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ABSTRACT
We present SMART, a scalable, bandwidth-aware monitor-
ing system that maximizes result precision of continuous
aggregate queries over distributed data streams. While pre-
vious approaches reduce bandwidth cost under fixed preci-
sion constraints, in practice, monitoring systems may still
incur a substantial cost risking overload under bursty traffic
conditions. SMART therefore bounds the worst-case system
cost to provide overload resilience and to facilitate practi-
cal deployment of monitoring systems. The primary chal-
lenge for SMART is how to select dynamic updates at each
node in a distributed system to maximize global precision
while keeping per-node monitoring bandwidth below a spec-
ified budget. To address this challenge, SMART’s hierarchi-
cal algorithm (1) allocates bandwidth budgets in a near-
optimal manner to maximize global precision and (2) self-
tunes bandwidth settings to improve precision under dy-
namic workloads. Our prototype implementation of SMART
provides key solutions to (a) prioritize pending updates for
multi-attribute queries, (b) build bounded fan-in, load-aware
aggregation trees to improve accuracy and fast anomaly de-
tection, and (c) combine temporal batching with arithmetic
filtering to reduce load and to quantify result staleness. Fi-
nally, our evaluation using simulations and a network mon-
itoring application shows that SMART improves accuracy
by up to an order of magnitude compared to uniform band-
width allocation and performs close to the optimal algorithm
under modest bandwidth budgets.

1. INTRODUCTION
Distributed stream processing systems [1,19,32] must pro-

vide high performance and high fidelity for query processing
as such systems grow in scale and complexity. In these sys-
tems, data streams are often bursty where input rates may
unexpectedly increase over time [3, 23]. Examples include
network traffic monitoring, identifying distributed denial-
of-service (DDoS) attacks on the Internet, financial stocks
monitoring, web click stream analysis, and event-driven mon-
itoring in sensor networks. Therefore, it is desirable for these
systems to bound the monitoring load while still providing
useful accuracy guarantees on the query results. Existing
techniques [21,22,24,26,37,40] aim to address this problem
by minimizing the monitoring cost while promising an a pri-
ori numeric error bound (e.g., ± 10%) on query precision.

Unfortunately, although these techniques effectively re-
duce load under fixed precision, they are unsuitable in dy-
namic, high-volume stream processing environments for three
reasons.

(1) Setting precision requires workload knowledge:
Choosing error bounds a priori is unintuitive when
workloads are not known in advance or may change
unpredictably over time. (Should the error be 10% or
30%?) Conversely, it may be easier to set the moni-
toring budget (e.g., a system administrator is willing
to pay 0.1% of network bandwidth for monitoring).

(2) Bad precision setting hurts performance: A bad
choice of the error bound may significantly degrade the
quality of a query result [6] (e.g., when the error bound
is too large) or incur a high communication and pro-
cessing cost (e.g., when the error bound is too small).

(3) Bursty traffic imposes unacceptable overheads:
Even with reasonable error bounds, in practice, moni-
toring systems may still incur a substantial cost risking
overload under bursty and often unpredictable traffic
conditions (see motivating example described below).

An intuitive solution to handle high load is to simply pro-
vision adequate resources in anticipation of the worst-case
load. However, since over-provisioning is neither economi-
cally viable [36] nor scalable [25], it is important to provide
protection mechanisms to bound the bandwidth cost.

Motivating Example: We present a simple example to il-
lustrate the challenges for scalable monitoring under bursty
workloads. We simulate a set of 10 data sources connected to
a centralized monitor with incoming bandwidth limit of up
to 5 messages per second. The input workload distribution
is modeled based on the standard exponential distribution
with a parameter λ, and upon each arrival, the value of at-
tribute ai at data source i is updated according to random
walk model in which the value either increases or decreases
by an amount sampled uniformally from [0.5, 1.5]. Figure 1
shows the load-error tradeoff for a single data source. As
expected, on increasing the error budget, arithmetic filter-
ing [21, 26] quickly decreases the load as majority updates
get filtered.

To quantify the monitoring cost, we use λ=10, a baseline
error budget of 2 and its corresponding expected load of 0.5
(Figure 1), effectively setting the total expected cost for mon-
itoring 10 data sources as 5 messages per second. Figure 2
shows the induced message load at the central monitor under
fixed error of 2 per attribute. We observe that under peak
data arrivals, the system incurs up to 4x higher cost to meet
the error bounds over the expected cost of 5 messages per
second. Thus, monitoring systems may induce high over-
load to bound precision under bursty workloads. Figure 3
shows the divergence between data source attributes and
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Figure 1: Expected outgoing mes-
sage load vs. error budget for a
single attribute at a data source
under random walk workload.
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Figure 2: Monitoring system
induces overload under bursty
workloads to bound result error.
The system incurs up to 4x over-
load over the expected load.
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Figure 3: Monitoring system
causes high inaccuracy under
bursty workloads to bound load.
The result error is up to 5x higher
over the expected divergence.

their cached values at the central monitor under fixed load
of 5. In this case, the system may provide highly inaccurate
results having up to 5x error over the expected result error
of 2. As a result, existing monitoring techniques are inef-
fective under bursty workloads—they risk overload, loss of
accuracy, or both. This simple example clearly shows that
large-scale monitoring systems must bound the bandwidth
cost while still providing query results with useful accuracy
guarantees.

Our Contributions: To address these challenges, we pro-
pose SMART, the first (to the best of our knowledge) scal-
able, bandwidth-aware monitoring system that adaptively
sets bandwidth constraints to maximize precision of continu-
ous aggregate queries over distributed data streams. SMART
addresses the above challenges with the following techniques:

(1) Maximize precision under fixed bandwidth bud-
get: SMART formulates a bandwidth-aware optimiza-
tion problem whose goal is to maximize the result pre-
cision of an aggregate query in a hierarchical aggrega-
tion tree subject to given bandwidth constraints. This
model provides a closed-form, near-optimal solution to
self-tune bandwidth settings for achieving high accu-
racy using only local and aggregated information at
each node in the tree. Further, SMART provides a
“graceful degradation” in query precision as the avail-
able bandwidth decreases. Our experimental results
show that self-tuning bandwidth settings improves ac-
curacy by an order of magnitude over uniform band-
width allocation and performs close to the optimal al-
gorithm under modest bandwidth budgets.

(2) Scalability via multiple aggregation trees: SMART
builds on recent work that uses distributed hash tables
(DHTs) to construct scalable, load-balanced forests of
self-organizing aggregation trees [5, 12, 29, 39]. Scal-
ability to tens of thousands of nodes and millions of
attributes is achieved by mapping different attributes
to different trees. For each tree in this forest of aggre-
gation trees, SMART’s self-tuning algorithm adjusts
bandwidth settings to achieve high precision under dy-
namic workloads where the estimate of load vs. pre-
cision trade-offs, and hence the optimal distribution,
can change over time.

