
Transparent Mobility with Minimal Infrastructure

Praveen Yalagandula, Amit Garg, Mike Dahlin, Lorenzo Alvisi,Harrick Vin
ypraveen, amitji, dahlin, lorenzo,vin@cs.utexas.edu

University of Texas at Austin

Draft July 2001

Please send comments to the authors.

Please see http://www.cs.utexas.edu/users/lasr for updates.

Abstract

In this paper, we introduce VIP—a virtual IP layer—
that applies the principle of virtual addressing to In-
ternet naming. VIP’s goal is to support mobility in a
way that is incrementally deployable and that requires
little installation or configuration effort. VIP achieves
this goal by following two design principles (1)trans-
parent mobility: the system virtualizes the IP level of the
protocol stack—the “neck of the protocol hourglass”—
to avoid modifying higher-level network protocols and
applications, and (2)minimal infrastructure:the sys-
tem takes advantage of and minimizes changes to exist-
ing network infrastructure. In particular, VIP relies on
widely-deployed infrastructure—DHCP for dynamic IP
assignment, Dynamic Secure DNS for updating name-
to-IP mappings, and IPSec for secure communication—
rather than requiring deployment of new translation in-
frastructure. Overall, we find that VIP efficiently sup-
ports transparent mobility in a way that an individual
user can easily deploy and use.

1 Introduction

The current Internet naming abstraction requires appli-
cations to explicitly translate machine names to IP ad-
dresses. Applications then use these IP addresses to
refer to and communicate with remote machines. Al-
though exposing physical IP addresses in Internet nam-
ing has worked tolerably well in the past, users’ net-
work environments are becoming more complex and
dynamic. Soon, a individual user may have dozens
of machines sharing data and services, and each ma-
chine’s IP addresses may often change due to mobility,

due to switching between different network connections
(e.g., Ethernet, 802.11, and infrared), and due to dy-
namic IP assignment (e.g., DHCP). Because higher level
protocols and applications often implicitly assume that
IP addresses correspond to specific, unchanging hosts,
changes in the physical IP address used to reach a host
can cause failures in these protocols and applications.

In this paper, we introduce VIP, a virtual IP layer,
that applies the principle of virtual addressing to Inter-
net naming1. VIP presents an abstraction in which ma-
chines refer to one another by name and in which physi-
cal IP addresses are hidden from higher-level protocols.

Two key goals of VIP’s design are incremental de-
ployability and minimal configuration: individual users
should be able to easily deploy and make use of the
system to enable seamless communication across the
user’s collection of machines, and adding a new VIP-
enabled device to a system should be nearly as simple
as adding a DHCP-enabled device to a system today.
VIP achieves these goals by following two design prin-
ciples (1)transparent mobility : the system virtualizes
the IP level of the protocol stack—the “neck of the pro-
tocol hourglass”—to avoid modifying higher-level net-
work protocols and applications, and (2)minimal in-
frastructure : the system takes advantage of and mini-
mizes changes to existing network infrastructure.

MobileIP [13, 15] also attempts to support transpar-
ent mobility, but despite its development in 1994 and
standardization in 1996, MobileIP is not widely used.
We believe this is due to its infrastructure requirements:

1A previous system, also named VIP, shares our philosophy of
virtualizing IP addresses to hide physical IP address changes [19],
but our implementation and system properties differ considerably.
See Section 2 for details.

1

to use MobileIP a user must acquirestatic, globally
unique IP addressesfor each device and a user must de-
ploy ahome agentmachine that forwards packets routed
to these addresses to the user’s mobile devices.

Although these design trade-offs made sense in the
early 1990’s, recent trends in network deployment in-
crease the significance of these requirements as barri-
ers to deployments. First, the 32-bit IPv4 address space
makes static IP addresses expensive. For example, an
ISP account that includes multiple static IP addresses
may be much more expensive than a dynamic-IP ac-
count, making it costly for an individual user to deploy
MobileIP for personal use. In addition, the widespread
use of firewalls to protect intranets and even home net-
works makes it hard to deploy a globally-reachable Mo-
bileIP home agent; often a dedicated machine must be
deployed to the public side of the firewall, where ma-
chine deployment may be tightly controlled.

VIP is a simple system that addresses these problems.
VIP uniquely identifies machines by their fully-qualified
domain names (FQDNs) (e.g., example.acm.org) rather
than their IP addresses (e.g., 199.222.69.43), and uses
Secure Dynamic DNS (DDNS) [5] to update and dis-
tribute name-to-address mappings as machines move.
To maintain backward compatibility, each pair of com-
municating nodes negotiates virtual IP addresses, which
are opaque 32-bit tokens that correspond to their
FQDNs. Applications and other layers above VIP use
these 32-bit virtual IP addresses rather than physical IP
addresses. When machines communicate, the VIP layer
translates between virtual and physical IP addresses.

This approach supports transparent mobility without
requiring deployment of new infrastructure. First, ap-
plications and other network layers above the VIP layer
never see physical IP addresses, so the VIP layer is free
to change the mapping from the the virtual IP address
token used to identify a machine to the physical ad-
dress used to route packets. Second, routers and other
infrastructure below the VIP layer never see virtual IP
addresses, so each pair of communicating nodes is free
to negotiate lightweight VIP-to-FQDN mappings rather
than relying on globally unique and unchanging static IP
addresses. Third, by using DDNS for mapping FQDNs
to IP addresses, the system takes advantage of existing
translation infrastructure rather than requiring deploy-
ment of new translation infrastructure. Furthermore,
free third-party DNS servers such as no-ip.com and dyn-
dns.org allow individual users to use the system without

even having to manage their own name servers.
We have implemented the VIP system in Linux. Our

experiments show that the system provides efficient
remapping both when one node moves and when both
parties in a connection simultaneously change their ad-
dresses. A key optimization in the system is peer-to-
peer hints, which can greatly improve the latency of
this remapping. We use IPSec [10] to provide end-to-
end security as VIP↔ IP address mappings change; to
keep infrastructure requirements low, VIP implements
the option of a simple peer-to-peer anonymous key ex-
change protocol for IPSec that is similar to the one used
by SSH [11]. Overall, we find that new infrastructure
and practices that have become widespread since the
standardization of MobileIP (e.g., DHCP for dynamic
IP assignment [4], Dynamic Secure DNS for updating
name-to-IP mappings [5], and IPSec for secure com-
munication [10]) make it relatively simple to support
transparent mobility without requiring other infrastruc-
ture changes.

