
Interpreting Stale Load Information
�

Michael Dahlin
Department of Computer Sciences

University of Texas at Austin
dahlin@cs.utexas.edu

Abstract

In this paper we examine the problem of balancing load in a large-scale distributed system
when information about server loads may be stale. It is well known that sending each request to
the machine with the apparent lowest load can behave badly in such systems, yet this technique
is common in practice. Other systems use round-robin or random selection algorithms that
entirely ignore load information or that only use a small subset of the load information. Rather
than risk extremely bad performance on one hand or ignore the chance to use load information
to improve performance on the other, we develop strategies that interpret load information
based on its age. Through simulation, we examine several simple algorithms that use such load
interpretation strategies under a range of workloads. Our experiments suggest that by properly
interpreting load information, systems can (1) match the performance of the most aggressive
algorithms when load information is fresh relative to the job arrival rate, (2) outperform the
best of the other algorithms we examine by as much as 60% when information is moderately
old, (3) significantly outperform random load distribution when information is older still, and
(4) avoid pathological behavior even when information is extremely old.

Key Words: load balancing, server selection, stale information, queuing theory, distributed

systems.

1 Introduction

When balancing load in a distributed system, it is well known that the strategy of sending each

request to the least-loaded machine can behave badly if load information is old [17, 25, 29, 33]. In
�
A version of this paper will appear in the IEEE Transactions on Parallel and Distributed System. This is an

extended version of the paper which appeared at the 19th International Conference on Distributed Computing Systems,
May-June 1999.

1

such systems a “herd effect” often develops, and machines that appear to be underutilized quickly

become overloaded because everyone sends their requests to those machines until new load in-

formation is propagated. To combat this problem, some systems adopt randomized strategies that

ignore load information or that only use a small subset of load information, but these systems may

give up the opportunity to avoid heavily loaded machines.

Load balancing with stale information is becoming an increasingly important problem for dis-

tributed operating systems. Many recent experimental operating systems have included process mi-

gration facilities [2, 4, 8, 15, 23, 24, 31, 32, 34, 35, 39] and it is now common for workstation clus-

ters to include production load sharing programs such as LSF [40] or DQS [16]. In addition, many

network DNS servers, routers, and switches include the ability to multiplex incoming requests

among equivalent servers [1, 7, 14], and several run-time systems for distributed parallel com-

puting on clusters or metacomputers include modules to balance requests among nodes [18, 21].

Server load may also be combined with locality information for wide area network (WAN) infor-

mation systems such as selecting an HTTP server or cache [19, 30, 37]. As such systems include

larger numbers of nodes or as the distance between nodes increases, it becomes more expensive to

distribute up-to-date load information. Thus, it is important for such systems to make the best use

of old information.

This paper attempts to systematically develop algorithms for using old information. The core

idea is to use not only each server’s last reported load information (
���

), but also to use the age of

that information (�) and an estimate of the rate at which new jobs arrive to change that information

(�). For example, under a periodic update model of load information [29] that updates server load

information every � units of time, clients using our approach calculate the fraction of requests they

should send to each server in order to equalize the load across servers by the end of the epoch of

length � . Then, for each new request during an epoch, clients randomly choose a server according

to these probabilities.

In this paper, we devise load interpretation (LI) algorithms by analyzing the relevant queuing

2

systems. We then evaluate these algorithms via simulation under a range of load information

models and workloads. For our LI algorithms, if load information is fresh (e.g., � or � or both are

small), then the algorithms tend to send requests to machines that recently reported low load, and

the algorithms match the performance of aggressive algorithms while exceeding the performance

of algorithms that use random subsets of load information or pure random algorithms that use no

load information at all. Conversely, if load information is stale, the LI algorithms tend to distribute

jobs uniformly across servers and thus perform as well as randomized algorithms and dramatically

better than algorithms that naively use load information. Finally, for load information of modest

age, the LI algorithms outperform the best of the other algorithms we examine by as much 60%.

After quantifying these basic performance properties of the LI algorithms, we address three

key questions: (1) What is the impact of bursty arrival patterns or more variable jobs sizes? (2)

What is the impact of misestimating the job arrival rate? (3) What is the impact of limiting the

amount of load information available to the algorithms? We find that

1. The LI algorithms remain robust to stale information and retain good performance when

arrival patterns are bursty and when job sizes are highly variable.

2. Underestimating the arrival rate of jobs into the system can severely hurt system perfor-

mance under LI algorithms, but overestimating the arrival rate does little damage. Thus, a

reasonable strategy when arrival rates are difficult to predict appears to be to predict that the

arrival rate will match the maximum throughput of the system: if the actual rate is lower,

little performance is lost; if the actual rate is higher, the system will be unstable regardless

of the load balancing algorithm used.

3. Other algorithms that attempt to cope with stale load information, such as the k-subset al-

gorithm [29], have the added benefit that by restricting the amount of load information that

clients may consider when dispatching jobs, they may reduce the amount of load informa-

tion that must be sent across the network. We examine variations of the LI algorithms that

3

base their decisions on similarly reduced information. We conclude that even with severely

restricted information, the algorithms that use LI can outperform those that do not. Further-

more, modest amounts of load information allow the LI algorithms to achieve nearly their

full performance. Thus, LI decouples the question of how much load information should be

used from the question of how to interpret that information.

The primary disadvantage of our approach is that it requires clients to estimate or be told the

job arrival rate (�) and the age of load information (�). If this information is not available, or if

clients misestimate these values, our algorithms can have poor performance. We note, however,

that although other algorithms that make use of stale load information do not explicitly track these

factors, those algorithms do implicitly assume that these parameters fall within the range of values

for which load information can be considered “fresh;” if the parameters fall outside of this range,

those algorithms can perform quite badly. Conversely, because our algorithms explicitly include

these parameters, they gracefully degrade as information becomes relatively more stale.

The rest of this paper proceeds as follows. Section 2 describes related work with a particular

emphasis on Mitzenmacher’s recent study [29], on which we base much of our methodology and

several of our system models. Section 3 introduces our models of old information and Section 4

describes the load interpretation algorithms we use. Section 5 contains our experimental evaluation

of the algorithms, and Section 6 summarizes our conclusions.

2 Related work

Awerbuch et al. [5] examine load balancing with very limited information. However, their model

differs considerably from ours. In particular, they focus on the task of selecting a good server for

a job when other jobs are placed by an adversary. In our model, jobs are placed by entities that act

in their own best interest but that do not seek to interfere with one another. This difference allows

us to more aggressively use past information to predict the future.