(3) High performance by combining arithmetic fil-
tering and temporal batching: SMART integrates
temporal batching with arithmetic filtering to reduce
the monitoring load and to quantify staleness of query
results. For high-volume workloads, it is advantageous
for nodes to batch multiple updates (that arrive close
in time) and send a single combined update, thereby
more effectively using budgeted bandwidth for refresh-
ing updates. In an aggregation tree, this temporal
batching allows leaf sensors to condense a series of up-
dates into a periodic report and allows internal nodes
to combine updates from different subtrees before trans-
mitting them further. Further, it bounds the delay
(e.g., at most 30 seconds) from when an update occurs
at a leaf until it is reported at the root. To minimize
query result staleness, SMART prioritizes updates so
that they propagate from the leaves to the root in the
allotted time while meeting bandwidth budgets.

We have implemented a prototype of SMART on SDIMS,
a scalable aggregation system [39] built on top of FreePastry [13].
Our prototype implementation provides two key optimiza-
tions. First, it constructs bounded fan-in, bandwidth-aware
aggregation trees to improve accuracy and to quickly de-
tect anomalies in heterogeneous environments. Recent stud-
ies [9, 11, 18, 21, 22] suggest that only a few attributes (e.g.,
network flows) generate a significant fraction of total traf-
fic in many monitoring applications. Thus, for fast anomaly
detection, an aggregation tree should quickly route their up-
dates towards the root such that no internal node becomes
a bottleneck due to either high in-degree or low bandwidth.
Second, for multi-attribute queries, SMART provides a re-
fresh schedule that selects and prioritizes attributes for re-
freshing in order to minimize the error in query results.

We evaluate SMART through extensive simulations and a
real network monitoring application of detecting distributed
heavy hitters. Experience with this application built on
SMART illustrates the improved precision and scalability
benefits: for a given monitoring budget, SMART’s adaptiv-
ity can significantly improve the query precision while mon-
itoring a large number of attributes. Compared to uniform
bandwidth allocation, SMART improves accuracy by up to
an order of magnitude and provides accuracy within 27% of
the optimal algorithm under modest bandwidth budgets.
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Example Queries: We list several real-world application
queries which form the basis of SMART monitoring system.

Q1 Monitor distributed heavy hitters that send the high-
est traffic in aggregate across all network endpoints.

Q2 Find top-k ports across all nodes that have been heav-
ily scanned in the recent past indicating worm activity.

Q3 Monitor anomaly conditions e.g., SUM(nodes sensing
fire)≥ threshold, MAX(chemical concentration) in sen-
sor networks.

Q4 Monitor the top-k popular web objects in a wide-area
content distribution network e.g., Akamai.

All these aggregate queries require processing a large num-
ber of rapid update streams in limited bandwidth/battery-
life environments, and can benefit from SMART. In Sec-
tion 5, we show results for Q1 using a real network monitor-
ing system we have implemented.

In summary, this paper makes the following contributions.

• The first research effort that identifies the key limita-
tions of previous “fix error, minimize load” techniques
and addresses them by bounding the worst-case load
while still providing query results with useful accuracy.

• A practical, bandwidth-aware monitoring system that
adapts bandwidth budgets to maximize precision of
continuous aggregate queries under high-volume, dy-
namic workloads.

• Our implementation provides key optimizations for im-
proving accuracy and fast anomaly detection in real-
world heterogeneous environments.

• Our evaluation demonstrates that SMART provides
a key substrate for scalable monitoring: it provides
high accuracy in dynamic environments and performs
close to the optimal algorithm under modest band-
width budgets.

The rest of this paper is organized as follows. Section 2
provides background description of SDIMS [39], a scalable
DHT-based aggregation system, and precision-performance
tradeoffs that underlie SMART. Section 3 describes the SMART
adaptive algorithm that self-tunes bandwidth settings to im-
prove result accuracy. Section 4 presents the implementa-
tion of SMART in our SDIMS aggregation system. Sec-
tion 5 presents the experimental evaluation of SMART. Fi-
nally, Section 6 discusses related work, and Section 7 pro-
vides conclusions.

2. POINT OF DEPARTURE
SMART extends SDIMS [39] which embodies two key ab-

stractions for scalable monitoring: aggregation and DHT-
based aggregation. SMART then introduces controlled trade-
offs between precision bounds and monitoring load.

2.1 DHT-based Hierarchical Aggregation
Aggregation is a fundamental abstraction for scalable mon-

itoring [5, 12, 18, 29, 37, 39] because it allows applications to
access summary views of global information and detailed
views of rare events and nearby information.
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Figure 4: The aggregation tree for key 000 in an
eight node system. Also shown are the aggregate
values for a simple SUM() aggregation function.

SMART’s aggregation abstraction defines a tree spanning
all nodes in the system. As Figure 4 illustrates, each physi-
cal node is a leaf and each subtree represents a logical group
of nodes1. An internal non-leaf node, which we call a vir-
tual node, is simulated by a physical leaf node of the subtree
rooted at the virtual node. Figure 4 illustrates the compu-
tation of a simple SUM aggregate.

SMART leverages DHTs [29,31,35] to construct a forest of
aggregation trees and maps different attributes to different
trees for scalability. DHT systems assign a long (e.g., 160
bits), random ID to each node and define a routing algorithm
to send a request for ID i to a node rooti such that the
union of paths from all nodes forms a tree DHTtreei rooted
at the node rooti. By aggregating an attribute with ID i
= hash(attribute) along the aggregation tree corresponding
to DHTtreei, different attributes are load balanced across
different trees. This approach can provide aggregation that
scales to large numbers of nodes and attributes [5, 29,39].

2.2 Query Result Approximation
SMART quantifies the precision of query results in terms

of numeric error between the reported result and the actual
value. We formally define the numeric approximation of a
query result using Arithmetic Imprecision [21,26].

Arithmetic imprecision (AI) deterministically bounds the
numeric difference between a reported value of an attribute
and its true value [21, 26, 27, 40]. For example, an AI =
10% bounds that the reported value either underestimates
or overestimates the true value by at most 10%.

When applications do not need exact answers [21, 26, 37,
40], arithmetic imprecision provides an effective way to re-
duce system load by introducing additional filtering on up-
date propagation. Next, we describe the AI mechanism of
how SMART enforces the numeric error bounds while max-
imizing load reduction.

AI Mechanism: We first describe the basic mechanism for
enforcing AI for each aggregation subtree in the system.

To enforce AI, each aggregation subtree T for an attribute
has an error budget δT that defines the maximum inac-
curacy of any result the subtree will report to its parent
for that attribute. The root of each subtree divides this
error budget among itself δself and its children δc (with
δT ≥ δself +

P
c∈children δc), and the children recursively

1Logical groups can correspond to administrative domains
(e.g., department or university) or groups of nodes within a
domain (e.g., a /28 subnet with 14 hosts in the CS depart-
ment) [16,39].
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do the same. Note that δc determines the child’s error filter
to cull as many updates as possible before sending to the
parent, and δself is useful for applying additional filtering
after combining all updates received from the children. Here
we present the AI mechanism for the SUM aggregate since
it is likely to be common in network monitoring [21,26] and
financial applications [15]; other standard aggregation func-
tions (e.g., MAX, MIN, AVG, etc.) are similar and defined
precisely in an extended technical report [20].

