PRISM: PRecision-Integrated Scalable Monitoring

Navendu Jain, Dmitry Kit, Prince Mahajan, Praveen Yalagaridiie Dahlin, and Yin Zhang

Department of Computer Sciences "Hewlett-Packard Labs
University of Texas at Austin Palo Alto, CA

Abstract leaf node fails, an entire subtree rooted at that node is
I@ffected. For example, failure of a levgélnode in a
degree8 aggregation tree can cut off updates from 512
af nodes. As a result, a hierarchical monitoring service
at does not expose imprecision risks delivering arbi-
trarily incorrect results.

Second, introducing controlled amounts of impreci-
sion can reduce monitoring load by an order of magni-
tude or more for some applications. Studies suggest [20,
22,32, 36, 44] that real-world applications often can tol-
update delays, antetwork imprecisiofNI) bounds un- grate some inaccuracy as long as the mgximum error

TIis bounded and small amounts of imprecision can pro-

certainty due to network and node failures. Al and e sianifi bandwidth reducti hi bl
balance precision against monitoring overhead for scala¥'?€ S9N icant bandwidth reductions. This enables new

bility while NI addresses the fundamental challenge Ofclasses of precision-aware monitoring applications that

providing consistency guarantees despite failures in &N tradeoff between imprecision and resource usage.

large distributed system. Our implementation addresses 10 Mmeet these needs, we have developed PRecision-
the challenge of providing these metrics while scaling tolnt€grated Scalable Monitoring (PRISM). The PRISM

a large numbers of nodes and attributes. By introducSystem makes two contributions: First, it defines a novel

ing a 10% Al, PRISM’s PlanetLab monitoring service, cgr_lditioned consisten(_:metri_c that quantif_ies impre-
PrMon, can reduce network overheads by an order ofision along a three-dimensional vectorithmetic,
magnitude compared to the currently-used CoMon serémporal, Network).

vice. And, by using NI metrics to automatically select ® Arithmeticimprecision (Al) bounds the numerical in-
the best of four redundant aggregation results, we can consistency between the reported value of an aggre-
reduce the observed worst-case inaccuracy by nearly a gate relative to the true value.

This paper describes PRISM, a scalable monitoring se
vice that makesmprecisiona first-class abstraction for
its scalable DHT-based aggregation service. Exposin
imprecision is essential for both correctness in the fac
of network and node failures and scalability to large
systems. PRISM introduces the notion afnditioned
consistencythat quantifies imprecision along a three-
dimensional vectorarithmetic imprecisior{Al) bounds
numeric inaccuracytemporal imprecisionTl) bounds

factor of five. e Temporaimprecision (TI) places a real-time bound on
i the delay from when an event/update occurs until it is
class abstraction for large-scale system monitoring. troduced by failed/slow nodes, failed/slow network

Scalable system monitoring is a fundamental abstrac- inks, and aggregation tree reconfigurations.
tion for large-scale networked systems, and it can servélthough each of the three dimensions is individually
as a basic building block for new applications suchuseful, the combination is vital because it enatlles-
as network monitoring and management [5, 15, 41], reditioned consistencythe arithmetic and temporal guar-
source location [16, 40], efficient multicast [36], sensorantees are calculated optimistically, assuming that the
networks [16, 40], resource management [40], and bandaetwork is “well behaved” (e.g., no node failures, slow
width provisioning [9]. Recent work on aggregation [16, links, or tree reconfigurations have affected the results).
30, 36,40] and DHTs [27-29, 33, 46] provides importantThe NI metric then qualifies Al and Tl metrics by quanti-
enabling technology for constructing monitoring systemsfying how “well behaved” the network actually has been
that are self-organizing, scalable, and robust [36,40]. during the period when these metrics are calculated.

However, to realize this vision of scalable system Second, it provides a scalable implementation of each
monitoring, the underlying monitoring infrastructure of these three metrics for DHT-based aggregation sys-
must expose imprecision in a controlled manner for twotems. Scalability to large numbers of attributes and nodes
reasons. is vital because network monitoring applications may

First, correct interpretation of data requires explicitly track tens of thousands of attributes across hundreds or
exposing the imprecision introduced by sensor inaccuthousands of nodes [34, 36, 40].
racy and node/network delays and failures. A funda-e For Al, the challenge is distributing an imprecision
mental and unique challenge in any hierarchical aggre- budget across nodes based on each attribute’s work-
gation system is thtailure amplification effectif a non- load. PRISM employs a hierarchical self-tuning algo-

rithm that directs imprecision slack to where it is most 37 (1 Virtud Nodes (Internal Aggregation Points) | 5
needed and that tries to ensure that the adaptation cost
is smaller than the benefits of doing so. 184 1970 L2

e For TI, the challenge is to maximize the number of 7 T\11 7 1(\\12
updates batched together and to minimize the TI in- i i i i
P 9 3 ooho 2 \9. 6 \1. 9 \3.

troduced by this batching. To accomplish this goal, 010 110 001 101 o011 111

PRISM pipelines the available slack across levels of Physical Nodes (Leaf Sensors)

the aggregation hierarchy. Fig. 1: The aggregation tree for key 000 in an eight node sys-
tem. Also shown are the aggregate values for a simple SUM()

e For NI, the challenge is to scalably detect and reportaggregation function.

failed/slow nodes/links which requires active probing.

A straightforward algorithm that detepts and aggre-o Background

gates NI values along each aggregation tree im-an

node system can lead t9(n) message load at each PRISM builds on two recent and ongoing research ef-

node in every probing period. By leveraging the ob-forts for scalable monitoring: aggregation [36] and DHT-

servation that the forest of aggregation trees forms &ased aggregation [40].

butterfly networkPRISM introduces a novelual-tree aggregation. Aggregation is a fundamental abstrac-
prefix aggregation abstractiothat re-uses work done ion for scalable monitoring [10, 16, 27, 36, 40] because
by subtrees and thereby reduces the per-node cost {p,|ows applications to access summary views of global

O(logn) messages every probing period. For a 10004ytormation and detailed views of rare events and nearby
node system, this implies three orders of magnitudgnormation.

reduction in message cost compared to the naive algo-
rithm above.

-
o

The aggregation abstraction in PRISM is defined
across a tree spanning all nodes in the system. As Fig-
Experience with a distributed heavy hitter detectionure 1 illustrates, each physical node in the system is a
application and a PrMon monitoring service for Plan-leaf and each subtree represents a logical group of nodes.
etLab built on PRISM illustrate how explicitly manag- Note that logical groups can correspond to administra-
ing imprecision can qualitatively enhance a monitoringtive domains (e.g., department or university) or groups of
service. The most obvious benefit is improved scalabilnodes within a domain (e.g., 88 subnet with14 hosts
ity: for both applications, small amounts of imprecision on a LAN in the CS department). An internal non-leaf
drastically reduce monitoring load or allow more exten-node, which we call irtual node is simulated by one
sive monitoring for a given load budget. For example,or more physical nodes at the leaves of the subtree rooted
in PrMon, a 10% Al allows us to reduce network load at the virtual node.
by an order of magnitude compared to the widely used The tree-based aggregation in the PRISM framework
CoMon [6] service. A subtler but perhaps more impor-is defined in terms of an aggregation function which is
tant benefit is the ability to quantify and improve confi- installed at all the nodes in the tree. Each leaf node
dence in the accuracy of outputs by addressing networkphysical sensor) inserts or modifies its local value for
imprecision and the amplification effect. For example,an attribute defined as dattribute type, attribute name
by using NI metrics to automatically select the best ofpair which is recursively aggregated up the tree. For
four redundant aggregation results, we can reduce the oeach level: subtreeT; in the aggregation tree, PRISM
served worst-case inaccuracy by nearly a factor of five. defines araggregate valuéd’; ..., for each attribute as
follows: For a (physical) leaf nodé#; at level0, Vj q4ir

The key contributions of this paper are as follows. . . .
First, we present PRISM, the first DHT-based system thaf the locally stored value for the attribute or NULL if
no matching tuple exists. Then the aggregate value for

enables imprecision for scalable aggregation by intro- leveli subtreeT is th tion function for th
ducing a new conditioned consistency metric that boung§' 'EVE!* SUBIrees; IS the aggregation tunction for the
the arithmetic, temporal, and network imprecision. Sec-attrIbUte typeA type computed across the aggregate val-
ond, we provide scalable and efficient implementation of o3 of each ofly’s k ch|_ldren. F!gure 1, for example,
each precision metric via (1) self-tuning of Al budgets, illustrates the computation of a simple SUM aggregate.
(2) pipelining of Tl delays, and (3) dual-tree prefix ag- DHT-based aggregation. To achieve scalability for
gregation for NI. Third, our evaluation demonstrates thatinternet-scale systems, PRISM faces the fundamental
imprecision is vital for enabling scalable aggregation: achallenge of computing aggregates for thousands to
system that ignores imprecision can silently report arbi-millions of attributes across hundreds or thousands of
trarily incorrect results and a system that fails to exploitnodes [36, 40]. Later in this section, we present an ex-
imprecision can impose unacceptable overheads. ample of detecting heavy hitters on a distributed sys-

tem where PRISM needs to track millions of attributes.tative of monitoring Internet-scale distributed systems
To address this scalability challenge, PRISM leveragesuch as PlanetLab [26] and Grid systems [35] that pro-
DHTs [27-29, 33, 46] to construct a forest of aggregationvide open platforms for developing, deploying, and host-
trees and maps different attributes to different trees [40]ing global-scale services. For instance, to manage a wide
DHT systems assign a long (e.g., 160 bits), random IDarray of user services running on the PlanetLab testbed,
to each node and define a routing algorithm to send a rethe system administrators need a global view of the sys-
quest for keyk to a noderoot; such that the union of tem to identify problematic experiments (slices in Planet-
paths from all nodes forms a tr&HTtreg, rooted atthe Lab terminology) to identify, for example, any slice con-
noderoot,. By aggregating an attribute with kéyalong suming more than 500GB of memory across all hodes
the aggregation tree correspondingbiTtreg,, differ- on which it is running. Similarly, users require system
ent attributes are load balanced across different trees. state information to query for “lightly-loaded” nodes for
deploying new experiments or to track the resource con-

Example Applications Aggregation is a building sumption of their running experiments
K :

block for many distributed applications such as networ _ . R _
management [41], service placement [12], sensor moni- 10 'prowde such information in a sca}lable way and in
toring and control [20], multicast tree construction [36], "e@l-time, PRISM computes the per-slice aggregates for
and naming and request routing [7]. In this paper, wetach resource e_lttnbute (e.g.,_CPU, TX1, etc.) along dif-
focus on two case-study examples: a distributed heav{erent aggregation trees. This aggregate usage of each
hitter detection and PrMon, a distributed monitoring ser-Slicé across all PlanetLab nodes for a given resource

vice for PlanetLab modelled on CoMon [6]. attribute (e.g., CPU) is then input to a per-resource
SELECT-TOP-100 aggregate (e.§SELECT-TOP-100,

~ Heavy Hitter detection: Our first application is cpyy) to compute the list of top-100 slices in terms of
identifying heavy hitters on a distributed system i.e., theconsumption of the resource. Although there are existing
top 10 IPs that account for a significant fraction of total cenral monitoring services, in Section 5 we will show
incoming traffic in a measurement interval (e.g., 10 Min-that PRISM can monitor a large number of attributes

utes) [9]. The key challenge for this distributed query is5; much finer time scales while incurring significantly
scalability for aggregating per-flow statistics for millions |gwer network costs.

of concurrent flows in real-time; the Abilene [1] traces
used in our experiments include up to 3.4 million flows 3 Al and TI
per hour.

