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This article argues that commonly-studied techniques for speculative replication—such as prefetching or pre-
pushing content to a location before it is requested there—are inherently unsafe: they pose unacceptable risks
of catastrophic overload and they may introduce bugs into systems by weakening consistency guarantees. To
address these problems, the article introduces SSR, a new, general architecture for Safe Speculative Replication.
SSR specifies the mechanisms that control how data flows through the system and leaves as a policy choice the
question of what data to replicate to what nodes. SSR’s mechanisms (1) separate invalidations, demand updates,
and speculative updates into three logical flows, (2) use per-resource schedulers that prioritize invalidations and
demand updates over speculative updates, and (3) use a novel scheduler at the receiver to integrate these three
flows in a way that maximizes performance and availability while meeting specified consistency constraints. We
demonstrate the SSR architecture via two extensive case studies and show that SSR makes speculative replica-
tion practical for widespread adoption by (1) enabling self-tuning speculative replication, (2) cleanly integrating
speculative replication with consistency, and (3) providing easy deployability with legacy infrastructure.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distributed Systems—dis-
tributed applications, distributed databases; D.1.3 [Programming Techniques]: Concurrent Programming—
distributed programming; D.4.4 [Operating Systems]: Communications Management—network communica-
tion; D.4.5 [Operating Systems]: Reliability—fault tolerance; D.4.7 [Operating Systems]: Organization and
Design—distributed systems; H.3.4 [Information Storage and Retrieval]: System and Software—distributed
systems; H.3.5 [Information Storage and Retrieval]: Online Information Services—data sharing
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1. INTRODUCTION
1Speculative replication—prefetching [Chandra et al. 2001; Cho and Garcia-Molina 2000;
Duchamp 1999; Griffioen and Appleton 1994a; Kokku et al. 2003; Padmanabhan and
Mogul 1996a] or pre-pushing [Gao et al. 2003; Gwertzman and Seltzer 1995; Nayate et al.
2004; Venkataramani et al. 2002] content to a location before it is used there—has im-
mense potential benefits for large-scale distributed systems operating over wide-area net-
works (WANs). WANs are characterized by two fundamental limitations: (i) high latency
that limits the responsiveness of networked services and (ii) susceptibility to network par-
titions that limits the availability of networked services in spite of high end-system avail-
ability [Dahlin et al. 2003]. Speculative replication (SR) can potentially mitigate both of
these limitations [Chandra et al. 2001; Cho and Garcia-Molina 2000; Duchamp 1999; Gao
et al. 2003; Gwertzman and Seltzer 1995; Nayate et al. 2004; Padmanabhan and Mogul
1996a; Yu and Vahdat 2001]. Furthermore, two technology trends favor widespread use of
SR. First, rapidly falling prices of bandwidth, storage, and computing [Gray 2003] argue
for “wasting“ inexpensive hardware resources to obtain improvements in human wait-time

1Some parts of this manuscript have been discussed in more detail in previously published papers [Kokku et al.
2003; Nayate et al. 2004; Venkataramani et al. 2002b].
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and productivity [Chandra 2001]. Second, the bursty nature of WAN workloads [LeFeb-
vre 2001; Robert Blumofe 2002] often results in overprovisioning of systems that, during
non-peak periods, leaves abundant spare capacity for SR.

Despite its promise on paper, few systems today employ SR. Numerous studies show
significant benefits from prefetching on the Web [Padmanabhan and Mogul 1996a; Gw-
ertzman and Seltzer 1995; Duchamp 1999; Fan et al. 1999; Bestavros 1996a; Chen and
Zhang ; Markatos and Chronaki 1998; Palpanas 1998] or in file systems [Cao et al. 1995a;
Kotz and Ellis 1991; Kimbrel et al. 1996; Patterson et al. 1995b; Smith 1978], production
systems seldom deploy prefetching unless significantly overprovisioned. In this article,
we argue that two crucial challenges prevent widespread deployment of SR. First is the
difficult resource management problem that SR introduces. Second is the complexity of
integrating SR into systems with significant consistency constraints.

The resource management problem arises because SR increases the overall load on the
system in order to improve performance and availability. SR systems must therefore man-
age a trade-off between the benefits of SR and theinterferencefrom SR that can degrade
performance of regular requests. Unfortunately, choosing the right trade-off is not sim-
ple because (1) the trade-off isnon-monotonic—increasing resource expenditure for SR
does not always translate to increased benefits, (2) the cost/benefit trade-off iscomplex
because it must balance a large number of different resources and goals, (3) the appropri-
ate cost/benefit trade-off isnon-stationary—the appropriate trade-off varies over time as
workloads and available resources change, and (4) the costs of SR arenon-linear—a small
increase in SR can in some circumstances cause catastrophic damage to overall system
performance. Self-tuning resource management is thus crucial to SR because static, hand-
tuned replication policies are more complex to maintain, less able to benefit from spare
system resources, and more prone to catastrophic overload if they are mis-tuned or during
periods of unexpectedly high system load.

Consistency constraints pose a second challenge to SR. Ideally, SR could be transpar-
ently added to any system without requiring a re-design or introducing new bugs. But, by
increasing the separation between when an object is fetched and when it is used, SR can
introduce a larger window for inconsistency. On the other hand, if consistency is carefully
integrated with speculative replication, speculatively replicating updates to replace stale
versions can improve availability for a given level of consistency [Yu and Vahdat 2001]
and thus provide better trade-offs within the consistency versus availablity limits defined
by Brewer’s CAP impossibility result [Gilbert and Lynch 2002].

In this article, we present Safe Speculative Replication (SSR). SSR makes SR practical
for widespread adoption through three distinguishing features. First, it enables self-tuning
SR, i.e., it obviates manually tuned thresholds for resource management, making SR sim-
ple, more effective, and safe. Second, it enables a simple uniform architecture to integrate
self-tuning SR with general consistency constraints. Third, SSRs emphasis on deployabil-
ity enables easy integration with legacy infrastructure.

SSR separates the mechanisms for controlling how information flows through a system
from the policy question of what information to replicate to what nodes. At the core of
the SSR architecture are three key mechanisms. First, SSR disentangles three distinct
flows: (1) invalidations that notify a replica when an update has occurred, (2) demand
bodies that provide data in response to a demand read, and (3) speculative bodies that
speculatively provide data in advance of a demand read. Second, SSR isolates speculative
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load from demand load using a priority scheduler at each resource and thus eliminates the
undesirable effects of interference and overload. Third, a scheduler at each SSR cache
or replica coordinates application of updates from these three separate flows to maximize
performance and availability while meeting consistency and stalenes constraints.

To evaluate our architectural proposal, we present extensive case studies of two SR sys-
tems, NPS and TRIP, built on top of SSR. NPS [Kokku et al. 2003] is a Non-interfering
Prefetching System for the Web that shows how SSR’s self-tuning SR simplifies deploy-
ment, improves benefits, and reduces risks. For example, for a fixed workload and network
conditions, SSR nearly matches the best performance available to a hand-tuned threshold-
based system. But, when network conditions or workloads change from the training con-
ditions, SSR’s performance can be factors of two to five better than that of the static
threshold system. TRIP [Nayate et al. 2004] (Transparent Replication through Invalida-
tion and Prefetching) is a data replication middleware for constructing data dissemination
services, a class of services where writes occur at an origin server and reads occur at a
number of replicas. TRIP maintains sequential consistency semantics and, to the best
of our knowledge, is the first system to integrate strong consistency with SR for WAN
systems. TRIP shows that for some important workloads in a WAN, using SR makes it
possible to simultaneously provide excellent consistency, performance, and availablity in
spite of the CAP dilemma [Brewer 2001]. For example, for one large-scale trace work-
load, TRIP provides sequential consistency, improves performance by over a factor of four
compared to demand caching, and often extends by orders of magnitude the duration over
which a replica is able to mask network disconnections by serving locally-replicated data.
TCP Nice [Venkataramani et al. 2002b] is a key component used by both NPS and TRIP
to prevent network interference. We rigorously evaluate Nice in isolation through theory,
simulations, and real world experiments over networks varying in capacity over four or-
ders of magnitude, and show that it maintains noninterference while allowing background
traffic to reap significant fractions of spare resources.

Finally, an architectual proposal must be easily deployable to be practical. Conceptually,
SSR employs a priority scheduler for every resource in the system to prevent interference.
However, in practice, large-scale systems are often complex, multitiered, and multidomain
in nature and consist of black box components that are difficult to modify. Our case studies
show that simple end-to-end mechanisms that require minimal modification to existing
infrastructure are sufficient in practice. For example, NPS requires no modification to
existing Web servers, networks, or browsers, and TRIP replicates consistent data via a file
system interface so that a cluster of Web servers supporting a data-dissemination workload
can transparently be distributed across a WAN as edge servers.

In summary, we make the following contributions in this article.
(1) We show that the dominant SR model based on thresholds is fundamentally flawed and

makes resource management complex, inefficient, and risky.

(2) We present SSR, a self-tuning architecture that makes SR practical for large-scale dis-
tributed systems with general consistency constraints.

(3) We present TCP Nice, a sender-based transport protocol for low-priority transfers that
requires no support from routers.

(4) We present NPS, the first non-interfering Web prefetching system that can be deployed
without any modification to existing networks, Web servers, and browsers.

(5) We present TRIP, the first system that cleanly integrates sequential consistency with SR,
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showing that SR can benefit distributed systems with consistency constraints in spite of
the CAP dilemma.
The rest of the paper is organized as follows. Section 2 explains why threshold-based
SR is flawed, section 3 presents SSR, section 4 presents TCP Nice, sections 5 and 6
present the NPS and TRIP case studies, section 7 describes related work, and section 8
summarizes lessons learned, open problems, and our conclusions.

2. THRESHOLD SR CONSIDERED HARMFUL

This section argues that threshold-based SR, the most commonly proposed SR scheme,
is fundamentally flawed. Thresholds present three serious problems. First, they make
systems complex to design and manage; second, they arbitrarily limit the benefits that SR
can deliver; third, they expose a system to the risk of catastrophic overload.

Before proceeding further, we caution the reader against a common misperception that
because speculatively replicating an object only saves a read miss upon the first access to
an object (considering that subsequent accesses may reuse locally cached copies), SR can
only incrementally improve user-perceived response time. However, observe that misses
often dominate overall response time because local hits are rapidly served from a fast,
nearby cache. Thus, using SR to improve the hit rate from say 60% to 95% may yield
a six-fold reduction in miss rate and significant improvements to user-perceived response
time.

2.1 Background

SR expends resources such as network bandwidth, storage space, and computing cycles
to provide benefits such as performance, availability, and freshness of data. In particular,
SR fetches an object in anticipation of future need, but if this prediction is wrong, then the
resources used to fetch the object are wasted.

Thresholds appear to be a natural way to control resource consumption and relate the
cost of SR to its benefit, and replicate when expected benefit exceeds cost. Commonly, a
prediction algorithm such as prediction-by-partial-matching (PPM) [Curewitz et al. 1993]
estimates the probabilityp that an object will be requested at some location in the future;
then, a prefetching or pre-pushing system replicates objects whose probability of access
p at a location exceeds a thresholdt. The thresholdt is then tuned to limit resource con-
sumption and to maximize expected net benefit.

Figure 1(a) illustrates the intuition behind this methodology for Web prefetching. The
figure itself is a cartoon, but similar graphs may be found in the literature (e.g., Padman-
abhan and Mogul [Padmanabhan and Mogul 1996a] Figure 6). Decreasing the value of the
threshold, i.e., increasing the number of objects eligible for prefetching, makes prefetching
more effective in reducing miss rates, but also increases the network bandwidth consumed.
A natural and common approach to balancing these effects [Duchamp 1999; Fan et al.
1999; Griffioen and Appleton 1994b; Padmanabhan and Mogul 1996a] is to pick a thresh-
old value beyond which the improvement in response time no longer justifies the bandwidth
cost of prefetching.

2.2 Problems

Although the threshold approach to limit resource usage can work well in a controlled
experimental environment [Duchamp 1999; Fan et al. 1999; Griffioen and Appleton 1994b;
Padmanabhan and Mogul 1996a], in practice, thresholds can make a deployed SR system
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Fig. 1. Reducing the prefetch threshold (a) increases the bandwidth consumed by prefetching, as a result (b)
reducing the threshold reduces miss rates but can increase miss times as network interference slows down demand
requests. SinceresponseT ime = hitT ime+missRate∗missT ime (c) for any given system configuration
and workload, there is a critical threshold at which further reductions actually hurt overall response time.

complex, inefficient, and vulnerable to overload. The core of the problem is interference,
which makes the relationship between various cost and benefit metrics nonmonotonic and
difficult to map to a threshold. A simple threshold fails to capture the threshold v. net-
benefit relationship for three reasons.

(1) Non-monotonic tradeoffs. As Figure 1 (b) and 1 (c) illustrate, lowering the threshold
beyond a certain point can hurt performance because the ratio between the marginal
improvement in hit rates and the marginal increase in resource consumption tends to
fall as the threshold is lowered. As a result, for thresholds below some critical value,
reducing thresholds will increase bandwidth more rapidly than it will increase hit rates
and therefore will hurt rather than help overall performance.
Note that these graphs understate the problem because they only illustrateself-interference
in which prefetching can hurt the average response time of the application and node do-
ing the prefetching. Another concern iscross-interferencewhen prefetching by one node
or application hurts the performance of another node or application.