The main limitation of this approach is our decision
to modify end-stations rather than relying on external
infrastructure. There are two issues. First, although
our system is backwards compatible in that it allows
communications with unmodified machines, our system
does not support migration of connections unless both
participating machines implement our extension. Sec-
ond, although this approach simplifies many aspects of
deployment, modifying end-stations does involve barri-
ers of its own. However, as others have argued [18],
although the MobileIP design assumed that it was eas-
ier to modify routers than end stations, in practice the
reverse seems to be true. Furthermore, modifying end
stations solves the “chicken and egg” problem faced
by infrastructure-based approaches: in an end-station
based approach, an individual can take advantage of
the optimization by upgrading her machines; whereas
in an infrastructure-based approach, there is little incen-
tive to deploy new infrastructure until a large user base
emerges and little incentive to become part of that user
base until infrastructure is deployed.

The rest of this paper proceeds as follows. In Sec-
tion 2, we describe how our work differs with previous
achievements in this field. In Section 3, we describe the
protocol and in Section 4 we discuss the implications
of IP virtualization on the system design and behavior.
Section 5 evaluates the system. And, Section 6 summa-
rizes the contribution and presents avenues for further

2

research.

2 Related Work

The problem of supporting host mobility on the Inter-
net has been extensively studied. MobileIP, like VIP, is
designed to achieve transparent mobility by virtualizing
the IP level of the protocol stack. Other approaches have
been proposed at the IP, transport, and application lev-
els of the protocol stack or have used names rather than
physical addresses for routing.

2.1 MobileIP

MobileIP [13, 15] has many similarities with VIP. Both
systems share the goal of providing transparent mobil-
ity. In both systems, this is achieved by decoupling the
routing and naming roles that coexist in conventional IP
addresses; in both systems a host receives two distinct
identifiers - a permanent name, that does not change
when a host moves, and a variable address, that changes
to reflect the host’s current point of attachment to the
Internet.

There are two fundamental differences between Mo-
bileIP and VIP.

The first is the nature of a mobile host’s permanent
name: in Mobile IP the home address is a valid IP
address to which packets can be routed, but in VIP
the virtual address is a node’s fully-qualified domain
name (FQDN). For backwards compatibility with layers
above VIP, VIP introduces 32-bit tokens that act as syn-
onyms with FQDNs, but these VIP addresses have no
semantic meaning within IP. This clean distinction be-
tween virtual and physical IP addresses makes deploy-
ment easier and cheaper for a user. Whereas VIP nodes
automatically generate lightweight VIP address tokens,
a user wishing to deploy a device using MobileIP must
acquire a static IP address from an ISP.

The second fundamental difference is the mechanism
used to map between home (or virtual) addresses and
correspondent (or physical) addresses. MobileIP uses
a home agent machine that receives packets addressed
to a mobile node’s home address and that tunnels pack-
ets to the mobile node’s correspondent address. Instead,
VIP uses DNS to map machine names to physical IP
addresses. By using DNS for translation, VIP takes ad-
vantage of existing infrastructure rather than requiring

deployment of new translation infrastructure. Further-
more, free third-party DNS servers such as no-ip.com
and dyndns.org allow individual users to use VIP with-
out even having to manage their own name servers.

Note that although route optimizations to some im-
plementations of MobileIP modify both communicat-
ing end-stations to eliminate need for separate foreign
agents [13] and to reduce triangle routing [14], these
implementations still require home agents to establish
and update the mappings cached at end stations. But
also note that MobileIP’s approach of using routable ad-
dresses and home agents provides one advantage over
VIP: if a mobile node that has been modified to support
MobileIP communicates with a fixed node that does not
support MobileIP, MobileIP’s home agent can forward
packets from the fixed node as the mobile node moves.
Conversely, although VIP retains backwards compati-
bility in that VIP and non-VIP nodes can communicate,
VIP does not support mobility in such a scenario. Unfor-
tunately, it appears that this advantage of MobileIP fun-
damentally requires that virtual addresses be routable,
which we believe raises too high a barrier to deploy-
ment.

IPv6 [3] supports mobility using MobileIP tech-
niques. However, it requires deployment of large
amounts of new infrastructure.

2.2 Other approaches

Below, we discuss other approaches to mobility, orga-
nized by the level of the protocol stack at which vir-
tualization is introduced: the IP layer, transport layer,
or application layer. Finally, we discuss several other
“name-centric” routing architectures.

Our VIP system shares the idea of virtualizing the IP
layer to support mobility with an earlier system, also
called VIP and introduced by Teraoka et. al [19]. Both
systems strive to separate the logical name of a host
from its changing physical IP address, but the systems
differ significantly in their approach to achieving this
goal. First, Teraoka’s VIP depends on the permanent
name of a host being equal to the host’s initial physi-
cal IP address in its home network. In our VIP, a vir-
tual IP address has no IP semantics and can be basi-
cally chosen arbitrarily. Second, Teraoka’s VIP requires
routers—including at least one on the home network of
each host—to store the correct mapping between the
host’s logical name and its physical name. The home

3

network router plays a role similar to that of the home
agent in MobileIP.

Gupta and Reddy [9] propose a IP-level redirection
mechanism that is similar to MobileIP with route opti-
mization. The focus of this work is on anycast, but the
technique can be applied to mobility as well.

Snoeren and Balakrishnan [18] propose an architec-
ture for supporting mobility in TCP that, like VIP, is de-
signed to minimize dependence on new infrastructure.
This architecture relies on a peer-to-peer protocol to up-
date address information when a node moves. Our ap-
proach differs in two ways. First, we implement mobil-
ity at the IP level rather than the transport level. Con-
ceptually, we believe abstracting IP addresses directly
above the IP layer is a simpler approach, and this ap-
proach has the practical advantage of allowing one im-
plementation of virtualization to support a wide range
of higher-level protocols, including TCP, RTP, ICMP,
and UDP, and it supports straightforward integration
with IPSec. Second, because we focus on supporting
users with dozens of devices, we regard simultaneous
movement of both ends of a connection as an important
case—encountered, for instance, when a user carrying
several devices exits a building—and we engineer our
protocol to support it.

Several systems rely on applications to detect loss
of connectivity and to switch to alternative or updated
IP addresses associated with a target machine’s name.
This approach is most useful where application use is
characterized by short transactions that may be retried
if a network address changes. Smart clients [22] extend
this approach by allowing servers to specify application-
specific session fail-over code. Zhang and Dao [23]
provide a user-level session abstraction to support au-
tomatic fail-over.

The idea of exposing names to applications and in-
visibly translating from name to physical address or
route is a core idea in the Intentional Naming system
[1] and TRIAD [2]. These systems, however, are more
ambitious efforts to re-engineer the protocol stack. In-
tentional naming foregoes backwards compatibility, and
both introduce translation to the routing infrastructure.