To scalably compute the global heavy hitters list, PRISM quantifies imprecision along a three-dimensional
we chain two aggregations where the results from the/ector: (Arithmetic, Temporal, Network). We now de-
first aggregation feed into the second aggregation. I$cribe how we enforce bounds arithmetic imprecision
the first aggregation, PRISM calculates the total band{Al), which limits the numeric difference between a re-
width consumed by each sender to all nodes in the syg?orted value of an attribute and its true value [23, 45],
tem using SUM as the aggregation function gtH- and temporal imprecisi_or(_TI), which limits the delgy
Step1,senderlPas the key. For example, a node writes from when an update is input at a_leaf sensor until the
the tuple (HH-Step1, 128.82.121}7 700 KB) indicat- effects of the update are reflected in the root aggregate.
ing that 700 KB of data was received from the node These aspects of imprecision provide means to (a) ex-
128.82.121.7 during the last time window. In the sec-POse inherent imprecision in a monitoring system stem-
ond step, we feed these aggregated total bandwidth@ing from sensor inaccuracy and update propagation de-
for each sender IP address into another aggregatiol®ys and (b) reduce system load by introducing additional
tree for selecting TOP-10 heavy hitters. To achievefiltering and batching on update propagation.
this, we use SELECT-TOP-10 as the aggregation func- The implementations of Al and Tl are simple because
tion and use{HH-Step2, TOP-1p as the key. For ex- they can assume that aggregation trees never reconfigure
ample, the root of the first aggregation tree f¢#H- and that nodes and network paths never fail and are never
Step1,128.82.121}Avhich has computed the global ag- slow. Thenetwork imprecisiorfNI) metric described in
gregate value of 6200KB as the total bandwidth con-Section 4 addresses these challenging real-world issues.
sumed by 128.82.121.7, inputs the tup{¢H-Step2,) . o
TOP-10,{128.82.121.7,6200 KB. At the end of this 3.1 Arithmetic Imprecision (Al)
chained aggregation, the root of the second aggregati
tree has the top 10 IP addresses that send most traffi
the nodes in the system.

%Ve first describe the basic mechanism for enforcing Al
¢ ¥r each aggregation subtree in the system. Then we de-
scribe how our system uses a self-tuning algorithm to
Real-time Network Monitoring: The second appli- address the policy question of distributing an Al budget

cation is our PrMon monitoring service that is represen-across subtrees to minimize system load.

3.1.1 Mechanism present policies that exploit such freedom to optimize the

To enforce Al, each aggregation subtr&efor an at- precision v. performance trade-off.

tribute has an error budgét which defines the maxi- Settingd,,.;. Note that the aggregation queries can set
mum inaccuracy of any result the subtree will report tothe root error budget...: to any non-negative value. For
its parent for that attribute. The root of each subtree disome applications, an absolute constant value may be
vides this error budget among itsélf, s and its children known a priori (e.g., count the number of connections per
dc, and the children recursively do the same. Here wesecondt10 at port 1433.) For other applications, it may
present the Al mechanism for the SUM aggregate; othepe appropriate to set the tolerance based on measured be-
standard aggregation functions (e.g., MAX, MIN, AVG) havior of the aggregate in question (e.qg.,&et, for an
are described in the appendix. attribute to be at most 10% of the maximum value ob-
This arrangement reduces system load by filteringserved) or the measurements of a set of aggregates (e.g.,
small updates that fall within the range of valuesin our heavy hitter application, sét,. for each flow to
“cached” by a subtree’s parent. In particular, after a nodese at most 1% of the bandwidth of the largest flow mea-
A with error budget reports a rangelfin, Vinaz] for - sured in the system). Our algorithm supports all of these
an attribute value to its parent (Whe¥g,.. = Vinin + approaches by allowing new absolutg,,; values to be
ér), if the node A receives an update from a child, theintroduced at any time, and we have prototyped systems
node A can skip updating its parent as long as it can enthat use each of these three policies.

sure that the true value of the attribute for the subtree lies)) ,
betweerl,,.. andV.,. ..., i.e., if Computing [Vinin, Vinaz]. When either) VS, or
> e Vie 4 Q0€s outside of the last],in, Vinae] that was
Vinin < 2 ccenitaren Visin reported to the parent, a node needs to report a new range
Vinaw > cechitdren Vi az (to its parent. Given &,y budget at an internal node, we
whereV,¢, andV .. denote the most recent update re- have some flexibility on how to center tiin, Vinaa] .
ceived f’r'g?n childe range. Our approach is to adopt a per-aggregation-
. ; . T e\
Notice the trade-off in splitting, betweery,.;; and fgnctlon range policy that repcirismn o (ZC Vinin)
bias * 6serf aNAVinap = (D, Vi) +(1—bias) * dserf

0. Large values of allow children tofilter updates be- to the parent. Théiasparameter can be set as follows:
fore they reach a node. Conversely, by setting; > 0, Set

a node can sét,,;, < >. V. SetViaz > D VSan . . .
2V, 2 e bias ~ 0.5 if inputs expected to be roughly stationary

or both to avoid further propagating some updates it re- . , .
ceives from its children. e bhias = 0 if inputs expected to be generally increasing

PRISM maintains per-attributgvalues so that differ- ® bias = 1 if inputs expected to be generally decreasing
ent attributes with different error requirements and dif- For example, suppose a node with tofal of 10 and
ferent update patterns can use differébudgets in dif- 9sers Of 3 has two children reporting(7;,,, V7....]) of
ferent subtrees. PRISM implements this mechanism byl, 2] and [2, 8], respectively, and reports [0, 10] to its
defining a per-attribute-typeistribution functionthat is Parent. Then, the first child reports a new range [10, 11],
analogous to the per-attribute-type aggregation function$© the node must report to its parent a range that includes
Just as an attribute type’s aggregation function specifiekl2: 19]. If bias = 0.5, then report to parent [10.5, 20.5]
how aggregate values are aggregated from children, af? filter out small deviation around the current position.

attribute type’s distribution value specifies howudgets ~ Conversely, ifbias = 0, report [12, 22] to filter out the
are distributed among children anigl, ;. maximal number of updates of increasing values.

3.1.2 Policies Self-tuning error budgets. The final policy question is

Given the above mechanisms, to guarantee that the tJ]-OW to divide ? glvten error budgéf,, across the nodes
tal aggregation error does not exceed the root error bud! & aggregation tree. _ . .
getd,..o; for an attribute, we just need to ensure that the A simple approach is to have a static policy that di-

following two conditions hold at the root node of every Vides the error budgetniformly among all the chil-
dren. For example, a node with budget could set

subtreel’.
dse1 = 0.16 and then divide the remainirtg9r evenly
617 > bsetf + D cecnitdren Oc among its children. Although this approach is simple,
Vinaz < Vinin + 07 @ itis likely to be inefficient because different aggregation

Given these constraints, we still have plenty of free-SUbtrees may experience different loads.

dom to (i) setd,,.,; t0 an appropriate value for each at- Algorithm. To make cost/accuracy tradeoflf-
tribute, (i) computeV,,,;, andV,,., when updating a tuning PRISM provides an adaptive algorithm by which
parent, and (iii) splitd into d,;y andé.. Below we nodes adjust to changing error budgetand adapt the

balance betweedfl.;; andé. for each childe. The high-
level idea is simple: increasefor nodes with high load
and low§ and decreasé for nodes with low load and
high . Unfortunately, a naive rebalancing algorithm

could easily spend more network messages redistribut-

ing &s than it saves by filtering updates. This is a partic-
ular concern for applications like distributed heavy hitter
that monitors a large number of attributes, only a few of
which are active enough to be worth optimizing. To ad-
dress this challenge PRISM uses a two-step algorithm:
1. Estimate optimal distribution of; amongd,.; and
.

Each node tracks the number of messages sent to its p
ent per time unit {/,.;¢) and the aggregate number of
updates per time unit reported by each chikisubtree

(M.). Note thatM. reports are accumulated by a child

until they can be piggy-backed on an update message to

its parent. Given this information each nodestimates
the optimal value$??* that minimizes the total system
load)~ MJP*, where MP! is an estimate of the load
generated by node under optimal error budgét?®. In
particular, for any € {self} U child(n) we estimate

VM, &,
ZUE{self}L.lchild(n) \/m

which is optimal assuming that load is inversely pro-

5P = br %

®3)

Tl

level 4
level 3
level 2
level 1

of

f

aof

level 0

E
‘Send unsynchronized updates every Ti/4 seconds.
level 4
level 3
level
level 1

2a00f -+

DMX»
DAOM
DAM

o NextTl
T interval
Starts here

Fig. 2: For a given Tl bound, pipelined delays with synchro-
nized clocks (b) allows nodes to send less frequently than un-
pipelined delays without synchronized clocks (a).

level 0

Eent O

A0 <o
(b) Sénd synchronized updates every Ti seconds.

when it is reflected in the aggregated result reported by

4Ke root. A temporal imprecision @fI seconds guaran-

tees that every event that occurréd or more seconds
ago is reflected in the reported result; events younger
than7'/ may or may not be reflected. [32].

