
August 1, 2005 Department of Computer Sciences, UT Austin

Towards a Unified Theory of Replication

Mike Dahlin, Lei Gao, Amol Nayate,
Praveen Yalagandula, Jiandan Zheng
Department of Computer Sciences

University of Texas at Austin

August 1, 2005 Department of Computer Sciences, UT Austin

Why a Unified Theory of Replication?

(1) Better way to build replication systems

(2) Way to build better replication systems

August 1, 2005 Department of Computer Sciences, UT Austin

Better Way to Build Replication Systems

Separate mechanism from policy
§ Continuum of policies v. point solutions

Simpler to design and deploy
§ Replication microkernel or toolkit

Integrate disparate theories/protocols
§ Quorums, client-server, leases, server replication,

p2p, …
Simplify teaching
§ A few principles v. a bunch of case studies

Goal: Reduce the development effort for a new
replication system by an order of magnitude

August 1, 2005 Department of Computer Sciences, UT Austin

A Way to Build Better Replication Systems

Synchronize palmtop to laptop
• Client-server: Limited by network to server
• Bayou: Limited by fraction of shared data (1%)
Order of magnitude improvements available!

Sync Palmtop/Laptop

1

100

1

41

100

1 3.04

100

1 1.04

100

0

20

40

60

80

100

120

PR
AC

TI

Clien
t/S

erv
er

Ba
yo

u

PR
AC

TI

Clien
t/S

erv
er

Ba
yo

u

PR
AC

TI

Clien
t/S

erv
er

Ba
yo

u

PR
AC

TI

Clien
t/S

erv
er

Ba
yo

u

Plane (None) Hotel (Modem) Home (DSL) Office (802.11g)

S
yn

ch
ro

n
iz

at
io

n
 ti

m
e

(n
o

rm
al

iz
ed

)

August 1, 2005 Department of Computer Sciences, UT Austin

Outline

Case for a unified theory of replication
PRACTI: A first step
Evaluation
Future directions

August 1, 2005 Department of Computer Sciences, UT Austin

Case for a Unified Theory of Replication*

* Scope: “Large scale” replication
• WAN, mobile, enterprise, etc.
• File systems, tuple stores, databases, distributed objects, …

Current systems entangle mechanism with policy
• E.g., Coda v. Bayou
• 14 OSDI/SOSP papers in 10 years
§ New environment à new trade-offs à new mechanisms
§ Not clear new systems dominate old ones (or that 14 is “enough”)

Current literature fragmented
• Client-server v. quorums v. server replication v. p2p v. …
• E.g., Coda and Bayou each have separate server-replication

and client-server caching protocols
Impact
• Systems narrowly tailored for specific environments
• Significant effort to develop system for new environment

August 1, 2005 Department of Computer Sciences, UT Austin

Vision: Replication Microkernel/Toolkit

Grand Challenges:
• Each large-scale FS from OSDI/SOSP 1990-2005

as <1000-line “policy layer”

Replication Core

WAN
FS

Personal
FS

Enterprise
FS … Policy

Mechanism

• “Universal policy” – self-tuning replication
• Control replication to meet high level goals
• e.g., “Minimize response time and maximize availability while
providing causal consistency and less than 1 minute staleness to all
replicas while using less than 2x demand-read traffic.”

Universal Policy

August 1, 2005 Department of Computer Sciences, UT Austin

Outline

Case for a unified theory of replication
PRACTI: A first step
Evaluation
Future directions

August 1, 2005 Department of Computer Sciences, UT Austin

“Towards” a Unified Theory

Not there yet
• Today: PRACTI
• Unify large part of design space (almost)
§ Client-server (e.g., NFS, Coda, AFS)
§ Server replication (e.g., Bayou, TACT)
§ Object replication (e.g., Ficus, Pangea)

• Future work to incorporate
§ Quorums, general model of security,

DHT-based P2P, content-keyed identifiers, …

August 1, 2005 Department of Computer Sciences, UT Austin

Challenge: PRACTI Replication

Arbitrary
Consistency

CODA

AFS

Pangea

Ficus

GFS
TACT

PRACTI

Partial
Replication

Topology
Independence

NFS

Bayou
WinFS (?)