3 VIP architecture

The basic idea of VIP is simple; the VIP framework
identifies a machine by its unique fully-qualified do-

main name (FQDN, e.g., example.acm.org), and the VIP
layer on each machine maintains a mapping from FQDN
to the physical IP addresses of peer machines so that
it can direct messages addressed to an FQDN to that
machine’s current location – its current physical IP ad-
dress. As IP addresses change due to migration, VIP
updates this FQDN↔IP mapping using secure dynamic
DNS. But, because FQDNs do not change, communica-
tion transparently continues across physical IP address
changes.

Unfortunately, current applications use IP address as
the basis for communication and the FQDN merely as a
means of obtaining it. We maintain backwards compat-
ibility by virtualizing IP through a layer of indirection.
Thus each FQDN is mapped to a 32-bit token, which we
call a virtual IP address, that in turn maps to the physi-
cal IP address. We refer to the former as the VIP address
or virtual IP address and the latter as the IP address or
physical IP address.

The VIP address is integrated into the system by
a VIP layer that resides immediately above the IP
layer. Layers above VIP see and work with virtual
IP addresses, which are merely backwards-compatible
synonyms for FQDNs, and layers below VIP see
the physical IP addresses required to route pack-
ets to their intended destination. A separate user-
level daemon maintains these FQDN↔VIP address and
VIP address↔IP address mappings and updates the lat-
ter using dynamic DNS.

To simplify reasoning about security, the system uses
IPSec to encrypt and authenticate all VIP communi-
cation. Following our goal of minimal infrastructure,
this security scheme uses a simple peer-to-peer “anony-
mous” key exchange protocol similar to the one used in
SSH [11].

Overall, this architecture provides a simple means of
supporting mobility. Furthermore, it imposes little or no
additional infrastructure requirements. Bind version 9
includes secure dynamic DNS updates [21], and many
current operating systems, for example Linux and Win-
dows 2000, ship with dynamic DNS support. Further-
more, a number of web-based, free or low-cost dynamic
DNS services allow individual users to use dynamic
DNS without running their own name servers. IPSec is
similarly widely available, as is DHCP to allow mobile
clients to get temporary IP addresses.

The key design issues for the VIP architecture lie
in the creation and maintenance of the two mappings,

4

namely FQDN↔VIP address and VIP address↔IP ad-
dress. The former deals with how we choose and asso-
ciate virtual tokens with unique names and avoid colli-
sions in these mappings. The latter resolves connection
migration. In what follows we describe the design of
these two mappings and then complete the description
of the protocol by describing how VIP-addressed pack-
ets are encapsulated in IP-addressed packets.

3.1 FQDN↔VIP address negotiation

The assignment of VIP tokens to FQDNs should satisfy
the following four properties.

• Unchanging and unique. A VIP is a synonym for
an FQDN that has these properties. Furthermore,
the mapping should be collision-free with respect
to real IP addresses because legacy machines will
not include a protocol for resolving collisions.

• Symmetric.Communicating machines must agree
on what they call one another. Thus if machine A
mapsFQDNA ↔ V IPA, machine B must also
mapFQDNA ↔ V IPA when A and B commu-
nicate. Several higher layer protocols, including
TCP, assume this property.

• Scalable.A mobile device will communicate with
dozens or hundreds of servers and other mobile de-
vices. And servers may communicate with millions
of mobile devices.

• Lightweight. It should be easy and inexpensive to
assign mappings to devices to make it easy for a
user to deploy the system.

Unfortunately, it is difficult to satisfy these properties
simultaneously with 32-bit tokens. For example, hash-
ing the FQDN into the 28-bit class-E reserved IP address
space meets all of these criteria except uniqueness – dif-
ferent FQDNs may map to the same VIP addresses (and
these collisions will be too frequent to ignore due to the
birthday paradox). Conversely, uniqueness could be as-
sured with a more systematic assignment of VIP tokens
to FQDNs (e.g., by extending the current, hierarchical
IP assignment rules to include VIP assignment). Un-
fortunately, such a heavy-weight methodology has the
same limitations as the current IP address assignment
process.

We resolve this dilemma by relaxing the first require-
ment. In particular, VIP includes a negotiation phase
that provides limited-duration VIP addresses that are

pair-wise unique rather than permanent VIP addresses
that are globally unique. Thus, VIP’s naming semantics
are weaker than current naming semantics in two ways:
(1) an FQDN↔VIP mapping is not guaranteed to hold
across reboots and (2) an FQDN↔VIP mapping may
not be shared across machines. Few applications are af-
fected by these weaker semantics, but some are. For ex-
ample, web server log analysis might tacitly assume that
IP addresses are permanent and global machine identi-
fiers.

The negotiation protocol works as follows. If ma-
chine X wishes to communicate with machine Y, it
makes a library call to gethostbyname(FQDNY), and
gethostbyname() queries the local VIP daemon, which
is a DNS name daemon that we have modified to sup-
port VIP. If the VIP daemon already stores a VIP
mapping forFQDNY , it returnsV IPY . Otherwise,
it issues two network DNS queries using the stan-
dard DNS protocol. The first query is for Y’s DNS
A (address) record. The second query is also for
a DNS A record, but it asks for the address of the
imaginary hostVIP MAGIC NUMBER-FQDNY (e.g.,
VIP105067072021-example.acm.org.)2 The first query
returnsIPY , Y’s current physical IP address. The sec-
ond query returns either an error (if Y does not sup-
port VIP) orV IPproposeY , a proposed VIP address with
which to identify Y (if Y does support VIP). In the
former case, backwards compatibility is retained be-
cause the VIP daemon simply returns Y’s physical IP
address. In the latter case, the VIP daemon running on
X now contacts the VIP daemon running on Y to nego-
tiate mutually acceptable VIP synonyms forFQDNX
andFQDNY using X’s and Y’s current physical IP ad-
dresses,IPX andIPY , for communication. The negoti-
ation protocol has the following steps.

1. X selectsV IPproposedX , decides if it will accept
or reject the mappingV IPproposedY , and sends the
following message toIPY : [(Request, FQDNX ,
V IPproposedX , FQDNY , V IPproposedY , accept or re-
jectV IPproposedY)]

2. Upon receipt of this message Y first verifies that
FQDNX maps to IPX by querying DNS using
FQDNX . If the resulting IP address differs fromIPX ,
Y ignores this request. Otherwise, Y accepts or re-
jects theFQDNX ↔ V IPproposedX mapping and

2A cleaner alternative would be to add a new DNS record type.
We choose the magic number approach to make it easier to use third-
party web-based DNS servers.