4

A number of theoretical studies [6, 13, 17, 22, 27, 36] suggest that load balancing algorithms

can often be quite effective even if the amount of information examined is severely restricted. We

explore how to combine this idea with LI in Section 5.7.

Harchol-Balter et al. [20] find that when job sizes are highly-variable, the greedy approach

of sending jobs to the servers with the least remaining work can behave poorly, even when cur-

rent loads are known precisely. They develop a job-size based policy with better performance.

Extending the LI approach to such workloads remains important future work.

Several systems have used the heuristic of weighing recent information more heavily than old

information. For example, the Smart Clients prototype [38] distributes network requests across a

group of servers using such a heuristic. Additionally, a common technique in process migration fa-

cilities is to use an exponentially decaying average of past load to predict future load on a machine

(e.g.,
� ���������
	
� �
����� � ����������������� � ����� � � �!�
	
" � �$#&%(')�+* for some �-,.%). Unfortunately, the algo-

rithms used by these systems are somewhat ad hoc and it is not clear under what circumstances to

use these algorithms or how to set their constants. A goal of our study is to construct a systematic

framework for using old load information.

Several studies examine the behavior of load balancing with old information [25, 26, 29, 33].

These studies use combinations of three basic techniques to cope with stale information: (1) con-

sidering only a subset of randomly selected servers and choosing from among them rather than

from among all servers; (2) using a threshold to classify machines as either lightly-loaded or

heavily-loaded and choosing randomly from the lightly-loaded group; and (3) combining “sender-

driven” job placement with “receiver-driven” [33] rebalancing in which lightly-loaded or idle

servers remove jobs from heavily loaded servers. In this paper, we examine the first two op-

tions in detail and compare them with LI. Examining the performance of LI-based algorithms in

comparison with and combination with receiver-driven algorithms is important future work.

Our study most closely resembles Mitzenmacher’s work [28, 29]. Mitzenmacher examines a

system in which arriving jobs are sent to one of several servers based on stale information about

5

the servers’ loads. The goal in such a system is to minimize average response time. This study

examines a family of algorithms that make each server choice from small random subsets of the

servers to avoid the “herd effect.” Under these algorithms, if there are � servers, instead of sending

a request to the least loaded of the � servers, a client randomly selects a subset of size � of the

servers, and sends its request to the least loaded server from that subset. Note that when � � % ,

this algorithm is equivalent to uniform random selection without load information and that when

� � � it is equivalent to sending each request to the apparently least loaded server. In addition to

the formulating these � -subset algorithms as a solution to this problem, Mitzenmacher uses a fluid

limit approach to develop analytic models for these systems for the limiting case as the number

of servers � grows to infinity; however, the primary results in the study come from simulating the

queuing systems, and we follow a similar simulation methodology here.

The study concludes that the � ���
version of the algorithm is a good choice in most situations:

� ���
seldom performs significantly worse and generally performs significantly better than the

more aggressive algorithms (e.g., � � � or even the modestly aggressive � ���
algorithm), and

� ���
outperforms the uniform random (� � %) algorithm for a wide range of update frequencies.

We believe, however, that this approach can be improved. In particular, we note that as � —

the update frequency of load information—changes, the optimal value of � also changes. For

example, under Mitzenmacher’s periodic update model and one sample workload he examines,

� � %���� outperforms � �	�
by more than 70% when � ,
��� %�
 but � ���

quickly becomes much

better than � � %���� for larger values of � . Similarly, although � ���
outperforms � � % when

� , ��� for such a workload, the reverse is true for larger values of � . For example, when � � %���� ,
the � � % algorithm is a factor of 2 better than the � �
�

variation.

We also note that under k-subset algorithms, the resulting arrival rate at a server depends only

on the server’s rank in the sorted list of server loads, not on the magnitude of difference in the
�
Throughout this paper we express � in units of the average job service time. Similarly, because � represents the

ratio of the service time to the per-server inter-arrival time, the inter-arrival time,
�� is also expressed in units of the

job service time.

6

queue lengths between servers. Furthermore, assuming servers are chosen without duplication, the

� ' % most loaded servers receive no requests at all during a phase. More specifically, if servers

are ordered by load, with ��� having the lowest load and ��"��
 the highest and assuming there are no

ties in server load, a given request will be sent to server � � if and only if (1) servers ��� through � � �

are not chosen as part of the random subset of � servers and (2) server � � is chosen as part of that

subset. Because the probability that any server ��� is chosen as part of the � -server subset is
�" , the

probability that conditions (1) and (2) hold is

	 � �

��������������� ��������������

���
�
�-'�� ' %

� ' %

����
�

���
�
� ' %
� ' %

� ��
�

� �" if ��� # � ' �+*

� otherwise

(1)

(The numerator in the left term is the number of ways to choose � ' % elements and place them in

the �-'�� ' % slots from slot � �.% to slot �-' % ; the denominator is the number of ways to choose

� elements from � elements assuming that element � � is always chosen.)

Figure 1 illustrates the resulting distributions for a range of � ’s. These distributions have the

right general shape—more heavily loaded servers get fewer requests than more lightly loaded

servers. However, it is not obvious that the slope of any one of the lines is, in general, right. The

figure also illustrates why large values of � are inappropriate when � is large: a large fraction of

requests are concentrated on a small number of servers for a long period of time.

Mitzenmacher has independently developed an algorithm called Time-Based, which is equiva-

lent to our Aggressive Load Interpretation algorithm [29]. This article suggests an analytic model

for this algorithm based on a fluid limit approach for the limiting case as the number of servers

grows to infinity and also provides simulation results consistent with our findings.

7

0

0.05

0.1

0.15

0.2

0 10 20 30 40 50 60 70 80 90 100

F
ra

ct
io

n
of

 R
eq

ue
st

s

Server Rank

k=1
k=2
k=3k=10

k=50
k=100

Figure 1: Distribution of requests to servers under the � -subset algorithm with � � %���� .

3 Models of old information

There are several reasonable ways to model a delay from when load information is sampled to

when a decision is made to when the job under consideration arrives at its server. Different models

will be appropriate for different practical systems, and Mitzenmacher finds significant differences

in system behavior among models [29]. We therefore examine performance under three models so

that we can understand our results under a wide range of situations and so that we can compare

our results directly to those in the literature. We take the first two models, periodic update and

continuous update, from Mitzenmacher’s study.
�

Our third model, update-on-access, abstracts

some additional systems of practical interest. We describe these models in more detail below.
�

Mitzenmacher finds a third model, individual updates, to have similar behavior to the periodic update model, so

we omit analysis of this model for compactness.