Client-Server

Server Replication
Object Replication

Replicate any
subset of data
to any node

Provide guarantees
required by application

Don’t pay for more
guarantees than needed

Any node can communicate
with any other node

August 1, 2005 Department of Computer Sciences, UT Austin

PRACTI Design Overview

(0) Start with Bayou
• Log-based p2p update exchange
• (Could also go in other direction – generalize

client/server…)
(1) Separate data from metadata
• Separate streams for invalidations and bodies
• Challenge: Synchronize these streams

(2) Summarize unneeded metadata
• Imprecise invalidations
• Challenge: Track “precise” and “imprecise” data

(3) Separate mechanism from policy
• Core: PRACTI mechanisms
• Controller: Policy

August 1, 2005 Department of Computer Sciences, UT Austin

Write = <objId, acceptStamp, BODY>

Step 0: Start With Bayou

Updates to log
• Local checkpoint for random access

Log exchange for updates
üTI: Pairwise exchange with any peer
üAC: Prefix property, causal consistency,

eventual consistency
ÒPR: All nodes store all data, see all updates

Node A

… …Log

Checkpoint

Node B

August 1, 2005 Department of Computer Sciences, UT Austin

Step 1: Separate Data and Metadata

Separate data and metadata
• Metadata: Log invalidations
• Data: Store update bodies in checkpoint

Log exchange:
• Send invalidations separate from bodies
→ Client-server/Server-replication hybrid

Node A

Node C

Node B<objId = foo, accept = <10,A>>
<objId = bar, accept = <11,A>>

foo=<10,A>

bar=<11,A>

<objId = baz, accept = <20,B>>
<objId = bur, accept = <21,B>>

baz=<20,B>

bur=<21,B>
bar=<11,A> INVALID
foo=<10,A> INVALID

baz=<20,B> INVALID
bur=<21,B> INVALID

August 1, 2005 Department of Computer Sciences, UT Austin

Issue: Reading Bodies

Mechanism: Block until data VALID
• VALID = body matches latest invalidation

Policy: Your choice
• Demand read miss
§ Target is policy choice: client/server, DHT directory, original

writer, random, …
• Prefetch
§ TCP-Nice based self-tuning prefetch

Node A

Node C

Node B

foo=<10,A>

bar=<11,A>

baz=<20,B>

bur=<21,B>
bar=<11,A> INVALID
foo=<10,A> INVALID

baz=<20,B> INVALID
bur=<21,B> INVALID

Read bur

bur=<21,B>

Prepush bar
Bar=<11,A>

August 1, 2005 Department of Computer Sciences, UT Austin

Issue: Synchronization of Separate Streams

Retrieved body may be newer than metadata
→ Violate causality
→ Buffer body until apply associated inval

Node A

Node C

Node D

Node B

foo=<10,A>

bar=<11,A>

baz=<20,B>

bur=<21,B>
bar=<11,A>
foo=<10,A> INVALID

baz=<20,B> INVALID
bur=<21,B>

bar=<2,A> INVALID
foo=<3,Q>

baz=<1,B>
bur=<1,Q>

bar=<11,A> INVALID
foo=<10,A> INVALID

baz=<20,B> INVALID
bur=<21,B>

Read bar

Bar=<11,A>

Prepush bur <21,B>

August 1, 2005 Department of Computer Sciences, UT Austin

Step 1 Helps…

Keep good Bayou properties
• Topology independence
• Arbitrary consistency
§ Prefix property
§ Causal consistency
§ Eventual consistency

Step towards partial replication
• Nodes only see bodies of interest
§ Order of magnitude improvement!