This arrangement reduces system load by filtering small
updates that fall within the range of values cached by a sub-
tree’s parent. In particular, after a node A with error budget
δT reports a range [Vmin, Vmax] for an attribute value to its
parent (where Vmax ≤ Vmin + δT ), if the node A receives
an update from a child, the node A can skip updating its
parent as long as it can ensure that the true value of the
attribute for the subtree lies between Vmin and Vmax, i.e., if

Vmin ≤ P
c∈children V c

min

Vmax ≥ P
c∈children V c

max
(1)

where V c
min and V c

max denote the most recent update re-
ceived from child c.

SMART maintains per-attribute δT values so that differ-
ent attributes with different error requirements and different
update patterns can use different δ budgets in different sub-
trees.

2.3 Case-study Application
To guide the system development of SMART and to drive

our performance evaluation, we have built a case-study ap-
plication using SDIMS aggregation framework: a distributed
heavy hitter detection service. Distributed Heavy Hitters
(DHH) detection is important for both monitoring traffic
anomalies such as DDoS attacks, botnet attacks, and flash
crowds as well as accounting and bandwidth provisioning [11].

Heavy hitters are entities that account for at least a spec-
ified proportion of the total activity measured in terms of
number of packets, bytes, connections, etc. [11] in a dis-
tributed system—for example, the top 100 IPs that account
for a significant fraction of total incoming traffic in the last
10 minutes [11]. To answer this distributed query, the key
challenge is scalability for aggregating per-flow statistics for
tens of thousands to millions of concurrent flows across all
the network endpoints in real-time. For example, a subset
of the Abilene [2] traces used in our experiments include
80 thousand flows that send about 25 million updates per
hour. To process this workload, a centralized system needs
to handle about 7000 messages per second at the central
monitor.

To scalably compute the global heavy hitters list, we chain
two aggregations where the results from the first feed into
the second. First, SDIMS calculates the total incoming traf-
fic for each destination address from all nodes in the system
using SUM as the aggregation function and hash(HH-Step1,
destIP) as the key. For example, tuple (H = hash(HH-Step1,
72.179.58.7), 900 KB) at the root of the aggregation tree
TH indicates that a total of 900 KB of data was received
for 72.179.58.7 across all vantage points in the network dur-
ing the last time window. In the second step, we feed these
aggregated total bandwidths for each destination IP into
a SELECT-TOP-100 aggregation with key hash(HH-Step2,
TOP-100) to identify the TOP-100 heavy hitters among all
flows.

In Section 5 we show how SMART’s self-tuning algorithm
adapts bandwidth settings to monitor a large number of at-
tributes and provides high result accuracy by filtering major-
ity of mice flows [11] (attributes with low frequency) while
prioritizing updates for the heavy-hitter flows; we expect
typical monitoring applications to have a large number of
mice flows but only a few heavy hitters.

3. SMART DESIGN
In this section we present the SMART design and describe

our self-tuning algorithm that adapts bandwidth settings at
each node to maximize query precision under given band-
width budgets.

3.1 System Model
We focus on distributed stream processing environments

with a large number of data sources that perform in-network
aggregation to compute continuous aggregate queries over
incoming data streams. The bandwidth resources for query
processing may be limited at a number of points in the net-
work. In particular, a node j’s outgoing bandwidth (BO

j )

may be constrained, a node j’s incoming bandwidth (BI
j )

may be constrained, or both. Note that constraining the
incoming bandwidth bounds (a) the control traffic overhead
for monitoring and (b) the CPU processing load for comput-
ing the aggregation function across incoming data inputs.
As discussed in Section 1, bounding this incoming load is
important for handling abnormal traffic conditions. Finally,
these bandwidth capacities may vary (a) among nodes in
heterogeneous environments and (b) with time if traffic is
shared with other applications.

At any time, each SMART attribute’s numeric value is
bounded by an AI error δ. If δ is small, then updates may
frequently drive an attributes value out of its last reported
range [Vmin, Vmax], forcing the system to send messages to
update the range. A system can, however, reduce its band-
width requirements by increasing δ. Thus, if a hierarchical
aggregation system has bandwidth constraints, it should de-
termine a δ value at each aggregation point that meets the
bandwidth constraints into and out of that point, and it
should select these δ values so as to minimize the total AI
for the attribute. In particular, rather than splitting each
node’s incoming bandwidth evenly among its children, the
system attempts to assign bandwidth to where it will do
the most good by reducing the resulting imprecision of the
node’s aggregate values.

In the rest of this section, we describe the SMART algo-
rithm for minimizing imprecision while meeting bandwidth
constraints in four steps.

First, we describe a simplified algorithm for a one-level
aggregation tree and static workloads. For each leaf node i
in the system, this algorithm calculates an ideal error setting
δi and corresponding expected bandwidth consumption bi

such that (1) each leaf node’s outbound bandwidth (i.e.,
rate of updates sent to the root) is at most its outgoing
bandwidth budget, (2) the root node’s incoming bandwidth
(i.e., sum of update rates inbound from children) is at most
its incoming bandwidth budget, and (3) the sum of the δi’s
is minimized given the first two constraints.

Second, we describe how to handle dynamic workloads
where the estimate of AI error δ vs. bandwidth trade-offs,
and hence the optimal distribution, can change over time. A
key challenge here is throttling the rate at which the system
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Symbol Meaning

BO
i outgoing bandwidth constraint for node i

BI
i incoming bandwidth constraint for node i

ui input update rate at node i
σi standard deviation of node i’s input workload

child(i) all children of node i
δi node i’s AI error setting
bi node i’s outgoing bandwidth load

δopt
i node i’s optimal AI error setting

bopt
i node i’s optimal outgoing bandwidth load

Table 1: Summary of key notations.

redistributes bandwidth budgets across nodes since such re-
distribution also incurs bandwidth costs.

Third, we generalize the algorithm to handle multi-level
aggregation trees.

Finally, we discuss how our implementation copes with
variability. In particular, SMART sets the per-node δs so
that the average bandwidth meets a target. However, spikes
of update load for an attribute or coincident updates for
multiple attributes could cause instantaneous bandwidth to
exceed the target. To avoid such instantaneous overload,
SMART therefore prioritizes pending updates based on the
impact they will have on their aggregate values and drains
them to the network at the target rate.

3.2 One-Level Tree
Quantify AI Precision vs. Bandwidth Tradeoff: To
estimate the optimal distribution of load budgets among
different nodes, we need a simple way of quantifying the
amount of query error reduction that can be achieved when
a given bandwidth budget is used for AI filtering.

