
PRISM: PRecision-Integrated Scalable Monitoring
Navendu Jain, Dmitry Kit, Prince Mahajan, Praveen Yalagandula†, Mike Dahlin, and Yin Zhang

Department of Computer Sciences †Hewlett-Packard Labs
University of Texas at Austin Palo Alto, CA

Abstract
This paper describes PRISM, a scalable monitoring ser-
vice that makesimprecisiona first-class abstraction for
its scalable DHT-based aggregation service. Exposing
imprecision is essential for both correctness in the face
of network and node failures and scalability to large
systems. PRISM introduces the notion ofconditioned
consistencythat quantifies imprecision along a three-
dimensional vector:arithmetic imprecision(AI) bounds
numeric inaccuracy,temporal imprecision(TI) bounds
update delays, andnetwork imprecision(NI) bounds un-
certainty due to network and node failures. AI and TI
balance precision against monitoring overhead for scala-
bility while NI addresses the fundamental challenge of
providing consistency guarantees despite failures in a
large distributed system. Our implementation addresses
the challenge of providing these metrics while scaling to
a large numbers of nodes and attributes. By introduc-
ing a 10% AI, PRISM’s PlanetLab monitoring service,
PrMon, can reduce network overheads by an order of
magnitude compared to the currently-used CoMon ser-
vice. And, by using NI metrics to automatically select
the best of four redundant aggregation results, we can
reduce the observed worst-case inaccuracy by nearly a
factor of five.

1 Introduction
This paper describes how to makeimprecisiona first
class abstraction for large-scale system monitoring.

Scalable system monitoring is a fundamental abstrac-
tion for large-scale networked systems, and it can serve
as a basic building block for new applications such
as network monitoring and management [5, 15, 41], re-
source location [16, 40], efficient multicast [36], sensor
networks [16, 40], resource management [40], and band-
width provisioning [9]. Recent work on aggregation [16,
30, 36, 40] and DHTs [27–29, 33, 46] provides important
enabling technology for constructing monitoring systems
that are self-organizing, scalable, and robust [36, 40].

However, to realize this vision of scalable system
monitoring, the underlying monitoring infrastructure
must expose imprecision in a controlled manner for two
reasons.

First, correct interpretation of data requires explicitly
exposing the imprecision introduced by sensor inaccu-
racy and node/network delays and failures. A funda-
mental and unique challenge in any hierarchical aggre-
gation system is thefailure amplification effect: if a non-

leaf node fails, an entire subtree rooted at that node is
affected. For example, failure of a level-3 node in a
degree-8 aggregation tree can cut off updates from 512
leaf nodes. As a result, a hierarchical monitoring service
that does not expose imprecision risks delivering arbi-
trarily incorrect results.

Second, introducing controlled amounts of impreci-
sion can reduce monitoring load by an order of magni-
tude or more for some applications. Studies suggest [20,
22, 32, 36, 44] that real-world applications often can tol-
erate some inaccuracy as long as the maximum error
is bounded and small amounts of imprecision can pro-
vide significant bandwidth reductions. This enables new
classes of precision-aware monitoring applications that
can tradeoff between imprecision and resource usage.

To meet these needs, we have developed PRecision-
Integrated Scalable Monitoring (PRISM). The PRISM
system makes two contributions: First, it defines a novel
conditioned consistencymetric that quantifies impre-
cision along a three-dimensional vector:(Arithmetic,
Temporal, Network).

• Arithmeticimprecision (AI) bounds the numerical in-
consistency between the reported value of an aggre-
gate relative to the true value.

• Temporalimprecision (TI) places a real-time bound on
the delay from when an event/update occurs until it is
reported.

• Network imprecision (NI) bounds the inaccuracy in-
troduced by failed/slow nodes, failed/slow network
links, and aggregation tree reconfigurations.

Although each of the three dimensions is individually
useful, the combination is vital because it enablescon-
ditioned consistency: the arithmetic and temporal guar-
antees are calculated optimistically, assuming that the
network is “well behaved” (e.g., no node failures, slow
links, or tree reconfigurations have affected the results).
The NI metric then qualifies AI and TI metrics by quanti-
fying how “well behaved” the network actually has been
during the period when these metrics are calculated.

Second, it provides a scalable implementation of each
of these three metrics for DHT-based aggregation sys-
tems. Scalability to large numbers of attributes and nodes
is vital because network monitoring applications may
track tens of thousands of attributes across hundreds or
thousands of nodes [34, 36, 40].
• For AI, the challenge is distributing an imprecision

budget across nodes based on each attribute’s work-
load. PRISM employs a hierarchical self-tuning algo-

rithm that directs imprecision slack to where it is most
needed and that tries to ensure that the adaptation cost
is smaller than the benefits of doing so.

• For TI, the challenge is to maximize the number of
updates batched together and to minimize the TI in-
troduced by this batching. To accomplish this goal,
PRISM pipelines the available slack across levels of
the aggregation hierarchy.

• For NI, the challenge is to scalably detect and report
failed/slow nodes/links which requires active probing.
A straightforward algorithm that detects and aggre-
gates NI values along each aggregation tree in ann-
node system can lead toO(n) message load at each
node in every probing period. By leveraging the ob-
servation that the forest of aggregation trees forms a
butterfly network, PRISM introduces a noveldual-tree
prefix aggregation abstractionthat re-uses work done
by subtrees and thereby reduces the per-node cost to
O(log n) messages every probing period. For a 1000-
node system, this implies three orders of magnitude
reduction in message cost compared to the naive algo-
rithm above.

Experience with a distributed heavy hitter detection
application and a PrMon monitoring service for Plan-
etLab built on PRISM illustrate how explicitly manag-
ing imprecision can qualitatively enhance a monitoring
service. The most obvious benefit is improved scalabil-
ity: for both applications, small amounts of imprecision
drastically reduce monitoring load or allow more exten-
sive monitoring for a given load budget. For example,
in PrMon, a 10% AI allows us to reduce network load
by an order of magnitude compared to the widely used
CoMon [6] service. A subtler but perhaps more impor-
tant benefit is the ability to quantify and improve confi-
dence in the accuracy of outputs by addressing network
imprecision and the amplification effect. For example,
by using NI metrics to automatically select the best of
four redundant aggregation results, we can reduce the ob-
served worst-case inaccuracy by nearly a factor of five.

The key contributions of this paper are as follows.
First, we present PRISM, the first DHT-based system that
enables imprecision for scalable aggregation by intro-
ducing a new conditioned consistency metric that bounds
the arithmetic, temporal, and network imprecision. Sec-
ond, we provide scalable and efficient implementation of
each precision metric via (1) self-tuning of AI budgets,
(2) pipelining of TI delays, and (3) dual-tree prefix ag-
gregation for NI. Third, our evaluation demonstrates that
imprecision is vital for enabling scalable aggregation: a
system that ignores imprecision can silently report arbi-
trarily incorrect results and a system that fails to exploit
imprecision can impose unacceptable overheads.

000 111010 101
Physical Nodes (Leaf Sensors)

Virtual Nodes (Internal Aggregation Points)

L0

L1

L2

L3

3 4 2 9 6 1 9 3

7 11 7 12

18 19

37

100 110 001 011

Fig. 1: The aggregation tree for key 000 in an eight node sys-
tem. Also shown are the aggregate values for a simple SUM()
aggregation function.

2 Background
PRISM builds on two recent and ongoing research ef-
forts for scalable monitoring: aggregation [36] and DHT-
based aggregation [40].

Aggregation. Aggregation is a fundamental abstrac-
tion for scalable monitoring [10, 16, 27, 36, 40] because
it allows applications to access summary views of global
information and detailed views of rare events and nearby
information.

The aggregation abstraction in PRISM is defined
across a tree spanning all nodes in the system. As Fig-
ure 1 illustrates, each physical node in the system is a
leaf and each subtree represents a logical group of nodes.
Note that logical groups can correspond to administra-
tive domains (e.g., department or university) or groups of
nodes within a domain (e.g., a /28 subnet with14 hosts
on a LAN in the CS department). An internal non-leaf
node, which we call avirtual node, is simulated by one
or more physical nodes at the leaves of the subtree rooted
at the virtual node.

The tree-based aggregation in the PRISM framework
is defined in terms of an aggregation function which is
installed at all the nodes in the tree. Each leaf node
(physical sensor) inserts or modifies its local value for
an attribute defined as an{attribute type, attribute name}
pair which is recursively aggregated up the tree. For
each level-i subtreeTi in the aggregation tree, PRISM
defines anaggregate valueVi,attr for each attribute as
follows: For a (physical) leaf nodeT0 at level0, V0,attr

is the locally stored value for the attribute or NULL if
no matching tuple exists. Then the aggregate value for
a level-i subtreeTi is the aggregation function for the
attribute type,Atype, computed across the aggregate val-
ues of each ofTi’s k children. Figure 1, for example,
illustrates the computation of a simple SUM aggregate.

DHT-based aggregation. To achieve scalability for
Internet-scale systems, PRISM faces the fundamental
challenge of computing aggregates for thousands to
millions of attributes across hundreds or thousands of
nodes [36, 40]. Later in this section, we present an ex-
ample of detecting heavy hitters on a distributed sys-

2

tem where PRISM needs to track millions of attributes.
To address this scalability challenge, PRISM leverages
DHTs [27–29, 33, 46] to construct a forest of aggregation
trees and maps different attributes to different trees [40].
DHT systems assign a long (e.g., 160 bits), random ID
to each node and define a routing algorithm to send a re-
quest for keyk to a noderootk such that the union of
paths from all nodes forms a treeDHTtreek rooted at the
noderootk. By aggregating an attribute with keyk along
the aggregation tree corresponding toDHTtreek, differ-
ent attributes are load balanced across different trees.

Example Applications Aggregation is a building
block for many distributed applications such as network
management [41], service placement [12], sensor moni-
toring and control [20], multicast tree construction [36],
and naming and request routing [7]. In this paper, we
focus on two case-study examples: a distributed heavy
hitter detection and PrMon, a distributed monitoring ser-
vice for PlanetLab modelled on CoMon [6].

Heavy Hitter detection: Our first application is
identifying heavy hitters on a distributed system i.e., the
top 10 IPs that account for a significant fraction of total
incoming traffic in a measurement interval (e.g., 10 min-
utes) [9]. The key challenge for this distributed query is
scalability for aggregating per-flow statistics for millions
of concurrent flows in real-time; the Abilene [1] traces
used in our experiments include up to 3.4 million flows
per hour.

