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| Why a Unified Theory of Replication?

(1) Better way to build replication systems

(2) Way to build better replication systems
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| Better Way to Build Replication Systems

Separate mechanism from policy
= Continuum of policies v. point solutions

Simpler to design and deploy
= Replication microkernel or toolkit

Integrate disparate theories/protocols
= Quorums, client-server, leases, server replication,
p2p, ..
Simplify teaching
= A few principles v. a bunch of case studies

Goal: Reduce the development effort for a new
replication system by an order of magnitude
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| A Way to Build Better Replication Systems
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Synchronize palmtop to laptop
- Client-server: Limited by network to server
» Bayou: Limited by fraction of shared data (1%)

Order of magnhitude improvements availablel
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| Outline

Case for a unified theory of replication
PRACTT: A first step

Evaluation
Future directions
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| Case for a Unified Theory of Replication®

Current systems entangle mechanism with policy

* E.g., Coda v. Bayou
*+ 14 OSDI/SOSP papers in 10 years
= New environment - new trade-offs > new mechanisms
= Not clear new systems dominate old ones (or that 14 is "enough")
Current literature fragmented
- Client-server v. quorums v. server replication v. p2p v. ...
- E.g., Coda and Bayou each have separate server-replication
and client-server caching protocols
Impact
- Systems narrowly tailored for specific environments
+ Significant effort to develop system for new environment

* Scope: "Large scale” replication
- WAN, mobile, enterprise, etc.
- File systems, tuple stores, databases, distributed objects, ...
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l Vision: Replication Microkernel/Toolkit

Universal Policy Policy

Replication Core Mechanism

Grand Challenges:

* Each large-scale FS from OSDI/SOSP 1990-2005
as <1000-line "policy layer”

» "Universal policy” - self-tuning replication

» Control replication to meet high level goals

- e.g., 'Minimize response time and maximize availability while
providing causal consistency and less than 1 minute staleness to all
replicas while using less than 2x demand-read traffic."
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l Outline

Case for a unified theory of replication
PRACTTI: A first step

Evaluation
Future directions
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| “Towards” a Unified Theory

Not there yet
» Today: PRACTI

* Unify large part of design space (almost)
= Client-server (e.g., NFS, Coda, AFS)
= Server replication (e.g., Bayou, TACT)
= Object replication (e.g., Ficus, Pangea)

* Future work to incorporate

= Quorums, general model of security,
DHT-based P2P, content-keyed identifiers, ...
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| Challenge: PRACTTI Replication
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| PRACTTI Design Overview

(0) Start with Bayou
» Log-based p2p update exchange

* (Could also go in other direction - generalize
client/server...)

(1) Separate data from metadata

+ Separate streams for invalidations and bodies
» Challenge: Synchronize these streams

(2) Summarize unneeded metadata

» Imprecise invalidations

* Challenge: Track “precise” and "imprecise” data

(3) Separate mechanism from policy
* Core: PRACTT mechanisms
- Controller: Policy
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l Step O0: Start With Bayou

Node A Node B

Write = <qbjId, acceptStamp, BODY>

Checkpoint i i
8T
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Updates to log
» Local checkpoint for random access

Log exchange for updates
v'TT: Pairwise exchange with any peer

v'AC: Prefix property, causal consistency,
eventual consistency

XPR: All nodes store all data, see all updates
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| Step 1: Separate Data and Metadata

Node A

i <objId = bar, accept =

8

% Node C

bar=<11,A> -

— @
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bar=<11,A> INVALI
baz=<20,B> INVALI
bur=<21,B> INVALI

Separate data and metadata
* Metadata: Log invalidations
* Data: Store update bodies in checkpoint

Log exchange:

- Send invalidations separate from bodies
® Client-server/Server-replication hybrid

v’

Node B

<objId = baz, accept = <
<objId = bur, accept = <2],B>>

baz=<20,B

bur=<21,B

20,B>>
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| Issue: Reading Bodies

Node A Node B
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C? Node C
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Mechanism: Block until data VALID
* VALID = body matches latest invalidation

Policy: Your choice

- Demand read miss

= Target is policy choice: client/server, DHT directory, original
writer, random, ...

» Prefetch
= TCP-Nice based self-tuning prefetch

&
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| Issue: Synchronization of Separate Streams |

Node A Node B
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:l:- baz=<20,B>
bar=<11,A> -

S barz<11 A>

baz=<20,B> I
bur=<21,B>

bur=<21,B>

K

Read b
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Bar=<11,A> NOde D

Retrieved body may be newer than metadata
® Violate causality
® Buffer body until apply associated inval
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| Step 1 Helps...

