
Shruti: A Self-Tuning Hierarchical Aggregation System∗

Praveen Yalagandula
HP Labs, Palo Alto, CA

praveen.yalagandula@hp.com

Mike Dahlin
The University of Texas at Austin

dahlin@cs.utexas.edu

Abstract

Current aggregation systems either have a single inbuilt
aggregation mechanism or require applications to specify
an aggregation policy a priori. It is hard to predict the read
and write access patterns in large systems and hence ap-
plications built on such systems suffer from inefficient net-
work usage. We present Shruti, a system that demonstrates
a general approach for self-tuning the aggregation aggres-
siveness to the measured workload in the system, thus opti-
mizing the overall communication costs (e.g., the number of
messages exchanged on read and write operations).

1 Introduction

Generic information aggregation frameworks such as
Astrolabe [22], MDS-2 [6], and SDIMS [25] can serve as
an important building block for constructing large-scale dis-
tributed services such as system management [9, 23], appli-
cation placement [24], data sharing and caching [18, 20],
sensor monitoring and control [11, 13], grid resource mon-
itoring [6, 8], multicast tree formation [2, 14], and naming
and request routing [5]. Such frameworks allow scalable in-
formation monitoring by forming one or more aggregation
trees spanning machines in the system and by using an ag-
gregation function at the root of each subtree to summarize
the information in the subtree’s leaves.

Unfortunately, existing aggregation systems use a static
aggregation strategy that can perform well for some work-
loads but poorly for others, which prevents any system
from being a truly general solution. For example, read-
dominated attributes such as numCPUs tracking the number
of CPUs on a physical node rarely change in value, while
write-dominated attributes such as numProcesses tracking
the number of processes running on a machine change quite
often. An aggregation approach tuned for read-dominated
attributes will consume high bandwidth when applied to

∗ This work is supported in part by the NSF Grant SCI-0438314 and by
the University of Texas at Austin’s Center for Information Assurance
and Security.

write-dominated attributes. Conversely, an approach tuned
for write-dominated attributes will suffer from unnecessary
query latency or imprecision for read-dominated attributes.
Also, the read-write access patterns may differ for different
sets of nodes (spatial heterogeneity) and may change over
time (temporal heterogeneity) requiring different aggrega-
tion strategies at different times and at different parts of the
system [1, 19].

Most aggregation systems have a single fixed aggrega-
tion mechanism. For example, in Astrolabe [22], aggrega-
tion is performed at all levels in the aggregation tree and the
aggregated values at each level are propagated to all nodes
in the subtree on writes. Such a strategy might incur high
communication overheads when aggregating attributes that
change often. To limit the communication cost, Astrolabe
throttles the rate at which information is propagated around
in the system, which might lead to unnecessary inconsis-
tency in probe responses for attributes that rarely change. In
most tree based systems such as Ganglia [9] and most DHT-
based systems [18, 20], aggregation is performed up to the
root on writes. In MDS-2 [8], no aggregation is performed
on writes but the information is aggregated on reads.

SDIMS [25] is the first aggregation framework that al-
lows applications to control the aggregation aggressiveness
in the system. SDIMS provides two knobs, UP and DOWN,
that applications set at the installation phase of an aggrega-
tion function. These knobs denote how far up aggregation
is performed in an aggregation tree and how far down the
aggregate values at a level are propagated on updates in the
system. SDIMS also allows applications to perform contin-
uous probes to handle spatial and temporal heterogeneity.
Though SDIMS exposes such flexibility to applications, it
requires applications to know the read and write access pat-
terns a priori to choose an appropriate strategy.

In this work, we present Shruti, a self-tuning system built
on SDIMS that tracks reads and writes at different levels in
an aggregation tree and dynamically decides how far up ag-
gregation is performed and how far down aggregate values
are propagated on writes. Shruti self-tunes the aggregation
aggressiveness aiming to optimize the overall communica-
tion costs (the sum of read and write message costs). We

propose a lease-based mechanism in which a node grants a
lease for an aggregate value to its parent or a child to denote
that it will forward any changes to that aggregate value.

Our simulation results show that at any static globally
uniform read-write operation ratio in the system, Shruti in-
curs similar cost as an optimal static UP and DOWN strategy
for that ratio. Also, in contrast to SDIMS’s policy of en-
forcing a single strategy across all attributes using same ag-
gregation function, Shruti tunes to different strategies for
different attributes and thus achieves half-an-order magni-
tude lower average messages per operation. Our results
show that Shruti outperforms static aggregation strategies
at almost all read-write ratios when there is a spatial het-
erogeneity in the access patterns. Finally, we also show that
Shruti efficiently tunes to temporal heterogeneity in the read
and write patterns and thus reduces communication costs by
50% in comparison to a static SDIMS policy.

2 Background: SDIMS

We base our system on SDIMS [25], the first aggrega-
tion framework that allows applications to control the ag-
gregation aggressiveness in the system. In this section,
we briefly describe the aggregation abstraction exposed by
SDIMS and describe how it exposes flexible aggregation
mechanisms to applications.

The aggregation abstraction in SDIMS is defined across
a tree spanning all nodes in the system. An example ag-
gregation tree is illustrated in Figure 1. Each physical node
in the system is a leaf and each subtree represents a logical
group of nodes. An internal non-leaf node is simulated by
one of the physical nodes at the leaves of the subtree rooted
at that node. Each physical node has local data stored as
a set of (attributeType, attributeName, value) tuples such
as (configuration, numCPUs, 16), (mcast membership, ses-
sion foo, yes), or (file stored, foo, myIPaddress). The system
associates an aggregation function ftype with each attribute
type, and for each level-i subtree Ti in the system, the system
defines an aggregate value Vi,type,name for each (attribute-
Type, attributeName) pair as follows. For a (physical) leaf
node T0 at level 0, V0,type,name is the locally stored value for
the attribute type and name or NULL if no matching tuple
exists. Then the aggregate value for a level-i subtree Ti is
the aggregation function for the type, ftype computed across
the aggregate values of each of Ti’s k children. We illustrate
a simple SUM() aggregation function in Figure 1.