(2) Complex tradeoffs. Determining this critical threshold is difficult because SR costs
and benefits are not directly comparable. For example, in many systems the primary
cost prefetching an object is network bandwidth, measured in bytes, while the primary
benefit is improved response time, measured in seconds.
An initally appealing strategy to balance costs and benefits is to convert both to a
monetary value. We could, for example, extend the methodology used by Gray and
Shenoy [Gray and Shenoy 2000] to analyze caching in WAN systems to analyze prefetch-
ing. A simple analysis (see extended version [Chandra 2001]) to compute a threshold
where the marginal cost of resources for SR outweighs the marginal benefit in human
wait-time reveals two insights. First, this approach is complex, requiring users or sys-
tem administrators to provide accurate values for costs, benefits, and system constraints.
Second, this approach yields 1-2 orders of magnitude more aggressive thresholds than
typically proposed in the literature. We believe this result illustrates that even were
designers willing to perform calculations such as these, the exercise would yield unre-
alistically low thresholds because they fail to address the other two problems discussed
below.

(3) Non-stationary tradeoffs. The true interference cost of consuming a resource varies
over a number of time scales. Workloads can vary at the granularity of seconds or less,
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Fig. 2. Typical latency v. response time for demand requests with and without prefetching.

and speculatively replicating an object is much “cheaper” (i.e., cause less interference
with demand requests) when the system is idle than when it is busy. For example, at the
granulary of hours, speculative replication may be cheaper at night if workloads exhibit
diurnal patterns of load. Finally, at the granularity of months and years, technology
trends are causing the price of bandwidth, storage, and processing to fall significantly,
so it may make sense to prefetch more aggressively next year than now.
This non-stationarity is thus a further challenge to threshold based systems. Even if the
nonmonotonicity and complexity challenges were met and a perfect threshold set at one
particular moment in time, that threshold will likely be incorrect at some points in the
future.

(4) Non-linear tradeoffs. Threshold based schemes focus on controlling bandwidth con-
sumption, but other important costs of prefetching—such as degraded response time for
demand requests—may be non-linear with bandwidth. As a result, a small error in set-
ting a threshold can result in an unacceptable risk of catastrophic overload of a system.
Network and server systems often behave like bounded queueing systems where, as load
increases, the average response time for processing requests first increases gradually but
then rises sharply as load approaches system capacity. In many systems, the perfor-
mance degradation under overload is further magnified, compared to an ideal queueing
system, by phenomena such as thrashing, high context switch overhead, and TCP’s ex-
ponentially backing off retransmission timers. As a result, a threshold that, say, doubles
network bandwidth may impose negligible actual cost when load is low, but it may be
catastrophic when system load is high.
The experiment presented in Figure 2 illustrates the problem. The graph shows the
response time of requests on a Web server as a function of demand load while prefetch-
ing with different static thresholds. The labelx on each line represents the number of
prefetch requests issued for each demand request and roughly corresponds to a thresh-
old of 1/x, e.g., a value of 5 roughly corresponds to a static threshold of 0.2. In such a
system static threshold prefetching offers a potentially unattractive tradeoff—it can pro-
vide significant improvements to performance [Duchamp 1999; Griffioen and Appleton
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1994a; Padmanabhan and Mogul 1996a; Gwertzman and Seltzer 1995] during periods
of low load, but it also makes the system significantly more vulnerable to unacceptable
overload. We discuss this experiment in more detail in Section 5.

2.3 Implications

We believe the above four factors explain why prefetching systems have been more suc-
cessful in laboratory experiments than in production deployments. The consequence of the
first three factors is that it is difficult to choose the right trade-off for a threshold based
system. The consequence of the fourth is that if one chooses an incorrect threshold, the
negative consequences may be dramatic.

More broadly, the commonly-studied threshold prefetching approach (1) makes systems
complex to design and manage because the threshold is difficult to set properly, (2) forces
users to arbitrarily limit the benefits that SR can deliver by setting the threshold conserva-
tively, and (3) exposes a system to the risk of catastrophic overload.

3. SSR: SELF-TUNING SR WITH CONSISTENCY

In this section, we present Safe Speculative Replication, a new SR architecture for large-
scale distributed systems with general consistency constraints. SSR makes SR practical for
widespread adoption through three distinguishing features. First, it enablesself-tuningSR,
i.e., it obviates manually tuned thresholds for resource management, making SR simple,
more effective, and safe. Second, it enables a simple uniform architecture to integrate self-
tuning SR with general consistency constraints. Third, SSR’s emphasis on deployability
enables easy integration with legacy infrastructure.

In the rest of this article, we show how SSR achieves these properties and discuss its
implications for designing large-scale distributed systems. For simplicity of exposition,
Section 3.1 first explains SSR’s self-tuning resource management architecture. Then, Sec-
tion 3.2 shows how a simple augmentation to this architecture integrates self-tuning SR
with consistency constraints. Finally, the schedulers and case studies in Section 4, Sec-
tion 5, and 6 describe how this architecture can be deployed in practice.

3.1 Basic Architecture

The key insight that enables the self-tuning property is a clean separation ofmechanisms
for scheduling resources for SR frompoliciesfor data selection and placement. As shown
in Figure 3, SSR has two main components—a scheduler and a predictor—that address the
mechanism and policy issues respectively.

3.1.1 Predictor. The predictor’s task is to determine candidate objects for speculative
replication. It does this by assigning priority values to objects that represent the estimated
benefit of speculatively replicating an object at a location. The priorities thus impose a
partial order on candidate objects. A typical priority metric is the probability of access of
an object at a location.

In general, the predictor could employ an arbitrary ranking function to order objects by
priority. Often predictors make use of history information. For example, a common and
successful model is the partial-prediction based matching (PPM) model [Curewitz et al.
1993; Palpanas 1998] that develops a Markov model for predicting the objects likely to be
accessed next given a history of the lastn objects accessed at a location. One variation,
PPN-nw [Kokku et al. 2003] predicts objects likely to be accessed in a window of thew
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Fig. 3. SSR: Basic Architecture.

next references given a history of the lastn references. More generally, predictors can use
any relevant information such as domain-specific knowledge (e.g., for a news Web site,
stories linked near the top of the page are more likely to be accessed than those linked
at the bottom) or manually assigned hints (e.g., breaking news articles could be manually
assigned a high priority even before the first access.) We term assignment of priorities to
objects as aspeculative replication policy, or simply aprediction policy.

3.1.2 Scheduler.The scheduler’s task is to prevent interference between speculative
and demand load. Conceptually, each resource in the system is equipped with a priority
scheduler that maintains two queues, one each for demand and speculative load respec-
tively. Demand load has strictly higher priority than speculative load, i.e., the scheduler
assigns the resource to demand if there is any outstanding demand request and processes
speculative load only if the demand queue is empty. Buffer space for the queues is allocated
such that, during overload, speculative load is always discarded before demand.

Eliminating interference at each resource makes it unnecesary for the predictor to im-
pose a predestined limit on how much can be speculatively replicated. A predictor could
enqueue an arbitrarily large list of objects—in the extreme case including the entire con-
tent base—for speculative replication. The schedulers (1) ensure that speculative load does
not interfere with demand requests, (2) allow any spare resource in the system to be ag-
gressively used for SR, and (3) maximize SR benefit for a given resource consumption by
processing speculative requests in priority order.

3.1.3 Generalizations.The basic architecture above can be extended to incorporate
dynamically computed priorities where, as new information about access patterns becomes
available, objects enqueued for SR can have their priorities modified and be reinserted. In
practice, the queues for speculative load at downstream servers should be kept small in
order to prevent outdated speculative objects from accumulating during periods of low
spare capacity and stalling useful objects from being replicated in the future. Another
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alternative is to decay the priorities of speculative objects in interior queues with time to
prevent stalling of newer high-priority objects.

In the special case of scheduling client cache storage, both speculative and demand ob-
jects may utilize the same cache. When the cache becomes full, the lowest priority object,
e.g., the demand-fetched or speculatively-fetched object with the highest expected time to
next access is evicted. Replacement policies are not a focus of this paper; Patterson et
al. [Patterson et al. 1995b] and Kimbrel et al. [Kimbrel et al. 1996] provide good discus-
sions of how to share storage between demand-cached and SR data.

3.1.4 Summary of Benefits.SSR offers the following benefits over threshold SR.
(1) SSR simplifies the design, deployment, and maintenance of large-scale SR systems by

cleanly separating the concerns of prediction and scheduling, which (a) simplifies pre-
diction design by removing the need to account for resource limitations and (b) simpli-
fies the resource management problem by eliminating the need to manually control how
many resources are consumed by SR.

(2) SSR can yield greater benefits because there are no a priori limits to its resource usage.
The predictor can enqueue an arbitrarily long list of objects for SR. When spare re-
sources are abundant the system replicates aggressively to maximize benefits, but when
few spare resources are available, the system throttles SR to avoid interference.

(3) SSR protects the system from the risk of overload as the noninterfering mechanism
automatically adapts the intensity of SR to only use spare resources in the system.

3.2 SSR with Consistency

To provide cache consistency, a client cache should stop using an object when the object
is updated at the server. SR can increase the delay between when an object is fetched and
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In-Order Priority
Consistency Required high
Demand Not required high
SR Not required low

Table I. Per-channel properties.

when it is used, and thereby increase the need to carefully manage consistency. At the
same time, SR offers the opportunity to improve a system’s trade-offs between consistency
and performance or availability by prefetching or pre-pushing updated content, thereby
potentially obviating a refresh on demand. Note that the CAP impossibility result [Brewer
2001; Siegel 1992; Gilbert and Lynch 2002] says that a distributed system with strong
consistency requirements can not achieve full availability over a partitionable network.

SSR deployments can providesequential consistency[Lamport 1979] with bounded
stalenessfor information dissemination workloadsin which a central server is the source
of all writes [Nayate et al. 2004]. By supporting the strong guarantee of sequential consis-
tency, SSR enablestransparent replication: the results of all read and write operations are
consistent with an order that could legally occur in a centralized system, so—absent time
or other communication channels outside of the shared state—a program that is correct
for all executions under a local model with a centralized storage system remains correct
when using SSR. In the special case of dissemination services, allowing a client’s view of
stored objects to be stale by a bounded amount retains sequential consistency. Neverthe-
less it alleviates the CAP dilemma [Brewer 2001; Siegel 1992] by allowing nodes to delay
invalidating some of their data and thereby maximize the amount of consistent data stored
locally.

SSR systems typically use invalidation-based consistency, which can provide better con-
sistency at a lower cost than polling [Howard et al. 1988; Liu and Cao 1997; Yin et al.
1999] and which can scale to Internet-scale systems [Yin et al. 2002b]. There are two key
ideas. First, SSR transmits consistency metadata on a logically separate channel from the
bodies of updates. Second, SSR allows a receiver to buffer an invalidation before apply-
ing it to enable a tunable trade-off between availability and performance on one hand and
consistency on the other.

As shown in Figure 4, consistency metadata, such as invalidates, two-phase commit pro-
tocol messages, accept stamps, version vectors etc., are propagated via a logically separate
transmission channel from demand and SR bodies. As Table I summarizes, invalidations
are propagated via an in-order, high-priority channel. An in-order channel is required to
ensure that caches can maintain a consistent view of their storage. Conversely, demand
and SR traffic can be safely reordered by the network which, for example, would allow
the use of high-performance multi-path bulk transfer protocols for large objects [Kostic
et al. 2003]. Or, for simplicity, implementations may choose to merge the demand and
consistency channels and to have a separate low priority SR channel.

At the receiving cache or data replica, SSR must coordinate how it applies data from
the three incoming streams (1) to ensure that data from these separate channels do not
violate consistency and (2) to maximize the amount of valid data in the cache to maximize
availability and performance. To meet the first goal, an SSR cache buffers any demand
or SR bodies that arrive before the corresponding invalidation. To meet the second goal,
an SSR cache buffers incoming invalidations until all preceeding invalidations have been
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applied and either (a) the corresponding body has arrived or (b) a configurable maximum
delay∆ has passed since the invalidation was issued by the server. We discuss how these
features are used in more detail in Section 6.

3.3 Is SSR Practical?

Ease of deployment is crucial for an architectural proposal to be practical. Although, SSR
conceptually employs a priority scheduler to prevent interference at each resource in the
system, in practice, it is difficult to modify large-scale legacy distributed systems. For
example, Web servers are often multitiered, consisting not only of a highly optimized Web
server, but also several other complex black box components such as application servers,
virtual machines, backend database servers, a storage area network etc. Similarly, WANs
often consist of several autonomous domains that make it difficult to enable any scheduling
mechanism more sophisticated than simple best-effort delivery.

In the case studies we examine in subsequent sections, we show how using simple end-
to-end mechanisms that require little or no modification to existing network and server
infrastructure, it is possible to instantiate SSR for building useful WAN services or aug-
menting legacy distributed systems. Instead of considering each resource separately, we
group a WAN system into three subsystems, namely, the server, network, and client, and
develop noninterfering SR mechanisms by treating each as a black box. An example of
such a mechanism for the network is TCP Nice, a sender-based low priority transport pro-
tocol explained in the next section. In our NPS (§5) case study, we present a noninterfering
Web prefetching system based on TCP Nice that works with unmodified Web servers and
client machines. In the TRIP case study (§6), we present a middleware that enables repli-
cation and prefetching in otherwise centralized applications with consistency requirements
in a transparent manner, i.e., without requiring application programmers to be consistency-
aware.

4. TCP NICE: A PRIORITY SCHEDULER FOR NETWORK RESOURCES

In this section, we present a low-priority scheduler for network resources. Our goal is to
manage network resources in order to provide a simple abstraction of low-priority orback-
ground transfers that do not interfere with on-demand orforegroundtransfers. Because
it is difficult to modify network routers across thousands of administrative domains, we
provide this abstraction by modifying only the transport protocol at the sender.

