new range.
this property. Nonetheless, this heuristic seems reagenab Given ad..; budget at an internal node, we have some
for estimating the impact of small changessifior a range flexibility on how to center theV,,i,,, Vina.| range. Our

of workloads, and we find that it works well in practice. approach is to adopt a per-aggregation-function range pol-

2. Redistribute deltas iff the expected benefit exceeds the re-l‘(/:y tha_t g:) OSEVm)”;_(Zl Ezb:‘: V)m;"zs - b'zgih: g""'reefrf] ta'rllge
distribution overhead. max = \Zic Vmaz 1as self p .

biasparameter can be set as follows:

At any time, a node: computes ahargemetric for each o pias ~ 0.5 if inputs expected to be roughly stationary
child subtreec, which estimates the number of extra mes- o bias ~ 0 if inputs expected to be generally increasing

sages sent by due to sub-optimal. Charge. = (Teurr — e bias ~ 1 if inputs expected to be generally decreasing

Tadjust) * (Mo — M2P'), whereT 4,5 is the last time) was For example, suppose a node with t@kalof 10 andj,.; s of

adjusted at:. Notice that a subtree’s charge will be large 3 has two children reporting(¢,,,, V;.,..]) of [1, 2] and [2,

if (a) there is a large load imbalance (e.§/. — M2t is 8], respectively, and reports [0, 10] to its parent. Them, th

large) or (b) there is a stable, long-lasting imbalance.(e.g first child reports a new range [10, 11], so the node must re-

Tewrr — Tadjust IS 1arge.) portto its parent a range that includes [12, 19pitfs = 0.5,
We only send messages to redistribute deltas when doingthen report to parent [10.5, 20.5] to filter out small dewiati

sois likely to save at least k messages (i.e:hifrge, > k). around the current position. Converselypifis = 0, re-

To ensure the invariant thag > 0sc5 + > . 0., We make port [12, 22] to filter out the maximal number of updates of

this adjustment in two steps. First, we loan some of the increasing values.

dsery budget to the node that has accumulated the largest 4 3 Temporal Imprecision

charge by incrementings budget by min(0.4., 62 — 4., Temporal imprecision provides a bound on the delay from
max(0.Bcif, ety - Ooryp))- Second, we replenishu. when an update occurs at a leaf node to when it is reflected
from the child whosé.. is the farthest abow&”* by ordering in the aggregated result reported by the root. A temporal
c to reduce’, by min(0.14,., 6. - §9P%). imprecision of Tl seconds guarantees that every event that
A node responds to a request from its parent to upélate ~ occurredTl or more seconds ago is reflected in the reported
using a similar approach. result; events younger thdin may or may not be reflected.

Figure 2 shows the communication cost for the self-tuning ~ Temporal imprecision benefits monitoring applications in
algorithm compared to uniform static distribution of Albud ~ two ways. First, it accounts for inherent network and pro-
gets using a simulator for 256 leaf nodes in a 4 level degree-4cessing delays in the system; given a worst case per-hop
tree, accounting for the redistribution overhead. We gener COSthop,... even immediate propagation provides a tem-
ate the leaf data values using a random walk model, usingPoral guarantee no better thén: hop;... Where/ is the
randomly assigned step size. We observe that self-tuningmaximum number of hops from any leaf to the root of the

reduces overhead by more than a factor of two for this work- tree. Second, explicitly exposing TI provides an opportu-
load. nity to combine multiple updates to improve scalability by

0 TI-A; TI
level 4__,
level 3 ‘ DAOOf -
vl 2 I:IAOC:)T; e
level 1 DAOOT -
level 0_! UAOO? e
Event O @ SAeCrJ1 ds) < = .“Afexr'vll
ynchronized updates every I — seconds.eve
0 T4 TI/2 3Tl/4 TI
level 4_; ‘
level 3 ‘ L 3 P1
level 2 o f AOT
level 1__ ':'f @f
level 0___ Df AO1 Of
Event O Ne)

(b) Send unsynchronized updates everyl TI/ seconds.
Fig. 3: For a given Tl bound, pipelined delays with synchzeq
clocks (a) allows nodes to send less frequently than uripgxl
delays without synchronized clocks (b).

reducing processing and network load.

To maximize the possibility of batching updates, when
clocks are synchronizédwe pipeline delays as shown in
Figure 3(a) so that each node sends once eyEry- A)

(® t_havelease = min_c (t_havelease[c])

@ t_sen

LEASE_RENE t_havelLease[n2] = t_send + (d_grantLease * (1-max_d

d_grantLease
@t_recy

(3 d_grantLease = t_havelLease - t_recv
t_grantLease = max(t_grantLease, t_havelease)

Fig. 4: Protocol for a parent to renew a lease on the right to &®
soft state a child’s contribution to an aggregate.

nodes despite (a) the need for active probing to measure
liveness between each parent-child pair and (b) the need to
compute distinct NI values for each of the large number of
distinct aggregation trees in the underlying DHT foresh:ot
erwise the system will incur excessive monitoring overhead
as we show in Section 4.4.3.

In the rest of this section, we first provide a simple algo-
rithm for computingN,;; and N,.cqcrapie fOr a single, static
tree. Then, in Section 4.4.2 we explain how PRISM com-
putesNg,, to account for dynamically changing aggrega-
tion topologies. Later, in Section 4.4.3 we describe how to

seconds with each level’s sending time staggered so that the>c@l€ the approach to work with the large number of distinct

updates from level arrive just before level + 1 can send.
The extended technical report [1] details how we set eac
level's sending time while coping with transmission delays
and clock skew across nodes. As detailed there, accountin
for the worst case delay®p,,... and skewskew,, .. yields
A = Ux (hopmaz + 2 * skewnaqz), and it guarantees the fol-
lowing property: an event at a leaf node at local tikids
reflected at the root no later than tirfi® + T1) according to
the local time at the leaf node.

Conversely, if clocks are not synchronized, then we fall

trees constructed by PRISM’s DHT framework. Finally,

h Section 4.4.4 describes how NI characterizes the “complete

ness” of results and how applications can use this informa-

gtion in different ways.

4.4.1 Single tree, static topology
This section considers calculatiig,;; and Nycachapie fOr a

single, static-topology aggregation tree.