Given this abstraction, SDIMS [25] leverages Dis-
tributed Hash Tables (DHTs) [18, 20] to construct multiple
aggregation trees, and it maps different attributes to differ-
ent trees. SDIMS leverages self-organizing properties of
DHTs to repair the aggregation trees as reconfigurations
happen in the system.

A major innovation of SDIMS is enabling flexible aggre-

000 111010 101
Physical Nodes (Leaf Sensors)

Virtual Nodes (Internal Aggregation Points)

L0

L1

L2

L3

3 4 2 9 6 1 9 3

7 11 7 12

18 19

37

100 110 001 011

Fig. 1. An SDIMS aggregation tree in an eight
node system aggregating values using SUM()
aggregation function.

gate computation and propagation. While previous aggrega-
tion systems [9, 18, 20, 22] implement a single static strat-
egy, SDIMS allows applications to choose an appropriate
aggregation scheme by providing three functions: install,
update, and probe. Install() installs an aggregation function
for an attribute type and specifies the update strategy that
the function will use, Update() inserts or modifies a node’s
local value for an attribute, and Probe() obtains an aggre-
gate value for an attribute for a specified subtree level. The
install interface allows applications to specify UP and DOWN
parameters along with the aggregation function. The UP pa-
rameter denotes until how many levels aggregation is per-
formed on update to an attribute. The DOWN parameter de-
fines for how many levels downwards the aggregated value
at a level is propagated. Figure 2 (from [25]) illustrates few
interesting aggregation strategies for different values of UP
and DOWN in SDIMS.

Need for Self-Tuning Aggregation: Though SDIMS al-
lows applications to explicitly control aggregation aggres-
siveness, an application needs to know the update and probe
patterns a priori to effectively set those knobs. But, predict-
ing the operation patterns in advance might be impossible in
real distributed applications. Consider a Content Distribu-
tion Network (CDN) serving webpages for a major sporting
event. This CDN can leverage SDIMS to track copies of
webpages on content servers. For each copy of webpage w
on a content server, the server will perform an update for at-
tribute (CDN, w) with tuple 〈IP,TimeStamp〉 as value where
IP is the IP address of the content server and TimeStamp is
the last modified timestamp of the webpage. The aggrega-
tion function is to choose tuples with the highest timestamp
value so that the global aggregate value reflects the IP ad-
dresses of servers holding the most recent copies of a web-
page. When contacted by a client, a content server performs
a probe for the global aggregate to locate the recent copies.

In such a system, if we choose an aggregation strategy
as in typical DHT based applications, UP=all and DOWN=0,
then probes for an attribute from a node need to traverse the
overlay path from that node to the root of that attribute’s
aggregation tree. During flash-crowds, this approach can
imply a drastic increase in the probe traffic. Note that sim-
ple caching might not mitigate the problem in our exam-

Update Strategy On Update On Probe for Global Aggregate Value On Probe for Level-1 Aggregate Value

Update-Local
(UP=0,DOWN=0)

Update-Up
(UP=ALL,DOWN=0)

Update-All
(UP=ALL,DOWN=ALL)

Fig. 2. Example strategies with SDIMS UP and DOWN knobs.
ple as the content of the webpages changes frequently (as
scores change in a sports event). Also note that the probe
patterns can drastically vary across the individual servers
of the CDN serving different portions of the Internet. So,
a static UP and DOWN parameter values can be insufficient
for handling spatial and temporal heterogeneity in the ac-
cess patterns. Also, the update and probe rates for different
attributes can vary by a large magnitude because the read
popularity of webpages typically follow a Zipf-like distri-
bution independent of the update rates [1]. But, SDIMS’s
aggregation abstraction imposes same UP and DOWN strategy
for all attributes of the same type.

3 Shruti: Architecture

Shruti dynamically alters the propagation of aggregate
values on updates so that overall communication cost—the
number of messages incurred on probes and updates—is
minimized. Shruti tracks updates and probes happening at
all nodes in an aggregation tree and chooses an appropri-
ate aggregation strategy based on that information. Shruti
runs on each node in the aggregation tree and decides when
that node will send any updates in the aggregate value to
the node’s parent and children. We propose a lease-based
architecture where a node conveys its intention to keep for-
warding any updates for an aggregate to another node by
granting a lease for that aggregate. In the following sec-
tions, we present more details about the lease architecture,
data structures that Shruti maintains to track updates and
probes, how Shruti makes leasing decisions, and how Shruti
handles reconfigurations.

3.1 Leases

In SDIMS, applications let all nodes in the aggregation
tree know how far to propagate the aggregate values on
writes by setting UP and DOWN values at the install time of an
aggregation function for an attribute type. All nodes need
to know this information so that when a node gets a probe
it can decide whether its local state includes the aggregate
value needed for answering the probe. For example, con-
sider an attribute with UP=all and DOWN=2. We illustrate
how aggregates are propagated for a part of an aggregation
tree in Figure 3. Since UP is set to all, the level-l node A

A

P

Q

C

Level−l

Level−(l+1)

Level−(l+2)

Level−(l−1)

Fig. 3. Aggregate value propagation in a part
of a tree for UP=all, DOWN=2.

knows that it has to propagate any updates to the level-l ag-
gregate to its parent. Since DOWN is two, it propagates the
level-l aggregate and also any updates it receives from its
parent for the level-(l + 1) aggregate to its children. Simi-
larly, this node’s parent will propagate down any changes to
either the level-(l + 1) aggregate or the level-(l + 2) aggre-
gate. Now, if this node receives a probe for the level-(l +2)
aggregate, then it can respond without needing to further
probe its parent. By knowing UP and DOWN a priori for an
attribute, each node knows the rendezvous points between
updates and probes for that attribute.