Temporal imprecision benefits monitoring applica-
tions in two ways. First, it accounts for inherent net-
work and processing delays in the system; given a worst
case per-hop costop,,... even immediate propagation
provides a temporal guarantee no better thamop,, ..
where/ is the maximum number of hops from any leaf
to the root of the tree. Note that although Internet round
trip times have a very long tail [2, 8, 24], the network
imprecision metric allows us tassumea relatively low
hopmaz (€.9., 10 seconds) because if network and pro-

portional to error budget and which seems a reasonabl€€SSing times increase beyond this bound, then the net-

heuristic for predicting the impact of small changes.

2. Redistribute deltas iff the expected benefit exceeds the

redistribution overhead.
At any time, a nodex computes acharge metric for
each child subtree, which estimates the number of ex-
tra messages sent bylue to sub-optimal. Charge. =
(Tewrr — Tadjust)* (M — M2P'), whereT, 4, is the last
time 6 was adjusted at. Notice that a subtree’s charge
will be large if (a) there is a large load imbalance (e.g.,
M, — M¢Ptis large) or (b) there is a stable, long-lasting
imbalance (.97 curr — Tudjust 1S large.)

We only send messages to redistribute deltas if doin
so is likely to save at least k messages (i.ezhifrge, >
k). To ensure the invariant thag < 055 + >, dc, We

work imprecision metric reflects the unexpected delay.
Second, explicitly exposing Tl provides an opportu-
nity to combine multiple updates to improve scalability
by reducing processing and network load. If the Tl guar-
antee for an attribute exceeds the minimum system la-
tency i.e..TT > { *x hop,., then a node in tree can use
the “extra” time to try to accumulate multiple updates
from the node’s children before calculating and sending
a single update to the parent.

Below we present an optimized mechanism for im-
plementing temporal imprecision usipgpelined delays
based on synchronized clocks. PRISM also provides a

all-back alternative for unsynchronized clocks [18].

Pipelined delays. We maximize the opportunity for

make this adjustment in two steps. First, we loan soméatching updates bgipeliningthe available slack delay

of thed,;r budget to the nodethat has accumulated the
largest charge by incrementin® budget by min(0.4,,
max(0.Bei s, Sseif - 6jfff)). Second, we replenish,.; s
from the child whos@. is the farthest abovéelta2?' by
orderingc to reduce’, by min(0.14,, 4, - deltaS?).

A node responds to a request from its parent to updat
dr using a similar approach.

3.2 Temporal Imprecision

across levels of the aggregation hierarchy.

Suppose clocks were perfectly synchronized and sup-
pose that message transmission and processing were in-
stantaneous. Then, as Figure 2(a) illustrates, one option
to enforce a bound df'/ for an ¢-level tree { = 4 in
Eigure 2) would be for every node to send an update to
its parents evern'I /¢ seconds. Alternatively, as Fig-
ure 2(b) illustrates, each leaf node could send a batch up-
date (combining all its updates in the curréttinterval)

Temporal imprecision provides a real-time bound on theat timeT' I —¢xe, all level-1 nodes at tim&1 — (£ — 1) e,
delay between when an update occurs at a leaf node arahd so on for some smaill Note that the next’ interval

starts aftefl'l — ¢ x € time in the current interval effec- stead must report the extent to which a calculation could
tively leading to a batching interval Gfl — ¢« e atevery have been disrupted by network and node problems.This
level. Thus, by synchronizing update transmission timesnformation allows applications to filter out or take ac-
across levels, we still meet thé&l guarantee but increase tion to correct measurements with unacceptable uncer-
the batching interval frorff' 7 /¢ to TT — £ x €. tainty. To that end, NI is composed of three metrigsy,

Of course, a real implementation must account forNycachabie, 8NANgyp.
clock skew, processing delays, and network delays to eng .. is an estimate of the number of nodes that are
sure that level holds opens a sufficient window of time mempers of the system.
for leveli — 1's updates to arrive and be processed. Fory n . .. is a lower bound on the number of nodes
the Ieaves,.we specify a send mterWa_ind an arbltrary for which input propagation is guaranteed to meet an
reference timeZ such that for thejth interval at time attribute’s T1 bound.
Z + j x I aleaf node sends an update if and only if the, x7, provides an upper bound on the number of nodes
value has changed sinée+ (j — 1) I. We calculate whose contribution to an attribute may be doubly-
I as follows: (1) we synchronize the clocks on differ- coynted. Double-counting can occur when reconfig-
ent nodes such thf‘t the maximum skew between any two ration of an aggregation tree's topology causes a leaf
nodes isskewmaq~ (2) We define a “stagger” parame- poge or virtual internal node to fail-over to a new par-
ter S that bounds the delay for updates to traverse levels, gn;hile its old parent retains the node’s inputs as soft
i.e., S = hopmaz + 2 * skewp,q,. Finally, (3) we set state until a timeout.
I =TI — /¢ S. Note that the smallest Tl that can be N] .)
provided iST' I, = ¢ * S. Also note that for load bal- Conditioned Consistency. These three metrics condi-

ancing, different attributes can choose differéhbase tion the arithmetic and temporal consistency guarantees.

times. In particular, reading an attribute’s value from the sys-
For internal nodes, we pipeline each level's timeouts tol€M returns a tupleVsin, Vinax, T, [Nait, Nreachable;

occur just before its parent's. Specifically, at tige-j+ Vaup]] that means “The system estimates the value to

I+i+S an aggregation node at leviedends an updated 0€ betweenV,,;,, and V... This estimate may omit

aggregate value to its parent if and only if the value of anySOMe inputs that occurred in the 185t seconds and it

of its inputs has changed since titfe- (j — 1)« [+ixS. ~ May also omit some inputs fromMuy — Nreachatie Of

This approach ensures the following property: an eventn€ Nau nodes in the system. This estimate may double

at a leaf node at local tim is reflected at root no later countinputs from at mos¥s.,;, nodes.”

than timeX + 71 according to the local time at the leaf ~ Users and applications must evaluate the significance

node. of disruptions that caust¥,cqchabie < Nait OF Ngup > 0
L in the context of their requirements. For some applica-
4 Network Imprecision tions, an aggregate result may be unusable if it omits

Network imprecision characterizes the uncertainty intro-or duplicates any inputs. Conversely, other applications
duced by node crashes, slow network paths, unreachabfgay be content with best-effort results and may ignore
nodes, and DHT topology reconfigurations. In particu-NI completely. Other applications will take a middle
lar, if a a subtree is silent over an interval, a aggregatiorground and be structured to tolerate modest amounts of
system must distinguish two cases: (1) the subtree hal.
sent no updates because the inputs have not significantly In Section 5.3, we explore one general and effective
changed versus (2) the inputs have significantly change@trategy: using redundant trees in the DHT to compute an
but the subtree is unable to transmit its report. This probattribute and then using NI to identify the highest-quality
lem is fundamental, and it is an extension of the CAPresult. Other available approaches include constructing
impossibility result [13, 31], but it is made worse by the aggregates that tolerate common forms of NI (e.g., the
amplification effecof hierarchical aggregation: if a non- MAX aggregation function is insensitive ;,,,, > 0),
leaf node fails, then the entire subtree rooted at that nodtaking corrective action during periods of high NI (e.g.,
can be affected. For example, failure of a level-3 nodeactively probing unresponsive machines, triggering on-
in a degree-8 aggregation tree can interrupt updates froflemand reaggregation [40], considering the recent his-
512 ®3) leaf node sensors. If these issues are not adtory of aggregate values, or delaying taking action un-
dressed by an aggregation system, the results a monitol more conclusive information is gathered), or flagging
ing system reports may labitrarily incorrect. results as GOOD/MARGINAL/BAD depending on the
The key idea of NI is that because no system carpbserved NI.

guarantee to always provide the “right” answer, it in- Challenges. Although monitoring connectiv-
1Algorithms in the literature can achieve clock synchronization 'Y _tO nodes to compute t_he NI metrics appears
among nodes to within one millisecond [37]. straightforward—the NI metrics are all conceptually

aggregates across the state of the system—in practice hop.q-

two challenges arise. First, the system must cope Wltmreachable V. Tl Nooaenass Characterizes the current

reconfiguration of dynamically-constructed aggregation.[Opology of the aggregation tree, but past connectivity
trees. Secof‘d’ the system must sqale 0 Igrge numbers afsruptions could affect attributes with large TI. In partic-
r_10des despite (a) the need for actlye pro‘?‘“g to Measul§ar because our Tl algorithm defines a small window of
Ilver;lef,s betweten d.e?ch El?rer;t-chllld palrhar;dh(bl) Mime during which a node must propagate updates to its
need to compute dis Inct values for each o the a_rgeparents,then any attribute’s subtree that was unreachable
number of distinct aggregation trees in the underlymgoverthe lastl'I,,,;,. could have been unlucky and missed
DHT fﬁrest. ¢ thi . !)) its window even though the subtrees nodes are currently
In the rest of this section, we first provide a sllmple all counted as reachable. We must either (a) modify the
algorithm for computingVay and Nycachatie TOr @ Sin- yrat6¢0] to ensure that such a subtree’s updates are re-
gle, static tree. Then, in Section 4.2 we explain NoWpecteq in the aggregate so that the promised TI bound is
PRISM computesVq,,;, in order to account for dynam- o+ o (b) we must ensure that..qenape COUNts such

ically changing aggregation topologies. Finally, in Sec-g \hrees as unreachable because they may have violated
tion 4.3 we describe how to scale the approach to Worliheir T bound.

with the large number of distinct trees constructed by We take the former approach to avoid having to cal-
PRISM’s DHT framework. culate a multitude 0fV,cqchase Values for different Tl
4.1 Single tree, static topology bounds. In particular, when a node receives updates from
. .) . a child marked unreachable, it knows those updates may
This section considers calculati, and Nyeachatte e |ate and may have missed their window for TI prop-
for a single, static-topology aggregation tree. _agation. It therefore marks such updates as NODELAY.
~ Nau is simply a count of all nodes in the system, and ityyhen a node receives a NODELAY update, it processes
is easily computed using PRISM’s aggregation abstracit jmmediately and propagates the result with the NODE-
tion. Each leaf node inserts 1 to thé,; aggregate, | Ay flag so that Tl delays are temporarily ignored for
which has SUM as its aggregation function. Note thalina; attribute. This modification may send extra mes-
even if a node becomes disconnected from the DHTgaqe5 in the (hopefully) uncommon case of a link per-
its contribution to this aggregate remains cached as Sofhmance failure and recovery, but it ensures that the cur-

state by its ancestors for a long timedut ciarepead- rent N,cachanie Value counts nodes that are meeting all
Nreachavie fOr a subtree is a count of the number of of their TI contracts.

