Towards a Unified Theory of Replication

Mike Dahlin, Lei Gao, Amol Nayate,
Praveen Yalagandula, Jiandan Zheng

Department of Computer Sciences
University of Texas at Austin

\ugust 1, 2005

Department of Computer Sciences, UT Austin

| Why a Unified Theory of Replication?

(1) Better way to build replication systems

(2) Way to build better replication systems

ust 1, 2005 Department of Computer Sciences, UT Austin

| Better Way to Build Replication Systems

Separate mechanism from policy
= Continuum of policies v. point solutions

Simpler to design and deploy
= Replication microkernel or toolkit

Integrate disparate theories/protocols
= Quorums, client-server, leases, server replication,
p2p, ..
Simplify teaching
= A few principles v. a bunch of case studies

Goal: Reduce the development effort for a new
replication system by an order of magnitude

\ugust 1, 2005 Department of Computer Sciences, UT Austin

| A Way to Build Better Replication Systems

Sync Palmtop/Laptop
%\120
N 100 100 100 100
< 100 - — — — —
£
o
£ 80 ||
()
IS
*z 60 —
= 41
S 40] —
c
°
< 20 —
s 1 1 1 3.04 1 1.04
(9] 0 —_— PR — — — —
Q & Q & Q & Q & >
& S & & S & & & & & & P
Plane (None) Hotel (Modem) Home (DSL) Office (802.119)

Synchronize palmtop to laptop
- Client-server: Limited by network to server
» Bayou: Limited by fraction of shared data (1%)

Order of magnhitude improvements availablel

\ugust 1, 2005 Department of Computer Sciences, UT Austin

| Outline

Case for a unified theory of replication
PRACTT: A first step

Evaluation
Future directions

\ugust 1, 2005 Department of Computer Sciences, UT Austin

| Case for a Unified Theory of Replication®

Current systems entangle mechanism with policy

* E.g., Coda v. Bayou
*+ 14 OSDI/SOSP papers in 10 years
= New environment - new trade-offs > new mechanisms
= Not clear new systems dominate old ones (or that 14 is "enough")
Current literature fragmented
- Client-server v. quorums v. server replication v. p2p v. ...
- E.g., Coda and Bayou each have separate server-replication
and client-server caching protocols
Impact
- Systems narrowly tailored for specific environments
+ Significant effort to develop system for new environment

* Scope: "Large scale” replication
- WAN, mobile, enterprise, etc.
- File systems, tuple stores, databases, distributed objects, ...

\ugust 1, 2005 Department of Computer Sciences, UT Austin

l Vision: Replication Microkernel/Toolkit

Universal Policy Policy

Replication Core Mechanism

Grand Challenges:

* Each large-scale FS from OSDI/SOSP 1990-2005
as <1000-line "policy layer”

» "Universal policy” - self-tuning replication

» Control replication to meet high level goals

- e.g., 'Minimize response time and maximize availability while
providing causal consistency and less than 1 minute staleness to all
replicas while using less than 2x demand-read traffic."

\ugust 1, 2005 Department of Computer Sciences, UT Austin

l Outline

Case for a unified theory of replication
PRACTTI: A first step

Evaluation
Future directions

\ugust 1, 2005 Department of Computer Sciences, UT Austin

| “Towards” a Unified Theory

Not there yet
» Today: PRACTI

* Unify large part of design space (almost)
= Client-server (e.g., NFS, Coda, AFS)
= Server replication (e.g., Bayou, TACT)
= Object replication (e.g., Ficus, Pangea)

* Future work to incorporate

= Quorums, general model of security,
DHT-based P2P, content-keyed identifiers, ...

\ugust 1, 2005 Department of Computer Sciences, UT Austin

| Challenge: PRACTTI Replication

Client-Server

rbitrary

Provide guarantees
equired by appli

AFS
CODA

Don't pay for mer

guarantees thanB@eded

Pangea GES

Server Replication

Partial
Consistency —eplication

NR2 icate any
QP RAC TlguBiset of data
TACT *o-any node

WinFSy(?)