Ny is simply a count of all nodes in the system, which
serves as a baseline for evaluatingcqchabie and Ngyp.
Ny is easily computed using PRISM’s aggregation abstrac-

back on a simple but less efficient approach of having eachtion. Each leaf node inserts 1 to the,; aggregate, which

node send updates to its parents onceTié¢f seconds as
illustrated in Figure 3(b).

4.4 Network Imprecision

In this section we describe how PRISM provides a scalable

implementation of the NI metrics and how applications use
these metrics to interpret global aggregate results. His i

has SUM as its aggregation function. Note that even if a
node becomes disconnected from the DHT, its contribution
to this aggregate remains cached as soft state by its angesto
for a long timeoutl yeciare Dead-

Nrcachable fOr a subtree is a count of the number of leaves
that have good patho the root of the subtree where a good

portant to note that whereas Al and Tl are calculated and Path is a path in which no hop takes longer tHtaip, ..
enforced on a per-attribute basis, NI is maintained by the Recall that Tl is calculatedssuminggood connectivity and
system for each aggregation tree and shared across all atbounds on message delaya;; — Nycachabie F€presents the
tributes mapped to each tree. This arrangement both amorNumber of nodes whose inputs may fail to meet these as-

tizes the cost of maintaining NI and simplifies the definition
of attributes’ aggregation functions.

Although monitoring connectivity to nodes to com-
pute the NI metricSNqi, Nyeachable, and Ng,, appears
straightforward—the metrics are all conceptually aggrega

across the state of the system—in practice two challenges

arise. First, the system must cope with reconfiguration
of dynamically-constructed aggregation trees; otherttise

aggregate result might include reports of disconnected sub
trees as well as double count the contribution of rejoined

subtrees.econd, the system must scale to large numbers of

1Algorithms in the literature can achieve clock synchroticmaamong
nodes to within one millisecond [49].

sumptions. Nodes compubé..,crapie iN tWO steps:

1. Basic aggregation: PRISM creates a SUM aggregate and
each leaf inserts local value of 1. The root of the tree then
gets a count of all nodes.

Aggressive pruning: In contrast with the default behavio
of retaining aggregate values of children as soft state for
up t0 Tyeciare Deads Nreachable MUSt immediately change

if the connection to a subtree is no longer a good path.
Therefore, each internal node periodically probes each of
its children. If a child is not responsive, the node removes
c's subtree contribution from th¥....r.51c @ggregate and
immediately sends the new value up towards the root of
the Nycachabie @0gregation tree [1].

2.

attribute = f(A.H) attribute = f(A..D)
.DLZ

information is soft state—a parent discards it if a client is
unreachable for a long time. But because reconstructing
this state is expensive (there may be tens of thousands of
attributes for aggregation functions like “where is themea
est copy of file foo” [46]), we use long timeouts to avoid
spurious garbage collection (e.g., we U3€.iareDead =~ 10
minutes in our prototype.)

As a result, when a subtree chooses a new parent, that sub-
tree’s inputs may still be stored by a former parent and thus
may be counted multiple times in the aggregate. Note that
our implementation also allows a user to define duplicate-

) insensitive aggregation functions where possible [11, 33]
(il) _ (V) o However, to support a broader range of aggregation func-
(2) Impact of jeaf failure without early expiration tions, PRISM computesV,,, for each aggregation tree.
Ngqup bounds the number of leaf inputs that might be in-
cluded multiple times in an aggregate calculation.

The basic aggregation function fof;,,, is simple: keep
a countk of the number of leaves in each subtree using the
obvious aggregation function. Then, if a subtree root span-
(b) Impact of leaf failure with early expiration ning k leaf nodes switches to a new parent, that subtree root
inserts the valué into the Ny, aggregate, which has SUM
as its aggregation function. Later, when the node is certain
sufficient time has elapsed that its old parent has safely re-
moved its soft state, it updates its input/gf,,,, to 0.

Nreachable v. Tl The difference betweenvV,; and Our implementation must deal with two issues. First,

Nreachabie Characterizes the count of nodes that may cur- for correctness, we must maintain the invariant thag,,,

rently be violating their TI bounds. However, pastconnecti hounds the number of nodes whose inputs are double-

ity disruptions could affect attributes with large TI. Inrpe- counted despite failures and network delays. Second, for

ular, to maximize batching, our Tl algorithm defines a small good performance, we must minimize the disruption when

window of time during which a node must propagate updates nodes near the leaves of a tree fail or move.

to its parents, so any attribute’s subtree that was unreach- . . .

able over the lastl,;- could have been unlucky and missed Lease aggregation. For cor_rectness, our implementation

its window even though the subtree nodes are currently all uses dease aggreganoalgonthm that (_axtends the concept
X . of leases [20] to hierarchical aggregation.

counted as reachable. We must either (a) modify the proto-— .

col to ensure that such a subtree’s updates are reflecteel in th Figure 4 details the protocol used when a nogepdates

aggregate so that the promised Tl bound is met or (b) ensure? lease on the inputs from a set of descendants rooted at

that NV,-cachabie COUNtS such subtrees as unreachable because:rhe algorithm makes use of local clocksatandns, but it

they may have violated their TI bound Is not sensitive to skew and tolerates a maximum drift rate
. > A . o

We take the former approach to avoid having to calculate ©f ™@%drist (€.9., 5%). In this protocol, a node maintains

a multitude ofNV,.cqchapie Values for different Tl bounds. In thaveLease, the latest time for which it holds leases for all

particular, when a node receives updates from a child markeddescter;dar;ts, aﬁgmft“e““’ ﬂ:e Iate_;t] t|mke f(ir V,\['E'Ch I thas i
unreachable, it knows those updates may be late and ma)pran ed a 'ease 1o I1S anceslors. The key 1o the protocol s

have missed their window for Tl propagation. It therefore that the Ch”d_lz extends the lease by_a durat“bﬁ“’?”"‘"'s""
marks such updates as NODELAY. When a node receives abUt the Ch'_ld m_terprer tesrantLease interval startlr_lg from
NODELAY update, it processes it immediately and propa- tm”_’ the time it regewed the re_newal request, while the par-
gates the result with the NODELAY flag so that Tl delays ent interprets the mterval starting froffkna. AS.‘ a result, .
are temporarily ignored for that attribute. This modifioati a lease always expires at a parent pefore expiring at a child
may send extra messages in the (hopefully) uncommon Case(egardless of the skew between their CIOCk‘,Q’ [52].