To scalably compute the global heavy hitters list,
we chain two aggregations where the results from the
first aggregation feed into the second aggregation. In
the first aggregation, PRISM calculates the total band-
width consumed by each sender to all nodes in the sys-
tem using SUM as the aggregation function and{HH-
Step1,senderIP} as the key. For example, a node writes
the tuple ({HH-Step1, 128.82.121.7}, 700 KB) indicat-
ing that 700 KB of data was received from the node
128.82.121.7 during the last time window. In the sec-
ond step, we feed these aggregated total bandwidths
for each sender IP address into another aggregation
tree for selecting TOP-10 heavy hitters. To achieve
this, we use SELECT-TOP-10 as the aggregation func-
tion and use{HH-Step2,TOP-10} as the key. For ex-
ample, the root of the first aggregation tree for{HH-
Step1,128.82.121.7} which has computed the global ag-
gregate value of 6200KB as the total bandwidth con-
sumed by 128.82.121.7, inputs the tuple ({HH-Step2,
TOP-10},{128.82.121.7,6200 KB}). At the end of this
chained aggregation, the root of the second aggregation
tree has the top 10 IP addresses that send most traffic to
the nodes in the system.

Real-time Network Monitoring: The second appli-
cation is our PrMon monitoring service that is represen-

tative of monitoring Internet-scale distributed systems
such as PlanetLab [26] and Grid systems [35] that pro-
vide open platforms for developing, deploying, and host-
ing global-scale services. For instance, to manage a wide
array of user services running on the PlanetLab testbed,
the system administrators need a global view of the sys-
tem to identify problematic experiments (slices in Planet-
Lab terminology) to identify, for example, any slice con-
suming more than 500GB of memory across all nodes
on which it is running. Similarly, users require system
state information to query for “lightly-loaded” nodes for
deploying new experiments or to track the resource con-
sumption of their running experiments.

To provide such information in a scalable way and in
real-time, PRISM computes the per-slice aggregates for
each resource attribute (e.g., CPU, TX1, etc.) along dif-
ferent aggregation trees. This aggregate usage of each
slice across all PlanetLab nodes for a given resource
attribute (e.g., CPU) is then input to a per-resource
SELECT-TOP-100 aggregate (e.g.,{SELECT-TOP-100,
CPU}) to compute the list of top-100 slices in terms of
consumption of the resource. Although there are existing
central monitoring services, in Section 5 we will show
that PRISM can monitor a large number of attributes
at much finer time scales while incurring significantly
lower network costs.

3 AI and TI

PRISM quantifies imprecision along a three-dimensional
vector: (Arithmetic, Temporal, Network). We now de-
scribe how we enforce bounds onarithmetic imprecision
(AI), which limits the numeric difference between a re-
ported value of an attribute and its true value [23, 45],
and temporal imprecision(TI), which limits the delay
from when an update is input at a leaf sensor until the
effects of the update are reflected in the root aggregate.
These aspects of imprecision provide means to (a) ex-
pose inherent imprecision in a monitoring system stem-
ming from sensor inaccuracy and update propagation de-
lays and (b) reduce system load by introducing additional
filtering and batching on update propagation.

The implementations of AI and TI are simple because
they can assume that aggregation trees never reconfigure
and that nodes and network paths never fail and are never
slow. Thenetwork imprecision(NI) metric described in
Section 4 addresses these challenging real-world issues.

3.1 Arithmetic Imprecision (AI)

We first describe the basic mechanism for enforcing AI
for each aggregation subtree in the system. Then we de-
scribe how our system uses a self-tuning algorithm to
address the policy question of distributing an AI budget
across subtrees to minimize system load.

3

3.1.1 Mechanism

To enforce AI, each aggregation subtreeT for an at-
tribute has an error budgetδT which defines the maxi-
mum inaccuracy of any result the subtree will report to
its parent for that attribute. The root of each subtree di-
vides this error budget among itselfδself and its children
δc, and the children recursively do the same. Here we
present the AI mechanism for the SUM aggregate; other
standard aggregation functions (e.g., MAX, MIN, AVG)
are described in the appendix.

This arrangement reduces system load by filtering
small updates that fall within the range of values
“cached” by a subtree’s parent. In particular, after a node
A with error budgetδT reports a range [Vmin, Vmax] for
an attribute value to its parent (whereVmax = Vmin +
δT), if the node A receives an update from a child, the
node A can skip updating its parent as long as it can en-
sure that the true value of the attribute for the subtree lies
betweenVmin andVmax, i.e., if

Vmin ≤ ∑
c∈children V c

min

Vmax ≥ ∑
c∈children V c

max
(1)

whereV c
min andV c

max denote the most recent update re-
ceived from childc.

Notice the trade-off in splittingδT betweenδself and
δc. Large values ofδc allow children to filter updates be-
fore they reach a node. Conversely, by settingδself > 0,
a node can setVmin <

∑
V c

min, setVmax >
∑

V c
max,

or both to avoid further propagating some updates it re-
ceives from its children.

PRISM maintains per-attributeδ values so that differ-
ent attributes with different error requirements and dif-
ferent update patterns can use differentδ budgets in dif-
ferent subtrees. PRISM implements this mechanism by
defining a per-attribute-typedistribution functionthat is
analogous to the per-attribute-type aggregation function.
Just as an attribute type’s aggregation function specifies
how aggregate values are aggregated from children, an
attribute type’s distribution value specifies howδ budgets
are distributed among children andδself .

3.1.2 Policies

Given the above mechanisms, to guarantee that the to-
tal aggregation error does not exceed the root error bud-
getδroot for an attribute, we just need to ensure that the
following two conditions hold at the root node of every
subtreeT .

δT ≥ δself +
∑

c∈children δc

Vmax ≤ Vmin + δT
(2)

Given these constraints, we still have plenty of free-
dom to (i) setδroot to an appropriate value for each at-
tribute, (ii) computeVmin and Vmax when updating a
parent, and (iii) splitδ into δself and δc. Below we

present policies that exploit such freedom to optimize the
precision v. performance trade-off.

Settingδroot. Note that the aggregation queries can set
the root error budgetδroot to any non-negative value. For
some applications, an absolute constant value may be
known a priori (e.g., count the number of connections per
second±10 at port 1433.) For other applications, it may
be appropriate to set the tolerance based on measured be-
havior of the aggregate in question (e.g., setδroot for an
attribute to be at most 10% of the maximum value ob-
served) or the measurements of a set of aggregates (e.g.,
in our heavy hitter application, setδroot for each flow to
be at most 1% of the bandwidth of the largest flow mea-
sured in the system). Our algorithm supports all of these
approaches by allowing new absoluteδroot values to be
introduced at any time, and we have prototyped systems
that use each of these three policies.

Computing [Vmin, Vmax]. When either
∑

c V c
min or∑

c V c
max goes outside of the last [Vmin, Vmax] that was

reported to the parent, a node needs to report a new range
to its parent. Given aδself budget at an internal node, we
have some flexibility on how to center the[Vmin, Vmax]
range. Our approach is to adopt a per-aggregation-
function range policy that reportsVmin = (

∑
c V c

min)−
bias ∗ δself andVmax = (

∑
c V c

max)+(1−bias) ∗ δself

to the parent. Thebiasparameter can be set as follows:
Set
• bias ≈ 0.5 if inputs expected to be roughly stationary
• bias ≈ 0 if inputs expected to be generally increasing
• bias ≈ 1 if inputs expected to be generally decreasing
For example, suppose a node with totalδT of 10 and
δself of 3 has two children reporting ([V c

min, V c
max]) of

[1, 2] and [2, 8], respectively, and reports [0, 10] to its
parent. Then, the first child reports a new range [10, 11],
so the node must report to its parent a range that includes
[12, 19]. If bias = 0.5, then report to parent [10.5, 20.5]
to filter out small deviation around the current position.
Conversely, ifbias = 0, report [12, 22] to filter out the
maximal number of updates of increasing values.

Self-tuning error budgets. The final policy question is
how to divide a given error budgetδroot across the nodes
in an aggregation tree.

A simple approach is to have a static policy that di-
vides the error budgetuniformly among all the chil-
dren. For example, a node with budgetδT could set
δself = 0.1δ and then divide the remaining0.9δT evenly
among its children. Although this approach is simple,
it is likely to be inefficient because different aggregation
subtrees may experience different loads.

Algorithm. To make cost/accuracy tradeoffsself-
tuning, PRISM provides an adaptive algorithm by which
nodes adjust to changing error budgetδT and adapt the

4

balance betweenδself andδc for each childc. The high-
level idea is simple: increaseδ for nodes with high load
and lowδ and decreaseδ for nodes with low load and
high δ. Unfortunately, a naive rebalancing algorithm
could easily spend more network messages redistribut-
ing δs than it saves by filtering updates. This is a partic-
ular concern for applications like distributed heavy hitter
that monitors a large number of attributes, only a few of
which are active enough to be worth optimizing. To ad-
dress this challenge PRISM uses a two-step algorithm:
1. Estimate optimal distribution ofδT amongδself and

δc.

Each node tracks the number of messages sent to its par-
ent per time unit (Mself) and the aggregate number of
updates per time unit reported by each childc’s subtree
(Mc). Note thatMc reports are accumulated by a child
until they can be piggy-backed on an update message to
its parent. Given this information each noden estimates
the optimal valuesδopt

v that minimizes the total system
load

∑
v Mopt

v , whereMopt
v is an estimate of the load

generated by nodev under optimal error budgetδopt
v . In

particular, for anyv ∈ {self} ∪ child(n) we estimate

δopt
v = δT ∗

√
Mv ∗ δv∑

v∈{self}∪child(n)

√
Mv ∗ δv

. (3)

which is optimal assuming that load is inversely pro-
portional to error budget and which seems a reasonable
heuristic for predicting the impact of small changes.
2. Redistribute deltas iff the expected benefit exceeds the

redistribution overhead.

At any time, a noden computes acharge metric for
each child subtreec, which estimates the number of ex-
tra messages sent byc due to sub-optimalδ. Chargec =
(Tcurr−Tadjust)∗(Mc−Mopt

c), whereTadjust is the last
time δ was adjusted atn. Notice that a subtree’s charge
will be large if (a) there is a large load imbalance (e.g.,
Mc −Mopt

c is large) or (b) there is a stable, long-lasting
imbalance (e.g.,Tcurr − Tadjust is large.)