Topology

Object Replication

Independence

Any node can communicat
ith any other node

\ugust 1, 2005 Department of Computer Sciences, UT Austin

| PRACTTI Design Overview

(0) Start with Bayou
» Log-based p2p update exchange

* (Could also go in other direction - generalize
client/server...)

(1) Separate data from metadata

+ Separate streams for invalidations and bodies
» Challenge: Synchronize these streams

(2) Summarize unneeded metadata

» Imprecise invalidations

* Challenge: Track “precise” and "imprecise” data

(3) Separate mechanism from policy
* Core: PRACTT mechanisms
- Controller: Policy

\ugust 1, 2005 Department of Computer Sciences, UT Austin

l Step O0: Start With Bayou

Node A Node B

Write = <qbjId, acceptStamp, BODY>

Checkpoint i i
8T
S

5,&
2
e

H
Updates to log
» Local checkpoint for random access

Log exchange for updates
v'TT: Pairwise exchange with any peer

v'AC: Prefix property, causal consistency,
eventual consistency

XPR: All nodes store all data, see all updates

\ugust 1, 2005 Department of Computer Sciences, UT Austin

| Step 1: Separate Data and Metadata

Node A

i <objId = bar, accept =

8

% Node C

bar=<11,A> -

— @

Q

bar=<11,A> INVALI
baz=<20,B> INVALI
bur=<21,B> INVALI

Separate data and metadata
* Metadata: Log invalidations
* Data: Store update bodies in checkpoint

Log exchange:

- Send invalidations separate from bodies
® Client-server/Server-replication hybrid

v’

Node B

<objId = baz, accept = <
<objId = bur, accept = <2],B>>

baz=<20,B

bur=<21,B

20,B>>

\ugust 1, 2005

Department of Computer Sciences, UT Austin

| Issue: Reading Bodies

Node A Node B

_[H

C? Node C
:l:- baz=<20,B>

parc11,45 [} —

QPrQPUSh bar' p Read bur bur=<21,B>
bar=<11,A> I
Bar=<11,A> baz=<20,B> I I
bur=<21,B: -) bur=<21,B>

Mechanism: Block until data VALID
* VALID = body matches latest invalidation

Policy: Your choice

- Demand read miss

= Target is policy choice: client/server, DHT directory, original
writer, random, ...

» Prefetch
= TCP-Nice based self-tuning prefetch

&

\ugust 1, 2005 Department of Computer Sciences, UT Austin

| Issue: Synchronization of Separate Streams |

Node A Node B

_[H

C? Node C
:l:- baz=<20,B>
bar=<11,A> -

S barz<11 A>

baz=<20,B> I
bur=<21,B>

bur=<21,B>

K

Read b
ead bar - repush bur <21,B>

Bar=<11,A> NOde D

Retrieved body may be newer than metadata
® Violate causality
® Buffer body until apply associated inval

\ugust 1, 2005 Department of Computer Sciences, UT Austin

| Step 1 Helps...

Keep good Bayou properties
- Topology independence
- Arbitrary consistency

= Prefix property

= Causal consistency

= Eventual consistency

Step towards partial replication

* Nodes only see bodies of interest
= Order of magnitude improvement!

- Nodes still see all invalidations

= Limits scalability

- E.g., Enterprise file system in which every palmtop sees every
update by any node

\ugust 1, 2005 Department of Computer Sciences, UT Austin

| Step 2: Imprecise Invalidations

Nodes subscribe for
* Precise invalidations for interest sets
* Imprecise invalidations for other data
Precise invalidation
* Metadata for one write
<object ID, accept stamp>

Imprecise invalidation
+ Summary of multiple writes

<objectSet, [start]*, [end]*>

* "One or more objects in objectSet were
modified between start and end”

\ugust 1, 2005 Department of Computer Sciences, UT Austin

| Imprecise Invalidations

<objId, accept>
<0B J:]Eg accept>
:gbde: gggggii S <objectSeft, [start]*, [end]*>
<ob|Id, accept>
<ob|Id, accept>
<ob|Id, accept>
<objId, accept>