Keep good Bayou properties
- Topology independence
- Arbitrary consistency

= Prefix property

= Causal consistency

= Eventual consistency

Step towards partial replication

* Nodes only see bodies of interest
= Order of magnitude improvement!

- Nodes still see all invalidations

= Limits scalability

- E.g., Enterprise file system in which every palmtop sees every
update by any node
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| Step 2: Imprecise Invalidations

Nodes subscribe for
* Precise invalidations for interest sets
* Imprecise invalidations for other data
Precise invalidation
* Metadata for one write
<object ID, accept stamp>

Imprecise invalidation
+ Summary of multiple writes

<objectSet, [start]*, [end]*>

* "One or more objects in objectSet were
modified between start and end”
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| Imprecise Invalidations

<objId, accept>
<0B J:]Eg accept>
:gbde: gggggii S <objectSeft, [start]*, [end]*>
<ob|Id, accept>
<ob|Id, accept>
<ob|Id, accept>
<objId, accept>

- Nodes subscribe to invalidation streams

= Specify which Interest Sets node wants to keep precise

= Imprecise Interest Set
® Replace collection of invalidations with conservative approximation
- Recvr. treats all objects in objSet as if invalidated between start and end

* Bookkeeping details (see paper)
* Track which Interest Sets are missing invalidations
= Block reads to imprecise Interest Sets
= Make interest set precise when missing invalidations applied
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l Step 3: Separate Mechanism v. Policy

WAN | Personal |Enterprise Poli
FS FS FS olicy
PRACTI Mechanism

Goal: Common core mechanism

"Replication microkernel”
Vision:
= Tmplement replication system for new
environment in <1000 lines of policy code

\ugust 1, 2005

Department of Computer Sciences, UT Austin




Core v. Controller

Local API
(read(), write(), delete())

PRACTI Core [ oca
Interface
1°cc=" "
Apply | Random
Body Streams_ | Bty + | Access g?d(:/ Body Sreams
Interface| << ‘V ->| State
Apply |
Inval Sreams | Y L] og beenne- » | Send || Inval Sireams
Inval
Interface
[  Control Interface |
Inform Mgmt. b
Regueststo Requests from
remote cores remote controllers
e Controller

Core: Mechanism
- Safety: Any message can be processed at any time
= Asynchronous message passing style

Controller: Policy
- Liveness: Trigger messages between nodes
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| Controller Interface

Notified of key events
» Stream begin/end

» Invalidation arrival

» Body arrival

» Local read miss

Directs communication among cores
- Subscribe to inval or body stream

* Request demand read body

Local housekeeping

* Log garbage collection
» Cache replacement
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| Example: Client-Server Controller

Subscriptions

- Precise invalidations
» Forall f in <cached files> subscribe to f from server

- Bodies
= Forall h in <hoard list> subscribe to h from server

Local read miss on file f
if(f is imprecise)
request metadata + body from server
else /* f is precise but invalid */
request body from server
(read blocks until f is precise and valid)

Point of interest perhaps only to me
» Client/server crash recovery really natural/elegant
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| Example: EnterpriseFS Controller

Support thousands of devices

» Handful of big, geographically distributed servers
* Many desktops, laptops, palmtops, etc.

Read miss

* Use DHT to find nearest copy of data
Replication policy

* DHT tracks file popularity

= Self-tuning prefetch important updates to where they
are/will be needed

- Enforce minimum replication degree for reliability
and availability

Details TBD...
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| PRACTT Design Summary

Result: Subsume many existing mechanisms
» Client/server™*: Coda, NFS, AFS, ..

- Server replication: Bayou, TACT

» Object replication: Ficus, Pangeaq, ...

Key ideas

(1) Separate data from metadata
= Separate streams for invalidations and bodies
= Challenge: Synchronize these streams

(2) Summarize unneeded metadata

= Imprecise invalidations

* Challenge: Track "precise” and "imprecise” data
(3) Separate mechanism from policy

= Core: PRACTI mechanisms
= Controller: Policy
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| Additional Details

Efficient, continuous update exchange

* Incremental log exchange
Garbage collect logs

* Incremental checkpoint exchange using lIpVV data structures
Self-tuning replication

* Prefetch/pre-push bodies over low-priority network channel
Continuous consistency (e.g., TACT)

- Causal consistency by default

- Weaken: Imprecise reads (causal coherence)

- Strengthen: Constraints layer
= Order error, temporal error, numerical error

- Flexible conflict detection and resolution
Enforce minimum replication for availability
* Bound invalidations
See paper for details
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l Outline