leaves that have good pathto the root of the subtree)

where a good path is a path in which no hop takes longeft.-2 Dynamic topology

thanfopy,q.. Nodes computéN;.cqchabie IN tWO steps: Each virtual node in PRISM caches state from its chil-

1. Basic aggregation: PRISM creates a SUM aggregatéren so that when a new input from one child comes in,
and each leaf inserts local value of 1. The root of theit can compute new values to pass up using local infor-
tree then gets count of all nodes. mation. This information is soft state—a parent discards

2. Aggressive pruning: In contrast with the default be- it if a client is unreachable for a long time. But because
havior of retaining aggregate values of children as softeconstructing this state is expensive (there may be tens
state for up taljeciareDeads Nreachable MUSt immedi- of thousands of attributes for aggregation functions like
ately change if a connection to a subtree is no longefwhere is the nearest copy of file foo” [34]), we use long
a good path. Each internal node pings its child oncetimeouts to avoid spurious garbage collection (e.g., we
everyp time units and maintaingend Ping Replied.., us€TyeciareDead ~ 10 minutes in our prototype.)
the time it sent the last ping for which it has received Notice that when a subtree chooses a new parent, then
a reply frome. A child sends its ping reply only af- that subtree’s inputs may still be stored by a former par-
ter sending any messages backlogged in its outbounent and thus be counted multiple times in the aggregate.
message queue. Note thashould be smaller than Ng,, bounds the number of leaf inputs that might be in-
hopmaz; We usep = 10 seconds by default{op,,qx cluded multiple times in an aggregate calculation.
= 30 seconds). IfsendPingReplied. + hopmar < The basic aggregation function ff;,,,, is simple. We
curryme then a node declares childunreachable: keep a counk of the number of leaves in each subtree
the node removes’s subtree contribution from the using the obvious aggregation function. Then, if a sub-
N, cachable @ggregate and immediately sends the newtree root spanning leaf nodes switches to a new parent,
value up towards the root of th¥,.,.nqtie @aggrega- that subtree root inserts the valkénto the Ng,,, aggre-
tion tree. Notice that for simplicity this approach is gate, which has SUM as its aggregation function. Later,
conservative—it declares a child “unreachable” if thewhen the node is certain sufficient time has elapsed that
round trip time (rather than the one way time) exceedsts old parent has safely removed its soft state, it updates

(® t_haveLease = min_c (t_haveLease|c]) e

4 ’;'\ I L3
41 Y M L2

LEASE_RENE t_havelLease[n2] =t_send + (d_grantLease * (1-ma> A 7\/{, P A N

\
\
=

¢ recy d_grantLease ~ ‘
eu . !
oLl

(® d_grantLease = t_havelease — t_recv —<

t_grantLease = max(t_grantLease, t_havelLease) ! \, . \; 7/\; i)
AT A T
Fig. 3: Protocol for a parent to renew a lease on the right to 1 R 1 1 } 1 1 Lo
hold as soft state a child’s contribution to an aggregate. 000 100 010 110 |/ 001\ 101 oO11 111
its input of Ng,,, to 0. Fig. 5: The failure of a physical node has different effects on

L . F ol different aggregations depending on which virtual nodes are
ease aggregation. For correctness, our implementa- mapped to the failed physical node. The numbers next to vir-

tion uses dease aggregatiomlgorithm that extends the 1,51 nodes show the value of,.,.;.5.. for each subtree after

concept of leases [14] to hierarchical aggregation. the failure of physical node 001, which acts as a leaf for one
Figure 3 illustrates the protocol used when a nege tree but as a level-2 subtree root for another.

updates a lease on the right to cache the inputs from a

set of descendants rootedsat. The algorithm makes root for all attributes by removing and re-adding large
use of local clocks ab; andns,, but it is not sensitive subtrees of inputs. Furthermore, note that the example in

to skew and tolerates a maximum drift raternofiz 4, F|gureh4 is the cqmmonf caze: n a(;a;n.cliomly constructid
(e.g., 5%). In this protocol, a node maintatig,crcases Itree, t e;/q?t m?lor'(%o nothgs (anbl al ures)lgrte neaflrt €
the latest time for which it holds leases for all descen- caves- Falling to address his problem would transtorm

dants, and yranezease; the latest time for which it has the common-case of leaf failures into significant disrup-

granted a lease to its ancestors. The key to the protot-'ons near the root and bring into play the amplification

col is that the childn, extends the lease by a duration effect. o .]]]
dgrantLease, but the child interprets thé, o Lease iN- _ Early expl_rat|0n avoids this unwarrgnted dlsruptlpn as
terval starting front, ..., the time it received the renewal Figure 4(b) illustrates. A node at levebf the tree dis-
request, while the parent interprets the interval starting@rds the state of an unresponsive subtreea(Levels
fromt,.,q. As aresult, a lease always expires at a parent i) * deariy before its lease expires. Once the node has

before expiring at a child regardless of the skew betweefiémoved the problematic child's inputs from the aggre-
their clocks [42]. gates values it has reported to its parent, the node can

A node that roots #@-leaf subtree that switches to a "€NEW leases to_its parent that are no longer Iimited _by
new parent then contributdsto Ny, until g4t Lease, the ever-shortening lease held on the problematic child.

after which it may reset its contribution G¥y,, to 0 As the figure illustrates, this technique minimizes dis-
because its former parent is guaranteed to have clearddPtion by allowing a node near the trouble spot to prune
from its soft state all inputs from the node. the tree, update its ancestors, and resume granting long

To avoid spurious lease expirations, each node renew/§@seeforeany ancestor acts.
leases from its descendants once evefyew seco_nds 4.3 Scaling to large systems
and leaf nodes grant leases of len@th iarepeaqd With
renew << TyeclareDead (€.9.,menew = 30 seconds and Scaling NI is a challenge. To scale monitoring to large
TaeclareDead = 10 mMinutes in our prototype). numbers of nodes and attributes, PRISM constructs a
forest of trees using an underyling DHT and then uses

Early expiration. PRISM usesearly expiration to diff ¢ tion t for diff ¢ attribut A
minimize the scope of disruption when a tree’s topology merent aggregation trees for diierent atinbutes. - AS
Figure 5 illustrates, a failure affects different trees dif-

reconfigures. In particular, the lease aggregation mech-

anism ensures the invariant that leases near the root offﬁa;ently so we need to calculate NI metrics for each of

tree are shorter than leases near the leaves. As a result'f n distinct global trees in an-node system. Making

naive implementation that removes cached soft state e)!patters_ worse, as Secyon 4.1 _explamed, maintaining the
actly when a lease expires would exhibit the perverse be'—\II metrics requires act|Ye probing evesgeconds along
havior illustrated in Figure 4(a): each node from the rooteach edge of each tree's graph. i

to the parent of a failed node will successively expire its AS @ result of these factors, the straightforward al-
problematic child’s state, recalculate its aggregates with90rithm for maintaining NI metrics separately for each
out that child, update its parent, renew its parent's leaselfee is not tenablex degreed trees each Witm(?jﬂ)

and then repeatedly receive and propagate updated agedes haved(dn?) edges that must be monitored; such
gregates from its child as the process ripples down thenonitoring would requird(dn?) messages per node ev-
tree. Not only is that process expensive, but it may signif-ery p secondsy = 10 in our system). To put this in per-
icantly and unnecessarily perturb values reported at thepective, consider a = 512-node system witll = 8-

attribute = f(A..H) attribute = f(A..D) attribute = f(A..F)
attribute = f(A..G)

H G /H
H fails H fails Hfails

(a) Impact of leaf failure without early expiration

attribute = f(A..G)

1(A)

A B (& D E F

Hfails

(b) Impact of leaf failure with early expiration

Fig. 4: Recalculation of aggregate function across values A, B, ..., H after the node with input H fails (a) without and (b) with early
expiration.

L3 But notice that for each of these parents, this tree aggre-
gates inputs fronthe same subtrees.

L2 Whereas the standard aggregation abstraction com-
putes an aggregation function across a set of subtrees and

L1 propagates it to one parentdaal tree prefix aggregation

computes an aggregation function across a set of subtrees
LO and propagates it tall parents As Figure 6 illustrates,

000 100 010 110 o001 101 011 111 each node in a dual tree prefix aggregation is the root
Fig. 6: Plaxton tree topology is an approximate butterfly net-of two trees: an aggregation tree below that computes an
work. The bold connecFions iIIustrz?lte how a vi.rtual node 00* aggregation function across a set of leaves and a distribu-
uses the dual tree prefix aggregation abstraction to aggregajgy, yree above that propagates the result of this compu-
values_from a tree below it and distribute the results up a treetation to a collection of enclosing aggregates that depend
above it on this sub-tree for input.
ary trees (i.e., a DHT with 3-bit correction per hop). The For the N, .hape COUNt andN,,, lease, the values
straightforward algorithm then has each node sendingropagated up are aggregates on the subtree (the num-
over roughly 400 pings per second. As the system growsper of reachable nodes and the minimum lease duration
the situation deteriorates rapidly—a 4096-node systenyranted by the subtree), so the same value can be propa-
requires each node to send roughly 3200 pings per segated by a node to all of its parents.
ond. For example in Figure 6, consider the level 2 virtual

Our solution reduces active monitoring work t0 node 00* mapped to node 000. This NOAS. aehabie
0(dlogn) pings per node pep seconds. The 512-node count of 4 represents the total number of leaves included
system in the example will require each node to senqy, that virtual node’s subtree. This node aggregates this
ab_out 3 pings per second; the 409_6-node system will résingle N, cachasie COUNt from its descendents and prop-
quire each node to send about 4 pings per second. agates this value to both of its level-3 parents, 000 and