Intuitively, the filtering gain depends on the size of the
error budget relative to the inherent variability in the un-
derlying data distribution. Specifically, as illustrated in Fig-
ure 5, if the precision threshold δi at node i is much smaller
than the standard deviation σi of the underlying data dis-
tribution, δi is unlikely to filter many data updates but still
consume valuable bandwidth. Meanwhile, if δi is above σi,
we would expect the load to decrease quickly as δi increases
until the point where a large fraction of updates are filtered.

To quantify the tradeoff between load and precision, we
draw from the basic formulation of Jain et al. [21] to de-
velop a simple metric in SMART for capturing the tradeoff
between load and error budget. Our metric utilizes Cheby-
shev’s inequality which gives a bound on the probability of
deviation of a given random variable from its mathematical
expectation in terms of its variance. Let X be a random
variable with finite mathematical expectation µ and vari-
ance σ2. Chebyshev’s inequality states that for any k ≥ 0,

Pr(|X − µ| ≥ kσ) ≤ 1

k2
(2)

For AI filtering, the term kσ represents the error budget
δi for node i. Substituting for k in Equation 2 gives:

Pr(|X − µ| ≥ δi) ≤ σ2
i

δ2
i

(3)

Intuitively, this equation implies that if δi ≤ σi i.e., the error
budget is smaller than the standard deviation (implying k ≤
1), then δi is unlikely to filter many data updates (Figure 5.)

In this case, Equation 3 provides only a weak bound on
the message cost: the probability that each incoming update
will trigger an outgoing message is upper bounded by 1.

σi
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Figure 5: Expected message load vs. AI error.

However, if δi ≥ kσi for any k ≥ 1, the fraction of unfiltered

updates is probabilistically bounded by
σ2

i

δ2
i
. In general,

given the input update rate ui for node i with error budget
δi, the expected message cost for node i per unit time is:

Mi = MIN


ui,

σ2
i

δ2
i

∗ ui

ff
(4)

We use the expected message cost Mi to optimally set
node i’s outgoing bandwidth bopt

i .

Estimate Optimal Bandwidth Settings under Fixed
Load: To estimate the optimal load distribution and set-
tings of AI error δs at each node in a one-level tree rooted
at node r, we formulate an optimization problem of mini-
mizing the total error for a SUM aggregate at root r under
given bandwidth budgets BI

r (at the root) and BO
i (at child

i). Specifically, we have:

MIN
P

i∈child(r)

δopt
i

s.t.
P

i∈child(r)

σ2
i ∗ui

(δ
opt
i )2

≤ BI
r

∀i ∈ child(r), bopt
i =

σ2
i ∗ui

(δ
opt
i )2

≤ min{BO
i , ui}

(5)

where bopt
i denotes the optimal setting of outgoing band-

width of node i to meet the global objective of minimiz-
ing the total error

P
i∈child(r)

δopt
i subject to the constraints

of (1) node i’s outgoing bandwidth budget (i.e., bopt
i ≤

min{BO
i , ui}) and (2) incoming bandwidth budget at root r

(i.e.,
P

i∈child(r)

bopt
i ≤ BI

r ). This formulation is based on the

AI filtering model i.e., node i suppresses updates within δi

of its last transmitted update.

Enforcing Incoming Bandwidth Constraint: To solve
Equation (5), we first relax the outgoing bandwidth con-
straints ∀i, bopt

i ≤ min{BO
i , ui} since the incoming band-

width determines the processing overhead which seems likely
to become a bigger bottleneck than the outgoing bandwidth.
Later, we provide an optimal solution when the outgoing
bandwidth constraints are also enforced. We use the method
of Lagrangian Multipliers to find the extremum of the ob-
jective function f :

`P
i

δopt
i

´
subject to the constraint that

g :

„P
i

σ2
i ∗ui

(δ
opt
i )2

−BI
r

«
≤ 0.

The above formulation yields a closed-form and computa-
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tionally inexpensive optimal solution [20]:

δopt
i =

vuut
P

c∈child(r)

3
√

σ2
c ∗ uc

BI
r

∗ 3
q

σ2
i ∗ ui (6)

which provides a closed-form formula for setting bopt
i :

bopt
i =

σ2
i ∗ ui

(δopt
i )2

= BI
r ∗

3
p

σ2
i ∗ uiP

c∈child(r)

3
√

σ2
c ∗ uc

(7)

As a simple example, if ui = σi = 1, then each node sets

the same δi for the attribute as δi =
q

N
BI

r
, and the band-

width budget for node i will be 1
δ2

i
=

BI
r

N
i.e., given a to-

tal bandwidth budget and uniform data distribution across
nodes, each node gets a uniform share of the bandwidth to
update each attribute.

Note that to set bopt
i (Equation (7)), each node needs to

know
P

c∈child(r)

3
√

σ2
c ∗ uc and root r’s incoming bandwidth

budget BI
r ; SMART computes a simple SUM aggregate to

obtain this information at each parent and propagates down
to all its children in an aggregation tree. As a simple opti-
mization, these messages are piggy-backed on data updates.

Enforcing Outgoing Bandwidth Constraints: Note
that the above optimal load assignment assumes that the
outgoing bandwidth constraint bopt

c ≤ min{BO
c , uc} holds

for every child c. If for a node i, the above optimal so-
lution doesn’t satisfy bopt

i ≤ min{BO
i , ui}, then we need

to set bopt
i = min{BO

i , ui} to satisfy its bandwidth con-
straint. This situation may arise in heterogeneous environ-
ments where a subset of nodes may experience larger input
loads (e.g., DDoS attacks) or may become severely resource-
constrained (e.g., sensor networks with low power devices).

Note that setting bopt
i = min{BO

i , ui} can free up part
of r’s incoming capacity BI

r , which can be reassigned to
other children to increase their bandwidth budget thereby
improving the overall accuracy. SMART therefore applies
an iterative algorithm that in each iteration determines all
saturated children Csat at each step, fixes their load budgets
and error settings, and recomputes Equations (6), (7) for all
the remaining children (assuming child set Csat is absent).
A child j is labeled saturated if bopt

j ≥ BO
j i.e., the available

outgoing bandwidth is less than or equal to that required by
the optimal solution. If child set Csat is empty, the proce-
dure terminates giving the optimal bandwidth and AI error
settings for each node; all saturated nodes set bandwidth
equal to their outgoing load threshold. Note that for our
DHT-based aggregation trees, the fan-in for a node is typ-
ically 16 (i.e., a 4-bit correction per hop) so the iterative
algorithm runs in constant time (at most 16 times).

3.3 Self-Tuning Bandwidth Settings
The above optimal solution is derived assuming that σi

and ui are given and remain constant. In practice, σi and
ui may change over time depending on the workload charac-
teristics. SMART therefore performs self-tuning to dynam-
ically readjust the bandwidth settings to minimize error.

Relaxation: A self-tuning algorithm that adapts too rapidly
may react inappropriately to transient situations. We thus
apply exponential smoothing to adjust the bandwidth set-

tings i.e.,

bnew
i = α ∗ bopt

i + (1− α) ∗ bi (8)

where α = 0.05.