8

3.1 Periodic and continuous update

Mitzenmacher’s periodic update and continuous update models can be visualized as variations

of a bulletin board model. Under the periodic update model, we imagine that every � units of

time a bulletin board that is visible to all arriving jobs is updated to reflect the current load of

all servers. The period between bulletin board updates is termed a phase. Load information will

thus be accurate at the beginning of a phase and may grow increasingly inaccurate as the phase

progresses.

Under the continuous update model, the bulletin board is constantly updated with load infor-

mation, but on average the board state is � units of time behind the true system state. Each request

thus bases its decisions on the state of the system on average � units of time earlier. Mitzenmacher

finds that the probability distribution of � had a significant impact on the effectiveness of different

algorithms. For a given average delay � , distributions with high variance in which some requests

see newer information and others see older information outperform distributions with less variance

where all jobs see data that are about � units of time old.

Note that the real systems abstracted by these models would typically not include a centralized

bulletin board. The periodic model could represent, for instance, a system that periodically gathers

load information from all servers and then multicasts it to clients. The continuous update model

could represent a system where an arriving job probes the servers for load information and then

chooses a server but where there is a delay � due to network latency and transfer time from when

the servers send their load information to when the client’s job arrives at its destination server.

3.2 Update-on-access

The final model we examine is not examined by Mitzenmacher. In our update-on-access model,

we explicitly model separate clients sending requests to the servers, and different clients may have

different views of the system load. In particular, when a client sends a request to a server, we

assume that the server replies with a message that contains the system’s current load values, and

9

that snapshot of system load may be used by the client’s next request. In such a system, the average

load update delay, � , is equal to a client’s inter-request time. Thus, the update-on-access model

assumes that jobs sent by active clients will have a fresher picture of load than jobs sent by inactive

clients.

We consider this model because it may be applicable for problems such as the server selection

problem on the Internet [19, 30] where it may be prohibitively expensive to maintain load infor-

mation at clients that are not actively using a service, but where it may be possible for clients to

maintain good pictures of server load while they are actively using a service. Furthermore, we

hypothesize that if a system exhibits bursty access patterns, it may be able to perform good load

balancing even though a node’s load information is, on average, quite stale.

4 Algorithms

In this section we describe our algorithms for load balancing, which work by interpreting load

information in the context of its age. We first describe the basic algorithm under the periodic

update model and then describe a more aggressive algorithm under the same model. Finally, we

describe minor variations of the algorithms to adapt them for the continuous update and update-

on-access models.

In general, our algorithms for interpreting load information follow two principles that distin-

guish them from previous algorithms. First, we consider the magnitude of imbalance between

servers, not just the servers’ ranks. Second, we modify our interpretation of information based on

its age and the arrival rate of requests in the system to account for expected changes to system state

over time.

In the descriptions below, we use the following notation:

10

�
Average age of the load information in units
of per-job service time� Number of servers�
Average per-server arrival rate as a fraction
of a server’s maximum throughput� �
Reported load (queue length) on server �� � � � � "��
��� � � �

�
	�	 �
����� Expected number of request arrivals per phase� �
Probability that an arriving request
will be sent to server �

4.1 Algorithms for periodic update model

During a phase of length � , ����������� � � # � � � � � * requests are expected to arrive in the system.

The goal of the Basic Load Interpretation (Basic LI) algorithm is to determine what fraction of

those requests should be sent to each server in order to balance load (represented as server queue

length) so that the sum of the jobs at the servers at the start of the phase plus the jobs that arrive

during the phase are equal across all servers. � So, assuming that enough jobs will arrive during the

phase to equalize the load by the end of the phase and assuming that we begin with
� � � � jobs at the

servers and
� �

jobs at server � , the probability
	 �

that we should send an arriving job to server � is

	 ��� ����� �"!$#&% %
')(+*-,. ��/ '0 �!� �21 	 , (assumes 3 � # / ��� �54 0 �!� �21 	 ," 6 � � *) (2)

The first term in the numerator is the number of jobs that should end up at each server to evenly

divide the incoming jobs plus the current jobs. The second term in the numerator is the jobs already

at server � . So the numerator is the number of jobs that should be sent to server � during this phase.

The denominator is the total number of jobs that are expected to arrive during the phase.
7
Notice that we make the simplifying assumption that the departure rate is the same at all servers so that we can

ignore the effect of departing jobs on the relative server queue lengths. This assumption will be correct if all servers

are always busy, but it will be incorrect if some servers are idle at any time during the phase. This assumption can be

justified because we are primarily concerned that our algorithms work well when the system is heavily loaded, and in

that case queues will seldom be empty. Our experiments suggest that this simplification has little performance impact.

11

Note that if
/ ��� � 4 0 �!� �21 	 ," , � �

for any � , then the phase is too short to completely equalize the

load. In that case, we want to place the ��������� � � requests in the
�

least loaded buckets to even things

out as well as we can. To generalize Equation 2 to include this case, we first calculate
�
, the number

of least-loaded servers to which jobs should be sent during the phase. Without loss of generality,

assume that the servers are sorted by load and numbered � � ��� �-' % with � being the least-loaded

server and ties broken arbitrarily. Then
�

is the maximum value between 1 and � , inclusive, such

that ����������� � jobs are sufficient to bring the loads of servers # � ����� � ' %�* up to the load of server
� ' % . Thus, we compute the maximum value of

�
such that:

� �
�
��� � # � � �
 ' � � * , ��������� � � (3)

To calculate the
	 �

’s, recall that we wish to send enough requests to servers (� ����� � ' %) to

bring them up to the load of server
� '.% , and then evenly distribute the remaining requests from

the phase evenly across the
�

least-loaded servers. Thus,

	 ���

���� ���

� /������ ��/ '	� 4 #&% %
')(+*-, � �
���
�
�
���
� � ����� � � ����

0 �!� �21 	 , if � , �
� otherwise

(4)

(Note that this equation reduces to Equation 2 for
� � � .)

Thus the Basic LI algorithm is to send each arriving request to server � with probability
	 �

as

calculated above for the current phase.

4.1.1 More aggressive algorithm

The above algorithm seems sub-optimal in the following sense: it tries to equalize the load across

servers by the end of a phase. Thus, if the phase is long, the system may spend a long time with

significantly unbalanced server load. A more aggressive algorithm might attempt to subdivide the

12

phase and use the first part of the phase to bring all machines to an even state and then distribute

requests uniformly across servers for the rest of the phase.