Our solution, TCP Nice [Venkataramani et al. 2002c], dramatically reduces the inter-
ference inflicted by background flows on foreground flows. Nice does so by modifying
TCP congestion control to be more sensitive to congestion than traditional protocols such
as Reno [Jacobson 1988] or Vegas [Brakmo et al. 1994] by detecting congestion earlier,
reacting to it more aggressively, and allowing much smaller effective minimum conges-
tion windows. Although each of these changes is simple, the combination is carefully
constructed to provably bound the interference of background flows on foreground flows
while still achieving reasonable throughput in practice. Our Linux implementation of Nice
allows senders to select Nice or standard Reno congestion control on a connection-by-
connection basis, and it requires no modifications at the receiver.

4.1 Design and Implementation

In designing our system, we seek to balance two conflicting goals. An ideal system would
(1) cause no interference to demand transfers and (2) consume 100% of available spare
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bandwidth. In order to provide a simple and safe abstraction to applications, we emphasize
the former goal and will be satisfied if our protocol makes use of a significant fraction
of spare bandwidth. Although it is easy for an adversary to construct scenarios where
Nice does not get any throughput in spite of there being sufficient spare capacity in the
network, our experiments confirm that in practice, Nice obtains a significant fraction of the
throughput of Reno or Vegas when the network has spare capacity.

4.1.1 Background: Existing Algorithms.Congestion control mechanisms in existing
transmission protocols are composed of acongestion signaland areaction policy. The
congestion control algorithms in popular variants of TCP (Reno, NewReno, Tahoe, SACK)
use packet loss as a congestion signal. In steady state, the reaction policy uses additive
increase and multiplicative decrease (AIMD) in which the sending rate is controlled by
a congestion window that is multiplicatively decreased by a factor of two upon a packet
drop and is increased by one per window of data acknowledged. The AIMD framework is
fundamental to the robustness of the Internet [Chiu and Jain 1989; Jacobson 1988].

However, with respect to our goal of minimizing interference, this congestion signal—a
packet loss—arrives too late to avoid damaging other flows. In particular, overflowing a
buffer (or filling a RED router enough to cause it to start dropping packets) may trigger
losses in other flows, forcing them to back off multiplicatively and lose throughput.

In order to detect incipient congestion due to interference we monitor round-trip delays
of packets and use increasing round-trip delays as a signal of congestion. In this respect, we
draw inspiration from TCP Vegas [Brakmo et al. 1994], a protocol that differs from TCP
Reno in its congestion avoidance phase. By monitoring round-trip delyas, each Vegas flow
tries to keep betweenα (typically 1) andβ (typically 3) packets buffered at the bottleneck
router. If fewer thanα packets are queued, Vegas increases the window by one per window
of data acknowledged. If more thanβ packets are queued, the algorithm decreases the
window by one per window of data acknowledged. Finally, to mainatin TCP-friendliness,
Vegas performs a multiplicative decrease upon a packet loss. Vegas estimates the number
of packets queued at the bottleneck router by bounding the difference between the actual
and expected throughput corresponding to the current window size and observed round-trip
delay. Although Vegas seems a promising candidate protocol for background flows, it has
some drawbacks: (i) Vegas has been designed to compete for throughput approximately
fairly with Reno, (ii) Vegas backs off when the number of queued packets from its flow
increases, but it does not necessarily back off when the number of packets enqueued by
other flows increase, (iii) each Vegas flow tries to keep 1 to 3 packets in the bottleneck
queue, hence a collection of background flows could cause significant interference.

Note that even settingα andβ to very small values does not prevent Vegas from inter-
fering with cross traffic. The linear decrease upon the “β trigger” is not responsive enough
to keep from interfering with other flows. We confirm this intuition using simulations and
real-world experiments, and it also follows as a conclusion from the theoretical analysis.

4.1.2 TCP Nice.The Nice extension adds three components to AIMD congestion con-
trol: first, a more sensitive congestion detector; second, multiplicative reduction in re-
sponse to increasing round trip times; and third, the ability to reduce the congestion win-
dow below one. These additions are simple, but our analysis and experiments demonstrate
that the omission of any of them would fundamentally increase the interference caused by
background flows.
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A Nice flow monitors round-trip delays, estimates the total queue size at the bottleneck
router, and signals congestion when this total queue size exceeds a fraction of the estimated
maximum queue capacity. Nice usesminRTT, the minimum observed round trip time, as
the estimate of the round trip delay when queues are empty, and it usesmaxRTTas an
estimate of the round trip time when the bottleneck queue is full. If more than a fixed
fractionf of the packets that Nice sends in a round encounter delays exceeding(1 − t) ·
minRTT+ t · maxRTTfor a fixed fractiont, our detector signals congestion. After the
first rount-trip delay estimate,maxRTTis initialized to2 · minRTT. Round-trip delays of
packets are indicative of the current bottleneck queue size and thet represents the fraction
of the total queue capacity that starts to trigger congestion. The Nice congestion avoidance
mechanism incorporating theinterference triggerwith constantst and fractionf can be
written as follows (curRTTis the round-trip delay experienced by each packet):

per ack operation:
if (curRTT> (1− t) ·minRTT+ t ·maxRTT)

numCong++;
per round operation:

if (numCong> f ·W )
W ←W/2

else {
. . . // TCP-friendly congestion avoidance follows

}

If the congestion condition does not trigger, Nice falls back on TCP-friendly congestion
avoidance rules like AIMD in Reno or delay-based AIAD and loss-based AIMD in Vegas.
Nice is agnostic to the specific choice of the TCP-friendly foreground protocol.

The final change to congestion control is to allow the window sizes to multiplicatively
decrease below one, if so dictated by the congestion trigger and response. In order to affect
window sizes less than one, we transmit a packet after waiting for the appropriate number
of smoothed round-trip delays.

Maintaining a window of less than one causes us to loseack-clocking, but the flow
continues to send at most as many packets into the network as it gets out. In this phase the
packets act as network probes waiting for congestion to dissipate. By allowing the window
to go below one, Nice retains the noninterference property even for a large number of
flows. Both our analysis and our experiments confirm the importance of this feature: this
optimization significantly reduces interference, particularly when testing against several
background flows. A similar optimization has been suggested even for regular flows to
handle cases when the number of flows starts to approach the bottleneck router buffer
size [Morris 1997].

When a Nice flow signals congestion, it halves its current congestion window. In con-
trast, Vegas reduces its window by one packet for each round that encounters long round
trip times and only halves its window if packets are lost (falling back on Reno-like be-
havior.) The combination of more aggressive detection and more aggressive reaction may
make it more difficult for Nice to maximize utilization of spare capacity, but our design
goals lead us to minimize interference even at the potential cost of utilization. Our mathe-
matical analysis as well as our experimental results show that even with these aggressively
timid policies, we achieve reasonble levels of utilization in practice.
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As in TCP Vegas, maintaing running measures ofminRTTand maxRTThave their
limitations—for example if the network is in a state of persistent congestion a bad esti-
mate ofminRTTis likely to be obtained. However, past studies [Acharya and Saltz 1996;
Sanghi et al. 1993] have indicated that a good estimate of the minimum round-trip delay
can typically be obtained in a short time; our experience supports this claim. The use of
minimum and maximum values makes the prototype sensitive to outliers. Therefore, we
use the fifth and ninety-fifth percentile values and observe that it improves the robustness
of this algorithm. Route changes during a transfer can also contribute to inaccuracies in
RTT estimates. However such changes are rare [Paxson 1996] within the lifetime of a
typical connection. However, since Nice is designed for long-lived background flows, it
is important to address this situation, and we do so by maintaining exponentially decaying
averages forminRTTandmaxRTTestimates.

4.1.3 Prototype Implementation.We implemented a prototype Nice system by extend-
ing an existing version of the Linux kernel that supports Vegas congestion avoidance. Like
Vegas, we use microsecond resolution timers to monitor round-trip delays of packets to
implement the congestion detector. In our implementation, we retain the Vegas parame-
tersα andβ to 1 and 3 respectively. We remark that the detector in the previous section
may be implemented on top of any existing TCP-friendly protocol. We chose Vegas only
because our initial attempts at designing Nice were centered around tweaking Vegas to be
less interfering.

The Linux TCP implementation maintains a minimum window size of two in order to
avoid delayed acknowledgements by receivers that attempt to send one acknowledgement
every two packets. In order to allow the congestion window to go to one or below one,
we add a new timer that runs on a per-socket basis when the congestion window for the
particular socket is below two. When in this phase, the flow waits for the appropriate
number of RTTs before sending two packets into the network. Thus, a window of 1/16
means that the flow sends out two packets after waiting for 32 smoothed round-trip times.
We limit the minimum window size to1/48 in our prototype.

Our congestion detector signals congestion when more thanf = 0.5 packets during a
round encounter delays exceedingt = 0.2. Our analysis and experiments suggest that
the interference is insensitive to the exact value oft so long as it is comfortably less than
0.5. The fractionf does not enter directly into our analysis, and our experimental studies
interference is insensitive to the exact value off ; it only serves as a reliable indicator
of increasing delays. Since packets are sent in bursts, most packets in a round observe
similar round-trip times. In the future we plan to study pacing packets [Aggarwal et al.
2000] across a round in order to obtain better samples of prevailing round-trip delays.
Our prototype provides a simple API to designate a flow as a background flow through an
option in thesetsockoptsystem call. By default, flows are foreground flows.

4.2 Formal Analysis

Experimental evidence alone is insufficient to allow us to make strong statements about
Nice’s non-interference properties for general network topologies, background flow work-
loads, and foreground flow workloads. We therefore analyse it formally to bound the
reduction in throughput that Nice imposes on foreground flows. Our primary result is that
under a simplified network model, for long transfers, the reduction in the throughput of
Reno flows is asymptotically bounded by a factor that falls exponentially with the maxi-
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Fig. 5. Queue dynamics at a bottleneck router with Nice

mum queue length of the bottleneck routerirrespective of the number of Nice flows present.
Theoretical analysis of network protocols, of course, has limits. In general, as one ab-

stracts away details to gain tractability or generality, one risks omitting important behav-
iors. Most significantly, our formal analysis assumes a simplified fluid approximation and
synchronous network model, as described below. Also, our formal analysis holds for long
background flows, which are the target workload of our abstraction. But it also assumes
long foreground Reno flows, which are clearly not the only cross-traffic of interest. Finally,
in our analysis, we abstract detection by assuming that at the end of each RTT epoch, a
Nice sender accurately estimates the queue length during the previous epoch. Although
these assumptions are restrictive, the insights gained in the analysis lead us to expect the
protocol to work well under more general circumstances. The analysis has also guided
our design, allowing us to include features that are necessary for noninterference while ex-
cluding those that are not. Our experience with the prototype has supported the benefit of
using theoretical analysis to guide our design: we encountered few surprises and required
no topology- or workload-dependent tuning during our experimental effort.

We use a simplified fluid approximation model of the network to help us model the inter-
action of multiple flows using separate congestion control algorithms. This model assumes
infinitely small packets. We simplify the network itself to a source, destination, and asin-
gle bottleneck, namely a router that performs drop-tail queuing as shown in Figure 5. Let
µ denote the service rate of the queue andB the buffer capacity at the queue. Letτ be
the round-trip delay of packets between the source and destination excluding all queuing
delays. We consider a fixed number of connections,m following Reno andl following
Nice, all of which attempt to transfer a single large file from the source to the destination.
Let t be the Nice threshold andqt = t · B be the corresponding queue size that triggers
multiplicative backoff for Nice flows. The connections are homogeneous,i.e. they experi-
ence the same propogation delayτ . Moreover, the connections are synchronized so that in
the case of buffer overflow, all connections simultaneously detect a loss and multiply their
window sizes byγ. Models assuming flow synchronization have been used in previous
analyses [Bonald 1998]. We model only the congestion avoidance phase to analyze the
steady-state behaviour.

We obtain a bound on the reduction in the throughput of Reno flows due to the presence
of Nice flows by analysing the dynamics of the bottleneck queue. We achieve this goal by
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dividing the duration of the flows intoperiods. In each period we bound the decrease in
the number of Reno packets processed by the router due to interfering Nice packets. In the
following we give an outline of this analysis. The complete analysis with detailed proofs
appears in the extended technical report [Venkataramani et al. 2002a].

Let Wr(t) andWn(t) denote respectively the total number of outstanding Reno and
Nice packets in the network at timet. The total window size,W (t), is Wr(t) + Wn(t).
Let the number of Reno and Nice flows be denoted bym and l respectively. We trace
these window sizes across periods.The end of a period and the beginning of the next is
marked by a packet loss, at which time each flow reduces its window size by a factor ofγ.
W (t) = µτ+B just before a loss andW (t) = (µτ+B)·γ just after. Lett0 be the beginning
of one such period after a loss. Consider the case whenW (t0) = (µτ + B)γ < µτ and
m > l. The window dynamics in any period can be split into three intervals as described
below.

(1) Additive Increase, Additive Increase: In this interval[t0, t1] both Reno and Nice flows
increase linearly.W (t) increases fromW (t0) to W (t1) = µτ , at which point the queue
starts building.

(2) Additive Increase, Additive Increase or Decrease: This interval[t1, t2] is marked by ad-
ditive increase ofWr, but additive decrease ofWn if the underlying congestion avoid-
ance mechanism is Vegas and additive increase if it is Reno. The end of this interval is
marked byW (t2) = µτ + qt.

(3) Additive Increase, Multiplicative Decrease: In this interval[t2, t3], Wn(t) multiplica-
tively decreases in response to observing queue lengths aboveqt. However, the rate of
decrease ofWn(t) is bounded by the rate of increase ofWr(t), as any faster a decrease
will cause the queue size to drop belowqt. At the end of this intervalW (t3) = µτ + B.
At this point, each flow decreases its window size by a factor ofγ, thereby entering into
the next period.
In order to quantify the interference experienced by Reno flows because of the presence

of Nice flows, we formulate differential equations to represent the variation of the queue
size in a period. We then show that the values ofWr andWn at the beginning of periods
stabilize after several losses, so that the length of a period converges to a fixed value. It
is then straightforward to compute the total amount of Reno flow sent out in a period. We
show in the technical report [Venkataramani et al. 2002a] that the interference of Nice is
bounded as follows.