5

stores the mapping if it is accepted. Then, if X rejected
Y’s previous proposal, Y selects a newV IPproposedY .
In any event, Y then sends the following message to
IPX : [(Reply, FQDNX , V IPproposedX , FQDNY ,
V IPproposedY , accept or rejectV IPproposedX)]

3. Upon X’s receipt of this message, if either X or Y
rejected a proposed VIP address during the previous
round, X initiates another round from step 1. Once
both machines accept the proposals during the pre-
vious round, X’s VIP daemon stores Y’s mapping
FQDNY ↔ V IPY and returnsV IPY to the gethost-
byname() call that initiated the mapping.

At any point, either party may terminate the negoti-
ation, causing X to fall back on physical IP addresses
for communication. X does this by simply returning the
physical IP address. Y does this by proposing address
0.0.0.0. To deal with lost messages and host mobility
during this negotiation, if X does not receive a reply
from Y within a timeout, it retransmits its last message.
If X does not receive a reply to that retransmission, it
restarts the protocol from the DNS network query.

A machine accepts an FQDN↔VIP mapping pro-
posed by another machine if (a) the mapping is from the
standard range of VIP addresses (we currently use the
28-bit reserved class-E range) and (b) the mapping is not
currently in use for a different FQDN. Alternatively, if a
proposed mapping is not from the standard VIP address
range, the system does a reverse DNS lookup using the
proposed VIP address and accepts the mapping if the re-
sulting FQDN matches the proposal. This feature allows
a machine to use a dedicated VIP address that no other
machine can try to claim. As described in Section 4.2,
this approach is one technique available to installations
willing to pay for static IP addresses for resisting some
denial of service attacks.

This negotiation typically adds one round trip time
to connection set-up with VIP-enabled destinations. It
also adds one additional DNS query to each host lookup.
The primary purpose of this query is to allow systems to
efficiently detect legacy, non-VIP clients; it thus elim-
inates the need for the VIP daemon to send a probe to
the remote host to verify its VIP capability. The sec-
ondary purpose is to simplify the protocol by initializ-
ing V IPproposedY . Note that, the additional DNS query
is pipelined with the standard DNS query to minimize
latency.

VIP nodes must carefully control garbage collec-
tion of FQDN ↔ VIP address mappings to maintain
the abstraction that VIP addresses are synonyms for

FQDNs. We discuss garbage collection policies in Sec-
tion 4.1.2. Regardless of the policy, garbage collec-
tion is a local decision, so if a machineA discards
a mapping (FQDNB, V IPB), A may later receive a
message fromB. If a machine receives a VIP packet
for which it has no FQDN↔VIP address mapping, the
machine discards the packet and sends a negative ac-
knowledgment message to the sender’s VIP daemon.
That daemon then executes the negotiation protocol de-
scribed above—including the DNS query—to obtain a
new mapping, using the previous mapping as the ini-
tial values forV IPproposedA andV IPproposedB. If the
protocol is unable to re-establish the same mapping for
V IPA, B’s daemon marks the originalV IPA value as
invalid and discards future packets sent to that VIP ad-
dress. To maintain correct semantics, this address may
not be re-used until it is garbage collected according to
the system’s standard VIP reuse rules. Note thatA and
B may continue to communicate using the new map-
ping, although applications onB using the old mapping
will have their packets dropped.

Two sets of issues remain for understanding this pro-
tocol. First, end-hosts running this protocol have free-
dom to decide which VIP addresses to propose and
when to garbage collect FQDN↔VIP address map-
pings. Second, the protocol must guard against mali-
cious attacks. We discuss mapping policies and security
in Section 4.

3.2 VIP↔IP mapping

The set of VIP address↔IP address mappings a ma-
chine stores can be thought of as a cache of mappings
for the targets with which the machine communicates.
This cache must be kept consistent with the true IP ad-
dresses of those targets. We use an invalidation protocol
with leases [8] to accomplish this.

When a machineX ’s IP address changes, it sends
invalidation hints (V IPX , newIPX) to the VIP dae-
mons on itsActive Partner List, the set of machines with
whichX has communicated during the previousT sec-
onds. Conceptually, the invalidation hints signal the re-
ceiver to query DNS for the new mapping the next time
it sends a message toX, but sinceX sends the hints via
IPSec and includes the updated values, the receiver can
trust them and update its mappings immediately.

There are two cases when a machineY will not re-
ceive an invalidation when a machine it had been talking

6

to, X, moves: (a) the lease has expired or (b)Y ’s IP ad-
dress also changed. Therefore, any time a nodeY sends
a message to a nodeX from whichY has not received a
packet from during the lastT seconds,Y queries DNS
to renew the mapping. In addition, if a machine does not
receive an acknowledgment to an invalidation, it queries
DNS to re-validate the mapping and then resends the in-
validation hint.

3.3 Packet encapsulation

The VIP system encapsulates VIP-addressed packets in
IP-addressed packets using IPIP encapsulation [12]. In
our Linux prototype, outgoing IP packets pass through
the IP routing table. If the destination address is a VIP
address, it will fall into a range of addresses correspond-
ing to a VIP interface and the packet will be handed to
the VIP system’s IP Encapsulation module. This mod-
ule looks up the physical IP address corresponding to
the VIP address and encapsulates the packet using this
physical address. Now, when the packet passes through
the routing table for the second time, its address corre-
sponds to a physical IP interface, and it is sent on the
corresponding physical network.

Incoming VIP packets arrive as IP packets whose
next protocol flag indicates that they should be passed
to the VIP de-encapsulation layer after IP processing. If
these incoming packets’ VIP address and IP address do
not match the corresponding VIP address↔ IP address
mapping stored by the VIP daemon, they are dropped.
An implementation may send a negative acknowledg-
ment in this case, but doing so is not necessary for cor-
rect migration. Assuming that the VIP↔ IP mapping
matches, the packet is de-encapsulated and passed to the
next higher level of the protocol stack.

3.4 IPSec integration

Our VIP implementation transmits all packets encrypted
via IPSec, using the unchanging VIP address to identify
the key needed to encrypt/decrypt packets.

In the common case, key management is similar to
that used in the SSH-1 secure shell protocol [11]: nodes
exchange public keys in the clear during the negotia-
tion protocol described in Section 3.1. As with SSH,
the approach is designed to provide a practical trade-off
between good security and deployment with minimal in-
frastructure. Similar to SSH, this approach is vulnerable

to man in the middle attacks during the initial key ex-
change but provides end-to-end security after that key
exchange. We discuss the security properties of the sys-
tem in more detail in Section 4.2.