Our Aggressive Load Interpretation (Aggressive LI) algorithm works as follows: without loss

of generality assume that the servers have been sorted by
���

so that machine � is the � th least loaded

server and set
� " � � as a sentinel value. Ties are broken arbitrarily. Then, subdivide the phase

into � intervals. During interval
�

(with
� � � ����� � ' %), evenly distribute arrivals across machines

� ����� � to bring their loads up to
� � 4
 . Thus, subinterval

�
is of length � � � � � 4
 ��� � / � ! � ��/ � �� " � , and	 � � , the probability that an arriving request should be sent to machine � during subinterval

�
, is:

	 � � �

��� ��

� 4
 if ��� �

� otherwise
(5)

We also considered a hybrid algorithm between Basic LI and Aggressive LI that splits each

phase into two subintervals. During subinterval one, the hybrid algorithm distributes jobs so as

to bring the loads of all servers up to that of the most loaded server. During subinterval two, the

algorithm distributes jobs evenly across the servers. As expected, under the periodic update model

this algorithm’s performance falls between the performance of Basic LI and Aggressive LI. We do

not analyze this algorithm further.

4.2 Algorithms for other update models

Adapting the Basic LI algorithm to the continuous update or the update-on-access model is simple.

We use Equation 4 to calculate the probabilities
	 �

for sending incoming requests to each server.

The only difference is that for the periodic update model this calculation is based on the
� �

esti-

mates that hold during the entire phase, but under the new models the
���

estimates may change

with each request.
	 �

can now be thought of as a current estimate of the instantaneous rate at which

�
Note that in the case of ties, some intervals will have length ���
	�� .

13

requests should be sent to each server.

Adapting the Aggressive LI algorithm is more problematic. We use Equation 5 to calculate

the
	 � � values based on the current

� �
array. However, under the continuous update model, we

are effectively always “at the end of a phase” in that the information is � units of time old. We

therefore always use the
	 � � * . � value for the last subinterval of the phase where

� 	
" � is the smallest

value for which
� � * . �� � � � ��� � .

Note that although the aggressive algorithm is more aggressive than the basic algorithm during

the early subintervals of a phase (e.g.,
�

near �), it is less aggressive during later subintervals (e.g.,
�

near �). Thus, the “aggressive” algorithm may actually be less aggressive than the basic algorithm

under these update models when � is large.

5 Evaluation

In this section we evaluate the algorithms under a range of update models and workloads. Our

primary methodology is to simulate the queuing systems. We model task arrivals as a Poisson

stream of rate � � for a collection of � servers. When a task arrives, we send it to one of the

server queues based on the algorithm under study. Server queues follow a first-in-first-out (FIFO)

discipline. We select default system parameters to match those used in Mitzenmacher’s study [29]

to facilitate direct comparison of the algorithms. In particular, unless otherwise noted, � � ����� and

� � %���� , and we assume that each server has a service rate of 1 and the service time for each task

is exponentially distributed with a mean time of 1.

We run each simulation for 500,000 job arrivals unless otherwise noted, and we use the first
�
of the jobs to bring the system to a steady-state. We then measure average job response time for

jobs
" � �����
�
����� � " � ������ . We run each experiment at least 10 times using different random seeds, and

we show the 90% confidence interval for each data point. We validated the simulator by comparing

our � -subset results to those published by Mitzenmacher [29]. In addition, some of the results for

14

0

5

10

15

20

0 50 100 150 200

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

Update Interval (T)

k=1

k=2k=3k=100

Basic LI

Aggressive LI

0

1

2

3

4

5

0 2 4 6 8 10

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

Update Interval (T)

k=2k=3k=100 Basic LI

Aggressive LI

(a) (b)

Figure 2: Service time v. update delay for periodic update model (� � ����� , � � %���� .) Both graphs

show the same data but with different ranges for the x-axis.

the Aggressive LI algorithm under the bulletin board model have been verified by Christensen [9].

We initially examine the Basic LI and Aggressive LI algorithms under the periodic update,

continuous update, and update-on-access models and compare their performance to the � -subset

algorithms examined by Mitzenmacher. We then explore three key questions for the LI algorithms:

(1) What is the impact of bursty arrival patterns or more variable jobs sizes? (2) What is the impact

of misestimating the system arrival rate? (3) What is the impact of limiting the amount of load

information available to the algorithms?

5.1 Periodic update model

Figure 2 shows system performance under the periodic update model for the default parameters.

The performance of the LI algorithms is good over a wide range of update intervals. When � is

large, the LI algorithms do not suffer the poor performance that the � -subset algorithms encounter

for any � � % . In fact, the LI algorithms maintain a measurable advantage over the oblivious

random algorithm (� � %) even for large values of � . For example, when � � � ��� , Basic LI

outperforms the oblivious algorithm by 9% and Aggressive LI outperforms the oblivious algorithm

15

0

1

2

3

4

5

0 5 10 15 20 25

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

Update Interval (T)

k=1

k=2

k=3

k=100

Basic LI
Aggressive LI

Figure 3: Service time v. update delay for periodic update model (� � ��� �
, � � %���� .)

by 17%. For more modest values of � , the advantages are larger. For example, at � � � � ,

Aggressive LI is 60% faster than any of the � -subset algorithms and Basic LI is 41% faster than

any of the � -subset algorithms.

Figure 2-b details the performance of the algorithms for small values of � . Aggressive LI

outperforms all other algorithms by at least a few percent down to the smallest value of � we

examined (� � � � %). Basic LI is generally better than and always at least as good as any � -subset

algorithm over this range of � .

Figure 3 shows the performance of the system under a workload with a lighter load (� � ��� �
)

than our default. When load is lighter, the need for load balancing is less pronounced and the

gains by any algorithm over uniform random selection are more modest. When information is

fresh, the algorithms can perform nearly a factor of two better than the oblivious algorithm. When

information is stale, the performance of the � -subset algorithms is not nearly as bad as it was for

the heavier load, although they do exhibit poor behavior compared to the oblivious algorithm for

large � . Over the entire range of staleness examined (��� % � � � � ���), the Basic LI and Aggressive

LI algorithms perform as well as or better than the best � -subset or oblivious algorithm.

16

0

5

10

15

20

0 50 100 150 200

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

Update Interval (T)

k=1

k=2k=3k=8

Basic LI

Aggressive LI

Figure 4: Service time v. update delay for periodic update model (� � ����� , � � �
.)

0

5

10

15

20

0 50 100 150 200

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

Update Interval (T)

k=2,thresh=0
k=2,thresh=1
k=2,thresh=4
k=2,thresh=8

k=2,thresh=16

k=2,thresh=24 k=2,thresh=32

k=2,thresh=40
k=2,thresh=48

k=2

Aggressive LI

Basic LI

0

5

10

15

20

0 50 100 150 200

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

Update Interval (T)

k=100,thresh=48

k=100,thresh=40

k=100,thresh=32
k=100,thresh=24
k=100,thresh=16
k=100,thresh=8
k=100,thresh=4
k=100,thresh=1
k=100

Basic LI

Aggressive LI

(a) k = 2 (b) k = 100

Figure 5: Service time v. update delay for the threshold algorithm for a range of thresholds and the

k-subset values (a) k = 2 and (b) k = 100.