If we want to dynamically adapt the aggregation aggres-
siveness based on the workload for an attribute, then nodes
in the tree need to have enough information for responding
to probes. Shruti employs a lease-based scheme to control
the level of aggregation upon updates and to let each node
know how to respond to probes. A level-l node that has
leases from all its children can respond to probes for the
level-l aggregate without needing to probe its children. If it
also has the lease from the parent for a level l′> l aggregate,
then it can respond to the probes for the level-l′ aggregate
without needing to send a probe to its parent. In Shruti, af-
ter a node A grants a level-l lease to another node B, then
node A will send any changes to the level-l aggregate value
until node B relinquishes that lease or node A revokes the
lease.

Shruti does not exclusively work with leases to decide
the propagation of aggregate values in an aggregation tree.
Shruti also respects any application specified install time
UP and DOWN parameters for an attribute type. Shruti uses
the lease-based technique to extend the propagation of ag-
gregate values in an aggregation tree beyond the amount of

Lease levels

B C ED

(0)

Level 0

Level 2

Level 1
A

P

(0) (0)

(1)

F

Fig. 4. An example lease state in an aggrega-
tion tree.

propagation an SDIMS static strategy allows. For example,
if UP=all and DOWN=0 setting is chosen at install time of an
attribute type, Shruti will always at least propagate changes
in aggregate values up to the root of an aggregation tree.
Shruti might further propagate aggregates down the tree to
optimize communication bandwidth.

Invariants To respond correctly to probes, the leases that
Shruti sets need to satisfy certain invariants. Consider the
state of leases for an attribute in the Figure 4. We as-
sume that the corresponding type is installed with UP=0 and
DOWN=0. We show leases with thick arrows and denote the
levels corresponding to leases in parenthesis next to the ar-
rows. Note that in this state, node A cannot grant level-1
lease to its parent as it does not have the level-0 lease from
one of its children B. Consider a situation where node A in-
deed granted the level-1 lease to its parent P. Since updates
to the level-0 aggregate at node B are not propagated to node
A, updates to the level-1 aggregate that node A propagates
to its parent P will be incorrect. Any probe initiated at ma-
chines in the subtrees rooted at siblings of A (e.g., machine
D) will receive an incorrect probe response. Another point
to observe in Figure 4 is that node F cannot grant the level-
2 lease to its children as it does not have the level-2 lease
from its parent.

In the following, we present two invariants that Shruti
maintains during setting up and tearing down leases to en-
sure correct rendezvous between probes and updates.

Invariant 1 A level-l node can grant level-l lease to either
parent or a child if and only if it has level-(l−1) leases from
all its children or if UP≥ l.

Invariant 2 A level-l node can lease level l′ > l to a child
if and only if (i) it has the level-l′ lease from its parent, (ii) if
it has no parent, or (iii) if UP ≥ l′ and DOWN ≥ (l′ − l) holds.

The above invariants also imply the following two con-
ditions regarding when a node can relinquish a lease it has
obtained from a neighbor of that node.

1. A node can relinquish a level-l′ lease received from its
parent only if it has not granted level-l′ lease to any
child.

2. A level-l node can relinquish a lease acquired from a
child only if it has not granted a level-l lease to any
other node.

3.2 Leasing Policy

Shruti keeps track of the updates and probes at each node
and dynamically sets up and tears down leases between
nodes to optimize overall communication costs. Briefly, it is
useful for a node A to grant a level-l lease to another node
B only if the number of messages that A and B exchange
on probes when the lease is not granted is greater than the
number of update messages that A has to forward to B after
granting the lease. Note that each probe causes exchange of
two messages between A and B—one for the query and one
for a response; whereas each update causes only one mes-
sage between two nodes. So a lease can be granted if we
expect the number of probes to be even half of the number
of updates. When the number of updates a node receives
goes beyond two times the number of probes, then it is bet-
ter to remove the lease.

We exploit dynamic adaptation of the aggregation strate-
gies not only to optimize overall communication costs but
also to trade-off bandwidth with probe response latencies.
For example, if leases are set aggressively (say even when
we expect probes to be far less than the half of the num-
ber of updates) but removed lazily (say remove only when
the number of updates is four times more than the number
of probes), then the average probe response times will be
smaller but at the cost of increased communication costs.
Shruti provides two knobs for the applications to control
the lease aggressiveness: one knob to decide how leases are
granted and another to decide how they are removed. Over-
all, Shruti supports and extends the flexibility provided by
the static UP and DOWN SDIMS strategies.

In the following, we first describe the data structures that
Shruti maintains on each node and then describe the knobs
that Shruti exposes to the applications to set a leasing policy.

Data Structures Shruti maintains several logs for track-
ing updates and probes happening at each node. On a level-l
node in an aggregation tree, Shruti maintains the following
logs with timestamps:

• LocalHistory On each node, Shruti maintains times-
tamps of the most recent probe and update for each
level from either its parent or any of its children. On
a level-l node, the updates and probes for level l′ ≥ l
are accounted for the respective level l′. But updates
received from the node’s children for level-(l−1) ag-
gregate are accounted as updates for level l, since those
updates affect the level-l aggregate.

