
Copyright

by

Ramakrishna Rao Kotla

2008

The Dissertation Committee for Ramakrishna Rao Kotla
certifies that this is the approved version of the following dissertation:

xBFT: Byzantine Fault Tolerance with High Performance, Low Cost, and

Aggressive Fault Isolation

Committee:

Michael D. Dahlin, Supervisor

Lorenzo Alvisi

Vijay Garg

Adnan Aziz

Thomas W. Keller

xBFT: Byzantine Fault Tolerance with High Performance, Low Cost, and

Aggressive Fault Isolation

by

Ramakrishna Rao Kotla, B.Tech., M.S.E

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

May 2008

To my beloved grand father (Thathayya), Bhujanga Rao Boinpalli.

Acknowledgments

My journey as a graduate student started with an end goal of earning a doctoral degree. But, now, it is the

journey that I cherish more than the achieved goal.

First, I must thank my advisor Mike Dahlin the most. He not only helped me in setting my research

direction but also played a major role in shaping me as a researcher. I am really glad that he has given

me ample freedom to work on problems that interested me whileensuring that I produced the best work

by critiquing dispassionately about various aspects of theproblems that I worked on. His sermons on clear

presentation, implementation, and evaluation of ideas in experimental software systems has influenced the

way I approach, think about, and present problems in systemsresearch. It was a great experience working

with Mike who understands and appreciates the importance ofbuilding practical systems.

I am really fortunate to work closely with Lorenzo Alvisi in the LASR lab. I am impressed as well as

influenced by his research style with emphasis on attention for details which adds scientific rigor to system

research. He is a great mentor who can boost your morale when chips are down and makes the LASR lab a

fun place to work at.

I would like to thank Harrick Vin for introducing me to the LASR lab and for giving me an opportunity

to work on interesting problems. Although we did not closelycollaborate over the years, we discussed on

the problems that I was working on when possible. I must thankAdnan Aziz who served as my advisor in

the ECE department when I started my graduate study. It was mypleasure to write a paper with him based

on a project we have done in his course. I would like to thank Vijay garg who served as a co-advisor for my

Master’s thesis and also as a doctoral dissertation committee member. I would like to thank Tom Keller for

v

serving as my external dissertation committee member and also for providing me an opportunity to work on

power-aware systems research as an intern at IBM Research.

My friendship with Ravi, Amol, Prem, Joseph, Aniket, Jayaram, Sugat, and Praveen made my life easier

even during the toughest of times. I had fun time with Tanmoy,Ravi, ACP, and Arun, who shared apartments

with me at various times during my grad life. I have enjoyed myinteractions with other grad students in the

LASR lab: Jiandan, Jeff, JP, Allen, Ed, Harry, Amit, Prince,Navendu, Nalini, and Taylor. I am thankful to

them for patiently listening to my practice talks. I have enjoyed collaborating with Allen and Ed on Zyzzyva

work. Allen extended and improved the quality of proofs for Zyzzyva protocol. Ed helped in running

Zyzzyva experiments.

Most importantly, this dissertation would not have been possible without the unconditional love and

support from my parents, wife, and other family members. I had a great teacher in my grandfather who

taught me at a very young age that the real learning starts from questioning. My mom taught me the value of

working hard without ever saying a word. My dad taught me the importance of aiming higher and not settle

down with the status quo. I am lucky to be married to priya whose unflinching love and support helped me

safely get through some of the worse testing times. It is no coincidence that my best research work came

after I married her. I will always cherish the wonderful timeI had with my sister and her family in Austin,

especially the time I spent with my niece and nephew who made sure that I smiled even on bad days. I am

grateful for all the support and love that I got from my sisterand brother-in-law. I am also fortunate to have

support from other extended family members.

vi

xBFT: Byzantine Fault Tolerance with High Performance, Low Cost, and

Aggressive Fault Isolation

Publication No.

Ramakrishna Rao Kotla, Ph.D.

The University of Texas at Austin, 2008

Supervisor: Michael D. Dahlin

We are increasingly relying on online services to store, access, share, and disseminate critical information

from anywhere and at all times. Such services include email,digital storage, photos, video, health and

financial services, etc. With increasing evidence of non-fail-stop failures in practical systems, Byzantine

fault tolerant state machine replication technique is becoming increasingly attractive for building highly-

reliable services in order to tolerate such failures. However, existing Byzantine fault tolerant techniques

fall short of providing high availability, high performance, and long-term data durability guarantees with

competitive replication cost.

In this dissertation, we present BFT replication techniques that facilitate the design and implementation

of such highly-reliable services by providing high availability, high performance and high durability with

competitive replication cost (hardware, software, network, management).

First, we propose CBASE, a BFT state machine replication architecture that leverages application-level

parallelism to improve throughput of the replicated systemby identifying and executing independent re-

quests concurrently. Traditional state machine replication based Byzantine fault tolerant (BFT) techniques

vii

provide high availability and security but fail to provide high throughput. This limitation stems from the fun-

damental assumption of generalized state machine replication techniques that all replicas execute requests

sequentially in the same total order to ensure consistency across replicas. Our architecture thus provides a

general way to exploit application parallelism in order to provide high throughput without compromising

correctness.

Second, we present Zyzzyva, an efficient BFT agreement protocol that uses speculation to significantly

reduce the performance overhead and replication cost of BFTstate machine replication. In Zyzzyva, repli-

cas respond to a client’s request without first running an expensive three-phase commit protocol to reach

agreement on the order in which the request must be processed. Instead, they optimistically adopt the or-

der proposed by the primary and respond immediately to the client. Replicas can thus become temporarily

inconsistent with one another, but clients detect inconsistencies, help correct replicas converge on a single

total ordering of requests, and only rely on responses that are consistent with this total order. This approach

allows Zyzzyva to reduce replication overheads to near their theoretical minima.

Third, we design and implement SafeStore, a distributed storage system designed to maintain long-term

data durability despite conventional hardware and software faults, environmental disruptions, and adminis-

trative failures caused by human error or malice. The architecture of SafeStore is based onfault isolation,

which SafeStore applies aggressively along administrative, physical, and temporal dimensions by spreading

data across autonomous storage service providers (SSPs). SafeStore also performs an efficient end-to-end

audit of SSPs to detect data loss quickly and improve data durability by reducing MTTR. SafeStore offers

durable storage with cost, performance, and availability competitive with traditional storage systems.

We evaluate these techniques by implementing BFT replication libraries and further demonstrate the

practicality of these approaches by implementing an NFS based replicated file system(CBASE-FS) and a

durable storage system (SafeStore-FS).

viii

Table of Contents

Acknowledgments v

Abstract vii

List of Tables xiv

List of Figures xvi

Chapter 1. Introduction 1

1.1 Problem 1: High Availability 2

1.2 Problem 2: High Durability 5

1.3 Contributions 6

1.4 Organization 9

Chapter 2. Byzantine Fault Tolerant State Machine Replication 10

2.1 System Model 10

2.2 Service properties 11

2.3 BFT State Machine Replication Architecture 13

Chapter 3. CBASE: High Execution Throughput Byzantine Fault Tolerance 15

3.1 Introduction 15

3.2 Background: BFT systems 18

3.3 High Throughput BFT State Machine Replication 20

3.3.1 Relaxed Order and Parallelizer 21

3.4 Safety and Liveness properties 23

3.4.1 Advantages and Limitations 24

3.5 CBASE Prototype 25

3.5.1 Parallelizer interface 27

3.5.2 Dependence Analysis 28

ix

3.5.3 Example Service: NFS 30

Concurrency Matrix for NFS .. . 31

3.5.4 Additional Optimizations 33

3.6 Evaluation 33

3.6.1 Micro-Benchmark 33

Overhead . 34

Scalability of throughput with application parallelism and resources 35

3.6.2 NFS Micro-Benchmarks 36

Local disk . 37

Iozone micro-benchmark .. . 39

3.6.3 Macro-benchmarks 41

3.7 Related Work 42

3.8 Conclusion 44

Chapter 4. Zyzzyva: Speculative Byzantine Fault Tolerance 45

4.1 Introduction 45

4.1.1 Why another BFT protocol? 47

4.2 System Model 49

4.3 Protocol 50

4.3.1 Node State and Checkpoint Protocol 53

4.3.2 Agreement Protocol 55

4.3.3 View Changes 61

The Case of the Missing Phase .. . 62

The Case of the Uncommitted Request 64

4.3.4 Correctness 65

Safety . 65

Liveness . 67

4.4 Implementation Optimizations 68

4.4.1 Making the Faulty Case Fast 71

4.5 Evaluation 72

4.5.1 Throughput 73

4.5.2 Latency .. . 75

x

4.5.3 Batching 76

4.5.4 Fault Scalability 76

4.5.5 Performance During Failures 79

4.6 Related Work 80

4.7 Conclusion 81

Chapter 5. SafeStore: A Durable and Practical Storage System 83

5.1 Introduction 83

5.2 Architecture and Design Principles 86

5.2.1 Threat model 86

5.2.2 SafeStore architecture 88

5.2.3 Economic viability 91

5.3 Data replication interface 93

5.3.1 Model .. 94

5.3.2 Informed hierarchical encoding 96

5.4 Audit 101

5.4.1 Audit protocol 102

5.4.2 Durability and cost 104

5.4.3 Protocol analysis when SSPs are altruistic 106

5.4.4 Protocol analysis when SSPs are selfish 107

5.4.5 Protocol analysis when SSPs are Byzantine 107

5.5 SSFS 109

5.5.1 SSP .109

5.5.2 Local Server 111

5.6 Evaluation 113

5.6.1 Performance 114

5.6.2 Storage overhead 115

5.6.3 Recovery 116

5.7 Related work 117

5.8 Conclusion 118

Chapter 6. Conclusion 119

xi

Appendices 121

Appendix A. Concurrency Matrix for Network File System (NFS) 122

Appendix B. Durability analysis 124

B.1 Durability 124

B.1.1 Hierarchical encoding observation: 126

B.2 Overhead 127

Appendix C. Audit protocol 129

Appendix D. Audit analysis with selfish SSPs 131

Appendix E. Additional experiments 133

E.1 Audit 133

Appendix F. Protocol Comparisons 135

Appendix G. PKI Protocol Description 140

G.1 Agreement Protocol 140

G.1.1 View Change .. . 146

G.1.2 State Transfer and Garbage Collection 149

Checkpoint Protocol .. . 149

Fill Hole . 150

G.1.3 Key Differences 151

G.1.4 Safety and Liveness 152

Safety . 152

Liveness . 165

G.2 Non-PKI Zyzzyva 166

G.2.1 Agreement 167

G.2.2 View Change. 168

G.2.3 Checkpoint 170

Fill Hole . 170

G.2.4 Safety and Liveness 173

Safety . 173

Liveness . 174

xii

Bibliography 176

Index 189

Vita 190

xiii

List of Tables

4.1 Properties of state-of-the-art and optimal Byzantine fault tolerant service replication sys-
tems toleratingf faults, using MACs for authentication [58], and using a batch size of
b [58]. Bold entries denote protocols that match known lower bounds or those with the low-
est known cost.†It is not clear that this trivial lower bound is achievable.‡The distributed
systems literature typically considers 3 one-way latencies to be the lower bound for agree-
ment on client requests [66, 88, 96]; 2 one-way latencies is achievable if no concurrency is
assumed. This table is explained in Appendix F. 46

4.2 Labels given to fields in messages. 56

5.1 System cost assumptions. Note that aStandalonesystem makes no provision for isolated
backup and is used for cost comparison only. Also, we take into consideration the variable
administrative cost forStandalonesystem [102] used by inefficient (1 admin per 1 TB of
data stored), typical (1 admin per 10 TB), and efficient (1 admin per 100 TB) internet services. 91

5.2 SSP storage interface 109

A.1 NFS concurrency matrix: NFS-con-matrix[18][18][2] 123

C.1 Data storage sub-protocol:In the first phase, the data ownerO sends a storage request to
store a data objectdataob jId with object idob jid for a time duration oftexp to the storage
service providerSSP. The data owner then gathers the signed and verifiable promisary
receipt fromSSPin the second phase. It then stores the receipt fromSSPredundantly at all
storage service providers defined by setS in the third phase. 129

C.2 Routine audit sub-protocol: Auditor periodically sends a challenge to the SSP(auditee).
The challenge includes a noncechal and a list of objects being audited (listo f Ob jects). For
every data objectdataob jId in the list, SSP computes the hash valueH(chal+ dataob jId).
SSP sends a signed response back to the auditor for every object. The response includes ob-
ject idob jId, current timetime, and the hash valueH(chal+dataob jId). SSP can optionally
sendFAILUREmessage if it finds data object to be lost or corrupted. 129

C.3 Spot check sub-protocol:Auditor spot checks the responses of routine audit protocolby
reading data for a subset of objects. Auditor gathers data byreading data from the SSP being
audited or other SSPs at which the data is redundantly storedor the data ownerO. 130

C.4 Proof of mis-behavior (POM): Auditor can generate a verifiable proof of mis-behavior, as
described in this table, against an SSP if an SSP lies during the routine audit protocol by
sending a fake hash value. It does so by gathering data for some random subset of objects. . 130

D.1 Definitions . 131

xiv

F.1 Overhead comparison of various protocols at clients andservers. The protocols under com-
parison tolerate f failures. Message overhead is measured as the number of messages sent
or received. Here we have a setup with b clients with 1 request/client and the protocols use
a batch size of b. The above table includes the total overheadfor b clients in the clients col-
umn and per client overhead can be calculated by dividing it by b. The first two sub-tables
(message and cryptographic overheads) list the overhead without the preferred quorum opti-
mization and the last two sub-tables assume preferred quorum optimization. The overheads
for Zyzzyva5 is listed in the following table. 138

F.2 Here is the overheads column for Zyzzyva5 (continued from previous table). 139

G.1 Labels given to fields in messages. 141

xv

List of Figures

1.1 Complexity: Design space complexity of BFT replicationtechnique with existing BFT pro-
tocols (PBFT [55],QU [45],HQ [63]). 3

1.2 BFT protocol overhead: Performance comparison of state-of-the-art BFT protocols (PBFT [55],
Q/U [45], HQ [63]) with unreplicated service. (a) Throughput versus clients: Peak through-
put of unreplicated service is at least 2x better than PBFT, 4x better than Q/U, and 10x better
than HQ (b) Throughput versus latency: With increasing loadon the system, unreplicated
service sustains lower latency for significantly higher throughput than existing BFT protocols. 4

1.3 Application throughput: The traditional BFT state machine replication limits the through-
put of replicated systems by its inability to execute application requests concurrently. We
plot the measured throughput of a traditional BFT replicated system (PBFT [55]) that exe-
cutes requests sequentially and compare it with the measured throughput of a hypothetical
BFT system that can execute requests concurrently. We vary available concurrency (number
of requests that can be executed concurrently) of the application using the sleep micro-
benchmark [85]. The hypothetical BFT system provides significantly higher throughput
than PBFT. .. 5

2.1 BFT State Machine Replication Architecture 13

3.1 Traditional BFT Architecture 19

3.2 CBASE: High execution throughput BFT state machine replication architecture 21

3.3 CBASE-FS: High throughput Byzantine fault tolerant NFS. 30

3.4 Overhead of CBASE versus BASE 34

3.5 Scalability of throughput: (a) With varying hardware resources (b) With varying levels of
application parallelism whereparallelism factor is varied from minimum(pf=1) to infin-
ity(pf=inf). 35

3.6 Throughput versus response time (a) With 4KB writes to evaluate CBASE protocol overhead
(b) With 4KB writes and artifical delay to evaluate benefits ofpipelining in CBASE 37

3.7 Throughput with multiple disks 39

3.8 IOZONE: Throughput versus response time for (a) Write microbenchmark (b) Random mi-
crobenchmark 40

3.9 Andrew 100 benchmark 41

3.10 Postmark benchmark 42

xvi

4.1 Protocol communication pattern within a view for (a) gracious execution and (b) faulty
replica cases. The numbers refer to the main steps of the protocol numbered in the text. . . . 52

4.2 State maintained at each replica. 54

4.3 Realized throughput for the 0/0 benchmark as the number of client varies for systems con-
figured to toleratef = 1 faults. 73

4.4 Latency for 0/0, 0/4, and 4/0 benchmarks for systems configured to toleratef = 1 faults. . . 74

4.5 Latency vs. throughput for systems configured to tolerate f = 1 faults. 75

4.6 Latency vs. throughput for systems configured to tolerate f = 1 faults. 76

4.7 Fault scalability: Peak throughputs 77

4.8 Fault scalability using analytical model 78

4.9 Realized throughput for the 0/0 benchmark as the number of client varies whenf non-
primary replicas fail to respond to requests. 79

5.1 SafeStore architecture 88

5.2 Comparison of SafeStore cost v. accesses to remote storage (as a percentage of straw-man
Standalone local storage) varies. 92

5.3 Hierarchical encoding 94

5.4 (a) Durability with Black-box interface with fixed intra-SSP redundancy (b) Informed hier-
archical encoding 96

5.5 (a) Informed hierarchical encoding with non-uniform distribution (b) Durability with differ-
ent MTTDL and MTTR for node failures across SSPs 98

5.6 Informed hierarchical encoding with MTTDL ofcorrelated failuresset to 10 years with
MTTR of 5 days, .. 99

5.7 Informed hierarchical encoding (a) With 69 total nodes distributed uniformly across 3 SSPs,
(b) With 69 nodes distributed non-uniformly across 3 SSPs with 10, 20, and 39 nodes each. 100

5.8 (a) Time to detect SSP data loss via audit with varying amounts of resources dedicated to
audit overhead assuming honest SSPs. (b) Durability with varying MTTD. (c) Impact on
overall durability with a dishonest SSP. In (a) and (c) , we use the same hardware cost model
as in Figure 5.2 for disk capacity and WAN network transfers,add a cost of $0.031 per mil-
lion operations for cryptographic operations–based on cryptographic benchmark results [5]
for AMD opteron and using a conservative estimate of cpu costof $850 (for a branded 1U
rack server cost [42] which includes 1TB disk cost although we already included storage
cost) with a 5 year TCO, add a cost of $0.027 per million IO operations for disk reads –
using a conservative estimate for disk cost of $1000/TB with100 operations/sec with a 10
year life time, and assume 20% of the SSP’s data are read/written per month by the owner
(separate from audits). In (c) we assume auditing is given upto 20% of total storage cost. . . 105

5.9 IOZONE : (a) Read (b) Write (c) Latency versus Throughput. 112

5.10 (a) Postmark: End-to-end performance (b) Storage overhead (c) Recovery 114

xvii

E.1 Audit (a) Time to detect SSP data loss via audit with varying amounts of resources dedicated
to audit overhead assuming honest SSPs with (3,2) inter-SSPredundancy. (b) Impact on
overall durability with a dishonest SSP with varying audit costs (20% and 100%) 133

xviii

Chapter 1

Introduction

We are increasingly relying on online services to store, access, share, and disseminate critical information

from anywhere and at all times. Such services include email [10, 19, 39], digital storage [1, 21], photos [20,

28, 40], video [11, 41], health [12], financial [32], etc.

These services have two important requirements. First, we would like these services to be highly-available

to provide correct service or data without interruption, and highly-durable to store data correctly for long

durations spanning many years or even decades. Second, these services have to provide high performance

–throughput [71], and latency [65]–to meet service level performance guarantees1 in order to support ap-

plications using these services such as Amazon’s S3 storage[1], Google’s GMail [10], Microsoft’s Sky-

Drive [21].

We need to overcome several challenges to meet these requirements. First, such a highly-reliable (highly-

available and highly-durable) service has to be robust to broad range of failures such as media failures [105,

120, 133], software bugs [27, 106, 135], user errors [104, 117], administrator errors [6, 43, 73, 101], insider

attacks [37, 51], malware threats [27, 125], geographic failures [9, 15], and organizational failures [34, 38].

Second, we have to provide better reliability with performance and cost (software, hardware, management,

storage, network) comparable to that of existing commercial practice2.

1At Amazon.com [65], an example SLA guarantees a service thatprovides a response time within 300ms for peak load of 99.9%
of requests for a peak client load of 500 requests per second.

2For example, Google file system [71] uses three-way replication to protect data from failures.

1

The goal of our research is to facilitate the design and implementation of highly-reliable replicated sys-

tems to support these services. In this dissertation, as a step towards realizing this goal, we develop Byzan-

tine fault tolerant replication techniques that can tolerate arbitrary failures while meeting the following

practicality requirements: (1) high throughput [71], (2) low latency [65], (3) low system cost (hardware,

software, network, management) [75, 102, 136].

1.1 Problem 1: High Availability

There is a large body of research that uses state machine replication [119] technique to improve availability

of systems in the presence of failures. State machine replication technique replicates application state onto

multiple servers (replicas) instead of single server to tolerate replica failures. Replicas co-ordinate to provide

the same abstraction of centralized service of an unreplicated system to the end application. Some of these

techniques [87, 90] can only tolerate a weaker set of failures that are caused byfail-stop or benignfaults

where faulty components fail by only stopping or by omittingsome steps. Byzantine Fault Tolerant (BFT)

state machine replication techniques [44, 45, 55, 63, 77, 111] can tolerate a stronger set of failures caused

by Byzantine faultswhere faulty components can deviate from their specifications in arbitrarily bad ways.

Byzantinefaults subsumebenignas well asmaliciousfaults.

Three trends make Byzantine Fault Tolerant (BFT) replication increasingly attractive for building reliable

and practical systems.

1. The mounting evidence of non-fail-stop behavior in real systems [37, 50, 51, 98, 101, 106, 123, 134,

135] suggest that BFT may yield significant benefits even without resorting ton-version program-

ming [60, 81, 111].

2. The growing value of data [7, 12, 32, 114] and falling costsof hardware [8, 79] make it advantageous

for service providers to trade increasingly inexpensive hardware for the peace of mind potentially

2

 LOW

LATENCY or HIGH

THROUGHPUT ? PBFT

 PBFT

CONTENTION ?

REQUEST
 HIGH

 LOW
REPLICATION

COST ?

 HQ QU

YES

YES

NO

NO

LOW LATENCY HIGH THROUGHPUT

Figure 1.1: Complexity: Design space complexity of BFT replication technique with existing BFT protocols
(PBFT [55],QU [45],HQ [63]).

provided by BFT replication.

3. The improvements to the state of the art in BFT replicationtechniques [45, 55, 63, 85, 111, 136] make

BFT replication increasingly practical by narrowing the gap between BFT replication costs and costs

already being paid for non-BFT replication. For example, bydefault, the Google file system uses

3-way replication of storage, which is roughly the cost of BFT replication for f = 1 failures with 4

agreement nodes and 3 execution nodes [136].

Challenges We have to address the following drawbacks of existing approaches using BFT state machine

replication for using this technique to build practical systems with high availability.

• BFT is complex: Figure 1.1 (based on the analysis provided by cowling et al. [?]) captures the

complexity of the state-of-the-art in BFT protocols where the system designers have to choose a

protocol based on predicted workload and application characteristics. Such complexity represents

a barrier to adoption of BFT techniques because it requires asystem designer to choose the right

technique for a workload and then for the workload not to deviate from expectations.

3

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100

T
hr

ou
gh

pu
t (

K
op

s/
se

c)

Number of clients

Unreplicated

PBFT (B=10)

HQ

Q/U max throughput

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 20 40 60 80 100 120 140

La
te

nc
y

pe
r

re
qu

es
t (

m
s)

Throughput (Kops/sec)

Unreplicated

P
B

F
T

 (
ba

tc
h

si
ze

=
10

)

H
Q

Q
/U

 m
ax

 th
ro

ug
hp

ut

Q/U best latency

(a) (b)

Figure 1.2: BFT protocol overhead: Performance comparisonof state-of-the-art BFT protocols (PBFT [55],
Q/U [45], HQ [63]) with unreplicated service. (a) Throughput versus clients: Peak throughput of unrepli-
cated service is at least 2x better than PBFT, 4x better than Q/U, and 10x better than HQ (b) Throughput
versus latency: With increasing load on the system, unreplicated service sustains lower latency for signifi-
cantly higher throughput than existing BFT protocols.

• BFT protocol overheads are significant:Figure 1.2 suggests that BFT protocols impose significant

overhead in peak throughput and latency compared to unreplicated service.

• BFT limits application throughput: The traditional BFT state machine replication technique [55]

require non-faulty replicas to execute requests sequentially in the same order, completing execution

of one request before beginning the execution of next one, toensure that all non-faulty replicas are

in a consistent state. This sequential execution of requests can severely limit the throughput of

the applications–such as databases, file systems, and web servers-that are designed to achieve high

throughput via concurrency. Figure 1.3(a) shows that such alimitation of traditional BFT replicated

systems results in a significant loss of performance by not allowing replicas to execute requests con-

currently.

4

 0

 500

 1000

 1500

 2000

 2500

 0 20 40 60 80 100 120 140 160 180
T

h
ro

u
g

h
p

u
t

(O
p

s
p

er
 s

ec
)

Number of clients

Traditional BFT (PBFT)

BFT with concurrency=5

BFT with concurrency=10

BFT with concurrency=20

BFT with concurrency=100

Figure 1.3: Application throughput: The traditional BFT state machine replication limits the throughput
of replicated systems by its inability to execute application requests concurrently. We plot the measured
throughput of a traditional BFT replicated system (PBFT [55]) that executes requests sequentially and com-
pare it with the measured throughput of a hypothetical BFT system that can execute requests concurrently.
We vary available concurrency (number of requests that can be executed concurrently) of the application us-
ing the sleep micro-benchmark [85]. The hypothetical BFT system provides significantly higher throughput
than PBFT.

1.2 Problem 2: High Durability

The design of storage systems that provide data durability on the time scale of decades is an increasingly

important challenge as more valuable information is storeddigitally [14, 49, 114]. For example, data from

the National Archives and Records Administration indicatethat 93% of companies go bankrupt within a

year if they lose their data center in some disaster [7], and agrowing number of government laws [12, 32]

mandate multi-year periods of data retention for many typesof information [16, 104].

Against a backdrop in which over 34% of companies fail to testtheir tape backups [6] and over 40% of

individuals do not back up their data at all [43], multi-decade scale durable storage raises two technical

challenges. First, there exist a broad range of threats to data durability including media failures [105,

120, 133], software bugs [106, 135], malware [27, 125], usererror [104, 117], administrator error [73, 101],

organizational failures [34, 38], malicious insiders [37,51], and natural disasters on the scale of buildings [9]

5

or geographic regions [15]. Requiring robustness on the scale of decades magnifies them all: threats that

could otherwise be considered negligible must now be addressed. Second, such a system has to be practical

with cost, performance, and availability competitive withtraditional systems.

Storage outsourcing is emerging as a popular approach to address some of these challenges [75]. By

entrusting storage management to a Storage Service Provider (SSP), where “economies of scale” can min-

imize hardware and administrative costs, individual usersand small to medium-sized businesses seek cost-

effective professional system management and peace of mindvis-a-vis both conventional media failures and

catastrophic events.

Challenges Unfortunately, relying on an SSP is no panacea for long-termdata integrity. SSPs face the

same list of hard problems outlined above and as a result evenbrand-name ones can still lose data [13, 18].

To make matters worse, clients often become aware of such losses only after it is too late. This opaqueness

is a symptom of a fundamental problem: SSPs are separate administrative entities and the internal details of

their operation may not be known by data owners. While most SSPs may be highly competent and follow

best practices punctiliously, some may not. By entrusting their data to back-box SSPs, data owners may free

themselves from the daily worries of storage management, but they also relinquish ultimate control over the

fate of their data. In short, while SSPs are an economically attractive response to the costs and complexity

of long-term data storage, they do not offer their clients any end-to-end guarantees on data durability, which

we define as the probability that a specific data object will not be lost or corrupted over a given time period.

1.3 Contributions

We design a reliable system that addresses the above problems by separating [77, 109] the two concerns of

short-term availability (ability to provide service when desired) and long-term durability (ability to store data

for longer durations). We fundamentally rethink BFT state machine replication techniques to provide high

6

availability while reducing complexity, reducing replication protocol overhead, and improving application

performance by exploiting application concurrency. We usethe principle of aggressive fault isolation to

ensure high data durability despite conventional hardwareand software faults, environmental disruptions,

and administrative failures. In particular, this dissertation makes following key contributions in building

highly available and durable systems.

1. CBASE: High Execution Throughput Byzantine Fault Tolerance. We propose a simple change

to Byzantine Fault Tolerant state machine replication libraries in order to provide high throughput.

Traditional state machine replication based Byzantine fault tolerant (BFT) techniques provide high

availability and security but fail to provide high execution throughput. This limitation stems from the

fundamental assumption of generalized state machine replication techniques that all replicas execute

requests sequentially in the same total order to ensure consistency across replicas. CBASE is a high

execution throughput Byzantine fault tolerant architecture that uses application-specific information

to identify and concurrently execute independent requests. Our architecture thus provides a general

way to exploit application parallelism in order to provide high throughput without compromising

correctness.

Although this approach is extremely simple, it yields dramatic practical benefits. When sufficient

application concurrency and hardware resources exist, CBASE provides orders of magnitude im-

provements in throughput over BASE, a traditional BFT architecture. CBASE-FS, a Byzantine fault

tolerant file system that uses CBASE, achieves twice the throughput of BASE-FS for the IOZone

micro-benchmarks even in a configuration with modest available hardware parallelism.

2. Zyzzyva: Speculative Byzantine Fault Tolerance.We propose Zyzzyva, a BFT state machine repli-

cation protocol, that uses speculation to reduce replication overhead and simplify the design of BFT

7

state machine replication. In Zyzzyva, unlike in traditional BFT protocols [55, 85, 111], replicas spec-

ulatively execute requests without running an expensive agreement protocol to definitively establish

the order. As a result, correct replicas’ states may diverge, and replicas may send different responses

to client libraries. Nonetheless, client’s applications observe the traditional and powerful abstraction

of a replicated state machine that executes requests in a linearizable [55] order because replies carry

with them sufficient history information for client libraries to determine if the replies and history are

stable and guaranteed to be eventually committed. If a speculative reply and history are stable, then

client library passes the reply to the client application. Otherwise, the client waits until the system

converges on a stable reply and history.

This approach allows Zyzzyva to reduce replication overheads to near their theoretical minima and

significantly improve performance–throughput and latency–of the system. We implemented Zyzzyva

replication library that provides a peak throughput that iswithin 35% of unreplicated service.

3. SafeStore: A Durable and Practical Storage System.We implement SafeStore, a distributed stor-

age system, that is designed to provide long-term data durability despite conventional hardware and

software faults, geographical catastrophes, and administrative failures caused by human error or mal-

ice. The architecture of SafeStore is based on fault isolation, which SafeStore applies aggressively

along administrative, physical, and temporal dimensions by spreading data across autonomous storage

service providers (SSPs). However, current storage interfaces provided by SSPs are not designed for

high end-to-end durability.

Safestore uses a new storage system architecture that (1) spreads data efficiently across autonomous

SSPs using informed hierarchical erasure coding that, for agiven replication cost, provides several

additional 9’s of durability over what can be achieved with existing black-box SSP interfaces, (2) per-

forms an efficient end-to-end audit of SSPs to detect data loss that, for a 20% cost increase, improves

8

data durability by two 9’s by reducing MTTR(mean time to recovery), and (3) offers durable storage

with cost, performance, and availability competitive withtraditional storage systems. We instantiate

and evaluate these ideas by building a SafeStore-based file system with an NFS-like interface.

In conclusion, in this dissertation, we design and implement BFT replication techniques to support highly-

reliable services by providing (1) high-availability withcosts, latency, and throughput competitive with

existing commercial practice, and (2) high-durability by tolerating failures due to broad range of threats

over long durations.

1.4 Organization

In chapter 2, we present the system model and architecture. In chapter 3, we present CBASE, a high-

throughput BFT architecture, that provides a general way toexploit application parallelism in order to pro-

vide high application throughput in BFT replicated systems. In chapter 4, we present Zyzzyva, a speculative

BFT state machine protocol, that uses speculation to reducereplication protocol overheads and simplify the

design of BFT replicated systems. In chapter 5, we describe SafeStore, a highly durable distributed storage

system, that uses aggressive fault isolation to ensure long-term data durability. We present related work in

chapter 6, and chapter 7 summarizes this dissertation.