- Nodes subscribe to invalidation streams

= Specify which Interest Sets node wants to keep precise

= Imprecise Interest Set
® Replace collection of invalidations with conservative approximation
- Recvr. treats all objects in objSet as if invalidated between start and end

* Bookkeeping details (see paper)
* Track which Interest Sets are missing invalidations
= Block reads to imprecise Interest Sets
= Make interest set precise when missing invalidations applied

\ugust 1, 2005 Department of Computer Sciences, UT Austin

l Step 3: Separate Mechanism v. Policy

WAN | Personal |Enterprise Poli
FS FS FS olicy
PRACTI Mechanism

Goal: Common core mechanism

"Replication microkernel”
Vision:
= Tmplement replication system for new
environment in <1000 lines of policy code

\ugust 1, 2005

Department of Computer Sciences, UT Austin

Core v. Controller

Local API
(read(), write(), delete())

PRACTI Core [oca
Interface
1°cc=" "
Apply | Random
Body Streams_ | Bty + | Access g?d(:/ Body Sreams
Interface| << ‘V ->| State
Apply |
Inval Sreams | Y L] og beenne- » | Send || Inval Sireams
Inval
Interface
[Control Interface |
Inform Mgmt. b
Regueststo Requests from
remote cores remote controllers
e Controller

Core: Mechanism
- Safety: Any message can be processed at any time
= Asynchronous message passing style

Controller: Policy
- Liveness: Trigger messages between nodes

\ugust 1, 2005 Department of Computer Sciences, UT Austin

| Controller Interface

Notified of key events
» Stream begin/end

» Invalidation arrival

» Body arrival

» Local read miss

Directs communication among cores
- Subscribe to inval or body stream

* Request demand read body

Local housekeeping

* Log garbage collection
» Cache replacement

\ugust 1, 2005 Department of Computer Sciences, UT Austin

| Example: Client-Server Controller

Subscriptions

- Precise invalidations
» Forall f in <cached files> subscribe to f from server

- Bodies
= Forall h in <hoard list> subscribe to h from server

Local read miss on file f
if(f is imprecise)
request metadata + body from server
else /* f is precise but invalid */
request body from server
(read blocks until f is precise and valid)

Point of interest perhaps only to me
» Client/server crash recovery really natural/elegant

\ugust 1, 2005 Department of Computer Sciences, UT Austin

| Example: EnterpriseFS Controller

Support thousands of devices

» Handful of big, geographically distributed servers
* Many desktops, laptops, palmtops, etc.

Read miss

* Use DHT to find nearest copy of data
Replication policy

* DHT tracks file popularity

= Self-tuning prefetch important updates to where they
are/will be needed

- Enforce minimum replication degree for reliability
and availability

Details TBD...

\ugust 1, 2005 Department of Computer Sciences, UT Austin

| PRACTT Design Summary

Result: Subsume many existing mechanisms
» Client/server™*: Coda, NFS, AFS, ..

- Server replication: Bayou, TACT

» Object replication: Ficus, Pangeaq, ...

Key ideas

(1) Separate data from metadata
= Separate streams for invalidations and bodies
= Challenge: Synchronize these streams

(2) Summarize unneeded metadata

= Imprecise invalidations

* Challenge: Track "precise” and "imprecise” data
(3) Separate mechanism from policy

= Core: PRACTI mechanisms
= Controller: Policy

\ugust 1, 2005 Department of Computer Sciences, UT Austin

| Additional Details

Efficient, continuous update exchange

* Incremental log exchange
Garbage collect logs

* Incremental checkpoint exchange using lIpVV data structures
Self-tuning replication

* Prefetch/pre-push bodies over low-priority network channel
Continuous consistency (e.g., TACT)

- Causal consistency by default

- Weaken: Imprecise reads (causal coherence)

- Strengthen: Constraints layer
= Order error, temporal error, numerical error

- Flexible conflict detection and resolution
Enforce minimum replication for availability
* Bound invalidations
See paper for details

\ugust 1, 2005 Department of Computer Sciences, UT Austin

l Outline

Case for a unified theory of replication
PRACTI: A first step

Evaluation

* Methodology

* Benefits of partial replication

* Benefits of topology independence

» Cost of supporting flexible consistency

Future directions

\ugust 1, 2005 Department of Computer Sciences, UT Austin

| Methodology

How to evaluate "Unified theory"?