Case for a unified theory of replication
PRACTI: A first step

Evaluation

* Methodology

* Benefits of partial replication

* Benefits of topology independence

» Cost of supporting flexible consistency

Future directions
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| Methodology

How to evaluate "Unified theory"?
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| Partial Replication

Files of Interest (%)

Order of magnitude improvements
* Both separate inval v. body AND imprecise inval
- Storage requirements see similar improvements
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| Topology Independence

Machines
* Laptop, palmtop, home desktop, of fice server

Places
* Office, home, hotel, plane
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| Palmtop/Laptop Sync Time

Sync Palmtop/Laptop
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Synchronize palmtop to laptop
- Client-server: Limited by network to server
* Bayou: Limited by fraction of shared data (1%)
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| PlanetLabFs

Simplify running experiments
- Track current locations of files via DHT

* Flood initial data, programs from server to clients
via cooperative caching

» Direct transfer of data updates among clients via
cooperative caching

* Future: Self-tuning prefetching

Benchmark
- Phase 1 Disseminate:
= Disseminate 10MB from server to all clients

* Phase 2 Process:
= 10x pairwise exchange 1MB between random clients

- Phase 3 Post-Process:
= Gather IMB from each client to server
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| PlanetLabF S
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» 1.5x v. cooperative caching (process)
- TBD: Add self-tuning prefetching

+ 3x-bx v. client-server (dissemination)

- 2.4x-9x v. server replication (process, post-
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| Cost of Consistency

Tunable consistency
» Causal, causal + TACT, sequential, linearizable

- Consistent or coherent
= Consistency: Order writes across all objects
= Coherence: Order writes to individual objects

PRACTI benefits

+ Semantics specified on per-read, per-write basis

= What information must a read or write wait for to
complete?

® No unnecessary read delay or write delay
» Separation of invalidations from bodies
® Minimize delay (hence inconsistency)
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Improved Consistency Trade-Offs
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| Cost of Consistency v. Coherence

Suppose I care about subset of data
- /A/* but not /B/*, /C/*, or /D/*

PRACTI

» Precise invalidations for /A/*
* Imprecise invalidations for the rest

Imprecise invalidations: "Placeholders”

+ Allow future reads/writes to be consistently ordered with
writes to /B/*, /C/*, /D/* if desired

= Locally or at other nodes

- System that only guarantees coherence and never provides
option of consistency could omit imprecise invalidations

+ Worst case: Each precise invalidation paired with imprecise
invalidation summarizing writes on which it depends

* How much overhead do these imprecise invalidations impose
on nodes that don't use them?
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| Cost of Consistency
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Imprecise invalidations save v. all-precise

Imprecise invalidations cost v. coherence only
* Worst case 2:1 (messages)
» Locality reduces cost

\ugust 1, 2005 Department of Computer Sciences, UT Austin




Performance Summary

Better trade-offs

* Partial replication of data

* Partial replication of metadata
* Topology independence

* Minimal consistency cost

Additional benefits (see paper)

» Self-tuning replication of bodies
* Incremental checkpoint transfer
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l Outline

Motivation
PRACTTI Protocol
Evaluation

Future Work/Conclusions
» Towards a unified theory and practice
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| Questions PRACTT doesn't answer

» Does PRACTT reduce development costs by 10x?
= Can we support 14 OSDI/SOSP papers in <1000 LOC each?

- Can we support quorums, client-server, server
replication, p2p on the same substrate?

» Can we efficiently support callbacks and leases?

* How do various consistency paradigms relate?

= FIFO, causal, sequential, linearizable, etc.
v. Reads follow writes, monotonic reads, etc.
v. Safe, regular, atomic, etc.

* What are the "core mechanisms” for security?

- Can we support FS, tuple store, and DB on same
substrate?

» Can we unify other "large scale” replication systems
(e.g., cluster)?
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Conclusion

Build your next large-scale replication
system using PRACTI

* A better way to build replication systems
* A way to build better replication systems

Details on my web page
"PRACTT Replication for Large-Scale Systems,” M. Dahlin, L. Gao, A.
Nayate, A. Venkataramani, P. Yalagandula J. Zheng

"Dual-Quorum Replication for Edge Services," L. Gao, M. Dahlin, J.
Zheng, L. Alvisi, A. Iyengar, Middleware 2005

"Transparent Information Dissemination,"” A. Nayate, M. Dahlin, A.
Tyengar, Middleware 2004.

"A Non-interfering Deployable Web Prefetching System," R. Kokku,
P. Yalagandula, A. Venkatramani, M. Dahlin,USITS 2003
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