Dual tree prefix aggregation. To make it practical to 001. For simplicity, the figure shows a binary tree; by
maintain the NI values, we take advantage of the underdefault PRISM corrects three bits per hop atwB, so
lying structure of our Plaxton-tree-based DHT [27] to €ach subtree is common to 8 parents.
re-use common sub-calculations across different aggres Experimental Evaluation
gation trees using a novelual tree prefix aggregation
abstraction. To evaluate PRISM, we perform experiments on two
In particular, we note that as Figure 6 illustrates, thetypes of networks: (1) several LAN clusters (a 50-node
Plaxton tree algorithm forms an approximate butterflydepartmental Condor cluster and 50 to 85 Emulab [39]
network. For a degreé-tree, the virtual node at level nodes) and (2) 94 nodes on the PlanetLab distributed
1 has an id that matches the keys that it routdsgnd * ¢ testbed [26]. Our prototype has been developed using
bits. It is the root of exactly one tree, and its children SDIMS [40] on top of FreePastry [29].
in that tree are approximatetyvirtual nodes that match Our experiments characterize the performance and
keys inlog d* (i — 1) bits. It hasd parents, each of which scalability of the Al, TI, and NI metrics for PrMon and
matches different subsets of keyslig d « (i + 1) bits. distributed heavy hitters (DHH) applications. First, we

1 ‘
\" Non-pipelined --m--
— — Pipelined —&—
=l e}
S N 08}
K] S 5,
£ £ ...,
g € osf R} .
0 @
Q [
[} (=] .,
] I
@ @ 04r =
0] o LN T
£ £ u
* i .
E E 02t BRI
(e o
[=
O L L L L L 0 L L L L
0 2 4 6 8 10 0 2 4 6 8 10
Al (% of max) TI (seconds)
Fig. 7: Load vs. Al for TX1 and CPU attributes with no Tl Fig. 8: Load vs. Tl for a single attribute with no Al filtering

filtering

use CoMon [6] data collected from PlanetLab [26] andminute. The x-axis shows the global Al budget, and the
netflow traces from Abilene [1] to quantify the reduc- y-axis shows the total message load normalized with re-
tion in monitoring overheads due to Al and Tl. Second,spect to Al of -1 (no Al caching) and Tl £'1,,;,, =
we analyze the deviation in the PRISM’s reported val-50ms. Each data point represents the total number of
ues with respect to both the ground truth based on semessages sent during the 1-hour run. From the figure,
sor readings and the guarantees defined by Al and Thve observe that for CPU, the load falls by 68% when
Finally, we investigate the consistency/availability trade-Al changes from -1 (no caching) to 0 and a 10% Al fur-
offs that NI exposes. In summary, our experimental re-ther provides almost a 40% reduction in load compared
sults show that PRISM is an effective substrate for scalto Al=0. The load reduction from Al=-1 to Al=0 comes
able monitoring: introducing small amounts of Al and Tl from culling new updates that exactly match the previ-
significantly reduces monitoring load, and the NI metricsous report. However, if the CPU value changes, it gener-
both successfully characterize system state and reduadly deviates by a large amount, resulting in limited gains
measurement inaccuracy. achieved by 10% Al. For the TX1 attribute, the sensor
_ sends an update every 60 seconds. In this case, changing
5.1 Load vs. Imprecision Al from -1 to O provides roughly a 12% reduction in load
In this subsection we quantify the reduction in monitor- Whereas 10% Al reduces the load by 50%.
ing load due to Al and TI for both the PrMon and DHH Figure 8 shows the corresponding Tl precision-
applications. Further, we characterize the reduction irperformance results with no Al filtering. The initial TI
monitoring load due to Al and TI for different sensor value ofT'I,,;, (50 ms) corresponds to immediate prop-
data distributions by running large-scale simulations oragation of messages along the aggregation tree. From
synthetic datasets. the graph, we observe that the reduction in system load
is 80% and over an order of magnitude for non-pipelined
and pipelined 10 second Tl delays respectively compared
We begin by comparing the monitoring cost of PrMon to Tl of 77y,
distributed monitoring service to the centralized CoMon Figure 9 shows the combined effect of Al and Tl in
service, which uses a fixed Tl of 5 minutes and whichreducing monitoring load for the CPU attribute for the
does not exploit Al. We gather CoTop [6] data from 200 princetoncodeen slice. We use Tl of 10 seconds, 30
PlanetLab nodes at 1-second intervals for 1 hour on 2%econds, 1 minute, and 5 minutes, and for each of these
September 2006. The CoTop data provides the per-slicél values, we run the experiment for Al values of -1, 0,
resource usage (e.g., CPU, MEM, TX1) for all slices run-10%, and 20%. We observe that the load falls by 70%
ning on a given PlanetLab node. Using these logs as serfrom Al of -1 to Al of 10% for a given TI. Further, for
sor input, we run PRISM on 200 servers mapped to 5 fixed Al, the monitoring load shows a curve following
Emulab machines each having a 3GHz CPU and 2GHL/TI as in Figure 8. For this attribute, giving an Al of
RAM. 10% or 20% only provides additional load reduction of
Figure 7 shows the Al precision-performance results10% and 16% respectively due to low temporal locality.
for the PrMon application for two attributes (the total Next Figure 10 shows the combined effect of Al
TX1 and CPU usage of slice princetandeen across and Tl in reducing monitoring load for all the nine at-
200 PlanetLab nodes). The TX1 attribute denotes thdributes (TX1, TX15, RX1, RX15, #PR, PMEMMB,
total number of bytes transmitted by a slice in the lastYyMEMMB, CPU%, and MEM%) emitted by the CoTop

5.1.1 PrMon

10

Y ; ; ; YR
- Al=0 —8— - Al=0 —8—
] Al'=10 - S Al=10 «men
N Al=20 = N Al =20 wem
£ £
5 5 01y
£ £
8 %]
® 01} o
© ©
12} 192}
1%} %]
Q ()
£ £
H* H*
B ¥
5 5
[=
Ool L L L L L 0001 L L L L L
0 50 100 150 200 250 300 0 50 100 150 200 250 300
TI (seconds) TI (seconds)
Fig. 9: Load vs. Al and Tl for CPU attribute Fig. 10: Load vs. Al and TI for all attributes

sensor for all the running PlanetLab slices in our tracemagnitude reduction in monitoring load. Increasing the
data. We observe that for Al of -1, there is more than on€eTl beyond 10 seconds yields additional, albeit smaller,
order of magnitude load reduction for Tl of 5 minutes reductions. For non-pipelined delays, Tl of 25 seconds
compared to 10 seconds. Likewise, for a fixed Tl of 10yields an order of magnitude load reduction.
seconds, Al of 20% reduces load by two orders of mag
nitude compared to Al = -1. By combining Al of 20%
and Tl of 30 seconds, we get both an order of magni-To generalize the trade-off between Al and monitoring
tude load reduction and an order of magnitude reductior¢ost, we evaluate the conditions under which Al is effec-
in the time lag between updates compared to CoMon’dive i.e., the distribution of the data values reported by
Al of -1 and Tl of 5 minutes. Alternatively, for approx- the sensors. We first investigate via simulation a large-
imately the same bandwidth cost as CoMon with TI of scale aggregation network with 7776 physical nodes or-
5 minutes and Al of -1 for 200 nodes, PRISM provides ganized as a 5 level aggregation tree with uniform degree
highly time-responsive and accurate monitoring with TI 6. For each leaf node, we model the the data values of
of 10 seconds and Al of 0. incoming traffic using two distributions: a Gaussian dis-
tribution and a uniform distribution. Our aim is to the
evaluate the effect on load due to the noise in the data
For our heavy hitter case study, we use multiple netflowalues given a fixed Al budget.
traces obtained from Abilene [1] Internet2 backbone net- Figure 13 shows the corresponding results using our
work. The data was collected for 1 hour on April 4, 2006; simulator over these two data distributions. The x-axis
each backbone router logged per-flow data evemyin- denotes the ratio of total noise induced by all the leaf sen-
utes, and we split this trace into 200 buckets based osors to the total Al budget. We observe that when noise
the hash of source IP. Our monitoring system executes s small compared to the Al budget, we filter almost all
Top-10 query on this dataset for tracking the top 10 flowsupdates and load can be reduced by an order of magni-
(destination IP as key) in terms of bytes received over aude. But, as expected, when noise is large compared
30 second moving window shifted every 5 seconds. to the error budget, the load asymptotically approaches
Figure 11 shows the precision-performance results fothe load with Al = 0. The uniform distribution allows
the top-10 heavy hitter query for 50 nodes on the departalmost perfect culling of updates for small amounts of
mental Condor testbed. The x-axis shows the Al budgetoise whereas for the Gaussian distribution, there is a
and the y-axis shows the total monitoring load per unitsmall yet a finite probability for data values to deviate
time normalized relative to the load for Al = 0. The Al arbitrarily from their previously reported range.
budget is varied from 1% to 10% of the top flow’s global In summary, our evaluation shows that small Aland Tl
traffic volume. From the graph, we observe that the knedudgets can provide large bandwidth savings to enable
of the graph at 10% Al provides over an order of mag-scalable monitoring.
nitude reduction in monitoring load. A large fraction of . .
the reduction comes from completely eliminating aggre—s'2 Promised vs. Realized Accuracy
gation for “mouse” flows whose total bandwidth is less In this subsection we aim to answer the following ques-
than the imprecision budget at the leaves. tion: do PRISM's reported values reflect reality? We
Figure 12 shows the corresponding results for theguantify the difference between PRISM’s reports and the
pipelined and non-pipelined TI delays. We find that us-“ground truth” based on the instantaneous sensor read-
ing pipelined delays, a 10 seconds Tl achieves an order ahgs. To evaluate this deviation, we compare PRISM’s

5.1.3 Generalized Model: Simulation study

5.1.2 Detecting Heavy Hitters

11

1
0.8 " |
LY
] .,
g
- 06 ¢ |
°
b |
©
g 0.4 + | |
S
t ..
o2 e u. 7
................ ...
g
0 ‘ ‘ ‘ ‘
0 2 : ; 8 :

Arithmetic Imprecision (%)

Fig. 11: Normalized load vs. Al for the top-10 query on
Abilene traces.