Figure 4 shows the performance of the system with � � �
servers rather than the standard

� � %���� . The results are qualitatively similar to the results for the standard � � %���� case.

As noted in Section 2, another common strategy for dealing with old information is to use a

threshold value to classify machines as either lightly or heavily loaded and then to choose ran-

17

domly from the lightly-loaded group [17, 25, 26, 33]. Figure 5 shows the performance of this

approach for different thresholds and includes the LI results for comparison. These data suggest

that changing the threshold value acts much like changing the � value in the standard � -subset

algorithm, allowing the system to vary how aggressively it interprets the information. As with the

� -subset algorithm, the best parameter value depends on the age of the information [25]. And as

with the � -subset algorithms, the LI algorithms outperform the threshold algorithms over a wide

range of update intervals. Because the threshold algorithms appear to have similar properties to the

� -subset algorithms, through the rest of this paper we will focus on comparing the LI algorithms

with the � -subset algorithms.

5.2 Continuous update model

Figure 6 shows the performance of the algorithms under the continuous update model. Because

system behavior depends on the distribution of the delay parameter, we show results for four distri-

butions of delay, all with average value � . In order of increasing variation, they are: constant(�),

uniform(� � to � ��), uniform(� to
� �), and exponential(�). As the earlier discussion suggests, the

Aggressive LI algorithm is actually less aggressive than the Basic LI algorithm, and Basic gener-

ally outperforms Aggressive for this model. We will therefore focus on the Basic LI algorithm.

Mitzenmacher notes that for a given � , the � -subset algorithms’ performance improves for

distributions that contain a mix of more recent and older information. This relationship seems

present but less pronounced for the LI algorithms. As a result, as the distribution’s variability

increases, the advantage of LI over the � -subset algorithms shrinks. Thus, Basic LI seems a clear

choice for the constant and uniform � distributions: for any value of � , its performance is as good

as any of the � -subset algorithms and for any given � -subset algorithm there is some range of �
where Basic LI’s performance is significantly better.

For the exponential distribution of � , however, the � -subset algorithms enjoy an advantage

of up to 16% over Basic LI. Figure 7 tests the hypothesis that the relatively poor performance

18

0

5

10

15

20

0 50 100 150 200

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

Update Interval (T)

k=1

k=2k=3k=100

Basic LI
Aggressive LI

0

5

10

15

20

0 50 100 150 200

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

Update Interval (T)

k=1

k=2k=3k=100

Basic LI
Aggressive LI

(a) Constant � (b) Uniform �
� to � ��

0

5

10

15

20

0 50 100 150 200

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

Update Interval (T)

k=1

k=2

k=3 k=100

Basic LI

Aggressive LI

0

2

4

6

8

10

12

0 50 100 150 200

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

Update Interval (T)

k=1

k=2
k=3

k=100
Basic LIAggressive LI

(c) Uniform 0 to
� � (d) Exponential with mean �

Figure 6: Service time v. update delay for continuous update model when clients only know � , the

average delay. (a) – (d) show result for different distributions of delay around the average � .

of Basic LI in this situation is because the algorithm calculates
	 �

using the expected value of

� whereas each individual request may see significantly different values of � . In this figure, �
still varies according to the specified distribution, but rather than knowing the average value of � ,

each request knows the value of � that holds for that request, and the algorithm calculates its
	 �

vector using this more certain information. Compared to the performance in Figure 6, this extra

information improves performance for each distribution of � , and the improvement becomes more

pronounced for distributions with more variation. From this we conclude that good estimates of

19

0

5

10

15

20

0 50 100 150 200

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

Update Interval (T)

k=1

k=2k=3k=100

Basic LI
Aggressive LI

(a) Uniform �
� to � ��

0

5

10

15

20

0 50 100 150 200

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

Update Interval (T)

k=1

k=2

k=3 k=100

Basic LI

Aggressive LI

0

2

4

6

8

10

12

0 50 100 150 200

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

Update Interval (T)

k=1

k=2
k=3

k=100

Basic LI

Aggressive LI

(b) Uniform 0 to
� � (c) Exponential with mean �

Figure 7: Service time v. update delay for continuous update model when clients know the age of

information actually encountered for each request. (a) – (c) show result for different distributions

of delay around the average � .

the delay between when load information is gathered and when a request will arrive at a server are

important for getting the best performance from the LI algorithms.

5.3 Update-on-access model

Figure 8 shows performance for the update-on-access model. In this model each load-generating

client uses the load information gathered after sending one request to decide where to send the

20

0

2

4

6

8

10

12

0 50 100 150 200

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

Update Interval (T)

k=1

k=2
k=3

k=100

Basic LI

Aggressive LI

Figure 8: Service time v. update delay for update-on-access model.

next request. Thus, � equals the average per-client inter-request time. To vary � for a fixed total

arrival rate, we simply vary the number of clients from which the fixed aggregate rate of requests

are issued: ��� � �+����� � � ��� " ��	
� 1 	
���
� . To ensure that the realized load information age is close to the

desired age for each client, we increase the number of simulated arrivals for experiments that use

large numbers of clients so that each client launches at least 1,000 jobs.

For this model, all of the algorithms perform reasonably well. It appears that the per-client

updates desynchronize the clients enough to reduce the herd effect. The Basic LI algorithm out-

performs all of the others and provides a modest speedup over a wide range of update intervals.

5.4 Bursty arrivals

Figure 9 shows performance under a bursty-arrival version of the update-on-access model. As

with the standard update-on-access model, each client uses the server loads discovered during

one request to route the next one. To generate our bursty-arrivals workload, rather than assume

that each client produces exponentially-distributed arrivals, we assume that a client whose average

inter-request time is � produces a burst of � requests separated by exponential(� �) units of time,

21

0

2

4

6

8

10

12

0 50 100 150 200

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

Update Interval (T)

k=1

k=2
k=3

k=100

Basic LI
Aggressive LI

Figure 9: Service time v. update delay for update-on-access model under bursty workload (� � %��).

with the bursts separated by exponential(� �) units of time. For Figure 9, � � %�� .
The bursty workload significantly increases the performance of all of the algorithms that use

server load compared to the oblivious algorithm. Although over time, a client’s picture of server

load is on average � units of time old, an average request sees a much fresher picture of the
� �

vector. This suggests that it may often be possible to significantly outperform the oblivious strategy

even for challenging workloads such as internet server selection [19, 30] where information will

likely be old on average, but where a client’s requests to a service are bursty. Once again, the Basic

LI algorithm is the best or tied for the best over the entire range of � examined (��� % � � � � ���).