of a link performance failure and recovery, butitensuresth A node that roots &-leaf subtree that switches to a new

the cUrrentV, cachasie Value counts nodes that are meeting Parent then contributes t0 Nau,, until tgrantrease, after
all of their Tl contracts. which it may reset its contribution a¥y,,, to 0 because its

. former parentis guaranteed to have cleared from its saé sta
4.4.2 Dynamic topology

Each virtual node in PRISM caches state from its children all inputs from the node.
so that when a new input from one child comes in, it can use Early expiration. PRISM usesearly expirationto mini-
local information to compute new values to pass up. This mize the scope of disruption when a tree’s topology reconfig-

attribute = f(A..G)

H
H fails

Fig. 5: Recalculation of aggregate function across valueB,A..,
H after the node with input H fails (a) without and (b) with lgar
expiration.

L3

, , L2
,,‘%K 4 ,%ﬂ

L1

I’/\‘ I’\‘ < \‘ I_l
7 7 7 #5
’ 1 1 ’ 1 AL \1. 1 ’ LO Lo
000 100 010 110 001 101 011 111

000 100 010 110} OOY 101 011 111
Fig. 6: The failure of a physical node has different effectglifer-
ent aggregations depending on which virtual nodes are ndajape
the failed physical node. The numbers next to virtual nodesvs
the value ofN,cqchabie fOr each subtree after the failure of physical
node 001, which acts as a leaf for one tree but as a level-2egubt As a result of these factors, the straightforward algorithm
root for another. for maintaining NI metrics separately for each tree is not te

ures. In particular, the lease aggregation mechanismessur 2Ple: the DHT forest of degreed aggregation trees with

the invariant that leases near the root of a tree are shorter? Physical nodes and each tree hav@% edges ¢¢1),
than leases near the leaves. As a result, a naive implementahave totalo(n?) edges that must be monitored; such mon-
tion that removes cached soft state exactly when a lease exitoring would require©(n) messages per node every probe
pires would exhibit the perverse behavior illustrated ig-Fi interval (p = 10s in our prototype). To put this in perspec-
ure 5(a): each node from the root to the parent of a failed tive, consider a = 512-node system witld = 16-ary trees
node will successively expire its problematic child’'s stat (i.e., a DHT with 4-bit correction per hop). The straightfor
recalculate its aggregates without that child, updateats p ward algorithm then has each node sending over roughly 50
ent, renew its parent’s lease, and then repeatedly recei/e a probes per second. As the system grows, the situation dete-
propagate updated aggregates from its child as the processiorates rapidly—a 1024-node system requires each node to
ripples down the tree. Not only is that process expensive, send roughly 100 probes per second.

but it may significantly and unnecessarily perturb valuesre Our solution, described below, reduces active monitoring
ported at the root for all attributes by removing and re-addi work to ©(d log n) probes per node pgrseconds. The 512-
large subtrees of inputs. Furthermore, note that the exampl node system in the example will require each node to send
in Figure 5 is the common case: in a randomly constructed about 5 probes per second; the 1024-node system will re-
tree, the vast majority of nodes (and failures) are near the quire each node to send about 5.8 probes per second.
leaves. Failing to address this problem would transform the Dual tree prefix aggregation. To make it practical to

common-case of leaf failures into significant disruptiond a maintain the NI values, we take advantage of the underly-
bring into pla_ly the ampl_lflcatlc_)n effect. _ _ ing structure of our Plaxton-tree-based DHT [38] to re-use

_Early expiration avoids this unwarrgnted disruption as common sub-calculations across different aggregati@stre
Figure 5(b) illustrates. A node at levélof the tree dis- using a novetlual tree prefix aggregatioabstraction.

cards the state of an unresponsive subtreex(Levels - 1) As Figure 7 illustrates, this DHT construction forms an

* deqr1y before its lease expires. Once the node has remOVEdapproximate butterfly network. For a degrééee, the vir-

the problematic child’s inputs from the aggregates valles i 5 node at levet has an id that matches the keys that it
has reported to its parent, the node can renew leases 10 it$ e inlog d+i bits. Itis the root of exactly one tree, and its
parent that are no longer limited by the ever-shorteningdea opjqren are approximately virtual nodes that match keys

held on the problematic child. As the figure illustratessthi log d (i — 1) bits. It hasd parents, each of which matches
technique minimizes disruption by allowing a node near the yi¢arent subsets of keys ing d (i + 1) bits. But notice that

trouble spot to prune the tree, update its ancestors, and r'®or each of these parents, this tree aggregates inputsthrem
sume granting long leasegforeany ancestor acts. same subtrees.

4.4.3 Scaling to large systems Whereas the standard aggregation abstraction computes
Scaling Nl is a challenge. To scale monitoring to large num- a function across a set of subtrees and propagates it to one
bers of nodes and attributes, PRISM constructs a forest ofparent, adual tree prefix aggregatiooomputes an aggrega-
trees using an underlying DHT and then uses different aggre-tion function across a set of subtrees and propagatesilt to
gation trees for different attributes. As Figure 6 illusts parents As Figure 7 illustrates, each node in a dual tree pre-
a failure affects different trees differently so we needab ¢ fix aggregation is the root of two trees: an aggregation tree
culate NI metrics for each of thedistinct global treesinan below that computes an aggregation function across a set of
n-node system. Making matters worse, as Section 4.4.1 ex-leaves and a distribution tree above that propagates thk res
plained, maintaining the NI metrics requires frequentacti of this computation to a collection of enclosing aggregates
probing along each edge of each tree’s graph. that depend on this sub-tree for input.

Fig. 7: Plaxton tree topology is an approximate butterflywoek.
The bold connections illustrate how a virtual node 00* usesiual
tree prefix aggregation abstraction to aggregate values &dree
below it and distribute the results up a tree above it.