\ugust 1, 2005 Department of Computer Sciences, UT Austin

| Partial Replication

Files of Interest (%)

Order of magnitude improvements
* Both separate inval v. body AND imprecise inval
- Storage requirements see similar improvements

L] L] L] L] L] LELEL I L] I L] L] L] L] LI
Full Replication | . . .
A | —#
4
¥

3 _—x
% 1e+06 - ’ - E
5 E Separate Invalidations/Data e]
g === L
= [Phd
(7] P4
g 7
S\
fva) r'd

100000 | e .

C .7
4
r'd
rd
r'd
rd
rd
’,Im recise Invalidations
10000* P 1 1 |||||aF 1 | 111
0.1 1 10 100

\ugust 1, 2005

Department of Computer Sciences, UT Austin

| Topology Independence

Machines
* Laptop, palmtop, home desktop, of fice server

Places
* Office, home, hotel, plane

\ugust 1, 2005 Department of Computer Sciences, UT Austin

| Palmtop/Laptop Sync Time

Sync Palmtop/Laptop
~ 120
2
N 100 100 100 100
© 100
£
(@)
£ 80 ||
(8]
S
= 60 A
c
2 41
S 40] —
I=
o
< 20 —
(&)
< 1 1 1 3.04 1 1.04
n 0 " T T T E— 1 _ S
< Q < g\% < (\% Q Q
C}\Ql (}\e O\\Q’ C}QJ
Plane (None) Hotel (Modem) Home (DSL) Office (802.119)

Synchronize palmtop to laptop
- Client-server: Limited by network to server
* Bayou: Limited by fraction of shared data (1%)

\ugust 1, 2005 Department of Computer Sciences, UT Austin

| PlanetLabFs

Simplify running experiments
- Track current locations of files via DHT

* Flood initial data, programs from server to clients
via cooperative caching

» Direct transfer of data updates among clients via
cooperative caching

* Future: Self-tuning prefetching

Benchmark
- Phase 1 Disseminate:
= Disseminate 10MB from server to all clients

* Phase 2 Process:
= 10x pairwise exchange 1MB between random clients

- Phase 3 Post-Process:
= Gather IMB from each client to server

\ugust 1, 2005 Department of Computer Sciences, UT Austin

| PlanetLabF S

process)

\ugust 1, 2005

Distributed Nodes

1000 T
L o] 250
[Post-prgce =2
800 Procesg 200
D 600 - 150
g 475 5.
= . e
=] = i
400 Disseminal ™ 100 .
282] [71]
[Post-prgoce
200 177 50 [Procers'
L 37 i
] [2I4 I Dissemirat
0 -
PLFS Bayou CoopClient/Server 0

PLFS

Bayou

CoopClient/Server

Remote Cluster

» 1.5x v. cooperative caching (process)
- TBD: Add self-tuning prefetching

+ 3x-bx v. client-server (dissemination)

- 2.4x-9x v. server replication (process, post-

Department of Computer Sciences, UT Austin

| Cost of Consistency

Tunable consistency
» Causal, causal + TACT, sequential, linearizable

- Consistent or coherent
= Consistency: Order writes across all objects
= Coherence: Order writes to individual objects

PRACTI benefits

+ Semantics specified on per-read, per-write basis

= What information must a read or write wait for to
complete?