• NeighborHistory This data structure on a node is used
to track all probes and updates for all levels from each
neighbor of a node (parent and children). A node
maintains neighbor history for a level-l′ aggregate with
respect to another node B (aka history of updates and
probes from node B for level l′) only if node A can

Algorithm 1 OnProbe(fromNode, reqLevel)
1: timestamp← current time
2: Add (probe, timestamp) to LocalHistory[reqLevel]
3: /* Check if invariants allow us to grant a lease for this level */
4: if canLease(reqLevel) then
5: Add (probe, timestamp) to NeighborHistory[fromNode][reqLevel]
6: lastUpdateTime ← timestamp of the most recent update from Lo-

calHistory[reqLevel]
7: numProbes ← number of probes in NeighborHis-

tory[fromNode][reqLevel] with timestamp > lastUpdateTime
8: if numProbes >= m then
9: Grant lease for reqLevel aggregate to fromNode

10: else
11: Clear all probes from NeighborHistory[fromNode][reqLevel]

Algorithm 2 canLease(reqLevel)
1: myLevel← this node’s level
2: if reqLevel > myLevel then
3: if UP ≥ reqLevel AND DOWN ≥ (reqLevel−myLevel) then
4: return true
5: else if reqLevel ∈ LeasesReceived(parent) then
6: return true
7: else
8: return false
9: else if reqLevel == myLevel then

10: if UP ≥ myLevel then
11: return true
12: else
13: for each child C ∈ children do
14: if (reqLevel−1) /∈ LeasesReceived(C) then
15: return false
16: return true
17: return false

Algorithm 3 OnUpdate(fromNode, level)
1: timestamp← current time
2: Add (update, timestamp) to LocalHistory[level]
3: /* Check if invariants allow us to relinquish a lease for this level. */
4: if level ∈ LeasedFrom(fromNode) AND canRelinquish(level) then
5: Add (update, timestamp) to NeighborHistory[fromNode][level]
6: checkLevel← (level < myLevel)?myLevel:level
7: /* Note that children of a level-l node send level-(l − 1) updates

and affect level-l aggregate */
8: lastProbeTime← timestamp of the most recent probe from Local-

History[checkLevel]
9: numUpdates ← number of updates in NeighborHis-

tory[fromNode][level] with timestamp > lastProbeTime
10: if numUpdates >= k then
11: Relinquish lease for level aggregate from fromNode
12: else
13: Clear all updates from NeighborHistory[fromNode][level]

grant the level-l′ lease or has received the level-l′ lease
from node B.

• LeasesGranted and LeasesReceived We maintain the
leases a node acquired from and leases granted to ei-
ther its parent or its children in these data structures.
These data structures are indexed on the neighbor.

Granting and Relinquishing leases Shruti at a node uses
the history of updates and probes from another node to pre-
dict the future update-probe patterns from that node. We
assume that the patterns observed in the near past reflect
the near future behavior. When invariants for granting a
level-l lease are satisfied at a node A, we use the following

Algorithm 4 canRelinquish(level)
1: myLevel← this node’s level
2: if level < myLevel then
3: level← myLevel
4: if level ∈ LeasesGranted(parent) then
5: return false
6: for each child C ∈ children do
7: if level ∈ LeasesGranted(C) then
8: return false
9: return true

general rule to decide whether to grant the level-l lease to
a node B or not—grant the lease if m probes are received
from node B while no updates happened to the level-l ag-
gregate. In Algorithm 1, we present the pseudo-code for
actions performed by Shruti on receiving a probe from an-
other node. The pseudo-code for checking whether granting
a lease would violate any invariant is shown in Algorithm 2.

Similar to the rule for setting a lease, we use the fol-
lowing rule for relinquishing a level-l′ lease granted by a
parent P to node A—relinquish the lease if k updates are
received from the parent P while no probes are received for
the level-l′ aggregate. Similarly a level-(l−1) lease granted
by a child C is relinquished if k updates are received from
the child C while no probes are received for the level-l ag-
gregate. Note that updates for level-(l− 1) from a node’s
children affect the value of level-l aggregate at the node.
The pseudo-code for Shruti’s actions on receiving an update
is shown in Algorithm 3. We present pseudo-code checking
whether relinquishing a lease violates any invariant in Al-
gorithm 4.

Consider an example with k=2 and m=1. A node A that
can grant a level-l lease to node B grants that lease to B as
soon as it gets a probe from B. And node B relinquishes that
lease if it gets two updates from node A for that aggregate
while not receiving any probes for that aggregate.

The two knobs k and m control how aggressively leases
are set and how aggressively they are removed. A setting
where k is about twice the value of m performs optimally
in terms of number of messages. A large value for k and
a small value for m cause leases to be set aggressively but
to be removed lazily leading to better probe response times
but at increased bandwidth.

3.3 Default Lease State

To be efficient and be scalable with sparse attributes,
Shruti on each node at level-l for an attribute starts with a
state where it assumes that it has level-(l−1) leases from all
its children and has granted a lease for the level-l aggregate
to its parent.

Sparse attributes are attributes that are of interest to only
few nodes in the system and only those nodes perform up-
date or probe operations for that attribute. In most practical
systems with a large number of attributes, all nodes will
likely not be interested in all attributes. For example, up-

Level 2

Level 0

Level 1

Level 3

(0) (0) (0)(0)

(1)

Machine Q
joins the system(0)

A

(0) (0)

F

(1)

P

B C D E Q B C D E

A

P’

(2) (2)

P

(1)

F
(1)

Fig. 5. Violation of Invariant 1 on reconfigu-
ration: Node A does not have lease from B
while it has lease granted to its parent. The
dotted arrows represents the default leases
assumed for new nodes.

dates and probes to an attribute corresponding to a multicast
session with small membership will generally be done only
by its members.

If nodes were to start in a state where no leases are
granted for an attribute and with default UP=0 and DOWN=0,
the first probe operation would incur 2.N messages in an
N node network, as the probe would have to collect in-
formation from all nodes in the system. Thus, even for
sparse attributes that are of interest to only a handful of
nodes, all nodes in the system would be touched by the
first few probes for that attribute until leases are set. Once
leases are set, those uninterested nodes would not receive
any more messages regarding the attribute. But explicitly
setting leases implies that all nodes have to maintain some
information about all attributes whether they are interested
in that attribute or not. Hence this hypothetical initial state
would undermine Shruti’s ability to scale to large numbers
of attributes.