9

Chapter 2

Byzantine Fault Tolerant State Machine Replication

This chapter provides a brief overview of Byzantine fault tolerant(BFT) state machine replication based

approach to build reliable systems. Here we explain the system model, service properties, and architecture

of existing BFT state machine protocols. We use the same system model throughout this dissertation unless

otherwise stated.

2.1 System Model

State machine replication [119] is a general technique thatcan be used to replicate any service that can

be modeled as a deterministic state machine replication. These services can have operations that perform

arbitrary computations provided they are deterministic: the result and new state produced when an operation

is executed must be completely determined by the current state and the operation arguments. However, some

common forms of non-determinism in practical systems can behandled by transforming [57, 111] non-

deterministic state machines into deterministic state machines by abstracting non-deterministic operations

in a way that is not visible to the external world.

Such a replicated state machine provides the same service asunreplicated state machine but improves

reliability by tolerating some number of faulty replicas. BFT state machine replication is a form of state

machine replication that can tolerateByzantinefaulty replicas (described below).

The replicated service is implemented byn replicas. Client issues requests to the replicated serviceto

invoke operations and wait for replies. Client and replicasare correct if they follow the BFT state machine

10

replication algorithm (PBFT [55], HQ [63]) used by the replicated service. The clients and replicas run

on different nodes in an asynchronous distributed system where nodes are connected by unreliable network

links. The network may fail to deliver messages, delay them,duplicate them, or deliver them out of order.

We do not assume any bound on the relative processing speeds of the nodes.

BFT replication protocols [55, 63, 136] use public-key digital signatures (PK) to authenticate messages.

These protocols implement a non-PK variant of the protocol that replaces [56] expensive public-key digital

signatures with MAC(message authentication codes). In thepublic-key version of a protocol, any node can

authenticate message by signing the message it sent. We denote a messageX signed by principal (node or

replica)Y’s public key as〈X〉σY . These protocols use cryptographic hash function D to compute message

digests.

These protocols assume a Byzantine failure model where faulty nodes (clients and replicas) can deviate

from the protocol specification arbitrarily. They can stop functioning, corrupt their internal replica state, send

arbitrary messages, etc. These protocols also assume a strong adversary that can coordinate faulty nodes,

delay communication, or delay correct nodes in order to cause the most damage to the replicated service.

But they do however assume that the adversary cannot break cryptographic techniques like collision-resistant

hashes, encryption, and signatures.

2.2 Service properties

BFT replication protocols [55, 63, 136], providesafetyand livenessproperties [93] assuming that no more

than⌊n−1/3⌋ replicas are faulty over the lifetime of the system.

The safety property [57] of BFT protocols ensure correct behavior of the replicated service in an asyn-

chronous distributed system. BFT protocols provide a modified form of linearizability [76] (takes into

consideration Byzantine faulty clients [57]) where the replicated service behaves like a centralized service

11

that executes requests atomically one at a time. In fail-stop model, safety can be guaranteed even when all

replicas fail whereas in a Byzantine fault model safety requires a bound on the number of faulty replicas

as they can behave arbitrarily bad. However, the traditional BFT protocols [55, 63, 136] tolerate optimal

number of faults as it is impossible [57] to tolerate more than a third of faulty replicas. Safety is ensured

regardless of the number of faulty clients (even when they collude among themselves or with faulty repli-

cas) by ensuring that operations performed by faulty clients are seen in a consistent way by all non-faulty

replicas. The damage that can be done by faulty clients is controlled using access control and authentication

mechanisms before operations are invoked on the state machine.

The liveness property ensures that clients eventually receive replies from the replicated service and com-

plete their operations. BFT protocols cannot guarantee liveness in an asynchronous distributed system as

it is impossible [69] to implement consensus in such a systemmodel. BFT protocols guarantee liveness

during the intervals when the assumption of weak synchrony (such as bounded fair link [136]) holds where

the messages are processed by the receiver within some fixed (but potentially unknown) worst case delay

when they are sent (and retransmitted until the replies are recieved).

BFT replicated systems fail to provide correct service if some of these assumptions fail. For example,

more than a third of replicas may fail due to correlated faultevents such as administrative error [73, 101](if

all these replicas belong to the same administrative domain), natural calamities [15](if all these replicas are

co-located), software bug [106, 135] (if they use same version of the application code), media failures [105,

120, 133] (if they use same batch of disks from a single vendor) etc. Also, a recent study on malicious

insider attacks [37, 51] suggest that a faulty client that has access to data shared by correct clients can delete

or corrupt the data resulting in significant financial and other losses. The chances of such correlated faults

happening is higher when such a replicated service is used tostore data durably over long durations spanning

many years or even decades. Such a durable storage service isrequired for applications that store digital

12

Execution

AgreementAgreement Agreement Agreement Agreement

REPLICAS

CLIENTS

Execution Execution Execution

Figure 2.1: BFT State Machine Replication Architecture

archives, photos, health information, etc. In chapter 5, wepresent the design and implementation of a back-

end durable storage system that can be used by BFT replicatedsystems to provide high data durability in

the presence of such correlated replica failures or client failures.

2.3 BFT State Machine Replication Architecture

Figure 2.1 illustrates a typical BFT state machine replication architecture. Clients issue requests to the

replicated service. Conceptually, replicas consist of twostages, an agreement stage and an execution stage.

In reality, these two stages may be either tightly integrated on a single machine [55, 111] or implemented on

different machines [136].

The agreement stage runs a distributed agreement protocol (such as such as three phase multicast protocol

in PBFT [55]) to ensure that all non-faulty replicas eventually receive all the client requests and also agree

on the request order in which the requests are delivered to the execution stage. Such an agreement protocol

ensures that all non-faulty replicas agree on the same orderdespite upto⌊n−1/3⌋ replicas can be Byzantine

faulty. In chapter 4, we present the design and implementation of a new BFT agreement protocol that reduces

replication overhead-performance and cost- and simplifiesthe design of BFT replicated systems.

The execution stage implements the application state machine and executes client requests in the order

delivered by the agreement protocol. In chapter 3, we present the design and implementation of new BFT

state machine replication architecture that improves the throughput of the execution stage.

13

Such a BFT architecture ensures thesafetyproperty because all non-faulty replicas start from the same

initial state produce the same set of outputs and reach the same final state after executing the client requests

in the same order sequentially.

14

Chapter 3

CBASE: High Execution Throughput Byzantine Fault Tolerance

In this chapter, we propose a high execution throughput Byzantine fault tolerant (BFT) architecture that

uses application-specific information to identify and concurrently execute independent requests. Our ar-

chitecture overcomes the limitation of existing BFT techniques by proposing a simple change to the BFT

replication architecture that provides a general way to exploit application parallelism in order to provide

high application throughput in the execution stage. Although this approach is extremely simple, it yields

dramatic practical benefits.

We begin by providing some background in section 3.2, and then explain our approach in section 3.3.

We explain the design and implementation of CBASE prototypebased on this architecture and the BFT

replicated network file system (CBASE-FS) in section 3.5. Insection 3.6, we present the evaluation of our

CBASE prototype as well as CBASE-FS file system to demonstrate the practical benefits.

3.1 Introduction

Recent work on Byzantine fault tolerant (BFT) state machinesystems has demonstrated that generalized

state machine replication can be used to improve robustness[45, 55, 63] and confidentiality [136] of a service

in the presence of Byzantine failures due to hardware crashes [105, 120, 133], software bugs [27, 106, 135],

operator errors [6, 43, 73, 101], and malicious attacks [27,37, 51, 125]. Furthermore, this work suggests

that this approach can be used to build practical systems as it adds low latency overhead [55, 111, 136], can

recover proactively from faults [56] and make use of multiple existing off-the-shelf implementations [111] to

avoid correlated failures, and can minimize replication ofthe application-specific parts of the system [136].

15

However, current BFT state machine systems can fail to provide high throughput. They use generalized

state machine replication techniques that require all non-faulty replicas to execute all requests sequentially

in the same order, completing execution of each request before beginning execution of the next one. This se-

quential execution of requests can severely limit the throughput of systems designed to achieve high through-

put via concurrency [130]. Unfortunately, this concurrency-dependent approach lies at the core of many (if

not most) large-scale network services such as file systems [47], web servers [130], mail servers [115], and

databases [111, 127]. Furthermore, technology trends generally make it easier for hardware architectures

to scale throughput by increasing the number of hardware resources (e.g., processors, hardware threads, or

disks) rather than increasing the speed of individual hardware elements. Although current BFT systems

like PBFT [55] and BASE [111] implement optimizations such as request batching in order to amortize

their replication overheads due to agreement overheads, sequential execution of requests still imposes a

fundamental limitation on application-level concurrency.

We address this problem by introducing a simple addition to the existing BFT state machine replication ar-

chitectures that allows throughput of the system to scale with application parallelism and available hardware

resources. Our architecture separates agreement from execution [136] and inserts a general parallelizer

module between them. The parallelizer uses application-supplied rules to identify and issue concurrent

requests that can be executed in parallel without compromising the correctness of the replicated service.

Hence, the throughput of the replicated system scales with the parallelism exposed by the application and

with available hardware resources. More broadly, in our architecture replicas execute requests according

to a partial order that allows for concurrency as opposed to the total order enforced by traditional BFT

architectures.

We demonstrate the benefits of our architecture by building and evaluating a prototype library for con-

structing Byzantine fault-tolerant replicated services called CBASE (Concurrent BASE). CBASE extends

16

the BASE system [111] which uses the traditional BFT state machine replication architecture. We use a

set of micro-benchmarks to stress test our system and find that when sufficient application concurrency and

hardware resources exist, CBASE provides orders of magnitude improvements in throughput over the tra-

ditional BFT architecture. We also find that for applications or hardware configurations that can not take

advantage of concurrency, CBASE adds little overhead compared to the optimized BASE system. As a case

study, we implement CBASE-FS, a replicated BFT file system, to quantify the benefits for a real application.

CBASE-FS achieves twice the throughput of BASE-FS for the IOZone micro-benchmarks even in a config-

uration with modest available hardware parallelism. When we artificially simulate more hardware resources,

CBASE’s maximum write throughput scales by over an order of magnitude compared to the traditional BFT

architecture.

The main contribution of this study is a case for changing thestandard architecture for BFT state machine

replication to include a parallelizer module that can expose potentially concurrent requests to enable parallel

execution. Based on this study, we conclude that this idea isappealing for two reasons. First, it is simple.

It requires only a small change to the existing standard BFT replication architecture. Second, it can provide

large practical benefits. In particular, this simple changecan improve the throughput of some services

by orders of magnitude, making it practical to use BFT state machine replication for modern commercial

services that rely on concurrency for high throughput.

The main limitation of this approach is that safely executing multiple requests in parallel fundamentally

requires application-specific knowledge of inter-requestdependencies. But, we do not believe this limitation

undermines the argument for adding a parallelizer model to BFT state machine replication libraries. In

particular, our prototype parallelizer implements a set ofdefault rules that assume that all requests depend

on all other requests. Applications that are satisfied with sequential execution can simply leave these default

rules in place, and applications that desire increased throughput can override these rules to expose their

17

concurrency to the replication library. Furthermore, designers of such applications can take an iterative

approach, first developing simple rules that expose some application concurrency and later developing more

sophisticated rules that expose more concurrency if required for performance.

The rest of this chapter proceeds as follows. Sections 4.2 and 3.2 outline our system model and review

the standard architecture for existing BFT state machine replication systems. Then Section 5.2 describes

our proposed architecture and Section 3.5 describes our prototype replication library, CBASE. Section 5.6

discusses our experimental evaluation, Section 4.6 discusses related work, and Section 5.8 summarizes our

conclusions.

3.2 Background: BFT systems

BFT state machine replication [55, 56, 111] based systems provide high availability by replicating the server

and use a distributed algorithm to coordinate the replicas.Such a system providessafetyand liveness

guarantees while tolerating no more than a third of faulty replicas (⌊(n-1)/3⌋ faulty replicas where n is

the total number of replicas). Safety requires that the replicated service provides linearizability(modified

to account Byzantine-faulty clients [57]) where the service behaves like a centralized implementation that

executes requests atomically one at a time. Liveness requires that the correct clients eventually receive

replies to their requests.

Figure 3.1 illustrates a typical BFT state machine replication architecture. Clients issue requests to the

replicated service. Conceptually, replicas consist of twostages, an agreement stage and an execution stage.

In reality, these two stages may be either tightly integrated on a single machine [55, 111] or implemented on

different machines [136]. The agreement stage runs a distributed agreement protocol to agree on the order

of client requests and the execution stage executes all of the requests in the same order.

Each execution node maintains a state machine that implements the desired service. A state machine

18

Execution

AgreementAgreement Agreement Agreement Agreement

REPLICAS

CLIENTS

Execution Execution Execution

Figure 3.1: Traditional BFT Architecture

consists of a set of state variables that encode the machine’s state and a set of commands that transform its

state. A state machine takes one or more of the following actions to execute a command:

1. Read a subset of the state variables, called the read-set R.

2. Modify a subset of the state variables, called the write-set W.

3. Produce some output O to the environment.

A command is non-deterministic if its write-set values or output are not uniquely determined by its input and

read-set values; otherwise it is deterministic. A state machine is called a deterministic state machine if all

commands are deterministic. For safety, all non-faulty replicas starting from the same state should produce

the same set of outputs and reach the same final state after executing the same set of requests from clients.

Traditional state machine replications assume deterministic state machines or use deterministic methods to

work around [55] non-determinism in the applications. The following requirements [119] ensures safety of

a replicated system:

Schnieder’s classical technique [119] for constructing deterministic replicated state machines ensure

safety by enforcing:

1. Agreement: Every non-faulty state machine replica receives every request

19

2. Order: Every non-faulty state machine replica processes the requests it receives in the same relative

order.

Traditional BFT state machine replication approaches [55]provide safety in an asynchronous system

model where network may fail to deliver messages, delay them, duplicate them, or deliver them out of

order, and there is no bound on the difference in computational speeds of nodes on which state machines

are replicated. However, it is impossible [69] to guaranteeliveness in a truly asynchronous system. Hence,

these systems guarantee liveness during the intervals whenthe assumption of weak synchrony (formally

defined as bounded fair links [136]) holds where the messagesare processed by the reciever within some

fixed (but potentially unknown) worst case delay when they are sent and potentially retransmitted until they

are recieved.

Although this approach can provide high-availability by tolerating faults, it can fail to provide high

throughput because the Order requirement does not, in general, allow replicas to execute requests concur-

rently. In particular, unless strong assumptions are made about the state machine’s internal implementation,

execution nodes must finish executing requesti before executing requesti + 1. Otherwise, concurrency

within a state machine could introduce non-determinism into the system, which could cause different repli-

cas’ state to diverge.

3.3 High Throughput BFT State Machine Replication

Figure 3.2 illustrates our high throughput state machine replication architecture, where we maintain the

separation between the agreement and execution stages and introduce aparallelizer between them. The

parallelizer takes a totally ordered set of requests from the agreement stage and uses application-supplied

rules to first identify independent requests and then issue them concurrently to the execution stage. A thread

pool or event based architecture [130] in the execution stage can then execute the requests in parallel to

improve system throughput.

20

CLIENTS

Agreement AgreementAgreementAgreement

Parallelizer ParallelizerParallelizerParallelizer

Execution Execution Execution Execution

REPLICAS

Figure 3.2: CBASE: High execution throughput BFT state machine replication architecture

3.3.1 Relaxed Order and Parallelizer

The key idea of high throughput state machine replication isto relax Schneider’sOrder [119] requirement

on state machine replication (defined above) to allow concurrent execution of independent requests without

compromising safety.

We say that two requests aredependentif the write-set of one has at least one state variable in common

with the read-set or write-set of the other. More formally, we define dependence as follows: Requestr i , with

read-set Ri and write-set Wi and requestr j , with read-set is Rj and write-set Wj , aredependent requestsif

any of the following conditions is true (1) Wi ∩W j 6= φ, (2) Wi ∩Rj 6= φ, or (3) Ri ∩W j 6= φ.

Given this notion of dependence, we refine Schneider’sOrder requirement for replicated state machine

to ensure high throughput. The modified requirements that ensures safety while providing high throughput

are as follows:

1. Agreement: Every non-faulty state machine replica receives every request

2. Relaxed order: Every non-faulty state machine replica processes any pair of dependent requests it

receives sequentially and in the same relative order.

21

Relaxed order provides the same safety property of traditional state machine replication for two reasons.

First, like traditional state machine replication,Relaxed Orderensures thatdependent requestsare executed

strictly in the same order at all non-faulty replicas by following thetotal orderprovided by the agreement

stage. Second, unlike traditional state machine replication, relaxed orderallows concurrent execution of

concurrent requestswithout affecting safety because these requests can be commuted safely as they modify

disjoint sets of state variables. The result of executing concurrent requests in any order places the system in

the same final state with the same output visible to the external world1.

Notice that under the Relaxed Order requirement, concurrent requests can be processed in parallel. Thus,

with the Relaxed Order requirement, all non-faulty replicas execute requests in the samepartial order as

opposed to the traditional architecture where all correct replicas execute requests in the sametotal order.

In the CBASE architecture, the parallelizer uses application-specific information to take advantage of the

Relaxed Order requirement. The parallelizer transforms a totally ordered schedule of requests provided by

the agreement protocol into a partially ordered schedule based on application semantics.

A sound parallelizerwith following properties meets the safety requirements ofstate machine replication:

1. Partial order: For any two requests ri and rj such that ri and rj are dependent and ri precedes rj in

the total order established by the agreement stage, parallelizer completes executing request ri before

it begins to execute request rj .

2. Non-blocking: The parallelizer eventually executes a pending request that is not dependent on any

other preceeding request.

1Like traditional state machine replication technique, we assume that replicas are non-deterministic in nature or handle non-
determinism [55, 111] in a way that is not visible to the external world.

22

ThePartial order property ensures that the non-faulty replicas meet therelaxed orderrequirement. The

Non-blockingproperty of the parallelizer ensures liveness of the system.

Notice that there are two properties that arenot required of a parallelizer. First, we do not requirepreci-

sion: a sound parallelizer may enforce additional ordering constraints on requests beyond those required by

the partial order property. This non-requirement is important because it allows us to simplify the design of

parallelizers for complex applications by buildingconservativeparallelizers that can introduce false depen-

dencies between requests. For example, in Section 3.5.3 we describe a simple NFS implementation that uses

a conservative analysis to identify some, but not all, concurrent requests. Second, we do not requireequal-

ity: different correct parallelizers may enforce different partial orders as long as all correct parallelizers’

partial orders are consistent with the order required by thepartial order property. One could, for example,

implement multiple versions of the parallelizer for an application to prevent any one implementation from

being a single point of failure [128].

3.4 Safety and Liveness properties

Theorem 1. The properties of existing BFT agreement protocol [55] and of a sound parallelizer ensure the

safety and liveness properties of a replicated service.

Safety proof: The existing BFT agreement protocol [55] used in the agreement stage guarantees that the

client requests are ordered in the sametotal orderat all non-faulty replicas while tolerating uptof replica

failures in the system. From thepartial order property of a sound parallelizer, all non-faulty replicas order

the dependent requestsin the same order that follows the total order decided by the agreement protocol.

Faulty replicas cannot affect the order ofdependent requestsat non-faulty replicas. Hence, all non-faulty

replicas execute the dependent requests in the same order and satisfy theRelaxed Orderproperty which

ensures safety property of the replicated system.

23

Liveness proof: If the traditional BFT system comprising of the agreement and execution stages is live,

then the high-throughput BFT system comprising of the agreement, execution, and parallelizer is also live.

The liveness property of the agreement stage ensures that all client requests will be eventually delivered in

the sametotal orderto all non-faulty replicas. From thenon-blockingproperty of the parallelizer, non-faulty

replicas execute the first request eventually as there is no request in the total order that the first request is

dependent on. By applyingnon-blockingandpartial order properties of asound parallelizerrecursively on

subsequent requests after the execution of preceeding requests, starting from the first request, we can prove

that all clients requests are executed eventually at all non-faulty replicas and replies are sent back to the

client eventually.

3.4.1 Advantages and Limitations

The high throughput state machine replication architecture has two potential advantages. First, it can sup-

port high-throughput applications. If the workload contains independent requests and the system has enough

hardware resources, then independent requests can be executed concurrently by the execution stage to im-

prove the throughput of a system. Second, it is simple and flexible. In particular, to achieve high throughput,

we do not change any of the other components in the system likeclient behavior, the agreement protocol,

or the application. These components can therefore be changed to suit the requirements of the replicated

system. For example, one can change the agreement protocol and client side behavior to build a system that

either tolerates Byzantine failures or fail-stop failureswhile achieving high throughput without modifying

the parallelizer.

The main limitation of a system using this architecture is that the rules used by the parallelizer to identify

dependent requests require knowledge of the inner workingsof each application. In many ways, this knowl-

edge is similar to that required to build the abstraction layer used in BASE to mask differences in different

24

implementations of the same underlying application [111].However, it may in general be difficult to know

what internal state a given request affects or to determine with certainty whether any given pair of requests

are dependent.

Fortunately, it is not necessary to completely understand the inner workings of an application in order to

define a parallelizer for it. In particular, it is always permissible to defineconservativerules that include

all true dependencies but also include some false dependencies. System designers may choose to follow an

incremental approach by first defining a set of simple but conservative rules to identify “obvious” concurrent

requests and then progressively refine the rules if more parallelism is needed to meet performance goals.

3.5 CBASE Prototype

The goal of our prototype is to demonstrate a general way to extend state machine replication systems

in order to allow concurrent execution of requests for applications that can identify dependencies among

requests.

Our prototype, CBASE (Concurrent BASE) system extends the BASE [111] system, which is based

on traditional state machine replication, to use the high throughput state machine replication architecture

described in the previous section.

CBASE modifies BASE to cleanly separate [136] the agreement and execution stages2 and introduces a

parallelizer between these stages as shown in Figure 3.2. CBASE’s single threaded agreement module uses

BASE’s 3-phase atomic multicast protocol to establish a total order on requests. The CBASE parallelizer

uses an application-specific set of rules to extractconcurrentrequests and execute them in parallel. The

CBASE parallelizer guarantees the safety and liveness properties by ensuringpartial orderandnon-blocking

properties of a sound parallelizer as defined in section 3.3.1.

2Note, however, that our protototype implementation does not allow the agreement and execution modules to run on different
sets of machines.

25

The CBASE parallelizer uses adependency graphto ensure thepartial order property. The requests are

populated in thedependency graphusing the total order in which requests are delivered by the agreement

stage and the application-specific rules to establishdependencerelation (as defined in section??) among

requests. Every request is assigned a vertex in thedependency graphas soon as it is delivered by the

agreement stage with a totally ordered sequence number. A directed edge from a requestr i to a requestr j

exists in thedependence graphiff it satisfies the following two conditions: (1)i > j (that is r j preceeds

r i in the total order assigned by the agreement stage) and (2)r i and r j aredependent requestsas defined

in section 3.3.1. Such adependency graphforms a DAG (directed acyclic graph) because the edges are

directed and the first condition that uses the total ensures that there can be no cycles. Thedependency graph

represents the partial order schedule for the requests.

The CBASE parallelizer uses anon-blocking schedulerto execute the requests in the partial order sched-

ule defined by thedependency graphand there by ensures thepartial orderproperty of a sound parallelizer.

A request is said to be not blocking on any preceeding requestif its vertex has no outgoing edges to other

vertices (requests) in thedependence graph. Thenon-blocking schedulerof the parallelizer executes a re-

quest if it is not blocking. Thenon-blocking schedulerexecutes a request by assigning it a thread among the

worker thread pool in the execution stage. Hence, the scheduler can executeconcurrentrequests in parallel

by assigning different threads in the pool. The worker thread updates thedependency graphafter a executing

a request by removing the corresponding vertex and all the directed edges incident onto this vertex. Thus,

it unblocks all the requests that are blocked on this requestin the partial order and allows thenon-blocking

schedulerto execute new set of requests that are not blocked by other preceeding requests in thedepen-

dency graph. Thenon-blocking schedulerguarantees thenon-blockingproperty of a sound parallelizer by

executing outstanding requests (that are not blocked on preceeding requests) in the order they are delivered

by the agreement stage. Such a scheduling scheme guaranteesliveness by ensuring that a request that is not

26

dependent on any preceeding request will be executed eventually.

The default behavior of the parallelizer is to treat all the requests as dependent, in which case it behaves

like the existing BASE system where the requests are executed sequentially. This default behavior can be

used when the state machine is treated as a black box or where dependencies across requests cannot easily

be inferred. The rules in the parallelizer can be incrementally refined by taking a conservative approach

where the requests known to touch different states can be treated as independent and all the other requests

can be treated as dependent. Similarly, for backwards compatibility with existing state machines, if a state

machine is not thread safe we can just have a single worker thread or implement a mutual exclusion lock

around the state machine.

3.5.1 Parallelizer interface

The parallelizer appears to the agreement and execution threads as a variation of a producer/consumer queue.

When a consumer thread asks for a request, the parallelizer searches for a request that is not dependent of

all incomplete preceding requests and returns one if found;otherwise it blocks the consumer thread until

a request becomes independent. The detailed description ofparallelizer interface used by agreement and

execution stages is described in [84] and we just list them here for brevity.

• Parallelizer.insert(): Called by the agreement stage to enqueue a request when the request is committed

in the agreement stage.

• Parallelizer.nextrequest(): Called by the execution stage to fetch an independent request.

• Parallelizer.removerequest(): Called by the execution stage after the execution of a request is com-

pleted to delete request state in the parallelizer.

27

• Parallelizer.sync(): This interface supports replica state checkpointing required by the BASE system

[111]. The agreement stage updates the next checkpoint sequence number by calling this function as

soon as the current checkpoint is complete.

3.5.2 Dependence Analysis

The parallelizer’s goal is to determine if a new request is dependent on any pending request using application-

specific rules. The parallelizer design must balance three conflicting goals: (1) Generality – the parallelizer

should provide an interface that allows a broad range of applications to encode rules for detecting depen-

dencies among their requests; (2) Simplicity – the interface for specifying these rules should be simple to

reduce the effort and likelihood of error in dependency-rule specification; and (3) Flexibility – the interface

should allow specification of simple conservative dependency rules and progressive refinement to more pre-

cise dependency rules that expose more concurrency. Noticethat our design is a compromise among these

design goals and that other algorithms for identifying dependencies among requests could be explored in

future work.

In the CBASE prototype, conflict detection between a pair of requests depends on thefunctionsthey

invoke and theargumentsthey pass. An application that hasF distinct function entry points provides the

parallelizer with following four application-specific functions and rules for conflict detection:

1. A request parserthat takes an application request and produces a function IDand an argument object.

2. An operator concurrency matrix OCMthat identifies pairs of functions that are considered to be in

conflict independentof the arguments to the functions.OCM is anFxF matrix, whereOCM[i, j] is

true if a request invoking functioni and a request invoking functionj are always considered to be

dependent. This dependency may be because these functions always access common state with one

28

of them updating that state, or this dependency may be because these functions sometimes access

common state and a conservative design assumes they always do for simplicity or because more

careful analysis of arguments is impractical or unnecessary for the application.

3. An argument analysis function AAFthat takes two argument objects and returns true if an analysis

of the arguments indicates that functions that are not flagged by theOCM may access common state

when supplied with these arguments. More precisely,AAF(a1,a2) must return true if there exists any

pair of functionsf1, f2 such thatOCM[f1, f2] = falsebut f1(a1) and f2(a2) access common state and

either modifies that common state.

4. An operator+argument concurrency matrix OACMthat identifies pairs of functions that are consid-

ered to be in conflict only when an analysis of the arguments indicates that they may access common

state.

When a new requestr j calling function f j with argumentsa j arrives, the parallelizer compares it to

each pending requestr i calling function fi with argumentsai as follows. First, it checks for argument-

independent dependencies using an application-specific operator concurrency matrix (OCM): if OCM[fi, f j]

is true, the requests are dependent. If not, then it checks tosee if the arguments indicate that there may be

additional risk of dependencies using an argument analysisfuntion (AAF) : if AAF(ai ,a j) is true, then it also

checks for argument-dependent dependencies and identifiesa dependency betweenr i andr j if OACM[fi, f j]

(operator+argument concurrency matrix) is true. Finally,if OCM[fi, f j] is false and eitherAAF(ai ,a j) is

false orOACM[fi, f j] is false, then no dependency betweenr i andr j exists. Please refer to [84] for a detailed

description of dependence analysis.

This structure facilitates a 2-level analysis in which the operator concurrency matrixOCM defines broad

rules where no argument analysis is attempted or needed and in which the operator+argument concurrency

29

Parallelizer Worker thread pool
Agreement
protocol

 Conformance
 Wrapper

Unmodified
 NFS

 Concurrency matrix
Kernel NFS Client

Application

Client

Replication
Library

Relay

CLIENT

REPLICA 1

Parallelizer Worker thread pool
Agreement
protocol

 Conformance
 Wrapper

Unmodified
 NFS

Replication Library

Replication Library

 Concurrency matrix

REPLICA N

Figure 3.3: CBASE-FS: High throughput Byzantine fault tolerant NFS

matrix OACM defines more precise rules that are invoked after an analysisof the arguments indicates that

two calls that sometimes are independent may be in conflict due to their arguments. The next subsection

describes our NFS file system prototype where we use theOACM to encode rules for functions if the state

they affect is easily identified from file handles in their arguments and where we use theOCM to handle

other functions.

3.5.3 Example Service: NFS

We have implemented CBASE-FS, a Byzantine fault tolerant NFS [25] using CBASE as shown in Figure 3.3.

Our implementation builds on BASE-FS [111], which uses existing implementations of NFS to implement

each instance of the replicated state machine. In particular, a client in CBASE-FS mounts the replicated

file system exported by the replicas as a local NFS file system [25]. Unmodified applications access the file

system using standard file system calls. The local kernel sends NFS calls to the local user-level NFS server,

30

which acts as a wrapper for CBASE-FS by calling theinvokeprocedure of the BASE replication library to

relay the request to the replicas. This procedure returns when the wrapper receivesf + 1 matching replies

from different replicas.

The agreement stage in CBASE establishes a total order on requests and then sends each ordered request

to the parallelizer. The parallelizer updates the dependency graph using NFS’s concurrency matrix as de-

fined in section 5.3.1 whenever a request is enqueued. The worker threads in the execution stage dequeue

independent requests and execute the requests.

CBASE-FS uses BASE’s [111] abstraction layer (conformancewrapper) to resolve non-determinism in

NFS such as file handle assignment or timestamp generation. Additionally, CBASE introduces a new source

of non-determinism due to concurrent execution of NFScreateoperations to different files. The existing

BASE conformance wrapper at different replicas could return different file handles based on the order of

execution of these requests. We fix this problem by having a rule in the concurrency matrix to treat the

requests with create/delete operations as always dependent.3

Concurrency Matrix for NFS

For NFS, we keep the classification simple by just looking at file handles, and thus must have conservative

rules for some of the operations. Our argument analysis function (AAF) defines two arguments as related

if they include a common file handle. We present the key rules that are used in defining NFS’s argument-

independent operator concurrency matrix (OCM) and argument-dependent operator+argument concurrency

matrix (OACM) below. We have the complete description of concurrency matrices in appendix A.

3We speculate that additional concurrency could be exposed by including constraints based on a request’s total-order sequence
number to the conformance wrapper’s file handle generation logic and the parallelizer’s dependency logic.

31

• getattr and null requests are read only requests and hence are independent for both related and unre-

lated arguments.

• Reads to different files are independent whereas reads to thesame files are dependent. Reads modify

the last-accessed-time attribute of a file, so we do not concurrently execute read requests to the same

file.

• Writes to different files are independent and writes to the same file are dependent. Reads are dependent

on writes to the same file and vice-versa.

• All create and remove operations to the same file or differentfiles are dependent as they introduce

non-determinism if executed concurrently.

• Create/Rename/Remove operations are always treated as dependent on Read or Write operations.