Cost-Benefit Throttling: Finally, each node needs to
send messages to the root to minimize the query error. There-
fore, we need to prioritize sending those messages that bene-
fit precision the most. A naive refreshing algorithm that up-
dates attributes in a round-robin fashion could easily spend
network messages that do not reduce error while consum-
ing valuable bandwidth resource. Limiting sending of non-
useful updates is a particular concern for applications like
DHH that monitor a large number of attributes, only a few
of which are active enough to be worth optimizing.

To address this challenge, after computing the new error
budgets, a node computes a charge metric for each attribute
a, which estimates the reduction in error gained by refresh-
ing a:

chargea = (Tcurr − T a
lastSent) ∗Da (9)

where Tcurr is the current time, T a
lastSent is the last time an

attribute a’s update was sent, and Da denotes the deviation
between a’s current value at that node and its last reported
range [Vmin, Vmax] to the parent. For example, if a’s AI
error range cached at the parent is [1, 2] and a new update
with value 11 arrives at a child node, we expand the range to
[1,11] at the child to include the new value setting Da =10.

Notice that an attribute’s charge will be large if (i) there
is a large error imbalance (i.e., Da is large), or (ii) there
is a long-lasting imbalance (e.g., Tcurr − T a

lastSent is large).
Further, only using Da may hurt precision if the attribute
has a repeated behavior of quickly diverging after the last
refresh. Therefore, the latter term prioritizes attributes
who are likely to again diverge slowly after being refreshed
thereby giving a long-term precision benefit.

Since redistribution also consumes bandwidth budgets,
we only send messages to readjust bandwidth settings bnew

i

when doing so is likely to reduce the time-averaged error for
those attributes by at least a threshold τ (i.e., if chargea >
τ). Further, to ensure the invariant that a node does not
exceed its bandwidth budget while sending updates for mul-
tiple attributes, we present a simple technique to prioritize
updates across multiple attributes in Section 3.5.

3.4 Multi-Level Trees
To scale to a large number of nodes, we extend our basic

algorithm for a one-level tree to a distributed algorithm for
a multi-level aggregation hierarchy. Note that for a one-level
aggregation tree, leaf nodes use AI error δ to filter updates.
In addition, to reduce the communication and processing
load in an aggregation hierarchy, the internal nodes may also
retain a δself to help prevent updates received from their
children from being propagated further up the tree [10,21].

At any internal node in the aggregation tree, the self-
tuning algorithm works in a similar manner as that in a
one-level tree case: the internal node is a local root for each
of its immediate children, and the bandwidth targets BI for
the parent and BO

c for each child c are input as constraints in
the optimization problem formulation in Equation (5). The
key difference is that for children who are internal nodes,
we use their AI error δself in this optimization framework.
To estimate the optimal bandwidth and AI error settings for
each child, the parent node p tracks its incoming update rate
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i.e., the aggregate number of messages sent by all its chil-
dren per time unit (up) and the standard deviation (σp) of
updates received from its children. Note that uc, σc reports
are accumulated by child c until they can be piggy-backed
on an update message to its parent.

Given this information, the parent node estimates for each
child c, the optimal outgoing bandwidth settings bopt

c and the
corresponding AI error settings δopt

c(self) that minimize the to-

tal error in the aggregate value computed across the children
given bandwidth constraints. This procedure is performed
at each parent in the aggregation tree.

3.5 Prioritizing Pending Updates
Finally, we describe how our implementation addresses

an important and practical challenge of variability in band-
width targets. In particular, we want to avoid situations
where a node may exceed instantaneous bandwidth target
either due to (1) spikes of update load for an attribute, (2)
coincident updates for multiple attributes, or (3) sudden in-
crease in available bandwidth, but may still meet its average
bandwidth target. This scenario is undesirable since a node
may flood its parent with updates that far exceed the par-
ent’s incoming capacity.

To address this problem, our SMART implementation
provides a priority heap that stores all pending updates
that need to be sent ordered by their priority. Using this
heap data structure, SMART efficiently prioritizes pending
updates based on the impact they will have on their aggre-
gate values and drains them to the network at a target rate.
Specifically, at each time step, a node keeps removing the
maximum priority attribute from the heap and sending it to
the corresponding parent until the node’s instantaneous tar-
get bandwidth is reached. Note that to compare priorities
across different attributes that have different value ranges
across different queries, we normalize an attribute a’s re-
fresh priority (Equation (9)) with respect to their standard
deviation by dividing the deviation Da by the standard de-
viation σa of that attribute. Further, to support queries
and attributes (within a query) with different importance
values, SMART provides a simple mechanism of weighting
an attribute’s refresh priority with its importance value.

4. SMART IMPLEMENTATION
In this section, we describe several important optimiza-

tions and key issues for implementing SMART in our proto-
type implementation. First, we present a key performance
optimization of temporal batching of updates to reduce load
and to quantify staleness of query results in large-scale moni-
toring systems. Second, we describe how to build bandwidth-
aware aggregation trees to improve accuracy and fast anomaly
detection in heterogeneous network environments. Then, we
describe how SMART handles failures and reconfigurations.
Finally, we discuss how to improve precision for different
aggregates.

4.1 Temporal Imprecision
SMART integrates temporal imprecision with arithmetic

filtering to provide staleness guarantees on query results and
to reduce the monitoring load.

Temporal Imprecision (TI) bounds the delay from when
an event/update occurs until it is reported [24, 26, 34, 40].
A temporal imprecision of TI (e.g., TI = 30 seconds) guar-
antees that every event that occurred TI or more seconds

Event
level 0

level 1

level 2

level 3

level 4

Next TI
interval
starts here

TI−∆

Event
level 0

level 1

level 2

level 3

level 4

l

...

...

...

...

0 TI

(a) Send synchronized updates every TI −    seconds.∆

...

...

...

...

0 TI3TI/4TI/2TI/4

(b) Send unsynchronized updates every TI/   seconds.

Figure 6: For a given TI bound, pipelined delays
with synchronized clocks (a) allows nodes to send
less frequently than unpipelined delays without syn-
chronized clocks (b).

ago is reflected in the reported result; events younger than
TI may or may not be reflected. In SMART, each attribute
has a TI interval during which its updates are batched into
a combined message, checked if the combined update drives
the aggregate value out of the last reported AI range, and
then pushed into the priority queue to be sent to the parent.

Temporal imprecision benefits monitoring applications in
two ways. First, it accounts for inherent network and pro-
cessing delays in the system; given a worst case per-hop cost
hopmax even immediate propagation provides a temporal
guarantee no better than `∗hopmax where ` is the maximum
number of hops from any leaf to the root of an aggregation
tree. Second, explicitly exposing TI allows SMART to re-
duce load by using temporal batching: a set of updates at
a leaf sensor are condensed into a periodic report or a set
of updates that arrive at an internal node over a time in-
terval are combined into a single message before being sent
further up the tree [20]. This temporal batching improves
scalability by reducing processing and network load as we
show using experiments on a network monitoring application
in Section 5.