Instead, by starting in a lease state in which Shruti on
each node for all attributes assumes that it has leases granted
from all its children and has granted a lease for the local ag-
gregate to its parent, the unnecessary leasing information
need not be explicitly maintained. Hence only nodes that
are interested in an attribute and nodes helping these inter-
ested nodes in aggregation of the attribute will ever main-
tain any explicit information about the leases (when leases
are relinquished or when leases are further granted down to
children), thus achieving scalability with sparse attributes.

3.4 Reconfigurations

Reconfigurations will be a norm in any large distributed
system, and in the face of reconfigurations, the invariants
for leases might not continue to hold at one or more nodes
in the system. Invariant 1 is violated when a level-l node in
an aggregation tree acquires a new parent when it does not
have level-(l−1) lease from one of its children. For exam-
ple, consider an aggregation tree in a four machine system
shown on the left in Figure 5. In this aggregation tree, all
invariants are satisfied. Suppose machine Q joins and the
aggregation tree reconfigures as shown on the right in the

Level 2

Level 0

Level 1

Level 3

(0) (0) (0)(0)

(1)

Machine Q
joins the system(0) (0) (0)

F

(1)

P

B C D E Q B C D E

A

P’

(2) (2)

P

(1)

F
(1)

(0)

A

(2)

(1, 2)

(1)

(1, 2)

(0)

Fig. 6. Invariant 2 violation on reconfigura-
tion. A has granted a level-2 lease to its child
but does not have level-2 lease from its par-
ent.

figure. As discussed in the previous section, new nodes start
with a lease state where each level-l node assumes that it has
level-(l− 1) lease from all its children. The dotted arrows
show the default leases assumed when machine Q joins the
system. At node A, Invariant 1 is violated. The parent of
node A, node P’, has level-1 lease from node A while node
A does not have level-0 from one of its children B.

Similar to the violation of Invariant 1, Invariant 2 might
be violated during reconfigurations. We show an example
case where such violation occurs in Figure 6. Note that node
A before reconfiguration has the level-2 lease from its par-
ent P which it granted further down to one of its children
B. When it acquired a new parent P’, node A no longer has
the level-2 lease from its parent but still has an outstanding
level-2 lease to its child, violating Invariant 2.

In the face of reconfigurations, the goal of Shruti is to
revert to a state conforming to all invariants. Observe that
invariant violations occur only when a node gets a new par-
ent. Acquiring a new child or losing an existing child does
not affect the consistency of leases at a node. At a node
where an invariant violation occurs, Shruti revokes leases
that violate invariants. For example, when Invariant 1 is vi-
olated at a node due to acquiring a new parent, that node
revokes the lease to its parent. In the example shown in Fig-
ure 5, node A revokes the level-1 lease to its new parent P’.
Similarly, when Invariant 2 is violated at a node, that node
revokes leases it granted to its children that violate invari-
ants. For example, node A in Figure 6 revokes its level-2
lease to node B after it gets new parent P’.

A node that receives revocation of a lease from its par-
ent or one of its children might have to further revoke some
leases that this node granted to other nodes. For instance,
when a node receives revocation of a level-l lease from
its parent, it has to further revoke any level-l leases it has
granted to its children. Also, when a node at level-l receives
revocation of level-(l− 1) lease from one of its children,
then it should revoke any level-l leases it has granted.

Note that while lease revocation is in progress, some
of the probes might receive incorrect responses. But once
the system becomes stable (no machine or network failure
events or no new machine join events), Shruti on each node
attains a state satisfying invariants through revoking zero

 0.1

 1

 10

 100

 1000

 10000

 0.0001 0.001 0.01 0.1 1 10 100 1000

A
vg

 M
es

sa
ge

 C
ou

nt

Read-Write Ratio

Update-All
UP=All,DOWN=5

Update-Up
UP=3,DOWN=0

Update-Local
Shruti(k=5,m=2)

 0

 5

 10

 15

 20

 25

 30

 0.0001 0.001 0.01 0.1 1 10 100 1000

A
vg

 O
pe

ra
tio

n
La

te
nc

y

Read-Write Ratio

Update-All
UP=All,DOWN=5

Update-Up
UP=3,DOWN=0

Update-Local
Shruti(k=5,m=2)

 0

 5

 10

 15

 20

 25

 30

 0.0001 0.001 0.01 0.1 1 10 100 1000

A
ve

ra
ge

 P
ro

be
 L

at
en

cy

Read-Write Ratio

Update-All
UP=All,DOWN=5

Update-Up
UP=3,DOWN=0

Update-Local
Shruti(k=5,m=2)

(a) (b) (c)

Fig. 7. Shruti vs. SDIMS static UP and DOWN for a wide range of read-to-write ratios: (a) Average
message cost per operation, (b) Average latency per operation, and (c) Average probe latency.

or more leases it has granted to other nodes. Once invari-
ants are satisfied in the lease state, all probes receive correct
responses. In a separate effort [12], we address how an ag-
gregation system can expose network imprecision so that a
probe response can explicitly indicate whether a system is
sufficiently stable for invariants such as this to hold.

4 Experimental Evaluation

We present our experimental results on Shruti comparing
its performance to static up and down strategies for a wide
range of update and probe patterns, referred to as read-write
ratios, and with spatial and temporal heterogeneity in the
access patterns. We focus on two metrics—communication
cost and operation latency. Our evaluation shows that Shruti
(i) adapts to the access patterns and approximates the opti-
mal static strategy for a static and globally uniform read-
write ratio, (ii) adapts to spatial heterogeneity in the access
patterns across nodes to outperform any single static strat-
egy, and (iii) quickly adapts to temporal heterogeneity such
as changing access patterns.