Read/Write operations carry the file handle of the file whereas create/rename/remove requests carry

the file handle of the directory in which file is present and thefilename of the file to be deleted. As

we just look at the file handle to decide if two arguments are related or not, we cannot execute the

requests with create/rename/remove concurrently with read/write requests.

We give up some potential concurrency across requests with these conservative rules. Looking at other

fields in the request apart from file handle and keeping additional state about file handles could allow for

more sophisticated and accurate classification. There is a tradeoff between on one hand the simplicity of the

design and the time spent to classify requests versus on the other hand the amount of concurrency realized

by the parallelizer. This trade-off should be explored in more detail in the future.

32

3.5.4 Additional Optimizations

In order to improve throughput CBASE supports some of the optimizations introduced by PBFT [55] such

as reduced communication, request batching, read-only optimization . However, CBASE does not support

tentative execution as it is shown in [57] that this optimization has little impact on throughput when used

along with request batching and that it adds complexity to the code to keep uncommitted state in the system.

3.6 Evaluation

A high throughput BFT system should achieve two goals: (1) when there is application parallelism and

hardware concurrency it should provide high throughput compared to traditional BFT system, and (2) when

there is no parallelism in the application or when there are limited resources it must have low overhead.

All experiments run with 4 replicas and the system toleratesone Byzantine fault. Replicas run on single

processor machines with 933 MHZ PIII processor and connected by a 100 Mbit ethernet hub. All the

machines have 256MB of memory except for one that has 512MB ofmemory. The experiments run on

an isolated network. We use 5 client machines to load the system. Client machines are connected to the

network through the same ethernet hub as the replicas. Two ofthe client machines have 933 MHZ PIII

processor with 512MB of memory and the other three machines have 450 MHZ PIII processor with 128KB

of memory. All machines run Redhat Linux 7.2.

3.6.1 Micro-Benchmark

The micro-benchmark compares the performance of BASE and CBASE executing a simple, stateless ser-

vice where clients send null requests to which the server reply with null results. We show that for our mi-

crobenchmark CBASE imposes little additional latency or overhead compared to BASE and that CBASE’s

throughput scales linearly with application parallelism and available hardware resources.

33

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 20 40 60 80 100 120 140 160 180 200
T

hr
ou

gh
pu

t(
O

pe
ra

tio
ns

 p
er

 s
ec

)

Number of clients

cbase
base

Figure 3.4: Overhead of CBASE versus BASE

Overhead

Figure 3.4 compares the overhead of BASE and CBASE by runningthe baseline benchmark configured with

infinite application concurrency (no shared state across requests) and minimal hardware demand per request

(each application request at the server simply returns immediately). BASE is CPU-limited—a small number

of clients saturate the CPU, but BASE allows throughput to reach a peak of about 15,000 requests per second

by employing agreement-stage batching [56], yielding a CPUoverhead of less than 100µs per request.

CBASE runs with 16 execution threads and BASE runs with 1 thread. All points in the graph are averages

of 3 runs with variance of less than 15%. The CBASE parallelizer treats all requests as independent, but

limited hardware resources limit the benefits gained by concurrency—requests run on a uniprocessor and

return immediately. Figure 3.4 shows that the lines representing CBASE and BASE closely follow each

other illustrating that CBASE introduces little overhead when there is no scope for concurrent execution of

requests.

34

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 50 100 150 200

T
h

ro
u

g
h

p
u

t
(O

p
s

p
er

 s
ec

)

Number of clients

"cbase_1thread"
"cbase_2threads"
"cbase_8threads"

"cbase_16threads"
"cbase_64threads"

"cbase_128threads"
"base"

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 20 40 60 80 100 120 140 160 180

T
h

ro
u

g
h

p
u

t
(O

p
s

p
er

 s
ec

)

Number of clients

cbase pf=1
cbase pf=5

cbase pf=10
cbase pf=20
cbase pf=50

cbase pf=100
cbase pf=150

cbase pf=inf
base

(a) (b)

Figure 3.5: Scalability of throughput: (a) With varying hardware resources (b) With varying levels of appli-
cation parallelism whereparallelism factoris varied from minimum(pf=1) to infinity(pf=inf).

Scalability of throughput with application parallelism an d resources

The throughput of a service depends both on the parallelism present in the application and on the hardware

resources (e.g., processors, disks, bandwidth) availableto the system. In this set of experiments, we evaluate

the scalability of throughput with varying application parallelism and hardware resources.

First, we evaluate the ability to scale throughput with resources. We simulate accesses to a varying array

of parallel disks by running the benchmark with the modification that the code to process each request sleeps

for 20ms before returning a reply. The CBASE parallelizer assumes infinite parallelism in the application

and considers all requests to be independent. We simulate varying “disk” resources by configuring CBASE

to run with varying numbers of execution threads. We note that BASE still runs with a single thread since

it never attempts to issue more than one request to the execution stage at a time. Figure 3.5(a) shows that

the throughput of BASE saturates at 50 ops/sec (as expected with 20ms service time for each operation)

which matches the throughput of CBASE running with 1 thread.The throughput of CBASE increases with

35

the number of clients but eventually saturates because increasing the number of clients improves concur-

rency only if throughput is limited by the available hardware resources. As the number of “disks” (threads)

increases, the throughput of CBASE increases nearly linearly—128 “disks” reach a throughput of 4700

requests/second.

Next, we evaluate the scalability of throughput with parallelism in the application. We run the same

experiment as above except that we fix the number of resourcesin this experiment and vary parallelism

in the application. We emulate 100 resources by fixing the number of CBASE execution threads to 100.

We define theparallelism factoras the number of requests that we allow to be executed concurrently, and

simulate varying application parallelism by varying this parameter. The parallelizer randomly assigns each

incoming requests to one ofparallelism factorbuckets and creates dependencies among all requests to

the same bucket, allowing only a fixed number of requests to beindependent at any point of time. Figure

3.5(b) shows that the throughput of BASE saturates at 50 ops/sec and that CBASE matches this performance

when the applicationparallelism factoris 1. CBASE’s maximum throughput increases almost linearlywith

increasingparallelism factorup to 100. The throughput of CBASE does not improve beyond aparallelism

factor of 100 because it is limited by the 100 simulated hardware resources.

Notice that when application parallelism and hardware resources are available, CBASE’s throughput can

exceed BASE’s by orders of magnitude.

3.6.2 NFS Micro-Benchmarks

In this subsection, we evaluate the performance of CBASE-FS, a replicated NFS that uses CBASE. We

compare the performance of CBASE-FS with BASE-FS and unreplicated NFS.

36

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55

 100000 1e+06 1e+07

R
es

po
ns

e
tim

e
(m

s)

Throughput (bytes/sec)

BASE-FS
CBASE-FS

NFS

 0

 50

 100

 150

 200

 250

 300

 350

 400

 10000 100000 1e+06 1e+07

R
es

po
ns

e
tim

e
(m

s)

Throughput (bytes/sec)

BASE-FS
CBASE-FS

NFS

(a) (b)

Figure 3.6: Throughput versus response time (a) With 4KB writes to evaluate CBASE protocol overhead (b)
With 4KB writes and artifical delay to evaluate benefits of pipelining in CBASE

Local disk

In this benchmark, each client writes 4KB of data to a different file in a directory exported by the file

system. We vary the number of concurrent clients and measurethe response time and throughput of the

system. As described in Section 5.2, requests to different files are generally treated as independent requests

by the CBASE parallelizer. CBASE-FS runs with 16 threads andunreplicated NFS runs with 16 daemon

processes. In all file system instances, NFS servers write asynchronously to the disk.

Overhead Figure 3.6(a) plots the response time versus the throughputof CBASE-FS, BASE-FS, and un-

replicated NFS. CBASE-FS and BASE-FS closely follow each other and their throughput saturates around

2.5MB/sec, whereas the throughput of NFS saturates around 4MB/sec. In this experiment, because servers

run on a uniprocessor system and write asynchronously to thelocal disk there is little or no benefit for

concurrently executing the requests because the threads write in the file buffer cache in memory and rarely

37

block. Hence we show that CBASE-FS performs as well as BASE-FS and adds little or no overhead when

there is no scope in concurrency. The maximum throughput of BASE and CBASE is within a factor of 2

compared to unreplicated NFS; the difference stems from theextra overhead of processing protocol mes-

sages, additional cryptographic computations, and extra kernel crossings. For similar reasons, NFS also

yields less latency than BASE and CBASE.

Benefits of Pipelining with artificial delay In this experiment we evaluate the performance when there is

scope for concurrent execution of requests. We simulate this scenario by making BASE and CBASE servers

sleep for 20 ms after writing to a file and before sending a reply to the client. Figure 3.6(b) shows the

response time plotted against the throughput of BASE, CBASEand NFS. The throughput of BASE saturates

at about 90 KB/sec since it cannot execute more than 1 requestat a time. However, CBASE achieves its

maximum throughput of about 2MB/sec when there is sufficientload on the system to run enough concurrent

requests to achieve this throughput, which is almost 20 times more than that of the throughput of BASE.

We did not modify the NFS implementation to sleep for 20 ms so its performance remains the same. This

experiment shows that CBASE-FS does orders of magnitude better than BASE-FS when there is scope for

concurrent execution of requests.

Benefits of Pipelining with multiple disks In this experiment we evaluate the performance benefits in

the presence of real hardware concurrency. We run the same benchmark as above but with 3 server replicas

running on machines with two disks (IBM-PSG and Quantum Viking II). The single disk experiment is

run with single client which writes 4KB of data to a differentfile on the same disk (IBM-PSG) for 1000

times. Experiment with 2 disks is run with two clients each ofwhich write 4KB of data to files on different

disks. All the servers are configured to write data synchronously to disk. Figure 3.7 shows the throughput

of BASE-FS, CBASE-FS and unreplicated NFS, when run with single disk and two disks. CBASE-FS and

38

1 Disk/1 Client 2 Disks/2 Clients
0

50

100

150

200

250

T
h

ro
u

g
h

p
u

t
(K

B
/s

ec
) BASE

CBASE
NFS

Figure 3.7: Throughput with multiple disks

BASE-FS have similar performance with a single disk but withtwo disks CBASE-FS outperforms BASE by

72% by concurrently writing to both disks. Unreplicated NFSoutperforms both CBASE-FS by a factor of

1.5 with a single disk and 2.5 with two disks which is consistent with earlier results and for similar reasons.

Iozone micro-benchmark

Iozone [17] provides various microbenchmarks to test the performance of commercial file systems. We run

thewrite andrandom mixmicro-benchmarks to test CBASE-FS and compare its performance with BASE-

FS. Rather than introduce artificial delays as above, we introduce the opportunity for hardware parallelism

by configuring our system so that each file server accesses data on aremote diskthat it mounts via NFS from

a separate machine. Each IO request may thus access the localCPU, network, remote CPU, and remote

disk, which affords the system an opportunity to benefit frompipelining. We use the remote disk setup

to evaluate the performance in these experiments . We run theIozone micro-benchmarks in cluster-mode,

39

 0

 5

 10

 15

 20

 1000 800 500 200 100

R
es

po
ns

e
tim

e
(s

ec
)

Throughput (KB/sec)

BASE-FS
CBASE-FS

 0

 1

 2

 3

 4

 5

 6

 10000 5000 2000 1000 500 200 100

R
es

po
ns

e
tim

e
(s

ec
)

Throughput (KB/sec)

BASE-FS
CBASE-FS

(a) (b)

Figure 3.8: IOZONE: Throughput versus response time for (a)Write microbenchmark (b) Random mi-
crobenchmark

where clients are equally divided among 5 client machines and each client accesses a different file.

The write microbenchmark measures the performance of writing 256KB of data to a new file. We con-

figure the test to have each client write to a different file to provide parallelism across the requests to the

file systems. We vary the number of clients to vary the load on the system. As shown in the figure 3.8(a),

BASE saturates at about 160 KB/sec where as CBASE saturates at about 320 KB/sec resulting in 100%

improvement in performance as we vary load. CBASE-FS could not achieve more than a 2x improvement

in performance despite having more available application-level parallelism because the system is limited

by the remote disk bandwidth. Unreplicated NFS achieves a maximum throughput of 500KB/sec when the

NFS server is running on the remote disk machine.

The random mix microbenchmark measures the performance of writing and reading files of size 256KB

with accesses being made to random locations within each file. We configured the test to have clients write

to different files to provide parallelism across requests, and we vary the number of clients to vary the load

40

on the system. As shown in the figure 3.8(b), BASE’s throughput saturates at about 1MB/sec and CBASE’s

at about 2MB/sec. File caching at clients improves the throughput of both systems compared to the previous

experiment. Overall, CBASE-FS’s maximum throughput is 100% better than that of BASE-FS.

3.6.3 Macro-benchmarks

We evaluate the performance of CBASE-FS and BASE-FS with twofile system macro-benchmarks: An-

drew [55] and Postmark [29].

B
A

S
E

C
B

A
S

E

ANDREW 100

0

100

200

300

400

500

T
im

e
(s

)

phase 5
phase 4
phase 3
phase 2
phase 1

Figure 3.9: Andrew 100 benchmark

The Andrew-100 benchmark sequentially runs 100 copies of the Andrew benchmark which provides little

concurrency. CBASE-FS and BASE-FS have essentially identical performance with BASE outperforming

CBASE by 4% as there is no scope for concurrency.

PostMark [29] is a benchmark to measure performance of the Internet applications such as email, net

news, e-commerce, etc. It initially creates a pool of files and then performs a specified number of transac-

tions consisting of creating or deleting a file and reading orappending a file. We set file sizes to be between

41

B
A

S
E

C
B

A
S

E

Read mostly

B
A

S
E

C
B

A
S

E

Write mostly

Postmark with 1 client

0
20
40
60
80

100
120
140
160
180

T
im

e
(s

)

Transactions
Create/Delete

B
A

S
E

C
B

A
S

E

Read

B
A

S
E

C
B

A
S

E

Write
2 clients

B
A

S
E

C
B

A
S

E

Write
4 clients

Postmark with multiple clients

0

100

200

300

400

500

600

700

T
im

e
(s

)

Transactions
Create/Delete

Figure 3.10: Postmark benchmark

1KB and 100KB. We run the benchmark with 100 files for 500 transactions. In ourread-mostlyexperiment,

we set the read bias at 9 so that transactions are dominated byreads over appends. In ourwrite-mostlyexper-

iment, we set the read bias at 1 so that transactions are dominated by writes compared to reads. CBASE-FS

and BASE-FS replicas write to the remote disk to evaluate thebenefits of concurrent execution when run

with multiple postmark clients.

Figure 3.10 shows the performance of BASE-FS and CBASE-FS when the experiment is run with varied

number of Postmark clients. The performance of CBASE-FS andBASE-FS are nearly identical when run

with 1 client. We also ran experiment with 2 and 4 postmark clients where each client operates on a different

set of files. CBASE-FS is 20-25% faster than BASE-FS when run with multiple clients. CBASE-FS could

not realise as much improvement in performance as in microbenchmarks because it is limited by the single

available hardware disk.

3.7 Related Work

There is a large body of research on replication techniques to implement highly-available systems that

tolerate failures. To the best of our knowledge, this was thefirst study that tries to improve application

42

throughput of a Byzantine fault tolerant system by providing a general way to use application semantics to

execute requests concurrently.

Schneider [119] introduces the idea of using application semantics to reorder commutative requests in the

state machine replication technique. Reordering requestscan improve average response time of a system but

will not improve throughput. We generalize this idea to use application semantics to identify independent

requests and concurrently execute these requests to improve throughput of a system.

Byzantine fault tolerant state machine replication has been extensively studied [54, 70] and recent work

has shown that BFT systems can be implemented in practical systems [55, 56, 111]. Although optimiza-

tions from these systems like request batching, reduced communication, and symmetric encryption improve

throughput by reducing computation and network overhead, the throughput of these optimizations does not

overcome the fundamental limits of sequential execution ofrequests. Some of these systems do support a

tentative execution optimization to concurrently executeread requests, but such a solution cannot handle

other type of requests. We provide a general strategy for exploiting application-level and hardware-level

parallelism that can be applied to any of these systems.

Farsite [44] and Oceanstore [77] use PBFT [55] to provide Byzantine fault tolerant services. These

systems provide scalability by partitioning application state where each partition can potentially be served

by a different replica group (directory group /primary replica group). However, requests to a given group

are sequentially executed which can limit the throughput ofthe system.

A recent work by Vandiver et al. [127] uses commit barrier scheduling to concurrently execute requests

in BFT replicated transaction processing systems where it is hard to specify static application-specific rules

to detect concurrent requests.

43

3.8 Conclusion

In this chapter, we proposed a high throughput BFT state machine replication architecture by making a

simple change to existing BFT state machine replication architectures to introduce an application-specific

parallelizer layer that allows concurrent execution of independent requests. We impelmented a system proto-

type called CBASE using this technique and demonstrated that it provides orders of magnitude improvement

in performance over existing systems provided there is enough parallelism in the application and there are

sufficient hardware resources. Although our work is motivated by and focussed on BFT state machine repli-

cation, the partial order property can be exploited in the context of traditional state machine replication

based systems that tolerate fail-stop failures to improve throughput.

44

Chapter 4

Zyzzyva: Speculative Byzantine Fault Tolerance

In the previous chapter, we presented a BFT state machine replication architecture that provide high

application throughput in the execution stage. In this chapter, we present the design and implementation

of Zyzzyva1, an efficient replication protocol used in the agreement stage. Zyzzyva uses speculation to

reduce the performance overheads and replication cost of Byzantine fault tolerant state machine replication

technique. The throughput, latency, and replication cost overheads of Zyzzyvamatch or approach the lower

bounds.

4.1 Introduction

Three trends make Byzantine Fault Tolerant (BFT) replication increasingly attractive for practical deploy-

ment. First, the growing value of data and and falling costs of hardware make it advantageous for service

providers to trade increasingly inexpensive hardware for the peace of mind potentially provided by BFT

replication. Second, mounting evidence of non-fail-stop behavior in real systems [37, 50, 51, 98, 101, 106,

123, 134, 135] suggest that BFT may yield significant benefitseven without resorting ton-version program-

ming [48, 81, 111]. Third, improvements to the state of the art in BFT replication techniques [45, 58, 63,

86, 111, 136] make BFT replication increasingly practical by narrowing the gap between BFT replication

costs and costs already being paid for non-BFT replication.For example, by default, the Google file system

1Zyzzyva (ZIZ-uh-vuh) is the last word in the dictionary.
According to dictionary.com, a zyzzyva is “any of various tropical American weevils of the genus Zyzzyva, often
destructive to plants.”

45

State Machine Repl.
PBFT Q/U HQ Zyzzyva Lower Bound

Cost Total replicas 3f+1 5f+1 3f+1 3f+1 3f+1 [103]
Replicas with application state 2f+1 [136] 5f+1 3f+1 2f+1 2f+1

Throughput MAC ops at bottleneck server 2+(8f+1)/b 2+8f 4+4f 2+3f/b 2†

Latency Critical path NW 1-way latencies 4 2 4 3 2/3‡

Table 4.1: Properties of state-of-the-art and optimal Byzantine fault tolerant service replication systems
tolerating f faults, using MACs for authentication [58], and using a batch size ofb [58]. Bold entries denote
protocols that match known lower bounds or those with the lowest known cost.†It is not clear that this
trivial lower bound is achievable.‡The distributed systems literature typically considers 3 one-way latencies
to be the lower bound for agreement on client requests [66, 88, 96]; 2 one-way latencies is achievable if no
concurrency is assumed. This table is explained in AppendixF.

uses 3-way replication of storage, which is roughly the costof BFT replication for f = 1 failures with 4

agreement nodes and 3 execution nodes [136].

This chapter presents Zyzzyva, a new agreement protocol that usesspeculationto reduce the cost and

simplify the design of BFT state machine replication [89, 118]. Like traditional state machine replication

protocols [58, 111, 136], a primary proposes an order on client requests to the other replicas. In Zyzzyva, un-

like in traditional protocols, replicas speculatively execute requests without running an expensive agreement

protocol to definitively establish the order. As a result, correct replicas’ states may diverge, and replicas may

send different responses to clients. Nonetheless, applications at clients observe the traditional and powerful

abstraction of a replicated state machine that executes requests in a linearizable [76] order because replies

carry with them sufficient history information for clients to determine if the replies and history arestable

and guaranteed to be eventually committed. If a speculativereply and history are stable, the client uses the

reply. Otherwise, the client waits until the system converges on a stable reply and history.

The challenge in Zyzzyva is ensuring that responses to correct clients become stable. Ultimately, replicas

are responsible for ensuring that all requests from a correct client eventually complete, but a client waiting

for a reply and history to become stable can speed the processby supplying information that will either cause

46

the request to become stable rapidly within the current viewor trigger a view change. Note that because

clients do not require requests to commit but only to become stable, clients act on requests in one or two

phases rather than the customary three [58, 111, 136].

Essentially, Zyzzyva rethinks the sync [99] for BFT: instead of pessimistically ensuring that replicas

establish a final order on requests before communicating with a client, we move the output commit to the

client. Leveraging the client in this way offers significantpractical advantages. Compared to state of the art

protocols including PBFT [58, 111, 136], Q/U [45], and HQ [63], Zyzzyva reduces cryptographic overheads

and increases peak throughput by a factor of two to an order ofmagnitude for demanding workloads. In fact,

Zyzzyva’s replication costs, processing overheads, and communication latencies approach their theoretical

lower bounds.

4.1.1 Why another BFT protocol?

The state of the art for BFT state machine replication is distressingly complex. In a November 2006 paper

describing Hybrid-Quorum replication (HQ replication) [63], Cowling et al. draw the following conclusions

comparing three state-of-the-art protocols (Practical Byzantine Fault Tolerance (PBFT) [58, 86, 111, 136],

Query/Update (Q/U) [45], and HQ replication [63]):

• “In the regions we studied (up tof = 5), if contention is low and low latency is the main issue, then if

it is acceptable to use 5f +1 replicas, Q/U is the best choice, else HQ is the best since itoutperforms

[P]BFT with a batch size of 1.” [63]

• “Otherwise, [P]BFT is the best choice in this region: it can handle high contention workloads, and it

can beat the throughput of both HQ and Q/U through its use of batching.” [63]

47

• “Outside of this region, we expect HQ will scale best: HQ’s throughput decreases more slowly than

Q/U’s (because of the latter’s larger message and processing costs) and [P]BFT’s (where eventually

batching cannot compensate for the quadratic number of messages).” [63]

Such complexity represents a barrier to adoption of BFT techniques because it requires a system designer to

choose the right technique for a workload and then for the workload not to deviate from expectations.

As Table 4.1 indicates, Zyzzyva simplifies the design space of BFT replicated services by approaching

the lower bounds in almost every key metric.

With respect to replication cost, Zyzzyva and PBFT match thelower bound both with respect to the

total number of replicas that participate in the protocol and the number of replicas that must hold copies of

application state and execute application requests. Both protocols hold cost advantages of 1.5–2.5 over Q/U

and 1.0–1.5 over HQ depending on the number of faults to be tolerated and the relative cost of application

vs. agreement node replication.

With respect to throughput, both Zyzzyva and PBFT use batching when load is high and thereby approach

the lower bound on the number of authentication operations performed at the bottleneck node, and Zyzzyva

approaches this bound more rapidly than PBFT. Q/U and HQ’s inability to support batching increases the

work done at the bottleneck node by factors approaching 5 and4, respectively, when one fault is tolerated

and by higher factors in systems that tolerate more faults.

With respect to latency, Zyzzyva executes requests in threeone-way message delays, which matches the

accepted lower bound in the distributed systems literaturefor agreeing on a client request [66, 88, 96] and

improves upon both PBFT and HQ. Q/U sidesteps this lower bound by providing a service that is slightly

weaker than state machine replication (i.e., it does not puta total order on all requests) and by optimizing

for cases without concurrent access to any state. This difference presents a chink in Zyzzyva’s armor, which

48

Zyzzyva minimizes by matching the lower bound on message delays for full consensus. We believe that

Zyzzyva’s other advantages over Q/U—fewer replicas, improved throughput via batching, simpler state

machine replication semantics, ability to support high-contention workloads—justify this “extra” latency.

With respect to fault scalability [45], the metrics that depend on f grow as slowly or more slowly in

Zyzzyva as in any other protocol.

Note that as is customary [45, 58, 63, 111, 136], Table 4.1 compares the protocols’ performance during the

expected common case of fault-free, timeout-free execution. All of the protocols are guaranteed to operate

correctly in the presence of up tof faults and arbitrary delays, but all of these protocols can pay significantly

higher overheads and latencies in such scenarios. In §4.5.5, we consider the susceptibility of these protocols

to faults and argue that Zyzzyva remains the most attractivechoice.

4.2 System Model

Zyzzyva is a BFT state machine replication protocol that cane be used to build replicated services like other

BFT protocols [55, 63, 111, 136] as explained in chapter 2.

We assume the Byzantine failure model where faulty nodes (replicas or clients) may behave arbitrarily.

We assume a strong adversary that can coordinate faulty nodes to compromise the replicated service. We

do, however, assume the adversary cannot break cryptographic techniques like collision-resistant hashes,

encryption, and signatures. In the public-key version of our protocol, we denote a messageX signed by

principalY’s public key as〈X〉σY . Our system ensures its safety and liveness properties if atmost f replicas

are faulty. We assume a finite client population, any number of which may be faulty.

Our system’s safety properties hold in any asynchronous distributed system where nodes are connected

by a network that may fail to deliver messages, corrupt them,delay them, or deliver them out of order.

Liveness, however, is ensured only during intervals in which messages sent to correct nodes are processed

within some fixed (but potentially unknown) worst case delayfrom when they are sent.

49

Our system implements a BFT service using state machine replication [58, 86, 118]. Traditional state

machine replication techniques can be applied only to deterministic services. We cope with the non-

determinism present in many real-word applications (such as file systems [25] and databases [131]) by

abstracting the observable application state at the replicas and using the agreement stage to resolve non-

deterministic choices [111, 127].

Services limit the damage done by Byzantine clients by authenticating clients, enforcing access control to

deny clients access to objects they do not have a right to, and(optionally) by maintaining multiple versions

of shared data (e.g., snapshots in a file system [82, 117]) so that data can be recovered from older versions

if a faulty client destroys data [80].

4.3 Protocol

Zyzzyva is a BFT state machine replication protocol based onthree sub-protocols: (1) agreement, (2) view

change, and (3) checkpoint.

Theagreementsub-protocol orders requests for execution by the replicas. Theview changesub-protocol

coordinates the election of a new primary when the current primary is faulty or the system is running slowly.

Thecheckpointsub-protocol limits the state that must be stored by replicas and reduces the cost of perform-

ing view changes.

Principles and Challenges Zyzzyva focuses on safety propertiesas they are observed by the client. In

Zyzzyva, replicas can become temporarily inconsistent with one another, but clients detect inconsistencies,

drive replicas to converge on a single total ordering of requests, and only rely on responses that are consistent

with this total order.

Given the duties BFT replication protocols already place onclients [45, 58, 63, 91, 111, 136], it is not

a large step to fully move the output commit to the client, butthis small step pays big dividends. First,

50

Zyzzyva leverages speculative execution—replicas execute a requestbefore its order is fully established.

Second, Zyzzyva leverages fast agreement protocols [66, 88, 96] to establish a request ordering in as few as

three message delays. Third, the agreement sub-protocol stops working on a request once a client knows

the request’s order, thereby avoiding work that would otherwise be needed to establish this knowledge at the

replicas.

These choices lead to two key challenges in designing Zyzzyva. First, we must specify carefully the

conditions under which a requestcompletesat a client and define agreement, checkpoint, and view change

sub-protocols to retain the abstraction that requests execute on a single, correct state machine. Intuitively, a

request completes when a correct client may safely act on thereply to that request. To help a client determine

when it is appropriate to act on a reply, Zyzzyva appends history information to the replies received by a

client so that the client can judge whether the replies are based on the same ordering of requests. Zyzzyva

ensures the following safety condition:

Safety: If a request with sequence numbern and historyhn completes, then any request that completes

with a higher sequence numbern′ ≥ n has a historyhn′ that includeshn as a prefix.

Second, the view change sub-protocol must ensure liveness despite an agreement sub-protocol that never

requires more than two phases to complete during a view. We shift work from the agreement sub-protocol to

the view change sub-protocol by introducing a new “I hate theprimary” phase that guarantees that a correct

replica only abandons the current view if it can ensure that all other correct replicas will join the mutiny.

Zyzzyva ensures the following liveness condition under eventual synchrony2 [67]:

Liveness: Any request issued by a correct client eventually completes.

2In practice eventual synchrony can be achieved by using exponentially increasing timeouts [58].

51

6

Speculative execution

3f+1

Application

Speculative execution

2f+12f+1

Commit

Application

Primary

Replica 1

Replica 2

Replica 3

Client

X

Primary

Replica 1

Replica 2

Replica 3

Client

(a) Gracious execution

(b) Faulty replica

1

1

2

2

3

3

4a

4b 5

Figure 4.1: Protocol communication pattern within a view for (a) gracious execution and (b) faulty replica
cases. The numbers refer to the main steps of the protocol numbered in the text.

Protocol Overview Zyzzyva is executed by 3f + 1 replicas, and execution is organized into a sequence

of views. Within a view, a single replica is designated as theprimary responsible for leading the agreement

sub-protocol.

Figure 4.1 shows the communication pattern for a single instance of our client-centric fast agreement sub-

protocol. A client sends a request to the primary, the primary forwards the request to the replicas, and the

replicas execute the request and send their responses to theclient. A requestcompletesat a client in one of

two ways. First, if the client receives 3f + 1 mutually-consistentresponses(including an application-level

reply and thehistory on which it depends), then the client considers the request complete and acts on it.

Second, if the client receives between 2f +1 and 3f mutually-consistent responses, then the client gathers

2 f + 1 responses and distributes thiscommit certificateto the replicas. Once 2f + 1 replicas acknowledge

receiving a commit certificate, the client considers the requestcompleteand acts on the corresponding reply.

If a sufficient number of replicas suspect that the current primary is faulty, then a view change occurs and

52

a new primary is elected.

In the rest of this section, we describe the basic protocol and outline the proof of its correctness and

the details are in Appendix G. In §4.4 we describe a number of optimizations, all implemented in our

prototype, that reduce encryption costs by replacing public key signatures with message authentication codes

(MACs), improve throughput by batching requests, reduce the impact of lost messages by caching out-of-

order messages, improve read performance by optimizing read-only requests, reduce bandwidth by having

most replicas send hashes rather than full replies, reduce overheads by including MACs only for a preferred

quorum, and improve performance in the presence of faulty nodes by including additional witness replicas.

In §4.4.1 we discuss Zyzzyva5, a variation of the protocol that requires 5f +1 agreement replicas but that

completes in three one-way message exchanges as in Figure 4.2(a) even when up tof non-primary replicas

are faulty.

4.3.1 Node State and Checkpoint Protocol

To ground our discussion in definite terms, we begin by discussing the state maintained by each replica as

summarized by Figure 4.2. Each replicai maintains an orderedhistoryof the requests it has executed and a

copy of themax commit certificate, the commit certificate (defined below) seen byi that covers the largest

prefix of i’s stored history. The history up to and including the request with the highest sequence number

covered by this commit certificate is thecommitted history, and the history that follows is thespeculative

history. We say that a commit certificate has sequence numbern if n is the highest sequence number of any

request in the committed history.

A replica constructs a checkpoint everyCP INTERVALrequests. A replica maintains onestable check-

point and a correspondingstable application state snapshot, and it may store up to onetentative checkpoint

and correspondingtentative application state snapshot.It commits the history before taking a tentative

53

 History

Checkpoint

Application

 Commit

Certificate

Garbage

Collected

History

Max
 CC

Committed

Committed

Checkpoint

Committed

Snapshot

Active

Snapshot

CP_INTERVAL CP_INTERVAL

Snapshot

Tentative
Checkpoint

Client 3
Client 2
Client 1

Client m-1
Client m

 Protocol

SpeculativeHistory

...