Theorem 1: The interferenceI, defined as the fractional loss in throughput experienced
by TCP flows in the presence of Nice flows, is bounded as follows:

I ≤ 4m · e(−B(1−t)γ
m )

(µτ + B)γ
(1)

The derivation ofI indicates that all three design features of Nice are fundamentally
important for reducing interference. The interference falls exponentially withB(1− t) or
B − qt, which intuitively reflects the time that Nice has to multiplicatively back off before
packet losses occur. Intuititively, multiplicative decrease allows any number of Nice flows
to get out of the way of additively increasing demand flows. The dependence on the ratio
B
m suggests that as the number of demand flows approaches the maximum queue size the
non-interference property starts to break down. This breakdown is not surprising as each
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flow barely gets to maintain one packet in the queue and TCP Reno is known to behave
anamolously under such circumstances [Morris 1997]. In a well designed network, when
B � m, it can be seen that the dependence on the thresholdt is weak,i.e. interference is
small whent is comfortably less than1, and careful tuning of the exact value oft in this
region is unnecessary. Our full analysis shows that the above bound onI holds even for
the case whenm � l. Allowing window sizes to multiplicatively decrease below one is
crucial in this proof.

4.3 Internet Microbenchmarks

This section presents a controlled experiment in which we evaluate our Nice implementa-
tion over a variety of Internet links. We seek to answer three questions. First, does Nice
avoid interference? Second, are there enough reasonably long periods of spare capacity
on real links for Nice to reap reasonable throughput? Third, are any such periods of spare
capacity spread throughout the day, or is the usefullness of background transfers restricted
to nights and weekends?

Our experiments suggest that Nice works for a range of networks, including a modem,
a cable modem, a transatlantic link, and a fast WAN. In particular, on these networks it
appears that Nice avoids interfering with other flows and that it can achieve throughputs
that are significant fractions of the throughputs that would be achieved by Reno throughout
the day.

4.3.1 Methodology.Our measurement client program connects to a measurement server
program at exponentially-distributed random intervals. At each connection time, the client
chooses one of six actions: Reno/NULL, Nice/NULL, Reno/Reno, Reno/Nice, Reno/Reno8,
Reno/Nice8. Each action consists of a “primary transfer” (denoted by the term left of the /)
and zero or more “secondary transfers” (denoted by the term right of the /). Reno terms in-
dicate flows using standard TCP-Reno congestion control. Nice terms indicate flows using
Nice congestion control. For secondary transfers, NULL indicates actions that initiate no
secondary transfers to compete with the primary transfer, and 8 indicates actions that initi-
ate 8 (rather than the default 1) secondary transfers. The transfers are of large files whose
sizes are chosen to require approximately 10 seconds for a single Reno flow to compete on
the network under study.

We position a server that supports Nice at UT Austin. We position clients (1) in Austin
connected to the internet via a University of Texas 56.6K dial in modem bank (modem),
(2) in Austin connected via a commercial ISP cable modem (cable modem), (3) in a com-
mercial hosting center in London, England connected to multiple backbones including an
OC12 and an OC3 to New York (London), and (4) at the University of Delaware, which
connects to UT via an Abiline OC3 (Delaware). All machines run Linux. The server is a
450MHz Pentium II with 256MB of memory. The clients range from 450-1000MHz and
all have at least 256MB of memory. The experiment ran from Saturday May 11 2002 to
Wednesday May 15 2002; we gathered approximately 50 probes per client/workload pair.

4.3.2 Results.Figure 6 summarizes the results of our large-transfer experiments. On
each of the networks, the throughput of Nice/NULL is a significant fraction of that of
Reno/NULL, suggesting that periods of spare capacity are often long enough for Nice to
detect and make use of them. Second, we note that during Reno/Nice and Reno/Nice8
actions, the primary (Reno) flow achieves similar throughput to the throughput seen during
the control Reno/NULL sessions. In particular, on a modem network, when Reno flows
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Fig. 6. Large flow transfer performance. Each bar represents the average transfer time ob-
served for the specified combination of primary/secondary transfers. Empty bars represent
the average time for a Reno flow. Solid bars represent the average time for a Nice flow.
The narrow lines depict the minimum and maximum values observed during multiple runs
of each combination.

compete with a single Nice flow, they receive on average 97% of the average bandwidth
they receive when there is no competing Nice flow. On a cable modem network, when
Reno flows compete with eight Nice flows, they receive 97% of the bandwidth they would
recieve alone. Conversely, Reno/Reno and Reno/Reno8 show the expected fair sharing of
bandwidth among Reno flows, which reduces the bandwith achieved by the primary flow.

Other Internet experiments (refer extended version [Venkataramani et al. 2002d]) con-
ducted over a week-long period show that Nice can achieve useful amounts of throughput
in a noninterfering manner throughout the day. In addition to experimentation over real
networks, we also stress tested Nice via simulations over a wide range of parameters for
spare capacity, foreground traffic profiles, and active queue management schemes that sup-
port the above results.

4.3.2.1 Summary.In summary, Nice achieves our goals of noninterference and prac-
tical levels of utilization of spare capacity over real networks varying in capacity by four
orders of magnitude. The key ideas that enable these properties are early congestion de-
tection and more aggressive backoff than AIMD TCP. It is somewhat surprising that a
transport protocol operated only at the sender end can emulate two levels of differenti-
ated services, a service that is otherwise considered a part of the network layer requiring
implemention at every single router.
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5. WEB PREFETCHING CASE STUDY

In this section, we present a concrete instantiation of the SSR architecture, NPS – a
Noninterfering and deployable WebPrefetchingSystem. We group resources into three
subsystems — the server, network, and client — that also represent administratively sepa-
rate domains. Imposing a priority scheduler for each resource prevents interference, how-
ever, the challenge is to build deployable schedulers. For example, one systematic “clean-
slate” solution might be to extend HTTP to include a “GET-PREFETCH” request that
Web browsers process in the background, enable differentiated services for low priority
transport in routers, and employ resource containers [Banga et al. 1999] at Web servers to
prevent prefetch traffic from interfering with demand traffic. Unfortunately, this strawman
warants an unacceptable level of change to legacy infrastructure. The increasing complex-
ity of Web servers [Gribble et al. 2002; IBM ; Intel ; Resonate Inc ; Zeus Technology
], the lack of architectural consensus among network service providers [Anderson et al.
2005; GENI ], and the large number of Web browsers in use makes clean-slate solutions
impractical. Our goal therefore is to instantiate SSR in a manner that involves no change
to HTTP, Web browsers, routers, and Web servers.

NPS treats the server and network as a black box and employs an external probing mech-
anism to estimate spare capacity and limit the prefetch load accordingly. In both cases, the
probing mechanism uses response time as an indicator of spare capacity. For the network,
this mechanism is TCP Nice introduced in the previous section. Similarly, for the server,
increasing response times for prefetch requests indicate high demand load and cause the
prefetching module to aggressively back off, while low response times actuate a measured
increase in prefetching intensity. Finally, to avoid client interference, NPS uses simple
heuristics to control resources used by prefetching. To work with existing browsers, NPS
modifies HTML pages to include JavaScript code to issue prefetch requests, and wraps
the server infrastructure with simple external modules that require no knowledge of, or no
modifications to the internals of existing servers.

Our experiments with an NPS prototype under traces of real web workloads indicate that
it is both efficient and non interfering under different network and server load conditions.
For example, in our experiments, when the network and the server are lightly loaded, NPS
and a manually tuned threshold-based prefetching scheme improve the response times by
28% and 41% respectively. On the other hand, when the network gets heavily loaded with
little spare capacity, we observe that the same manually tuned scheme causes response
times to increase by a factor of 7 due to interference, whereas NPS self-tunes prefetch
intensity to contain this increase to less than 30%. In the rest of this section, we explain in
detail the design and implementation of the above mechanisms in NPS.

5.1 NPS design

There appears to be a consensus among researchers on a high level architecture for prefetch-
ing in which a server sends a list of objects to a client and the client issues prefetch requests
for the objects on the list [Chen and Zhang 2001; Markatos and Chronaki 1998; Padman-
abhan and Mogul 1996b] . This division of labor allows servers to use global object access
patterns and service-specific knowledge to determine what should be prefetched, and it
allows clients to filter requests through their caches to avoid repeatedly fetching objects.
NPS follows this organization and seeks to meet two other important requirements: (1) self
tuning resource management and (2) deployability without modifying existing protocols,
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clients, proxies, or servers.
Figure 7 provides an overview of our design. A server machine hosts both aDemand

Serverand aPrefetch Server. Each is an unmodified HTTP server, but they are running
on different ports in order to ensure that prefetch replies and demand replies are sent on
different network connections. AHint Serversends suggestions of what to prefetch to
Clients. TheMonitor is coupled with theHint Serverto throttle the number of prefetch
hints issued to clients. TheClient is an unmodified Web browser that issues both demand
and prefetch requests.

NPS is designed to avoid interference at the server, network, and client as follows.
(1) To avoid interference at the server, theMonitor monitors end-to-end server load and

throttles the number of prefetch hints issued by theHint Serverto restrict the prefetch
loadClientscan impose. We discuss this process in Section 5.2.1.

(2) To avoid interference in the underlying network, NPS (1) ensures that prefetch and
demand requests appear on different network connections by using separateDemand
Serverand Prefetch Serverprocesses on different ports and (2) uses TCP Nice for
prefetch connections.

(3) To control resource usage at the client, NPS uses some simple heuristics. First, we
ensure that a client does not start prefetching until after it has finished loading the de-
mand page. Second, to limit cache pollution, we set prefetched objects to expire from
the cache earlier than they would otherwise. A better approach to limiting cache pollu-
tion would be to use techniques from Transparent Informed Prefetching [Patterson et al.
1995a] to balance caching and prefetching, but this would require modification of exist-
ing browsers. Initial measurements suggest that our simple heuristics work reasonably
well [Kokku et al. 2003], however, we do not examine resource management at the client
in detail in this article.
Deployability concerns constrain our design: our system is designed to work with un-

modified Web servers, Web clients, and network routers. We induce an unmodified Web
Client to prefetch using aMungerthat modifies Web pages to include JavaScript that causes
the Client to (i) repeatedly fetch lists of URLs to prefetch from theHint Server, and (ii)
prefetch those URLs from thePrefetch Server. A challenge is to get an unmodified browser
to allow objects prefetched from one server (thePrefetch Server) to act as cache hits for
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Fig. 8. Server loads averaged over (a) 1-second and (b) 1-minute intervals for the IBM sporting event workload.

requests to a different server (theDemand Server). TheFront Endand theMungerconspire
to re-write URLs to make this work. The details of how NPS re-writes Web pages to (a)
trigger prefetching and (b) allow cross-server cache hits are outside the scope of this article
but appear in an extended version of a paper describing NPS [Kokku et al. 2003], where
we also discuss how this design would differ if deployability using unmodified clients and
servers were less of a concern [Kokku et al. 2003]. Note that our approach worksas is
even in the presence of proxy caches between clients and servers; the first client behind a
proxy would prefetch from the server (loading both its cache and the proxy cache), and the
rest of the clients would prefetch from the proxy cache (loading their caches).

5.2 Server Interference

An ideal system for avoiding server interference would cause no delay to demand requests
in the system and utilize all spare resources on servers for prefetching. Such a system
must tolerate and exploit changing workload patterns. However, Web traffic at a server is
often bursty at several different time scales [Crovella and Bestavros 1996] and peak rates
typically exceed the average rate by an order or two of magnitude [Mogul 1995]. For
example, Figure 8 shows the request load on an IBM server hosting a major sporting event
during 1998 averaged over 1-second and 1-minute intervals. It is crucial for a prefetching
system to be responsive to such fluctuations to balance utilization and risk of interference.

Our approach to adapting to server load in a deployable way is to use an end-to-end
monitoring unit that estimates the overall load (or spare capacity) on the server by occa-
sionally probing the server with representative requests and measuring the response times
of the replies. Low response times indicate that the server has spare capacity and high
response times indicate that the server is loaded. Based on such an estimate, the monitor
utilizes the spare capacity on the server by controlling the number and aggressiveness of
prefetching clients.

An advantage of end-to-end monitoring is that it requires no modifications to existing
servers. The choice of the probing interval, however, strikes a tradeoff between the preci-
sion of the monitor and the load imposed by the probes themselves.

In the following subsections, we discuss the issues involved in designing an end-to-
end monitor, present our simple monitor, and evaluate its efficacy in comparison to server
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scheduling.

5.2.1 End-to-end Monitor Design.The monitor estimates the server’s spare capacity
and sets abudgetof prefetch requests permitted for an interval. The hint server adjusts
the load imposed by prefetching on the server by ensuring that the sum across the hint
lists returned to clients does not exceed the budget. Our monitor design must address two
issues: (i) budget estimation and (ii) budget distribution across clients.

5.2.1.1 Budget estimation.The monitor periodically probes the server with HTTP re-
quests to representative objects and measures the response times. The monitor increases
the budget when the response times are below the objects’thresholdvalues and decreases
the budget otherwise.

As probing is an intrusive technique, choosing an appropriate rate of probing is a chal-
lenge. A high rate makes the monitor more reactive to load on the server, but also adds
extra load on the server. On the other hand, a low rate makes the monitor react slowly, and
can potentially lead to interference to the demand requests. Similarly, the exact policy for
increasing and decreasing the budget must balance the risk of causing interference against
underutilization of spare capacity.