Although we expect this “anonymous” peer-to-peer
key exchange to be the most common mode of opera-
tion, the use of VIPs as an unchanging synonym for a
machine name simplifies more systematic use of IPSec.
In particular, our prototype supports key exchange via
DNSSEC [20]. In this mode of operation, DNS provides
a certificate chain that binds a public key to a FQDN. If
such a certificate is provided, the VIP layer uses it rather
than using anonymous peer-to-peer key exchange.

4 System Issues for IP virtualisation

This section discusses three ways in which system de-
sign is affected by the IP virtualization outlined in the
above architecture. First, the system must manage the
FQDN↔VIP address mappings carefully to maintain
the abstraction that a VIP address is a synonym for
a FQDN. In particular, the protocol leaves two policy
decisions to implementations—local VIP selection and
VIP garbage collection. We discuss these policies in
Section 4.1. Second because the system allows trans-
parent remapping of IP addresses, security must be care-
fully considered throughout the design. We discuss the
system’s end-to-end security and resistance to denial of
service in Section 4.2. Third, VIP transparently remaps
VIP addresses↔ IP addresses. For most applications
this is useful, but for some applications and protocols,
transparent remapping can cause problems. We dis-
cuss how we allow higher-level topology-aware proto-
cols and applications to break this transparency in Sec-
tion 4.3.

4.1 FQDN ↔ VIP management

4.1.1 Local VIP selection policy

The protocol allows a machine to represent itself with
any VIP address from a reserved range of values. Differ-
ent implementations are free to choose these addresses
in different ways. In our initial implementation, ma-
chines attempt to reuse a small number of VIP ad-
dresses. This is because for simplicity our Linux pro-
totype uses an IPinterfaceto represent each VIP alias
for the local machine, and some modules above the IP

7

layer—notably the FreeS/WAN 1.8 implementation of
IPSec that we use—assume a small number of inter-
faces.

In Linux and most Unix systems, the interface data
structure represents a physical network connection with
a particular IP address (e.g., an Ethernet card), and we
reuse these facilities for our implementation of VIP.
Each machine randomly selects a fixed number of lo-
cal VIP addresses and creates corresponding interfaces.
After negotiating VIP mappings to communicate with
a destination machine, the destination VIP address is
added to the routing table for the corresponding local
VIP address’ interface so that outgoing packets sent to
that destination VIP address are marked with the agreed
upon source VIP address and are sent via the VIP proto-
col.

Although this approach is simple, restricting the
number of VIP addresses a machine can use to refer to
itself renders our prototype vulnerable to denial of ser-
vice attacks in which a machineA attempts to commu-
nicate with another machineB where machineB has
already communicated with other machines that have
“claimed” the VIP addresses thatA wishes to use. We
believe this vulnerability is a good trade-off for the sim-
plicity of our implementation. Furthermore, it appears
relatively straightforward to dynamically allocate inter-
faces as needed as long as higher protocol layers make
no a priori assumptions about the maximum number of
interfaces a machine can have. We discuss this denial of
service issue in more detail in Section 4.2.1.

4.1.2 VIP garbage collection policy

Because the VIP address space is smaller than the
FQDN space, machines must garbage collect their
FQDN↔VIP address mappings to limit the rate of un-
resolvable collisions. Unfortunately, the current map-
ping of FQDN↔physical IP address does not have a
well-defined consistency model, so it is not clear when
the VIP layer can safely re-use a mapping for a dif-
ferent FQDN. For example, it is possible that an ap-
plication may send a packet to a VIP address that was
resolved from an FQDN many days ago or after the
connection has been idle for hours. Without a well-
defined and widely-used consistency model for appli-
cations’ FQDN↔IP mappings,any re-use of VIP ad-
dresses for different FQDNs has the potential to break
the abstraction that a VIP address is a synonym for an

FQDN. A VIP implementation must balance the risk
of deleting a needed mapping against the reduced risk
of unresolvable collision that comes from keeping the
number of stored mappings small.

Note that this problem is not new to VIP. Current
applications that use IP addresses long after resolving
them risk sending packets to the wrong machine. In
practice, this is rarely a problem, and we do not expect
this to be a significant issue for VIP. Our goal is there-
fore to build a system that is simple, that works well with
legacy applications, and that has well-defined semantics
on which future applications can build.

Our prototype implements areclaim-on-rebootpol-
icy: FQDN↔VIP address mappings are guaranteed to
remain valid until a machine reboots. This approach
should work with all applications except those that write
IP addresses to disk and use them later. A disadvantage
of this conservative garbage collection policy is that it
may result in larger lookup tables and more collisions
than needed.

A more aggressive policy that could be considered
by some implementations islease: each machine main-
tains an LRU list of VIP address mappings and discards
elements that have not been used forT seconds, where
T is chosen to be long enough that legacy applications
are unlikely to use discarded mappings and to be short
enough to limit the size of the FQDN↔VIP address ta-
ble. Applications that wish to re-use a mapping longer
thanT seconds after its last use should re-validate the
mapping with a DNS lookup.

4.1.3 Future directions: IPv6 and beyond

The concept of connecting to a name rather than an ad-
dress is a simple way to support mobility. The com-
plexity in maintaining a FQDN↔VIP address mapping
comes from our desire remain compatible with 32-bit
IPv4 applications. The short IPv4 address space ap-
pears to make the problems that arise fundamental, but
it also appears that reasonable engineering compromises
for negotiating, choosing, and garbage collecting these
mappings can work well.

The VIP principles are even more attractive for ap-
plications and higher-level protocols that do not assume
32-bit IPv4 addresses. For example, 128-bit IPv6 ad-
dresses [3] might be constructed directly using a 128-bit
MD5 hash [17] rather than requiring negotiation and ta-
ble lookup. Or, systems could run using “native VIP”

8

addresses: the “address” returned by gethostbyname()
would simply be the target machine’s FQDN.

4.2 Security

The use of IPSec simplifies reasoning about VIP’s end-
to-end security because IPSec provides end-to-end pro-
tection against attacks on the VIP system. After the ini-
tial key exchange, almost all traffic and protocol mes-
sages between nodes travel via IPSec. The one excep-
tion is the negative acknowledgments sent upon receipt
of packets addressed to unmapped VIP addresses (see
Section 3.1). So at worst, errors in packet encapsulation
or the FQDN↔ VIP ↔ IP mappings after the key ex-
change can result in denial of service; they can not result
in delivery of data to/from an incorrect node.

Following the organization of Section 3, we analyze
system security by examining the FQDN↔ VIP map-
ping, the VIP↔ IP mapping, and packet encapsulation.