History

Tentative

Figure 4.2: State maintained at each replica.

checkpoint. The process by which a tentative checkpoint andapplication state become committed is similar

to the one used by earlier BFT protocols [58, 63, 86, 111, 136], so we defer a detailed discussion to Ap-

pendix G. However, to summarize briefly: when a correct replica generates a tentative checkpoint, it sends

a signedCHECKPOINT message to all replicas. The message includes the highest sequence number of any

request included in the checkpoint and a digest of the corresponding tentative checkpoint and application

snapshot. A correct Zyzzyva replica considers the checkpoint and corresponding application snapshot stable

when it collectsf +1 matchingCHECKPOINTmessages signed by different replicas.

To bound the size of the history, a replica (1) truncates the history before the committed checkpoint and

(2) blocks processing of new requests after processing 2×CP INTERVALrequests since the last committed

checkpoint.

Finally, each replica maintains aresponse cachecontaining a copy of the latest ordered request from, and

corresponding response to, each client.

54

4.3.2 Agreement Protocol

Figure 4.1 illustrates the basic flow of the agreement sub-protocol during a view. Because replicas execute

requests speculatively in the order proposed by the primarywithout communicating with other replicas, the

key challenge is ensuring that clients only act upon repliesthat correspond to stable requests executed in a

total order that is guaranteed to eventuallycommitat all correct servers. The protocol is constructed so that a

requestcompletesat a client when the client receives 3f +1 matching responses or acknowledgements from

2 f +1 replicas that they have received acommit certificatecomprising alocal commitfrom 2f +1 replicas.

Either of these conditions serves to prove that the request will eventually becommittedat all correct replicas

with the same sequence number and history of preceding requests observed by the client.

To describe how the system deals with this and other challenging, but standard, issues—lost messages,

faulty primary, faulty clients, etc.—we follow a request through the system, defining the rules a server uses

to process each message. The numbers in Figure 4.1 correspond to numbers in the text identifying major

steps in the protocol and Table 4.2 summarizes the labels we give fields in messages. Most readers will be

happier if on their first reading they skip the text marked Additional Pedantic Details.

1. Client sends request to the primary.

A client c requests an operationobe performed by the replicated service by sending a message〈REQUEST,

o, t, c〉σc to the replica it believes to be the primary (i.e., the primary for the last response the client received).

Additional Pedantic Details:If the client guesses the wrong primary, the retransmissionmechanisms

discussed in step4c below forwards the request to the current primary. The client’s timestampt is included

to ensure exactly-once semantics of execution of requests.

2. Primary receives request, assigns sequence number, and forwards ordered request to replicas.

55

Label Meaning

c Client ID
CC Commit certificate
d Digest of client request message

d = H(m)

i, j Server IDs
hn History through sequence numbern

hn = H(hn−1,d)

m Message containing client request
maxn Max sequence number accepted by replica

n Sequence number
o Operation requested by client

OR Order Request message
POM Proof Of Misbehavior

r Application reply to a client operation
t Timestamp assigned to an operation by a client
v View number

Table 4.2: Labels given to fields in messages.

When the primaryp receives messagem =〈REQUEST, o, t, c〉σc from client c, the primary assigns a

sequence numbern in view v to the request and relays a message〈〈ORDER-REQ, v, n, hn, d, ND〉σp, m〉

to the backup replicas wherev indicates the view in which the message is being sent,n is the proposed

sequence number form, d = H(m) is the digest ofm, hn = H(hn−1,d) is a digest summarizing the history,

andND is a set of values for non-deterministic application variables (time in file systems, locks in databases,

etc.) required for execution.

Additional Pedantic Details:The primary only takes the above actions ift > tc wheretc is the highest

timestamp previously received fromc.

3. Replica receives ordered request, speculatively executes it, and responds to the client.

Upon receipt of a message〈〈ORDER-REQ, v, n, hn, d, ND〉σp, m〉 from the primaryp, replicai accepts the

ordered request ifm is a well-formedREQUESTmessage,d is a correct digest ofm, n= maxn+1 wheremaxn

is the largest sequence number ini’s history, andhn = H(hn−1,d). Upon accepting the message,i appends

56

the ordered request to its history, executes the request using the current application state to produce a reply

r, and sends toc a message〈〈SPEC-RESPONSE, v,n, hn, H(r), c, t〉σi , i, r, OR〉 whereOR=〈ORDER-REQ,

v, n, hn, d, ND〉σp.

Additional Pedantic Details:A replica may only accept and speculatively execute requests in sequence-

number order, but message loss or a faulty primary can introduce holes in the sequence number space.

Replica i discards theORDER-REQ message ifn ≤ maxn. If n > maxn + 1, theni discards the message,

sends a message〈FILL -HOLE, v, maxn + 1, n, i〉σi to the primary, and starts a timer. Upon receipt of a

message〈FILL -HOLE, v, k, n, i〉σi from replicai, the primaryp sends a〈〈ORDER-REQ, v, n′, hn′ , d, ND〉σp,

m′〉 to i for each requestm′ that p ordered ink ≤ n′ ≤ n during the current view; the primary ignores fill-

hole requests from other views. Ifi receives the validORDER-REQ messages needed to fill the holes, it

cancels the timer. Otherwise the replica broadcasts theFILL -HOLE message to all other replicas and initiates

a view change when the timer fires. Any replicaj that receives aFILL -HOLE message fromi sends the

correspondingORDER-REQ message, if it has received one. If, in the process of filling in holes in the replica

sequence, replicai receives conflictingORDER-REQ messages then the conflicting messages form a proof of

misbehavior as described in protocol step4d.

4. Client gathers speculative responses.

The client receives messages〈〈SPEC-RESPONSE, v,n, hn, H(r), c, t〉σi , i, r, OR〉, wherei identifies the

replica issuing the response, from the replicas.SPEC-RESPONSEmessages from distinct replicasmatchif

they have identicalv, n, hn, H(r), c, t, andr fields. There are four cases to consider. The first three handle

varying numbers of matching speculative replies without considering theORfield, while the last considers

only theORfield.

4a. Client receives 3 f +1 matching responses and completes the request.

57

In the absence of faults, the client receives matchingSPEC-RESPONSEmessages from all 3f +1 replicas.

The client then considers the request and its history to becompleteand delivers the replyr to the application.

Zyzzyva guarantees that even if there is a view change, all correct replicas will always execute this request

at this point in their history to produce this response. Notice that although the client has a proof that the

request’s place in history is irrevocably set, no server hassuch a proof. Indeed, a server at this point cannot

determine whether a request has completed in its final order or a roll-back of the server’s state will be

necessary because a faulty primary ordered the request inconsistently across replicas.

4b. Client receives between 2 f + 1 and 3 f matching responses, assembles a commit certificate,
and transmits the commit certificate to the replicas.

If the network, primary, or some replicas are faulty, the client c may never receive responses from all

3 f +1 replicas. The client therefore sets a timer when it first issues a request: when this timer expires, ifc

has received matching speculative responses from between 2f +1 and 3f replicas, thenc sends a message

〈COMMIT , c,CC〉σc whereCC is a commit certificate consisting of a list of 2f +1 replicas, the replica-signed

portions of the 2f + 1 matchingSPEC-RESPONSEmessages from those replicas, and the corresponding

2 f +1 replica signatures.

Additional Pedantic Details:CC contains 2f +1 signatures on theSPEC-RESPONSEmessage and a list of

2 f + 1 nodes, but, since all the responses received byc from replicas are identical,c only needs to include

one replica-signed portion of theSPEC-RESPONSEmessage. Also note that, for efficiency,CC does not

include the bodyr of the reply but only the hashH(r).

4b.1. Replica receives a COMMIT message from a client containing a commit certificate and ac-
knowledges with a LOCAL-COMMIT message.

When a replicai receives a message〈COMMIT , c, CC〉σc containing a valid commit certificateCCproving

that a request should be executed with a specified sequence number and history in the current view, the

58

replica first ensures that its local history is consistent with the one certified byCC. If so, replicai (1) updates

its max commit certificatestate if this certificate’s sequence number is higher than the stored certificate’s

sequence number and (2) sends a message〈LOCAL-COMMIT ,v,d,h, i,c〉σi to c.

Additional Pedantic Details:If the local history simply has holes encompassed byCC’s history, theni

fills them as described in3. If, however, the two histories contain different requestsfor the same sequence

number, theni initiates the view change protocol.

4b.2. Client receives a LOCAL-COMMIT messages from 2 f +1 replicas and completes the request.

The client resends theCOMMIT message until it receives correspondingLOCAL-COMMIT messages from

2 f +1 distinct replicas. The client then considers the request and its history to becompleteand delivers the

reply r to the application. The system guarantees that even if thereis a view change, all correct replicas will

always execute this request at this point in their history toproduce this response.

Additional Pedantic Details:When the client first sends theCOMMIT message to the replicas it starts a

timer. If this timer expires before the client receives 2f +1 LOCAL-COMMIT messages then the client moves

on to protocol step4c described below.

4c. Client receives fewer than 2 f +1 matching SPEC-RESPONSEmessages and resends its request
to all replicas, which forward the request to the primary in order to ensure the request is assigned a
sequence number and eventually executed.

Client. If the network or primary is faulty, the clientc may never receive matchingSPEC-RESPONSE

messages from 2f + 1 replicas. The client therefore sets a second timer when it first issues a request and

resends theREQUESTmessage to all replicas when the second timer expires. It then resets its timers and

continues gathering speculative responses.

Replica.When non-primary replicai receives a message〈REQUEST,o, t,c〉σc from clientc there are two

possible actions fori to take. If the request matches or has a lower client-supplied timestamp than the

59

currently cached request for clientc, then i resends the cached response toc. If instead the request has

a higher timestamp than the currently cached response, theni sends a message〈CONFIRM-REQ, v, m, i〉σi

wherem= 〈REQUEST,o, t,c〉σc to the primaryp and starts a timer. If the replica accepts anORDER-REQ

message for this request before the timeout, it processes the ORDER-REQ message as described above. If the

timer fires before the primary orders the request, the replica initiates a view change.

Primary. Upon receiving the confirm request message〈CONFIRM-REQ,v,m, i〉σi from replicai, the pri-

mary p checks the client’s timestamp for the request. If the request is new, p sends a newORDER-REQ

message using the next sequence number to order as describedin step2; otherwise,p sends toi the cached

ORDER-REQ message for the most recent request fromc.

Additional Pedantic Details:If replica i has received a commit certificate or stable checkpoint for a sub-

sequent request, then the replica sends aLOCAL-COMMIT to the client even if the client has not received a

commit certificate for the retransmitted request. Additionally, if replica i does not receive theORDER-REQ

message from the primary, the replica sends theCONFIRM-REQ message to all other replicas. Upon receipt

of a CONFIRM-REQ message from another replicaj, replica i sends theORDER-REQ message it received

from the primary toj; if i did not receive the request from the client,i acts as if the request came from the

client itself.

4d. Client receives responses indicating inconsistent ordering by the primary and sends a proof of
misbehavior to the replicas, which initiate a view change to oust the faulty primary.

If client c receives a pair ofSPEC-RESPONSEmessages containing valid messagesOR=〈ORDER-REQ,

v, n, hn, d, ND〉σ j for the same request (d = H(m)) in the same viewv with differing sequence numbern

or historyhn, then the pair ofORDER-REQ messages constitutes a proof of misbehavior (POM) against the

primary. Upon receipt of aPOM, c sends a message〈POM,v,POM〉σc to all replicas. Upon receipt of a valid

POM message, a replica initiates a view change and forwards thePOM message to all other replicas.

60

Note that cases4b and4c are not exclusive of4d; a client may receive messages sufficient to complete a

request or form a commit certificate and also a proof of misbehavior against the primary.

4.3.3 View Changes

Fast agreement and speculative execution have profound effects on Zyzzyva’s view change sub-protocol. In

this section we highlight the differences between the Zyzzyva view change sub-protocol and that of previous

systems. For completeness we include the full view change sub-protocol in Appendix G.1.1.

The view change sub-protocol must elect a new primary and guarantee that it will not introduce any

changes in a history that has already completed at a correct client. To maintain this safety property, tra-

ditional view change sub-protocols [58, 63, 86, 111, 136] require a correct replica that commits to a view

change to stop accepting messages other thanCHECKPOINT, VIEW-CHANGE, and NEW-VIEW messages.

Also, to prevent faulty replicas from disrupting the system, a view change sub-protocol should never re-

move a primary unless at least one correct replica commits tothe view change. Hence, a correct replica

traditionally commits to a view change if either (a) it observes the primary to be faulty or (b) it has a proof

that f +1 replicas have committed to a view change. On committing to aview change a correct replica sends

a signedVIEW-CHANGE message that includes the new view, the sequence number of the replica’s latest sta-

ble checkpoint (together with a proof of its stability), andthe set of prepare certificates—the equivalent of

commit certificates in Zyzzyva—collected by the replica.

The traditional view change completes when the new primary,using 2f + 1 VIEW-CHANGE messages

from distinct replicas, computes the history of requests that all correct replicas must adopt to enter the new

view. The new primary includes this history, with a proof of validity, in a signedNEW-VIEW message that it

broadcasts to all replicas.

Zyzzyva maintains the overall structure of the traditionalprotocol, but it departs in two significant ways

61

that together allow clients to accept a response before any replicas know that the request has been committed

and allow the replicas to commit to a response after two phases instead of the traditional three.

1. First, to ensure liveness, Zyzzyva strengthens the condition under which a correct replica commits

to a view change by adding a new “I hate the primary” phase to the view change sub-protocol. We

explain the need for and details of this addition below by consideringThe Case of the Missing Phase.

2. Second, to guarantee safety, Zyzzyva weakens the condition under which a request appears in the

history included in theNEW-VIEW message. We explain the need for and details of this change below

by consideringThe Case of the Uncommitted Request.

The Case of the Missing Phase

As Figure 1 shows, Zyzzyva’s agreement protocol guaranteesthat every request that completes within a

view does so after at most two phases. This property may appear surprising to the reader familiar with

PBFT. If we view a correct client that executes step4b of Zyzzyva as implementing a broadcast channel

between replicas, then Zyzzyva’s communication pattern maps to only two of PBFT’s three phases, one

where communication is primary-to-replicas(pre-prepare)and the second involving all-to-all exchanges

(eitherprepareor commit). Where did the third phase go? And why is it there in the first place?

The answer to the second question lies in the subtle dependencies between the agreement and view change

sub-protocols. No replicated service that uses the traditional view change protocol can be live without an

agreement protocol that includes both theprepareandcommitfull exchanges.3 To see how this constraint

applies to Zyzzyva, consider a scenario withf faulty replicas, one of them the primary, and suppose the

faulty primary causesf correct replicas to commit to a view change and stop sending messages in the view.

3Unless a client can unilaterally initiate a view change. This option is unattractive when clients can be Byzantine.

62

In this situation, a client request may only receivef +1 responses from the remaining correct replicas, not

enough for the request to complete in either the first or second phase—and, because fewer thanf +1 replicas

demand a view change, there is no opportunity to regain liveness by electing a new primary.

The third phase of traditional BFT agreement breaks this stalemate: by exchanging what they know,

the remainingf + 1 correct replicas can either gather the evidence necessaryto complete the request after

receiving onlyf +1 matching responses or determine that a view change is necessary.

Back to the first question: How does Zyzzyva avoid the third phase in the agreement sub-protocol? The

insight is that what compromises liveness in the previous scenario is that the traditional view change protocol

lets correct replicas commit to a view change and become silent in a view without any guarantee that their

action will lead to the view change. Instead, in Zyzzyva, a correct replica does not abandon viewv unless it

is guaranteed that every other correct replica will do the same, forcing a new view and a new primary.

To ensure this property, the Zyzzyva view change sub-protocol adds an additional phase to strengthen the

conditions under which a replica stops participating in thecurrent view. In particular, a correct replicai that

suspects the primary of viewv continues to participate in the view, but expresses its voteof no-confidence

in the primary by multicasting to all replicas a message〈I-HATE-THE-PRIMARY, v〉σi . If i receivesf + 1

votes of no confidence inv’s primary, then it commits to a view change: it becomes silent, and multicasts

to all replicas aVIEW-CHANGE message that contains a proof thatf +1 replicas have no confidence in the

primary for viewv. A correct replica that receives a validVIEW-CHANGE message joins in the mutiny and

commits to the view change. As a result, Zyzzyva’s view change protocol ensures that if a correct replica

commits to a view change in viewv, eventually all correct replicas will. In effect, Zyzzyva shifts the costs

needed to deal with a faulty primary from the critical path (the agreement protocol) to the view change

sub-protocol, which is run only when the primary is faulty.

63

The Case of the Uncommitted Request

Zyzzyva replicas may never learn the outcome of the agreement protocol: only clients may know when a

request has completed. How do Zyzzyva replicas identify a safe history prefix for a new view?

There are two ways in which a requestr and its history may complete in Zyzzyva. Let us first consider

the least problematic from the perspective of a view change:it occurs whenr completes because a client

receives 2f +1 LOCAL-COMMIT messages, implying that at leastf +1 correct replicas have stored a commit

certificate forr. Traditional view change protocols already handle this case: the standardVIEW-CHANGE

message sent by a correct replica includes all commit certificates known to the replica since the latest stable

checkpoint. The new primary includes in theNEW-VIEW message all commit certificates that appear in

any set of 2f +1 VIEW-CHANGE messages it receives: at least one of thoseVIEW-CHANGE messages must

contain a commit certificate forr.

The other case is more challenging: ifr completes because the client receives 3f +1 matching speculative

responses, then no correct replica will have a commit certificate forr. We handle this case by modifying

the view change sub-protocol in two ways. First, correct replicas add to the information included in their

VIEW-CHANGE message allORDER-REQ messages (without the corresponding client request) received since

the latest stable checkpoint or commit certificate. Second,a correct new primary extends the history to be

adopted in the new view to include all requests with anORDER-REQ message containing a sequence number

higher than the largest sequence number in any commit certificate that appears in at leastf +1 of the 2f +1

VIEW-CHANGE messages the new primary collects.

This change weakens the conditions under which a request ordered in one view can appear in a new view:

we no longer require a commit certificate but also allow a sufficient number ofORDER-REQ messages to

support a request’s ordering. This change ensures that the protocol continues to honor ordering commitments

64

for any request that completes when a client gathers 3f +1 matching speculative responses.

Notice that this change may have the side effect of assigningan order to a request that has not yet

completed in the previous view. In particular, a curiosity of the protocol is that, depending on which set

of 2 f + 1 VIEW-CHANGE messages the primary uses, it may, for a given sequence number, find different

requests withf +1 ORDER-REQ messages. This curiosity, however, is benign and cannot cause the system

to violate safety. In particular, there can be two such candidate requests for the same sequence number only

if at least one correct replica supports each of the candidates. In such a case, neither of the candidates could

have completed by having a client receive 3f + 1 matching responses, and the system can safely assign

either (or neither) request to that sequence number.

4.3.4 Correctness

This section sketches the proof that Zyzzyva maintains propertiesSAF andLIV defined above. We include

complete proofs in Appendix G.

Safety

We first show that our agreement sub-protocol is safe within asingle view and then show that the agreement

and view change protocols together ensure safety across views.

Within a View The proof proceeds in two parts. First we show that no two requests complete with the

same sequence numbern. Second we show thathn is a prefix ofhn′ for n < n′ and completed requestsr and

r ′.

Part 1: A request completes when the client receives 3f +1 matchingSPEC-RESPONSEmessages in phase

1 or 2f +1 matchingLOCAL-COMMIT messages in phase 2. If a request completes in phase 1 with sequence

numbern, then no other request can complete with sequence numbern because correct replicas (a) send only

65

one speculative response for a given sequence number and (b)send aLOCAL-COMMIT message only after

seeing 2f +1 matchingSPEC-RESPONSEmessages. Similarly, if a request completes with sequence number

n in phase 2, no other request can complete since correct replicas only send oneLOCAL-COMMIT message

for sequence numbern.

Part 2: For any two requestsr andr ′ that complete with sequence numbersn andn′ and historieshn and

hn′ respectively, there are at least 2f + 1 replicas that ordered each request. Because there are only3 f + 1

replicas in total, at least one correct replica ordered bothr andr ′. If n < n′, it follows thathn is a prefix of

hn′ .

Across Views We show that any request that completes based on responses sent in viewv< v′ is contained

in the history specified by theNEW-VIEW message for viewv′. Recall that requests complete either when a

correct client receives 3f +1 matching speculative responses or 2f +1 matching local-commits.

If a requestr completes with 2f + 1 matching local-commits, then at leastf + 1 correct replicas have

received a commit certificate forr (or for a subsequent request) and will send that commit certificate to the

new primary in theirVIEW-CHANGE message. Because there are 3f + 1 replicas in the system and 2f + 1

VIEW-CHANGE messages in aNEW-VIEW message, that commit certificate will necessarily be included in

the NEW-VIEW message andr will be included in the history. Consider instead a requestr that completes

with 3 f + 1 matchingSPEC-RESPONSEmessages and does not complete with 2f + 1 matchingLOCAL-

COMMIT messages. Every correct replica will include theORDER-REQ for r in its VIEW-CHANGE message,

ensuring that the request will be supported by at leastf + 1 replicas in the set of 2f + 1 VIEW-CHANGE

messages collected by the primary of viewv′ and therefore be part of theNEW-VIEW message.

66

Liveness

Zyzzyva guarantees liveness only during periods of synchrony. To show that a request issued by a correct

client eventually completes, we first show that if the primary is correct when a correct client issues the

request, then the request completes. We then show that if a request from a correct client does not complete

during the current view, then a view change occurs.

Part 1: If the client and primary are correct, then protocol steps1 through3 ensure that the client receives

SPEC-RESPONSEmessages from all correct replicas. If the client receives 3f +1 matchingSPEC-RESPONSE

messages, the request completes—and so does our proof. A client that instead receives fewer than 3f + 1

such messages will receive at least 2f +1 of them, since there are 3f +1 replicas and at mostf of which are

faulty. This client then sends aCOMMIT message to all replicas (protocol step4b). All correct replicas send

a LOCAL-COMMIT message to the client (protocol step4b.1), and, because there are at least 2f +1 correct

replicas, the client’s request completes in protocol step4b.2.

Part 2: Assume the request from correct clientc does not complete. By protocol step4c, c resends

the REQUESTmessage to all replicas when the request has not completed for a sufficiently long time. A

correct replica, upon receiving the retransmitted requestfrom c, contacts the primary for the corresponding

ORDER-REQ message. Any correct replica that does not receive theORDER-REQ message from the primary

initiates the view change by sending anI-HATE-THE-PRIMARY message to all other replicas. Either at least

one correct replica receives at leastf +1 I-HATE-THE-PRIMARY messages, or no correct replica receives at

least f +1 I-HATE-THE-PRIMARY messages. In the first case, the replicas commit to a view change—QED.

In the second case, all correct replicas that did not receivetheORDER-REQmessage from the primary receive

it from another replica. After receiving anORDER-REQ message, a correct replica sends aSPEC-RESPONSE

to c. Because all correct replicas send aSPEC-RESPONSEmessage toc, c is guaranteed to receive at least

2 f + 1 such messages. Note thatc must receive fewer than 2f + 1 matchingSPEC-RESPONSEmessages:

67

otherwise,c would be able to form aCOMMIT and complete the request, contradicting our initial assumption.

If however,c does not receive 2f + 1 matchingSPEC-RESPONSEmessages, thenc is able to form aPOM

message:c relays this message to the replicas which in turn initiate and commit to a view change, completing

the proof.

4.4 Implementation Optimizations

Our implementation includes several optimizations to improve performance and reduce system cost.

Replacing Signatures with MACs Like previous work [45, 58, 63, 86, 111, 136], we replace mostsigna-

tures in Zyzzyva with MACs and authenticators in order to reduce the computational overhead of crypto-

graphic operations. The only signatures that are not replaced with MACs are client request retransmissions

and the messages of the view change protocol. The technical changes to each sub-protocol required by

replacing signatures with authenticators are described inAppendix [?]. The most noticeable difference in

the agreement sub-protocol is the way Zyzzyva addresses thescenario in which replicai is unable to au-

thenticate a client request;i cannot distinguish whether the fault lies with the primary or the client. Our

procedure in this case is similar to a view change and resultsin correct replicas agreeing to accept the re-

quest or replace it with ano-op in the sequence. The checkpoint sub- protocol adds a third phase to ensure

that stable checkpoints are consistent with requests that complete through speculative execution. Finally,

the view change sub-protocol includes an additional phase for gathering checkpoint and commit certificate

proofs as is done in PBFT [58].

Separating Agreement from Execution We separate agreement from execution [136] by requiring only

2 f + 1 replicas to be execution replicas. The remaining replicasserve as witness replicas [92], aiding in

the process of ordering requests but not replicating the application. Clients accept a history based on the

agreement protocol described in the previous section with aslight modification: a pair of responses are

68

considered to match even if the responser and response hashH(r) fields are not identical. A client acts on

a reply only after receiving the appropriate number of matching responses andf + 1 matching application

replies from execution replicas. One consequence of this optimization is that a client may have to wait until

it has received more than 2f + 1 responses before it can act in the second phase. We gain further benefit

by biasing the primary selection criteria so that witness replicas are chosen as the primary more frequently

than execution replicas. This favoritism reduces processor contention at the primary and allows requests to

be ordered and processed faster.

Request Batching We batch concurrent requests to reduce cryptographic and communication overheads

like other agreement-based replicated services [58, 86, 111, 124, 136]. Batching requests amortizes the cost

of replica operations across multiple requests and reducesthe total number of operations per request. One

key step in batching requests is having replicas compute a single history digest corresponding to the entries

in the batch. This batch history is used in responses to all requests included in the batch. If the second phase

completes for any request in the batch, the second phase is considered complete for all requests in the batch

and replicas respond to the retransmission of any requests in the batch with local-commit messages.

Caching Out of Order Requests The protocol described in section 4.3.2 dictates that replicas discard

order request messages that are received out of order. We improve performance when the network delivers

messages out of order by caching these requests until the appropriate sequence number is reached. Similarly,

the view change sub-protocol can order additional requeststhat are not supported byf + 1 speculative

responses.

Read-Only Optimization Like PBFT [58], we improve the performance of read- only requests that do

not modify the system state. A client sends read-only requests directly to the replicas which execute the

69

requests immediately, without recording the request in therequest history. As in PBFT, clients wait for

2 f +1 matching replies in order to complete read-only operations. In order for this optimization to function,

we augment replies to read requests with a replica’s maxn and maxCC. A client that receives 2f +1 matching

responses, including the maxn and maxCC fields, such that maxn = maxCC can accept the reply to the read.

Furthermore, a client that receives 3f + 1 matching replies, even if the maxCC and maxn values are not

consistent, can accept the reply to the read.

Single Execution Response The client specifies a single execution replica to respond with a full response

while the other execution replicas send only a digest of the response. This optimization is introduced in

PBFT [58] and saves network bandwidth proportional to the size of responses.

Preferred Quorums Q/U [45] and HQ [63] leverage preferred quorums to reduce thesize of authenti-

cators by optimistically including MACs for a subset of replicas rather than all replicas. We implement

preferred quorums for the second phase; replicas authenticate speculative response messages for the client

and a subset of 2f other replicas. Additionally, on the initial transmission, we allow the client to specify

that replicas should authenticate speculative response messages to the client only. This optimization re-

duces the number of cryptographic operations performed by backup replicas to three while existing BFT

systems [45, 58, 63, 86, 111, 136] require a linear number of cryptographic operations at each replica.

Other optimizations First, we use an adaptive commit timer at the client to initiate the commit phase

which adapts to the slowest replica in the system. Second, like PBFT, clients broadcast requests directly to

all the replicas where as the primary uses just the request digest in the order request message.

70

4.4.1 Making the Faulty Case Fast

Commit Optimization In the presence of faults, the protocol described in section4.3.2 requires that

clients start the second phase (commit phase) if they receive fewer than 3f + 1 responses. Replicas then

verify the commit certifcate and send the local-commit response. The problem with this approach is that the

replicas end up splitting the batch of requests in the first phase when replies are sent back to the clients and

then verify commit messages from each client separately in the second phase. Thus, replicas fail to amortize

the verification cost in the second phase.

Zyzzyva addresses this problem using commit optimization where clients assign a bit to hint replicas that

they send speculative replies after committing the requestlocally. When this bit is set, replicas broadcast

order request messages (similar to prepare message in PBFT)after they receive a valid order request message

from the primary and do not send speculative response immediately. If a replica receives 2f + 1 matching

order request messages from other replicas it then commits the request locally (as if it recieved a valid

commit certificate in theCOMMIT message from the client), executes the request, and sends the speculative

response to the client with bothmaxn andmaxCC set to the request order. Like read-only optimization, clients

consider a request to be complete if they receive 2f+1 matching speculative responses with maxn = maxCC

and deliver response to the application. Clients set the commit optimization bit whenever they complete

a request using two phases. They reset the bit to zero if they receive speculative responses from all 3f+1

replicas. Clients start with this bit set to zero assuming that they are no faults in the system.

Unlike the original protocol, this optimization allows replicas to verify order request messages once

for the entire batch before committing the request locally.This optimization reduces the cryptographic

overhead at a replica from 3+ 5 f+1
b crypto ops per request to 2+ 5 f+1

b crypto ops per request. We evaluate

the performance impact of this optimization in section 4.5.5.

71

Zyzzyva5 We introduce a second protocol, Zyzzyva5, that uses 2f additionalwitness replicas(the number

of execution replicas is unchanged at 2f +1) for a total of 5f +1 replicas. Increasing the number of replicas

lets clients receive responses in three message delays evenwhen f replicas are faulty [66, 88, 96]. Zyzzyva5

trades the number of replicas in the deployed system againstperformance in the presence of faults. Zyzzyva5

is identical to Zyzzyva with a simple modification—nodes wait for an additionalf messages, i.e. if a node

bases a decision on a set of 2f +1 messages in Zyzzyva, the corresponding decision in Zyzzyva5 is based on

a set of 3f +1 messages. The exceptions to this rule are the “I hate the primary” phase of the view change

protocol and the fill-hole and confirm-request sub-protocols that serve to prove that another correct replica

has taken an action—these phases still require onlyf +1 responses.

4.5 Evaluation

This section examines the performance characteristics of Zyzzyva and compares it with existing approaches.

We run our experiments on 3.0 GHz Pentium-4 machines with theLinux 2.6 kernel. We use MD5 for MACs

and AdHash [52] for incremental hashing. MD5 is known to be vulnerable, but we use it to make our

results comparable with those in the literature. Since Zyzzyva uses fewer MACs per request than any of the

competing algorithms, our advantages over other algorithms would be increased if we were to use the more

secure, but more expensive, SHA-256.

For comparison, we run Castro et al.’s implementation of PBFT [58] and Cowling et al.’s implementation

of HQ [63]; we scale up measured throughput for the small request/response benchmark by 9% [26] to

account for their use of SHA-1 rather than MD5. We include published throughput measurements for

Q/U [45]; we scale reported performance up by 7.5% to accountfor our use of 3.0 GHz rather than 2.8GHz

machines. We also compare against measurements of an unreplicated server.

Unless noted otherwise, in our experiments we use all of the optimizations other than preferred quorums

for Zyzzyva as described in §4.4. PBFT [58] does not implement preferred quorum optimization. We run

72

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100

T
hr

ou
gh

pu
t (

K
op

s/
se

c)

Number of clients

Unreplicated

Zyzzyva (B=10)

Zyzzyva5 (B=10)

PBFT (B=10)

Zyzzyva5

PBFT

HQ

Q/U max throughput
(from [3], scaled)

Zyzzyva

Figure 4.3: Realized throughput for the 0/0 benchmark as thenumber of client varies for systems configured
to toleratef = 1 faults.

with preferred quorum optimization for HQ [63]. We do not usethe read-only optimization for Zyzzyva and

PBFT unless we state so explicitly.

4.5.1 Throughput

To stress-test Zyzzyva we use the micro-benchmarks devisedby Castro et al. [58]. In the 0/0 benchmark, a

client sends a null request and receives a null reply. In the 4/0 benchmark, a client sends a 4KB request and

receives a null reply. In the 0/4 benchmark, a client sends a null request and receives a 4KB reply.