We only send messages to redistribute deltas if doing
so is likely to save at least k messages (i.e., ifchargec >
k). To ensure the invariant thatδT ≤ δself +

∑
c δc, we

make this adjustment in two steps. First, we loan some
of theδself budget to the nodec that has accumulated the
largest charge by incrementingc’s budget by min(0.1δc,
max(0.1δself , δself - δopt

self)). Second, we replenishδself

from the child whoseδc is the farthest abovedeltaopt
c by

orderingc to reduceδc by min(0.1δc, δc - deltaopt
c).

A node responds to a request from its parent to update
δT using a similar approach.

3.2 Temporal Imprecision
Temporal imprecision provides a real-time bound on the
delay between when an update occurs at a leaf node and

...

Event

Event

level 0

level 1

level 2

level 3

level 4

level 0

level 1

level 2

level 3

level 4

0 TI

0 TI

Next TI
interval
starts here

(a) Send unsynchronized updates every TI/4 seconds.

(b) Send synchronized updates every TI seconds.

...

...

...

...

...

...

...

Fig. 2: For a given TI bound, pipelined delays with synchro-
nized clocks (b) allows nodes to send less frequently than un-
pipelined delays without synchronized clocks (a).

when it is reflected in the aggregated result reported by
the root. A temporal imprecision ofTI seconds guaran-
tees that every event that occurredTI or more seconds
ago is reflected in the reported result; events younger
thanTI may or may not be reflected. [32].

Temporal imprecision benefits monitoring applica-
tions in two ways. First, it accounts for inherent net-
work and processing delays in the system; given a worst
case per-hop costhopmax even immediate propagation
provides a temporal guarantee no better than` ∗ hopmax

where` is the maximum number of hops from any leaf
to the root of the tree. Note that although Internet round
trip times have a very long tail [2, 8, 24], the network
imprecision metric allows us toassumea relatively low
hopmax (e.g., 10 seconds) because if network and pro-
cessing times increase beyond this bound, then the net-
work imprecision metric reflects the unexpected delay.

Second, explicitly exposing TI provides an opportu-
nity to combine multiple updates to improve scalability
by reducing processing and network load. If the TI guar-
antee for an attribute exceeds the minimum system la-
tency i.e.,TI > ` ∗ hopmax then a node in tree can use
the “extra” time to try to accumulate multiple updates
from the node’s children before calculating and sending
a single update to the parent.

Below we present an optimized mechanism for im-
plementing temporal imprecision usingpipelined delays
based on synchronized clocks. PRISM also provides a
fall-back alternative for unsynchronized clocks [18].

Pipelined delays. We maximize the opportunity for
batching updates bypipelining the available slack delay
across levels of the aggregation hierarchy.

Suppose clocks were perfectly synchronized and sup-
pose that message transmission and processing were in-
stantaneous. Then, as Figure 2(a) illustrates, one option
to enforce a bound ofTI for an `-level tree (̀ = 4 in
Figure 2) would be for every node to send an update to
its parents everyTI/` seconds. Alternatively, as Fig-
ure 2(b) illustrates, each leaf node could send a batch up-
date (combining all its updates in the currentTI interval)
at timeTI−`∗ε, all level-1 nodes at timeTI−(`−1)∗ε,
and so on for some smallε. Note that the nextTI interval

5

starts afterTI − ` ∗ ε time in the current interval effec-
tively leading to a batching interval ofTI− `∗ ε at every
level. Thus, by synchronizing update transmission times
across levels, we still meet theTI guarantee but increase
the batching interval fromTI/` to TI − ` ∗ ε.

Of course, a real implementation must account for
clock skew, processing delays, and network delays to en-
sure that leveli holds opens a sufficient window of time
for level i− 1’s updates to arrive and be processed. For
the leaves, we specify a send intervalI and an arbitrary
reference timeZ such that for thejth interval at time
Z + j ∗ I a leaf node sends an update if and only if the
value has changed sinceZ + (j − 1) ∗ I. We calculate
I as follows: (1) we synchronize the clocks on differ-
ent nodes such that the maximum skew between any two
nodes isskewmax.1 (2) We define a “stagger” parame-
terS that bounds the delay for updates to traverse levels,
i.e., S = hopmax + 2 ∗ skewmax. Finally, (3) we set
I = TI − ` ∗ S. Note that the smallest TI that can be
provided isTImin = ` ∗ S. Also note that for load bal-
ancing, different attributes can choose differentZ base
times.

For internal nodes, we pipeline each level’s timeouts to
occur just before its parent’s. Specifically, at timeZ+j ∗
I + i∗S an aggregation node at leveli sends an updated
aggregate value to its parent if and only if the value of any
of its inputs has changed since timeZ+(j−1)∗I+i∗S.
This approach ensures the following property: an event
at a leaf node at local timeX is reflected at root no later
than timeX + TI according to the local time at the leaf
node.

4 Network Imprecision
Network imprecision characterizes the uncertainty intro-
duced by node crashes, slow network paths, unreachable
nodes, and DHT topology reconfigurations. In particu-
lar, if a a subtree is silent over an interval, a aggregation
system must distinguish two cases: (1) the subtree has
sent no updates because the inputs have not significantly
changed versus (2) the inputs have significantly changed
but the subtree is unable to transmit its report. This prob-
lem is fundamental, and it is an extension of the CAP
impossibility result [13, 31], but it is made worse by the
amplification effectof hierarchical aggregation: if a non-
leaf node fails, then the entire subtree rooted at that node
can be affected. For example, failure of a level-3 node
in a degree-8 aggregation tree can interrupt updates from
512 (83) leaf node sensors. If these issues are not ad-
dressed by an aggregation system, the results a monitor-
ing system reports may bearbitrarily incorrect.

The key idea of NI is that because no system can
guarantee to always provide the “right” answer, it in-

1Algorithms in the literature can achieve clock synchronization
among nodes to within one millisecond [37].

stead must report the extent to which a calculation could
have been disrupted by network and node problems.This
information allows applications to filter out or take ac-
tion to correct measurements with unacceptable uncer-
tainty. To that end, NI is composed of three metrics,Nall,
Nreachable, andNdup.

• Nall is an estimate of the number of nodes that are
members of the system.

• Nreachable is a lower bound on the number of nodes
for which input propagation is guaranteed to meet an
attribute’s TI bound.

• Ndup provides an upper bound on the number of nodes
whose contribution to an attribute may be doubly-
counted. Double-counting can occur when reconfig-
uration of an aggregation tree’s topology causes a leaf
node or virtual internal node to fail-over to a new par-
ent while its old parent retains the node’s inputs as soft
state until a timeout.

Conditioned Consistency. These three metrics condi-
tion the arithmetic and temporal consistency guarantees.
In particular, reading an attribute’s value from the sys-
tem returns a tuple[Vmin, Vmax, T I, [Nall, Nreachable,
Ndup]] that means “The system estimates the value to
be betweenVmin and Vmax. This estimate may omit
some inputs that occurred in the lastTI seconds and it
may also omit some inputs fromNall − Nreachable of
theNall nodes in the system. This estimate may double
count inputs from at mostNdup nodes.”

Users and applications must evaluate the significance
of disruptions that causeNreachable < Nall or Ndup > 0
in the context of their requirements. For some applica-
tions, an aggregate result may be unusable if it omits
or duplicates any inputs. Conversely, other applications
may be content with best-effort results and may ignore
NI completely. Other applications will take a middle
ground and be structured to tolerate modest amounts of
NI.

In Section 5.3, we explore one general and effective
strategy: using redundant trees in the DHT to compute an
attribute and then using NI to identify the highest-quality
result. Other available approaches include constructing
aggregates that tolerate common forms of NI (e.g., the
MAX aggregation function is insensitive toNdup > 0),
taking corrective action during periods of high NI (e.g.,
actively probing unresponsive machines, triggering on-
demand reaggregation [40], considering the recent his-
tory of aggregate values, or delaying taking action un-
til more conclusive information is gathered), or flagging
results as GOOD/MARGINAL/BAD depending on the
observed NI.

Challenges. Although monitoring connectiv-
ity to nodes to compute the NI metrics appears
straightforward—the NI metrics are all conceptually

6

aggregates across the state of the system—in practice
two challenges arise. First, the system must cope with
reconfiguration of dynamically-constructed aggregation
trees. Second, the system must scale to large numbers of
nodes despite (a) the need for active probing to measure
liveness between each parent-child pair and (b) the
need to compute distinct NI values for each of the large
number of distinct aggregation trees in the underlying
DHT forest.

In the rest of this section, we first provide a simple
algorithm for computingNall andNreachable for a sin-
gle, static tree. Then, in Section 4.2 we explain how
PRISM computesNdup in order to account for dynam-
ically changing aggregation topologies. Finally, in Sec-
tion 4.3 we describe how to scale the approach to work
with the large number of distinct trees constructed by
PRISM’s DHT framework.

4.1 Single tree, static topology
This section considers calculatingNall andNreachable

for a single, static-topology aggregation tree.
Nall is simply a count of all nodes in the system, and it

is easily computed using PRISM’s aggregation abstrac-
tion. Each leaf node inserts 1 to theNall aggregate,
which has SUM as its aggregation function. Note that
even if a node becomes disconnected from the DHT,
its contribution to this aggregate remains cached as soft
state by its ancestors for a long timeoutTdeclareDead.

Nreachable for a subtree is a count of the number of
leaves that have agood pathto the root of the subtree
where a good path is a path in which no hop takes longer
thanhopmax. Nodes computeNreachable in two steps:

1. Basic aggregation: PRISM creates a SUM aggregate
and each leaf inserts local value of 1. The root of the
tree then gets count of all nodes.

2. Aggressive pruning: In contrast with the default be-
havior of retaining aggregate values of children as soft
state for up toTdeclareDead, Nreachable must immedi-
ately change if a connection to a subtree is no longer
a good path. Each internal node pings its child once
everyp time units and maintainssendPingRepliedc,
the time it sent the last ping for which it has received
a reply fromc. A child sends its ping reply only af-
ter sending any messages backlogged in its outbound
message queue. Note thatp should be smaller than
hopmax; we usep = 10 seconds by default (hopmax

= 30 seconds). IfsendPingRepliedc + hopmax <
currtime then a node declares childc unreachable:
the node removesc’s subtree contribution from the
Nreachable aggregate and immediately sends the new
value up towards the root of theNreachable aggrega-
tion tree. Notice that for simplicity this approach is
conservative—it declares a child “unreachable” if the
round trip time (rather than the one way time) exceeds

hopmax.