100 7 = ‘ ‘
ORACLE-AI=0
-y LEGAL-AI=0
ORACLE-Al=1 —&—
80 t LEGAL-Al=1 o]
ORACLE-AI=5 oo
LEGAL-AI=5
~ 604+ ORACLE-AI=10 =@ |
IS LEGAL-AI=10 =
L
a
O 40% i
20 {om i
0 ‘ ‘ ‘
0 20 40 60 80 100

Difference (%)
Fig. 14: Cumulative Distribution function (CDF) for dif-
ference between PRISM'’s reported values wrt. (a) oracle’s
reports and (b) PRISM’s legal guarantees for fixed Tl of 1
second.

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Guassian Distribution ———
Uniform Distribution 1

Normalized Load

0.1 1 10
Delta to noise budget ratio
Fig. 13: Normalized Load vs. noise of synthetic workload for
a fixed Al budget. If noise< Al, a majority of updates get

filtered.

0
0.01 100

-
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

an-PipeIineEi el
Pipelined —&—

Normalized Load

0 10 15
Temporal Imprecision (s)
Fig. 12: Normalized load vs. TI for the top-10 query on

Abilene traces.

25

100 ¢ =i T
ORACLE-AI=0
LEGAL-AI=0
ORACLE-Al=1 —&—
80 t LEGAL-Al=1 o
ORACLE-AI=5 -l
LEGAL-AI=5
—~ 60+ ORACLE-AI=10 @ |
S LEGAL-AI=10 =
L
o
(@] 40 1
20 ¢ g
0 L L L L
0 20 40 60 80 100

Difference (%)
Fig. 15: Cumulative Distribution function (CDF) for dif-
ference between PRISM's reported values wrt. (a) oracle’s
reports and (b) PRISM’s legal guarantees for fixed Tl of 10
seconds.

the legal guarantees defined by Al and TI. In Figure 14,
we fix Tl to 1 second and then report the CDF of differ-
ence in the attribute’s reported values for different values
of Al. We make two important observations here: (1)
PRISM'’s reported values lie within the envelope defined
by Al and TI for essentially all reports and (2) for 5% Al
and 1 second TI, more than 90% of reports have differ-
ence less than 15% from the oracle. As illustrated in Fig-
ure 14, increasing the Tl to 10 seconds results in larger
deviation between PRISM’s reported results and the ora-
cle. For 5% Al and 10s Tl, more than 90% reports differ
by less than 27% from the oracle. The relatively large
errors relative to Al are due to the low temporal locality
of the CPU attribute: small Tl adds significant additional
variation compared to the oracle. But, the values remain
within the legal guarantees defined by the combined Al

reported results with (1) an oracle service that report&nd Tl limits.

true aggregate values based on sensor readings at a
time instant and (2) the legal guarantees promised b

PRISM's Al and Tl metrics.

§¥3 NI: Coping with Disruption

Finally, we analyze the effectiveness of our NI metrics in

Figure 14 and 15 show the CDF of deviation betweenaccurately reflecting network state and filtering inaccu-

PRISM'’s reported values for PrMon’s “CPU” attribute

rate reports.

compared to both the “oracle” instantaneous values and We first show how NI metrics reflect network state for

12

25 T T T T T T T T T 100

Nreachable x ‘ ‘ ‘ ‘ " Nreachable
Nall —— 90 Nall
) Ndup - Lo —
o 4 L L A r
% 20 B B e e] 80 I {
= 70 H
o
S 15+ s 1 60
2 3
@ s S0
S >
E 10t 1 40
=
S
2 5

0

0O 200 400 600 800 1000 1200 1400 1600 1800 4 6 8 10 12 14 16 18
Time (seconds) Time (hours)

Fig. 16: NI metrics under induced system churn — single Fig. 17: NI metrics reflecting PlanetLab state (85 nodes).
node failure at 815 seconds into the experimental run.

a small scale controlled experiment. In Figure 16, wewhen NI < 5%, 80% answers have less than 20% devi-
run a 20 node experiment on the Condor cluster wheration from the true value and when K1 90%, 80% an-
we kill a single node at 815 seconds into the run andswers can deviate by as high as 65% from the true value.
observe the variation of reported NI metrics for an at-Note that for monitoring systems that ignore NI (no fil-
tribute with Tl of 60 seconds. This failure causes thetering line), 90% of their reports can differ by 80% from
Nreachavie Value to fall from 20 to 15 within 40 sec- the truth.
onds after the node failure. The dropMcachabie iNdi- In Figure 19 we explore the effectiveness of a general
cates that any result calculated in this interval might onlystrategy to achieve high consistency in reported aggre-
include correct values from 15 nodes. Thg; value gate values during periods of churn. We use K redundant
remain stable from 20 until about 1600 seconds to retrees in the DHT to compute an attribute and then use NI
flect the longT yeciare Deaq timeout before the system de- to identify the highest-quality result. Figure 19 shows the
clares unreachable nodes to be dead. CorrespondinglgDF of results with respect to the deviation from oracle
the Ny, value goes from 0 to 4 at about 1060 secondsas we vary K from 1 to 4. We observe that when devia-
when the disconnected subtree joins a new parent angon is less than 10% (small NI), retrieving results from
starts reporting itéVg,,,, value to that parent. Finally, the the root of one aggregation tree (K = 1) suffices. How-
Naup value falls back to 0 aboWtye iorepead time units ever, for large deviation, fetching the reports from only
(Theciare Deaa = 10 minutes) after the dead event and bothone aggregation tree can introduce deviation as high as
Ny and Nyeqchanie Stabilize to 19 (nodes) denoting that 100% whereas choosing the result from the most stable
the system is back to a stable state. of 4 trees reduces the deviation to at most 22% thereby

Figure 17 shows how NI reflects network state for areducing the worst-case inaccuracy by nearly a factor of
85-node PlanetLab experiment for a 18-hour run start5.
ing 4 October 2006. We observe that even without any Filtering answers during periods of high churn ex-
induced failures, there are short-term instabilities in val-poses a fundamental consistency versus availability
ues reported bW, .cqchabie, Nair, aNdNg,, due to miss- tradeoff [13]. Figure 20 shows how varying K allows us
ing/delayed ping reply messages f6f...rqsic @andlease to increase monitoring load to improve this tradeoff. As
expirations triggered by DHT reconfigurations 9. K increases, the fraction of time during which NI is low
During the course of the run, 5 of the 85 nodes becaméncreases. The intuition behind the approach is that since
unresponsive; hence the finsl..qcrabie aNA N,y values the vast majority of nodes in any 8-ary tree are near the
stabilize to 80. leaves, sampling several trees rapidly increases the prob-

Next we quantify the risks of reporting global aggre- ability that at least one tree avoids encountering many
gate results without incorporating NI. We run a 1 hournear-root failures. We provide an analytic model formal-
experiment on 94 PlanetLab nodes for an attribute withizing this intuition in the appendix.

=0and Tl =10 seconds. Figure 18 shows the CDF of
reported answers showing the deviation in reports wrth6 Related Work
respect to an oracle. The different lines in the graphThe three imprecision metrics in our work are inspired
correspond to the reported answers filtered for differenby and relate to a number of research traditions in the
NI thresholds. For simplicity, we condense NI to a sin- distributed systems community.
gle parameter MAX{al= %”“ha“” N‘“‘P) We observe The Al and TI metrics are related to several research
that NI effectively reflects the stabrlrty ‘of network state: efforts allow applications to trade precision for commu-

13

.

1)

IS}
=
15}
S)

@

S
@
S

-3

o
-3
S

IS
S

IS
o
CDF (% answers)

CDF (% answers)
CDF (% answers)

NI unbounded (no filtering)
NI <5% —&8—
NI < 10% =
i NI <50% o
] NI < 75%
‘ ‘ , Ni<90% o ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 20 40 60 80 100 0 20 40 60 80 100 0 0.2 0.4 0.6 0.8 1

Difference from truth (%) Difference from truth (%) NI

N

o
N
<3

RRRR
W
[ENFRINTE

Fig. 18: Cumulative Distribution function Fig. 19: Cumulative Distribution function Fig. 20: Cumulative Distribution function
(CDF) for reported answers filtered for (CDF) of NI values for different K. (CDF) of NI values for K duplicate keys.
different NI thresholds and K = 1.

nication overhead. Olston et al. [3, 22] propose adaptivegguarantee [25]. Kostoulas et al. [19] point out the im-
filters at the data sources that compute approximate arpossibility of group size estimation in a dynamic group
swers for continuous queries. Their work, however, fo-and propose an active gossip-based scheme and a pas-
cuses on single-level communication topologies. In a hisive approach based on interval densities when nodes are
erarchical communication setting, Manjhi et al. [21] con- hashed onto a given real interval. Freedman et al. pro-
sider the problem of finding frequent items in databasepose link-attestation groups abstraction in [11] that uses
streams; they focus on determining an optimaldtatic =~ an application specific notion of reliability and correct-
distribution of slack to the internal and leaf nodes of theness, so as to map which pairs of nodes consider each
tree. TAG [20], an aggregation service for sensor net-other reliable. Their system, designed for groups on the
works, employs a similar approach as PRISM for bound-scale of tens of nodes, monitors the nodes and system
ing Tl when nodes are approximately synchronized. and exposes such attestation graph to the applications.
Consistency has long been studied in the context Traditionally, DHT-based aggregation is event-driven
of non-aggregating file systems and databases. Yu énd best-effort, i.e., each update event triggers re-
al. [45] propose three metrics—Numerical Error, Orderaggregation for affected portions of the aggregation tree.
Error, and Staleness—to capture the consistency spe&Urther, systems often only provide eventual consistency
trum in a distributed replicated system where any nodéJuarantees on its data [36, 40], i.e., updates by a live node
can perform read or write operations. Numerical errorwill eventually be visible to probes by connected nodes.
is similar to Al and Staleness is similar to TI. Similarly, =~ There are ongoing efforts similar to ours in the P2P
file systems providing cache consistency often provideand databases community to build global monitoring ser-
leases on individual objects [14] or volume leases orvices. PIER is a DHT-based relational query engine [16]
groups of objects [43] targeted at querying real-time data from many vantage-
Consistency for aggregation differs in two fundamen-poi”ts on the Inter_net. Sophia [38]is a_distrib.uted moni-
tal ways. First, aggregation systems are large-scale witfPring system designed with a declarative logic program-
many concurrent writers which implies that it is not fea- MiNg model. A recent study [17] has proposed support
sible to resolve CAP dilemma [13] by blocking reads ©f a@ggregate triggers in monitoring systems in which
during periods when a writer may be disconnected. Sdndmduallnodes can mdependeqtly detect .and react to
we emphasize availability by providing conditional con- €hanges in the global system-wide behavior. PRISM

sistency: operations always complete but results are arf’@y €nhance such efforts by providing a scalable way

notated with information about their quality. Second, {© track top-k and other significant events.