• Nodes still see all invalidations
§ Limits scalability

– E.g., Enterprise file system in which every palmtop sees every
update by any node

August 1, 2005 Department of Computer Sciences, UT Austin

Step 2: Imprecise Invalidations

Nodes subscribe for
• Precise invalidations for interest sets
• Imprecise invalidations for other data
Precise invalidation
• Metadata for one write

<object ID, accept stamp>
Imprecise invalidation
• Summary of multiple writes

<objectSet, [start]*, [end]*>
• “One or more objects in objectSet were

modified between start and end”

August 1, 2005 Department of Computer Sciences, UT Austin

Imprecise Invalidations

• Nodes subscribe to invalidation streams
§ Specify which Interest Sets node wants to keep precise
§ Imprecise Interest Set

→ Replace collection of invalidations with conservative approximation
– Recvr. treats all objects in objSet as if invalidated between start and end

• Bookkeeping details (see paper)
§ Track which Interest Sets are missing invalidations
§ Block reads to imprecise Interest Sets
§ Make interest set precise when missing invalidations applied

<objectSet, [start]*, [end]*>
<objId, accept>
<objId, accept>
<objId, accept>

<objId, accept>

<objId, accept>
<objId, accept>
<objId, accept>
<objId, accept>

à

August 1, 2005 Department of Computer Sciences, UT Austin

Step 3: Separate Mechanism v. Policy

Goal: Common core mechanism
• “Replication microkernel”
• Vision:
§ Implement replication system for new

environment in <1000 lines of policy code

PRACTI

WAN
FS

Personal
FS

Enterprise
FS … Policy

Mechanism

August 1, 2005 Department of Computer Sciences, UT Austin

Core v. Controller

Core: Mechanism
• Safety: Any message can be processed at any time
§ Asynchronous message passing style

Controller: Policy
• Liveness: Trigger messages between nodes

Inval Streams

Controller

Requests to

PRACTI Core

Mgmt.Inform

Inval Streams

Body Streams Body Streams

Log

(read(), write(), delete())
Local API

Requests from
remote controllersremote cores

Send

Apply

Interface
Inval

Body

Apply

Interface
Body

Local
Interface

Random
Access
State

Send
Inval

Control Interface

August 1, 2005 Department of Computer Sciences, UT Austin

Controller Interface

Notified of key events
• Stream begin/end
• Invalidation arrival
• Body arrival
• Local read miss
• …

Directs communication among cores
• Subscribe to inval or body stream
• Request demand read body

Local housekeeping
• Log garbage collection
• Cache replacement

August 1, 2005 Department of Computer Sciences, UT Austin

Example: Client-Server Controller

Subscriptions
• Precise invalidations
§ Forall f in <cached files> subscribe to f from server

• Bodies
§ Forall h in <hoard list> subscribe to h from server

Local read miss on file f
if(f is imprecise)

request metadata + body from server
else /* f is precise but invalid */

request body from server
(read blocks until f is precise and valid)

Point of interest perhaps only to me
• Client/server crash recovery really natural/elegant

August 1, 2005 Department of Computer Sciences, UT Austin

Example: EnterpriseFS Controller

Support thousands of devices
• Handful of big, geographically distributed servers
• Many desktops, laptops, palmtops, etc.

Read miss
• Use DHT to find nearest copy of data

Replication policy
• DHT tracks file popularity
§ Self-tuning prefetch important updates to where they

are/will be needed
• Enforce minimum replication degree for reliability

and availability
Details TBD…

August 1, 2005 Department of Computer Sciences, UT Austin

PRACTI Design Summary

Result: Subsume many existing mechanisms
• Client/server*: Coda, NFS, AFS, …
• Server replication: Bayou, TACT
• Object replication: Ficus, Pangea, …

Key ideas
(1) Separate data from metadata
§ Separate streams for invalidations and bodies
§ Challenge: Synchronize these streams

(2) Summarize unneeded metadata
§ Imprecise invalidations
§ Challenge: Track “precise” and “imprecise” data

(3) Separate mechanism from policy
§ Core: PRACTI mechanisms
§ Controller: Policy

August 1, 2005 Department of Computer Sciences, UT Austin

Additional Details
Efficient, continuous update exchange
• Incremental log exchange