5.2.1.2 Budget distribution.The goal of this task is to distribute the budget among the
clients such that (i) the load due to prefetching on the server is contained within the budget
for that epoch and is distributed uniformly over the interval, (ii) a significant fraction of the
budget is utilized over the interval, and (iii) clients are responsive to changing load patterns
at the server. The two knobs that the hint server can manipulate to achieve these goals are
(i) the size of the hint list returned to the clients and (ii) the subset of clients that are given
permission to prefetch. This flexibility provides a freedom to choose from many policies.

5.2.2 Monitor Prototype.Our prototype uses simple, minimally tuned policies for
budget estimation and budget distribution. Future work may improve the performance
of our monitor.

The monitor probes the server in epochs, each approximately 100 ms long. In each
epoch, the monitor collects a response time sample for a representative request. In the
interest of being conservative− choosing non-interference even at the potential cost of
reduced utilization− we use an additive increase (increase by 1), multiplicative decrease
(reduce by half) policy. AIMD is commonly used in network congestion control [Jacobson
1988] to conservatively estimate spare capacity in the network and be responsive to con-
gestion. If in five consecutive epochs, the five response time samples lie below a threshold,
the monitor increases the budget by 1. While taking the five samples, if any sample exceeds
the threshold, the monitor sends another probe immediately to check if the sample was an
outlier. If the new sample exceeds the threshold, indicating a loaded server, the monitor
decreases the budget by half and restarts collecting the next five samples.

In our simple prototype, we manually supply the representative objects’s threshold re-
sponse times. However, setting this value is straightforward because of the predictable
pattern in which response times vary with load on server systems – a nearly constant value
of response time for low load followed by a sharp rise beyond the “knee” for high load. As
part of our future work, we intend to make the monitor automatically pick thresholds in a
self-tuning manner.

The hint server distributes the current budget among client requests that arrive in that
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epoch. We choose to set the hint list size to the size of one document (a document cor-
responds to a HTML page and all embedded objects). Our policy lets clients to return
quickly for more hints and thus be more responsive to changing load patterns on the server.
Note that returning larger hint lists would reduce the load on the hint server, but it would
reduce the system’s responsiveness and its ability to avoid interference. We control the
number of simultaneously prefetching clients, and thus the load on the server, by returning
to some clients a hint list of zero size and a directive to wait until the next epoch to fetch
the next hint list. For example, ifB denotes the budget in the current epoch, andN the
expected number of clients in that epoch,D the number of files in a document, andτ the
epoch length, the hint server accepts a fractionp = min(1, B·τ

N ·D ) of requests to prefetch
on part of clients in that epoch and returns hintlists of zero length for other requests. Note
that other designs are possible. For example, the monitor can integrate with the prefetch
prediction algorithm to favor prefetching by clients for which the predictor can identify
high-probability items and defer prefetching by clients for which the predictor identifies
few high-value targets.

Since the hint server does not a priori know the number of client requests that will
come in an epoch, it estimates that value with the number of requests that come in the
previous epoch. If more than the estimated number of requests arrive in a epoch, the hint
server replies with list of size zero and a directive to retry in the next epoch to those extra
requests. If fewer clients arrive, some of the budget can get wasted. However, in the
interest of avoiding interference, we choose to allow such wastage of budget.

5.2.3 Evaluation of the Monitor.In this subsection, we evaluate the monitor in isola-
tion primarily concerning ourselves with its interference and utilization of spare capacity,
and less with the effectiveness of the prediction policy in consuming spare capacity use-
fully. (In the next section, we evaluate end-to-end interference as well as response-time
benefits of NPS in its entirety.) We therefore abstract away prediction policies by prefetch-
ing dummy data. Our experiments compare the effectiveness of different resource man-
agement alternatives in avoiding server interference against the case when no prefetching
is done with respect to the following metrics: (i)cost: the amount of interference in terms
of demand response times and (ii)benefit:utilization of spare capacity.

We consider the following resource management algorithms for this set of experiments:
(1) No-Prefetching: Ideal case, when no prefetching is done or when we use a separate

prefetching infrastructure.
(2) No-Avoidance: Prefetching with no interference avoidance with fixed aggressiveness.

We set the aggressiveness by settingpfrate, which is the number of documents prefetched
for each demand document. For a given service, a given prefetch threshold will corre-
spond to some averagepfrate. We use fixedpfratevalues of 1 and 5.

(3) Scheduler: As a simple local server scheduling policy, we choosenice, the process
scheduling utility in Unix. We again use fixedpfrate values of 1 and 5. This simple
server scheduling algorithm is only intended as a comparison; more sophisticated local
schedulers may better approximate the ideal case.

(4) Monitor: We perform experiments for two threshold values of 3ms and 10ms.
For evaluating algorithms 2 and 4, we set up one server serving both demand and

prefetch requests. Our prototype implementation of algorithm 3 requires that the demand
and prefetch requests be serviced by different processes. We use two different servers lis-
tening on two ports on the same machine, with one server run at a lower priority using the
Linux nice. For experiment 4, we also run two servers on the same machine, but both run
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Fig. 9. Effect of prefetching on demand throughput and response times with various resource management poli-
cies

at the same priority. Our experimental setup includes Apache HTTP server [Apache HTTP
Server Project ] running on a 450MHz Pentium II, with 128MB of memory. To generate
the client load, we use httperf [Mosberger and Jin 1998] running on four different Pentium
III 930MHz machines. All machines run the Linux operating system.

We use two workloads in our experiments. Our first workload generates demand requests
to the server at a constant rate. The second workload is a one hour subset of the IBM
sporting event server trace, whose characteristics are shown in Figure 8 and discussed in
more detail in [Challenger et al. 1999]. We scale up the trace in time by a factor of two, so
that requests are generated at twice the original rate, as the original trace barely loads our
server.

5.2.3.1 Constant workload.Figure 9 shows the demand response times with varying
demand request arrival rate. The graph shows that both Monitor and Scheduler algorithms
closely approximate the ideal behavior of No-Prefetching in not affecting the demand re-
sponse times. Conversely, the No-Avoidance algorithm with fixedpfrate values signifi-
cantly damages both the demand response times and the maximum demand throughput.

Figure 10 shows the bandwidth achieved by the prefetch requests and their effect on
the demand throughput bandwidth. The figure shows that No-Avoidance adversely affects
the demand throughput bandwidth. Conversely, both Scheduler and Monitor reap spare
bandwidth for prefetching without much decrease in the demand bandwidth. Further, at
low demand loads, a fixed pfrate prevents No-Avoidance from utilizing the full available
spare bandwidth. The problem of too little prefetching when demand load is low and
too much prefetching when demand load is high illustrates the fundamental drawback of
existing threshold strategies. As hoped, the Monitor tunes prefetch aggressiveness of the
clients to utilize most of the spare capacity.

5.2.3.2 IBM server trace.In this set of experiments, we compare the performance of
the four algorithms for the IBM server trace. Figure 11 shows the demand response times
and prefetch bandwidth in each case. The graph shows that the No-Avoidance case affects
the demand response times significantly aspfrate increases. The Scheduler and Monitor
cases have less adverse effects on the demand response times.
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Fig. 11. Performance of No-Avoidance, Scheduler and Monitor schemes on the IBM server trace

These experiments show that resource management is an important component of a
prefetching system because overly aggressive prefetching can significantly hurt demand re-
sponse time and throughput while timid prefetching gives up significant bandwidth. They
also illustrate a key problem with constant non-adaptive magic numbers in prefetching
such as the threshold approach that is commonly proposed. The experiments also provide
evidence of the effectiveness of the monitor in tuning prefetch aggressiveness of clients to
reap significant spare bandwidth while keeping interference at a minimum.

5.3 NPS Prototype and End-to-End Evaluation

Our prototype uses the architecture whose prefetching mechanism is shown in Figure 7. We
use Apache 2.0.39 as the server, hosted on a 450MHz Pentium II, serving demand requests
on one port and prefetch requests on the other. As an optimization, we implement the
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frontend as a module within the Apache server rather than as a separate process. The hint
server is implemented in Java and runs on a separate machine with 932 MHz Pentium III
proessor, and connects to the server over a 100 Mbps LAN. The hint server uses prediction
lists generated offline using the PPM algorithm [Padmanabhan and Mogul 1996b] over
a complete 24 hour IBM server trace. The monitor runs as a separate thread of the hint
server on same machine. The content munger is also written in Java and modifies the
content offline. The munger takes 2.6 ms per KB on an average for each file on a 2.4 GHz
Pentium 4. We have successfully tested our prefetching system with popular web browsers
inluding Netscape, Internet Explorer, and Mozilla.

5.3.1 End-to-End Performance.In this section, we evaluate NPS under various setups
and evaluate the importance of each component in our system. In all setups, we consider
three cases: (1) No-Prefetching, (2) No-Avoidance scheme with fixedpfrate, and (3) NPS
(with Monitor and TCP Nice). In these experiments, the client connects to the server over
a wide area network through a commercial cable modem link. On an unloaded network,
the round trip time from the client to the server is about 10 ms and the bandwidth is about
1 Mbps.

We use httperf to replay a subset of the IBM server trace. The trace is one hour long and
consists of demand accesses made by 42 clients. This workload contains a total of 14044
file accesses of which 7069 are unique; the average demand network bandwidth is about 92
Kbps over this hour. We modify httperf to simulate the execution of JavaScript. Also, we
modify httperf to implement a large cache per client that never evicts a file that is fetched
or prefetched during a run of an experiment. In No-Avoidance case, we set the pfrate to
70, i.e. it gets a list of 70 files to prefetch, fetches them and stops. This pfrate corresponds
to a prefetch threshold of 0.1 for the PPM algorithm; i.e. each file included in the list has
probability of access greater than 0.1. This pfrate is hand tuned such that neither the server
nor the network becomes a bottleneck even for the No-Avoidance case. The hint server
gives out hint lists of size 10 each time a client requests more candidate objects to prefetch.
Note that many of the files given as hints could be cache hits at the client for either the
No-Avoidance or the NPS case.

5.3.1.1 Unloaded resources.In this experiment, we use the setup explained above.
Figure 12(a) shows that when the resources are abundant, both No-Avoidance and NPS
cases improve the average response times by 41% and 28% respectively. Observe that it is
the relative improvement that matters—the absolute improvement appears small because
of our experimental setup where the round-trip time between the clients and the server is
about 10ms; the demand response times are significantly higher (hundreds of milliseconds
to seconds) in real Web scenarios. NPS achieves less improvement than No-Avoidance
because of its conservativeness in the interest of non-interference. The graph also shows
the prefetch bandwidth consumed by No-Avoidance and NPS.

5.3.1.2 Loaded server.This experiment demonstrates the effectiveness of the monitor
as an important component of NPS. To create a loaded server condition, we use a client
machine connected on a LAN to the server running httperf that replays a heavier subset
of the IBM trace and also prefetches like the WAN client. Figure 12(b) plots the average
demand response times and the bandwidth used in the three cases. As expected, even
though the server is loaded, the clients prefetch aggressively in the No-Avoidance case,
thus causing the demand response times to increase by more than a factor of 2 rather than
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decrease. However, despite the heavy load on the server, NPS (with the help of the monitor)
is able to detect and exploit periods of relatively low load and improve the average response
times by about 25%.

5.3.1.3 Loaded network.This experiment demonstrates the effectiveness of TCP Nice
as a building block of NPS. In order to create a heavily loaded network with little spare
capacity, we set up another client machine running httperf that shares the cable modem
connection with the original client machine, replays the same trace, and also prefetches
like the original client. Figure 12(c) plots the average demand response times, demand
bandwidth, and prefetch bandwidth in all three cases. The results show that when the net-
work is loaded, No-Avoidance causes significant interference to demand requests, thereby
increasing the average demand response times by a factor of 7. Although NPS doesn’t
show any improvements, it contains the increase in demand response times to less than
30%, which shows the effectiveness of TCP Nice in limiting network interference. The
damage is because TCP Nice is primarily designed for long flows.

5.3.2 NPS vs. Manual Tuning.Although Figure 12(a) shows that No-Avoidance with
fixedpfrateperforms well, setting the right value ofpfratecan be tedious. Figure 13 shows
the different thresholds for the PPM algorithm we tested to tune thepfrate. On the other
hand, NPS self-tunes and performs close to the manually tuned threshold.

5.3.3 Summary.In summary, it is feasible to build practical systems using the SSR
approach as demonstrated with our case study of the NPS Web Prefetching System. Just
like Nice uses delay-based probes to infer foreground load and backs off aggressively, the
server monitor in NPS uses increasing response times of representative probe requests as
an indicator of high demand load and throttles prefetching aggressively to ensure nonin-
terference. We refer the interested reader to [Kokku et al. 2003] for a discussion of the
design space and nontrivial implementation details to make NPS interoperate with legacy
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browsers and Web servers.

6. DATA DISSEMINATION CASE STUDY

In this section, we investigate the feasibility of the SSR approach for distributed systems
with consistency constraints. We present a case study of the TRIP (Transparent Repli-
cation through Invalidation and Prefetching) system, a data replication middleware that
integrates self-tuning updates and sequential consistency to replicate large-scale informa-
tion dissemination services. TRIP pursues the aggressive goal of supportingtransparent
service replication whereby a centralized service can be automatically converted to a ser-
vice distributed across nodes on a wide area network without introducing new semantic or
performance bugs. TRIP must therefore provide two key properties.

(1) TRIP must provideself-tuning updatesto maximize performance and availability given
the system resources available at any moment. Self-tuning updates are crucial for trans-
parent replication because static replication policies are more complex to maintain, less
able to benefit from spare system resources, and more prone to catastrophic overload if
they are mis-tuned or during periods of high system load.