Figure 4.3 shows the throughput achieved for the 0/0 benchmark by Zyzzyva, Zyzzyva5, PBFT, and HQ

(scaled as noted above). For reference, we also show the peakthroughput reported for Q/U [45] in thef = 1

configuration, scaled to our environment as described above. As the number of clients increases, Zyzzyva

and Zyzzyva5 scale better than PBFT with and without batching. Without batching, Zyzzyva achieves a

peak throughput that is 2.7 times higher than PBFT due to PBFT’s higher cryptographic overhead (PBFT

performs about 2.2 times more crypto operations than Zyzzyva) and message overhead (PBFT sends and

receives about 3.7 times more messages than Zyzzyva). When the batch size is increased to 10, Zyzzyva’s

73

 0

 0.2

 0.4

 0.6

 0.8

 1

4/0 (r/o)4/00/4 (r/o)0/40/0 (r/o)0/0

La
te

nc
y

pe
r

re
qu

es
t (

m
s)

U
nr

ep
lic

at
ed

Z
yz

zy
va

Z
yz

zy
va

5
P

B
F

T
Q

/U
 (

id
ea

l)
H

Q

U
nr

ep
lic

at
ed

Z
yz

zy
va

Z
yz

zy
va

5
P

B
F

T Q
/U

 (
id

ea
l)

H
Q

U
nr

ep
lic

at
ed

Z
yz

zy
va

Z
yz

zy
va

5
P

B
F

T
Q

/U
 (

id
ea

l)
H

Q

U
nr

ep
lic

at
ed

Z
yz

zy
va

Z
yz

zy
va

5
P

B
F

T
Q

/U
 (

id
ea

l)
H

Q

U
nr

ep
lic

at
ed

Z
yz

zy
va

Z
yz

zy
va

5
P

B
F

T
Q

/U
 (

id
ea

l)
H

Q

U
nr

ep
lic

at
ed

Z
yz

zy
va

Z
yz

zy
va

5
P

B
F

T
Q

/U
 (

id
ea

l)
H

Q

Figure 4.4: Latency for 0/0, 0/4, and 4/0 benchmarks for systems configured to toleratef = 1 faults.

and Zyzzyva5’s peak throughputs increase to 86K ops/sec suggesting that the protocol overhead at the

primary is 12µs per batched request. With batching, PBFT’s throughput increases to 59K ops/sec. The

45% difference between Zyzzyva and PBFT’s peak throughput are largely accounted for PBFT’s higher

cryptographic overhead (about 30%) and message overhead (about 30%) compared to Zyzzyva. Zyzzyva

provides over 3 times the reported peak throughput of Q/U andover 9 times the measured throughput of HQ.

This difference stems from three sources. First, Zyzzyva requires fewer cryptographic operations per request

compared to HQ and Q/U. Second, neither Q/U nor HQ is able to use batching to reduce cryptographic and

message overheads. Third, Q/U and HQ do not take advantage ofthe Ethernet broadcast channel to speed

up the one-to-all communication steps.

Overall, the peak throughput achieved by Zyzzyva is within 35% of that of an unreplicated server that

simply replies to client request over an authenticated channel. Note that as application-level request pro-

cessing increases, the protocol overhead will fall.

74

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 20 40 60 80 100 120 140

La
te

nc
y

pe
r

re
qu

es
t (

m
s)

Throughput (Kops/sec)

Unreplicated
Zyzzyva (B=10)

Zyzzyva5 (B=10)

P
B

F
T

 (
B

=
10

)

Z
yz

zy
va

5P
B

F
T

H
Q

Q
/U

 m
ax

 th
ro

ug
hp

ut

Q/U best latency

(f
ro

m
 [3

],
sc

al
ed

)

Z
yz

zy
va

Figure 4.5: Latency vs. throughput for systems configured totolerate f = 1 faults.

4.5.2 Latency

Figure 4.4 shows the latencies of Zyzzyva, Zyzzyva5, Q/U, and PBFT for the 0/0, 0/4, and 4/0 microbench-

marks. For Q/U, which can complete in fewer message delays than Zyzzyva during contention-free periods,

we use a simple best-case implementation of Q/U with preferred quorums in which a client simply generates

and sends 4f +1 MACs with a request, each replica verifies 4f +1 MACs (1 to authenticate the client and

4 f +1 to validate the OHS state), each replica generates and sends 4f +1 MACs (1 to authenticate the reply

to the client and 4f to authenticate OHS state) with a reply to the client, and theclient verifies 4f +1 MACs.

We examine both the default read/write requests that use thefull protocol and read-only requests that exploit

the read-only optimization.

Zyzzyva uses fast agreement to drive its latency near the optimal for an agreement protocol—3 one-

way message delays [66, 88, 96]. The experimental results inFigure 4.4 show that Zyzzyva and Zyzzyva5

achieve significantly lower latency than the other agreement-based protocols, PBFT and HQ. As expected,

Q/U’s avoidance of serialization gives it even better latency in low-contention workloads such as the one

examined here, though Zyzzyva and PBFT can match Q/U for read-only requests where all of these protocols

75

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 20 40 60 80 100 120 140

La
te

nc
y

pe
r

re
qu

es
t (

m
s)

Throughput (Kops/sec)

Zyzzyva
Zyzzyva (B = 10)
Zyzzyva (B = 40)

Unreplicated
PBFT

PBFT (B = 10)
PBFT (B = 20)
PBFT (B = 40)

HQ
Q/U (projected limit)

Figure 4.6: Latency vs. throughput for systems configured totolerate f = 1 faults.

can complete in two message delays.

Figure 4.5 shows latency and throughput as we vary offered load. As the figure illustrates, batching in

Zyzzyva, Zyzzyva5, and PBFT increases latency but also increases peak throughput. Adaptively setting the

batch size in response to workload characteristics is an avenue for future work.

4.5.3 Batching

In this section we examine the effect of varying batch sizes on the peak throughputs of Zyzzyva and PBFT.

Figure 4.6 showa that the peak throughput of Zyzzyva saturates at a batch size of 10 whereas the peak

throughput of PBFT saturates at 20. Zyzzyva continues to outperform PBFT even with increasing batch

sizes although with a reduced margin.

4.5.4 Fault Scalability

In this section we examine performance of these protocols asf , the number of tolerated faults, increases.

Figure 4.7 shows the peak throughputs of Zyzzyva, PBFT, HQ, and Q/U (reported throughput) with

increasing number of tolerated faults for batch sizes of 1 and 10. Zyzzyva is robust to increasingf and

76

 0

 20

 40

 60

 80

 100

f=3f=2f=1

M
ax

 th
ro

ug
hp

ut
 (

K
op

s/
se

c)

Z
yz

zy
va

Z
yz

zy
va

 (
B

=
10

)

P
B

F
T

P
B

F
T

 (
B

=
10

)
Q

/U
 (

sc
al

ed
 fr

om
 [3

])
H

Q

Z
yz

zy
va

Z
yz

zy
va

 (
B

=
10

)

P
B

F
T

P
B

F
T

 (
B

=
10

)
Q

/U
 (

sc
al

ed
 fr

om
 [3

])
H

Q

Z
yz

zy
va

Z
yz

zy
va

 (
B

=
10

)

P
B

F
T

P
B

F
T

 (
B

=
10

)
Q

/U
 (

sc
al

ed
 fr

om
 [3

])
H

Q

Figure 4.7: Fault scalability: Peak throughputs

continues to provide significantly higher throughput than other systems for the same reasons as explained

in the throughput section. Additionally, as expected for the case with no batching, the overhead of Zyzzyva

increases more slowly than PBFT with increasingf because Zyzzyva requires 2+(3 f + 1) cryptographic

operations compared to 2+(10f +1) cryptographic operations for PBFT.

Figures 4.8 shows the number of cryptographic operations per request and the number of messages sent

and received per request at the bottleneck server (the primary in Zyzzyva, Zyzzyva5, PBFT, and any server

in Q/U and HQ). We believe that for these metrics, the most interesting regions are whenf is small and

when batching is enabled. Not coincidentally, Zyzzyva performs well in these situations, dominating all of

the approaches with respect to load at the bottleneck server. Also, when f is small, Zyzzyva and Zyzzyva5

also have low message counts at the primary.

As f increases, when batching is used, Zyzzyva and Zyzzyva5 are likely to remain attractive. One

point worth noting is that message counts at the primary for Zyzzyva, Zyzzyva5, and PBFT increase asf

increases, while server message counts are constant withf for Q/U and HQ. In this figure, message counts

do not include the multicast optimization we exploited in our experiments. Multicast reduces the number

of client messages for all protocols by allowing clients to transmit their requests to all servers in one send.

77

 0

 10

 20

 30

 40

 50

 0 1 2 3 4 5

C
ry

pt
og

ra
ph

ic
 O

pe
ra

tio
ns

 p
er

 R
eq

ue
st

Faults tolerated

Zyzzyva5

PBFT

HQ

Q/U

Zyzzyva

 0

 10

 20

 30

 40

 50

 0 1 2 3 4 5

C
ry

pt
og

ra
ph

ic
 O

pe
ra

tio
ns

 p
er

 R
eq

ue
st

Faults tolerated

HQ

Q/U

PBFT

Zyzzyva5

Zyzzyva

Batch size = 1 Batch size = 10
Bottleneck server cryptographic operations

 0

 10

 20

 30

 40

 50

 0 1 2 3 4 5

M
es

sa
ge

s
pe

r
R

eq
ue

st

Faults tolerated

Zyzzyva5

PBFT

HQ

Q/U

Zyzzyva

 0

 10

 20

 30

 40

 50

 0 1 2 3 4 5

M
es

sa
ge

s
pe

r
R

eq
ue

st

Faults tolerated

HQ

Q/U

PBFT
Zyzzyva5 Zyzzyva

Batch size = 1 Batch size = 10
Bottleneck server messages

Figure 4.8: Fault scalability using analytical model

Multicast also reduces the number of server messages for Zyzzyva, Zyzzyva5, PBFT, and HQ (but not Q/U)

when the primary or other servers communicate with their peers. In particular, with multicast the primary

sends or receives one message per batch of operations plus anadditional two messages per request regardless

of f .

78

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

T
hr

ou
gh

pu
t (

K
op

s/
se

c)

Number of clients

Zyzzyva without commit opt (B=10)

Zyzzyva5 (B=10)

Zyzzyva with commit opt(B=10)

PBFT (B=10)

Zyzzyva5 (B=1)

PBFT

HQ

Zyzzyva with commit opt (B=1)

Figure 4.9: Realized throughput for the 0/0 benchmark as thenumber of client varies whenf non-primary
replicas fail to respond to requests.

We examine other metrics in Appendix F.1 such as message and cryptographic overheads at the client

and find, for example, that Zyzzyva improves upon all of the protocols except PBFT by this metric. These

graphs are omitted due to space constraints.

4.5.5 Performance During Failures

Zyzzyva guarantees correct execution with any number of faulty clients and up tof faulty replicas. However,

its performance is optimized for the expected case of failure-free operation. In particular a single faulty

replica can force Zyzzyva to execute the slower 2 phase protocol. Zyzzyva’s protocol, however, remains

relatively efficient in such scenarios. In particular, Zyzzyva’s cryptographic overhead increases from 2+

3 f+1
b to 3+ 5 f+1

b operations per batch without the commit optimization. However, commit optimization

reduces the the cryptographic overhead of Zyzzyva from 3+ 5 f+1
b to 2+ 5 f+1

b crypt ops/request. Zyzzyva5’s

increased fault tolerance ensures that its overheads do notincrease in such scenarios, remaining at 2+ 5 f+1
b

per batch. For comparison, PBFT uses 2+ 10f+1
b operations in both this scenario and fault-free.

Figure 4.9 compares throughput with increasing numbers of clients for Zyzzyva, Zyzzyva5, PBFT, and

79

HQ in the presence off backup server failures. For the case whenf = 1, with one failure and no batch-

ing (b = 1), Zyzzyva and Zyzzyva5 provide 1.8 and 2.6 times higher throughput than PBFT, respectively,

because of additional cryptographic and message overheadsas described above. Zyzzyva (with commit

optimization) and Zyzzyva5 continue to outperform PBFT even with increased batch size of 10 although

with a reduced margin. However, PBFT performs 15% better than Zyzzyva wthout the commit optimization

because Zyzzyva (3+ 5 f+1
b) incurs higher overhead than PBFT (2+ 10f+1

b). Also, note that Zyzzyva5 per-

forms slightly better than Zyzzyva because the latter incurs additional processing overhead in the commit

phase whereas the former does not need an additional commit phase. For the same reasons as described in

the throughput section, Zyzzyva, Zyzzyva5, and PBFT outperform HQ. We do not include a discussion of

Q/U in this section as the throughput numbers of Q/U with failures are not reported [45].

A limitation Zyzzyva and Zyzzyva5 share with PBFT (and HQ during periods of contention) is that a

faulty primary can significantly prevent progress. These protocols replace the primary to ensure progress.

Although Q/U avoids having a primary, it shares a corresponding vulnerability: a faulty client that fails to

adhere to the back-off protocol can impede progress indefinitely.

4.6 Related Work

Starting with PBFT [58, 111] several systems [45, 63, 86, 136] have explored how to make Byzantine ser-

vices practical. We have discussed throughout the paper howZyzzyva builds upon these systems and how

it departs from them. As its predecessors, Zyzzyva leverages ideas inspired by Paxos [90] and by work on

Byzantine quorum systems [94]. In particular, Zyzzyva fastagreement protocol is based on recent work on

fast Paxos [66, 88, 96].

Numerous BFT agreement protocols [58, 63, 86, 96, 111, 136] have usedtentative executionto reduce the

latency experienced by clients. This optimization allows replicas to execute a request tentatively as soon as

80

they have collected the Zyzzyva equivalent of a commit certificate for that request. This optimization may

superficially appear similar to Zyzzyva’s support forspeculative executions—but there are two fundamental

differences. First, Zyzzyva’s speculative execution allows requests to complete at a client after a single

phase, without the need to compute a commit certificate: thisreduction in latency is not possible with

traditional tentative executions. Second, and more importantly, in traditional BFT systems a replica can

execute a request tentatively only after the replica’s “state reflects the execution of all requests with lower

sequence number, and these requests are all known to be committed” [?]. In Zyzzyva, replicas continue

to execute request speculatively, without waiting to know that requests with lower sequence numbers have

completed; this difference is what lets Zyzzyva leverage speculation to achieve not just lower latency but

also higher throughput.

Q/U [45] provides high throughput assuming low concurrencyin the system but requires higher number

of replicas than Zyzzyva. HQ [63] uses fewer replicas than Q/U but uses multiple rounds to complete an

operation. Both HQ and Q/U fail to batch concurrent requestsand incur higher overhead in the presence of

request contention; Singh et al. [124] add a preserializer to HQ and Q/U to address these issues.

BFT2F [91] explores how to gracefully weaken the consistency guarantees provided by BFT state ma-

chine replication when the number of faulty replicas exceeds one third (but is no more than two thirds) of

the total replicas.

Speculator [100] allows clients to speculatively completeoperations at the application level and perform

client level rollback. A similar approach could be used in conjunction with Zyzzyva to support clients that

want to act on a reply optimistically, rather than waiting onthe specified set of responses.

4.7 Conclusion

By systematically exploiting speculation, Zyzzyva exhibits significant performance improvements over ex-

isting BFT agreement protocols. The throughput and latencyof Zyzzyva approach the theoretical lower

81

bounds for any BFT protocol.

82

Chapter 5

SafeStore: A Durable and Practical Storage System

BFT state machine replication techniques provide better short-term availability (ability to access data

when desired) but may fail to provide long-term data durability (ability to store data correctly for long

durations) spanning many years or even decades in the face ofbroad range of threats that are possible

over such long periods. Such threats to data durability include conventional hardware and software faults,

environmental disruptions, organizational failures, andadministrative failures caused by human error or

malice. In this chapter, we present SafeStore, a distributed storage system designed to maintain long-term

data durability using the principle of aggressivefault isolationalong administrative, physical, and temporal

dimensions.

5.1 Introduction

The design of storage systems that provide data durability on the time scale of decades is an increasingly

important challenge as more valuable information is storeddigitally [14, 49, 114]. For example, data from

the National Archives and Records Administration indicatethat 93% of companies go bankrupt within a

year if they lose their data center in some disaster [7], and agrowing number of government laws [12, 32]

mandate multi-year periods of data retention for many typesof information [16, 104].

Against a backdrop in which over 34% of companies fail to testtheir tape backups [6] and over 40% of

individuals do not back up their data at all [43], multi-decade scale durable storage raises two technical

challenges. First, there exist a broad range of threats to data durability including media failures [105,

120, 133], software bugs [106, 135], malware [27, 125], usererror [104, 117], administrator error [73, 101],

83

organizational failures [34, 38], malicious insiders [37,51], and natural disasters on the scale of buildings [9]

or geographic regions [15]. Requiring robustness on the scale of decades magnifies them all: threats that

could otherwise be considered negligible must now be addressed. Second, such a system has to be practical

with cost, performance, and availability competitive withtraditional systems.

Storage outsourcing is emerging as a popular approach to address some of these challenges [75]. By

entrusting storage management to a Storage Service Provider (SSP), where “economies of scale” can min-

imize hardware and administrative costs, individual usersand small to medium-sized businesses seek cost-

effective professional system management and peace of mindvis-a-vis both conventional media failures and

catastrophic events.

Unfortunately, relying on an SSP is no panacea for long-termdata integrity. SSPs face the same list of

hard problems outlined above and as a result even brand-nameones [13, 18] can still lose data. To make

matters worse, clients often become aware of such losses only after it is too late. This opaqueness is a

symptom of a fundamental problem: SSPs are separate administrative entities and the internal details of

their operation may not be known by data owners. While most SSPs may be highly competent and follow

best practices punctiliously, some may not. By entrusting their data to back-box SSPs, data owners may free

themselves from the daily worries of storage management, but they also relinquish ultimate control over the

fate of their data. In short, while SSPs are an economically attractive response to the costs and complexity

of long-term data storage, they do not offer their clients any end-to-end guarantees on data durability, which

we define as the probability that a specific data object will not be lost or corrupted over a given time period.

To achieve high durability, SafeStore applies aggressively the principle offault isolationwithout com-

promising practicality in terms of cost, performance, and availability.

84

Aggressive isolation for durability. SafeStore stores data redundantly across multiple SSPs andleverages

diversity across SSPs to prevent permanent data loss causedby isolated administrator errors, software bugs,

insider attacks, bankruptcy, or natural catastrophes. With respect to data stored at each SSP, SafeStore

employs a “trust but verify” approach: it does not interferewith the policies used within each SSP to

maintain data integrity, but it provides anaudit interface so that data owner retain end-to-end control over

data integrity. The audit mechanism can quickly detect dataloss and trigger data recovery from redundant

storage before additional faults result in unrecoverable loss. Finally, to guard data stored at SSPs against

faults at the data owner site (e.g. operator errors, software bugs, and malware attacks), SafeStore restricts

the interface to provide temporal isolation between clients and SSPs so that the latter export the abstraction

of write-once-read-many storage.

Making aggressive isolation practical. SafeStore introduces an efficient storage interface to reduce net-

work bandwidth and storage cost using aninformed hierarchical erasure codingscheme, that, when applied

across and within SSPs, can achieve near-optimal durability. SafeStore SSPs expose redundant encoding

options to allow the system to efficiently divide storage redundancies across and within SSPs. Additionally,

SafeStore limits the cost of implementing its “trust but verify” policy through an audit protocol that shifts

most of the processing to the audited SSPs and encourages them proactively measure and report any data

loss they experience. Dishonest SSPs are quickly caught with high probability and at little cost to the auditor

using probabilistic spot checks. Finally, to reduce the bandwidth, performance, and availability costs of im-

plementing geographic and administrative isolation, SafeStore implements a two-level storage architecture

where a local server (possibly running on the client machine) is used as a soft-state cache, and if the local

server crashes, SafeStore limits down-time by quickly recovering the critical meta data from the remote

SSPs while the actual data is being recovered in the background.

85

Contributions. We present a highly durable storage architecture that uses anew replication interface to

distribute data efficiently across diverse set of SSPs and aneffective audit protocol to check data integrity.

We demonstrate that this approach can provide high durability in a way that is practical and economically

viable with cost, availability, and performance competitive with traditional systems. We demonstrate these

ideas by building and evaluating SSFS, an NFS-based SafeStore storage system. Overall, we show that

SafeStore provides an economical alternative to realize multi-decade scale durable storage for individuals

and small-to-medium sized businesses with limited resources. Note that although we focus our attention

on outsourced SSPs, the SafeStore architecture could also be applied internally by large enterprises that

maintain multiple isolated data centers.

5.2 Architecture and Design Principles

The main goal of SafeStore is to provide extremely durable storage over many years or decades.

5.2.1 Threat model

Over such long time periods, even relatively rare events canaffect data durability, so we must consider broad

range of threats along multiple dimensions—physical, administrative, and software.

Physical faults:Physical faults causing data loss include disk media faults[61, 133], theft [33], fire [9],

and wider geographical catastrophes [15]. These faults canresult in data loss at a single node or spanning

multiple nodes at a site or in a region.

Administrative and client-side faults:Accidental misconfiguration by system administrators [73,101],

deliberate insider sabotage [37, 51], or business failuresleading to bankruptcy [34] can lead to data corrup-

tion or loss. Clients can also delete data accidentally by, for example, executing “rm -r *”. Administrator

and client faults can be particularly devastating because they can affect replicas across otherwise isolated

86

subsystems. For instance [37], a system administrator not only deleted data but also stole the only backup

tape after he was fired, resulting in financial damages in excess of $10 million and layoff of 80 employees.

Software faults:Software bugs [106, 135] in file systems, viruses [27], worms[125], and Trojan horses

can delete or corrupt data. A vivid example of threats due to malware is the recent phenomenon of ran-

somware [30] where an attacker encrypts a user’s data and withholds the encryption key until a ransom is

paid.

Of course, any of the listed faults may occur rarely. But at the scale of decades, it becomes risky to

assume that no rare events will occur. It is important to notethat some of these failures [9, 105, 120] are

often correlated resulting in simultaneous data loss at multiple nodes while others [106] are more likely to

occur independently.

Replication mechanisms optimized for one or the other type of failure may not be optimal in this setting

where both failure types can happen.

Limitations of existing practice. Most existing approaches to data storage face two problems that are

particularly acute in our target environments of individuals and small/medium businesses: (1) they depend

too heavily on the operator or (2) they provide insufficient fault isolation in at least some dimensions.

For example, traditional removable-media-based-systems(e.g., tape, DVD-R) systems are labor intensive,

which hurts durability in the target environments because users frequently fail to back their data up, fail to

transport media off-site, or commit errors in the backup/restore process [35]. The relatively high risk of

robot and media failures [3] and slow mean time to recover [79] are also limitations.

Similarly, although on-site disk-based [4, 23] backup systems speed backup/recovery, use reliable me-

dia compared to tapes, and even isolate client failures by maintaining multiple versions of data, they are

vulnerable to physical site, administrative, and softwarefailures.

87

Storage service providers (SSPs)

Auditor

1

2

3

4

Remote storage

Virtual storage SSP2

SSP1

SSP3

 Local storage

Local ServerClients
NFS Interface

Client 1

Client 2

Client 3 R
e

s
tr

ic
te

d
 I
n

te
rf

a
c
e

Figure 5.1: SafeStore architecture

Finally, network storage service providers (SSPs) [1, 2, 22, 31] are a promising alternative as they provide

geographical and administrative isolation from users and they ride the technology trend of falling network

and hardware costs to reduce the data-owner’s effort. But they are still vulnerable to administrative failures

at the service providers [13], organizational failures (e.g., bankruptcy [34, 75]), and operator errors [38].

They thus fail to fully meet the challenges of a durable storage system. We do, however, make use of SSPs

as a component of SafeStore.

5.2.2 SafeStore architecture

As shown in Figure 5.1, SafeStore uses the following design principles to provide high durability by toler-

ating the broad range of threats outlined above while keeping the architecture practical, with cost, perfor-

mance, and availability competitive with traditional systems.

88

Efficiency via 2-level architecture. SafeStore uses a two-level architecture in which the data owner’s

local server (©1 in Figure 5.1) acts as a cache and write buffer while durable storage is provided by multiple

remotestorage service providersSSPs©2. The local server could be running on the client’s machine or

a different machine. This division of labor has two consequences. First, performance, availability, and

network cost are improved because most accesses are served locally; we show this is crucial in Section 5.3.

Second, management cost is improved because the requirements on the local system are limited (local

storage is soft state, so local failures have limited consequences) and critical management challenges are

shifted to the SSPs, which can have excellent economies of scale for managing large data storage systems [1,

36, 75].

Aggressive isolation for durability. We apply the principle of aggressive isolation in order to protect data

from the broad range of threats described above.

• Autonomous SSPs:SafeStore stores data redundantly across multiple autonomous SSPs (©2 in Fig-

ure 5.1). Diverse SSPs are chosen to minimize the likelihoodof common-mode failures across SSPs.

For example, SSPs can be external commercial service providers [1, 2, 22, 31], that are geographically

distributed, run by different companies, and based on different software stacks. Although we fo-

cus onout-sourcedSSPs, large organizations can use our architecture within-sourcedstorage across

autonomous entities within their organization (e.g., different campuses in a university system.)

• Audit: Aggressive isolation alone is not enough to provide high durability as data fragment failures

accumulate over time. On the contrary, aggressive isolation can adversely affect data durability be-

cause the data owner has little ability to enforce or monitorthe SSPs’ internal design or operation to

ensure that SSPs follow best practices. We provide an end-to-end audit interface (©3 in Figure 5.1) to

detect data loss and thereby bound mean time to recover (MTTR), which in turn increases mean time

89

to data loss (MTTDL). In Section 5.4 we describe our audit interface and show how audits limit the

damage that poorly-run SSPs can inflict on overall durability.

• Restricted interface:SafeStore must minimize the likelihood that erroneous operation of one subsys-

tem compromises the integrity of another [95]. In particular, because SSPs all interact with the local

server, we must restrict that interface. For example, we must protect against careless users, mali-

cious insiders, or devious malware at the clients or local server that mistakenly delete or modify data.

SafeStore’s restricted SSP interface©4 provides temporal isolation via the abstraction of versioned

write-once-read-many storage so that a future error cannotdamage existing data.

Making isolation practical. Although durability is our primary goal, the architecture must still be eco-

nomically viable.

• Efficient data replication: The SafeStore architecture defines a new interface that allows the lo-

cal server to realize near-optimal durability usinginformed hierarchical erasure codingmechanism,

where SSPs expose internal redundancy. Our interface does not restrict SSP’s autonomy in choosing

internal storage organization (replication mechanism, redundancy level, hardware platform, software

stack, administrative policies, geographic location, etc.) Section 5.3 shows that our new interface

and replication mechanism provides orders of magnitude better durability thanoblivious hierarchical

encodingbased systems using existing black-box based interfaces [1, 2, 31].

• Efficient audit mechanism:To make audits of SSPs practical, we use a novel audit protocol that, like

real world financial audits, uses self-reporting whereby auditor offloads most of the audit work to

the auditee (SSP) in order to reduce the overall system resources required for audits. However, our

audit takes the form of a challenge-response protocol with occasional spot-checks that ensure that an

90

auditee that generates improper responses is quickly discovered and that such a discovery is associated

with a cryptographic proof of misbehavior [46].

• Other optimizations:We use several optimizations to reduce overhead and downtime in order to

make system practical and economically viable. First, we use a fast recovery mechanism to quickly

recover from data loss at a local server where the local server comes online as soon as the meta-data

is recovered from remote SSPs even while data recovery is going on in the background. Second, we

use block level versioning to reduce storage and network overhead involved in maintaining multiple

versions of files.

5.2.3 Economic viability

In this section, we consider the economic viability of our storage system architecture in two different set-

tings, outsourced storage using commercial SSPs and federated storage using in-house but autonomous

SSPs, and calibrate the costs by comparing with a less-durable local storage system.

Standalone SafeStore In-house SafeStore SSP (Cost+Profit)

Storage $30/TB/month [36] $30/TB/month [36] $150/TB/month [1]
Network NA $200/TB [24] $200/TB [1]
Admin 1 admin/[1,10,100]TB [102] 1 admin/100TB [102] Included [1]

Table 5.1: System cost assumptions. Note that aStandalonesystem makes no provision for isolated backup
and is used for cost comparison only. Also, we take into consideration the variable administrative cost for
Standalonesystem [102] used by inefficient (1 admin per 1 TB of data stored), typical (1 admin per 10 TB),
and efficient (1 admin per 100 TB) internet services.

We consider three components to storage cost: hardware resources, administration, and—for outsourced

storage—profit. Table 5.1 summarizes our basic assumptionsfor a straw-manStandalonelocal storage

system and for the local owner and SSP parts of a SafeStore system. In column B, we estimate the raw

hardware and administrative costs that might be paid by an in-house SSP. We base our storage hardware

costs on estimated full-system 5-year total cost of ownership (TCO) costs in 2006 for large-scale internet

91

 100

 1000

 10000

 0.01 0.1 1 10 100

C
o
st

/m
o
n
th

/T
B

Accesses (% of Storage)/month

Outsourced SSPs (HW + Admin + Profit) - (3,1) encoding

Outsourced SSPs (HW + Admin + Profit) - (3,2) encoding

In-house SSPs (HW + Admin) - (3,2) encoding

Local storage - HW + 1 Admin/1TB (inefficient)

 Local storage - HW + 1 Admin/10TB (typical)

 Local storage - HW + 1 Admin/100TB (optimized)

Figure 5.2: Comparison of SafeStore cost v. accesses to remote storage (as a percentage of straw-man
Standalone local storage) varies.

services such as Internet Archive [36]. Note that using the same storage cost for a large-scale, specialized

SSP and for smaller data owners and Standalone systems is conservative in that it may overstate the relative

additional cost of adding SSPs. For network resources, we base our costs on published rates in 2006 [24].

For administrative costs, we use Gray’s estimate that highly efficient internet services require about 1 ad-

ministrator to manage 100TB while smaller enterprises are typically closer to one administrator per 10TB

but can range from one per 1TB to 1 per 100TB [102] (Gray notes,“But the real cost of storage is man-

agement” [102]). Note that we assume that by transforming local storage into a soft-state cache, SafeStore

simplifies local storage administration. We therefore estimate local hardware and administrative costs at 1

admin per 100TB.

92

In Figure 5.2, the storage cost of in-house SSP includes SafeStore’s hardware (cpu, storage, network)

and administrative costs. We also plot the straw-man local storage system with 1, 10, or 100 TB per ad-

ministrator. The outsourced SSP lines show SafeStore costsassuming SSPs prices include a profit by using

Amazon’s S3 storage service pricing. Three points stand out. First, additional replication to SSPs increases

cost (as inter-SSP data encoding, as discussed in section 5.3, is raised from (3,2) to (3,1)), and the net-

work cost rises rapidly as the remote access rate increases.These factors motivate SafeStore’s architectural

decisions to (1) use efficient encoding and (2) minimize network traffic with a large local cache that fully

replicates all stored state. Second, when SSPs are able to exploit economies of scale to reduce administra-

tive costs below those of their customers, SafeStore can reduce overall system costs even when compared

to a less-durable Standalone local-storage-only system. Third, even for customers with highly-optimized

administrative costs, as long as most requests are filtered by the local cache, SafeStore imposes relatively

modest additional costs that may be acceptable if it succeeds in improving durability.

The rest of the chapter is organized as follows. First, in Section 5.3 we present and and evaluate our novel

informed hierarchical erasure codingmechanism. In Section 5.4, we address SafeStore’s audit protocol.

Later, in Section 5.5 we describe the SafeStore interfaces and implementation. We evaluate the prototype in

Section 5.6. Finally, we present the related work in Section5.7.

5.3 Data replication interface

This section describes a new replication interface to achieve near-optimal data durability while limiting the

internal details exposed by SSPs, controlling replicationcost, and maximizing fault isolation.