For example in Figure 7, consider the level 2 virtual node of some other functions exist [11, 31, 33].
00* mapped to node 000. This Nod&8.,.rasie COUNtOf4 o Redundant aggregatiensystems can aggregate an at-
represents the total number of leaves included in thatalirtu tribute using several different keys so that one of the keys

node’s subtree. This node aggregates this singl crqbie is likely to find a route around the disruption. Our the-
count from its descendents and propagates this value to both oretical analysis shows that undgindependent failures

of its level-3 parents, 000 and 001. For simplicity, the fgur ~ in an ¢-level d-ary aggregation tree, the expected number
shows a binary tree; by default PRISM corrects 4 bits per of disconnected nodes j+ (¢ + 1) with high standard
hop andi=16, so each subtree is common to 16 parents. deviation f * d2. However, by aggregating an attribute
4.4.4 Using NI along a (small) constant number of trees, all failure occur
PRISM’s formulation of NI explicitly separates the basic at level< i (i << ¢) with meanf = (i + 1) and standard
mechanism for detecting and quantifying NI from the pol- deviation d% with high probability. For example, faf

icy for dealing with it. This separation is needed because _ 2,d=16,f=10,i = 1, aggregating an attribute along
the impact of omitted updates (Whé¥).cqchabie < Naur) OF 4 trees decreases deviation from 160 for a single tree to
duplicated updates (wheNg,, > 0) depends on the sever- 40; detailed proofs are in the technical report [1]. Later

ity of the disruption (e.g., a leaf node failure may have less i, section 5.4, we show that by aggregating an attribute

impact_ than an internal node failure), th_e nature of the ag9- upk paths and using the answer corresponding to the path
gregation function (e.g., some aggregation functions@e i \yith the lowest overall NI disruption, we can reduce inac-
sensitive to duplicates [11]), the variability of the senisp curacy by nearly a factor of five fdr = 4.

puts (e.g., when inputs change slowly, using a cached up- i

date for longer than desired may have a modest impact),T_hese_ exampl_es illustrate how tc_) use NI. More generally,

and application requirements (e.g., some applications may9iven information about the quality of a reported answer,

prize availability over correctness and live with best gffo differentapplications can take different actions to cotaw

answers while others may prefer not to act when the accu-N€twork disruptions.

racy of information is suspect.) Therefore, given the broad g Experimental Evaluation

range of factors that determine the Significance of NI di'SfUp We have deve|0ped a prototype of the PRISM monitoring

tions, PRISM report&asi, Nrcachabie, @NdNaup @nd allows — system on top of FreePastry [41].

applications to evaluate the significance of disruptiortstan Our experiments characterize the performance and scala-

take application-appropriate actions to manage this impac bility of the Al, TI, and NI metrics. First, we quantify the
The simple mechanism of providing these three metrics reqyction in monitoring overheads due to Al and TI. Sec-

is nonetheless powerful—it supports a broad range of tech-onq, we analyze the deviation in the PRISM’s reported val-

niques for coping with NI from network and node disrup- es with respect to both the ground truth based on sensor

tions. Examples include readings and the guarantees defined by Al and TI. Finally,

e Filtering or flagging unacceptably uncertain answers we investigate the consistency/availability trade-dfisttNI
systems can manage the trade-off between consistencyexposes. In summary, our experimental results show that
and availability [19] by sacrificing availability (e.g., PRISM is an effective substrate for scalable monitoring: in
throwing an exception rather than returning an answer troducing small amounts of Al and TI significantly reduces
when NI exceeds some threshold). Conversely, a systemmonitoring load, and the NI metrics both successfully char-
could maximize availability by always returning an an- acterize system state and reduce measurement inaccuracy.
swer based on the best available information but flagging
that answer’s quality as high, medium, or low depending
on the current NI.

e Increasing reported H-short bursts of IOWN,-cqchable L . T .
mean that an aggregated value may not reflect some re_|tor|ng service PrMon and Distributed Heavy Hitter (DHH).
cent updates. Rather than report a “low quality” result for 5.1.1 PrMon
the current period, a system can report a “high quality” We begin by comparing the monitoring cost of PrMon dis-
result with explicitly less temporal precision. tributed monitoring service to the centralized CoMon ser-

e On-demand reaggregatiengiven a signal that currentre- vice, which uses a fixed Tl of 5 minutes and which does not
sults may be missing updates from some sensors, a sysexploit Al. We gathered CoTop [10] data from 200 Planet-
tem can trigger a full on-demand reaggregation to gather Lab nodes at 1-second intervals for 1 hour. The CoTop data
current reports (without Al caching or Tl buffering) from provide the per-slice usage of 9 CPU, NW, and memory re-
whatever sensors are available. sources for all slices running on each node. Using these logs

e Duplicate-insensitive aggregatieasome systems can be as sensor input, we run PRISM on 200 servers mapped to 50
designed with duplicate-insensitive aggregation func- Emulab machines. Note that for comparison with CoMon,
tions. For example, MAX is inherently duplicate- the baseline is set to Al of -1 (no Al caching) and Tl of 5
insensitive [30], and duplicate-insensitive approximas minutes.

5.1 Load vs. Imprecision
In this subsection we quantify the reduction in monitoring
load due to Al and Tl for two applications: the PRISM Mon-

Al=-1 —»—
Al=0 —&—
Al=10% —=—
Al =20% —a—

Q

001 E\B\s\ vo1 \:O\“
A Al=1% —=—

Al=10% —a—

! i,

0.1 |

Al=20% —a—

Total # messages (normalized)
Total # messages (normalized)
Total # messages (normalized)

0.001

50 160 150 260 250 300 000 0 5;0 160 1§o 260 zgo 300 oot 0 éo 160 150 260 2;50 300
TI (seconds) Tl (seconds) Tl (seconds)
Fig. 8: Load vs. Al and Tl for PrMon ap- Fig. 9: Load vs. Al and Tl for DHH appli- Fig. 10: Load vs. Al and TI for PrMon’s
plication. cation. CPU attribute