Nreachable v. TI Nreachable characterizes the current
topology of the aggregation tree, but past connectivity
disruptions could affect attributes with large TI. In partic-
ular, because our TI algorithm defines a small window of
time during which a node must propagate updates to its
parents, then any attribute’s subtree that was unreachable
over the lastTIattr could have been unlucky and missed
its window even though the subtrees nodes are currently
all counted as reachable. We must either (a) modify the
protocol to ensure that such a subtree’s updates are re-
flected in the aggregate so that the promised TI bound is
met or (b) we must ensure thatNreachable counts such
subtrees as unreachable because they may have violated
their TI bound.

We take the former approach to avoid having to cal-
culate a multitude ofNreachable values for different TI
bounds. In particular, when a node receives updates from
a child marked unreachable, it knows those updates may
be late and may have missed their window for TI prop-
agation. It therefore marks such updates as NODELAY.
When a node receives a NODELAY update, it processes
it immediately and propagates the result with the NODE-
LAY flag so that TI delays are temporarily ignored for
that attribute. This modification may send extra mes-
sages in the (hopefully) uncommon case of a link per-
formance failure and recovery, but it ensures that the cur-
rent Nreachable value counts nodes that are meeting all
of their TI contracts.

4.2 Dynamic topology
Each virtual node in PRISM caches state from its chil-
dren so that when a new input from one child comes in,
it can compute new values to pass up using local infor-
mation. This information is soft state—a parent discards
it if a client is unreachable for a long time. But because
reconstructing this state is expensive (there may be tens
of thousands of attributes for aggregation functions like
“where is the nearest copy of file foo” [34]), we use long
timeouts to avoid spurious garbage collection (e.g., we
useTdeclareDead ≈ 10 minutes in our prototype.)

Notice that when a subtree chooses a new parent, then
that subtree’s inputs may still be stored by a former par-
ent and thus be counted multiple times in the aggregate.
Ndup bounds the number of leaf inputs that might be in-
cluded multiple times in an aggregate calculation.

The basic aggregation function forNdup is simple. We
keep a countk of the number of leaves in each subtree
using the obvious aggregation function. Then, if a sub-
tree root spanningk leaf nodes switches to a new parent,
that subtree root inserts the valuek into theNdup aggre-
gate, which has SUM as its aggregation function. Later,
when the node is certain sufficient time has elapsed that
its old parent has safely removed its soft state, it updates

7

2 t_recv

1 t_send

3 d_grantLease = t_haveLease − t_recv

4

5 t_haveLease = min_c (t_haveLease[c])

LEASE_RENEW

n2

n1

t_grantLease = max(t_grantLease, t_haveLease)

d_grantLease

t_haveLease[n2] = t_send + (d_grantLease * (1−max_drift))

Fig. 3: Protocol for a parent to renew a lease on the right to
hold as soft state a child’s contribution to an aggregate.

its input ofNdup to 0.

Lease aggregation. For correctness, our implementa-
tion uses alease aggregationalgorithm that extends the
concept of leases [14] to hierarchical aggregation.

Figure 3 illustrates the protocol used when a noden1

updates a lease on the right to cache the inputs from a
set of descendants rooted atn2. The algorithm makes
use of local clocks atn1 andn2, but it is not sensitive
to skew and tolerates a maximum drift rate ofmaxdrift

(e.g., 5%). In this protocol, a node maintainsthaveLease,
the latest time for which it holds leases for all descen-
dants, andtgrantLease, the latest time for which it has
granted a lease to its ancestors. The key to the proto-
col is that the childn2 extends the lease by a duration
dgrantLease, but the child interprets thedgrantLease in-
terval starting fromtrecv, the time it received the renewal
request, while the parent interprets the interval starting
from tsend. As a result, a lease always expires at a parent
before expiring at a child regardless of the skew between
their clocks [42].

A node that roots ak-leaf subtree that switches to a
new parent then contributesk to Ndup until tgrantLease,
after which it may reset its contribution ofNdup to 0
because its former parent is guaranteed to have cleared
from its soft state all inputs from the node.

To avoid spurious lease expirations, each node renews
leases from its descendants once everyrenew seconds
and leaf nodes grant leases of lengthTdeclareDead with
renew << TdeclareDead (e.g.,renew = 30 seconds and
TdeclareDead = 10 minutes in our prototype).

Early expiration. PRISM usesearly expiration to
minimize the scope of disruption when a tree’s topology
reconfigures. In particular, the lease aggregation mech-
anism ensures the invariant that leases near the root of a
tree are shorter than leases near the leaves. As a result, a
naive implementation that removes cached soft state ex-
actly when a lease expires would exhibit the perverse be-
havior illustrated in Figure 4(a): each node from the root
to the parent of a failed node will successively expire its
problematic child’s state, recalculate its aggregates with-
out that child, update its parent, renew its parent’s lease,
and then repeatedly receive and propagate updated ag-
gregates from its child as the process ripples down the
tree. Not only is that process expensive, but it may signif-
icantly and unnecessarily perturb values reported at the

000 111010 101
L0

L1

L2

L3

100 110 001 011
1 1 1 111 1 1

22 2 2 2 2 2 2

4

4 7

34 4

1

Fig. 5: The failure of a physical node has different effects on
different aggregations depending on which virtual nodes are
mapped to the failed physical node. The numbers next to vir-
tual nodes show the value ofNreachable for each subtree after
the failure of physical node 001, which acts as a leaf for one
tree but as a level-2 subtree root for another.

root for all attributes by removing and re-adding large
subtrees of inputs. Furthermore, note that the example in
Figure 4 is the common case: in a randomly constructed
tree, the vast majority of nodes (and failures) are near the
leaves. Failing to address this problem would transform
the common-case of leaf failures into significant disrup-
tions near the root and bring into play the amplification
effect.

Early expiration avoids this unwarranted disruption as
Figure 4(b) illustrates. A node at leveli of the tree dis-
cards the state of an unresponsive subtree (maxLevels
- i) * dearly before its lease expires. Once the node has
removed the problematic child’s inputs from the aggre-
gates values it has reported to its parent, the node can
renew leases to its parent that are no longer limited by
the ever-shortening lease held on the problematic child.
As the figure illustrates, this technique minimizes dis-
ruption by allowing a node near the trouble spot to prune
the tree, update its ancestors, and resume granting long
leasesbeforeany ancestor acts.

4.3 Scaling to large systems

Scaling NI is a challenge. To scale monitoring to large
numbers of nodes and attributes, PRISM constructs a
forest of trees using an underyling DHT and then uses
different aggregation trees for different attributes. As
Figure 5 illustrates, a failure affects different trees dif-
ferently so we need to calculate NI metrics for each of
then distinct global trees in ann-node system. Making
matters worse, as Section 4.1 explained, maintaining the
NI metrics requires active probing everyp seconds along
each edge of each tree’s graph.

As a result of these factors, the straightforward al-
gorithm for maintaining NI metrics separately for each
tree is not tenable:n degree-d trees each withθ(n−1/d

1−1/d)
nodes haveθ(dn2) edges that must be monitored; such
monitoring would requireθ(dn2) messages per node ev-
ery p seconds (p = 10 in our system). To put this in per-
spective, consider an = 512-node system withd = 8-

8

f(B)

A B C D E F G H

f(A) f(C) f(D) f(E) f(F) f(G) f(H)

f(A,B) f(C,D) f(E,F) f(G,H)

f(A..D) f(E..H)

H fails

attribute = f(A..H)
f(A..D)

f(B)

A B C D E F G H

f(A) f(C) f(D) f(E) f(F) f(G) f(H)

f(A,B) f(C,D) f(E,F) f(G,H)

f(A..D) LEASE EXPIRED

H fails

attribute = f(A..D)

f(E,F)

f(B)

A B C D E F G H

f(A) f(C) f(D) f(E) f(F) f(G) f(H)

f(A,B) f(C,D) f(E,F)

f(A..D)

H fails

attribute = f(A..F)
f(A..F)

LEASE
EXPIRED

EXPIRED
f(B)

A B C D E F G H

f(A) f(C) f(D) f(E) f(F) f(G) LEASE

f(A,B) f(C,D) f(E,F)

f(A..D)

H fails

f(A..G)

f(E..G)

f(G)

attribute = f(A..G)

(a) Impact of leaf failure without early expiration

f(B)

A B C D E F G H

f(A) f(C) f(D) f(E) f(F) f(G) f(H)

f(A,B) f(C,D) f(E,F) f(G,H)

f(A..D) f(E..H)

H fails

attribute = f(A..H)

EXPIRE
f(B)

A B C D E F G H

f(A) f(C) f(D) f(E) f(F) f(G) EARLY

f(A,B) f(C,D) f(E,F)

f(A..D)

H fails

f(A..G)

f(E..G)

f(G)

attribute = f(A..G)

(b) Impact of leaf failure with early expiration

Fig. 4: Recalculation of aggregate function across values A, B, ..., H after the node with input H fails (a) without and (b) with early
expiration.

00*

000 111010 101
L0

L1

L2

L3

100 110 001 011
Fig. 6: Plaxton tree topology is an approximate butterfly net-
work. The bold connections illustrate how a virtual node 00*
uses the dual tree prefix aggregation abstraction to aggregate
values from a tree below it and distribute the results up a tree
above it.

ary trees (i.e., a DHT with 3-bit correction per hop). The
straightforward algorithm then has each node sending
over roughly 400 pings per second. As the system grows,
the situation deteriorates rapidly—a 4096-node system
requires each node to send roughly 3200 pings per sec-
ond.

Our solution reduces active monitoring work to
θ(d log n) pings per node perp seconds. The 512-node
system in the example will require each node to send
about 3 pings per second; the 4096-node system will re-
quire each node to send about 4 pings per second.

Dual tree prefix aggregation. To make it practical to
maintain the NI values, we take advantage of the under-
lying structure of our Plaxton-tree-based DHT [27] to
re-use common sub-calculations across different aggre-
gation trees using a noveldual tree prefix aggregation
abstraction.

In particular, we note that as Figure 6 illustrates, the
Plaxton tree algorithm forms an approximate butterfly
network. For a degree-d tree, the virtual node at level
i has an id that matches the keys that it routes inlog d ∗ i
bits. It is the root of exactly one tree, and its children
in that tree are approximatelyd virtual nodes that match
keys inlog d∗(i−1) bits. It hasd parents, each of which
matches different subsets of keys inlog d ∗ (i + 1) bits.

But notice that for each of these parents, this tree aggre-
gates inputs fromthe same subtrees.