We simulate a 512-node aggregation system, and we in-
stall a simple summation operation as the aggregation func-
tion. A write at a node for an attribute increments the previ-
ous value for the attribute at that node. We initially update
each attribute at each node with a value of one. All probes
are for the global aggregate value. We simulate 50000 op-
erations for each aggregation strategy in each experiment.

Single attribute, uniform read-write ratios across nodes
In this first set of experiments, we consider a single attribute
and uniform read-write ratios across all nodes. For such a
workload, there exists an optimal static UP/DOWN strategy,
and we examine whether Shurti’s self-tuning succeeds in
balancing costs and benefits to match that strategy. In Fig-
ure 7(a), we plot the measured average message cost per
operation in Shruti comparing it to different static up and
down strategies in SDIMS. We use values of 5 and 2 for
k and m (recall that k and m determine the aggressiveness
with which leases are set and removed as explained in Sec-

tion 3.2), respectively, in Shruti. Observe that at each read-
write ratio, Shruti approximates the behavior of an optimal
up-down SDIMS strategy at that ratio.

In Figure 7(b), we plot the average latency per opera-
tion (both updates and probes considered) in Shruti and in
SDIMS. We consider each overlay hop to consume a unit
of latency. Note that whereas any static strategy that be-
haves well at some read-to-write ratios incurs a high oper-
ation latency at other read-to-write ratios, Shruti performs
well at all read-to-write ratios. For example, although the
Update-all strategy performs optimally in terms of opera-
tion latency for read-to-write ratios greater than one, it in-
curs a high communication cost for read-write ratios less
than one when compared to Shruti (Figure 7(a)).

In Figure 7(c), we plot the average probe response laten-
cies with different read-to-write ratios for static up-down
strategies and Shruti. We assume that each overlay hop
has unit latency. Note that Shruti adapts to reduce over-
all communication bandwidth and hence incurs different la-
tencies at different read-write ratios. When probes are rare
(e.g., low read-write ratio), Shruti minimizes update cost,
which increases probe latency, but as probes become more
frequent, Shruti’s self-tuning algorithm shifts work to the
updates reducing probe latencies. All static strategies have
fixed average probe response latencies.
Varying k and m in Shruti In Figure 8, we plot the av-
erage message cost observed for different values of k and
m in Shruti while varying the read-to-write ratios. As ex-
pected, for large values of k and small values of m, the sys-
tem adapts quickly to probes but slowly to writes; hence,
it performs better at large read-write ratios but suffers at
small read-write ratios. In Figure 9, we compare the average
probe latency for these different strategies. Observe that the
probe-favoring higher k compared to m strategies result in
smaller probe latencies. We conclude two key points from
these set of results: (1) k=5 and m=2 or k=5 and m=3 are
good default values for k and m as Shruti performs better
with these values than with any other settings and (2) ap-
plications that intend to reduce the response latency at the
cost of higher bandwidth can use a more aggressive leasing

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 1e-04 0.001 0.01 0.1 1 10 100 1000

A
vg

 M
es

sa
ge

 C
ou

nt

Read-Write Ratio

k=10, m=1
k=5, m=1
k=5, m=2
k=5, m=3
k=1, m=1

Fig. 8. Average message cost per operation
in Shruti for different values of k and m.

 0

 5

 10

 15

 20

 25

 30

 1e-04 0.001 0.01 0.1 1 10 100 1000

P
ro

be
 L

at
en

cy

Read-Write Ratio

k=10, m=1
k=5, m=1
k=5, m=2
k=5, m=3
k=1, m=1

Fig. 9. Average probe latency in Shruti for dif-
ferent values of k and m.

Shr
ut

i

U=0
 D

=0

U=3
 D

=0

U=A
ll D

=0

U=A
ll D

=3

U=A
ll D

=A
ll

1

10

100

1000

A
vg

 M
sg

s/
O

pe
ra

tio
n Avg. msgs/op

Shr
ut

i

U=0
 D

=0

U=3
 D

=0

U=A
ll D

=0

U=A
ll D

=3

U=A
ll D

=A
ll

0

10

20

30

R
ead Latency

Read Latency

Fig. 10. Multiple attributes case: Shruti (k=5,
m=2) vs SDIMS static UP and DOWN strategies.

policy by setting a high value for k and a small value for m.

Multiple attributes, Zipf-like distribution in probes
Studies have shown that web accesses and P2P queries fol-
low Zipf-like distribution [1, 19] with respect to the objects.
Here, we study the performance of Shruti when probes to
attributes follow Zipf-like distributions [1] (the ith popular
attribute gets C/αi fraction of probes) with α = 1.3. The
write operations are assigned to different attributes in a uni-
form way. We simulate 100 attributes, all of same type, with
a global average read-to-write ratio of 100. In Figure 10,
we present the average number of messages per operation
and average probe latency incurred by Shruti compared to
a set of SDIMS strategies with different static up and down
values. Clearly, Shruti achieves both lower communication
cost and smaller average probe response time than SDIMS’s

 0.1

 1

 10

 100

 1000

 10000

 0.0001 0.001 0.01 0.1 1 10 100 1000

A
vg

 M
es

sa
ge

 C
ou

nt

Read-Write Ratio

Update-All
UP=All,DOWN=5

Update-Up
UP=3,DOWN=0

Update-Local
Shruti(k=5,m=2)

Fig. 11. Spatial heterogeneity: Average mes-
sage count – Shruti vs. SDIMS strategies

 0

 5

 10

 15

 20

 25

 30

 0.0001 0.001 0.01 0.1 1 10 100 1000
A

vg
 O

pe
ra

tio
n

La
te

nc
y

Read-Write Ratio

Update-All
UP=All,DOWN=5

Update-Up
UP=3,DOWN=0

Update-Local
Shruti(k=5,m=2)

Fig. 12. Spatial heterogeneity: Average oper-
ation latency – Shruti vs. SDIMS strategies

static strategy through adapting aggregation aggressiveness
separately for each individual attribute.