® No unnecessary read delay or write delay
» Separation of invalidations from bodies
® Minimize delay (hence inconsistency)

\ugust 1, 2005 Department of Computer Sciences, UT Austin

Improved Consistency Trade-Offs
1 - | | | E
f..‘_ Periodic (500s)
oY _
0.1 3 : =
P
T |
§ 0.01 3 i TACT-Aggressive E
z : PRACTI-Demand |
O ._.éFiR.AQT.I-E@thQh E
0.0001 . . .
0 0.5 1 1.5 2
Available Bandwidth/Write Bandwidth
Bayou TACT -Aggressive PRACTI
How Batch Batch Incremental
When Periodic Frequent Continuous
Invals All All All*
Bodies All All Self-tuning

\ugust 1, 2005 Department of Computer Sciences, UT Austin

| Cost of Consistency v. Coherence

Suppose I care about subset of data
- /A/* but not /B/*, /C/*, or /D/*

PRACTI

» Precise invalidations for /A/*
* Imprecise invalidations for the rest

Imprecise invalidations: "Placeholders”

+ Allow future reads/writes to be consistently ordered with
writes to /B/*, /C/*, /D/* if desired

= Locally or at other nodes

- System that only guarantees coherence and never provides
option of consistency could omit imprecise invalidations

+ Worst case: Each precise invalidation paired with imprecise
invalidation summarizing writes on which it depends

* How much overhead do these imprecise invalidations impose
on nodes that don't use them?

\ugust 1, 2005 Department of Computer Sciences, UT Austin

| Cost of Consistency

60 | | | |
All [
.. precise + + - . S
V4 ‘x—‘
./ Prec+Imp (burst=10) - ~*
o) . — >
2 40 Prec+Imp (no locality) x° —
= / .o°
) ’ x>
a 4
o 30 [,’" X Coherence only -
S .o
Q x
© 4 o’
- * A -
V4 o
/
7 %X
10 + - -
L
X
[2
0" | | | |
0 0.2 0.4 0.6 0.8 1

Interest Set Fraction

Imprecise invalidations save v. all-precise

Imprecise invalidations cost v. coherence only
* Worst case 2:1 (messages)
» Locality reduces cost

\ugust 1, 2005 Department of Computer Sciences, UT Austin

Performance Summary

Better trade-offs

* Partial replication of data

* Partial replication of metadata
* Topology independence

* Minimal consistency cost

Additional benefits (see paper)

» Self-tuning replication of bodies
* Incremental checkpoint transfer

\ugust 1, 2005 Department of Computer Sciences, UT Austin

l Outline

Motivation
PRACTTI Protocol
Evaluation

Future Work/Conclusions
» Towards a unified theory and practice

\ugust 1, 2005 Department of Computer Sciences, UT Austin

| Questions PRACTT doesn't answer

» Does PRACTT reduce development costs by 10x?
= Can we support 14 OSDI/SOSP papers in <1000 LOC each?

- Can we support quorums, client-server, server
replication, p2p on the same substrate?

» Can we efficiently support callbacks and leases?

* How do various consistency paradigms relate?

= FIFO, causal, sequential, linearizable, etc.
v. Reads follow writes, monotonic reads, etc.
v. Safe, regular, atomic, etc.

* What are the "core mechanisms” for security?

- Can we support FS, tuple store, and DB on same
substrate?

» Can we unify other "large scale” replication systems
(e.g., cluster)?

\ugust 1, 2005 Department of Computer Sciences, UT Austin

Conclusion

Build your next large-scale replication
system using PRACTI

* A better way to build replication systems
* A way to build better replication systems

Details on my web page
"PRACTT Replication for Large-Scale Systems,” M. Dahlin, L. Gao, A.
Nayate, A. Venkataramani, P. Yalagandula J. Zheng

"Dual-Quorum Replication for Edge Services," L. Gao, M. Dahlin, J.
Zheng, L. Alvisi, A. Iyengar, Middleware 2005

"Transparent Information Dissemination,"” A. Nayate, M. Dahlin, A.
Tyengar, Middleware 2004.

"A Non-interfering Deployable Web Prefetching System," R. Kokku,
P. Yalagandula, A. Venkatramani, M. Dahlin,USITS 2003

\ugust 1, 2005 Department of Computer Sciences, UT Austin