Figure 8 shows the combined effect of Al and Tl in reduc- plication, Al filtering is more effective than TI batchingrfo
ing PrMon’s load for monitoring all the running PlanetLab reducing load because of the large fraction of mice flows in
slices in our CoTop trace data. The x-axis shows the Tl bud- Abilene traces.
get and the y-axis shows the total message load during the In summary, our evaluation shows that small Al and TI
1-hour run normalized with respect to Al of -1 and Tl = 10 budgets can provide large bandwidth savings to enable scal-
seconds. We observe that for Al of -1, there is more than able monitoring.
one order of magnitude load reduction for Tl of 5 minutes g o Setting Monitoring Budget
compared to 10 seconds; the corresponding message overFinally, to reduce bandwidth, one can either increase Al or
head per node is about 90 messages per second (Tl = 10sJ|. We provide two guidelines: (1) for attributes that exhib
and 4 messages per second (Tl = 5 minutes). Likewise, forlarge variation in consecutive updates (e.g., CPU), band-
a fixed Tl of 10 seconds, Al of 20% reduces load by two width falls roughly proportionally with increasing TI but-
orders of magnitude (to 0.7 messages per node per seconddreasing Al may have little impact because it most updates
compared to Al = -1. By combining Al of 20% and Tl of 30 will bypass Al filtering under modest error budgets as shown
seconds, we get both an order of magnitude load reductionin Figure 10 and (2) for attributes that show small variance
(to 0.3 messages per node per second) and an order of magfe.g., number of processes), increasing the Al budget may be
nitude reduction in the time lag between updates comparedeffective.
to CoM'on's Al of -1 and Tl of 5 minutes. Alternatively, .for 5.3 Promised vs. Realized Accuracy
approximately the same bandwidth cost as CoMon with Tl A central goal of PRISM is to go beyond providing best ef-
of 5 minutes and Al of -1 for 200 nodes, PRISM provides fort imprecision estimates to ensuring worst-case guagsnt
highly time-responsive and accurate monitoring with Tl of conditioned by NI. In this subsection, we experimentally in
10 seconds and Al of 0. vestigate PRISM'’s accuracy by using the CoTop trace for the
5.1.2 Detecting Heavy Hitters “CPU" attribute, configuring PRISM with different Al and
For DHH application, we use multiple netflow traces ob- TI values, playing that trace through PRISM on 200 servers
tained from the Abilene [2] Internet2 backbone network. mapped to 50 Emulab nodes, logging the value reported for
The data was collected from 3 Abilene routers for 1 hour; the attribute at each second, and doing an off-line compari-
each router logged per-flow data every 5 minutes, and we son between the PRISM'’s reported values and trace inputs.
split these logs into 400 buckets based on the hash of source First, we experimentally test whether the results delidere
IP. As described in Section 3, our DHH application executes by PRISM do, in fact, remain within the range promised by
a Top-10 query on this dataset for tracking the top 10 flows PRISM'’s imprecision guarantees. We compare PRISM's ac-
(destination IP as key) in terms of bytes received over a 15 tual output at every second to tleeacle output computed
second moving window shifted every 5 seconds. across the input traces for Al values of 0, 1%, 5%, and 10%

Figure 9 shows the precision-performance results for the with Tl values of 1s and 10s. In 99.9% (3596 of 3600) of
top-10 DHH query for 400 nodes mapped to 100 Emulab the 1-second periods at the various levels of Al and TI, the
machines. The total monitoring load is normalized relative reported value lies within the range promised by PRISM; the
to the load for Al of 0 and Tl of 10 seconds. The Al bud- inaccuracy of less than 1% in the remaining 0.1% of reports
getis varied from 1% to 20% of the maximum flow’s global stems from disruptions captured by the NI metrics as we dis-
traffic volume. We observe that Al of 10% reduces moni- cuss in detail in Section 5.4.
toring load by an order of magnitude compared to Al of 0 Next, we examine how different levels of Al and Tl affect
for a fixed Tl of 10 seconds, by (a) culling all updates for the actual end-to-end imprecision delivered to applicetio
large numbers of “mice” flows whose total bandwidth is less relative to the instantaneous oracle value computed across
than this value and (b) filtering small changes in the remain- the input traces. Figure 11 and 12 show for different val-
ing elephant flows. Similarly, TI of 5 minutes reduces load ues of Al, the CDF of deviation between PRISM'’s reports
by about 80% compared to Tl of 10 seconds. For DHH ap- compared to the oracle truth for fixed Tl of 1s and 10s, re-

10

100

100 ; ; - T
ORACLE-AI=0 —— ORACLE-AI=0 —x—
ORACLE-AI=1% —&— ORACLE-AI=1% —&—
ORACLE-AI=5% —=— ORACLE-AI=5% —=—
80 ORACLE-AI=10% —e— | 80 r ORACLE-AI=10% —e— 1
g 60 [g 60 |
LL ('8
[a) o
O 40t O 40t
20 20 |
0 : : : : 0 : : : :
0 20 40 60 80 100 0 20 40 60 80 100
Difference (%) Difference (%)
Fig. 11: CDF for difference between PRISM's reported values Fig. 12: CDF for difference between PRISM's reported values
and oracle truth for fixed Tl of 1 second. and oracle truth for fixed TI of 10 seconds.
spectively. We make two observations here: First, for Al of 100
5% and 1 second TI, more than 90% of reports have less than
16% difference from the oracle. Notice, however, that even 80 |
with Al of 0 and immediate propagation, any aggregation g
system’s reports can differ from the oracle truth duetoprop 2 6o |
agation delays. As illustrated in Figure 12, increasingTthe §
to 10 seconds results in a larger deviation between PRISM’s f\[40 NI unbounded
reported results and the oracle. Second, for Al of 5% Al and g5 NI < 5% —8—
: NI < 10% —=—
10s TI, more than 90_% reports differ by Ies_s than 27% from 20 NI : 50% —e— 1
the oracle. The relatively large errors relative to Al are du NI < 75%
) . NI < 90% —v—
to the low temporal locality of the CPU attribute. 0 \ \ \ \
0 20 40 60 80 100
100 Difference from truth (%)
" Nreachable Fig. 14: CDF for reported answers filtered for different Nietsh-

Nall

Ndu |
W

90
80 f
70

olds and K = 1.

serve that even without any induced failures, there are-shor

s 60 term instabilities in values reported O, .cqchabie, Nails
3 50 and Ny, due to missing/delayed ping reply messages for
40 Nreachable @nd lease expirations triggered by DHT reconfig-
30 urations forNg,,. During the course of the run, 5 of the 85
20 nodes became unresponsive; hence the f\hal .1 and
10 Ny values stabilize to 80.
®0 2 4 6 8 10 12 14 1 18 5.5 Consistency v. Availability
Time (hours) Next we quantify the risks of reporting global aggregate re-
Fig. 13: NI metrics reflecting PlanetLab state (85 nodes). sults without incorporating NI. We run a 1 hour experiment
5.4 NI: Coping With Disruption on 94 PlanetLab nodes for an attribute with Al =0 and Tl =
Next, we analyze the effectiveness of NI metrics in reflggtin - 10 seconds. Figure 14 shows the CDF of reported answers
network state and filtering inaccurate reports. showing the deviation in reports with respect to an oracle.