4.2.1 FQDN↔VIP mapping

There are three attacks on the FQDN↔VIP mapping:
(1) negotiation:an adversary can attempt to modify the
initial negotiation, (2)consistency:an adversary can at-
tempt to reuse a garbage collected VIP address, and (3)
VIP consumption:an adversary can attempt to deny ser-
vice by consuming available VIP addresses.

Negotiation. To minimize the demands on infras-
tructure, the system supports peer-to-peer “anonymous”
IPSec key exchange. As with SSH, the approach is de-
signed to provide a practical trade-off between good
security and deployment with minimal infrastructure.
Similar to SSH, this approach is vulnerable to man in
the middle attacks during the initial key exchange – ei-
ther by spoofing traffic to/from the DNS server or by
spoofing traffic between the communicating parties, but
the approach provides end-to-end security after that key
exchange. As noted in Section 3.4, users can configure
their DNS servers to supply certificate chains binding
keys to FQDNs to address this limitation.

Consistency. The lack of a clear consistency model
for legacy DNS↔ IP address mappings introduces the
possibility of errors when an application uses a FQDN
↔ VIP address mapping that is no longer valid. If an ap-
plication attempts to send a packet using a VIP address

after it has been locally garbage collected and reused,
that packet will be sent to an unintended machine. Note
that IPSec does not protect against this failure because
the VIP address identifies the IPSec key to be used for
a connection. Our solution is to constrain garbage col-
lection of mappings according to a consistency model
that (a) precisely defines semantics to allow careful ap-
plication writers to ensure correct behavior and (b) pro-
vides conservative default behavior that results in cor-
rect behavior for most legacy or less carefully written
applications. We have chosen to implement a reclaim-
on-reboot policy in our prototype to meet these require-
ments.

Note that even without VIP, any application that com-
municates with nodes that use DHCP for dynamic IP
address assignment is similarly vulnerable. In principle,
all such applications should contact the node with which
they are communicating to determine the length of the
node’s DHCP lease. In practice few, if any, applications
currently do this. DHCP appears to be a successful ap-
plication of the two principles defined above – precisely
defined behavior and conservative default behavior.

VIP consumption. In order for A and B to com-
municate,A must claim an unused VIP address inB’s
FQDN↔ VIP table. If B’s table is full or if A is re-
stricted in which addresses it can claim and those entries
are full, then it is possible to deny VIP service between
A andB.

Two implementation decisions in our prototype in-
crease its vulnerability to such unresolvable collisions.
First, as noted in Section 4.1.1, our implementation re-
stricts each node to using a few VIP addresses to refer
to itself. Note that future VIP implementations may ad-
dress this issue by dynamically allocating local VIP ad-
dresses as needed. Second, as noted in Section 4.1.2,
our implementation only garbage collects table entries
at reboot. Its table may therefore be more full than ab-
solutely necessary. Note that more aggressive garbage
collection could be implemented; however as described
earlier in this section, more aggressive garbage collec-
tion would increase the risk of applications using stale
mappings.

VIP is designed to minimize the risk of random fail-
ures due to these collisions, to minimize the impact of
such collisions when they (deliberately or accidently)
occur, and to provide an option to eliminate the risk of

9

collisions for machines willing to invest in additional in-
frastructure:

• Random collisions are rare. If a node randomly
choosesN identifiers from the available228 iden-
tifiers and talks to a machine that has previously
storedM mappings for other machines, the odds
of all N addresses already being claimed are about
(M
228)N . In the common case of peer-to-peer com-

munication between mobile devices with two local
identifiers and fewer than 1000 stored entries, the
risk of unresolvable collision is less than2−35 (that
is, less than2−36 for each of two machines). Com-
munication with a popular server is more likely to
encounter a collision. If a machine with two local
identifiers tries to contact a server that stores220

entries, there is a2−16 chance that both of the ma-
chine’s addresses are already in use by the server
to refer to other machines.

• The consequences of collision are limited. In
our current prototype, an unresolvable collision
causes machines to fall back on communicating
with physical IP addresses. Support for mobility
is lost in this case, but communication is still pos-
sible. In the future, we plan to enhance the proto-
col to deal with unresolvable collisions by falling
back on “1-sided” VIP where one machineA uses
its physical IP address as a VIP address. That
physical IP address would be entered into the re-
mote machineB’s FQDN ↔ VIP address table,
but would be marked “temporary.”B could move,
changingA’s V IPB ↔ IPB mappings, but ifA
moves, the temporary mappingV IPA would be
discarded byB. This optimization may be useful
for well-known, widely-accessed services which
are at greater risk of denial-of-service and which
are not likely to move.

• Machines may reserve static IP addresses to use
as their VIP addresses to eliminate the risk of col-
lision. As described in Section 3.1, the protocol
uses reverse DNS lookup to ensure that only one
node may claim a given static IP address as its VIP
address.3 Reserving and configuring static IP ad-
dresses, of course, requires additional installation
effort and expense, so we do not believe it is ap-
propriate for most VIP nodes. But, this configura-

3More precisely, this protocol ensures that the DNS domain in
question controls re-use of a static IP address used as a VIP address.

tion seems useful for well-known, widely-accessed
services, which are at greater risk of accidental or
deliberate denial of service and for which this ad-
ditional effort is not likely to be burdensome.

4.2.2 VIP ↔ IP mapping

VIP allows transparent remapping of the IP address to
which a name (FQDN or VIP address) refers. There are
two types of attack on this mapping: (1) modifying or
introducing spurious updates and (2) preventing needed
updates from occurring.

VIP is vulnerable to an adversary that can modify
communication with DNS or that can modify or insert
IP packets during the negotiation phase. Furthermore,
if an adversary can prevent delivery of mapping invali-
dation messages, a node may continue to send packets
to a stale IP address. In these cases, after the initial key
exchange the use of IPSec prevents an adversary from
reading (or forging) messages to (from) the old address,
limiting damage to denial of service attacks.

These vulnerabilities are similar those of standard IP.
Both systems rely on DNS to provide a correct IP ad-
dress for a name and rely on the initial set of routers
to transmit traffic without modification. VIP’s mobility
adds additional DNS lookups and additional routers to
the mix, but VIP’s use of IPSec limits the damage that
can be caused by these additional dependencies.

4.2.3 Encapsulation

Because the address exposed to applications – the VIP
address – is encapsulated in IP packets, IP router ingress
filtering [7] does not prevent address spoofing: it is easy
for a sender to insert any “from” VIP address in any
packet. The system guards against this at two levels.
First, if an incoming packet’s IP address does not match
the stored IP address for the VIP address from which the
packet purports to come, the VIP layer drops the packet.
Second, the IPSec layer discards incoming packets that
were not encrypted by the encryption key corresponding
to the VIP address claimed by the packet.