As shown in Figure 5.3, SafeStore uses hierarchical encoding comprising inter-SSP and intra-SSP redun-

dancy: First, it stores data redundantly across different SSPs, and then each SSP internally replicates data

entrusted to it as it sees fit. Hierarchical encoding is the natural way to replicate data in our setting as it tries

to maximize fault-isolation across SSPs while allowing SSP’s autonomy in choosing an appropriate internal

93

Intra SSP encoding : (n0,m0
) (n , m)

1 1

X X : Client Data

X XX

X X X X

0 1

X X.

............

SSP 0 SSP 1

k−1

(k−1),3(l−1),0 . .1,41,00,50,0

k−1(n , m)k−1

SSP k−1

Inter SSP encoding : (k,l)

Figure 5.3: Hierarchical encoding

data replication mechanism. Different replication mechanisms such as erasure coding [110], RAID [61],

or full replication can be used to store data redundantly at inter-SSP and intra-SSP levels (any replication

mechanism can be viewed as some form of (k,l) encoding [129] from durability perspective, where l out of k

encoded fragments are required to reconstruct data). However, it requires proper balance between inter-SSP

and intra-SSP redundancies to maximize end-end durabilityfor a fixed storage overhead. For example, con-

sider a system willing to pay an overall 6x redundancy cost using 3 SSPs with 8 nodes each. If, for example,

each SSP only provides the option of (8,2) intra-SSP encoding, then we can use at most (3,2) inter-SSP

encoding. This combination gives gives 4 9’s less durability for the same overhead compared to a system

that uses (3,1) encoding at the inter-SSP level and (8,4) encoding at the intra-SSP level at all the SSPs.

5.3.1 Model

The overall storage overhead to store a data object is(n0/m0+n1/m1+ ...nk−1/mk−1)/l , when a data object

is hierarchically encoded (as shown in Figure 5.3) using(k, l) erasure coding acrossk SSPs, and SSPs 0

throughk−1 internally use erasure codings(n0,m0), (n1,m1),....(nk−1,mk−1), respectively. We assume that

94

the number of SSPs(k) is fixed and a data object is (possibly redundantly) stored at all SSPs. We do not

allow varying k as it requires additional internal information about various SSPs (MTTF of nodes, number

of nodes, etc.) which may not be available in order to choose optimal set of k nodes. Instead, we tackle the

problem of finding optimal distribution of inter-SSP and intra-SSP redundancies for a fixed k. The end-to-

end data durability, as explained in Appendix B, can be estimated analytically as a function of these variables

using following analytical model that considers two classes of faults.Node faults(e.g. physical faults like

sector failures, disk crashes, etc.) occur within an SSP andaffect just one fragment of an encoded object

stored at the SSP.SSP faults(e.g., administrator errors, organizational failures, geographical failures, etc.)

are instead simultaneous or near-simultaneous failures that take out all fragments across which an object is

stored within an SSP.

To illustrate the approach, we consider a baseline system consisting of 3 SSPs with 8 nodes each. We use

a baseline MTTDL of 10 years due to invidual node faults and 100 years for SSP failures and assume both

are independent and identically distributed. We use MTTR ofdata of 2 days (e.g. to detect and replace a

faulty disk) for node faults and 10 days for SSP failures. We use the probability of data loss of an object

during a 10 year period to characterize durability because expressing end-to-end durability as MTTDL can

be misleading [61] (although MTTDL can be easily computed from the probability of data loss as shown in

Appendix B. Later, we change the distribution of nodes across SSPs, MTTDL and MTTR of node failures

within SSPs, to model diverse SSPs. The conclusions that we draw here are general and not specific to this

setup; we find similar trends when we change the total number of nodes, as well as MTTDL and MTTR of

correlatedSSP faults.

95

 1e-08

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 1 10

P
ro

ba
bi

lit
y

of
 d

at
a

lo
ss

 in
 1

0
Y

ea
rs

Storage overhead

Ideal

Redundancy 4 (Oblivious)

Redundancy 2 (Oblivious)

Redundancy 1 (Oblivious)

 1e-08

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 1 10

P
ro

ba
bi

lit
y

of
 d

at
a

lo
ss

 in
 1

0
Y

ea
rs

Storage overhead

Informed hierarchical encoding

Ideal

(a) (b)

Figure 5.4: (a) Durability with Black-box interface with fixed intra-SSP redundancy (b) Informed hierarchi-
cal encoding

5.3.2 Informed hierarchical encoding

A client can maximize end-to-end durability if it can control both intra-SSP and inter-SSP redundancies.

However, current black-box storage interfaces exported bycommercial outsourced SSPs [1, 2, 31] do not

allow clients to change intra-SSP redundancies. With such ablack-box interface, clients performoblivious

hierarchical encodingas they control only inter-SSP redundancy. Figure 5.4(a) plots the optimal durability

achieved by anideal system that has full control of inter-SSP and intra-SSP redundancy and a system using

oblivious hierarchical encoding. The latter system has 3 lines for different fixed intra-SSP redundancies of

1, 2, and 4, where each line has 3 points for each of the 3 different inter-SSP encodings((3,1), (3,2) and (3,3))

that a client can choose with such a black-box interface. Twoconclusions emerge. First, for a given storage

overhead, the probability of data loss of anideal system is often orders of magnitude lower than a system

usingoblivious hierarchical encoding, which therefore is several 9’s short of optimal durability. Second, a

system usingoblivious hierarchical encodingoften requires 2x-4x more storage thanideal to achieve the

96

same durability.

To improve on this situation, SafeStore describes an interface that allows clients to realize near-optimal

durability usinginformed hierarchical encodingby exercising additional control on intra-SSP redundan-

cies. With this interface, each SSP exposes the set of redundancy factors that it is willing to support. For

example, an SSP with 4 internal nodes can expose redundancy factors of 1 (no redundancy), 1.33, 2, and 4

corresponding, respectively, to the (4,4), (4,3), (4,2) and (4,1) encodings used internally.

Our approach to achieve near-optimal end-to-end durability is motivated by the stair-like shape of the

curve tracking the durability ofideal as a function of storage overhead (Figure 5.4(a)). For a fixedstorage

overhead, there is a tradeoff between inter-SSP and intra-SSP redundancies, as a given overheadO can be

expressed as 1/l × (r0 + r1 + ..rk−1), when(k, l) encoding is used acrossk SSPs in the system with intra-

SSP redundancies ofr0 to rk−1 (wherer i = ni/mi). Figure 5.4(a) shows that durability increases dramatically

(moving down one step in the figure) when inter-SSP redundancy increases, but does not improve appre-

ciably when additional storage is used to increase intra-SSP redundancy beyond a threshold that is close to

but greater than 1. This observation is backed by mathematical analysis as explained in observation 1 of

Appendix B.

Hence, we propose a heuristic biased in favor of spending storage to maximize inter-SSP redundancy as

follows:

• First, for a given numberk of SSPs, we maximize the inter-SSP redundancy factor by minimizing l .

In particular, for each SSPi, we choose the minimum redundancy factorr ′i >1 exposed byi, and we

computel asl = ⌊(r ′0 + r ′1 + ...r ′k−1)/O⌋.

• Next, we distribute the remaining overhead (O−1/l ×(r ′0 + r ′1+ ..r ′k−1)) among the SSPs to minimize

the standard deviation of the intra-SSP redundancy factorsr i that are ultimately used by the different

97

 1e-08

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 1 10

P
ro

ba
bi

lit
y

of
 d

at
a

lo
ss

 in
 1

0
Y

ea
rs

Storage overhead

Ideal Informed

 1e-08

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 1 10

P
ro

ba
bi

lit
y

of
 d

at
a

lo
ss

 in
 1

0
Y

ea
rs

Storage overhead

Informed

Ideal

(a) (b)

Figure 5.5: (a) Informed hierarchical encoding with non-uniform distribution (b) Durability with different
MTTDL and MTTR for node failures across SSPs

SSPs. We minimize standard deviation by initializing it to the lowest possible value (0%) and then

distribute overhead across all intra-SSP redundancies so that the deviation is within the value and new

intra-SSP redundancies are allowed by SSPs. If we do not find apossible set of allowable intra-SSP

redundancies then we relax standard deviation constraint by increasing it gradually and follow the

above step until we find an allowable set of intra-SSP redundancies.

The first rule is used to maximize inter-SSP redundancy and the second rule is to ensure that intra-SSP

redundancies are uniformly distributed across SSPs. We tryto distribute redundancy uniformly across all

SSPs otherwise SSPs with small or no redundancy tend to looseobjects faster and require expensive inter-

SSP recovery to recover from such failures.

Figure 5.5(b) shows that this new approach, which we callinformed hierarchical coding, achieves near

optimal durability in a setting where three SSPs have the same number of nodes (8 each) and the same

MTTDL and MTTR for internal node failures. These assumptions, however, may not hold in practice,

98

as different SSPs are likely to have a different number of nodes, with different MTTDLs and MTTRs.

Figure 5.5(a) shows the result of an experiment in which SSPshave a different number of nodes—and,

therefore, expose different sets of redundancy factors. Westill use 24 nodes, but we distribute them non-

uniformly (14, 7, 3) across the SSPs: informed hierarchicalencoding continues to provide near-optimal

durability. This continues to be true even when there is a skew in MTTDL and MTTR (due to node failures)

across SSPs. For instance, Figure 5.5(b) uses the same non-uniform node distribution of Figure 5.5(a), but

the (MTTDL, MTTR) values for node failures now differ acrossSSPs—they are, respectively, (10 years,

2 days), (5 years, 3 days), and (3 years, 5 days). Note that, byassigning the worst (MTTDL, MTTR) for

node failures to the SSP with least number of nodes, we are considering a worst-case scenario for informed

hierarchical encoding.

 1e-08

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 1 10

P
ro

ba
bi

lit
y

of
 d

at
a

lo
ss

 in
 1

0
Y

ea
rs

Storage overhead

Optimal (Ideal)

Informed hierarchical encoding

Figure 5.6: Informed hierarchical encoding with MTTDL ofcorrelated failuresset to 10 years with MTTR
of 5 days,

We also study the sensitivity of our results to MTTDL and MTTRof correlated failuresand total number

of nodes in the system. All these results confirm the conclusion that a simple interface that allows SSPs

to expose the redundancy factors they support is all it is needed to achieve, through our simple informed

99

hierarchical encoding mechanism, near optimal durability. As shown in Figures 5.6 and 5.7, our conclusions

continues to hold: (1) when MTTDL due tocorrelated failuresis changed to 10 years from 100 years and

MTTR is changed from 10 days to 5 days, (2) when we increase thenumber of nodes, and (3) when they are

non-uniformly distributed with increased number of nodes.

 1e-08

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 1 10

P
ro

ba
bi

lit
y

of
 d

at
a

lo
ss

 in
 1

0
Y

ea
rs

Storage overhead

Optimal (Ideal) Informed hierarchical encoding

 1e-08

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 1 10
P

ro
ba

bi
lit

y
of

 d
at

a
lo

ss
 in

 1
0

Y
ea

rs
Storage overhead

Optimal (Ideal) Informed hierarchical encoding

(a) (b)

Figure 5.7: Informed hierarchical encoding (a) With 69 total nodes distributed uniformly across 3 SSPs, (b)
With 69 nodes distributed non-uniformly across 3 SSPs with 10, 20, and 39 nodes each.

These results are not surprising in light of our discussion of Figure 5.4(a): durability depends mainly

on maximizing inter-SSP redundancy and it is only slightly affected by the internal data management of

individual SSPs.

SSPs can provide such an interface as part of their SLA (service level agreement) and charge clients based

on the redundancy factor they choose when they store a data object. The interface is designed to limit the

amount of detail that an SSP must expose about the internal organization. For example, an SSP with 1000

servers each with 10 disks might only expose redundancy options (1.0, 1.1, 1.5, 2.0, 4.0, 10.0), revealing

little about its architecture. Note that the proposed interface could allow a dishonest SSP to cheat the client

100

by using less redundancy than advertised. The impact of suchfalse advertising is limited by two factors:

First, as observed above, our design is relatively insensitive to variations in intra-SSP redundancy. Second,

the end to end audit protocol described in the next section limits the worst-case damage any SSP can inflict.

5.4 Audit

We need an effective audit mechanism to quickly detect data losses at SSPs so that data can be recovered

before multiple component failures resulting in unrecoverable loss. An SSPshould safeguard the data

entrusted to it by following best practices like monitoringhardware health [122], spreading coded data across

drives and controllers [61] or geographically distributeddata centers, periodically scanning and correcting

latent errors [121], and quickly notifying a data owner of any lost data so that the owner can restore the

data from other SSPs and maintain a desired replication level. However, the principle of isolation argues

against blindly assuming SSPs are flawless system designersand operators for two reasons. First, SSPs are

separate administrative entities, and their internal details of operation may not be verifiable by data owners.

Second, given the imperfections of software [27, 106, 135],operators [73, 101], and hardware [61, 133],

even name-brand SSPs may encounter unexpected issues and silently lose customer data [13, 18]. Auditing

SSP data storage embodies the end-to-end principle (in almost exactly the form it was first described) [116],

and frequent auditing ensures a short Mean Time To Detect (MTTD) data loss, which helps limit worst-case

Mean Time To Recover (MTTR). It is important to reduce MTTR inorder to increase MTTDL as a good

replication mechanism alone cannot improve MTTDL over a long time-duration spanning decades.

The technical challenge to auditing is to provide an end-to-end guarantee on data integrity while min-

imizing cost. These goals rule out simply reading stored data across the network as too expensive (see

Figure 5.2) and, similarly, just retrieving a hash of the data as not providing an end-to-end guarantee (the

SSP may be storing the hash not the data.). Furthermore, the audit protocol must work with data erasure-

coded across SSPs, so a simple scheme that sends a challenge to multiple identical replicas and then compare

101

the responses such as those in LOCKSS [95] and Samsara [64] donot work. We must therefore devise an

inexpensive audit protocol despite the fact that no two replicas store the same data.

To reduce audit cost, SafeStore’s audit protocol borrows a strategy from real-world audits: we push most

of the work onto the auditee and ask the auditor to spot check the auditee’s reports. Our reliance on self-

reporting by SSPs drives two aspects of the protocol design.First, the protocol is believed to beshortcut

free–audit responses from SSPs are guaranteed to embody end-to-end checks on data storage– under the

assumption that collision resistant modification detection codes [97] exist. Second, the protocol isexternally

verifiableandnon-repudiable—falsified SSP audit replies are quickly detected (with highprobability) and

deliberate falsifications can be proven to any third party1.

5.4.1 Audit protocol

The audit protocol proceeds in three phases: (1) data storage, (2) routine audit, and (3) spot check. Note that

the auditor may be co-located with or separate from the owner. For example, audit may be outsourced to an

external auditor when data owners are offline for extended periods. To authorize SSPs to respond to auditor

requests, the owner signs a certificate granting audit rights to the auditor’s public key, and all requests from

the auditor are authenticated against such a certificate (these authentication handshakes are omitted in the

description below.) We describe the high level protocol here and detail it in Appendix C.

Data storage. When an object is stored at an SSP, the SSP signs and returns tothe data owner areceipt

that includes the object ID, cryptographic hash of the data,and storage expiration time. The data owner

in turn verifies that the signed hash matches the data it sent and that the receipt is not malformed with an

incorrect id or expiration time. If the data and hash fail to match, the owner retries sending the write message

1We assume that provably deliberate falsification can be punished via contractual or other out-of-band means [107], but details
are outside the scope of this paper.

102

(data could have been corrupted in the transmission); repeated failures indicate a malfunctioning SSP and

generate a notification to the data owner. As we detail in Section 5.5, SSPs do not provide a delete interface,

so the expiration time indicates when the SSP will garbage collect the data. The data owner collects such

valid receipts, encodes them, and spreads them across SSPs for durable storage.

Routine audit. The auditor sends to an SSP a list of object IDs and a random challenge. The SSP computes

a cryptographic hash on both the challenge and the data. The SSP sends a signed message to the auditor

that includes the object IDs, the current time, the challenge, and the hash computed on the challenge and

the data (H(challenge+ dataob jId)). The auditor buffers the challenge responses if the messages are well-

formed, where a message is considered to be well-formed if none of the following conditions are true: the

signature does not match the message, the response with an unacceptably stale timestamp, the response with

the wrong challenge, or the response indicates error code (e.g., he SSP detected data is corrupt via internal

checks or the data has expired). If the auditor does not receive any response from the SSP or if it receives a

malformed message, the auditor notifies the data owner, and the data owner reconstructs the data via cached

state or other SSPs and stores the lost fragment again. Of course, the owner may choose to switch SSPs

before restoring the data and/or may extract penalties under their service level agreement (SLA) with the

SSP, but such decisions are outside the scope of the protocol.

We conjecture that the audit response is shortcut free: an SSP must possess object’s data to compute the

correct hash. An honest SSP verifies the data integrity against the challenge-free hash stored at the creation

time before sending a well-formed challenge response. If the integrity check fails (data is lost or corrupted) it

sends the error code for lost data to the auditor. However, adishonestSSP can choose to send a syntactically

well-formed audit response with bogus hash value when the data is corrupted or lost. Note that the auditor

just buffers well-formed messages and does not verify the integrity of the data objects covered by the audit

in this phase. Yet, routine audits serve two key purposes. First, when performed against honest SSPs, they

103

provide end-to-end guarantees about the integrity of the data objects covered by the audit. Second, they

force dishonest SSPs to produce a signed, non-repudiable statement about the integrity of the data objects

covered by the audit.

Spot check. In each round, after it receives audit responses in the routine audit phase, the auditor randomly

selectsα% of the objects to be spot checked. The auditor then retrieves each object’s data (via the owner’s

cache, via the SSP, or via other SSPs) and verifies that the cryptographic hash of the challenge and data

matches the challenge response sent by the SSP in the routineaudit phase. If there is a mismatch, the

auditor informs the data owner about the mismatch and provides the signed audit response sent by the SSP.

The data owner then can create an externally-verifiable proof of misbehavior (POM) [83] against the SSP:

the receipt, the audit response, and the object’s data. In particular, the receipt is a signed statement with a

hash of the data; the audit reply a signed claim to be storing the data and that a hash across a challenge and

the data has a particular value; and the data allows anyone toverify that the receipt and audit reply refer to

that data but that the challenge computation was incorrect.Note that SafeStore local server encrypts all data

before storing it to SSPs, so this proof may be presented to third parties without leaking the plaintext object

contents. Also, note that our protocol works with erasure coding as the auditor can reconstruct the data to

be spot checked using redundant data stored at other SSPs.

5.4.2 Durability and cost

In this section we examine how the low-cost audit protocol limits the damage from faulty SSPs. The Safe-

Store protocol specifies that SSPs notify data owners immediately of any data loss that the SSP cannot in-

ternally recover so that the owner can restore the desired replication level using redundant data. Figures 5.4

and 5.5 illustrate the durability of our system when the SSPsfollow the requirement and immediately report

104

 30

 25

 20

 15

 10

 5

 1

 1 10 100 1000

M
T

T
D

 d
at

a
lo

ss
 (

da
ys

)

Cost (% H/W Cost)

Remote auditor α=100%

Local auditor α=1%,10%,100%

Remote auditor α=1%

Remote auditor α=10%

 1e-08

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 1 10

P
ro

ba
bi

lit
y

of
 d

at
a

lo
ss

 in
 1

0
Y

ea
rs

Maximum available storage overhead

MTTD (10 days)

MTTD (20 days)

MTTD (2 days)

(a) (b)

 1e-08

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 1e-07 1e-06 1e-05 1e-04 0.001 0.01 0.1 1

P
ro

ba
bi

lit
y

of
 d

at
a

lo
ss

 in
 1

0
Y

ea
rs

Percentage data loss at a dishonest SSP

Remote auditor - 20% audit cost

Local auditor - 20% audit cost

Oracle auditor

No audit

(c)

Figure 5.8: (a) Time to detect SSP data loss via audit with varying amounts of resources dedicated to audit
overhead assuming honest SSPs. (b) Durability with varyingMTTD. (c) Impact on overall durability with
a dishonest SSP. In (a) and (c) , we use the same hardware cost model as in Figure 5.2 for disk capacity and
WAN network transfers, add a cost of $0.031 per million operations for cryptographic operations–based on
cryptographic benchmark results [5] for AMD opteron and using a conservative estimate of cpu cost of $850
(for a branded 1U rack server cost [42] which includes 1TB disk cost although we already included storage
cost) with a 5 year TCO, add a cost of $0.027 per million IO operations for disk reads – using a conservative
estimate for disk cost of $1000/TB with 100 operations/sec with a 10 year life time, and assume 20% of
the SSP’s data are read/written per month by the owner (separate from audits). In (c) we assume auditing is
given upto 20% of total storage cost.

105

failures. As explained below, Figure 5.8-(a) and (b) show that SafeStore still provides excellent data durabil-

ity with low audit cost, if a data owner is unlucky and selectsapassiveSSP that violates the immediate-notify

requirement and waits for an audit of an object to report thatit is missing. Figure 5.8-(c) shows that if a

data owner is really unlucky and selects adishonestSSP that first loses some of the owner’s data and then

lies when audited to try to conceal that fact, the owner’s data is still very likely to emerge unscathed. We

evaluate our audit protocol with 1TB of data stored redundantly across three SSPs with inter-SSP encoding

of (3,1) (Appendix E has results for (3,2) encoding).

5.4.3 Protocol analysis when SSPs are altruistic

First, assume that SSPs arepassiveand wait for an audit to check data integrity. Because the protocol uses

relatively cheap processing at the SSP to reduce data transfers across the wide area network, it is able to scan

through the system’s data relatively frequently without raising system costs too much. Figure 5.8-(a) plots

the mean time to detect data loss (MTTD) at apassiveSSP as a function of the cost of hardware resources

(storage, network, and cpu) dedicated to auditing, expressed as a percentage of the cost of the system’s total

hardware resources as detailed in the caption. We also vary the fraction of objects that are spot checked in

each audit round (α) for both the cases with local (co-located with the data owner) and remote (separated

over WAN) auditors. We reach following conclusions: (1) As we increase the audit budget we can audit

more frequently and the time to detect data loss falls rapidly. (2) audit costs with local and remote auditors

is almost the same whenα is less than 1%. (3) The audit cost with local auditor does notvary much

with increasingα (as there is no additional network overhead in retrieving data from the local data owner)

whereas the audit cost for the remote auditor increases withincreasingα (due to additional network overhead

in retrieving data over the WAN). (4) Overall, if a system dedicates 20% of resources to auditing, we can

detect a lost data block within a week (with a local or a remoteauditor withα = 1%).

106

Given this information, Figure 5.8-(b) shows the modest impact on overall data durability of increasing

the time to detect and correct such failures when we assume that all SSPs arepassiveand SafeStore relies

on auditing rather than immediate self reporting to triggerdata recovery.

5.4.4 Protocol analysis when SSPs are selfish

Now consider the possibility of an SSP trying to brazen its way through an audit of data it has lost using a

made-up value purporting to be the hash of the challenge and data. The BAR model [46] argues for reasoning

about systems spanning multiple administrative domains byassuming that most entities are rational and will

act to maximize their utility and that a small number may be Byzantine and may act arbitrarily.he audit

protocol encourages rational SSPs that lose data to respondto audits honestly. In particular, we prove the

following theorem in Appendix D that under reasonable assumptions about the penalty for an honest failure

versus the penalty for generating a proof of misbehavior (POM), a rational SSP will maximize its utility [46]

by faithfully executing the audit protocol as specified.

Theorem 2. SafeStore audit protocol ensures that the rational SSPs (SSPs can selfishly deviate from the

protocol to maximize their own benefits) follow the protocolby (1) attempting to store data reliably and

(2) responds to audit requests honestly assuming an SLA thatspecifies appropriate penalties relative to the

underlying cost of storing data. cost model.

5.4.5 Protocol analysis when SSPs are Byzantine

But suppose that through misconfiguration, malfunction, ormalice, a node first loses data and then issues

dishonestaudit replies that claim that the node is storing a set of objects that it does not have. The spot

check protocol ensures that if a node is missing even a small fraction of the objects, such cheating is quickly

discovered with high probability. Furthermore, as that fraction increases, the time to detect falls rapidly.

The intuition is simple: the probability of detecting a dishonest SSP ink audits is given by

107

pk = 1− (1− p)k

wherep is the probability of detection in an audit, which is given by

p =
∑m

i=1

(n
i

)(N−n
m−i

)

(N
m

) ,(if n≥ m)

p =
∑n

i=1

(m
i

)(N−m
n−i

)

(N
n

) ,(if n < m)

where N is the total number of data blocks stored at an SSP, n isthe number of blocks that are corrupted or

lost and m is the number of blocks that are spot checked,α=(m/N)× 100.

Figure 5.8-(c) shows the overall impact on durability if a node that has lost a fraction of objects maximizes

the time to detect these failures by generatingdishonestaudit replies. We fix the audit budget at 20% and

measure the durability of SafeStore with local auditor (with α at 100%) as well as remote auditor (withα at

1%). We also plot the durability withoracle detectorwhich detects the data loss immediately and triggers

recovery. Note that theoracle detectorline shows worse durability than the lines in Figure 5.8-(b)because

(b) shows durability for a randomly selected 10-year periodwhile (c) shows durability for a 10-year period

that begins when one SSP has already lost data. Without auditing (no audit), there is significant risk of data

loss reducing durability by three 9’s compared tooracle detector. Using our audit protocol withremote

auditor, the figure shows that a cheating SSP can introduce a non-negligible probability of small-scale data

loss because it takes multiple audit rounds to detect the loss as it spot checks only 1% of data blocks. But

that the probability of data loss falls quickly and comes closer tooracle detectorline (with in one 9 of

durability) as the amount of data at risk rises. Finally, with a local auditor, data loss is detected in one audit

round independent of data loss percentage at the dishonest SSPs as a local auditor can spot check all the

data. In the presence of dishonest SSPs, our audit protocol improves durability of our system by two 9’s

108

WriteReceiptwrite (ID oid, byte data[], int64 size,
int32 type, int64 expire);

ReadReplyread(ID oid, int64 size, int32 type)
AttrReplyget attr (ID oid);
TTLReceiptextend expire(ID oid, int64 expire);

Table 5.2: SSP storage interface

over a system with no audit at an additional audit cost of just20%. The overall durability of our system

improves with increasing audit budget and approaches theoracle detectorline as described in Appendix E.

5.5 SSFS

We implement SSFS, a file system that embodies the SafeStore architecture and protocol. In this section, we

first describe the SSP interface and our SSFS SSP implementation. Then, we describe SSFS’s local server.

5.5.1 SSP

As Figure 5.1 shows, for long-term data retention SSFS localservers store data redundantly across admin-

istratively autonomous SSPs using erasure coding or full replication. SafeStore SSPs provide a simple yet

carefully defined object store interface to local servers asshown in Table 5.2.

Two aspects of this interface are important. First, it provides non-repudiable receipts for writes and

expiration extensions in order to support our spot-check-based audit protocol. Second, it providestemporal

isolation to limit the data owner’s ability to change data that is currently stored [95]. In particular, the

SafeStore SSP protocol (1) gives each object an absolute expiration time and (2) allows a data owner to

extend but not reduce an object’s lifetime.

The temporal isolation guarantee is as follows: if an SSP is storing a desired set of data at timet, an

owner can ensure that the current version is accessible until any desired time in the future even if the local

server suffers an arbitrary failure.

109

This interface supports what we expect to be a typical usage pattern in which an owner creates a ladder of

backups at increasing granularity [117]. Suppose the ownerwishes to maintain yearly backups for each year

in the past 10 years, monthly backups for each month of the current year, weekly backups for the last four

weeks, and daily backups for the last week. Using the local server’s snapshot facility (see Section 5.5.2),

on the last day of the year, the local serverwrites all current blocks that are not yet at the SSP with an

expiration date 10-years into the future and also iterates across the most recent version of all remaining

blocks and sendsextendexpirerequests with an expiration date 10-years into the future. Similarly, on the

last day of each month, the local server writes all new blocksand extends the most recent version of all

blocks; notice that blocks not modified during the current year may already have expiration times beyond

the 1-year target, but these extensions will not reduce thistime. Similarly, on the last day of each week,

the local server writes new blocks and extends deadlines of the current version of blocks for a month. And

every night, the local server writes new blocks and extends deadlines of the current version of all blocks for

a week. Of course, SSPs ignoreextendexpirerequests that would shorten an object’s expiration time.

SSP implementation. We have constructed a prototype SSFS SSP that supports all ofthe features de-

scribed in this paper including the interface for servers and the interface for auditors. Internally, each SSP

spreads data across a set nodes using erasure coding with a redundancy level specified for each data owner’s

account at account creation time.

For compatibility with legacy SSPs, we also implement a simplified SSP interface that allows data owners

to store data to Amazon’s S3 [1], which provides a simple non-versioned read/write/delete interface and

which does not support our optimized audit protocol.

Issues. There are three outstanding issues in our current implementation. We believe all are manageable.

First, the approach relies on prompt failure/intrusion detection: the shorter the period of time between when

a fault mistakenly deletes/modifies an object and the owner realizes that she would prefer an older version,

110

the more current backup that will be available. For simple failures (e.g., total disk failure), it will be easy

for a data owner to quickly notice a problem. For more complexfailures (e.g., malware that randomly

modifies one bit in one file per day), detecting the problem is more difficult. We do not advance the state

of the art in intrusion detection or fault detection, but we encourage data owners to make use of available

tools [112, 122].

Second, in practice, it is likely that SSPs will provide someprotocol for deleting data early. We assume

that any such out-of-band early-delete mechanism is carefully designed to maximize resistance to erroneous

deletion by the data owner. For concreteness, we assume thatthe payment stream for SSP services is well

protected by the data owner and that our SSP will delete data 90 days after payment is stopped. So, a data

owner can delete unwanted data by creating a new account, copying a subset of data from the old account to

the new account, and then stopping payment on the old account. More sophisticated variations (e.g., using

threshold-key cryptography to allow a quorum of independent administrators to sign off on a delete request)

are possible.

Third, SSFS is vulnerable to resource consumption attacks:although an attacker who controls an owner’s

local server cannot reduce the integrity of data stored at SSPs, the attacker can send large amounts of long-

lived garbage data and/or extend expirations farther than desired for large amounts of the owner’s data stored

at the SSP. We conjecture that SSPs would typically employ a quota system to bound resource consumption

to within some budget along with an out-of-band early deletemechanism such as described in the previous

paragraph to recover from any resulting denial of service attack.

5.5.2 Local Server

Clients interact with SSFS through a local server. The SSFS local server is a user level file system that

exports the NFS 2.0 interface to its clients. The local server serves requests from local storage to improve

111

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 10 100 1000 10000 100000

K
by

te
s/

se
c

File size in KBytes

NFS

SSFS

 0

 50000

 100000

 150000

 200000

 250000

 300000

 10 100 1000 10000 100000 1e+06

K
by

te
s/

se
c

File size in KBytes

SSFS : Sync

NFS : Sync

NFS
SSFS

 0.001

 0.01

 0.1

 1

 10

 2000 4000 6000 8000 10000 12000

La
te

nc
y(

S
ec

)

Throughput (Kbytes/Sec)

NFS

SSFS

(a) (b) (c)

Figure 5.9: IOZONE : (a) Read (b) Write (c) Latency versus Throughput

the cost, performance, and availability of the system. Remote storage is used to store data durably to guard

against local failures. The local server encrypts (using SHA1 and 1024 bit Rabin key signature) and en-

codes [110] (if data is not fully replicated) all data beforesending it to remote SSPs, and it transparently

fetches, decodes and decrypts data from remote storage if itis not present in the local cache. Our imple-

mentation thus supports policies that reduce local space demands by garbage collecting cold objects, but

exploring such policies is future work; our prototype localserver simply stores local copies of all objects.

All local server state except the encryption key and list of SSPs is soft state: given these items, the local

server can recover the full filesystem. We assume both are stored out of band (e.g., the owner burns them to a

CD at installation time and stores the CD in a safety deposit box). A more convenient (and thus more robust

in terms of data durability) but lower-security alternative is to remember the list of SSPs and to encrypt the

key with a password, erasure code it, and store the key fragments in well-known object IDs at the SSPs.