Whereas the standard aggregation abstraction com-
putes an aggregation function across a set of subtrees and
propagates it to one parent, adual tree prefix aggregation
computes an aggregation function across a set of subtrees
and propagates it toall parents. As Figure 6 illustrates,
each node in a dual tree prefix aggregation is the root
of two trees: an aggregation tree below that computes an
aggregation function across a set of leaves and a distribu-
tion tree above that propagates the result of this compu-
tation to a collection of enclosing aggregates that depend
on this sub-tree for input.

For theNreachable count andNdup lease, the values
propagated up are aggregates on the subtree (the num-
ber of reachable nodes and the minimum lease duration
granted by the subtree), so the same value can be propa-
gated by a node to all of its parents.

For example in Figure 6, consider the level 2 virtual
node 00* mapped to node 000. This node’sNreachable

count of 4 represents the total number of leaves included
in that virtual node’s subtree. This node aggregates this
singleNreachable count from its descendents and prop-
agates this value to both of its level-3 parents, 000 and
001. For simplicity, the figure shows a binary tree; by
default PRISM corrects three bits per hop andd=8, so
each subtree is common to 8 parents.

5 Experimental Evaluation

To evaluate PRISM, we perform experiments on two
types of networks: (1) several LAN clusters (a 50-node
departmental Condor cluster and 50 to 85 Emulab [39]
nodes) and (2) 94 nodes on the PlanetLab distributed
testbed [26]. Our prototype has been developed using
SDIMS [40] on top of FreePastry [29].

Our experiments characterize the performance and
scalability of the AI, TI, and NI metrics for PrMon and
distributed heavy hitters (DHH) applications. First, we

9

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

T
ot

al
 #

 m
es

sa
ge

s
(n

or
m

al
iz

ed
)

AI (% of max)

TX1
CPU

Fig. 7: Load vs. AI for TX1 and CPU attributes with no TI
filtering

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

T
ot

al
 #

 m
es

sa
ge

s
(n

or
m

al
iz

ed
)

TI (seconds)

Non-pipelined
Pipelined

Fig. 8: Load vs. TI for a single attribute with no AI filtering

use CoMon [6] data collected from PlanetLab [26] and
netflow traces from Abilene [1] to quantify the reduc-
tion in monitoring overheads due to AI and TI. Second,
we analyze the deviation in the PRISM’s reported val-
ues with respect to both the ground truth based on sen-
sor readings and the guarantees defined by AI and TI.
Finally, we investigate the consistency/availability trade-
offs that NI exposes. In summary, our experimental re-
sults show that PRISM is an effective substrate for scal-
able monitoring: introducing small amounts of AI and TI
significantly reduces monitoring load, and the NI metrics
both successfully characterize system state and reduce
measurement inaccuracy.

5.1 Load vs. Imprecision

In this subsection we quantify the reduction in monitor-
ing load due to AI and TI for both the PrMon and DHH
applications. Further, we characterize the reduction in
monitoring load due to AI and TI for different sensor
data distributions by running large-scale simulations on
synthetic datasets.

5.1.1 PrMon

We begin by comparing the monitoring cost of PrMon
distributed monitoring service to the centralized CoMon
service, which uses a fixed TI of 5 minutes and which
does not exploit AI. We gather CoTop [6] data from 200
PlanetLab nodes at 1-second intervals for 1 hour on 25
September 2006. The CoTop data provides the per-slice
resource usage (e.g., CPU, MEM, TX1) for all slices run-
ning on a given PlanetLab node. Using these logs as sen-
sor input, we run PRISM on 200 servers mapped to 50
Emulab machines each having a 3GHz CPU and 2GB
RAM.

Figure 7 shows the AI precision-performance results
for the PrMon application for two attributes (the total
TX1 and CPU usage of slice princetoncodeen across
200 PlanetLab nodes). The TX1 attribute denotes the
total number of bytes transmitted by a slice in the last

minute. The x-axis shows the global AI budget, and the
y-axis shows the total message load normalized with re-
spect to AI of -1 (no AI caching) and TI =TImin =
50ms. Each data point represents the total number of
messages sent during the 1-hour run. From the figure,
we observe that for CPU, the load falls by 68% when
AI changes from -1 (no caching) to 0 and a 10% AI fur-
ther provides almost a 40% reduction in load compared
to AI=0. The load reduction from AI=-1 to AI=0 comes
from culling new updates that exactly match the previ-
ous report. However, if the CPU value changes, it gener-
ally deviates by a large amount, resulting in limited gains
achieved by 10% AI. For the TX1 attribute, the sensor
sends an update every 60 seconds. In this case, changing
AI from -1 to 0 provides roughly a 12% reduction in load
whereas 10% AI reduces the load by 50%.

Figure 8 shows the corresponding TI precision-
performance results with no AI filtering. The initial TI
value ofTImin (50 ms) corresponds to immediate prop-
agation of messages along the aggregation tree. From
the graph, we observe that the reduction in system load
is 80% and over an order of magnitude for non-pipelined
and pipelined 10 second TI delays respectively compared
to TI of TImin.

Figure 9 shows the combined effect of AI and TI in
reducing monitoring load for the CPU attribute for the
princetoncodeen slice. We use TI of 10 seconds, 30
seconds, 1 minute, and 5 minutes, and for each of these
TI values, we run the experiment for AI values of -1, 0,
10%, and 20%. We observe that the load falls by 70%
from AI of -1 to AI of 10% for a given TI. Further, for
a fixed AI, the monitoring load shows a curve following
1/TI as in Figure 8. For this attribute, giving an AI of
10% or 20% only provides additional load reduction of
10% and 16% respectively due to low temporal locality.

Next Figure 10 shows the combined effect of AI
and TI in reducing monitoring load for all the nine at-
tributes (TX1, TX15, RX1, RX15, #PR, PMEMMB,
VMEMMB, CPU%, and MEM%) emitted by the CoTop

10

 0.01

 0.1

 1

 0 50 100 150 200 250 300

T
ot

al
 #

 m
es

sa
ge

s
(n

or
m

al
iz

ed
)

TI (seconds)

AI = -1
AI = 0

AI = 10
AI = 20

Fig. 9: Load vs. AI and TI for CPU attribute

 0.001

 0.01

 0.1

 1

 0 50 100 150 200 250 300

T
ot

al
 #

 m
es

sa
ge

s
(n

or
m

al
iz

ed
)

TI (seconds)

AI = -1
AI = 0

AI = 10
AI = 20

Fig. 10: Load vs. AI and TI for all attributes

sensor for all the running PlanetLab slices in our trace
data. We observe that for AI of -1, there is more than one
order of magnitude load reduction for TI of 5 minutes
compared to 10 seconds. Likewise, for a fixed TI of 10
seconds, AI of 20% reduces load by two orders of mag-
nitude compared to AI = -1. By combining AI of 20%
and TI of 30 seconds, we get both an order of magni-
tude load reduction and an order of magnitude reduction
in the time lag between updates compared to CoMon’s
AI of -1 and TI of 5 minutes. Alternatively, for approx-
imately the same bandwidth cost as CoMon with TI of
5 minutes and AI of -1 for 200 nodes, PRISM provides
highly time-responsive and accurate monitoring with TI
of 10 seconds and AI of 0.

5.1.2 Detecting Heavy Hitters

For our heavy hitter case study, we use multiple netflow
traces obtained from Abilene [1] Internet2 backbone net-
work. The data was collected for 1 hour on April 4, 2006;
each backbone router logged per-flow data every5 min-
utes, and we split this trace into 200 buckets based on
the hash of source IP. Our monitoring system executes a
Top-10 query on this dataset for tracking the top 10 flows
(destination IP as key) in terms of bytes received over a
30 second moving window shifted every 5 seconds.

Figure 11 shows the precision-performance results for
the top-10 heavy hitter query for 50 nodes on the depart-
mental Condor testbed. The x-axis shows the AI budget
and the y-axis shows the total monitoring load per unit
time normalized relative to the load for AI = 0. The AI
budget is varied from 1% to 10% of the top flow’s global
traffic volume. From the graph, we observe that the knee
of the graph at 10% AI provides over an order of mag-
nitude reduction in monitoring load. A large fraction of
the reduction comes from completely eliminating aggre-
gation for “mouse” flows whose total bandwidth is less
than the imprecision budget at the leaves.

Figure 12 shows the corresponding results for the
pipelined and non-pipelined TI delays. We find that us-
ing pipelined delays, a 10 seconds TI achieves an order of

magnitude reduction in monitoring load. Increasing the
TI beyond 10 seconds yields additional, albeit smaller,
reductions. For non-pipelined delays, TI of 25 seconds
yields an order of magnitude load reduction.

5.1.3 Generalized Model: Simulation study

To generalize the trade-off between AI and monitoring
cost, we evaluate the conditions under which AI is effec-
tive i.e., the distribution of the data values reported by
the sensors. We first investigate via simulation a large-
scale aggregation network with 7776 physical nodes or-
ganized as a 5 level aggregation tree with uniform degree
6. For each leaf node, we model the the data values of
incoming traffic using two distributions: a Gaussian dis-
tribution and a uniform distribution. Our aim is to the
evaluate the effect on load due to the noise in the data
values given a fixed AI budget.

Figure 13 shows the corresponding results using our
simulator over these two data distributions. The x-axis
denotes the ratio of total noise induced by all the leaf sen-
sors to the total AI budget. We observe that when noise
is small compared to the AI budget, we filter almost all
updates and load can be reduced by an order of magni-
tude. But, as expected, when noise is large compared
to the error budget, the load asymptotically approaches
the load with AI = 0. The uniform distribution allows
almost perfect culling of updates for small amounts of
noise whereas for the Gaussian distribution, there is a
small yet a finite probability for data values to deviate
arbitrarily from their previously reported range.

In summary, our evaluation shows that small AI and TI
budgets can provide large bandwidth savings to enable
scalable monitoring.