4.2.4 IPSec costs and benefits

We run VIP over IPSec rather than devising our own au-
thentication protocols. One might argue that encrypting
all traffic is more expensive than necessary, and we con-
sidered alternatives such as encrypting or authenticating

10

only VIP-control traffic. But, we chose to encrypt VIP’s
data traffic as well because (a) the approach is simple,
(b) processors are fast – even most palm-top comput-
ers can encrypt at rates approaching or exceeding their
network bandwidths, and (c) the approach can detect
and limit the damage of DNS spoofing (after the initial
lookup), stale VIP↔ IP mappings (see Section 4.2.1
and 4.2.2), and attacks that spoof both the IP and VIP
addresses in a packet (see Section 4.2.3).

We also believe that strong default security is pru-
dent for systems striving to provide transparent mobility
with minimal infrastructure. Mobile devices may face
more risks than fixed devices; for example, they may
use radio broadcast to communicate and they may en-
counter routers, DHCP servers, and other infrastructure
provided by unknown or untrusted parties. Encryption
of all VIP traffic supports transparency by providing ad-
ditional protection for legacy applications and system
configurations that are “transparently” brought into this
more hostile environment. And, encryption of all VIP
traffic supports minimal infrastructure by reducing the
level of trust mobile nodes put in the infrastructure in
which they function.

4.3 Topology­aware applications

In general, we believe that applications and protocols
above IP generally treat IP addresses as machine iden-
tifiers (even though they technically “shouldn’t”) and
applications below IP treat IP as identifying a network
connection identifier for routing. VIP splits IP into two
layers to separate these roles and thereby support trans-
parent mobility. A few applications and protocols, how-
ever, explicitly or implicitly rely on the routing informa-
tion conveyed by IP addresses. These topology-aware
applications and protocols must be able to break VIP’s
transparent VIP↔ IP remapping.

For example, an application-level anycast algo-
rithm [6] might wish to compare IP addresses to rout-
ing table entries to identify topologically nearby ma-
chines. As another example, TCP’s congestion control
algorithm assumes that the path between nodes is static;
if the route changes because a node moves to a new net-
work connection, TCP should adjust its congestion con-
trol state (e.g., by setting the congestion control window
to 1 and entering slow-start).

To support topology-aware applications, VIP im-
plementations should provide two new interfaces: a

Host A

Host B

11.0.0.1Experimental

DNS Server

INTERNET

no−ip.com

−−
−.

−−
−.

14
3.

x
 1

00
 M

bp
s E

th
er

ne
t L

A
N

11.0.0.x 100 M
bps Ethernet LA

N

−−−.−−−..143.1

−−−.−−−.143.2

−−−.−−−.143.3

11.0.0.2

11.0.0.3

Figure 1 : The evaluation testbed.

p gethostbyname() interface that returns the phys-
ical IP address of a node given that node’s name and a
callOnChange() interface to register a callback for
when a VIP address↔ IP address mapping changes. In
addition, kernels implementing VIP should modify their
TCP and other transports to register for and react to such
callbacks. Note that our prototype does not yet include
these interfaces or the congestion control callbacks.

Snoeren et. al [18] argue that the need of congestion
control algorithms to react to changing routes means
that IP mobility remapping should be done at the trans-
port layer rather than the IP layer. We believe that call-
backs provide a simpler and more general solution. Both
approaches require modification of all transport proto-
cols’ congestion control code to add logic to handle an
address change. But our approach allows us to instanti-
ate the name-to-route translation code once—above the
IP routing layer—and use it for many different transport
layers. As described in Section 5, below, we have suc-
cessfully run a wide range of protocols including TCP,
UDP, ICMP, and RTP above our VIP layer.

5 Evaluation

Our prototype uses the Linux 2.2.17 kernel and modi-
fies the IPIP Encapsulation layer to implement VIP. We
use FreeS/WAN 1.8 for IPSec. The modified name dae-
mon, VIPD daemon, is currently implemented in Perl
and runs at user level.

Our test bed is shown in Figure 1. Hosts A and B are
933 MHz Pentium III machines with 256MB of RAM.
Each one of these machines has two 100Mbps Ethernet
cards, which are connected to different LANs. The RTT
measured by PING requests has an average 250µs be-
tween the hosts when they are communicating on same

11

68000

69000

70000

71000

72000

73000

74000

75000

12 12.2 12.4 12.6 12.8 13

nu
m

be
r

of
 p

ac
ke

ts
 r

ec
ei

ve
d

time(in secs)

"udp1side.plot"

3.6958e+09

3.696e+09

3.6962e+09

3.6964e+09

3.6966e+09

3.6968e+09

3.697e+09

3.6972e+09

6 6.2 6.4 6.6 6.8 7

se
qu

en
ce

 n
um

be
rs

time

"tcp1side.plot"

(a) (b)
Figure 2 : One-sided switch for (a) UDP and (b) TCP connection.

LAN and 450µs when communicating through inter-
faces on different LANs. The mobility of the hosts is
emulated by deactivating of the interfaces and activat-
ing the other interface through theifconfigcommand.

A third machine of similar hardware configuration is
used for runningnamed, the domain name server, a part
of bind 9.1.1 fromwww.isc.org . This version sup-
ports signed dynamic updates [5]. We create a domain
vipip.net and assign each host a name from this do-
main. Each host also shares a secret key with the DNS
server for dynamic update requests. This node also acts
as a router between the two testbed LANs.

We have succesfully tested our system for numerous
applications running on both hosts that communicate us-
ing various protocols. These include a telnet session
over TCP, RealPlayer video streaming over RTP and
UDP, and ping over ICMP. Communication between ap-
plication on two hosts continues successfully for both
the cases of switching interfaces on one host (one-sided
switch) and simultaneously switching interfaces on both
hosts (two-sided switch). We have also successfully
tested our system usingno-ip.comas the name server by
assigning our hosts names from theno-ip.comdomain
and configuring the hosts to send the dynamic DNS up-
date requests tono-ip.com’s DNS server.

For measuring switching times, we implement a sim-
ple application with A continuously sending dummy
messages to B using either UDP or TCP. We collect the
communication traces usingtcpdump. For TCP, we plot
the sequence number of each packet against the time it
was received. For UDP, we plot the number of UDP
packets received versus time.