SMART implements TI using a simple mechanism of hav-
ing each node send updates to its parent once per TI/` sec-
onds similar to TAG [24] as shown in Figure 6(b). Further,
to maximize the possibility of batching updates, when clocks
are synchronized2, SMART pipelines delays across tree lev-
els so that each node sends once every (TI−∆) seconds with
each level’s sending time staggered so that the updates from
level i arrive just before level i + 1 can send (Figure 6(a)).
The term ∆ accounts for the worst-case per hop delays and
maximum clock skew; details are in the extended technical
report [20].

4.2 Bandwidth-Aware Tree Construction
As described in Section 2, SMART leverages DHTs [29–

31, 35] to construct a forest of aggregation trees and maps
different attributes to different trees [5, 12, 29, 39] for scala-
bility and load balancing. SMART then uses these trees to
perform in-network aggregation.

2Algorithms in the literature can achieve clock synchroniza-
tion among nodes to within one millisecond [38].
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SMART constructs bounded fan-in, bandwidth-aware ag-
gregation trees to improve result accuracy and quickly de-
tect anomalies in heterogeneous environments. Recent stud-
ies [9, 11, 18, 21, 22] suggest that only a few attributes (e.g.,
elephant flows [11]) generate a significant fraction of total
traffic in many monitoring applications. Thus, to provide
fast anomaly detection, an aggregation tree should quickly
route the updates of elephant flows towards the root such
that no internal node becomes a processing/communication
bottleneck due to either high in-degree or low bandwidth.

DHTs provide different degrees of flexibility in choosing
neighbors and next-hop paths in building aggregation trees [14].
Many DHT implementations [13,35] use proximity (usually
round-trip latency) in the underlying network topology to
select neighbors in the DHT overlay. This neighbor selec-
tion in turn determines the parent-child relationships in the
aggregation tree. However, in a heterogeneous environment
where different nodes have different bandwidth budgets, an
aggregation tree formed solely based on RTTs may degrade
the quality precision of the query result for two reasons.
First, a node may not have sufficient outgoing bandwidth to
send updates up in the tree even though its underlying tree
may be sufficiently well-provisioned. In such an environ-
ment, this node becomes a bottleneck as the updates sent
by the underlying subtree go wasted without benefiting the
query precision. Second, a resource-limited parent may not
be able to process the aggregate outgoing update rate of all
its children. Thus, a practical protocol for building trees
would be to bound the number of children at each internal
node and use both latencies and bandwidth constraints to
select the best parent at each tree level.

To improve accuracy and quickly identify anomalies, SMART
builds DHT-based aggregation trees as follows:

• Bound the fan-in (i.e., number of children) at each par-
ent node. In our implementation, a child node selects
its parent such that the fan-in at the parent is at most
16 i.e., each parent has maximum up to 16 children.

• Use both network latency and available bandwidth
capacity as the proximity metric for selecting parent
nodes. SMART orders DHT neighbors of a node such
that they have the highest incoming bandwidth capac-
ity and have network latency below a specified thresh-
old. Thus, nodes close in proximity and having high
bandwidth capacities are highly likely to be selected
as parent nodes.

Finally, note that in some environments, it might be useful
to select nodes with low bandwidth as parents e.g., if the in-
put workloads at the leaf nodes comes from an independent
uniform distribution, then a node closer to the root is ex-
pected to receive very few updates since an aggregate (e.g.,
SUM) is likely to become more “stable” going towards the
root. However, in practice, real workloads (1) are often non-
uniform with few attributes generating a significant fraction
of the total traffic [11] and (2) exhibit both temporal and
spatial skewness with input rates unexpectedly increasing
over time and across nodes. We quantify the effectiveness of
constructing bounded fan-in, bandwidth-aware aggregation
trees in Section 5.

4.3 Robustness
Failures and reconfigurations are common in large scale

systems. As a result, a query might return a stale answer

when nodes whose inputs are needed to compute the ag-
gregate result become unreachable. More importantly, in
a large scale monitoring system, such failures can inter-
act badly with our techniques for providing scalability—
hierarchy, arithmetic filtering, and temporal batching. For
example, if a monitoring subtree is silent over an interval, it
is difficult to distinguish between two cases: (a) the subtree
has sent no updates because the inputs have not signifi-
cantly changed or (b) the inputs have significantly changed
but the subtree is unable to transmit its report. As a result,
reported results can deviate arbitrarily from the truth.

Addressing this fundamental problem of node failures and
network disruptions in large-scale monitoring systems is be-
yond the scope of this paper. In a separate study, we have
developed a new consistency metric called Network Impre-
cision (NI) that characterizes and quantifies the accuracy
of query results in the face of failures, network disruptions,
and system reconfigurations; the details are available in an
extended technical report [20].

4.4 Improving precision for different aggre-
gates

SMART focuses on SUM aggregate since it is likely to be
common in network monitoring [21, 26] and financial appli-
cations [15]; maximizing precision for the AVG aggregate is
similar to SUM. For MAX, MIN aggregates, if the AI error
budget is fixed, then the best error assignment is to give
equal AI error budget to all the leaf nodes. However, since
bandwidth budget is limited in practice, each node may set
its precision differently to meet its available bandwidth. An
intuitive solution to compute global MAX, MIN values is
to simply broadcast them to each node, and a node sends
an update only if it changes the global aggregate. How-
ever, this approach may limit scalability in large-scale data
stream systems that monitor a large number of dynamic at-
tributes. For the TOP-K aggregate, SMART achieves high
accuracy by prioritizing updates based on the highest aggre-
gate values and the result deviation Da. Our experiments
in Section 5 show that this approach works well in practice.
We plan to develop mechanisms for other aggregates such
as quantiles in future work.

5. EXPERIMENTAL EVALUATION
In this section, we present the precision and scalability

results of an extensive experimental study of our SMART
algorithm in a data streaming environment. First, we use
simulations to evaluate the improvement in query result ac-
curacy due to SMART’s adaptive bandwidth settings. Sec-
ond, we quantify the accuracy achieved by SMART for the
DHH application in a network monitoring implementation.
To perform this experiment, we implemented a prototype
of SMART using SDIMS aggregation system [39] on top of
FreePastry [31]. We used Abilene [2] netflow traces and per-
formed the evaluation on 120 node instances mapped to 30
physical machines in the department Condor cluster. Fi-
nally, we investigate the precision benefits of constructing
bandwidth-aware tree construction using our prototype.

In summary, our experimental results show that SMART
is an important and effective substrate for scalable monitor-
ing: SMART provides high result accuracy while bounding
the monitoring load, continuously adapts to dynamic work-
loads, and achieves significant precision benefits for an im-
portant real-world monitoring application of detecting dis-
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Figure 7: SMART provides higher precision benefits as skewness in a workload increases. The three figures
show average error vs. load budget for three different skewness settings (a) 20:80% (b) 50:50% (c) 90:10%.

tributed heavy hitters.