Spatial heterogeneity The distribution of updates and
probes for an attribute will not be uniform across nodes in
a real system. For example, for an attribute corresponding
to a multicast session, typically only members of that multi-
cast session perform most update and probe operations. We
simulate a single attribute operation rates at nodes following
a Zipf-like distribution with α = 1.3. In Figures 11 and 12,
we plot the average number of messages per operation and
average operation latency incurred in Shruti in comparison
to that incurred by a set of SDIMS strategies for different
read-to-write ratios. Note that Shruti achieves lower com-
munication costs compared to the first set of results in Fig-
ure 7(a) as it exploits the spatial heterogeneity to set leases
such that updates and probes are propagated to only nodes
interested in that attribute.

Temporal heterogeneity The read-write ratio for at-
tributes change over time as attributes become popular and
then as popularity fades. In this experiment with three
phases each with 20000 operations, we start with a read-
to-write ratio of 0.01 in the first phase, change it to 100
in the second phase, and revert back to 0.01 in the final
phase. We measure the number of messages incurred per
each operation and compare Shruti with a SDIMS Update-
UP (UP=all and DOWN=0) strategy. In Figure 13, we compare
the per-phase and overall average message cost for Shruti

Phase 1 Phase 2 Phase 3 Overall

2

4

6

8

10

Av
g

M
sg

s/
O

pe
ra

tio
n

SDIMS Update-Up

Shruti

Fig. 13. Temporal heterogeneity: Average
message count per operation in Shruti vs.
SDIMS for three phases of the experiment.

 1

 10

 100

 1000

 0 10000 20000 30000 40000 50000 60000

N
um

be
r

of
 M

es
sa

ge
s

pe
r

O
pe

ra
tio

n

Operations

Probes (Shruti)

Updates (Shruti)

Probes (Upall)

Updates (Upall)

Probes (Shruti)

Updates (Shruti)

Probes (Upall)

Probes (Shruti)

Updates (Shruti)

Probes (Upall)

Fig. 14. Temporal heterogeneity: Number of
messages per operation in Shruti vs. SDIMS
UP=all and DOWN=0.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 20 40 60 80 100 120

P
ro

be
 L

at
en

cy

Probes

Root Node Killed

Fig. 15. Reconfiguration handling: Latency of
probe operations. After sixty probes, we kill
the root node of the aggregation tree.

with the SDIMS strategy. We also plot number of messages
incurred per each operation in Figure 14. Note that whereas
the SDIMS static scheme incurs a similar number of mes-
sages on every operation irrespective of the read-write-ratio,
Shruti adapts to the observed read-write ratios and thus in-
curs lower communication costs.

Reconfigurations We demonstrate Shruti’s reconfigura-
tion handling capability in this experiment. As described
in Section 3.4, when a virtual node in an aggregation tree
loses its parent or obtains a new parent during a reconfig-
uration event, then the virtual node might revoke some of
the leases it has granted to other nodes so that invariants are
satisfied. As leases are revoked, probes might experience
increased latency. With Shruti running on 1024 nodes, we

first perform several write operations for an attribute at all
nodes so that all leases are removed. We then perform sev-
eral probes from a machine so that leases are set from all
leaves to the root of the aggregation tree and on the path
from the root to the probing leaf. In Figure 15, we plot the
response latency of probe operations. After sixty probes,
we kill the root node which causes revocation of leases on
the path from the root node to the probing node. Hence the
following probes suffer higher latency until the leases are
set again from the new root down to the probing node.

5 Related Work

Existing aggregation systems use a static aggregation
strategy that can perform well for some workloads but
might perform poorly for others. Astrolabe [22] employs an
Update-All type aggregation mechanism, DHTs and DHT
based systems(e.g., [18, 20]) use an Update-Up mechanism,
and Globus’ MDS-2 [6] uses an Update-None mechanism.

The Controlled Update Propagation (CUP) protocol by
Roussopoulos et al. [17] and Overlook [21], a name ser-
vice system, are closely related to Shruti. CUP addresses
a similar problem in the context of updating cached results
of get operations in DHTs and Overlook replicates name
service content along a tree to reduce lookup latency of
DNS resolve queries. Though CUP, Overlook, and Shruti
share the idea of using lease-based techniques, they differ
in the design choices leading to different tradeoffs. First,
CUP and Overlook only consider replicating the root con-
tent at other nodes; they build upon the DHT architecture
and hence assume that aggregation is performed up to the
root on writes. So they dynamically control the propagation
of updates only downwards where as Shruti controls update
propagation even towards the root. For Overlook, which is a
naming service where the number of updates will be far less
than the number of probes for any entry, such downward
only propagation control is appropriate. In SDIMS, we con-
sider different attributes with different behaviors. For an at-
tribute that is updated by only a single node and no other
node probes for that attribute, it is inefficient to even aggre-
gate the data up to the root in the corresponding aggrega-
tion tree. Second, the maintenance overheads are different
in these three systems. In CUP, each replicated object at
a node expires unless refreshed by the parent for that ob-
ject. So, the maintenance overhead is on the order of the
number of objects. In Overlook and Shruti, a replicated ob-
ject at a node expires if the parent that gave the lease fails.
So, lease maintenance overhead involves tracking liveness
of the parents of a node; hence an overhead in the order of
the number of parents a node has. Whereas a node might
have O(N) parents in the worst case in Overlook, each node
in Shruti has to track only O(logN) other nodes, where N is
the number of nodes in the system.

Other closely related projects are Beehive by Rama et
al. [16] and SCAN by Chen et al [3]. In Beehive, no updates
are considered and the goal is to place a minimum number
of replicas such that all queries are satisfied with a constant
communication cost, assuming queries follow a Zipf dis-
tribution. Chen et al. solve a similar problem of placing a
minimum number of replicas while satisfying client QoS re-
quirements and server constraints. Cohen et al. study repli-
cation strategies in unstructured P2P networks [4].