5.2 Promised vs. Realized Accuracy
In this subsection we aim to answer the following ques-
tion: do PRISM’s reported values reflect reality? We
quantify the difference between PRISM’s reports and the
“ground truth” based on the instantaneous sensor read-
ings. To evaluate this deviation, we compare PRISM’s

11

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

N
or

m
al

iz
ed

 L
oa

d

Arithmetic Imprecision (%)

Fig. 11: Normalized load vs. AI for the top-10 query on
Abilene traces.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25

N
or

m
al

iz
ed

 L
oa

d

Temporal Imprecision (s)

Non-Pipelined
Pipelined

Fig. 12: Normalized load vs. TI for the top-10 query on
Abilene traces.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

C
D

F
 (

%
)

Difference (%)

ORACLE-AI=0
LEGAL-AI=0

ORACLE-AI=1
LEGAL-AI=1

ORACLE-AI=5
LEGAL-AI=5

ORACLE-AI=10
LEGAL-AI=10

Fig. 14: Cumulative Distribution function (CDF) for dif-
ference between PRISM’s reported values wrt. (a) oracle’s
reports and (b) PRISM’s legal guarantees for fixed TI of 1
second.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

C
D

F
 (

%
)

Difference (%)

ORACLE-AI=0
LEGAL-AI=0

ORACLE-AI=1
LEGAL-AI=1

ORACLE-AI=5
LEGAL-AI=5

ORACLE-AI=10
LEGAL-AI=10

Fig. 15: Cumulative Distribution function (CDF) for dif-
ference between PRISM’s reported values wrt. (a) oracle’s
reports and (b) PRISM’s legal guarantees for fixed TI of 10
seconds.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.01 0.1 1 10 100

N
or

m
al

iz
ed

 L
oa

d

Delta to noise budget ratio

Guassian Distribution
Uniform Distribution

Fig. 13: Normalized Load vs. noise of synthetic workload for
a fixed AI budget. If noise< AI, a majority of updates get
filtered.

reported results with (1) an oracle service that reports
true aggregate values based on sensor readings at any
time instant and (2) the legal guarantees promised by
PRISM’s AI and TI metrics.

Figure 14 and 15 show the CDF of deviation between
PRISM’s reported values for PrMon’s “CPU” attribute
compared to both the “oracle” instantaneous values and

the legal guarantees defined by AI and TI. In Figure 14,
we fix TI to 1 second and then report the CDF of differ-
ence in the attribute’s reported values for different values
of AI. We make two important observations here: (1)
PRISM’s reported values lie within the envelope defined
by AI and TI for essentially all reports and (2) for 5% AI
and 1 second TI, more than 90% of reports have differ-
ence less than 15% from the oracle. As illustrated in Fig-
ure 14, increasing the TI to 10 seconds results in larger
deviation between PRISM’s reported results and the ora-
cle. For 5% AI and 10s TI, more than 90% reports differ
by less than 27% from the oracle. The relatively large
errors relative to AI are due to the low temporal locality
of the CPU attribute: small TI adds significant additional
variation compared to the oracle. But, the values remain
within the legal guarantees defined by the combined AI
and TI limits.

5.3 NI: Coping with Disruption

Finally, we analyze the effectiveness of our NI metrics in
accurately reflecting network state and filtering inaccu-
rate reports.

We first show how NI metrics reflect network state for

12

 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200 1400 1600 1800

N
et

w
or

k
Im

pr
ec

is
io

n
M

et
ric

s

Time (seconds)

Nreachable
Nall

Ndup

Fig. 16: NI metrics under induced system churn – single
node failure at 815 seconds into the experimental run.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2 4 6 8 10 12 14 16 18

V
al

ue

Time (hours)

Nreachable
Nall

Ndup

Fig. 17: NI metrics reflecting PlanetLab state (85 nodes).

a small scale controlled experiment. In Figure 16, we
run a 20 node experiment on the Condor cluster where
we kill a single node at 815 seconds into the run and
observe the variation of reported NI metrics for an at-
tribute with TI of 60 seconds. This failure causes the
Nreachable value to fall from 20 to 15 within 40 sec-
onds after the node failure. The drop inNreachable indi-
cates that any result calculated in this interval might only
include correct values from 15 nodes. TheNall value
remain stable from 20 until about 1600 seconds to re-
flect the longTdeclareDead timeout before the system de-
clares unreachable nodes to be dead. Correspondingly,
theNdup value goes from 0 to 4 at about 1060 seconds
when the disconnected subtree joins a new parent and
starts reporting itsNdup value to that parent. Finally, the
Ndup value falls back to 0 aboutTdeclareDead time units
(TdeclareDead = 10 minutes) after the dead event and both
Nall andNreachable stabilize to 19 (nodes) denoting that
the system is back to a stable state.

Figure 17 shows how NI reflects network state for a
85-node PlanetLab experiment for a 18-hour run start-
ing 4 October 2006. We observe that even without any
induced failures, there are short-term instabilities in val-
ues reported byNreachable, Nall, andNdup due to miss-
ing/delayed ping reply messages forNreachable and lease
expirations triggered by DHT reconfigurations forNdup.
During the course of the run, 5 of the 85 nodes became
unresponsive; hence the finalNreachable andNall values
stabilize to 80.

Next we quantify the risks of reporting global aggre-
gate results without incorporating NI. We run a 1 hour
experiment on 94 PlanetLab nodes for an attribute with
AI = 0 and TI = 10 seconds. Figure 18 shows the CDF of
reported answers showing the deviation in reports with
respect to an oracle. The different lines in the graph
correspond to the reported answers filtered for different
NI thresholds. For simplicity, we condense NI to a sin-
gle parameter MAX(Nall−Nreachable

Nall
, Ndup

Nall
). We observe

that NI effectively reflects the stability of network state:

when NI< 5%, 80% answers have less than 20% devi-
ation from the true value and when NI< 90%, 80% an-
swers can deviate by as high as 65% from the true value.
Note that for monitoring systems that ignore NI (no fil-
tering line), 90% of their reports can differ by 80% from
the truth.

In Figure 19 we explore the effectiveness of a general
strategy to achieve high consistency in reported aggre-
gate values during periods of churn. We use K redundant
trees in the DHT to compute an attribute and then use NI
to identify the highest-quality result. Figure 19 shows the
CDF of results with respect to the deviation from oracle
as we vary K from 1 to 4. We observe that when devia-
tion is less than 10% (small NI), retrieving results from
the root of one aggregation tree (K = 1) suffices. How-
ever, for large deviation, fetching the reports from only
one aggregation tree can introduce deviation as high as
100% whereas choosing the result from the most stable
of 4 trees reduces the deviation to at most 22% thereby
reducing the worst-case inaccuracy by nearly a factor of
5.

Filtering answers during periods of high churn ex-
poses a fundamental consistency versus availability
tradeoff [13]. Figure 20 shows how varying K allows us
to increase monitoring load to improve this tradeoff. As
K increases, the fraction of time during which NI is low
increases. The intuition behind the approach is that since
the vast majority of nodes in any 8-ary tree are near the
leaves, sampling several trees rapidly increases the prob-
ability that at least one tree avoids encountering many
near-root failures. We provide an analytic model formal-
izing this intuition in the appendix.

6 Related Work
The three imprecision metrics in our work are inspired
by and relate to a number of research traditions in the
distributed systems community.

The AI and TI metrics are related to several research
efforts allow applications to trade precision for commu-

13

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

C
D

F
 (

%
 a

ns
w

er
s)

Difference from truth (%)

NI unbounded (no filtering)
NI < 5%

NI < 10%
NI < 50%
NI < 75%
NI < 90%

Fig. 18: Cumulative Distribution function
(CDF) for reported answers filtered for
different NI thresholds and K = 1.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

C
D

F
 (

%
 a

ns
w

er
s)

Difference from truth (%)

K = 1
K = 2
K = 3
K = 4

Fig. 19: Cumulative Distribution function
(CDF) of NI values for different K.

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

C
D

F
 (

%
 a

ns
w

er
s)

NI

K = 1
K = 2
K = 3
K = 4

Fig. 20: Cumulative Distribution function
(CDF) of NI values for K duplicate keys.

nication overhead. Olston et al. [3, 22] propose adaptive
filters at the data sources that compute approximate an-
swers for continuous queries. Their work, however, fo-
cuses on single-level communication topologies. In a hi-
erarchical communication setting, Manjhi et al. [21] con-
sider the problem of finding frequent items in database
streams; they focus on determining an optimal butstatic
distribution of slack to the internal and leaf nodes of the
tree. TAG [20], an aggregation service for sensor net-
works, employs a similar approach as PRISM for bound-
ing TI when nodes are approximately synchronized.

Consistency has long been studied in the context
of non-aggregating file systems and databases. Yu et
al. [45] propose three metrics—Numerical Error, Order
Error, and Staleness—to capture the consistency spec-
trum in a distributed replicated system where any node
can perform read or write operations. Numerical error
is similar to AI and Staleness is similar to TI. Similarly,
file systems providing cache consistency often provide
leases on individual objects [14] or volume leases on
groups of objects [43]

Consistency for aggregation differs in two fundamen-
tal ways. First, aggregation systems are large-scale with
many concurrent writers which implies that it is not fea-
sible to resolve CAP dilemma [13] by blocking reads
during periods when a writer may be disconnected. So
we emphasize availability by providing conditional con-
sistency: operations always complete but results are an-
notated with information about their quality. Second,
in hierarchical aggregation that accumulates inputs from
many sensors, amplification effect of failures can make
results substantially deviate from the real values.

The idea of flagging results when the state of a dis-
tributed system is disrupted by node or network failures
has been used in tackling other distributed systems prob-
lems. For example, our idea of conditioned consistency
is similar in spirit to the notion of failure detectors [4]
for fault-tolerant distributed systems. Also, in quorum
systems, Pierce and Alvisi’s pseudo-regular and pseudo-
atomic semantics provide regular and atomic semantics
on all operations, but they allow operations toabort if
concurrency or network failures would prevent such a

guarantee [25]. Kostoulas et al. [19] point out the im-
possibility of group size estimation in a dynamic group
and propose an active gossip-based scheme and a pas-
sive approach based on interval densities when nodes are
hashed onto a given real interval. Freedman et al. pro-
pose link-attestation groups abstraction in [11] that uses
an application specific notion of reliability and correct-
ness, so as to map which pairs of nodes consider each
other reliable. Their system, designed for groups on the
scale of tens of nodes, monitors the nodes and system
and exposes such attestation graph to the applications.

Traditionally, DHT-based aggregation is event-driven
and best-effort, i.e., each update event triggers re-
aggregation for affected portions of the aggregation tree.
Further, systems often only provide eventual consistency
guarantees on its data [36, 40], i.e., updates by a live node
will eventually be visible to probes by connected nodes.

There are ongoing efforts similar to ours in the P2P
and databases community to build global monitoring ser-
vices. PIER is a DHT-based relational query engine [16]
targeted at querying real-time data from many vantage-
points on the Internet. Sophia [38] is a distributed moni-
toring system designed with a declarative logic program-
ming model. A recent study [17] has proposed support
of aggregate triggers in monitoring systems in which
individual nodes can independently detect and react to
changes in the global system-wide behavior. PRISM
may enhance such efforts by providing a scalable way
to track top-k and other significant events.