Whereas Sections 5.1 and 5.3 show system performanceThe different lines in the graph correspond to the reported
under stable conditions (low NI), in the rest of this section answers filtered for different NI thresholds. For simpicit
we focus on NI's effectiveness during periods of instapilit ~ We condense NI to a single parameter MAX{—{zeachatie
In particular, we run experiments on PlanetLab nodes. Be-]]Vvd—;) We observe that NI effectively reflects the stability of
cause these nodes show heavy load, unexpected delays, antetwork state: when Nk 5%, 80% answers have less than
relatively frequent reboots (especially prior to deadiife 20% deviation from the true value. Conversely, for moni-
we expect these nodes to exhibit more NI than in a typical toring systems that ignore Nh¢ filteringline), half of their
distributed environment, which makes a convenient stressreports differ from the truth by more than 60%. As discussed
test of our system. in Section 4.4.4, applications can filter results usingediff

Figure 13 shows how NI reflects network state for a 85- ent NI thresholds and take an appropriate action to correct
node PlanetLab experiment for a 18-hour run. We ob- distorted results.

11

In Figure 15 we explore the effectiveness of redundant 100
aggregation (Section 4.4.4) i.e., using K redundant trees
to compute an attribute and then using NI to identify the
highest-quality result. Figure 15 shows the CDF of results
with respect to the deviation from oracle as we vary K from
1to 4. When deviation is less than 10% (small NI), retriev-
ing results from the root of one aggregation tree (K = 1) suf-
fices. However, for large deviation, fetching the reporsrfr
only one aggregation tree can introduce deviation as high as 20 |
100% whereas choosing the result from the most stable of 4 10l
trees reduces the deviation to at most 22% thereby reducing le—= * . * *
the worst-case inaccuracy by nearly a factor of 5. Note that 16 32 64 128 256 512 1024
PRISM enables a trade-off: for a given bandwidth budget, a Number of nodes

system may be able to use small increases in Al and TI to F19 17: NI monitoring overhead for dual-tree prefix aggtega
increase K and thereby greatly reduce NI. compared to computing NI per aggregation tree; x-axis is [mga
scale.

5.6 NI Scalability
Finally, we empirically quantify the monitoring overheaid o

tracking NI via (1) each aggregation tree and (2) dual-tree
prefix aggregation. Figure 17 shows the per-node message
cost for NI monitoring varying network size from 16 to 1024
nodes. We observe that the overhead using per aggregation
tree scales linearly with the network size whereas it scales
logarithmically using dual-tree prefix aggregation.

6 Related Work
Aggregation systems commonly use some form of Al or Tl

to reduce monitoring overheads. Olston et al. [6,34] use
°, 20 20 60 80 100 adaptive filters at the data sources that compute approgimat
Difference from truth (%) answers for continuous queries in single-level communica-
Fig. 15: CDF of NI values for different K. tions topologies. Manjhi et al. [32] determine an optimal
but static distribution of slack to the internal and leaf nodes
of an tree for the special case of finding frequent items in
database streams. In comparison, PRISM supports general
aggregation functions and employs a self-tuning algorithm
for distributing the error budgets in a general commundsati
hierarchy. IrisNet [14] filters sensors at leaves and caches
timestamped results in a hierarchy with queries that spec-
ify the maximum staleness they will accept and that trig-
ger re-transmission if needed. In contrast, PRISM coordi-
nates transmission of push-based continuous query results
to support in-network aggregation, allowing it to more ag-
gressively optimize the TI batching. TAG [30] bounds TI
0 02 04 06 0.8 1 by partitioning time into intervals of duratiolﬂ (I: maxi-
NI mum tree level) with nodes at levetransmitting during the
Fig. 16: CDF of NI values for K duplicate keys. i*" interval. In comparison, PRISM increases the batching

Filtering answers during periods of high churn exposes interval fromy to (Tl — [¢) to significantly reduce com-
a fundamental consistency versus availability tradedd.[1 =~ munication overhead.
Figure 16 shows how varying K allows us to increase mon- Traditionally, DHT-based aggregation is event-driven and
itoring load to improve this tradeoff. As K increases, the best-effort, i.e., each update event triggers re-aggi@aytr
fraction of time during which NI is low increases. The in- affected portions of the aggregation tree. Further, system
tuition is that because the vast majority of nodes in any 8- often only provide eventual consistency guarantees on its
ary tree are near the leaves, sampling several trees rapidlydata [48,50], i.e., updates by a live node will eventually be
increases the probability that at least one tree avoids en-visible to probes by connected nodes.
countering many near-root failures. We provide an analytic Bawa et. al [7] survey previous work on measuring the
model formalizing this intuition in our technical repor{[1 validity of query results in faulty networks. Their “single

Dual-tree Prefix Aggrégation e
90 Per-tree Aggregation —&— /1

80
70
60
50
40 r
30

Messages per node per second

100

80

60

40 |

CDF (% answers)

20

AARARRN
1

i

100

80

60

40

CDF (% answers)