(2) TRIP must providesequential consistency[Lamport 1979] with a tunable maximum
staleness parameter to reduce application complexity. Weaker consistency guarantees
can introduce subtle bugs [Frigo and Luchangco 1998], and as Internet-scale applica-
tions become more widespread, ambitious, and complex, simplifying the programming
model becomes increasingly desirable [Hill 1998]. If we can provide sequential consis-
tency, then we can take a single machine’s or LAN cluster’s service threads that access
shared state via a file system or database and distribute these threads across WAN edge
servers without re-writing the service and without introducing new bugs.

Not only is each of these properties important, but their combination is vital. Sequential
consistency prevents the use of stale data, which could hurt performance and availability,
but prefetching replaces stale data with valid data. Conversely, prefetching means that
data are no longer fetched when they are used, so a prefetching system must rely on its
consistency protocol for correct operation.

Unfortunately, providing sequential consistency in a large scale system while providing
good availability [Brewer 2001] and performance [Lipton and Sandberg 1988] is funda-
mentally difficult. We therefore restrict our attention to replicateddissemination services,
in which updates occur at one origin server and multiple edge server replicas treat the
underlying replicated data as read-only and perform data caching, fragment assembly, per-
user customization, and advertising insertion. Although this case is restrictive, it represents
an important class of services. For example, Akamai’s Edge Side Include [akamai 2001]
and IBM’s Sport and Event replication system [Challenger et al. 1999] both focus on im-
proving the performance, availability, and scale of dissemination services. Furthermore,
the TRIP middleware can be used to build key parts of general applications that distribute
content such as file systems, distributed databases, and publish-subscribe systems. For
example, our edge TPC-W implementation [Gao et al. 2003] uses different replication
strategies for different objects, and TRIP could be used fordissemination objectslike the
TPC-W catalog of items for sale.

Figure 14 provides a high level view of the environment we target. An origin server
and several replicas (also called content distribution nodes or edge servers) share data, and
logical clients – either on the same machine or another – access the service via the replicas,
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which run service-specific code to dynamically generate responses to requests [akamai
2001; Awadallah and Rosenblum 2002; Cao et al. 1998; Foster et al. 2002]. The system
typically uses some application-specific mechanism [Challenger et al. 1999; Karger et al.
1997; Yoshikawa et al. 1997] to direct client requests to a good (e.g., nearby, lightly loaded,
or available) replica. The design of such a redirection infrastructure is outside the scope of
the paper; instead, we focus on the data replication middleware that provides shared state
across the origin server and replicas. We focus on supporting on the order of 10 to 100
long-lived replicas that each have sufficient local storage to maintain a local copy of the
full set of their service’s shared data. Although our protocol remains correct under other
assumptions about the number of replicas, replica lifetimes, and whether replicas replicate
all shared data or only a subset, optimizing performance in other environments may require
different tradeoffs.

In the rest of this subsection, we first discuss the consistency requirements for trans-
parent information dissemination. We then describe our design for providing self-tuning
updates and sequential consistency. Finally, we evaluate the approach via simulation and
prototype measurements.

6.1 Consistency Requirements

Evaluating the semantic guarantees of large-scale replication systems requires careful dis-
tinctions betweenconsistency, which constrains the order that updates across multiple
memory locations becomeobservable[Frigo and Luchangco 1998] to nodes in the system,
coherence, which constrains the order that updates to a single location become observ-
able but does not additionally constrain the ordering of updates across different locations,
and staleness, which constrains the real-time delay between when an update completes
and when it becomes observable. Adve discusses the distinction between consistency and
coherence in more detail [Adve and Gharachorloo 1996].

To support transparency, we focus on providing sequential consistency. As defined by
Lamport, “The result of any execution is the same as if the [read and write] operations by
all processes were executed in some sequential order and the operations of each individual
processor appear in this sequence in the order specified by its program.” [Lamport 1979]
Sequential consistency is attractive for transparent replication because the results of all read
and write operations are consistent with an order that could legally occur in a centralized
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system, so – absent time or other communication channels outside of the shared state – a
program that is correct for all executions under a local model with a centralized storage
system is also correct for a distributed storage system.

Typically, providing sequential consistency is expensive in terms of latency [Lipton and
Sandberg 1988; Burns et al. 2000] or availability [Brewer 2001]. However, we restrict
our study todissemination servicesthat have one writer and many readers, and we enforce
FIFO consistency[Lipton and Sandberg 1988] under which writes by a process appear
to all other processes in the order they were issued, but different processes can observe
different interleavings between the writes issued by one process and the writes issued by
another. Note that for applications that include only a single writer, FIFO consistency is
identical to sequential consistency or the weaker causal consistency.

Although sequential consistency provides strong semantic guarantees at replicas, clients
of those replicas may observe unexpected behaviors in at least two ways due to communi-
cation channels outside of the shared state.

First, because sequential consistency does not specify any real-time requirement, a client
may observe stale (but consistent) data. For example, a network partition between the
origin server and replica could cause the client of a stock ticker service to observe the
anomalous behavior of a stock price not changing for several minutes. We note that in this
scenario, physical time acts as a communications channel outside of the control of the data
replication middleware that allows a user to observe anomalous behavior from the replica-
tion system. Hence, we allow systems to enforce timeliness constraints on data updates by
providing∆-coherence, which requires that any read reflect at least all writes that occurred
before the current time minus∆. [Singla et al. 1997] By combining∆-coherence with se-
quential consistency, TRIP enforces a tunable staleness limit on the sequentially consistent
view. The∆ parameter reflects a per-service trade-off between availability and worst case
staleness: reducing∆ improves timeliness guarantees but may hurt availability because
disconnected edge servers may need to refuse a request rather than serve overly stale data.

Second, some redirection infrastructures [Challenger et al. 1999; Karger et al. 1997;
Yoshikawa et al. 1997] may cause a client to switch between replicas, allowing it to ob-
serve inconsistent state. For example, consider two replicasr1 andr2 wherer2 processes
messages more slowly thanr1, and updatesu1 andu2 such thatu1 happens before[Lam-
port 1978]u2. If a client ofr1 sees updateu2, switches tor2 (which has not seenu1 yet)
and sees data that should have been modified byu1 but is not, it observes an inconsis-
tency. In [Belaramani et al. 2006], we discuss how to adapt Bayou’s session consistency
protocol [Terry et al. 1994] to our system to ensure that each client observes a sequentially
consistent view regardless of how often the redirection infrastructure switches the client
among replicas.

6.2 TRIP Design

Figure 15 provides a high-level view of TRIP’s realization of the SSR architecture for syn-
chronizing a replica’s data store with the origin server’s. When the origin server writes
an object (number©1 in the figure), it immediately sends an invalidation to each replica©2,
updates the local checkpoint©3, and enqueues the body of the update in a priority queue
of speculative updates for each replica©4. In contrast with the immediate transmission
of invalidations on a normal-priority lossless network connection©5, each priority queue
drains by sending its highest-priority update to its replica via a low-priority network chan-
nel when the network path between the origin server and replica has spare capacity©6.
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When the origin server receives a demand read request, it replies with a a demand body
from its checkpoint using a normal-priority network channel©7.

At the replica, invalidations©8, speculative updates©9, and demand bodies©10 that arrive
are buffered rather than being immediately applied to the replica’s local data store. A
scheduler©11 at each replica decides when to apply information from these three buffers
to the local store©12 in order response time to enforce sequential consistency, enforce∆-
coherence, maximize availability, and minimize response time.

This TRIP design embodies the SSR architecture’s approach to safe speculative replica-
tion using two key ideas

(1) Self-tuning resource management.Sending speculative updates via a priority queue that
drains via a low-priority network channel ensures that prefetch traffic does not consume
network resources that regular TCP connections could use. In particular, when a lot of
“spare bandwidth” is available, the queue drains quickly and nearly all updates are sent
as soon as they are inserted. But, when little “spare bandwidth” is available, the buffer
sends only high priority updates and absorbs repeated writes to the same object.

(2) Scheduled application of messages.Each replica buffers the invalidation, speculative
update, and demand update messages it recives and a scheduler decides when to apply
these messages to the local store. The scheduler applies messages in an order that meets
consistency requirements, it delays applying some messages to improve availability and
performance, and it enforces a maximum delay to meet timeliness constraints.
In the next three subsections, we provide additional details on how replicas process up-

dates and how the system copes with machine/network failures. Then Subsection 6.2.3
describes our prototype implementation adn discusses several limitations of the basic al-
gorithm as well as possible optimizations available within this framework.

6.2.1 Replica Updates.The core of each replica is a novelschedulerthat coordinates
the application of invalidations, updates, and demand read replies to the replica’s local
state. The scheduler has two conflicting goals. On one hand, it would like to delay applying
invalidations for as long as possible to minimize the amount of invalid data and thereby
maximize local hit rate, maximize availability, and minimize response time. On the other
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hand, it must enforce sequential consistency and∆-coherence, so it must enforce two
constraints:

C1 A replica must apply all invalidations with sequence numbers less thanN to its storage
before it can apply an invalidation, update, or demand reply with sequence numberN .2

C2 A replica must apply an invalidation with timestampt to its storage no later thant +
∆−maxSkew.

Note that∆ specifies the maximum staleness allowed between when an update is applied
at the origin server and when the update affects subsequent reads, andmaxSkewbounds
the clock skew between the origin server and the replica.

To meet these goals, when the origin server receives an update, it assigns the update
a sequence number and a real-time timestamp, and it sends invalidations, speculative up-
dates, and demand updates as described earlier. Then, a replica enqueues all incoming
invalidation and update messages sorted by sequence number, and it applies the following
rules to decide when to apply updates and invalidations:

(1) A scheduler applies a demand or speculative update message as soon as it has received
and applied all invalidations with lower sequence numbers.
This rule allows a replica to simultaneously apply an invalidation with the corresponding
update body. A replica that activates this rule thereby replaces an obsolete version of an
object as soon as it can do so without opening a window during which the object would
be invalid and could cause a read miss. Note that applying an update normally entails
updating the local sequence number and body for the object, but if the locally stored
sequence number already exceeds an update’s sequence number, the replica must discard
the update because a newer demand reply or invalidation has already been processed.

(2) The scheduler applies an invalidation to its local store when (1) an update with the same
sequence number is available in the speculative or demand queue of pending updates,
(2) the invalidation’s deadline arrives attimestamp+∆−maxSkew, or (3) an update
with a higher sequence number is available in the demand queue of pending updates.
The first rule minimizes staleness by aggressively applying an update as soon as both the
update and invalidation are available; the second rule enforces the worst-case staleness
guarantee; and the third rule minimizes demand response time by immediately applying
all invalidations that are preventing a demand read reply from being applied.

6.2.2 Disconnections and failures.When a replica becomes disconnected from the
server due to a network partition or server failure, the replica attempts to service requests
from its local store as long as possible. If the local copies of most objects are valid, a
replica may be able to mask the disconnection for an extended period. However, to enforce
∆-coherence, a replica must block all reads if it has not communicated with the origin
server for∆ seconds. We use a heartbeat protocol to ensure liveness when the network is
available. But, if a read miss occurs during a disconnection, it logically blocks until the
connection is reestablished and the server satisfies the demand miss.

In a web service environment, blocking a client indefinitely is an undesirable behavior.
Therefore, TRIP provides three ways for services to give up some transparancy in order
to gain control of recovery in the case where a replica blocks because it is disconnected
from the origin server. First, TRIP can reply to read requests from the calling edge server
program by returning an error code. Because this approach requires that the edge server

2We show in [Nayate et al. 2003] that enforcing condition C1 yields sequential consistency.
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program be designed to expect such an error code, it prevents the replication layer from
being fully transparent. Second, TRIP can (1) signal the redirection layer [Challenger et al.
1999; Karger et al. 1997; Yoshikawa et al. 1997] to stop sending requests to this replica
and (2) signal the local web server infrastructure to close all existing client connections
and to respond to subsequent client requests with HTTP redirects [Fielding et al. 1999]
to different replicas. Although this approach requires web servers to be augmented with
the ability to handle signals from the replication layer, we do not expect these changes to
be invasive. Third, during the common case of a connected replica, the replica enforces
a desired∆connected staleness bound, but to improve availability and response time, if
the replica detects a network disruption, it falls back on enforcing a maximum acceptable
∆disconnected staleness bound with∆connected < ∆disconnected. Increasing∆ during
disconnections allows the system to further delay applying pending invalidations and thus
maximize the amount of valid local data and maximize the amount of time the replica can
operate before suffering a miss.

6.2.3 Prototype implementation.Our prototype is implemented in Java, C, and C++
on a Linux platform, but we expect the server code to be readily portable to any standard
operating system and the replica code to be portable to any system that supports mounting
an NFS server. Our implementation makes use of two subsystems that are outside the
scope of this project and that we do not discuss in detail: a protocol for limiting the clock
skew between each replica and the origin server [David L. Mills 1992] and a policy for
prioritizing which documents to push to which replicas [Gwertzman and Seltzer 1995;
Venkataramani et al. 2001].

The rest of this section discusses internal details and design decisions in the server and
replica implementations and then details several limitations and opportunities for future
enhancements.

6.2.3.1 Origin Server.The origin server uses the local file system for file storage, and
to simplify handing failures, the origin server uses a custom persistent message queue [Cor-
poration 1995] for sending updates and invalidations to each replica. Because our proto-
col only uses the update channel to push update data, the origin server does not store
out-bound updates to persistent storage and considers it permissible to lose these updates
across crashes. To provide a low-priority network channel for updates that does not in-
terfere with other network traffic, we use an implementation of TCP-Nice [Venkataramani
et al. 2002b].