5.1 Simulation Experiments
In this section, we quantify the result accuracy achieved

by SMART compared to uniform bandwidth allocation and
an idealized optimal algorithm. First, we assess the effec-
tiveness of adaptive bandwidth settings in improving result
precision as skewness in a workload increases. Second, we
analyze the effect of fluctuating bandwidth. Finally, we eval-
uate SMART for different workloads.

In all experiments, all active sensors are at the leaf nodes
of an aggregation tree. Each sensor generates a data value
every time unit (round) for two sets of synthetic workloads
for 100,000 rounds: (1) a random walk pattern in which the
value either increases or decreases by an amount sampled
uniformally from [0.5, 1.5], and (2) a Gaussian distribu-
tion with standard deviation 1 and mean 0. We simulate
m ∈ {100, 1000} data sources each having n ∈ {10, 100}
attributes in one-level and hierarchical topologies and un-
der fixed and fluctuating bandwidth loads. All attributes
have equal weights, messages have the same size, and each
message uses one unit of bandwidth.

Evaluating Update Rate Skewness: First, we evalu-
ate the precision benefits of SMART compared to other ap-
proaches as skewness in a workload increases. We compare
it with (1) the optimal algorithm under the idealized and
unrealistic model of perfect global knowledge of each at-
tribute’s divergence at each data source and (2) a uniform
allocation policy where the incoming bandwidth capacity B
at a parent is allocated equally (B

c
) among its c children.

Although this simple policy is correct (the total incoming
load from the children is guaranteed to never exceed the in-
coming load of their parent at all times), it is not generally
the best policy as we show in our experiments.

We first perform a simple experiment for a one-level tree,
and later show the results for general hierarchical topologies.
Figure 7 shows the query precision achieved by SMART for
m=100 and n=10 under the following skewness settings: (a)
20:80% (b) 50:50% (c) 90:10%. For example, the 20:80%
skewness represents that randomly selected 20% attributes
are updated with probability 0.01 while the remaining ones
are updated consistently every second under the random
walk model. In all subsequent graphs in this section, the x-
axis denotes the bandwidth budget as a fraction of the total
cost m.n of refreshing all the attributes across all nodes; the
y-axis shows the resulting average error. For 20:80% skew-
ness, since only a small fraction of attributes are stable,

SMART can only reclaim up to 20% load budget from sta-
ble attributes sources and distribute it to dynamic sources to
reduce their error. For small bandwidth budgets, SMART
improves accuracy by up to 35% compared to uniform allo-
cation. The optimal algorithm improves accuracy by 27%
over SMART. As the load budget increases, SMART con-
verges to the optimal solution. SMART improves error by
40% over uniform allocation under 20% load budget and by
more than an order of magnitude under sufficiently large
budgets. For the 50:50 case, SMART can reclaim 50% of
the total load budget compared to uniform allocation and
give it to unstable sources. In this case, SMART reduces
error by up to 50% over uniform policy at 40% bandwidth
and achieves almost the accuracy of the optimal solution.
Finally, for 90% skewness, SMART achieves the accuracy of
the optimal algorithm even under 20% fraction of the total
bandwidth and improves accuracy by more than an order
of magnitude over uniform allocation. We observed qualita-
tively similar results for other m and n settings.

Note that the advantage of SMART’s self-tuning algo-
rithm depends on the skewness in the workload. We expect
that for systems monitoring a large numbers of attributes
(e.g., top-k heavy hitters query), some attributes (e.g., the
elephants) will have high variability in data values and up-
date rates so these attributes gain only a modest advantage
in accuracy from SMART, while other attributes (e.g., the
mice) will have large ratios and hence, the query will gain
large advantages since a top-k query only needs to provide
high accuracy for the top-k flows. We typically expect many
more mice attributes than elephant attributes for common
monitoring applications.

Effect of Fluctuating Bandwidth: Next, we evaluate the
effectiveness of SMART under fluctuating bandwidth. We
vary the incoming bandwidth over time following a sine wave
pattern and set the maximum rate of bandwidth change to
10%, 20%, and 30% for m = 1000 nodes each having n =
100 attributes. We use update rate skewness of 50% as de-
scribed above. From Figure 8, we observe that for 10%
variation, SMART provides 50% reduction in error over uni-
form allocation at 40% bandwidth fraction. As we increase
the bandwidth fluctuation from 10% to 30%, SMART re-
duces error by about 70% under 40% bandwidth fraction,
and more than an order of magnitude for larger fractions.
Further, in all cases, SMART achieves accuracy close to the
optimal algorithm.

Evaluating Different Workloads: Finally, we evaluate
the performance of SMART under different configurations
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Figure 8: SMART effectively reduces inaccuracy even under fluctuating bandwidth. The maximum band-
width variation in the figure is (a) 10% (b) 20% and (c) 30%.

by varying input data distribution, standard deviation (step
sizes), and update frequency at each node. The workload
data distribution is generated from a random walk pat-
tern and Gaussian models. For standard deviation/step-
size, 70% nodes have uniform parameters as previously de-
scribed; the remaining 30% nodes have these parameters
proportional to rank (i.e., with locality) or randomly as-
signed (i.e., no locality) from the range [0.5, 150].

Figure 9 shows the corresponding results for different set-
tings of data distribution and standard deviation for m=100
and n=100. The update frequency is set to 0.7 skewness
as described previously. We make three key observations.
First, SMART minimizes error close to the optimum algo-
rithm under the rank based assignment (Figure 9(a),(c)).
Second, under random assignment, SMART achieves lesser
accuracy benefits since updates generated from within the
same subtree are not correlated. In both cases, as the band-
width increases, SMART quickly minimizes error close to
the optimal. Third, because step-sizes are based on node
rank, SMART prioritizes attributes having the largest step-
sizes and applies cost-benefit throttling to ensure that the
precision benefits exceed costs. The uniform policy, how-
ever, does not make such a distinction equally favoring all
attributes that need to be refreshed, thereby incurring a high
error. Finally, under limited bandwidth, refreshing mice at-
tributes with small step sizes does not significantly reduce
the result error for queries such as TOP-K heavy hitters
but consumes valuable bandwidth resources. For all these
configurations, SMART reduces error by up to an order of
magnitude over uniform allocation. The optimal approach
reduces error by 20% over SMART.

Overall, across all configurations in Section 5.1, SMART
reduces inaccuracy by up to an order of magnitude compared
to uniform allocation and is within 27% of the optimal al-
gorithm under modest bandwidth fraction.

5.2 Testbed Experiments
In this section, we quantify the error reduction of reported

results due to self-tuning precision for the heavy hitter mon-
itoring application.