20

AARARRN
1

i

12

site validity” semantic is equivalent to PRISMS,.qchabie MDI aggregation may be a useful technique in cases when
metric. Completenesg1] defined as the percentage of net- (a) an aggregation function can be recast to be order- and
work hosts whose data contributed to the final query result, duplicate-insensitive and (b) the system is willing to plasy t
is similar to the ratio ofN,.qchanie @aNd Ng,;;. Relative Er- extra network cost to transmit each attribute’s updates. Fu
ror [11, 53] between the reported and the “true” result at any ther, to realize this promise, additional work is required t
instant can only be computed by an oracle with a perfect extend MDI approach to bounding the approximation error
view of the dynamic network. To address this fundamental while still minimizing network load via Al and Tl filtering.
problem, PRISM uses NI to condition Al and Tl guarantees. Some recent studies [24, 25, 28] have proposed monitor-
Several aggregation systems have worked to address théng systems with distributed triggers that fire when an ag-
failure amplification effect. To mask failures, TAG [30] pro gregate of remote-site behavior exceeds an a priori global
poses (1) reusing previously cached values and (2) divid- threshold. These systems are based on a single-level tree hi
ing the aggregate value into fractions equal to the number erarchy where the central coordinator tracks aggregage tim
of parents and then sending each fraction to a distinct par-series data by setting local filters at remote sites. PRISM
ent. This approach only reduces the variance but not themay enhance such efforts by providing a scalable way to
expected value of the aggregate value at the root. Other studtrack top-k and other significant events.
ies have proposed multi-path routing methods [11, 21, 27, 7 Conclusions

31, 33] for fault-tolerant aggregation. In broadcast véissl \jithout precision guarantees, large scale network monitor
networks, multi-routing may be relatively inexpensive eom ing systems may be too expensive to implement (because
pared to wired networks where these aggregation topolo-too many events flow through the system) or too dangerous
gies incur bandwidth overhead proportional to the number of to use (because data output by such systems may be arbi-
multiple paths. Furthermore, in both cases, double-cagnti trarily wrong.) PRISM provides arithmetic imprecision to
can occur for duplicate-sensitive aggregates such as SUM.pound numerical accuracy, temporal imprecision to bound
In comparison, PRISM uses redundant aggregation trees forstaleness, and network imprecision to expose cases when
improving avallablllty and NI to quantify consistency okth first two bounds can not be trusted.
aggregation result. References

Recent proposals [7,11, 31, 33] have combined multipath
routing with order- and duplicate-insensitive data stioes
to tolerate faults in sensor network aggregation. The keg id
is to use probabilistic counting [16] to approximately coun
the number of distinct elements in a multi-set. PRISM takes 3

[1] Details omitted for double-blind reviewing, see
http://prism2007.googlepages.com for technical report.

[2] Abilene internet2 network.

http://abilene.internet2. edu/.

D. Andersen, H. Balakrishnan, M. Kaashoek, and R. Morris

a complementary approach: whereas multipath duplicate- Resilient overlay networks. IRroc. SOSPpages 131-145.
insensitive (MDI) aggregation seeks to reduce the effefcts o ACM Press, 2001.

network disruption, PRISM’s NI metric seeks to quantifythe [4] T. Anderson and M. Reiter. Geni facility security. Draft
network disruptions that do occur. In particular, although GDD-6-23, GENI Distributed Services Working Gro@006.

MDI aggregation can, in principle, reduce network-induced [5] T. Anderson and T. Roscoe. Learning from planetlab. In
inaccuracy to any desired target if losses are independent WORLDS2006. o o

and sufficient redundant transmissions are made [33], the [6] B- Babcock and C. Olston. Distributed top-k monitoririg.
systems studied in the literature are still subject to neroz ACM SIGMODInternational Conference on Management of
network-induced inaccuracy due to efforts to balance trans Data, pages 28-39, June 2003.

L h ith | . ffici 7 [7] M.Bawa, A. Gionis, H. Garcia-Molina, and R. Motwani. The
mission overhead with loss rates, insufficient redundalncyl price of validity in dynamic networks. I8IGMOD, 2004.

a topology to meet desired path redundancy, or correlated [g] A Bharambe, M. Agrawal, and S. Seshan. Mercury: Support
network losses across multiple links. These issues may be ing Scalable Multi-Attribute Range Queries. SIGCOMM,
more severe in our environment than in the wireless sensor Portland, OR, August 2004,

networks targeted by MDI approaches because the dominant [9] D. D. Clark, C. Partridge, J. C. Ramming, and J. Wroclawsk
loss model may differ (e.g., link congestion and DHT re- A knowledge plane for the internet. BIGCOMM 2003.
configurations in our environment versus distance-semsiti [10] http://conon. cs. princeton. edu/.

loss probability for the wireless sensors) and because thell1] J. Considine, F. Li, G. Kollios, and J. Byers. Approxima
transmission cost model differs (for some wireless netsork aggregation techniques for sensor databaseCInE, 2004.
transmission to multiple destinations can be accomplished[1? R- €0x. A. Muthitacharoen, and R. T. Morris. Serving DNS
with a single broadcast.) These techniques are also comple; using a Peer-to-Peer Lookup ServiceRT PS 2002.

in th s inf id inf [13] M. Dahlin, B. Chandra, L. Gao, and A. Nayate. End-to-end
mentary in that PRISM's infrastructure provides NI infor- wan service availability. [IEEE/ACM Transactions on Net-

mation that is common across attributes while the MDI ap- working 2003.

proach modifies the computation of individual attributes. A [14] A. Deshpande, S. Nath, P. Gibbons, and S. Seshan. Cache-
Section 4.4.4 discussed, NI provides a basis for integgatin and-query for wide area sensor database®rae. SIGMOD
broad range of techniques for coping with network error, and 2003.

13

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

C. Estan and G. Varghese. New directions in traffic messu
ment and accounting. IBIGCOMM pages 323—-336. ACM,
2002.

P. Flajolet and G. N. Martin. Probabilistic countingyet
rithms for data base applicationgournal of Computer and
System Science81(2):182—-209, Oct. 1985.

M. J. Freedman and D. Mazires. Sloppy Hashing and Self-
Organizing Clusters. IlPTPS Berkeley, CA, February 2003.
Y. Fu, J. Chase, B. Chun, S. Schwab, and A. Vahdat. SHARP:
An architecture for secure resource peeringPtac. SOSP
Oct. 2003.