7 Conclusions

Without precision guarantees, large scale network mon-
itoring systems may be too expensive to implement (be-
cause too many events flow through the system) or too
dangerous to use (because data output by such systems
may be arbitrarily wrong.) PRISM provides arithmetic
imprecision to bound numerical accuracy, temporal im-
precision to bound staleness, and network imprecision to
expose cases when first two bounds can not be trusted.

References
[1] Abilene internet2 network.http://abilene.internet2.edu/ .
[2] D. Andersen, H. Balakrishnan, M. Kaashoek, and R. Morris. Re-

14

silient overlay networks. InProc. SOSP, pages 131–145. ACM
Press, 2001.

[3] B. Babcock and C. Olston. Distributed top-k monitoring.
In ACM SIGMODInternational Conference on Management of
Data, pages 28–39, June 2003.

[4] T. Chandra and S. Toueg. Unreliable failure detectors for reliable
distributed systems.J. ACM, 43(2):225–267, Mar. 1996.

[5] D. D. Clark, C. Partridge, J. C. Ramming, and J. Wroclawski. A
knowledge plane for the internet. In A. Feldmann, M. Zitterbart,
J. Crowcroft, and D. Wetherall, editors,SIGCOMM, pages 3–10.
ACM, 2003.

[6] http://comon.cs.princeton.edu/ .
[7] R. Cox, A. Muthitacharoen, and R. T. Morris. Serving DNS using

a Peer-to-Peer Lookup Service. InIPTPS, 2002.
[8] M. Dahlin, B. Chandra, L. Gao, and A. Nayate. End-to-end

wan service availability.IEEE/ACM Transactions on Network-
ing, 2003.

[9] C. Estan and G. Varghese. New directions in traffic measurement
and accounting. InSIGCOMM, pages 323–336. ACM, 2002.

[10] M. J. Freedman and D. Mazires. Sloppy Hashing and Self-
Organizing Clusters. In2nd Intl. Workshop on Peer-to-Peer Sys-
tems, Berkeley, CA, February 2003.

[11] M. J. Freedman, I. Stoica, D. Mazieres, and S. Shenker. Group
therapy for systems: Using link attestations to manage failures.
In IPTPS, 2006.

[12] Y. Fu, J. Chase, B. Chun, S. Schwab, and A. Vahdat. SHARP:
An architecture for secure resource peering. InProc. SOSP, Oct.
2003.

[13] S. Gilbert and N. Lynch. Brewer’s conjecture and the feasibility
of Consistent, Available, Partition-tolerant web services. InACM
SIGACT News, 33(2), Jun 2002.

[14] C. Gray and D. Cheriton. Leases: An Efficient Fault-Tolerant
Mechanism for Distributed File Cache Consistency. InSOSP,
pages 202–210, 1989.

[15] J. M. Hellerstein, V. Paxson, L. L. Peterson, T. Roscoe,
S. Shenker, and D. Wetherall. The network oracle.IEEE Data
Eng. Bull., 28(1):3–10, 2005.

[16] R. Huebsch, J. M. Hellerstein, N. Lanham, B. T. Loo, S. Shenker,
and I. Stoica. Querying the Internet with PIER. InProceedings
of the VLDB Conference, May 2003.

[17] A. Jain, J. M. Hellerstein, S. Ratnasamy, and D. Wetherall. A
wakeup call for internet monitoring systems: The case for dis-
tributed triggers. InProc. 3rd ACM SIGCOMM Workshop on Hot
Topics in Networks (HotNets), San Diego, CA, November 2004.

[18] N. Jain, D. Kit, P. Mahajan, P. Yalagandula, M. Dahlin, and
Y. Zhang. PRISM: precision-aware aggregation for scalable mon-
itoring (extended). Technical Report TR-06-22, UT Austin De-
partment of Computer Sciences, May 2006.

[19] D. Kostoulas, D. Psaltoulis, I. Gupta, K. Birman, and A. Demers.
Decentralized schemes for size estimation in large and dynamic
groups. InIEEE Network Computing and Applications (NCA 05),
2005.

[20] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong.
TAG: a Tiny AGgregation Service for Ad-Hoc Sensor Networks.
In OSDI, 2002.

[21] A. Manjhi, V. Shkapenyuk, K. Dhamdhere, and C. Olston. Find-
ing (Recently) Frequent Items in Distributed Data Streams. In
ICDE, pages 767–778. IEEE Computer Society, 2005.

[22] C. Olston, J. Jiang, and J. Widom. Adaptive filters for continuous
queries over distributed data streams. InSIGMOD, SIGMOD
2003.

[23] C. Olston and J. Widom. Offering a precision-performance trade-
off for aggregation queries over replicated data. InVLDB, pages
144–155, Sept. 2000.

[24] V. Paxson. End-to-end Routing Behavior in the Internet. InSIG-
COMM, Aug. 1996.

[25] L. Pierce and L. Alvisi. A framework for semantic reasoning
about byzantine quorum systems. InBrief Announcements, Proc.

of Symp. on Principles of Distributed Computing, 2001.
[26] Planetlab.http://www.planet-lab.org .
[27] C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing Nearby

Copies of Replicated Objects in a Distributed Environment. In
ACM SPAA, 1997.

[28] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A
Scalable Content Addressable Network. InProceedings of ACM
SIGCOMM, 2001.

[29] A. Rowstron and P. Druschel. Pastry: Scalable, Distributed Ob-
ject Location and Routing for Large-scale Peer-to-peer Systems.
In Middleware, 2001.

[30] J. Shneidman, P. Pietzuch, J. Ledlie, M. Roussopoulos,
M. Seltzer, and M. Welsh. Hourglass: An infrastructure for con-
necting sensor networks and applications. Technical Report TR-
21-04, Harvard Technical Report, 2004.

[31] A. Siegel.Performance in Flexible Distributed File Systems. PhD
thesis, Cornell, 1992.

[32] A. Singla, U. Ramachandran, and J. Hodgins. Temporal notions
of synchronization and consistency in Beehive. InProc. SPAA,
1997.

[33] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrish-
nan. Chord: A scalable Peer-To-Peer lookup service for internet
applications. InACM SIGCOMM, 2001.

[34] R. Tewari, M. Dahlin, H. Vin, and J. Kay. Design Considerations
for Distributed Caching on the Internet. InICDCS, May 1999.

[35] http://www.globus.org/ .
[36] R. van Renesse, K. Birman, and W. Vogels. Astrolabe: A ro-

bust and scalable technology for distributed system monitoring,
management, and data mining.TOCS, 21(2):164–206, 2003.

[37] D. Veitch, S. Babu, and A. Pasztor. Robust synchronization of
software clocks across the internet. InIMC ’04: Proceedings
of the 4th ACM SIGCOMM conference on Internet measurement,
pages 219–232, New York, NY, USA, 2004. ACM Press.

[38] M. Wawrzoniak, L. Peterson, and T. Roscoe. Sophia: An Infor-
mation Plane for Networked Systems. InHotNets-II, 2003.

[39] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,
M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An integrated
experimental environment for distributed systems and networks.
In Proc. OSDI, pages 255–270, Boston, MA, Dec. 2002.

[40] P. Yalagandula and M. Dahlin. A scalable distributed information
management system. InProc SIGCOMM, Aug. 2004.

[41] P. Yalagandula, P. Sharma, S. Banerjee, S.-J. Lee, and S. Basu.
S3: A Scalable Sensing Service for Monitoring Large Networked
Systems. InProceedings of the SIGCOMM Workshop on Internet
Network Management, 2006.

[42] J. Yin, L. Alvisi, M. Dahlin, and C. Lin. Hierarchical Cache
Consistency in a WAN. InProc USITS, Oct. 1999.

[43] J. Yin, L. Alvisi, M. Dahlin, and C. Lin. Volume Leases to Sup-
port Consistency in Large-Scale Systems.IEEE Transactions on
Knowledge and Data Engineering, Feb. 1999.

[44] H. Yu and A. Vahdat. Design and evaluation of a continuous
consistency model for replicated services. InOSDI, pages 305–
318, 2000.

[45] H. Yu and A. Vahdat. Design and evaluation of a conit-based con-
tinuous consistency model for replicated services.ACM Trans. on
Computer Systems, 20(3), Aug. 2002.

[46] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry: An
Infrastructure for Fault-tolerant Wide-area Location and Routing.
Technical Report UCB/CSD-01-1141, UC Berkeley, Apr. 2001.

15

8 Appendix

8.1 Arithmetic Imprecision
Mechanism We first describe in detail the aggregation
mechanism for a single flow in an aggregation tree for
the SUM function with a given AI budget.

8.1.1 Computing SUM for a single attribute

To enforce AI, each aggregation subtreeT for an at-
tribute has an error budgetδT which defines the maxi-
mum inaccuracy of any result the subtree will report to
its parent for that attribute.

Each noden in the aggregation tree maintains per-
attribute state

Ψn:

{
δself , Vmin, Vmax, Lself , ∀c(δc, V

c
min, V c

max, Lc

)}

Whenevern receives an update from a childc, it trig-
gers the aggregation function that re-computes the aggre-
gate value of all latest received updates from its children.
Function: OnChildUpdate (childc, range [V c

min, V c
max],

loadLc)
Step 1.Compute synopses received from children set child(n):

Pmax =
(∑

c∈child(n)

V c
max

)

Pmin =
(∑

c∈child(n)

V c
min

)
(4)

If n hasneverreceived an update for this attribute from
a childc, then [V c

min, V c
max] is set to [0,δc].

Step 2.Pass new numeric range through local AI filter:
if (Pmin < Vmin || Pmax > Vmax) {
Vmin = Pmin − bias ∗ δself ; // bias ∈ [0, 1];
Vmax = Vmin + δT ;
Lself + +;
L =

∑
c∈child(n) Lc + Lself ;

Send (attr,V max, L) to parent;
}

For redistributing the AI budgets in our self-tuning algo-
rithm, Mself (Mc) are set to the ratio ofLself (Lc for
child c respectively) to the time elapsed since the last AI
error distribution.

Leaf node: A leaf node can be viewed as an internal
node with a single virtual child (the sensor itself) with
AI = 0 i.e., the sensors triggers an update [Vs, Vs] to
the leaf node i.e.,Vs = V s

max = V s
min. Note that the

messaging cost of transmitting between the virtual child
(sensor) and the leaf nodeLs = 0 since they reside on
the same physical node.