5.5 Highly variable job sizes

In the other sections of this article, we assume exponentially distributed job sizes. In this subsec-

tion, we examine jobs with a Bounded Pareto distribution that has considerably more variability

in job size [12]. Pareto distributions have been found to correspond to some real-world workloads

such as the web server request sizes [3, 11]. We use a Bounded Pareto distribution to bound the

mean request size while retaining a large variance of request sizes.

22

0

5

10

15

20

25

30

0 50 100 150 200

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

Update Interval (T)

k=1

k=2

k=3

Basic LI

Aggressive LI

k=100

0

20

40

60

80

100

0 50 100 150 200

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

Update Interval (T)

k=1

k=2

k=3

Basic LI
Aggressive LI

k=100

(a) � � � � �
(b) � � ��� �

0

50

100

150

200

0 50 100 150 200

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

Update Interval (T)

k=1

k=2

k=3

Basic LI

Aggressive LI

k=100

(c) � � ��� �

Figure 10: Performance under a Bounded Pareto job-size workload (� � %�� ����� � � �
��� � � � ��� % ��� ��� � %������) for different loads (� � ��� � � ��� � � � � �). Note the different scales for the

y-axes in the three graphs.

We use Christensen’s workload generator [10] to generate our requests and run each experi-

ment at least thirty times. Because there is more variability in these requests than in our other

experiments, we report sample variance differently in these results. Each graph in this subsection

shows the medians of each set of trials as points connected by lines, and for each set of trials, it

shows a box spanning the 25th to 75th percentiles as well as lines extending from the box to the

minimum and maximum values observed in the trials.

23

0

100

200

300

400

500

600

700

0 50 100 150 200

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

Update Interval (T)

k=1

k=2
k=3 Basic LI

Aggressive LI

k=100

Figure 11: Performance under a Bounded Pareto job-size workload (� � � � � � � � ����� � � �
��� � � � % � � ��� � � � %�� � �

) for a load of � � � � � .

The probability mass function of a Bounded Pareto workload is defined:

� # ��* � � � � ���% ' # � � ��� � ����* � �
� � �
 � � � � � � � ��� (6)

Figure 10 shows performance under a Bounded Pareto(� � %�� ����� � � � � � � � ��� % ��� ��� � %������)
workload with three different values for the arrival rate � , and Figure 11 shows performance under

a BoundedPareto(� � ��� � � � � ����� � � � � � � � % � � ��� ��� � %�� � �
) for � � ����� . These � values were

chosen to correspond to the range of observed values [3, 11], and the
� ��� value means that the

maximum request size is 1000 or 1024 times the average request size. Finally,
� � � was chosen to

set the mean request size at 1.0 for these values of � and
� ��� .

Once again the load interpretation algorithms perform well over a wide range of situations.

We also note that both the absolute queuing times and the differences between random server

selection and the better algorithms are larger here than under the workloads with less variability;

this suggests that server selection may play a more important role under workloads with highly

24

0

5

10

15

20

0 50 100 150 200

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

Update Interval (T)

k=1

Basic LI (.125*Load)
Basic LI (.25*Load)

Basic LI (.5*Load)

Basic LI (1*Load)
Basic LI (2*Load)
Basic LI (4*Load)
Basic LI (8*Load)

Figure 12: Service time v. update delay for periodic update model when clients mis-estimate the

arrival rate.

variable job sizes.

5.6 Impact of imprecise information

The primary drawback to the LI algorithms is that they require good estimates of � and � . Subsec-

tion 5.2 examined the impact of uncertainty about � . In this subsection, we examine what happens

when the estimate of � is incorrect. We believe that servers supporting the LI algorithms would

be equipped to inform clients both of their current load and of the arrival rate of requests they

anticipate. For example, a server might report the arrival rate it had seen over some recent period

of time, or it might report the maximum request rate it anticipates encountering. However, it may

be difficult for some systems to accurately predict future request patterns based on history.

Figure 12 shows performance under the periodic update model when the LI algorithm uses

an incorrect estimate of � . Each line shows performance when the � used for calculating
	 �

is

multiplied by an error factor � between
� and
�
. If we overestimate the load, the algorithm is

more conservative than it should be and performance suffers a bit. If we underestimate the load,

25

0

5

10

15

20

0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

Arrival Rate (lambda)

k=1

k=2

k=3

k=100

Basic LI (actual lambda)
Basic LI (assume lambda = 1.0)

Figure 13: Service time v. arrival rate (�) for periodic update model with � ��� � . The graph

compares the standard algorithms as well as a variation of the Basic LI algorithm that overestimates

� as the maximum achievable system throughput (� � %�� �).

the algorithm sends too many requests to the apparently-least-loaded servers, and performance

degrades significantly.

From this, we conclude that systems should err on the side of caution when estimating � .

From Figure 12 note that if � 	 � � � � 0 � 	 � � � � 0 ��� � 0 � , performance is only marginally worse than if

� 	�� � � � 0 � 	
� � � 0 ��� � 0 � . Also note that for these experiments, � 0 ��� � 0 � � ��� � and the the system would

be unstable if � 0 ��� � 0 � 6 %�� � . In other words, to overestimate � by a factor of two, one would have

to predict a service rate 1.8 times larger than could ever be sustained by the system.

We suggest the following strategy for estimating � : if the system’s maximum achievable

throughput is known, use that throughput as an estimate of � for purposes of the LI algorithms.

When the system is heavily loaded, that estimate will be only a little bit higher than the actual

arrival rate; when it is lightly loaded, the estimate will be far too high. But, as we have seen, the

algorithm is relatively insensitive to overestimates of arrival rate. Furthermore, overestimating the

arrival rate does little harm when the system is lightly loaded. In that case, the conservative estimate

26

of � tends to make the LI algorithm distribute requests uniformly across the servers, which is an

acceptable strategy when load is low. Figure 13 illustrates the effect of assuming � 	 � � �
� 0 � 	
� � %�� �

as we vary � 0 ��� � 0 � for a system with � ��� � . The two Basic LI lines—one with exact and the

other with conservative estimates of � —are almost indistinguishable. For all points, the difference

between the two results is less than 1%.

5.7 Impact of reduced information

The � -subset algorithms have an additional purpose beyond attempting to cope with stale load

information: by restricting the amount of load information that clients may consider when dis-

patching jobs, they may reduce the amount of load information sent across the network. A number

of theoretical [6, 13, 22, 27, 36] and empirical [17, 25] studies have suggested that load balancing

algorithms can often be quite effective even if the amount of information they have is severely

restricted.