We use multiple netflow traces obtained from the Abi-
lene [2] Internet2 backbone network. The traces were col-
lected from 3 Abilene routers for 1 hour; each router logged
per-flow data every 5 minutes, and we split these logs into
120 buckets based on the hash of source IP. As described in
Section 2.3, our DHH application executes a Top-100 heavy
hitter query on this dataset for tracking the top 100 flows
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Figure 9: Precision benefits of SMART vs. opti-
mal algorithm and uniform allocation for different
{workload, step sizes/standard deviation} configu-
rations: (a) random walk, rank (b) random walk,
random (c) Gaussian, rank, (d) Gaussian, random.

(destination IP as key) in terms of bytes received over a 30
second moving window shifted every 10 seconds. We ana-
lyzed this workload [20] and observed that the 120 sensors
track roughly 80,000 flows and send around 25 million up-
dates in an hour. Further, it shows a heavy-tailed Zipf-like
distribution: 60% flows send less than 1 KB of aggregate
traffic, 90% flows less than 55 KB, and 99% of the flows
send less than 330 KB during the 1-hour run; the maximum
aggregate flow value is about 179.4 MB. We observed a sim-
ilar heavy-tailed distribution for the number of updates per
flow (attribute) [20].

For this experiment, we fixed the outgoing bandwidth as
a constant between 0.5 and 10 messages per node per sec-
ond. Since, we bound the fan-in of an internal node in our
DHT-based aggregation tree to 16, the maximum incoming
load at any node is thus 160 messages per second which is
a reasonable processing load in our environment. Figure 10
plots the outgoing load per node on the x-axis and the re-
sult precision achieved for the top-100 heavy hitter query
on the y-axis. The different lines in the graph correspond to
a temporal batching interval of 10 seconds, 30 seconds, 60
seconds, and five minutes. Each data point denotes the av-
erage result divergence for the TOP-100 heavy hitters set.
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It is important to note that for this query, the result set
was consistent under TI of 10, 30, and 60 seconds with the
true result set. However, under TI of 5 minutes, 5% results
differed by less than 3%.

We observe that under TI = 10 seconds, SMART can re-
duce average error from 23% at 0.5 load budget to about
2% at load budget of 10. Comparing across TI values, the
average error increases with increase in the TI batching in-
terval. However, we believe that for many monitoring envi-
ronments, the performance benefits of TI will outweigh the
increased error as the bandwidth load can be significantly
decreased due to temporal batching.

5.3 Evaluating Bandwidth-aware Tree Forma-
tion

In this section, we evaluate the benefits of SMART’s bandwidth-
aware tree construction. As described in Section 4, SMART
uses both bandwidth and latency as proximity metrics in
DHT routing compared to only latency in traditional DHT
implementations. For quantitative comparison, we compute
a Tree-BW metric for a tree as the sum of Li ∗ Bi across
all nodes, where Li is the number of leaves in the sub-
tree rooted at node i and Bi is the bandwidth of node i.
This weighted summation metric is higher for trees that se-
lect internal nodes having higher bandwidth capacities. For
this experiment, we classify nodes belonging to two different

classes of bandwidth budgets: 100Mbps and 1Mbps. A 0.1
skewness in bandwidth implies that 10% of the nodes have
100Mbps bandwidth and the remaining have 1Mbps band-
width. Figure 11 compares the benefits of SMART’s tree
construction using bandwidth-aware DHT routing against
trees constructed in a bandwidth-oblivious unaware for a
1024-node system; the y-axis shows the normalized Tree-
BW (with respect to the maximum value observed) met-
ric for various bandwidth skewness settings (x-axis). Note
that SMART’s bandwidth-aware DHT routing achieves bet-
ter Tree-BW metric values by up to a factor of 3.7x over a
bandwidth-unaware DHT.

6. RELATED WORK
SMART is motivated by prior “fix error, minimize load”

techniques [21,22,24,26,37,40], but it departs in three sig-
nificant ways driven by our focus on providing overload re-
silience for practical, scalable monitoring. First, SMART
reformulates the key optimization problem, which we be-
lieve is an important contribution. While prior approaches
“reduce cost” under fixed precision constraints, in prac-
tice, bursty, high-volume workloads still risk overloading
a monitoring system as discussed in Section 1. Infact, it
is precisely during these abnormal events that a monitor-
ing system needs to provide high accuracy results with a
real-time query response. SMART therefore “bounds the
worst-case system cost” to provide overload resilience. Sec-
ond, the technical advances to solve this new problem are
significant. While SMART uses Chebyshev inequality [21]
to capture the load vs. error trade-off, it faces new con-
straints of limited bandwidth budgets both at a parent and
each of its children in a hierarchical aggregation tree. Given
these constraints, SMART self-tunes bandwidth settings in
a near-optimal manner to achieve high accuracy under dy-
namic workloads. Third, SMART’s real-world implementa-
tion provides key solutions to improve result accuracy and
fast anomaly detection in monitoring systems.

Recently, load shedding techniques [3, 36] have been pro-
posed to handle system overload conditions. The key idea
is to carefully drop some tuples to reduce processing load
but at the expense of reducing the accuracy of query an-
swers. Further, these approaches handle load spikes assum-
ing either CPU [3, 36] or the main memory [17] as the key
resource bottleneck. In comparison, bandwidth is the pri-
mary resource constraint in SMART.

Best-effort cache synchronization techniques [7,28] aim to
minimize the divergence between source data objects and
cached copies in a one-level tree. In these techniques, each
object is treated individually for refreshing. In comparison,
SMART performs hierarchical query processing for scalabil-
ity and it proves valuable to co-relate updates to the same
attribute at different data sources in order to maximize ac-
curacy of an aggregate query result. To our knowledge, there
has not been prior work on maximizing precision of aggre-
gate queries in hierarchical trees under limited bandwidth.

Babcock and Olston [4] focus on efficiently computing top
k aggregate values given fixed error in a single-level tree,
but do not consider how to maximize precision of top k
results under fixed bandwidth in hierarchical trees. Silber-
stein et al. propose a sampling-based approach (combined
with global knowledge) at randomly chosen time steps for
computing top-k queries in sensor networks [33]. Their ap-
proach focuses on returning the k nodes with the highest

11



sensor readings In comparison, SMART focuses on large-
scale aggregation queries such as distributed heavy hitters
which require computing a total aggregate value for each of
the tens of thousands to millions of attribute across all the
nodes in the network. Finally, given the unpredictable traf-
fic nature of network anomalies (e.g., DDoS attacks, flash
crowds, botnet attacks), samples based on past readings are
unlikely to be effective.

Sketches are small-space data structures that provide ap-
proximate answers to aggregate queries [8]. These tech-
niques, however, require error bounds to be set a priori to
provide the approximation guarantees.

7. CONCLUSIONS
We designed, implemented, and evaluated SMART—a scal-

able, load-aware monitoring system that performs self-tuning
of bandwidth budgets to maximize precision of continuous
aggregate queries.

In future work, we plan to examine techniques for se-
cure information aggregation in distributed stream process-
ing environments spanning multiple administrative domains
as well as develop a broad range of distributed monitoring
applications that could benefit from SMART.
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