Snapshots:In addition to the standard NFS calls, the SSFS local server provides a snapshot interface [23]

that supports file versioning for achieving temporal isolation to tolerate client or administrator failures. A

snapshot stores a copy in the local cache and also redundantly stores encrypted, erasure-coded data across

multiple SSPs using the remote storage interface.

112

Local storage is structured carefully to reduce storage andperformance overheads for maintaining multi-

ple versions of files. SSFS uses block-level versioning [23,108] to reduce storage overhead by storing only

modified blocks in the older versions when a file is modified. For each old version, SSFS maintains ablock

maskandsizein a meta-data file for the older version. Then, reads of the current version see no overhead,

and reads of the older version are satisfied by starting with the old version and then fetching data blocks not

present in the old version from later versions by sequentially checking the later versions until the block is

found [108]. And as an obvious extension for the common case of files modified by appends: on an append,

SSFS needs only to store the old size (and not the block mask) as all blocks are stored in later versions.

Other optimizations: SSFS uses a fast recovery optimization to recover quickly from remote storage

when local data is lost due to local server failures (disk crashes, fire, etc.) The SSFS local server recovers

quickly by coming online as soon as all metadata information(directories, inodes, and old-version informa-

tion) is recovered and then fetching file data to fill the localcache in the background. If a missing block

is requested before it is recovered, it is fetched immediately on demand from the SSPs. Additionally, local

storage acts as a write-back cache where updates are propagated to remote SSPs asynchronously so that

client performance is not affected by updates to remote storage.

5.6 Evaluation

To evaluate the practicality of the SafeStore architecture, we evaluate our SSFS prototype via microbench-

marks selected to stress test three aspects of the design. First, we examine performance overheads, then we

look at storage space overheads, and finally we evaluate recovery performance.

In our base setup, client, local server, and remote SSP servers run on different machines that are connected

by a 100 Mbit isolated network. For several experiments we modify the network to synthetically model

WAN behavior. All of our machines use 933MHZ Intel Pentium III processors with 256 MB RAM and run

113

PostMark

0

5

10

15

20

25

T
im

e
(s

ec
)

NFS
SSFS
SSFS-Snap
SSFS-WAN

 10

 20

 30

 40

 50

 60

 70

 80

 5 4 3 2 1

S
to

ra
ge

 (
K

B
)

Time (snapshots)

Overhead with full replication

NFS - FR

NFS

SSFS - Local

SSFS - RS

 0.1

 1

 10

 100

 1 10 100 1000

R
ec

o
v
er

y
 t

im
e

(s
ec

)

Number of files

Local recovery

Remote recovery-opt

Remote recovery

(a) (b) (c)

Figure 5.10: (a) Postmark: End-to-end performance (b) Storage overhead (c) Recovery

Linux version 2.4.7. We use (3,2) erasure coding or full replication ((3,1) encoding) to redundantly store

backup data across SSPs.

5.6.1 Performance

Figure 5.9 compares the performance of SSFS and a standard NFS server using the IOZONE [17] mi-

crobenchmark. In this experiment, we measure the overhead of SSFS’s bookkeeping to maintain version

information, but we do not take filesystem snapshots and hence no data is sent to the remote SSPs. Fig-

ure 5.9(a),(b), and (c) illustrates throughput for reads, throughput for synchronous and asynchronous writes,

and throughput versus latency for SSFS and stand alone NFS. In all cases, SSFS’s throughput is within 12%

of NFS.

Figure 5.10(a) examines the cost of snapshots. Note SSFS sends snapshots to SSPs asynchronously, but

we have not lowered the priority of these background transfers, so snapshot transfers can interfere with

demand requests. To evaluate this effect, we add snapshots to the Postmark [29] benchmark, which models

email/e-commerce workloads. The benchmark initially creates a pool of files and then performs a specified

number of transactions consisting of creating, deleting, reading, or appending a file. We set file sizes to be

114

between 100B and 100KB and run 50000 transactions. To maximize the stress on SSFS, we set the Postmark

parameters to maximize the fraction of append and create operations. Then, we modify the benchmark to

take frequent snapshots: we tell the server to create a new snapshot after every 500 transactions. As shown

in the Figure 5.10(a), when no snapshots are taken SSFS takes13% more time than NFS due to overhead

involved in maintaining multiple versions. Turning on frequent snapshots increases the response time of

SSFS (SSFS-snap in Figure 5.10(a)) by 40% due to additional overhead due to signing and transmitting

updates to SSPs. Finally, we vary network latencies to SSPs to study the impact of WAN latencies on

performance when SSPs are geographically distributed overthe Internet by introducing artificial delay (of

40 ms) at the SSP server. As shown in the Figure 5.10(a), SSFS-WAN response time increases by less than

an additional 5%.

5.6.2 Storage overhead

Here, we evaluate the effectiveness of SSFS’s mechanisms for limiting replication overhead. SSFS mini-

mizes storage overheads by using a versioning system that stores the difference between versions of a file

rather than complete copies [108]. We compare the storage overhead of SSFS’s versioning file system and

compare it with NFS storage that just keeps a copy of the latest version and also a naive versioning NFS file

system (NFS-FR) that makes a complete copy of the file before generating a new version. Figure 5.10(b)

plots the storage consumed by local storage (SSFS-LS) and storage at one remote server (SSFS-RS) when

we use a (3,1) encoding. To expose the overheads of the versioning system, the microbenchmark is simple:

we append 10KB to a file after every file system snapshot. SSFS’s local storage takes a negligible amount of

additional space compared to non-versioned NFS storage. Remote storage pays a somewhat higher overhead

due to duplicate data storage when appends do not fall on block boundaries and due to additional metadata

(integrity hashes, the signed write request, expiry time ofthe file, etc.)

115

We also ran an experiment with the (3,2) encoding at remote servers using Postmark benchmark with

varying snapshot frequencies and observed similar results. We omit these graphs for brevity. The above

experiments examine the case when the old and new versions ofdata have much in common and test whether

SSFS can exploit such situations with low overhead. There is, of course, no free lunch: if there is little in

common between a user’s current data and old data, the systemmust store both. Like SafeStore, Glacier uses

a expire-then-garbage collect approach to avoid inadvertent file deletion, and their experience over several

months of operation is that the space overheads are reasonable [74]. We plan to confirm these results in a

SafeStore context by evaluating space overhead using the long-duration Harvard traces [68].

5.6.3 Recovery

We now evaluate SSFS recovery time and compare performance with and without SSFS’s fast recovery

optimization that allows the local server to resume operation as soon as it has recovered file system metadata

and to recover the rest of the system’s data in the background.

We also plot recovery time of SSFS from local storage due to reboots of the local server. Figure 5.10(c)

plots recovery time as the number of 1KB files in the system varies when the data is recovered from remote

SSPs. We see that local recovery is faster than the other two as it recovers from the local disk and it

outperforms the other two by more than an order of magnitude for moderate number of files in the system.

We also observe that remote recovery with optimization outperforms remote recovery without optimization

by about 50% even with as few as 10 files. Note that recovery time is high even with the optimization as

SSFS recovers all the metadata (which involves reading fromremote SSPs, verifying the metadata integrity,

decoding data from redundant fragments, and finally decrypting the metadata) before it starts serving the

client requests. As part of our future work, we intend to reduce the recovery time significantly by bringing

the system up immediately while the metadata is fetched in the background like the existing optimization

for data.

116

5.7 Related work

Several recent studies [49, 114] have identified the challenges involved in building durable storage system

for multi-year timescales.

Flat erasure codingacross nodes [53, 62, 74, 132] does not require detailed predictions of which sets

of nodes are likely to suffer correlated failures because ittolerates any combinations of failures up to a

maximum number of nodes. However, flat encoding does not exploit the opportunity to reduce replication

costs when the system can be structured to make some failure combinations more likely than others. An

alternative approach is to usefull replication across sites that are not expected to fail together [78, 95],but

this can be expensive.

SafeStore is architected to increase the likelihood that failures will be restricted to specific groups of

nodes, and it efficiently deploys storage within and across SSPs to address such failures. Myriad [59] also

argues for a 2-level (cross-site, within-site) coding strategy, but SafeStore’s architecture departs from Myriad

in keeping SSPs at arms-length from data owners by carefullyrestricting the SSP interface and by including

provisions for efficient end-to-end auditing of black-box SSPs.

SafeStore is most similar in spirit to OceanStore [77] in that we erasure code indelible, versioned data

across independent SSPs. But in pursuit of a more aggressive“nomadic data” vision, OceanStore augments

this approach with a sophisticated overlay-based infrastructure for replication of location-independent ob-

jects that may be accessed concurrently from various locations in the network [109]. We gain considerable

simplicity by using a local soft-state server through whichall user requests pass and by focusing on stor-

ing data on a relatively small set of specific, relatively conventional SSPs. We also gain assurance in the

workings of our SSPs through our audit protocol.

Versioning file systems [23, 104, 113, 117, 126] provide temporal isolation to tolerate client failures by

117

keeping multiple versions of files. We make use of this technique but couple it with efficient, isolated,

audited storage to address a broader threat model.

We argue that highly durable storage systems should audit data periodically to ensure data integrity and

to limit worst-case MTTR. Zero-knowledge-based audit mechanisms [72, 97] are either network intensive

or CPU intensive as their main purpose is to audit data without leaking any information about the data.

SafeStore avoids the need for such expensive approaches by encrypting data before storing it. We are

then able to offload audit duties to SSPs and probabilistically spot check their results. LOCKSS [95] and

Samsara [64] audit data in P2P storage systems but assume that peers store full replicas so that they can

easily verify if peers store identical data. SafeStore supports erasure coding to reduce costs, so our audit

mechanism does not require SSPs to have fully replicated copies of data.

5.8 Conclusion

Achieving robust data storage on the scale of decades forcesus to reexamine storage architectures: a broad

range of threats that could be neglected over shorter timescales must now be considered. SafeStore ag-

gressively applies the principle offault isolationalong administrative, physical, and temporal dimensions.

Analysis indicates that SafeStore can provide highly robust storage and evaluation of an NFS prototype

suggests that the approach is practical.

118

Chapter 6

Conclusion

The thesis of this dissertation is simple: Byzantine fault tolerance (BFT) techniques and technology

trends are nearing an inflection point where significant deployment of BFT systems can be made viable. The

mounting evidence of non-fail-stop behavior in real systems [37, 50, 51, 98, 101, 106, 123, 134, 135] suggest

that BFT may yield significant benefits even without resorting to n-version programming [60, 81, 111]. The

growing value of data [7, 12, 32, 114] and falling costs of hardware [8, 79] make it advantageous for service

providers to trade increasingly inexpensive hardware for the peace of mind potentially provided by BFT

replication. For example, the Google file systems (GFS) already uses three-way replication, by default, as a

way to protect data from failures [71].

We recognize, however, that despite the advances of the lastdecade, Byzantine fault tolerance still carries

in the mind of many practitioners, especially in the commercial world, a connotation of excessive cost, both

in terms of performance losses and intellectual effort. It is, therefore, important to (1) develop techniques

that minimize the costs of Byzantine fault tolerance and (2)provide compelling demonstrations of significant

applications gaining robustness advantages from cost-effective, scalable BFT.

In this dissertation, as a step towards realizing this goal,we designed and implemented novel BFT replica-

tion techniques that significantly reduces performance overhead and complexity while keeping costs compet-

itive withe existing practice. We made three contributionsto this end. First, we designed and implemented

CBASE, a high throughput BFT architecture to provide a general way to exploit application parallelism in

order to provide high throughput. Second, we proposed Zyzzyva, a BFT state machine replication protocol

119

that reduces replication overheads in order to improve performance and reduce complexity. Third, we de-

signed and implemented SafeStore, a highly durable distributed storage system that uses the principles of

aggressive isolation and proactive audit to provide long-term data durability spanning many years or even

decades by outsourcing storage to autonomous storage service providers.

120

Appendices

121

Appendix A

Concurrency Matrix for Network File System (NFS)

Here we explain the concurrency matrix used by the parallelizer to perform dependence analysis for

replicated NFS (CBASEFS) as explained in chapter 3. The concurrency matrix for NFS (version 2.0) [25]

is defined in the table A.1. The concurrency matrix (NFS-conc-matrix[18][18][2]) is defined for all 18 NFS

operations as listed in the table. As explained in section 3.5.3 of chapter 3, NFS-conc-matrix[18][18][0]

is the argument-independent concurrency matrix(OCM) and NFS-conc-matrix[18][18][1] is the argument-

dependent concurrency matrix(OACM).

122

NFS OP 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Null (0) 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,11,1

Get attr (1) 1,1 1,1 1,0 1,1 1,1 1,1 1,1 1,1 1,1 1,0 0,0 0,0 0,0 0,0 0,0 0,0 1,01,1
Set attr (1) 1,1 1,0 1,0 1,1 0,0 1,0 1,0 1,1 1,0 1,0 0,0 0,0 0,0 0,0 0,0 0,0 0,01,1

Root (3) 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,11,1
Lookup file (4) 1,1 1,1 0,0 1,1 1,1 0,0 0,0 1,1 0,0 1,0 0,0 0,0 0,0 0,0 0,0 0,0 0,01,1

Read symlink (5) 1,1 1,1 1,0 1,0 1,1 1,0 1,1 1,1 1,1 1,1 0,0 0,0 0,0 0,0 0,0 0,0 1,11,1
Read file (6) 1,1 1,1 1,0 1,1 0,0 1,1 1,0 1,1 1,0 1,1 0,0 0,0 0,0 0,0 0,0 0,0 1,11,1

Cache (7) 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,11,1
Write (8) 1,1 1,0 1,0 1,1 0,0 1,0 1,0 1,1 1,0 1,0 0,0 0,0 0,0 0,0 0,0 0,0 1,10,0

Create file (9) 1,1 1,0 1,0 1,1 1,0 1,1 1,0 1,1 1,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 1,10,0
Remove file (10) 1,1 0,0 0,0 1,1 0,0 0,0 0,0 1,1 0,0 0,0 1,0 0,0 0,0 0,0 0,0 0,0 0,00,0
Rename file (11) 1,1 0,0 0,0 1,1 0,0 0,0 0,0 1,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,00,0

Create (12) 1,1 0,0 0,0 1,1 0,0 0,0 0,0 1,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,00,0
Create Symlink (13) 1,1 0,0 0,0 1,1 0,0 0,0 0,0 1,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,00,0

Create Dir (14) 1,1 0,0 0,0 1,1 0,0 0,0 0,0 1,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,00,0
Remove Dir (15) 1,1 0,0 0,0 1,1 0,0 0,0 0,0 1,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 1,0 0,00,0

Read dir (16) 1,1 1,0 1,0 1,1 0,0 1,1 1,1 1,1 1,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 1,01,1
Filesys attr (17) 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 1,11,1

Table A.1:NFS concurrency matrix: NFS-con-matrix[18][18][2]

123

Appendix B

Durability analysis

In this section, we describe the analytical models for estimating durability and storage overhead of dif-

ferent encoding schemes such as hierarchical data encoding, flat erasure coding, and full replication that we

compare in section 5.3.

B.1 Durability

Here we describe the analytical model for estimating durability of data stored using hierarchical data encod-

ing, flat erasure coding, and full replication. Consider a system with n nodes spread acrossk groups (SSPs)

with n1, n2,..nk nodes respectively present in groups 1,2,...k. All nodes ina groupni fail in a correlated

fashion with probabilitypc due to a correlated failure events (fire, administrator failure) at an SSP. Also,

a node fails independently with a failure probabilitypu due to uncorrelated failure events (disk failures) at

an SSP. In order to analyze durability over some time duration, we first evaluate the durability of data in

an epoch and then aggregate it over multiple epochs spanningthe duration as in [129]. Given this failure

model, durability of hierarchical encoding, flat erasure coding, and full replication is described below

Hierarchical data encoding: The durability of data in an epoch when data is hierarchically encoded with

(k,l) erasure coding across SSPs and with (ni , mi) encoding within an SSP group i is given by:

Durability of data in an epoch,DHier
e = Pr(

k

∑
i=1

Xi ≥ l)

124

where

Random variable :Xi

Xi = 0, if < mi nodes are up in SSP i

= 1, if ≥ mi nodes are up in SSP i

Pr(Xi = 1) = (1− pc)×
ni

∑
j=mi

(

ni

j

)

(1− pu)
j pni− j

u ,

Flat erasure encoding: The durability of data in an epoch when data is encoded using (n,m) flat erasure

coding using all nodes across all SSPs is given by:

Durability of data,DFlat
e = Pr((

k

∑
i=1

Yi) ≥ m)

whereYi is a random variable representing the number of nodes that are up in group i and n is the

total number of nodes spread across all SSPs andPr(Yi = l i) = (1− pc)×
(ni

li

)

p j
i (1− pi)

ni−li is the

probability is the probability thatl i nodes out ofni nodes in group i.

Full replication: The durability of data in an epoch when the data is fully replicated with k replicas (with

one replica per SSP) is given by

Durability of data,DFull
e = Pr(

k

∑
i=1

Yi ≥ 1)

125

Overall durability: Overall durability of data (using any replication mechanism) for a time duration T is

given by

Durability of data in time duration T,D

= 1-prob(data loss in time t≤ T)

= De
T/e

where e is the epoch length andDe is the durability of a given replication mechanism in an epoch.

We set epoch length to MTTR min(MTTRu,MTTRc), whereMTTRu and MTTRc are mean time

to recoveries from uncorrelated node failure with in SSP andcorrelated SSP failures. We assume

that failures in an epoch are not repaired before the end of epoch in computingDe. The failures are

assumed to be repaired before the start of next epoch (as we assume each epoch instance as a fresh

Bernoulli trial while computing overall durability D as shown above). Given this epoch length, we

can computepu andpc from MTTDL [49] due to uncorrelatednode failure(MTTDLu) and correlated

SSP failure(MTTDLc) events as

pu = MTTRu/MTTDLu

pc = MTTRc/MTTDLc

Mean time to data loss (MTTDL): Durability of data in terms of MTTDL is given by

MTTDL =
∞

∑
i=0

iDe
i(1−De) = De/(1−De)

whereDe is the durability of a given replication mechanism in an epoch.

B.1.1 Hierarchical encoding observation:

RemarkB.1.1. In hierarchical encoding, the overall durability does not improve much by additional intra-

SSP redundancies beyond a certain minimum value ifpu << 1− pu.

126

Proof:

Pr(Xi = 1) = (1− pc)×
ni

∑
j=mi

(

ni

j

)

(1− pu)
j pni− j

u ,

= (1− pc)× (1− pu)
ni × (1+

ni−mi

∑
j=1

(

ni

j

)

(pu/(1− pu))
j),

≈ (1− pc)× (1− pu)
ni × (1+

α

∑
j=1

(

ni

j

)

(pu/(1− pu))
j),

= (1− pc)×
ni

∑
j=α

(

ni

j

)

(1− pu)
j pni− j

u ,

In most practical settings,pu is far less than 1− pu whereMTTDLu is in the order of tens of years and

MTTRu is in the order of days. For example,pu/(1− pu) < 0.0002 for MTTDL due to node failure is 5

years and MTTR of 1 day. It is explained as follows. Andα depends onni andpu/(1− pu), such that (α+1)

>> (ni −1)× pu/(1− pu)). For example,α ≈ ni −1, whenni is in the order of tens of nodes,MTTDLu is

in the order of years andMTTRu is in the order of days. This implies that overall durabilitysaturates fairly

quickly with increasing intra-SSP redundancy when inter-SSP redundancy is fixed.

B.2 Overhead

Storage overheads of different encoding schemes are described below

Hierarchical encoding: The storage overhead of hierarchical encoding scheme that uses (k,l) encoding

across SSPs (inter-ssp encoding) and (ni ,ki) encoding with in an SSP group i (intra-ssp encoding) is

given by:

Overhead = 1/l × (n0/m0 +n1/m1 + ...+nk−1/lk−1)

= 1/l × (r0 + r1 + ...+ rk−1)

127

Flat erasure coding: The storage overhead of scheme using(n,m) flat erasure coding isn/m.

Full replication: The storage overhead of scheme using full replication withl replicas spread acrossl SSP

groups isl .

128

Appendix C

Audit protocol

1. Store data O→ SSP: {ob jId,H(dataob jId), texp}O,dataob jId

2. Receive receipt SSP→ O : {ob jId,H(dataob jId), texp}SSP

3. Store receipt O→ S: SSPid ,{ob jId,H(dataob jId), texp}SSP

Table C.1:Data storage sub-protocol:In the first phase, the data ownerO sends a storage request to store a
data objectdataob jId with object idob jid for a time duration oftexp to the storage service providerSSP. The
data owner then gathers the signed and verifiable promisary receipt fromSSPin the second phase. It then
stores the receipt fromSSPredundantly at all storage service providers defined by setS in the third phase.

1. Challenge A→ SSP: chal, listO f Ob jects

2. Response SSP→ A : {ob jId,chal, time,H(chal+dataob jId)}SSP|{ob jId,chal, time,FAILURE}SSP

Table C.2:Routine audit sub-protocol: Auditor periodically sends a challenge to the SSP(auditee). The
challenge includes a noncechal and a list of objects being audited (listo f Ob jects). For every data object
dataob jId in the list, SSP computes the hash valueH(chal+ dataob jId). SSP sends a signed response back
to the auditor for every object. The response includes object id ob jId, current timetime, and the hash
valueH(chal+ dataob jId). SSP can optionally sendFAILURE message if it finds data object to be lost or
corrupted.

129

1. Request data A→ O|SSP|SSP′ : list2O f Ob jects

2. Send data O|SSP|SSP′ → A : dataob jId

Table C.3:Spot check sub-protocol:Auditor spot checks the responses of routine audit protocolby reading
data for a subset of objects. Auditor gathers data by readingdata from the SSP being audited or other SSPs
at which the data is redundantly stored or the data ownerO.

POM = receiptandauditReplyare well-formed and signed bySSP
∧(ob jId = receiptob jId = auditReplyob jId)
∧(receiptexpires> auditReplytime)
∧receiptH(ob jId) = auditReplyH(ob jId)

∧chal = auditReplychal

∧H(chal+data) 6= auditReplyH(chal+data)

Table C.4: Proof of mis-behavior (POM): Auditor can generate a verifiable proof of mis-behavior, as
described in this table, against an SSP if an SSP lies during the routine audit protocol by sending a fake hash
value. It does so by gathering data for some random subset of objects.

130

Appendix D

Audit analysis with selfish SSPs

Here we show that a rational [46] SSP (that can selfishly deviate from the protocol for its own benefit)

follows the protocol in the presence of a SLA that specifies appropriate penalties relative to the underlying

cost of storing data.

bserve Benefit for storing and serving object until it expires
cstore Cost to store and serve object until it expires

(including cost of serving audit requests)
paudit Probability that object will be audited before it expires
pspot Probability that an audit reply will be spot-checked
penaltyh Penalty forhonest failureof audit (see Section 5.4
penaltyd Penalty fordishonest failureof audit

Table D.1:Definitions

Theorem 3. SafeStore audit protocol ensures that the rational SSPs (SSPs can selfishly deviate from the

protocol to maximize their own benefits) follow the protocolby (1) attempting to store data reliably and

(2) responds to audit requests honestly assuming an SLA thatspecifies appropriate penalties relative to the

underlying cost of storing data. cost model.

Proof:

• bserve> cstore∧cstore< min(paudit penaltyh, paudit pspotpenaltyd) =⇒ A rational SSP attempts to store

an object until it expires.

131

• penaltyh < pspotpenaltyd =⇒ A rational SSP that does not have the data needed to reply to anaudit

request replies with anhonest failurerather than with a audit reply that could be used to generate a

proof of misbehavior.

Example. These requirements are met by a system withc < $1 (reasonable if all objects are broken into

1GB or smaller pieces and stored with expiration times of less than a year),b= 2c, paudit = 90%,pspot= 1%,

penaltyh = $5, andpenaltyd = $1000.

132

Appendix E

Additional experiments

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 30 15 10 7 6 5 4 3 2 1

C
os

t (
%

 H
/W

 C
os

t)

MTTD data loss (days)

External auditor - 100%

Local auditor

External auditor - 1%

External auditor - 10%

 1e-08

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 1e-07 1e-06 1e-05 1e-04 0.001 0.01 0.1 1

P
ro

ba
bi

lit
y

of
 d

at
a

lo
ss

 in
 1

0
Y

ea
rs

Percentage data loss at a dishonest SSP

Remote - 20%

Local - 20%

Local - 100%

Oracle auditor

No audit

Remote - 100%

(a) (b)

Figure E.1: Audit (a) Time to detect SSP data loss via audit with varying amounts of resources dedicated
to audit overhead assuming honest SSPs with (3,2) inter-SSPredundancy. (b) Impact on overall durability
with a dishonest SSP with varying audit costs (20% and 100%)

E.1 Audit

Here, we run additional experiments to evaluate our audit protocol as described in section 5.4. Figure E.1(a)

plots mean time to detect data loss (MTTD) at apassiveSSP when (3,2) encoding is used to store 1TB of

data redundantly across 3 SSPs. MTTD falls rapidly with increasing audit budget similar to the system that

uses (3,1) as shown in the Figure 5.8(a) of section 5.4. However, for a fixed MTTD, (3,2) encoding incurs

higher audit cost per byte stored compared to (3,1) because of increased overhead due to reduced block size

from 4KB (with (3,1)) to 2KB (with (3,2)). Figure E.1 illustrates the overall impact on durability in the

133

presence ofdishonestSSPs with varying audit budgets. With 20% audit budget, we outperform a system

with no audit by two 9’s in the presence ofdishonestSSPs. As we increase our system’s audit budget from

20% to 100%, durability of our system approaches that of a system withoracle detector.

134

Appendix F

Protocol Comparisons

Table 4.1 presents a quick numerical comparison of the intrinsic overheads and requirements of 4 BFT

systems. Here we present a detailed explanation of the table.

Required Replicas The first row in the table accounts for the number of replicas required to toleratef

failures in each of the four systems. PBFT, HQ, and Zyzzyva require 3f + 1 replicas to toleratef faults

while Q/U and Zyzzyva5 require 5f + 1 replicas. This total number of replicas reflects the numberof

replicas required to coordinate the protocol state in the systems. PBFT, Zyzzyva and Zyzzyva5 require only

2 f + 1 of the total replicas to store application state. Nominally replicas that do not store application state

are less expensive than full replicas that maintain the application state.

Throughput overhead The computational throughput of a distributed system is dominated by the number

of operations at the most heavily loaded replica. The cryptographic operation of generating and verifying

MACs at the replicas are intrinsic and present computational overhead that cannot be avoided.

In Q/U and HQ there is no distinguished replica that plays a special role; within each of these systems all

replicas perform the same number of MAC operations. In Q/U and HQ each replica performs 2+ 8 f and

4+ 4 f MAC operations per client request respectively. In Q/U the total number of MAC operations at the

bottlenecked server can be broken down as follows: one MAC operation for verifying the client request, 4f

MAC operations to verify OHS (object history set), one MAC operation to generate MAC for the reply, 4f

MAC operations to generate the authenticator for its history set. In HQ the bottlenecked server performs

135

following MAC operations per client request: one operationto verify the client request, 2f operations to

generate authenticator for the grant timestamp phase (Write-1 phase), 1 operation to authenticate the Write-

1 phase response to the client, 1 operation to verify the Write-2 request from the client, 2f operations to

verify the write certificate in the Write-2 phase, 1 operation to authenticate the response to the client.

For PBFT we assume that the implementation uses preferred quorum optimization [63] to improve per-

formance. The number of cryptographic operations performed by the bottlnecked server (backup replica)

is 2+ (8 f + 1)/b per client operation when b client operations are batched ina single execution. Here a

backup replica requires 2 MAC operations per client requestwith one MAC operation each to verify the

client request and authenticate the server response. In addition, it requires 8f + 1 operations1 for agree-

ing on the order for b client operations (one operation to verify the pre-prepare message, 2f operations to

generate a prepare message for other replicas, 2f operations to verify 2f prepare messages from other repli-

cas, 2f operations to generate a commit message, 2f operations to verify 2f other commit messages). For

Zyzzyva the system is bottlenecked by the primary with 2+ 3 f/b MAC operations per client operation

when b clients are batched. The primary in Zyzzyva requires 2MAC operations per client request to verify

the client request and to authenticate the client response.In addition, the primary requires 3f operations to

generate authenticator for Order request message for a batch of b client requests. The backups require fewer

operations than the primary with the preferred quorum optimization.

Network Latencies The overall latency of a request is bounded from below by the number of one way

network latencies required by the system. PBFT and HQ each require 4 one way latencies Zyzzyva and

Zyzzyva5 require 3 latencies. In PBFT the complete request flight includes network latencies from client to

primary, primary to replicas, replicas to replicas, replicas to client. In HQ the latencies are from client to

1Without assuming piggybacking commit messages in other messages as in PBFT library implementation [57]. However, with
this optimization the number of operations reduces to 4f +1 operations at the bottlenecked server.

136

replicas, replicas to client, client to replicas, and replicas to client. Zyzzyva and Zyzzyva5 both follow the

pattern of client to primary, primary to replicas, replicasto client to complete an operation. PBFT, Zyzzyva

and Zyzzyva5 are all agreement based protocols and the theoretical lower bound for message delays in

agreement based protocols is 3. Q/U requires only two message delays, client to replicas and replicas to

client, when there is no contention in the system. In the presence of contention Q/U requires an unbounded

number of messages delays. Q/U requires fewer message delays than the theoretical minimum of 3 by

solving a different, slightly weaker, problem.

We expand on the Table 4.1 to compare message and cryptographic overheads of various protocols at the

clients and replicas as shown in the following Tables F.1 andF.2.

137

PBFT HQ Q/U Zyzzyva
client primary replica client replica client replica client primary replica

Sent Msg b 6f+b 6f+b b(6f+2) 2b b(5f+1) b b 3f+b b
Rcvd Msg b(3f+1) 6f+b 6f+b+1 b(6f+2) 2b b(5f+1) b b(3f+1) b 1
Tot Msg 3fb+b 12f+2b 12f+2b+1 b(12f+4) 4b b(10f+2) 2b 3fb+2b 3f+2b b+1

Crypt Gen b(3f+1) 6f+b 6f+b b(6f+2) b(3f+2) b(5f+1) b(5f+1) b(3f+1) 3f+b 3f+b
Crypt Ver b(2f+1) 4f+b 4f+b+1 b(4f+2) b(2f+3) b(4f+1) b(4f+1) b(3f+1) b b+1
Crypt Tot 5fb+2b 10f+2b 10f+2b+1 b(10f+4) b(5f+2) b(9f+2) b(9f+2) b(6f+2) 3f+2b 3f+2b+1

Sent Msg b 4f+b 4f+b b(4f+2) 2b b(4f+1) b b 3f+b b
Rcvd Msg b(2f+1) 4f+b 4f+1 b(4f+2) 2b b(4f+1) b b(3f+1) b 1
Tot Msg b(2f+2) 8f+2b 8f+b+1 2b(4f+2) 4b 2b(4f+1) 2b 3bf+2b 3f+2b b+1

Crypt Gen b(2f+1) 4f+b 4f+b b(4f+2) b(2f+2) b(4f+1) b(4f+1) b(3f+1) 3f+b b
Crypt ver b(2f+1) 4f+b 4f+b+1 b(4f+2) b(2f+2) b(4f+1) b(4f+1) b(3f+1) b b+1
Crypt Tot 2b(2f+1) 8f+2b 2(4f+b)+1 2b(2f+2) 2b(2f+2) 2b(4f+1) 2b(4f+1) b(6f+2) 3f+2b 2b+1

Table F.1: Overhead comparison of various protocols at clients and servers. The protocols under comparison tolerate f
failures. Message overhead is measured as the number of messages sent or received. Here we have a setup with b clients
with 1 request/client and the protocols use a batch size of b.The above table includes the total overhead for b clients in
the clients column and per client overhead can be calculatedby dividing it by b. The first two sub-tables (message and
cryptographic overheads) list the overhead without the preferred quorum optimization and the last two sub-tables assume
preferred quorum optimization. The overheads for Zyzzyva5is listed in the following table.