in hierarchical aggreggtio_n that accumul_ates inputs from; conclusions

many sensors, amplification effect of failures can make

results substantially deviate from the real values. Without precision guarantees, large scale network mon-
The idea of flagging results when the state of a disoring systems may be t00 expensive to implement (be-

tributed system is disrupted by node or network failurescause too many evgnts flow(;chrough thebsysten;]) or too
has been used in tackling other distributed systems probqangerous to use (because data output by such systems

lems. For example, our idea of conditioned consistency"® P€ grbltragly w(;ong.) P_RIISM provides amhmf?'c
is similar in spirit to the notion of failure detectors [4] 'MPrecision to bound numerical accuracy, temporal im-

for fault-tolerant distributed systems. Also, in quorum precision to bound stgleness, and network imprecision to
systems, Pierce and Alvisi's pseudo-regular and pseudd*POSe cases when first two bounds can not be trusted.
atomic semantics provide regular and atomic semanticReferences

on all operations, but they_a”OW operationsétbort if [1] Abilene internet2 networkttp://abilene.internet2.edu/ :
concurrency or network failures would prevent such a [2] D. Andersen, H. Balakrishnan, M. Kaashoek, and R. Morris. Re-

14

(3]

(4]

(5]

(6]
(7]
(8]

(9]
(10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

silient overlay networks. IfProc. SOSPpages 131-145. ACM
Press, 2001. [26]
B. Babcock and C. Olston. Distributed top-k monitoring. [27]
In ACM SIGMODInternational Conference on Management of
Data, pages 28-39, June 2003.

T. Chandra and S. Toueg. Unreliable failure detectors for reliable[28]
distributed systemsl. ACM 43(2):225-267, Mar. 1996.

D. D. Clark, C. Partridge, J. C. Ramming, and J. Wroclawski. A
knowledge plane for the internet. In A. Feldmann, M. Zitterbart, [29]
J. Crowcroft, and D. Wetherall, editoiS|IGCOMM pages 3-10.
ACM, 2003.

http://comon.cs.princeton.edu/ .

R. Cox, A. Muthitacharoen, and R. T. Morris. Serving DNS using
a Peer-to-Peer Lookup Service.IRTPS 2002.

M. Dahlin, B. Chandra, L. Gao, and A. Nayate. End-to-end
wan service availability.[IEEE/ACM Transactions on Network-
ing, 2003.

C. Estan and G. Varghese. New directions in traffic measuremen{32]
and accounting. 1I8IGCOMM pages 323-336. ACM, 2002.

M. J. Freedman and D. Mazires. Sloppy Hashing and Self-
Organizing Clusters. I&nd Intl. Workshop on Peer-to-Peer Sys- [33]
tems Berkeley, CA, February 2003.

M. J. Freedman, |. Stoica, D. Mazieres, and S. Shenker. Group
therapy for systems: Using link attestations to manage failures[34]
In IPTPS 2006.

Y. Fu, J. Chase, B. Chun, S. Schwab, and A. Vahdat. SHARP:[35]
An architecture for secure resource peeringPfoc. SOSPOct. [36]
2003.

S. Gilbert and N. Lynch. Brewer’s conjecture and the feasibility
of Consistent, Available, Partition-tolerant web servicesAGM
SIGACT News, 33(2yun 2002.

C. Gray and D. Cheriton. Leases: An Efficient Fault-Tolerant
Mechanism for Distributed File Cache Consistency. S@SP
pages 202-210, 1989.

J. M. Hellerstein, V. Paxson, L. L. Peterson, T. Roscoe,
S. Shenker, and D. Wetherall. The network oradEEEE Data
Eng. Bull, 28(1):3-10, 2005.

R. Huebsch, J. M. Hellerstein, N. Lanham, B. T. Loo, S. Shenker,
and |. Stoica. Querying the Internet with PIER. Rroceedings

of the VLDB Conferen¢éay 2003.

A. Jain, J. M. Hellerstein, S. Ratnasamy, and D. Wetherall. A
wakeup call for internet monitoring systems: The case for dis- [41]
tributed triggers. IProc. 3rd ACM SIGCOMM Workshop on Hot
Topics in Networks (HotNets$an Diego, CA, November 2004.

N. Jain, D. Kit, P. Mahajan, P. Yalagandula, M. Dahlin, and

Y. Zhang. PRISM: precision-aware aggregation for scalable mon-[42]
itoring (extended). Technical Report TR-06-22, UT Austin De-
partment of Computer Sciences, May 2006.

D. Kostoulas, D. Psaltoulis, I. Gupta, K. Birman, and A. Demers.
Decentralized schemes for size estimation in large and dynamic
groups. INEEE Network Computing and Applications (NCA 05) [44]
2005.

S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong.
TAG: a Tiny AGgregation Service for Ad-Hoc Sensor Networks. [45]
In OSD|, 2002.

A. Manijhi, V. Shkapenyuk, K. Dhamdhere, and C. Olston. Find-

ing (Recently) Frequent Items in Distributed Data Streams. In[46]
ICDE, pages 767—-778. IEEE Computer Society, 2005.

C. QOlston, J. Jiang, and J. Widom. Adaptive filters for continuous
queries over distributed data streams. SIGMOD, SIGMOD

2003.

C. Olston and J. Widom. Offering a precision-performance trade-

off for aggregation queries over replicated dataVUDB, pages
144-155, Sept. 2000.

V. Paxson. End-to-end Routing Behavior in the InternetSIa-

COMM, Aug. 1996.

L. Pierce and L. Alvisi. A framework for semantic reasoning
about byzantine quorum systems.Brief Announcements, Proc.

(30]

(31]

(37]

(38]

(39]

(40]

(43]

15

of Symp. on Principles of Distributed Computi2§01.
Planetlabhttp://www.planet-lab.org .

C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing Nearby
Copies of Replicated Objects in a Distributed Environment. In
ACM SPAA1997.

S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A
Scalable Content Addressable Network.Pimceedings of ACM
SIGCOMM 2001.

A. Rowstron and P. Druschel. Pastry: Scalable, Distributed Ob-
ject Location and Routing for Large-scale Peer-to-peer Systems.
In Middleware 2001.

J. Shneidman, P. Pietzuch, J. Ledlie, M. Roussopoulos,
M. Seltzer, and M. Welsh. Hourglass: An infrastructure for con-
necting sensor networks and applications. Technical Report TR-
21-04, Harvard Technical Report, 2004.

A. Siegel.Performance in Flexible Distributed File Syster®hD
thesis, Cornell, 1992.

A. Singla, U. Ramachandran, and J. Hodgins. Temporal notions
of synchronization and consistency in Beehive.Phoc. SPAA
1997.

I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrish-
nan. Chord: A scalable Peer-To-Peer lookup service for internet
applications. IPACM SIGCOMM 2001.

R. Tewari, M. Dahlin, H. Vin, and J. Kay. Design Considerations
for Distributed Caching on the Internet. IBDCS May 1999.
http://www.globus.org/

R. van Renesse, K. Birman, and W. Vogels. Astrolabe: A ro-
bust and scalable technology for distributed system monitoring,
management, and data mininBOCS 21(2):164—206, 2003.

D. Veitch, S. Babu, and A. Pasztor. Robust synchronization of
software clocks across the internet. IMC '04: Proceedings

of the 4th ACM SIGCOMM conference on Internet measurement
pages 219-232, New York, NY, USA, 2004. ACM Press.

M. Wawrzoniak, L. Peterson, and T. Roscoe. Sophia: An Infor-
mation Plane for Networked Systems.HiotNets-1| 2003.

B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,
M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An integrated
experimental environment for distributed systems and networks.
In Proc. OSD] pages 255-270, Boston, MA, Dec. 2002.

P. Yalagandula and M. Dahlin. A scalable distributed information
management system. Rroc SIGCOMM Aug. 2004.

P. Yalagandula, P. Sharma, S. Banerjee, S.-J. Lee, and S. Basu.
S2: A Scalable Sensing Service for Monitoring Large Networked
Systems. IProceedings of the SIGCOMM Workshop on Internet
Network Managemen2006.

J. Yin, L. Alvisi, M. Dahlin, and C. Lin. Hierarchical Cache
Consistency in a WAN. IfProc USITSOct. 1999.

J. Yin, L. Alvisi, M. Dahlin, and C. Lin. Volume Leases to Sup-
port Consistency in Large-Scale SysteriSEE Transactions on
Knowledge and Data Engineeringeb. 1999.

H. Yu and A. Vahdat. Design and evaluation of a continuous
consistency model for replicated services.A8DJ, pages 305—
318, 2000.

H. Yu and A. Vahdat. Design and evaluation of a conit-based con-
tinuous consistency model for replicated serviégSM Trans. on
Computer System20(3), Aug. 2002.

B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry: An
Infrastructure for Fault-tolerant Wide-area Location and Routing.
Technical Report UCB/CSD-01-1141, UC Berkeley, Apr. 2001.

8 Appendix compuation in Equation 4 by:

8.1 Arithmetic Imprecision
. . e . . Pa: = min V¢
Mechanism We first describe in detail the aggregation <c€child(n) m‘”)
mechanism for a single flow in an aggregation tree for
the SUM function with a given Al budget. Prin = (Ce(%ilg(n) Vém) (5)

8.1.1 Computing SUM for a single attribute

To enforce Al, each aggregation subtr€efor an at- 8.1.3 Computing MAX for a single attribute

tribute has an error budgét which defines the maxi- The MAX aggregation function is symmetric to MIN.
mum inaccuracy of any result the subtree will report toThus, Equation 5 becomes:
its parent for that attribute.