Lease-based techniques are employed in many dis-
tributed systems such as replicated file systems [10] and
web caching and replication [7, 26]. All web replication re-
search consider the case where updates to objects happen at
a single server. Yin et al. propose volume leases [26] where
a server issues a volume lease with a short timeout period
and object leases with a long timeout period. This helps
in reducing the communication from the server to the repli-
cas while ensuring strong consistency guarantees. In Shruti,
each node pings its neighbors frequently to check their live-
ness (similar to short volume lease timeout) and considers
all leases that a neighbor issued to be valid as long as the
neighbor is alive or the lease is either relinquished or re-
voked (similar to long object lease timeout).

6 Conclusions

Current aggregation systems either have single inbuilt
aggregation mechanism or require applications to specify
aggregation policy a priori. It is hard to predict the read
and write access patterns in large systems in advance and
hence such systems suffer from inefficient network usage.
We present Shruti, a system that demonstrates a general
approach for self-tuning the aggregation aggressiveness to
the measured workload in the system optimizing the over-
all communication costs (e.g., the sum of costs for reads
and writes). Our simulation studies demonstrate the effec-
tiveness of dynamic adaptation in reducing communication
costs for wide range of workloads. In a separate effort [15],
we explore theoretical bounds for the efficacy of our tuning
algorithm with leases.

References

[1] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web
caching and zipf-like distributions: Evidence and implica-
tions. In Proceedings of IEEE Infocom, 1999.

[2] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi,
A. Rowstron, and A. Singh. SplitStream: High-bandwidth
Multicast in a Cooperative Environment. In SOSP, 2003.

[3] Y. Chen, R. H. Katz, and J. D. Kubiatowicz. SCAN: a Dy-
namic Scalable and Efficient Content Distribution Network.
In First Intl. Conf. on Pervasive Computing, Aug 2002.

[4] E. Cohen and S. Shenker. Replication strategies in unstruc-
tured peer-to-peer networks. In SIGCOMM, 2002.

[5] R. Cox, A. Muthitacharoen, and R. T. Morris. Serving DNS
using a Peer-to-Peer Lookup Service. In IPTPS, 2002.

[6] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman.
Grid information services for distributed resource sharing.
In Proc HPDC, Aug 2001.

[7] V. Duvvuri, P. Shenoy, and R. Tewari. Adaptive leases: A
strong consistency mechanism for the world wide web. In
Proceedings of IEEE Infocom, Mar. 2000.

[8] I. Foster, C. Kesselman, C. Lee, R. Lindell, K. Nahrstedt,
and A. Roy. A distributed resource management architecture
that supports advance reservations. In IWQoS, 1999.

[9] Ganglia: Distributed Monitoring and Execution System.
http://ganglia.sourceforge.net.

[10] C. Gray and D. Cheriton. Leases: An Efficient Fault-
Tolerant Mechanism for Distributed File Cache Consistency.
In Proc. SOSP, pages 202–210, 1989.

[11] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed
diffusion: a scalable and robust communication paradigm
for sensor networks. In MobiCom, 2000.

[12] N. Jain, D. Kit, P. Mahajan, P. Yalagandula, M. Dahlin, and
Y. Zhang. PRISM: Precision-aware Aggregation for Scal-
able Monitoring. Technical Report TR-06-22, Department
of Computer Sciences, UT Austin, 2006.

[13] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and
W. Hong. TAG: a Tiny AGgregation Service for Ad-Hoc
Sensor Networks. In OSDI, 2002.

[14] A. Nandi, A. Ganjam, P. Druschel, T. E. Ng, I. Stoica,
H. Zhang, and B. Bhattacharjee. SAAR: A Shared Control
Plane for Overlay Multicast. In NSDI, 2007.

[15] C. G. Plaxton, M. Tiwari, and P. Yalagandula. Online Ag-
gregation over Trees. In IPDPS, 2007.

[16] V. Ramasubramanian and E. G. Sirer. Beehive: O(1) Lookup
Performance for Power-Law Query Distributions in Peer-to-
Peer Overlays. In NSDI, March 2004.

[17] M. Roussopoulos and M. Baker. CUP: Controlled Update
Propagation in Peer-to-Peer Networks. In USENIX, 2003.

[18] A. Rowstron and P. Druschel. Pastry: Scalable, Distributed
Object Location and Routing for Large-scale Peer-to-peer
Systems. In Middleware, 2001.

[19] K. Sripanidkulchai. The popularity of gnutella queries and
its implications on scalability, 2001. White Paper.

[20] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakr-
ishnan. Chord: A scalable Peer-To-Peer lookup service for
internet applications. In ACM SIGCOMM, 2001.

[21] M. Theimer and M. B. Jones. Overlook: Scalable Name
Service on an Overlay Network. In ICDCS, 2002.

[22] R. VanRenesse, K. P. Birman, and W. Vogels. Astrolabe:
A Robust and Scalable Technology for Distributed System
Monitoring, Management, and Data Mining. TOCS, 2003.

[23] M. Wawrzoniak, L. Peterson, and T. Roscoe. Sophia: An
Information Plane for Networked Systems. In HotNets’03.

[24] R. Wolski, N. Spring, and J. Hayes. The network weather
service: A distributed resource performance forecasting ser-
vice for metacomputing. Journal of Future Generation
Computing Systems, 15(5-6):757–768, Oct 1999.

[25] P. Yalagandula and M. Dahlin. A scalable distributed infor-
mation management system. In SIGCOMM 2004.

[26] J. Yin, L. Alvisi, M. Dahlin, and C. Lin. Volume Leases to
Support Consistency in Large-Scale Systems. IEEE Trans-
actions on Knowledge and Data Engineering, Feb. 1999.