In Figure 2, we plot the traces for the one-sided

30000

30200

30400

30600

30800

31000

31200

31400

31600

31800

5.8 6 6.2 6.4 6.6 6.8

nu
m

be
r

of
 p

ac
ke

ts
 r

ec
ei

ve
d

time(in secs)

"udp2side.plot"

Figure 3 : Two-sided switch on UDP connection.

switch case for TCP and UDP. For UDP, the observed
switching time is about 23ms, including the time to
send an update to the peer (∼20ms) and acknowledg-
ment time (∼3ms). For TCP, switching time is about
400ms. This is longer than UDP because of a TCP re-
transmission timeout (200ms) and adelayed acktimeout
(200ms) [16]. Figure 3 plots the behavior of UDP trans-
mission for the two-sided mobility case. The switching
time is about 644ms which includes a 500ms timeout by
the VIP daemon waiting for the ack of the hint it sends
to the peer’s VIP daemon. After the timeout, the VIP
daemon does a DNS lookup and then sends the update
hint to the other host at the correct physical address.

In Figure 4, we look at the dependence of switching
time on DNS lookup latency for two-sided switching in
both TCP and UDP modes of communication. The de-
lays were simulated by inserting an artificialusleepinto
the local VIP daemon. As expected, UDP switching
time increases almost linearly with latency. However,
TCP exhibits a stepwise exponential curve correspond-

12

0

0.5

1

1.5

2

2.5

3

3.5

100 1000 10000 100000 1e+06 1e+07

sw
itc

hi
ng

 ti
m

e
(in

 s
ec

s)

artficial DNS delay (in microsecs)

"tcp2.dat"
"udp2.dat"

Figure 4 : Effect of DNS lookup times on TCP and
UDP two-sided switch case

ing to an exponential back off in retransmission.
Overall, we find that performance is good. For the

two-sided switch case, fail-over time is dominated by
the hint timeout, the round trip time to the DNS server,
and the round trip time to the peer. Peer-to-peer updates
appear to be a useful optimization. For the one-sided
case, time is dominated by the round trip time between
the peers and, for nearby peers, the overhead of our Perl-
based name daemon.

6 Conclusion

VIP applies the principle of virtualization to IP ad-
dresses because exposing physical IP addresses to ap-
plications thwarts mobility and dynamic IP assignment,
factors which will continue to grow in importance as
mobility becomes more common, as users own increas-
ing numbers of devices, and as the limited IPv4 address
space is consumed. From the point of view of appli-
cations on VIP-enabled hosts, DNS names are used to
address network traffic, and physical IP addresses are
hidden.

A key benefit of VIP’s implementation of virtualiza-
tion is that its design emphasizes incremental deploya-
bility. Powerful building blocks for virtualization now
exist so that virtualization can be done almost entirely
by relying on existing infrastructure. As a result, VIP is
simple enough to deploy that, for example, a Linux hob-
byist could easily deploy and benefit from the system.

Acknowledgments

Sumit Garg and Anupam Rastogi were involved in the
design of an earlier version of this system. We thank

them for their efforts.

References

[1] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and J. Lilley.
The design and implementation of an intentional naming sys-
tem. In Symposium on Operating Systems Principles, pages
186–201, 1999.

[2] D. Cheriton and M. Gritter. TRIAD: A new next generation
Internet architecture, 2000.

[3] S. Deering and R. Hinden. Internet Protocol, Version 6 (IPv6).
Request for Comments 1883, Network Working Group, De-
cember 1995.

[4] R. Droms. Dynamic Host Configuration Protocol. IETF, Oc-
tober 1983. RFC 1531.

[5] D. Eastlake. Secure Domain Name System Dynamic Update.
Technical Report RFC-2137, Internet Engineering Task Force,
Apr 1997.

[6] Z. Fei, S. Bhattacharjee, E. Zegura, and M. Ammar. A Novel
Server Selection Technique for Improving the Response Time
of a Replicated Service. InProceedings of IEEE Infocom,
March 1998.

[7] P. Ferguson and D. Senie.Network Ingress Filtering: Defeat-
ing Denial of Service Attacks which employ IP Source Address
Spoofing. IETF, January 1998. RFC 2267.

[8] C. Gray and D. Cheriton. Leases: An Efficient Fault-Tolerant
Mechanism for Distributed File Cache Consistency. InPro-
ceedings of the Twelfth ACM Symposium on Operating Sys-
tems Principles, pages 202–210, 1989.

[9] S. Gupta and N. Reddy. A Client Oriented IP Level Redi-
rection Mechanism. InProceedings of INFOCOM 99. IEEE,
March 1999.

[10] S. Kent and R. Atkinson. ”Security Architecture for the Inter-
net Protocol”. Technical Report RFC-2401, Internet Engineer-
ing Task Force, Nov 1998.

[11] OpenSSH. http://www.openssh.com.

[12] C. Perkins.IP Encapsulation within IP. IETF, October 1996.
RFC 2003.

[13] C. Perkins. IP Mobility Support. RFC 2002, IETF, October
1996.

[14] C. Perkins, A. Myles, and D. Johnson. The Internet Mobile
Host Protocol (IMHP). InProceedings of INET, June 1994.

[15] C. E. Perkins and A. Myles. Mobile IP.Proceedings of In-
ternational Telecommunications Symposium, pages 415–419,
1994.

[16] Ed. R. Braden.Requirements for Internet Hosts – Communi-
cation Layers. IETF, October 1989. RFC 1122.

[17] R. Rivest. The MD5 Message-Digest Algorithm. Request for
Comments 1321, Network Working Group, ISI, April 1992.

[18] A. C. Snoeren and H. Balakrishnan. An End-to-End Approach
to Host Mobility. In Proc. 6th International Conference on
Mobile Computing and Networking (MobiCom), 2000.

13

[19] F. Teraoka, K. Uehara, H. Sunahara, and J. Murai. VIP: A Pro-
tocol Providing Host Mobility.Communications of the ACM,
37(8):67–75, August 1994.

[20] B. Wellington. Domain Name System Security (DNSSEC)
Signing Authority. IETF, November 2000. RFC 3008.

[21] B. Wellington. Secure Domain Name System (DNS) Dynamic
Update. IETF, November 2000. RFC 3007.

[22] C. Yoshikawa, B. Chun, P. Eastham, A. Vahdat, T. Anderson,
and D. Culler. Using Smart Clients to Build Scalable Services.
In Proceedings of the 1997 USENIX Technical Conference,
January 1997.

[23] Y. Zhang and S. Dao. A “Persistent Connection” Model for
Mobile and Distributed Systems. InThe 4th International
Conference on Computer Communications and Networks (IC-
CCN), Las Vegas, NV, September 1995.

14