Garbage collect logs
• Incremental checkpoint exchange using lpVV data structures

Self-tuning replication
• Prefetch/pre-push bodies over low-priority network channel

Continuous consistency (e.g., TACT)
• Causal consistency by default
• Weaken: Imprecise reads (causal coherence)
• Strengthen: Constraints layer
§ Order error, temporal error, numerical error

• Flexible conflict detection and resolution
Enforce minimum replication for availability
• Bound invalidations

See paper for details

August 1, 2005 Department of Computer Sciences, UT Austin

Outline

Case for a unified theory of replication
PRACTI: A first step
Evaluation
• Methodology
• Benefits of partial replication
• Benefits of topology independence
• Cost of supporting flexible consistency
Future directions

August 1, 2005 Department of Computer Sciences, UT Austin

Methodology

How to evaluate “Unified theory”?

August 1, 2005 Department of Computer Sciences, UT Austin

Partial Replication

Order of magnitude improvements
• Both separate inval v. body AND imprecise inval
• Storage requirements see similar improvements

 10000

 100000

 1e+06

 1e+07

 0.1 1 10 100

B
yt

es
 T

ra
ns

fe
rr

ed

Files of Interest (%)

Full Replication

Separate Invalidations/Data

Imprecise Invalidations

August 1, 2005 Department of Computer Sciences, UT Austin

Topology Independence

Machines
• Laptop, palmtop, home desktop, office server

Places
• Office, home, hotel, plane

10 Mb/s

1 Mb/s

56 Kb/s

0 Mb/s

August 1, 2005 Department of Computer Sciences, UT Austin

Palmtop/Laptop Sync Time

Synchronize palmtop to laptop
• Client-server: Limited by network to server
• Bayou: Limited by fraction of shared data (1%)

Sync Palmtop/Laptop

1

100

1

41

100

1 3.04

100

1 1.04

100

0

20

40

60

80

100

120

PR
AC

TI

Clien
t/S

erv
er

Ba
yo

u

PR
AC

TI

Clien
t/S

erv
er

Ba
yo

u

PR
AC

TI

Clien
t/S

erv
er

Ba
yo

u

PR
AC

TI

Clien
t/S

erv
er

Ba
yo

u

Plane (None) Hotel (Modem) Home (DSL) Office (802.11g)

S
yn

ch
ro

n
iz

at
io

n
 ti

m
e

(n
o

rm
al

iz
ed

)

August 1, 2005 Department of Computer Sciences, UT Austin

PlanetLabFS

Simplify running experiments
• Track current locations of files via DHT
• Flood initial data, programs from server to clients

via cooperative caching
• Direct transfer of data updates among clients via

cooperative caching
• Future: Self-tuning prefetching

Benchmark
• Phase 1 Disseminate:
§ Disseminate 10MB from server to all clients

• Phase 2 Process:
§ 10x pairwise exchange 1MB between random clients

• Phase 3 Post-Process:
§ Gather 1MB from each client to server

August 1, 2005 Department of Computer Sciences, UT Austin

PlanetLabFS

• 3x-5x v. client-server (dissemination)
• 2.4x-9x v. server replication (process, post-

process)
• 1.5x v. cooperative caching (process)
• TBD: Add self-tuning prefetching

 0

 200

 400

 600

 800

 1000

Client/ServerCoopBayouPLFS

T
im

e(
s)

Post-process
Process

Disseminate

177

475

282

915

Distributed Nodes
 0

 50

 100

 150

 200

 250

Client/ServerCoopBayouPLFS

T
im

e(
s)

Post-process
Process

Disseminate24

221

37

71

Remote Cluster

August 1, 2005 Department of Computer Sciences, UT Austin

Cost of Consistency

Tunable consistency
• Causal, causal + TACT, sequential, linearizable
• Consistent or coherent
§ Consistency: Order writes across all objects
§ Coherence: Order writes to individual objects