S. Gilbert and N. Lynch. Brewer’s conjecture and thesfii

ity of Consistent, Available, Partition-tolerant web sees.

In ACM SIGACT News, 33(2Jun 2002.

C. Gray and D. Cheriton. Leases: An Efficient Fault-Tate
Mechanism for Distributed File Cache ConsistencyS®SR
pages 202-210, 1989.

I. Gupta, R. van Renesse, and K. P. Birman. Scalable-faul
tolerant aggregation in large process groupsD8N 2001.

N. J. A. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and
A. Wolman. SkipNet: A Scalable Overlay Network with
Practical Locality Properties. ldSITS March 2003.

J. M. Hellerstein, V. Paxson, L. L. Peterson, T. Roscoe,
S. Shenker, and D. Wetherall. The network oracl&EE
Data Eng. Bull, 28(1):3-10, 2005.

L. Huang, M. Garofalakis, J. Hellerstein, A. Josephdan
N. Taft. Toward sophisticated detection with distributeg-t
gers. InMineNet pages 311-316, New York, NY, USA, 2006.
ACM Press.

L. Huang, M. Garofalakis, A. D. Joseph, and N. Taft.
Communication-efficient tracking of distributed cumulati
triggers. Technical Report UCB/EECS-2006-139, EECS De-
partment, University of California, Berkeley, October 30
2006.

R. Huebsch, J. M. Hellerstein, N. Lanham, B. T. Loo,
S. Shenker, and I. Stoica. Querying the Internet with PIER.
In VLDB, 2003.

C. Intanagonwiwat, R. Govindan, and D. Estrin. Directe
diffusion: a scalable and robust communication paradigm fo
sensor networks. IMobiCom 2000.

A. Jain, J. M. Hellerstein, S. Ratnasamy, and D. Wethera
A wakeup call for internet monitoring systems: The case for
distributed triggers. IHotNets San Diego, CA, November
2004.

P. Laskowski and J. Chuang. Network monitors and con-
tracting systems: competition and innovation SIECOMM
2006.

S. R. Madden, M. J. Franklin, J. M. Hellerstein, and Wnigo
TAG: a Tiny AGgregation Service for Ad-Hoc Sensor Net-
works. InOSD|, 2002.

A. Manjhi, S. Nath, and P. B. Gibbons. Tributaries antate
efficient and robust aggregation in sensor network strems.
SIGMOD, 2005.

A. Manijhi, V. Shkapenyuk, K. Dhamdhere, and C. OI-
ston. Finding (Recently) Frequent Items in Distributed@at
Streams. INCDE, pages 767—778. IEEE Computer Society,
2005.

S. Nath, P. B. Gibbons, S. Seshan, and Z. R. Anderson: Syn
opsis diffusion for robust aggregation in sensor netwotks.
SenSys2004.

14

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]
[48]

[49]
[50]

[51]

[52]

[53]

[54]

[55]

C. Olston, J. Jiang, and J. Widom. Adaptive filters fon-co
tinuous queries over distributed data streams.SIGMOD,
2003.

C. Olston and J. Widom. Offering a precision-performan
tradeoff for aggregation queries over replicated data.
VLDB, pages 144-155, Sept. 2000.

V. Paxson. End-to-end Routing Behavior in the Internet
SIGCOMM Aug. 1996.

Planetlabht t p: / / www. pl anet - | ab. or g.

C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing
Nearby Copies of Replicated Objects in a Distributed Envi-
ronment. INACM SPAA1997.

G. Plaxton, R. Rajaram, and A. Richa. Accessing nearby
copies of replicated objects in a distributed environment.
SPAA pages 311-320, June 1997.

S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A Scalable Content Addressable Network. In
SIGCOMM 2001.

A. Rowstron and P. Druschel. Pastry: Scalable, Digtetd
Object Location and Routing for Large-scale Peer-to-peer
Systems. IrMiddleware 2001.

J. Shneidman, P. Pietzuch, J. Ledlie, M. Roussopoulos,
M. Seltzer, and M. Welsh. Hourglass: An infrastructure for
connecting sensor networks and applications. Technical Re
port TR-21-04, Harvard Technical Report, 2004.

A. Siegel. Performance in Flexible Distributed File Systems
PhD thesis, Cornell, 1992.

A. Singla, U. Ramachandran, and J. Hodgins. Temporal no
tions of synchronization and consistency in BeehiveRioc.
SPAA 1997.

I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Bala
ishnan. Chord: A scalable Peer-To-Peer lookup service for
internet applications. IACM SIGCOMM 2001.

R. Tewari, M. Dahlin, H. Vin, and J. Kay. Design Consider
tions for Distributed Caching on the Internet.IGDCS May
1999.

http://ww. gl obus. org/.

R. van Renesse, K. Birman, and W. Vogels. Astrolabe: A
robust and scalable technology for distributed system moni
toring, management, and data minif@CS 21(2):164-206,
2003.

D. Veitch, S. Babu, and A. Pasztor. Robust synchroiomat

of software clocks across the internet.INiC, 2004.

P. Yalagandula and M. Dahlin. A scalable distributefibin
mation management system.Rnoc SIGCOMM Aug. 2004.

P. Yalagandula, P. Sharma, S. Banerjee, S.-J. Lee, and
S. Basu. & A Scalable Sensing Service for Monitoring
Large Networked Systems. Rroceedings of the SIGCOMM
Workshop on Internet Network Manageme@06.

J. Yin, L. Alvisi, M. Dahlin, and C. Lin. Hierarchical Ghe
Consistency in a WAN. IfProc USITS Oct. 1999.

R. G. Yonggang Jerry Zhao and D. Estrin. Computing ag-
gregates for monitoring wireless sensor networks SNPA
2003.

H. Yu and A. Vahdat. Design and evaluation of a contirsiou
consistency model for replicated services. O8D|, pages
305-318, 2000.

H. Yu and A. Vahdat. Design and evaluation of a conitdaas
continuous consistency model for replicated servicR&M
Trans. on Computer Systen2§(3), Aug. 2002.

In

[56] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry
An Infrastructure for Fault-tolerant Wide-area Locatiarda
Routing. Technical Report UCB/CSD-01-1141, UC Berkeley,

Apr. 2001.

15