The Basic LI algorithm can also be adapted to use a subset of server load information rather

than requiring a vector of all servers’ loads. In the � -subset version of the Basic LI algorithm

(Basic LI- �), we select a random subset of � servers and use the algorithm to determine how to

bias requests among those � servers. In particular, we modify Equation 4 to use
	 ��

and
� ��

arrays of

size � rather than � , to compute
� �� � � from the smaller

� ��
array, to replace � with � , and to calculate

���
� �+��� �� � � � � � � . Note that, as for the standard � -subset algorithms, we select a different subset

for each incoming request.

Figure 14 examines the impact of restricting the information available to the Basic LI algo-

rithm. This experiment suggests that the Basic LI- � algorithm can achieve good performance.

Under the update-on-access model, the original � -subset algorithms perform well, and the LI-2

algorithm’s performance is similar to that of the standard � � �
and � � �

algorithms. Unlike

the standard � -subset algorithms, as the LI- � algorithm is given more information, its performance

becomes better. The LI-3 algorithm outperforms all of the standard � -subset algorithms by a no-

27

0

2

4

6

8

10

12

0 50 100 150 200

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

Update Interval (T)

k=1

k=2
k=3

k=100

Basic LI (k=2)
Basic LI (k=3)

Basic LI (k=10)
Basic LI (k=100)

0

2

4

6

8

10

12

0 50 100 150 200

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

Update Interval (T)

k=1k=2
k=3
k=100

Basic LI (k=2)
Basic LI (k=3)

Basic LI (k=10)
Basic LI (k=100)

(a) (b)

0

5

10

15

20

0 50 100 150 200

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

Update Interval (T)

k=100 k=3 k=2

k=1

Basic LI (k=2)
Basic LI (k=3)
Basic LI (k=10)
Basic LI (k=100)

(c)

Figure 14: Service time v. update delay for k-subset version of Basic LI algorithm for (a) update-

on-access model, (b) continuous update with fixed delay model, and (c) bulletin board model.

ticeable amount, and the full Basic LI algorithm (LI-100) widens the margin.

Under the continuous update with fixed delay and bulletin board models (Figures 14-b and

-c), the performance of the LI- � algorithms are also good. In this case, the original � -subset

algorithms behave badly, but the LI- � versions behave nearly identically with the Basic LI system.

Note that in the experiment with the continuous-update model, the � � �
, � � �

, and � � %��

versions of the LI algorithm are slightly better than the � � %���� version, with smaller � consistently

giving slightly better performance. We do not have an explanation for the improving behavior with

28

reduced information in this experiment.

From these experiments, we conclude that LI can be an effective technique in environments

where we wish to restrict how much load information is distributed through the system. Modest

amounts of load information allow the LI algorithms to achieve nearly their full performance.

Thus, LI decouples the question of how much load information should be used from the question

of how to interpret that information.

6 Conclusions and future work

This article introduces the LI framework and provides an evaluation of that approach under simple,

synthetically generated workloads. Future work is needed to evaluate and adapt the LI principles to

more realistic workloads. In addition, in this paper we assume that all servers have equal capacity

and leave the more general heterogeneous-server case for future work. Another important area for

future work is developing analytic bounds for the LI algorithms discussed here and attempting to

develop provably optimal LI algorithms.

The primary contribution of this paper is to present a simple strategy for interpreting stale load

information. This approach resolves the paradox that under some algorithms, using additional

information can result in worse performance than using less information or none at all. The Load

Interpretation (LI) strategy we propose interprets load information based on its age so that a system

is essentially always better off when it has and uses more information. When information is fresh,

the algorithm aggressively addresses imbalances; when the information is stale, the algorithm is

more conservative.

We believe that this approach may open the door to safely using load information to attempt

to outperform random request distribution in environments where it is difficult to maintain fresh

information or where the system designer does not know the age of the information a priori.

Our experiments suggest that by interpreting load information, systems can (1) match the perfor-

29

mance of the most aggressive algorithms when load information is fresh, (2) outperform current

server-driven load balancing algorithms by as much as 60% when information is moderately old,

(3) significantly outperform random load distribution when information is older still, and (4) avoid

pathological behavior even when information is extremely old.

Acknowledgments

We thank Lorenzo Alvisi of the University of Texas, Michael Mitzenmacher of Harvard, and the

anonymous International Conference on Distributed Computing Systems and Transactions on Par-

allel and Distributed Systems reviewers for their helpful comments on earlier drafts of this paper.

We thank Ken Christensen of the University of South Florida for making available his workload

generator for Bounded Pareto arrivals.

Dahlin was supported in part by an Alfred P. Sloan research fellowship. This research was sup-

ported in part by an NSF CISE grant (CDA-9624082), an NSF CAREER grant (CCR-9733842), a

Texas Advanced Technology Development grant (003658-0796-1999) and grants from Dell, IBM,

Novell, Tivoli, and Sun.

References

[1] The Next Step in Server Load Balancing. http:// www.alteon.com/ products/ white papers/

slbwp.html, 1998.

[2] Y. Amir, B. Awerbuch, A. Barak, R. Borgstrom, , and A. Keren. An Opportunity Cost Ap-

proach for Job Assignment and Reassignment in a Scalable Computing Cluster. In Pro-

ceedings of the 10th International Conference on Parallel and Distributed Computing and

Systems, October 1998.

30

[3] M. Arlitt and C. Williamson. Web Server Workload Characterization: The Search for In-

variants. In Proceedings of the SIGMETRICS Conference on Measurement and Modeling of

Computer Systems, May 1996. http://www.cs.usask.ca/projects/discus/discus reports.html.

[4] Y. Artsy and R. Finkel. Designing a Process Migration Facility: The Charlotte Experience.

IEEE Computer, 22(9):47–56, September 1989.

[5] B. Awerbuch, Y. Azar, A. Fiat, and T. Leighton. Making Commitments in the Face of Uncer-

tainty: How to Pick a Winner Almost Every Time. In Proceedings of the Twenty-eighth ACM

Symposium on Theory of Computing, pages 519–30, 1996.

[6] Y. Azar, A. Broder, A. Karlin, and E. Upfal. Balanced Allocations. In Proceedings of the

Twenty-sixth ACM Symposium on Theory of Computing, pages 593–602, 1994.

[7] T. Brisco. DNS Support for Load Balancing. Technical Report RFC 1794, Network Working

Group, April 1995.

[8] D. Butterfield and G. Popek. Network Tasking in the Locus Distributed Unix System. In

Proceedings of the Summer 1984 USENIX Conference, pages 62–71, June 1984.