6.2.3.2 Replica. The replica implements a singlereadmethod to access shared data.
The simplicity of this interface allows us to use TRIP as a building block for a vari-
ety of replicated applications that require sophisticated interfaces. For example, pub-
lish/subscribe systems can be implemented by having the publisher perform write calls
to publish data to the matching service, and the matching service can later make read calls
to request data to serve to clients. Chen et al. [Chen et al. 2003] show an approach that
can be adopted to compute priorities for pages in a publisher/subscriber model. For our
prototype, however, we build TRIP to export a subset of the interface used by the NFS file
system via a local user-level NFS file server [Mazires 2001], allowing the replica to mount
this local file server as if it were a normal NFS server. Shared objects are accessed as if
they are stored in a standard file system. For simplicity, we respond to reads of invalidated
data during disconnections by returning an NFS error code to the calling program.



34 · M. Dahlin et al.

A remaining design choice is how to handle a second read requestr2 for object o2

that arrives when a first read requestr1 for objecto1 is blocked and waiting to receive
a demand reply from the origin server. Allowingr2 to proceed and potentially access a
cached copy ofo2 risks violating sequential consistency [Adve and Gharachorloo 1996]
if program order specifies thatr1 happens beforer2. On the other hand, ifr1 andr2 are
issued by independent threads of computation that are not synchronized, then the threads
are logically concurrent and it would be legal to allow readr2 to “pass” readr1 in the
cache [Lamport 1979; Frigo and Luchangco 1998]. The TRIP design therefore affords two
options. Conservativemode preserves transparancy but requires a read issued while an
earlier read is blocking on a miss to block.Aggressivemode compromises transparency
because it requires knowledge of application internals, but it allows a cached read to pass
a pending read miss. Our prototype implements theConservativeapproach to maximize
transparency, so it may give up some performance.

6.2.3.3 Limitations. Our current protocol faces two limitations that could be addressed
with future optimizations. First, as described in Section 6.1 our current protocol can allow
a client that switches between replicas to observe violations of sequential consistency. We
speculate in [Nayate et al. 2003] that a system could shield a client from such inconsistency
by adapting Bayou’s session guarantees protocol [Terry et al. 1994]. Second, our protocol
sends each invalidation to all replicas even if a replica does not currently have a valid copy
of the object being invalidated. We take this approach for simplicity, although our protocols
could be extended to more traditional caching environments where replicas maintain small
subsets of data by adding callback state [Howard et al. 1988].

6.3 TRIP Evaluation

We evaluate TRIP using two approaches: by employing a trace-driven simulator and eval-
uating a prototype. Our primary results are that (1) self-tuning prefetching can dramati-
cally improve the response time of serving requests at replicas compared to demand-based
strategies, (2) although a Push All strategy enjoys excellent response times by serving all
requests directly from replicas’ local storage, this strategy is fragile in that if update rates
exceed available bandwidth for an extended period of time, the service must either violate
its ∆-consistency guarantee or become unavailable, (3) when prefetching is used, delaying
application of invalidation messages by up to 60 seconds provides a modest additional im-
provement in response times, and (4) by maximizing the amount of valid data at replicas,
prefetching can improve availability by masking disconnections between a replica and the
origin server.

6.3.1 Simulation Methodology.Our trace-driven simulator models an origin server
and twenty replicas and assumes that the primary bottleneck in the system is the network
bandwidth from the origin server. To simplify analysis and comparisons among algo-
rithms, we assume that the bandwidth available to the system does not change throughout
a simulation. We also assume that bandwidth consumed by control information (invali-
date messages, message queue acknowledgments, meta data, etc.) is insignificant com-
pared to the bandwidth consumed transferring objects; we confirm using our prototype
that control messages account for less than 1% of the data transferred by the system.
Transferring an object over the network thus consumes a link forobjectsize/bandwidth
seconds, and the delay from when a message is sent to when it is received is given by
nwLatency+messageSize/bandwidth. We simulate a round-trip time (2∗nwLatency)
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Fig. 16. Average response times and data staleness observed at a client

of 200ms +/- 90% between the origin server and a replica.
We compare TRIP’sFIFO-Delayed-Invalidation/Priority-Delayed-Updatealgorithm with

three algorithms:Demand Only, which delivers invalidates eagerly in FIFO order but does
no prefetching,Push Allwhich eagerly pushes all updates to all replicas in FIFO order, and
Static Thresholdwhich pushes, in FIFO order, each update with a predicted probability of
reference above a specified threshold. We assume that the system requires (1) sequential
consistency, which all of these algorithms provide and (2) a∆-coherence guarantee of∆
= 60 seconds, whichDemand Onlynaturally meets, whichTRIPsystematically enforces,
and whichPush Allor Static Thresholdmay or may not meet depending on available band-
width.

We evaluate our algorithms using a trace-based workload of the Web site of a major
sporting event [Challenger et al. 1999] hosted at several geographically distributed loca-
tions. In order to simplify simulations we ignore those entries in our trace files that contain
dynamic/malformed requests, result in invalid server return codes, or that appear out of
order.

Prediction policy. Our interface allows a server to use any algorithm to choose the pri-
ority of an update, and this article does not attempt to extend the state of the art in prefetch
prediction. A number of standard prefetching prediction algorithms exist [Duchamp 1999;
Griffioen and Appleton 1993] or the server may make use of application-specific knowl-
edge to prioritize an item. Our simple default heuristic for estimating the benefit/cost ratio
of one update compared to another is to first approximate the probability that the new ver-
sion of an object will be read before it is written as the observed read frequency of the
object divided by the observed write frequency of the object and then to set the relative
priority of the object to be this probability divided by the object’s size [Venkataramani
et al. 2001]. This algorithm appears to be a reasonable heuristic for server push-update
protocols: it favors read-often objects over write-often objects and it favors small objects
over large ones.

6.3.2 Simulation Results.

6.3.2.1 Response Times and Staleness.In Figure 16(a), we quantify the effects of dif-
ferent replication strategies on client-perceived response times as we vary available band-
width. We assume that client requests for valid objects at the replica are satisfied in 20ms,
whereas requests for invalidated objects are forwarded from the replica to the origin over
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a network with an average round-trip latency of 200ms as noted above. To put these re-
sults in perspective, Figure 16(b) plots the average staleness observed by a request. We
define staleness as follows. If a replica serves versionk of an object after the origin site
has already (in simulated time) written versionj (j > k), the staleness of a request is the
difference between when the request arrived at the replica and when versionk + 1 was
written. To facilitate comparison across algorithms, this average staleness figure includes
non-stale requests in the calculations. We omit due to space constraints a second graph that
shows the (higher) average staleness observed by the subset of reads under each algorithm
that receives stale data.

We also show in Figures 16(a) and 16(b) the latency and staleness yielded when using
the static-threshold-prefetching algorithm, which prefetches objects when the predicted
likelihood of their being accessed exceeds a statically chosen threshold. We plot the be-
havior of this algorithm when it is tuned to prefetch objects that have a greater than 1%,
50% and 99% estimated chance of being accessed (denotedStatic Threshold(p = 0.01), (p
= 0.5), and (p = 0.99), respectively, on the graph). We note thatPush AllandDemand Only
represent extreme cases of this algorithm with thresholds of 0 (push an update regardless of
its likelihood of being accessed) and 1 (only push an update if it is certain to be accessed),
respectively.

The data indicate that the simplePush Allalgorithm provides much better response times
than theDemand Onlystrategy, speeding up responses by a factor of at least four for all
bandwidth budgets examined. However, this comparison is a bit misleading as Figure 16(b)
indicates: for bandwidth budgets below 2.1MB/s,Push Allfails to deliver all of the updates
and serves data that become increasingly stale as the simulation progresses. We note that
under such a bound requirement, Push All replicas would be forced to either violate this
freshness guarantee or become unavailable when the available bandwidth falls below about
3MB/s.

TheStatic Thresholdlines illustrate precisely the problem with threshold-based specu-
lative replication. When the system has less than 2MB/s available bandwidth, theStatic
Thresholdalgorithm yields lower response times than theTRIP algorithm, but it does so
by violating the staleness guarantees. Conversely, when the system has more than 2MB/s
bandwidth available, TRIP is able to replicate more aggressively and provides better perfor-
mance than the threshold-based approach, as thestatic Thresholdalgorithm fails to utilize
it to reduce response times.

Even at low bandwidths,TRIPgets significantly better response times than theDemand
Only algorithm because (a) the self-tuning network scheduler allows prefetching to occur
during lulls in demand traffic even for a heavily loaded system [3] and (b) the priority
queue at the origin server ensures that the prefetching that occurs is of high benefit/cost
items. TRIP’s ability to exploit lulls in demand bandwidth also constitutes the reason that
when the system has 2MB/s available bandwidth TRIP can outperform static-threshold
while still retaining its timeliness guarantees.

6.3.2.2 Variations of TRIP.Due to space constraints, we omit a graph that plots re-
sponse times for two variations of TRIP. In the first variation, we reduce the∆ parameter
to 0 to evaluate the behavior of TRIP when we require replicas to apply all invalidate mes-
sages immediately. Under this scenario we find that values of∆ below 60s inflict a modest
cost on response times, but this cost falls as available bandwidth increases. For example,
at 1MB/s of available bandwidth, the∆ = 60s case yields 12.6% lower response times
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Fig. 17. Mask duration as bandwidth varies.

than the∆ = 0s case. However, our second variation of TRIP, TRIP-aggressive, which
sacrifices some transparency and assumes that parallel read requests are independent, can
result in substantial benefits. For example, for a system with 500KB/s of available band-
width, this optimization improves response time by a factor of 2.5. But, this benefit falls
as available bandwidth increases, suggesting that this optimization may become less valu-
able as network costs fall relative to the cost of requiring programmers to carefully analyze
applications to rule out the possibility of unexpected interactions [Hill 1998].

6.3.2.3 Availability. We measure the replication policies’ effect on availability as fol-
lows. For each of 50 runs of our simulator for a given set of parameters, we randomly
choose a point in time when we assume that the origin server becomes unreachable to
replicas. We simulate a failure at that moment and measure the length of time before any
replica receives a request that it cannot mask due to disconnection. We refer to this duration
as the mask duration. We assume that systems enforce∆-coherence with∆ = 60 seconds
before the disconnection but that disconnected replicas maximize their mask duration by
stopping their processing of invalidations and updates during disconnections and extending
∆ as long as they can continue to service requests. Thus, during periods of disconnectiv-
ity, our system chooses to provide stale data rather than failing to satisfy client requests.
Note that given these data, the impact of enforcing shorter∆s during disconnections can
be estimated as the minimum of the time reported here and the∆ limit enforced.

Figure 17 shows how the average mask duration varies with bandwidth for the TRIP,
TRIP (∆ = 0), and Demand Only algorithms. Because mask duration is highly sensitive to
the timing of a failure, dierent trials show high variability. We quantify this variability in
more detail in an extended technical report [Nayate et al. 2003].

Note that the traditional Demand Only algorithm performs poorly. In Figure 17, the
line closely follow y = 0, indicating virtually no ability to mask failures. This poor be-
havior arises because the first request for an object after that object is modied causes a
disconnected replica to experience an unmaskable failure. On the other hand, the Push All
algorithm can mask all failures due to the fact that at any point in time, the entries in a
replica’s cache form a sequentially consistent (though potentially stale) view of data.

The TRIP algorithm outperforms the Demand Only algorithm in the graph by maxi-
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Fig. 18. Replica-perceived response times yielded by the Demand Only, FIFO, and TRIP algorithms.

mizing the amount of local valid data.We note that both TRIP variations provide average
masking times of thousands of seconds for bandwidth of 1.5MB/s and above and that pro-
viding additional bandwidth allows these systems to prefetch more data and hence mask
a failure for a longer duration. As noted in Section 6.2.2, systems may choose to relax
their ∆-coherence time bound to some longer∆disconnected value during periods of dis-
connection to improve availability. These data suggest that systems may often be able to
completely mask failures that last the maximum maskable duration even for relatively large
∆disconnected limits.

6.3.2.4 Prototype Measurements.We evaluate our prototype on the Emulab testbed [White
et al. 2002]. We configure the network to consist of an origin server and 4 replicas that re-
ceive 5Mb/s of bandwidth and 200ms round-trip times. We mount the local user-level file
server using NFS with attribute caching disabled. For simplicity, we do not monitor object
replication priorities in real time but instead pre-calculate them using each object’s average
read rate, write rate, and size [Venkataramani et al. 2001].

Since the goal of the prototype is to evaluate how our system performs in practice, we
use a more realistic evaluation methodology from the one we use for our simulator. In
particular, when evaluating our prototype we do not remove any entries from our traces and
make no simplifying assumptions about the size of invalidate messages or the behavior of
network links. However, due to the lack of data on which resources or objects get accessed
to handle dynamic requests, our system simply treats dynamic requests as accesses to static
pre-generated objects.

Figure 18 shows the response times as seen at each of the 4 replicas.We collect these
data by replaying at the origin and at each replica the first hour of our update trace and web
traces in real time. The response time for a given request is calculated as the difference
between when the request arrives at a replica and when its reply is generated. Note that
these response times do not represent the end-to-end delay experienced by clients because
they do not include the network delays between clients and replicas. However, one can
easily compute total end-to-end delays by adding estimated client-replica network delays
to this data. As we see in the graph, the Push All algorithm yields the best response time.
For example, it outperforms the Demand Only algorithm by a factor of 2 for 3 of the 4
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replicas. We note that at 5Mb/s bandwidth available to the system, TRIP incurs only minor
increases in response times over the more dangerous Push All: 7.5%, 6.2%, 1.4%, and
3.4% increase for each replica respectively. We also note that by delaying the application
of invalidate messages, TRIP with∆ = 60s reduces response times compared to∆ = 0 by
4.4%, 8.7%, 5.0%, and 3.0% respectively.