8.1.2 Computing MIN for a single attribute

The mechanism of computing the MIN aggregation func-
tion is similar to the SUM where we replace the SUM

compuation in Equation 4 by:

Pmax =
(

min
c∈child(n)

V c
max

)

Pmin =
(

min
c∈child(n)

V c
min

)
(5)

8.1.3 Computing MAX for a single attribute

The MAX aggregation function is symmetric to MIN.
Thus, Equation 5 becomes:

Pmax =
(

max
c∈child(n)

V c
max

)

Pmin =
(

max
c∈child(n)

V c
min

)
(6)

8.1.4 Computing AVG for a single attribute

The AVG aggregation function can be easily computed
as a (SUM, COUNT) pair along the same aggregation
tree.

8.2 Optimality of Self-tuning AI Error Dis-
tribution

The optimal distribution ofδT amongδself and δc is
computed as follows: We first find the optimal AI error
distribution for a simple degree-2 tree having two lev-
els with the root at level 1 and its two children as the
leaf nodes. Later, we will show how this topology can
be modeled for any arbitrary d and for any level of the
aggregation hierarchy.

Given this topology, we haveδT = δc1 + δc2; δself for
the root node is set to 0 since it doesn’t need to transmit
any updates up in the hierarchy. As discussed in Sec-
tion 3.1, under the assumption that load is inversely pro-
portional to the error budget, we get:

Mc1

Mopt
c1

=
δc1

δopt
c1

Mc2

Mopt
c2

=
δc2

δopt
c2

We formulate minimizing total load as a multivariate
optimization problem sibject to the constraint that the to-
tal error budget is fixed i.e.,

Minimize f : Mopt
c1 + Mopt

c2

subject to the constraint:

g : δc1 + δc2 − δT = δopt
c1 + δopt

c2 − δT = 0

We use Lagrangian multipliers to find the extremum of
f(δopt

c1 , δopt
c2) subject to the constraint that g(δopt

c1 , δopt
c2) =

16

0 i.e.,

∂f

∂δopt
c1

+ λ
∂g

∂δopt
c1

= 0

⇒ ∂

∂δopt
c1

(Mc1δc1

δopt
c1

+
Mc2δc2

δT − δopt
c1

)
+ λ

∂g

∂δopt
c1

= 0

⇒ −Mc1δc1(
δopt
c1

)2 +
Mc2δc2(

δT − δopt
c1

)2 = 0

⇒
√

Mc1δc1√
Mc2δc2

=
δopt
c1

δT − δopt
c1

⇒ δopt
c1 = δT

(√
Mc1δc1√

Mc1δc1 +
√

Mc2δc2

)

which is a special case of Equation 3 when d = 2.
In the general case for a degree-d tree, we get Equation 3:

δopt
v = δT ∗

√
Mv ∗ δv∑

v∈{self}∪child(n)

√
Mv ∗ δv

.

Notes. For an internal-node, we modelδself , Mself for
that node as a virtual child withδc = δself ,Mc = Mself

and use the above equation ford + 1 children.

8.3 Temporal Imprecision
Pipelined Delays Note that the pipelined delays mech-
anism significantly reduces the number of updates in
an aggregation tree; at each level, an aggregate update
is propagated at most once per I seconds whereI =
TI − ` ∗ S.

To provide the temporal guarantees under synchro-
nized clocks, S must be smaller thanT` . This im-
plies that temporal imprecision would be violated if
2∗skewmax >= (T

` −hopmax) >= 1
` (T−`∗hopmax).

The intuition of this result is that(T − ` ∗ hopmax) is
the total slack for the entire tree; therefore,skewmax

must be smaller than slack available per level1
` (T − ` ∗

hopmax) .

Proof of Correctness of Pipelined Delays.

Lemma 1. An event sent by leveli at local timeTi is sent
by leveli + 1 no later than local time (at leveli) Ti + S

Proof. At jth step (TI interval), the extra delay intro-
duced by node at leveli + 1

= (Z + j ∗ I + (i + 1) ∗ S) - (Z + j ∗ I + i ∗ S)
= S

Lemma 2. A leaf event at time X sent by level 0 no later
than X + I [True by definition of I]

Theorem. An event at a leaf node at local timeX is
reflected at root no later than timeX + TI according to
the local time at the same leaf node.

Proof. An event reaches level d no later than
X + I + d ∗ S [Combining Lemma 1 and Lemma 2]
= X + (TI − d ∗ S) + d ∗ S

= X + TI

In general, ifskewmax is large due to unsynchronized
clocks or weak synchronization we simply fall back on
non-pipelined version which we describe next.

Non-pipelined delays. For the case of unsynchronized
clocks, we use the same algorithm as the pipelined case
with the difference that2 ∗ skewmax is no longer used
and the parametersZ, I, andS are set slightly differently
to reflect lack of coordination between levels. Specif-
ically, S = hopmax (we ignoreskewmax) and cor-
respondinglyT = ` ∗ (I + S). Note that we get a
different bound on minimum temporal imprecision as
Tmin = ` ∗ hopmax for the non-pipelined case.

In terms of implementation, instead of a global refer-
ence time as in the synchronized case, the aggregation
function specifies an arbitrary reference timeZ. There-
fore, at local timeZ + i ∗ I corresponding to a node at
any level of the aggregation tree, it sends an updated ag-
gregate value to its parent iff the value of any of its inputs
has changed since timeZ +(i−1)∗I. The efficiency for
non-pipelined case is qualitatively same as the pipelined
case—at each level, an aggregate update is propagated at
most once per I seconds.

Proof of Correctness of Non-Pipelined Delays. To
prove correctness, we define the following lemma:

Lemma 3. At any level, the maximum delay in update
propagation by a node isI + S.

This leads to the proof of Theorem 8.3 for the non-
pipelined case.

Proof. An event reaches level d no later thanX + d ∗
(I + S) = X + TI

Comparison. Given the samea priori temporal impre-
cision budget, the value ofI for the pipelined and the
non-pipelined cases would be different i.e.,

Ipipelined = T − ` ∗ S

= ` ∗
(T

`
− hopmax − 2 ∗ skewmax

)

Inon pipelined =
T

`
− hopmax

Therefore, when skew is small, i.e.2 ∗ skewmax ¿
T
` −hopmax, pipelined delay can achieve almost a factor
of ` reduction in the update frequency.

17

8.4 Network Imprecision
Here we present the analytical results for computing the
expected NI usingk aggregation trees afterf indepen-
dent failures have occured. Note that by ”f independent
failures”, we allow two failures to be on the same node;
in this case, their contribution to NI is counted twice.

Notation.
• c: the number of logical children a node has in the

aggregation tree (i.e., logical fanout).
• d: the depth of the aggregation tree
• P(i,f,k): with k random trees, the probability for at

least one tree to have all failures occuring at level
<= i (leaf at level 0) (which implies the NI =Nall −
Nreachable <= f ∗ ci with f independent failures be-
cause each node at leveli contribute at mostci to NI).

• E(NI,f,i): the expected NI withf independent failures
conditioned on the fact every failure appears in max
level of i or below

• Var(NI,f,i): the variance of NI withf independent fail-
ures conditioned on the fact every failure appears in
max level ofi or below.

8.4.1 Tail Probability Analysis

The probability for a failure to appear in max level ¡=i
(leaf is level 0) i.e., Pr(failure in max level<= i) = 1 -
Pr(failure in max level> i)
= (1− 1/ci+1).

The probability for allf independent failures to appear
in level <= i is therefore(1 − 1/ci+1)f . Note that the
contribution to NI by each failure with max level<= i
is at mostci.

Therefore we get P(i,f,1) =(1− 1/ci+1)f .
With k random aggregation trees, the probability for

at least one tree to have NI ¡=f ∗ ci is

P (i, f, k) = 1−(1−P (i, f, 1))k = 1−[1−(1−1/ci+1)f]k

(7)

Example. Suppose c = 8, f = 10, k = 4, then

a. with prob. >= 99.95%Nall −Nreachable <= f ∗ c1

= 80

b. with prob. >= 70.51%Nall −Nreachable <= f ∗ c0

= 10

Analysis on the Expected NI. We will use the above
analysis to prove that with high probability, at least one
aggregation tree has every failure appearing at max level
<= i.

We first analyze the mean and standard deviation for
NI conditioned on the fact that all failures occur at max
level <= i. For a single failure, the probability for the
failure to occur at max levelj (conditioned on the fact its
max level is<= i) is

Q(j) =
1/cj − 1/cj+1

1− 1/ci+1

Its contribution to NI is exactlycj . Therefore, with 1
failure, we have

E(NI, 1, i) =
∑

j=0...i

Q(j) ∗ cj

= (i + 1) ∗ (1− 1/c)
(1− 1/ci+1)

V ar(NI, 1, i) = E(NI2)− E(NI)2

=
∑

j=0...i

Q(j) ∗ c2∗j − E(NI)2

= ci − E(NI)2

With f independent failures, we get: E(NI,f,i)<= f ∗
E(NI, 1, i) and Var(NI,f,i)<= f2*var(NI,1,i)

Note that we use ”<=” instead of ”=” because we
ignore the fact that one failure may be the ancestor of
another.

Example. Suppose c = 8, f = 10, k = 4, i = 1, then with
prob.>= 99.95%Nall−Nreachable <= f ∗c1 = 80 and
in this case, E(NI,f,i)<= 17.78 and STDDEV.(NI,f,i)
<= 22.

To summarize, a fundamental and unique challenge in-
herent in any hierarchical aggregation system (regardless
of whether DHT is used) is the failure amplification ef-
fect – once a non-leaf node fails, an entire subtree rooted
at that node is affected. With d levels, withf failures,
although the expected number of affected nodes is only
(d+1)∗f , the standard deviation is really high =f ∗cd/2.
As a result, with fairly high probability,f failures can be
amplified to a much larger number of affected nodes even
whenf is very small.

The metrics we proposed in Section 4
a. quantify the amplification effect for each aggregation

tree. In particular, since our dual-tree aggregation
scheme allows us to monitor the NI for every tree,
by taking the mean of all NIs, we can accurately es-
timate (d + 1) ∗ f because the standard deviation is
now f ∗ cd/2/cd = f/cd/2. If we normalize the NI
for an aggregation tree by(d + 1) ∗ f , we then get the
amplification factor for that tree.

b. give us a way of reducing amplification effect by using
multiple trees for the same aggregation function.

18