[9] K. Christensen. Dangers of the Herd Effect in Selection Methods for Replicated Web Servers.

http://www.csee.usf.edu/ christen/, Feb 1999.

[10] K. Christensen. Genpar2.c. http://www.csee.usf.edu/ christen/tools/genpar2.c, Mar 1999.

[11] M. Crovella and A. Bestavros. Self-Similarity in World Wide Web Traffic: Evidence and Pos-

sible Causes. In Proceedings of the SIGMETRICS Conference on Measurement and Modeling

of Computer Systems, May 1996.

[12] M. Crovella, M. Harchol-Balter, and C. Murta. Task Assignment in a Distributed System: Im-

proving Performance by Unbalancing Load. In Proceedings of the SIGMETRICS Conference

on Measurement and Modeling of Computer Systems, June 1998.

31

[13] T. Decker, R. Diekmann, R. Lüling, and B. Monien. Towards Developing Universal Dy-

namic Mapping Algorithms. In Proceedings of the Seventh IEEE Symposium on Parallel and

Distributed Processing, pages 456–459, 1995.

[14] K. Delgadillo. Cisco Distributed Director. whitepaper, Cisco, Inc., 1997.

[15] F. Douglis and J. Ousterhout. Transparent Process Migration: Design Alternatives and the

Sprite Implementation. Software: Practice and Experience, 21(7):757–785, July 1991.

[16] D. Duke, T. Green, and J. Pasko. Research Toward a Heterogeneous Networked Computing

Cluster: The Distributed Queuing System Version 3.0. http:// www.scri.fsu.edu/ p̃asko/ dqs/

dqs.html, January 1996.

[17] D. Eager, E. Lazowska, and J. Zahorjan. Adaptive Load Sharing in Homogeneous Distributed

Systems. IEEE Transactions on Software Engineering, SE-12(5):662–675, May 1986.

[18] J. Gehring and A. Reinefeld. MARS – A Framework for Minimizing the Job Execution Time

in a Metacomputing Environment. Future Generation Computer Systems (FGCS), 12(1):87–

99, 1996. Elsevier Science B.V.

[19] J. Guyton and M. Schwartz. Locating Nearby Copies of Replicated Internet Servers. In

Proceedings of the ACM SIGCOMM ’95 Conference on Applications, Technologies, Archi-

tectures, and Protocols for Computer Communication, 1995.

[20] M. Harchol-Balter, M. Crovella, and C. Murta. Task Assignment in a Distributed Server. In

10th International Conference on Modeling Techniques and Tools for Computer Performance

Evaluation. Lecture Notes in Computer Science, No. 1469, September 1998.

[21] J. Hill, B. McColl, D. Stefanescu, M. Goudreau, K. Lang, S. Rao, T. Suel, T. Tsan-

tilas, and R. Bisseling. BSPlib: The BSP Programming Library. http:// www.bsp-

worldwide.org/standard/standard.htm, May 1997.

32

[22] R. Karp, M. Luby, and F. auf der Heide. Efficient PRAM Simulation on a Distributed Memory

Machine. In Proceedings of the Twenty-fourth ACM Symposium on Theory of Computing,

pages 318–326, 1992.

[23] M. Litzkow, M. Livny, and M. Mutka. Condor – A Hunter of Idle Workstations. In Proceed-

ings of the Eighth International Conference on Distributed Computing Systems, 1988.

[24] D. Milojicic. Load distribution: Implementation for the Mach Microkernel. PhD thesis,

University of Kaiserslautern, Kaiserslautern Germany, 1993.

[25] R. Mirchandaney, D. Towsley, and J. Stankovic. Analysis of the Effects of Delays on Load

Sharing. IEEE Transactions on Computers, 38:1513–1525, 1989.

[26] R. Mirchandaney, D. Towsley, and J. Stankovic. Adaptive Load Sharing in Heterogeneous

Distributed Systems. Journal of Parallel and Distributed Computing, 9:331–346, 1990.

[27] M. Mitzenmacher. The Power of Two Choices in Randomized Load Balancing. PhD thesis,

University of California, Berkeley, September 1996.

[28] M. Mitzenmacher. How Useful is Old Information. In Proceedings of the Sixteenth Sympo-

sium on the Principles of Distributed Computing, 1997.

[29] M. Mitzenmacher. How Useful Is Old Information. IEEE Transactions on Parallel and

Distributed Systems, 11(1), Jan 2000.

[30] A. Myers, P. Dinda, and H. Zhang. Performance Characteristics of Mirror Servers on the

Internet. Technical Report CMU-CS-98-157, Carnegie Mellon University, July 1998.

[31] D. Nichols. Using Idle Workstations in a Shared Computing Environment. In Proceedings of

the Eleventh ACM Symposium on Operating Systems Principles, pages 5–12, October 1987.

[32] M. Powell and B. Miller. Process Migration in DEMOS/MP. Operating Systems Review,

17(5):110–119, 1983.

33

[33] N. Shivaratri, P. Krueger, and M. Singhal. Load Distributing for Locally Distributed Systems.

IEEE Computer, pages 33–44, December 1992.

[34] A. Tanenbaum, R. van Renesse, H. van Staveren, G. Sharp, S. Mullender, J. Jansen, and

G. van Rossum. Experiences with the Amoeba Distributed Operating System. Communica-

tions of the ACM, 33(12):46–63, December 1990.

[35] M. M. Theimer, K. A. L., and D. R. Cheriton. Preemptable Remote Execution Facilities for

the V-System. In Proceedings of the Tenth ACM Symposium on Operating Systems Principles,

pages 2–12, December 1985.

[36] N. Vvedenskaya, R. Dobrushin, and F. Karpelevich. Queuing Systems with Selection of the

Shortest of Two Queues: an Asymptotic Approach. Problems of Information Transmission,

32:15–27, 1996.

[37] D. Wessels. Squid Internet Object Cache. http://squid.nlanr.net/Squid/, August 1998.

[38] C. Yoshikawa, B. Chun, P. Eastham, A. Vahdat, T. Anderson, and D. Culler. Using Smart

Clients to Build Scalable Services. In Proceedings of the 1997 USENIX Technical Confer-

ence, January 1997.

[39] E. Zayas. Attacking the Process Migration Bottleneck. In Proceedings of the Eleventh ACM

Symposium on Operating Systems Principles, pages 13–24, October 1987.

[40] S. Zhou, J. Wang, X. Zheng, and P. Delisle. Utopia: A Load Sharing Facility for

Large, Heterogeneous Distributed Computer Systems. Software - Practice and Experience,

23(12):1305–1336, December 1993.

34