PRACTI benefits
• Semantics specified on per-read, per-write basis
§ What information must a read or write wait for to

complete?
→ No unnecessary read delay or write delay

• Separation of invalidations from bodies
→ Minimize delay (hence inconsistency)

August 1, 2005 Department of Computer Sciences, UT Austin

Improved Consistency Trade-Offs

Bayou TACT-Aggressive PRACTI
How Batch Batch Incremental
When Periodic Frequent Continuous
Invals All All All*
Bodies All All Self-tuning

 0.0001

 0.001

 0.01

 0.1

 1

 0 0.5 1 1.5 2

A
ve

ra
ge

 U
na

va
ila

bi
lit

y

Available Bandwidth/Write Bandwidth

Periodic (500s)

TACT-Aggressive

PRACTI-Demand

PRACTI-Prefetch

August 1, 2005 Department of Computer Sciences, UT Austin

Cost of Consistency v. Coherence

Suppose I care about subset of data
• /A/* but not /B/*, /C/*, or /D/*

PRACTI
• Precise invalidations for /A/*
• Imprecise invalidations for the rest

Imprecise invalidations: “Placeholders”
• Allow future reads/writes to be consistently ordered with

writes to /B/*, /C/*, /D/* if desired
§ Locally or at other nodes

• System that only guarantees coherence and never provides
option of consistency could omit imprecise invalidations

• Worst case: Each precise invalidation paired with imprecise
invalidation summarizing writes on which it depends

• How much overhead do these imprecise invalidations impose
on nodes that don’t use them?

August 1, 2005 Department of Computer Sciences, UT Austin

Cost of Consistency

Imprecise invalidations save v. all-precise
Imprecise invalidations cost v. coherence only
• Worst case 2:1 (messages)
• Locality reduces cost

 0

 10

 20

 30

 40

 50

 60

 0 0.2 0.4 0.6 0.8 1

In
va

l B
yt

es
 P

er
 W

rit
e

Interest Set Fraction

All precise

Coherence only

Prec+Imp (burst=10)

Prec+Imp (no locality)

August 1, 2005 Department of Computer Sciences, UT Austin

Performance Summary

Better trade-offs
• Partial replication of data
• Partial replication of metadata
• Topology independence
• Minimal consistency cost
Additional benefits (see paper)
• Self-tuning replication of bodies
• Incremental checkpoint transfer

August 1, 2005 Department of Computer Sciences, UT Austin

Outline

Motivation
PRACTI Protocol
Evaluation
Future Work/Conclusions
• Towards a unified theory and practice

August 1, 2005 Department of Computer Sciences, UT Austin

Questions PRACTI doesn’t answer
• Does PRACTI reduce development costs by 10x?
§ Can we support 14 OSDI/SOSP papers in <1000 LOC each?

• Can we support quorums, client-server, server
replication, p2p on the same substrate?

• Can we efficiently support callbacks and leases?
• How do various consistency paradigms relate?
§ FIFO, causal, sequential, linearizable, etc.

v. Reads follow writes, monotonic reads, etc.
v. Safe, regular, atomic, etc.

• What are the “core mechanisms” for security?
• Can we support FS, tuple store, and DB on same

substrate?
• Can we unify other “large scale” replication systems

(e.g., cluster)?

August 1, 2005 Department of Computer Sciences, UT Austin

Conclusion

Build your next large-scale replication
system using PRACTI
• A better way to build replication systems
• A way to build better replication systems
Details on my web page
“PRACTI Replication for Large-Scale Systems,” M. Dahlin, L. Gao, A.

Nayate, A. Venkataramani, P. Yalagandula J. Zheng
"Dual-Quorum Replication for Edge Services," L. Gao, M. Dahlin, J.

Zheng, L. Alvisi, A. Iyengar, Middleware 2005
"Transparent Information Dissemination," A. Nayate, M. Dahlin, A.

Iyengar, Middleware 2004.
"A Non-interfering Deployable Web Prefetching System," R. Kokku,

P. Yalagandula, A. Venkatramani, M. Dahlin,USITS 2003