Each noden in the aggregation tree maintains per- P — (max V¢ >
attribute state cechild(n) *
\I/n:{(sselfa Vmina Vmama Lself7 vc<5cv Vr:”na V’r%a;p? Lc) } szn — max VE. (6)
cEchild(n) "

Whenevem receives an update from a chitdit trig-
gers the aggregation function that re-computes the aggres 1 4 Computing AVG for a single attribute
gate value of all latest received updates from its children.
Function: OnChildUpdate (child, range /¢, , V<], The AVG aggregation function can be easily computed

min’ ¥ max

load L) as a (SUM, COUNT) pair along the same aggregation
Step 1. Compute synopses received from children set child(n){ree.
‘ 8.2 Optimality of Self-tuning Al Error Dis-
Pras = (> V;m> tribution

cechild(n
(m) The optimal distribution ofd; amongd,.;; andd, is

Proin = (> %m) (4) computed as follows: We first find the optimal Al error
cechild(n) distribution for a simple degree-2 tree having two lev-
els with the root at level 1 and its two children as the

If n hasnevereceived an update for this attribute from |€af nodes. Later, we will show how this topology can
achilde, then V¢]is setto [0,6.]. be modeled for any arbitrary d and for any level of the

Step 2. Pass new numeric range through local Al filter: aggregation hierarchy.
.) Given this topology, we hav®r = .1 + 0¢2; dser ¢ fOr
|f (szn < Vmin H Pmam > ‘/mar) { p gy m ! c el

v p bi s T b 1 the root node is set to 0 since it doesn't need to transmit
me — omin 5“1_‘9 *Oserys [/ bias € [0,1]; any updates up in the hierarchy. As discussed in Sec-
maz = Vimin + 0T; tion 3.1, under the assumption that load is inversely pro-

(&
n? ‘/maar

Lgery + +; . _
se ’ portional to the error budget, we get:

L= ZcEchild(n) Lc + Lself;

Send (attrV max, L) to parent; Mo b

) M o

For redistributing the Al budgets in our self-tuning algo- Y; 5
rithm, M,y (M.) are set to the ratio of...;s (L. for 2 2
child ¢ respectively) to the time elapsed since the last Al Mg o
error distribution.

. _ We formulate minimizing total load as a multivariate
Leaf node: A leaf node can be viewed as an internal optimization problem sibject to the constraint that the to-
node with a single virtual child (the sensor itself) with tal error budget is fixed i.e.,

Al = 0 i.e., the sensos triggers an updatelf, V;] to

the leaf node i.e.V, = V. = V2. . Note that the Minimize fo M+ ME

messaging cost of transmitting between the virtual child

(sensor) and the leaf node, = 0 since they reside on subject to the constraint:

the same physical node. . ,
. _ _ sop opt _ _

8.1.2 Computing MIN for a single attribute g: 01 +0c2 =0r =0c;” + 03 —0r =0

The mechanism of computing the MIN aggregation func-We use Lagrangian multipliers to find the extremum of

tion is similar to the SUM where we replace the SUM (5%, 5°") subject to the constraint thatég{", §°°) =

16

Oi.e.,
of

6Pt
M20co
op — 6"
Me16c1 Mede2
(6% (or —o)"
VMeider 62{”
VMades 6p — 7
VM6)

VMeider + vV Mezdeo
which is a special case of Equation 3 when d = 2
In the general case for a degree-d tree, we get Equation
Zve{self}Uchild(n) VM, %8,
Notes. Foran internal-node, we mod&l; ¢, M. s for

that node as a virtual child with. = 0514, Mc = Meiy
and use the above equation fb#- 1 children.

9
At =0
a6

dg
6Pt

0

Mcl 601
opt (
067

577 -

)+ A

=

= s = 5T(

65pt:6T*

8.3 Temporal Imprecision
Pipelined Delays Note that the pipelined delays mech-

Proof. An event reaches level d no later than
X + I + d .S [Combining Lemma 1 and Lemma 2]
=X+ (TI—-d*xS)+d=*S

=X+TI O

In general, ifskew,, . is large due to unsynchronized
clocks or weak synchronization we simply fall back on
non-pipelined version which we describe next.

Non-pipelined delays. For the case of unsynchronized
clocks, we use the same algorithm as the pipelined case
with the difference tha? * skew,,., iS no longer used
and the parameteis I, andS are set slightly differently

to reflect lack of coordination between levels. Specif-
ically, S = hopma. (We ignore skew,,,,) and cor-
'éespondinegT = ¢+ (I +95). Note that we get a
different bound on minimum temporal imprecision as
Trin = £ * hopma, fOr the non-pipelined case.

In terms of implementation, instead of a global refer-
ence time as in the synchronized case, the aggregation
function specifies an arbitrary reference tiie There-
fore, at local timeZ + ¢ % I corresponding to a node at
any level of the aggregation tree, it sends an updated ag-
gregate value to its parent iff the value of any of its inputs
has changed since tinde+ (: — 1) « I. The efficiency for
non-pipelined case is qualitatively same as the pipelined

anism significantly reduces the number of updates ircase—at each level, an aggregate update is propagated at
an aggregation tree; at each level, an aggregate updafeost once per | seconds.

is propagated at most once per | seconds where
TI — /0% S.

Proof of Correctness of Non-Pipelined Delays. To
prove correctness, we define the following lemma:

To provide the temporal guarantees under synchro-

nized clocks, S must be smaller th%t This im-
plies that temporal imprecision would be violated if
2*5k€wmaw >= (%_hopmaw) >= %(T_g*hfopmaa;)-
The intuition of this result is thatT" — ¢ x hopaz) IS
the total slack for the entire tree; therefordew,,qz
must be smaller than slack available per leygl" — ¢ «

hOpmax) .
Proof of Correctness of Pipelined Delays.

Lemma 1. An event sent by levehat local timeT; is sent
by leveli + 1 no later than local time (at leve) T; + S

Proof. At jt* step (Tl interval), the extra delay intro-
duced by node at level+ 1
=(Z4+jxI+0G+1)xS)-(Z+j*xI+ixS)
=9 O
Lemma 2. A leaf event at time X sent by level 0 no later
than X + | [True by definition of 1]

Theorem. An event at a leaf node at local timE is
reflected at root no later than tim& + 7' according to
the local time at the same leaf node.

17

Lemma 3. At any level, the maximum delay in update
propagation by a node i + S.

This leads to the proof of Theorem 8.3 for the non-
pipelined case.

Proof. An event reaches level d no later thah+ d =
(I+8)=X+TI O

Comparison. Given the sama priori temporal impre-
cision budget, the value af for the pipelined and the
non-pipelined cases would be different i.e.,

Ipipelined = T—1xS
T
= [x (Z — hopmaz — 2 * skewmaz>
T
non_pipelined — T hopmam

14

Therefore, when skew is small, i.€ * skewq. <
% — hopmaz, pipelined delay can achieve almost a factor
of £ reduction in the update frequency.

8.4 Network Imprecision ‘ ‘
R VI Vichs

Here we present the analytical results for computing the Qy) = Y

expected NI using: aggregation trees aftgf indepen-

dent failures have occured. Note that byihdependent Its contribution to NI is exactly’. Therefore, with 1

failures”, we allow two failures to be on the same node;failure, we have

in this case, their contribution to NI is counted twice. i
E(NI,1,i)= Y Q)*d

Notation. S0
e c: the number of logical children a node has in the (1-1/¢)
aggregation tree (i.e., logical fanout). =(i+1)x 11/
o d: the depth of the aggregation tree (1—1/eth)
e P(i,f,k): with & random trees, the probability for at Var(NI,1,i) = E(NI?) — E(NI)®
least one tree to have all failures occuring at level — Z Q(j) * &7 — E(NI)?
<= i (leaf at level 0) (which implies the NI #/,;; — o
Nreachable <= [* ¢" with f independent failures be- — ¢ — B(NT)?

cause each node at levietontribute at most’ to NI).
e E(NI,f,i): the expected NI withf independent failures With f independent failures, we get: E(NIf)= f

conditioned on the fact every failure appears in MaXp(NT,1,4) and Var(NI,f,i) <= f2*var(NI,1,i)

level of; or below Note that we use 2=" instead of =" because we

e Var(NLf,i): the variance of NI withf independent fail- - jonore the fact that one failure may be the ancestor of
ures conditioned on the fact every failure appears in,, ;iner.

max level ofi or below.) .
Example. Suppose c=8,f=10,k=4,i=1, then with

8.4.1 Tail Probability Analysis prob. >= 99.95%N,;; — Nyeachabie <= f*c' =80 and

The probability for a failure to appear in max level j= in this case, E(NLf,i)<= 17.78 and STDDEV.(NI{,i)
(leaf is level 0) i.e., Pr(failure in max levet= i) =1- <=22.

Pr(failure in max level>) To summarize, a fundamental and unique challenge in-
=(1—1/cth). herent in any hierarchical aggregation system (regardless

in level <= i is therefore(1 — 1/¢i+1)/. Note that the ~fect—once a non-leaf node fails, an entire subtree rooted

contribution to NI by each failure with max level= ; at that node is affected. With d levels, wihfailures,

is at mostct. although the expected number of affected nodes is only
Therefore we get P(i,f,1) £l — 1/ci+1)7. (d+1)+f, the standard deviation is .really.higryfsacd/z.
With & random aggregation trees, the probability forAsa rgsult, with fairly high probabilityf failures can be

at least one tree to have NI j£x ¢ is amplified to a much larger number of affected nodes even

when f is very small.
P(i, f,k) = 1—(1—P(, f,1))F = 1—[1—(1—1/c+1)]k The metrics we proposed in Section 4
7 & qguantify the amplification effect for each aggregation
tree. In particular, since our dual-tree aggregation

Example. Suppose c =38, f=10, k=4, then scheme allows us to monitor the NI for every tree,
by taking the mean of all NIs, we can accurately es-
a. with prob. >= 99.95%Nui — Nreachabte <= f * c' timate (d + 1) = f because the standard deviation is
=80 now f x c¢¥2/c? = f/c?2. If we normalize the NI
b. with prob. >= 70.51%N,;; — Nyeachapte <= f * c® for an aggregation tree byl 4+ 1) x f, we then get the
=10 amplification factor for that tree.

)) b. give us a way of reducing amplification effect by using
Analysis on the Expected NI. We will use the above ytiple trees for the same aggregation function.
analysis to prove that with high probability, at least one

aggregation tree has every failure appearing at max level
<=1.

We first analyze the mean and standard deviation for
NI conditioned on the fact that all failures occur at max
level <= i. For a single failure, the probability for the
failure to occur at max level (conditioned on the fact its
max level is<= i) is

18