6.3.2.5 Summary.In summary, we conclude that the SSR approach is practical for
large-scale distributed systems with consistency constraints. The TRIP data dissemina-
tion system case study shows that, despite the CAP dilemma, SR can provide significant
improvements in availability and response time while satisfying strong consistency con-
straints. Although we report on experience only with sequential and∆ consistency in a
single-writer environment in this article, we believe that the SSR approach can be used to
build more complex distributed systems with general consistency constraints [Belaramani
et al. 2006].

7. RELATED WORK

In this paper, we presented a general architecture for speculative replication with two novel
contributions: (i) self-tuning resource management and (ii) integration of SR with consis-
tency constraints to alleviate the CAP dilemma. In this work, we draw on three of our pre-
vious studies that define TCP-Nice [Venkataramani et al. 2002b] and implement systems
for speculative replication of web [Kokku et al. 2003] and dissemination [Nayate et al.
2004] data. This article builds on these ideas to synthesize a new, general architecture for
speculative replication. Our case studies here are limited to client-server systems in wide
use today such as the Web and data dissemination applications. Subsequent to the work
described here, we have taken SSR’s principles and applied them to serverless distributed
systems with multiple writers and general consistency semantics. This approach, known
as PRACTI replication [Belaramani et al. 2006], implements a log-exchange mechanism
on top of SSR to propagate invalidates and additionally uses summarization techniques to
simulataneously providepartial replication, arbitrary consistency, and topology indepen-
dence.

A number of studies have pointed out the benefits of speculative replication for large-
scale distributed systems such as the Web, wide-area file systems, distributed databases,
edge service architectures etc.

Proposed models for Web prefetching include Web server-assisted pushing of popu-
lar content [Padmanabhan and Mogul 1996a; Gwertzman and Seltzer 1995; Duchamp
1999], Web proxy-assisted prefetching [Fan et al. 1999; Bestavros 1996b], client-side only
prefetching [Wcol ; Klemm 1999; Fireclick ]. The general consensus appears to favor a
high level architecture in which a Web server or an edge server sends hints to a client or
proxy for what to prefetch and the latter issues requests for the same [Padmanabhan and
Mogul 1996a; Chen and Zhang ; Duchamp 1999; Mozilla ]. Proposed schemes include
prefetching hyperlinks [Duchamp 1999; Wcol ], prefetching the “top N” most popular
objects [Markatos and Chronaki 1998], history-based Markov models [Padmanabhan and
Mogul 1996a; Palpanas 1998], utility-based decision-theoretic models [Horvitz 1998], data
mining based approaches [Pitkow and Pirolli 1999; Chen et al. 1998; Su et al. 2000] etc.
A survey of various prediction algorithms may be found in [Davison 2002].

Unfortunately, none of these schemes address the problem of resource management
amidst interference in a systematic manner. Several schemes attempt to balance cost and
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benefit of prefetching using threshold-based approaches that are validated using simplistic
trace-based simulation experiments. For example, Duchamp [Duchamp 1999] proposes a
threshold of 0.25 on the access probability to limit prefetching bandwidth; Klemm [Klemm
1999] proposes limiting prefetching to objects whose expected round-trip time is at most
75% of the average of all accesses; Padmanabhan and Mogul suggest tuning the threshold
on access probability to limit bandwidth; Jiang and Kleinrock [Jiang and Kleinrock 1997]
propose an adapting a threshold to limit bandwidth cost by modeling the server and net-
work as an M/G/1 round-robin processor sharing system; Wcol [Wcol ] limits bandwidth
by placing a bound on the number of hyperlinks prefetched; Firefox [Mozilla ] is provi-
sioned to prefetch during the client’s idle periods but ignores interference with other ap-
plications and users. Some schemes propose coarse-grained scheduling schemes to reduce
interference such as prefetching during hours where there is little demand traffic [Dykes
and Robbins 2001; Maltzahn et al. 1999].

Davison et. al [Davison and Liberatore 2000] propose using a connectionless transport
protocol and using low priority datagrams (infrastructural support for which is assumed) to
reduce network interference due to Web prefetching. Modified servers speculatively push
documents chunked into datagrams of equal size and (modified) clients use range requests
as defined in HTTP/1.1 for missing portions of the document. Servers maintain state in-
formation for prefetching clients and use coarse-grained estimates of per-client bandwidth
to limit the rate at which data is pushed to the client. Their simulation experiments do
not explicitly quantify interference and use lightly loaded servers in which only a small
fraction of clients are prefetching.

All of the above schemes focus on limiting the bandwidth consumed by prefetching.
Though bandwidth is an expensive resource in a WAN system, it does not represent the
true overall cost of prefetching. SSR adopts a wholistic view of resource management for
speculative replication and attempts to eliminate interference at every resource. The NPS
Web prefetching system demonstrates that it is possible to do so in a deployable manner
without modifying existing infrastructure.

Speculative update propagation has been proposed for improving performance and avail-
ability of wide-area file systems. Examples include hoarding in Coda [Kistler and Satya-
narayanan 1992] during periods of connectivity, anti-entropy in Bayou [Terry et al. 1995],
aggressive replica creation and update propagation in Pangaea [Saito et al. 2002], lazy
replication [Ladin et al. 1992], AvantGo [AvantGo 2001] etc. Edge service architec-
tures [akamai ; Gao et al. 2003; Sivasibramanian et al. 2005] perform speculative repli-
cation in a loose sense where content is moved close to a client before access. However,
these systems operate in resource-rich environments where it is feasible to replicate and
update the entire content base or an earmarked subset thereof at each location. Often, as in
the case of CDNs, the resources used for such replication are provisioned separately from
those used by demand load. Thus, the above systems do not face the problem of manag-
ing intereference across different wide-area administrative domains. One reason for lack
of deployment of large-scale speculative replication systems today is that they must wait
until system capacity becomes high enough to employ simplisticpush-allor prefetch-all
strategies.

7.1 Background Transport

Our goal of preventing network interference between speculative and demand load in a
deployable manner led us to develop TCP Nice that provides low priority transport in a
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network dominated by TCP flows.
TCP congestion control has seen an enormous body of work since Jacobson’s seminal

paper on the topic [Jacobson 1988]. This work seeks to maximize utilization of network
capacity, to share the network fairly among flows, and to prevent pathological scenarios
like congestion collapse. In contrast TCP Nice’s primary goal is to ensure minimal inter-
ference with regular network traffic; though high utilization is important, it is a distinctly
subordinate goal in our algorithm. Nice is always less aggressive than AIMD TCP: it reacts
the same way to losses and in addition, it reacts to increasing delays. Therefore, the work
to ensure network stability under AIMD TCP applies to Nice as well.

The GAIMD [Yang and Lam 2000] and binomial [Bansal and Balakrishnan 2001] frame-
works provide generalized families of AIMD congestion control algorithms to allow pro-
tocols to trade smoothness for responsiveness in a TCP-friendly manner. The parameters
can also be tuned to make a protocol less aggressive than TCP. We considered using these
frameworks for constructing a background flow algorithm, but we were unable to develop
the types of strong non-interference guarantees we seek using these frameworks. One area
for future work is developing similar generalizations of Nice in order to allow different
background flows to be more or less aggressive compared to one another while all remain
completely timid with respect to competing foreground flows.

Prioritizing packet flows would be easier with router support. Router prioritization
queues such as those proposed for DiffServ [RFC 2475 1999] service differentiation archi-
tectures are capable of completely isolating foreground flows from background flows while
allowing background flows to consume nearly the entire available spare bandwidth. Un-
fortunately, these solutions are of limited use for someone trying to deploy a background
replication service today because few applications are deployed solely in environments
where router prioritization is installed or activated. A key conclusion of our work on TCP
Nice is that an end-to-end strategy need not rely on router support to make use of available
network bandwidth without interfering with foreground flows.

Rate limiting techniques can provide a coarse form of prioritization. Spring et. al [Spring
et al. 2000] discuss prioritizing flows by controlling the receive window sizes of clients.
Crovella et. al [Crovella and Barford 1998] propose a combination of window-based rate
control and pacing to spread out prefetched traffic to limit interference. They show that
such shaping of traffic leads to less bursty traffic and smaller queue lengths.

Existing transport layer solutions can be used to tackle the problem of self-interference
between a single sender/receiver’s flows. The congestion manager CM [Andersen et al.
2000] provides an interface between the transport and the application layers to share in-
formation across connections and for handling applications using different transport proto-
cols. Microsoft XP’s Background Intelligent Transfer Service (BITS) [Microsoft ] provides
support for transfers of lower priority to minimize interference with the user’s interactive
sessions by using a rate throttling approach. In contrast to these approaches, Nice handles
both self- as well as cross-interference by modifying the sender side alone.

TCP-LP [Kuzmanovic and Knightly 2003], proposed roughly simultaneously with TCP
Nice, provides low-priority transfers using a similar round-trip time based algorithm. Key
et al [Key et al. 2004] subsequently developed an application-level receiver-side scheme for
low priority transport that uses receiver window sizes to control the sending rate. They use
a fluid model and an optimization-based framework to correlate the change in the good-
put of a background flow to interference with foreground flows. In comparison to these
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schemes, our work on TCP Nice, in addition to serving as a stand alone background trans-
fer protocol, presents it in the broader context of building large-scale replication systems.

7.2 Consistency in SR systems

Most proposed Internet-scale data replication systems focus on ensuring various levels of
coherence or staleness or both [Cohen et al. 1998; Sivasibramanian et al. 2005; Krishna-
murthy and Wills 1998; Li and Chariton 1999; Mikhailov and Wills 2003; Worrell 1994;
Yin et al. 1999; Yin et al. 2002a], but few provide explicit consistency guarantees. Un-
fortunately, Frigo notes that even strong coherence is considerably weaker than sequential
consistency [Frigo 1998]. Bradley and Bestavros [Bradley and Bestavros 2003] argue that
increasingly complex Internet-scale services will demand sequential consistency and pro-
pose a vector-clock-based algorithm for achieving it. In the light of the scarcity of Internet-
scale data replication systems providing strong consistency guarantees, it is not surprising
that speculative replication for such systems has been a largely unexplored domain

The IBM Sporting and Event CDN system uses a push-all replication strategy and en-
forces delta coherence via invalidations [Challenger et al. 1999]. Akamai’s EdgeSuite [aka-
mai 2001] primarily relies on demand reads and enforces delta coherence via polling with
stronger consistency available via object renaming. Burns et al. [Burns et al. 2000] dis-
cuss apublish consistencymodel of consistency that is useful for web workloads and show
that consistency implemented by file systems has inefficiencies that prevents easily scal-
ing them to many clients. Most of these systems use demand reads, but several strategies
for mixing updates and invalidates have been explored for multicast networks [Fei 2001;
Rodriguez and Sibal 2000; Li and Chariton 1999]. These multicast-based proposals all
use static thresholds to control prefetching and provide best-effort consistency, coherence,
and timeliness semantics by sending and applying all messages eagerly. In contrast, TRIP,
based on the SSR architecture, provides self-tuning support for prefetching and maintains
sequential consistency. A potential avenue for future work is to develop a way for TRIP to
make use of multicast or hierarchies to scale to larger numbers of replicas. SSR’s separa-
tion of data and metadata paths should make such extensions straightforward.

Our choice of sequential consistency for the TRIP case study is similar in spirit to Hill’s
position that multiprocessors should support simple memory consistency models like se-
quential consistency rather than weaker models [Hill 1998]. Hill argues that speculative
execution reduces the performance benefit that weaker models provide to the point that
their additional complexity is not worth it. We similarly argue that for dissemination work-
loads, as technology trends reduce the cost of bandwidth, prefetching can reduce the cost
of sequential consistency so that little additional benefit is gained by using a weaker model
and exposing more complexity to the programmer. In the context of distributed systems,
Gray [J. Gray and I.L. Traiger and C.A. Galtaire and B.G. Lindsay 1982] and Birman [K.
Birman 2005] have similarly argued for saving (expensive) human effort and attention by
developers and users at the possible cost of (inexpensive) additional processing and proto-
col messages.

The problem of isolating speculative and demand load has been previously considered
in the context of stand-alone systems. For hardware prefetching, Lin et. al [Lin et al. 2001]
propose issuing prefetch requests only when bus channels are idle and giving them low
replacement priorities so as to not degrade the performance of regular memory accesses
and avoid cache pollution. Several algorithms for balancing prefetch and demand use of
memory and storage system have been proposed [Cao et al. 1995b; Chandra et al. 2001;
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Kimbrel et al. 1996; Patterson et al. 1995b]. Applying any of these schemes in the context
of large-scale SR systems would require significant infrastructural changes. The SSR ap-
proach, supported by our case studies of NPS and TRIP, shows how to isolate speculative
and demand load in simple and deployable manner for WAN systems.

8. DISCUSSION AND CONCLUSIONS

In this article, we argue that in order to be useful in practice, speculative replication should
have three key features: it should be self-tuning, it should integrate consistency, and it
should be deployable. We propose the Safe Speculative Replication (SSR) architecture to
meet these goals.

The biggest surprise in conducting this work was the importance and feasibility of an
end-to-end approach to resource management. For example, we initially planned to lever-
age the vast literature of processor and disk schedulers to avoid server interference in our
NPS system. But, when the time came to implement the server, we had trouble getting
our hands on the code for the disk scheduler we had planned to use, which forced us to
reconsider our approach and use the simpler end-to-end monitor approach. Although low
level schedulers may sometimes be appropriate when instantiating the SSR architecture,
we now appreciate that the deployability advantages of the end-to-end approach will fre-
quently outweigh the performance advantages of low-level schedulers.

One key piece of future work is generalizing the SSR resource schedulers to account
for costs like energy or per-byte bandwidth charges that impose a charge on prefetching
even when preetching does not interfere with demand requests. We speculate that SSR
schedulers that consider such costs may choose to drop prefetch requests whose expected
value falls below some threshold, but evaluating this idea remains future work.
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