138

Zyzzyva-5
client primary replica

Sent Msg b 5f+b b
Rcvd Msg b(5f+1) b 1
Tot Msg 5fb+2b 5f+2b b+1

Crypt Gen b(5f+1) 5f+b 5f+b
Crypt Ver b(4f+1) b b+1
Crypt Tot b(9f+2) 5f+2b 5f+2b+1

Sent Msg 4f+b 4f b
Rcvd Msg b(4f+1) b 1
Tot Msg b(4f+2) 4f+b b+1

Crypt Gen b(4f+1) 4f+b b
Crypt ver b(4f+1) b b+1
Crypt Tot 2b(4f+1) 4f+2b 2b+1

Table F.2: Here is the overheads column for Zyzzyva5 (continued from previous table).

139

Appendix G

PKI Protocol Description

The goal of the system is to ensure that if the results of operationso ando′ are accepted by a non-faulty

client as valid, then the linearized order of requests are consistent. Unlike previous systems, we involve the

client in this determination and do not rely solely on the replicas to ensure the property. Consequently, we

define the following client centric predicate:

We formalize the statement that a client accepts a request with the predicate client–delivered(o,n,h,c),

which is true if non-faulty clientc accepts the result ofo as then operation in the sequence of requests whose

total order throughn is defined by historyh.

The system is designed to maintain the following safety property:

SAFETY: client–delivered(o,n,h,c), client–delivered(o′,n′,h′,c′) andn′ ≥ n implies thath is a prefix of

h′ ando = o′ if n = n′.

G.1 Agreement Protocol

Figure 4.1 illustrates the basic flow of the agreement sub-protocol during a view. Since replicas execute

requests speculatively in the order proposed by the primarywithout communicating with each other replicas,

the key challenge is ensuring that clients only act upon replies that correspond to stable requests that were,

in fact, executed in a total order that is guaranteed to eventually commitat all correct servers. The protocol

is constructed so that a client knows that a request will eventually becommittedwhen it receives 3f + 1

140

Label Meaning

c Client ID
CC Commit certificate
d Digest of client request messaged = H(m)

i, j Server IDs
hn History through sequence numbern hn = H(hn−1,d)

m Message containing client request
maxn Max sequence number accepted by replica

n Sequence number
o Operation requested by client

OR Order Request message
POM Proof Of Misbehavior

r Application reply to a client operation
t Timestamp assigned to an operation by a client
v View number

Table G.1: Labels given to fields in messages.

matching responses or acknowledgements from 2f +1 replicas that they have received acommit certificate

comprising alocal commitfrom 2f +1 replicas.

To describe how the system deals with this and other challenging, but standard, issues—lost messages,

faulty primary, faulty clients, etc.—we follow a request through the system, defining the rules a server uses

to process each message. The numbers in Figure 4.1 correspond to numbers in the text identifying major

steps in the protocol and Table G.1 summarizes the labels we give fields in messages. Most readers will be

happier if on their first reading they skip the text marked Additional Pedantic Details.

0. Replicas begin the protocol with a predefined base state.

Replica i begins the protocol in view 0 with an empty history and assigns the first request a sequence

number of 1.

1. Client sends request to the primary.

A client c requests an operationo be performed by the replicated service by sending a〈REQUEST,o, t,c〉σc

141

message to the replica it believes to be the primary (i.e., the primary for the last response the client received.)

Additional Pedantic Details:If the client guesses the wrong primary, the retransmissionmechanisms

discussed in step4c below forwards the request to the current primary. The client’s timestampt is included

to ensure exactly-once semantics of execution of requests so that no request is executed more than once by

the replicated service.

2. Primary receives request, assigns sequence number, and forwards ordered request to replicas.

When the primaryp receives a new requestm= 〈REQUEST,o, t,c〉σc from clientc, the primary assigns a

sequence numbern in view v to the request and relays a〈〈ORDER-REQ,v,n,hn,d,ND〉σp,m〉 message to the

backup replicas wherev indicates the view in which the message is being sent,n is the proposed sequence

number form, d = H(m) is the digest ofm, hn = H(hn−1,d) is a digest summarizing the history, andND

is a set of values for non-deterministic application variables (time in file systems, locks in databases, etc.)

required for execution.

Additional Pedantic Details:The primary only takes the above actions ift > tc wheretc is the highest

timestamp previously received fromc andmcan be verified. Ifmcannot be verified then the primary drops

the request and does nothing.

3. Replica receives ordered request, speculatively executes it, and responds to the client.

Upon receipt of an order request message〈〈ORDER-REQ,v,n,hn,d,ND〉σp,m〉 from the primaryp, replica

i discards the message ifn≤ maxn wheremaxn is the largest sequence number in its history. Ifn= maxn+1,

m is a well-formed request message,d is a correct digest ofm, andhn = H(hn−1,d), then i accepts the

order request message. Upon accepting the message,i appends the ordered request to its history, executes

the request using the current application state to produce areply r, and sends toc a speculative response

142

message〈〈SPEC-RESPONSE,v,n,hn,H(r),c, t〉σi , i, r,OR〉 whereOR= 〈ORDER-REQ,v,n,hn,d,ND〉σp.

Additional Pedantic Details:A replica may only accept and speculatively execute requests in sequence-

number order, but message loss or a faulty primary can introduce holes in the sequence number space. If

n > maxn +1, theni discards1 the order request message and initiates the fill hole protocol described in the

section G.1.2. If the order request is inconsistent with thehistory of order requests replicai has received,

then the two order requests showing the inconsistency consist of a POM and the replica (a) forwards the

POM to all other replicas and (b) initiates a view change.

4. Client gathers speculative responses.

Next, the client receives speculative responses〈〈SPEC-RESPONSE,v,n,hn,H(r),c, t〉σi , i, r,OR〉 from the

replicas. Speculative responses from distinct replicasi matchif they have identicalv, n, hn, H(r), c, t, and

r fields. There are four cases to consider. The first three handle varying numbers of matching speculative

replies without consideringORwhile the last considers only theORportion of the message.

4a. Client receives 3 f +1 matching responses and completes the request.

In the absence of faults, the client receives matching speculative response messages from all 3f + 1

replicas. The client then considers the request and its history to becompleteand delivers the replyr to the

application. Zyzzyva guarantees that even if there is a viewchange, all correct replicas will always execute

this request at this point in their history to produce this response. Notice that although the client has a proof

that the request’s place in history is irrevocably set, no server has such a proof. Indeed, servers at this point

cannot determine if a request has completed in its final orderor if it will have to roll back its state because a

faulty primary ordered the request inconsistently across replicas.

1We cache out-of-order requests as an optimization as explained in the section 4.4 but omit this optimization here for simplicity.

143

4b. Client receives between 2 f + 1 and 3 f matching responses, assembles a commit certificate,
and transmits the commit certificate to the replicas.

If the network, primary, or some replicas are faulty, the client c may never receive responses from all

3 f + 1 replicas. The client therefore sets a timer when it first issues a request, and when this timer ex-

pires, if c has received matching speculative responses from between 2f + 1 and 3f replicas, thenc sends

a commit message〈COMMIT ,c,CC〉σc whereCC is a commit certificate consisting of a list of 2f +1 repli-

cas, the replica-signed portions of the 2f + 1 matching speculative responses from those replicas, and the

corresponding 2f +1 replica signatures.

Additional Pedantic Details:CC contains 2f +1 signatures on the speculative reply message and a list of

2 f + 1 nodes, but, since all the responses received byc from replicas are identical,c only needs to include

onereplica-signed portion of the speculative response. Also note that, for efficiency,CC does not include

the bodyr of the reply but only the hashH(r).

4b.1. Replica receives a commit message from a client containing a commit certificate and acknowl-
edges with a local-commit message.

When a replicai receives a commit message〈COMMIT ,c,CC〉σc containing a valid commit certificate

CC proving that a request should be executed with a specified sequence number and history in the current

view, the replica first ensures that its local history is consistent with the one certified byCC. If the history

certified byCC matches replicai’s local history, theni updates itsmax commit certificatestate if the se-

quence number is higher than the stored certificate’s sequence number and sends a local commit message

〈LOCAL-COMMIT ,v,d,h, i,c〉σi to c. If the history certified byCC does not matchi’s local history, theni

initiates a view change.

Additional Pedantic Details:If i’s history is inconsistent with the history certified byCC theni constructs

a POM fromCC and an appropriate order request. Replicai then initiates a view change and forwards the

144

POM to all other replicas.

4b.2. Client receives a local commit messages from 2 f +1 replicas and completes the request.

The client resends the commit message until it receives corresponding local commit messages from 2f +1

distinct replicas. The client then considers the request and its history to becompleteand delivers the replyr

to the application. The system guarantees that even if thereis a view change, all correct replicas will always

execute this request at this point in their history to produce this response.

4c. Client receives fewer than 2 f + 1 matching responses and resends its request to all replicas,
which forward the request to the primary in order to ensure the request is assigned a sequence
number and eventually executed.

Client. If the network or primary is faulty, the clientc may never receive matching responses fromf +1

replicas. The client therefore sets a second timer when it first issues a request, and when this timer expires,

resends the request to all replicas. It then resets its timers and continues gathering speculative responses.

Replica. When non-primary replicai receives a request〈REQUEST,o, t,c〉σc from client c there are two

possible actions fori to take. If the time stamp in the request matches the time stamp for the the currently

cached request for clientc, theni resends the cached response toc. If instead the request has a higher times-

tamp than the currently cached response, theni sends a confirm request message〈CONFIRM-REQ,v,m, i〉σi

wherem= 〈REQUEST,o, t,c〉σc to the primaryp and starts a timer. If the replica accepts an order request

message for this request before the timeout, it processes the order request message as described above. If

the timer fires before the order request message is received from the primary, the replica initiates a view

change.

Primary. Upon receiving〈CONFIRM-REQ,v,m, i〉σi from replicai, the primaryp checks the client’s times-

tamp for the request. If the request is new,p sends a new order request message using the next sequence

number to order as described in step2; otherwise,p sends toi the cached order request message for the most

145

recent request fromc.

Additional Pedantic Details:If replica i has received a commit certificate or a stable checkpoint for a

subsequent request or the request was ordered in a previous view, then the replica sends both a speculative

response and a local-commit response to the client even if the client has not received a commit certificate for

the retransmitted request. Additionally, if replicai does not receive the order request from the primary, the

replica sends the confirm request message to all other replicas. Upon receipt of a confirm request message

from another replicaj, replicai sends the order request message it received from the primaryto j; if i did

not receive the request from the client,i acts as if the request came from the client itself.

4d. Client receives replies indicating inconsistent ordering by the primary and sends a proof of
misbehavior to the replicas, which initiate a view change to oust the faulty primary.

If client c receives a pair of speculative reply messages containing valid order-request messagesOR=

〈ORDER-REQ,v,n,hn,d,ND〉σ j for the same request (d = H(m)) in the same viewv with differing sequence

numbern or historyhn, then the pair of order-request messages constitutes a proof of misbehavior (POM)

against the primary. Upon receipt of aPOM, c sends a primary faulty message〈POM,v,POM〉σc to all

replicas. Upon receipt of a validPOM, a replica initiates a view change.

Note that cases4b through4d are not mutually exclusive.

G.1.1 View Change

The Zyzzyva view change sub-protocol is similar to traditional view change sub-protocols with two key

exceptions. First, while replicas in traditional view change protocols commit to the view change as soon as

they suspect the primary to be faulty, replicas in Zyzzyva only commit to a view change when they know that

all other correct replicas will join them in electing a new primary. Second, Zyzzyva weakens the condition

under which a request appears in the new view’s history. The protocol proceeds as follows.

146

VC1. Replica initiates the view change by sending an accusation against the primary to all replicas.

Replicai initiates a view change by sending〈I-HATE-THE-PRIMARY, v〉σi to all replicas, indicating that

the replica is dissatisfied with the behavior of the current primary. In previous protocols, this message would

indicate that replicai is no longer participating in the current view. In Zyzzyva, this message is only a hint

that i would like to change views. Even after issuing the message,i continues to faithfully participate in the

current view.

VC2. Replica receives f +1 accusations that the primary is faulty and commits to the view change.

Replicai commits to a view change into viewv+1 by sending an indictment of the current primary, con-

sisting of〈I-HATE-THE-PRIMARY, v〉σ j from f +1 distinct replicasj, and the message〈VIEW-CHANGE,v+

1,CC,O, i〉σi to all replicas.CC is either the most recent commit certificate for a request since the last view

change,f + 1 VIEW-CONFIRM messages if no commit certificate is available, or aNEW-VIEW message if

neither of the previous options are available.O is i’s ordered request history since the commit certificate

indicated byCC. At this point, a replica stops accepting messages relevantto the current view and does not

respond to the client until a new view has started.

VC3. Replica receives 2 f +1 view change messages.

Primary. Upon receipt of 2f + 1 VIEW-CHANGE messages, the new primaryp constructs the message

〈NEW-VIEW ,v+1,P〉σp whereP is a collection of 2f +1 VIEW-CHANGE messages defining the initial state

for view v+1.

Replica. The replica starts a timer. If the replica does not receive a valid NEW-VIEW message from the

new primary before the timer expires, then the replica initiates a view change into viewv+2.

Additional Pedantic Details:If a replica commits to change to viewv+ 2 before receiving a new view

147

message for viewv+1, then the replica uses the set of ordered requests from viewv to form its view change

message. The length of the timer in the new view grows exponentially with the number view changes that

fail in succession.

VC4. Replica receives a valid new view message and sends a view confirmation message to all
other replicas.

Replicas determine the state of the new view based on the collection of 2f +1 VIEW-CHANGE messages

included in theNEW-VIEW message. The most recent request with a corresponding commit certificate (or

old new view message) is accepted as the last request in the base history. The most recent request that is

ordered subsequent to the commit certificate by at leastf +1 VIEW-CHANGE messages is accepted. Replica

i forms the message〈VIEW-CONFIRM, v+ 1, n, h, i〉σi based on theNEW-VIEW message and sends the

VIEW-CONFIRM message to all other replicas.

Additional Pedantic Details:When evaluating theNEW-VIEW message, a commit certificate from the

most recent view takes priority over anything else, followed by f +1 VIEW-CONFIRM messages, and finally

a NEW-VIEW message with the highest view number.

VC5. Replica receives 2 f +1 matching VIEW-CONFIRM messages and begins accepting requests
in the new view.

Upon receipt of 2f +1 matchingVIEW-CONFIRM messages, replicai begins the new viewv.

Additional Pedantic Details:The exchange of view confirm messages is not strictly necessary for safety

and can be optimized out of the protocol, but including them simplifies our safety proof by ensuring that if a

correct replica begins accepting messages in new viewv, then no other correct replica will accept messages

in view v with a different base history. This step allows replicas to consider a confirmed view change to be

functionally equivalent to a commit certificate for all requests in the base history of the new view.

148

G.1.2 State Transfer and Garbage Collection

Checkpoint Protocol

CP1. When replica i receives the order request message for the CP INTERVALth request since the
last checkpoint, the replica sends the speculative response to all other replicas in addition to the
client.

CP2. Replica receives a commit certificate for the CP INTERVALth request, forms a checkpoint
message, and relays the checkpoint message to all other replicas.

After receiving a commit certificate for the request and processing it as in step4b.1, replica i forms a

〈CHECKPOINT,n,h,a, i〉σi message and sends it to all replicas.n is the sequence number,h is the history,

anda is a snapshot of the application state when every request in history h has been executed.

Additional Pedantic Details:The application snapshot state includes the cached responses to client re-

quests that are ordered atn′ ≤ n. If the replica has not received the speculative response corresponding to

the commit certificate, then the replica initiates the fill hole protocol described in the section G.1.2.

Additional Pedantic Details:Replica i can receive a commit certificate from the client or by receiving

2 f +1 matching speculative response messages directly from other replicas. The replica considers commit

certificates gathered in either manner to be equivalent.

CP3a. Replica receives f +1 matching checkpoint messages and considers the checkpoint stable.

After receiving f + 1 matching checkpoint messages, replicai considers the request stable and garbage

collects any request with sequence number≤ n and makes an up call into the application to garbage collect

application state.

149

Fill Hole

The Fill Hole sub protocol is used when a replica misses an order request message from the primary – either

because the network is faulty or the primary is faulty. The purpose of the fill hole protocol is to ensure that

non-faulty replicas receive an order request message for each request. When a hole is recognized due to

an out of order order request message, a non-faulty replica simply requests the ordered requests from the

primary; the history sent to fill the hole is unconstrained. If the hole is recognized due to the receipt of a

commit certificate, then the sequence of order request messages that are used to fill that hole must culminate

in the history specified by the commit certificate.

FH1. Replica recognizes that there is a hole in the sequence of ordered requests and asks the
primary to fill in the hole.

Replicai sends a fill hole message〈FILL -HOLE,v,maxn +1,n, i〉σi to the primary and starts a timer.

Additional Pedantic Details:Replicai recognizes the existence of a hole when it receives an order request

message out of order, when it receives a commit certificate for a request that it has not received an order

request for, or when it receives a checkpoint message without receiving all appropriate order requests.

FH2. Primary receives a fill hole request message and sends order requests for the missing requests
to the replica.

Upon receiving a message〈FILL -HOLE,v,k,n, i〉σi from replica i, the primaryp sends an order request

message〈〈ORDER-REQ,v,n′,hn′ ,d,ND〉σp,m
′〉 to i for each requestm′ that p ordered at sequence number

k≤ n′ ≤ n during the current viewv.

Additional Pedantic Details:If the primary has a stable checkpoint for a request subsequent tok then the

proof of checkpoint stability and the checkpoint itself canbe sent as a replacement for some subset of the

order requests.

150

FH2a. Replica receives every missing order request before the timer expires.

Replicai processes the order request messages as described in protocol step3 and removes the timer.

Additional Pedantic Details:Contradictory order request messages constitute a proof ofmisbehavior as

discussed in protocol step4d.

FH2b.1. Replica does not receive every missing order request before the timer expires and asks the
other replicas for help in filling in the holes.

When the timer fires the replica broadcasts the〈FILL -HOLE,v,k,n, i〉σi to all other replicas and waits for

responses.

FH2b.2. Replica receives a fill hole message from another replica and responds with the appropriate
set of order requests.

Upon receipt of〈FILL -HOLE,v,k,n, i〉σi from replicai, replica j forwards the order request message for

sequence numbersk throughn to i.

Additional Pedantic Details:If replica j receives fill hole messages fromf + 1 distinct replicas during

view v, theni initiates the view change protocol.

Additional Pedantic Details:If replica i receives an order request message that is inconsistent withone

that it received (either directly conflicting or resulting in an impossible history combination, then that con-

sists of a POM and can be distributed to all other replicas to force the view change.

G.1.3 Key Differences

Our protocol differs in a couple of key ways, each differenceinfluences the others.

1. The agreement protocol can end after 1 or 2 replica messages. PBFT ends after 2 or 3 replica (non-

primary) messages.

151

2. The checkpoint protocol includes a commit phase which is asecond all to all communication that

confirms the state of the checkpoint. PBFT requires only a single all to all communication.

3. The view change protocol includes an all to all confirmation of the new view. PBFT begins accepting

messages in the new view as soon as the new view message is received.

4. We divorce the initiation of a view change from the commitment to the view change.

By shortening the common case agreement protocol, we have required replicas to remain active even

when they locally think that the primary is in fact faulty. Wehave also moved a confirmation step from the

common agreement protocol to the uncommon checkpoint and view change protocols.

G.1.4 Safety and Liveness

The primary purpose of the safety proof is to ensure that no non-faulty replica will make a bad choice that

results in the system being in an inconsistent state. The purpose of liveness is to ensure that, when relevant,

a non-faulty replica eventually makes a choice.

Safety

We define the following predicates to facilitate our proof ofthe safety properties of Zyzzyva. Note that each

of these predicates is defined with respect to non-faulty clients and replicas.

• client–delivered(o,n,h,c) ≡ client c accepts the response to operationo as thenth request in the

request historyh.

• op–completed(o,v,n,h,c) ≡ client c accepts the response to operationo as thenth request in the

request historyh based off of viewv messages.

152

• ordered(o,v,n,h, i) ≡ replicai received an order request for operationo asnth request in the historyh

during viewv.

• commit–cert(o,v,n,h, i) ≡ replica i received a commit certificate confirming operationo as thenth

request in historyh during viewv.

• checkpoint–vote(v,n,h, i) ≡ replicai has a historyh of lengthn when initiating a checkpoint.

• checkpoint(v,n,h, i) ≡ replica i considers the checkpoint at sequence numbern with history h to be

stable in viewv after receiving 2f +1 matching checkpoint confirmation messages.

• view–vote(v,nCC,hCC,nSR,hSR, i) ≡ replica i commits to a view change with a history of ordered re-

quests that extends tohSRand a history of committed requests extending tohCC.

• new–view(v,n,h, i) ≡ replicai receives a new view message with historyh of lengthn.

• confirm–view(v,n,h, i) ≡ replica i receives 2f + 1 confirm view messages and begins viewv with

historyh of lengthn as the base state.

• locally–commited(o,v,n,h, i)≡∃n′ ≥ nandh′ such thath is a prefix ofh′ such that commit–cert(o,v,n,h, i)

or confirm–view(v,n′,h′, i).

Throughout the proofs we make the following assumptions:

• There are 3f +1 replicas.

• At most f replicas are faulty.

• All non-faulty replicas follow the protocol faithfully.

153

The safety property that we are interested in maintaining isthat if non-faulty clientsc and c′ accept

requestso ando′ with sequence numbern andn′, thenn < n′ implies thato was executed prior too′.

Theorem 4 (Safety). If client–delivered(o,n,h,c), client–delivered(o′,n′,h′,c′), c and c′ are non-faulty

clients, and n≤ n′ then h is a prefix of h′.

We first observe that Zyzzyva is based on a series of views. Thefollowing observation follows directly

from the protocol description.

Observation 1. If client–delivered(o,n,h,c) for non faulty client c then∃ view v such thatop–completed(o,v,n,h,c).

Proof. Protocol steps4a and4b.2.

It follows from Observation 1 that in order to prove Theorem 4it is sufficient to prove the following

Theorem describing the relationship between operations that complete at correct clientsc andc′ in view v

andv′ respectively.

Theorem 5. If op–completed(o,v,n,h,c) and op–completed(o′,v′,n′,h′,c′), n′ ≥ n, and c and c′ are non-

faulty, then h is a prefix of h′.

Protocol steps4a and4b.2 define the conditions under which a non-faulty client accepts requests. The

following Observation expresses those conditions with respect to the predicates defined above.

Observation 2. If op–completed(o,v,n,h,c) then either (a)∀ non-faulty replicas iordered(o,v,n,h, i) or (b)

∃ f +1 non-faulty replicas j such thatlocally–commited(o,v,n,h, j).

Proof. Clients accept a response in steps4a and4b.2.

154

In step4a, a client accepts the response only after having received matching speculative response mes-

sages from all 3f + 1 replicas. Non-faulty replicas only send speculative response messages if they order

the request based on an order request message from th primaryin 3b, completing the proof.

In step4b.2, a client accepts the response only after having received matching local commit messages

from 2f +1 replicas. Non-faulty replicas send local commit messagesafter having received a commit cer-

tificate for that request in step4b.1 or observing that a subsequent message has been committed asdescribed

in 4c.

Non-faulty replicas begin accepting messages in viewv only after the view is confirmed by a quorum

of other replicas. The following Lemma shows that all non-faulty replicas that begin a viewv do so with

identical histories and sequence numbers.

Lemma 1. If confirm–view(v,n,h, i) andconfirm–view(v,n′,h′, j) for non-faulty replicas i and j then n= n′

and h= h′.

Proof. If v = 0 then the result follows from protocol step0.

Assumev> 0. Since confirm–view(v,n,h, i) is true only wheni receives 2f +1 matching view confirma-

tion messages and there are 3f +1 replicas total with at mostf faults, i and j there is at least one non-faulty

replica whose view confirmation message was accepted by bothi and j. It follows from protocol stepVC4

that non-faulty replicas send only one view confirmation message, son = n′ andh = h′.

We now show certain relationships between the states at replicas for a given sequence numbern in view

v. Any non-faulty replica that orders at most one request at sequence numbern in view v

Lemma 2. If ordered(o,v,n,h, i) andordered(o′,v,n,h′, i) for non-faulty replica i then h= h′ and o= o′.

155

Proof. Follows from protocol step3 that non-faulty replicas order exactly one request at sequence number

n during viewv.

If a non-faulty replica accepts a commit certificate for a request at sequence numbern in view v, then at

least f +1 non-faulty replicas ordered that request with sequence numbern.

Lemma 3. If commit–cert(o,v,n,h, i) at non-faulty replica i then∃ f + 1 non-faulty replicas j such that

ordered(o,v,n,h, j).

Proof. It follows from protocol step4b.1 that a non-faulty replica only accepts valid commit certificates. It

follows from the definition of a valid commit certificate in protocol step4b and the assumptions of 3f + 1

total replicas and at mostf faulty replicas that a commit certificate includes matchingspeculative response

messages from at leastf +1 non-faulty replicas. It follows from protocol step3 that each of these non-faulty

replicas ordered the request at sequence numbern, completing the proof.

Further, if f +1 non-faulty replicas order the same request atn then any commit certificate atn must be

for the same request.

Lemma 4. If commit–cert(o,v,n,h, i) and∃ f +1 non-faulty replicas j such thatordered(o′,v,n,h′, j) then

h = h′ and o= o′.

Proof. Protocol step4b implies that a commit certificate requires 2f + 1 replicas to send matching specu-

lative replies. Since there are 3f + 1 replicas in total, at least one of the 2f + 1 replicas is in the set that

orderedh′ soh = h′.

Similarly, there can be only one commit certificate for a given sequence numbern in view v.

156

Lemma 5. If commit–cert(o,v,n,h, i) and commit–cert(o′,v,n,h′, j) for non-faulty replicas i and j then

h = h′ and o= o′.

Proof. Follows from Lemmas 4 and 3.

Lemmas 2 through 5 imply that only one operation can completewith sequence numbern in view v.

The following Lemmas relate operations that are ordered andcommitted by replicas with sequence numbers

n−1 andn in view v.

Lemma 6. If ordered(o,v,n,h, i) andconfirm–view(v,n0,h0, i) and n> n0 +1 thenordered(o′,v,n−1,h′, i)

or commit–cert(o′,v,n−1,h′, i) and h′ = h−o.

Proof. Follows from protocol steps3 and4b.1 that non-faulty replicai does not order thenth request unless

it has ordered or received a commit certificate for then− 1st request orn is the first sequence number of

view v.

Lemma 7. If ordered(o,v,n,h, i) for non-faulty replica i, then∃n0,h0 such that n0 < n and h0 is a prefix of

h andconfirm–view(v,n0,h0, i).

Proof. It follows from protocol step0 and stepsVC2 VC5 that non-faulty replicas only accept viewv mes-

sages when the view has been confirmed, so∃n0,h0 such that confirm–view(v,n0,h0, i). It follows from

protocol steps3 and protocol step4b.1 thatn > n0. In order to show thath0 is a prefix ofh, we proceed by

induction on the difference betweenn andn0.

Base case ofn = n0 +1. It follows from3 that non-faulty replicai appendso to the historyh0 in order to

get historyh andh0 is thus a prefix ofh.

157

Inductive step forn> n0+1. It follows from Lemma 6 that ordered(o′,v,n−1,h′, i) or commit–cert(o′,v,n−

1,h′, i) such thath′ = h− o is true. In the first case the proof is complete by the inductive hypothesis. In

the second case, it follows from Lemma 3 that there aref + 1 non-faulty replicas that orderedo′ as the

n−1st request. It then follows from Lemma 1 that non-faulty replicas confirm the same base state for a view

and from protocol steps0, VC2, andVC5 that non-faulty replicas only accept viewv messages if they have

confirmed the view has begun. The inductive step then completes the proof.

Lemma 8. If commit–cert(o,v,n,h, i) for non-faulty replica i and∃ f + 1 non-faulty replicas j such that

ordered(o′,v,n′,h′, j) and n′ ≥ n then h is a prefix of h′.

Proof. We proceed by induction onn′−n.

For the base case ofn′ = n, the conclusion follows from Lemma 4.

Consider the case whenn′ > n. It follows from Lemma 6 that ordered(o′′,v,n′−1,h′−o′, j) or commit–cert(o′′,v,n′−

1,h′ − o′, j). In the first case, we proceed by induction on commit–cert(o,v,n,h, i) and ordered(o′′,v,n′ −

1,h′ − o′, j). In the second case it follows fom Lemma 3 that∃ f + 1 non-faulty replicask such that

ordered(o′′,v,n′−1,h′−o′,k), and we again proceed by induction.

Lemma 9. If commit–cert(o,v,n,h, i) and commit–cert(o′,v,n′,h′, j) for non-faulty replicas i and j and

n′ ≥ n then h is a prefix of h′.

Proof. We proceed by induction onn′−n.

Base case ofn = n′ then the result follows from Lemma 5.

Consider the case wheren < n′. It follows from Lemma 3 that∃ f + 1 non-faulty replicask such that

ordered(o′,v,n′,h′,k). It follows from Lemma 6 that ordered(o′′,v,n′−1,h′−o,k) or commit–cert(o′′,v,n′−

158

1,h′ −o,k) is true for each of thef + 1 ks. In the first case the conclusion follows from Lemma 8. In the

second case we proceed by induction on commit–cert(o,v,n,h, i) and commit–cert(o′′,v,n′−1,h′−o,k).

Lemma 10. If ∃ f +1 non-faulty replicas i such thatordered(o,v,n,h, i) andcommit–cert(o′,v,n′,h′, j) for

non-faulty replica j and n′ ≥ n then h is a prefix of h′.

Proof. If n′ = n then the conclusion follows from Lemma 4.

If n′ > n then we proceed by induction on the number of sequence numbers betweenn andn′ that have

valid commit certificates in viewv.

For the base case when there are no such sequence numbers, Lemma 3 implies that∃ f + 1 non-faulty

replicask such that ordered(o′,v,n′,h′,k). Since there are 3f +1 replicas total and at mostf faulty replicas,

it follows that at least one replicai is also a replicak. The conclusion thus follows from repeated application

of Lemma 6.

For the inductive step, consider the sequence numbern′′ such thatn< n′′ < n′ and commit–cert(o′′,v,n′′,h′′,k)

for non-faulty replicak. It follows from Lemma 9 thath′′ is a prefix ofh′ and we proceed by induction on

ordered(o,v,n,h, i) and commit–cert(o′′,v,n′′,h′′,k).

Having established properties relating requests that are ordered and committed during viewv, we no

proceed to relate these requests to the view change that transfers the system from viewv to view v+1.

The requests that are ordered and committed by a specific replica are present in the view vote submitted

by that replica according to the following Lemmas.

Lemma 11. If view–vote(v,nCC,hCC,nSR,hSR, i) for non-faulty replica i, then nCC ≤ nSRand hCC is a prefix

of hSR.

159

Proof. Follows from protocol stepVC2.

Lemma 12. If ordered(o,v,n,h, i) is true∀ non-faulty replicas i andview–vote(v+ 1,nCC,hCC,nSR,hSR, j)

is true for non-faulty replica j then n≤ nSRand h is a prefix of hSR.

Proof. It follows from Lemma 4 that no other request will be insertedat sequence numbern during viewv.

Eithern is less than the most recent commit certificate received byj or greater than that sequence number.

In the first case the conclusion follows from protocol stepVC2 and Lemma 11. In the second case it follows

from protocol stepVC2 and protocol step3.

Lemma 13. If commit–cert(o,v,n,h, i) and view–vote(v+ 1,nCC,hCC,nSR,hSR, i) are true for non-faulty

replica i then n≤ nCC and h is a prefix of hCC.

Proof. It follows from Lemma 5 that no other commit certificate can beaccepted byi at sequence number

n in view v. Either n is the largest sequence number for whichi has received a commit certificate or

∃n′ > n such that commit–cert(o′,v,n′,h′, i). In the first case, the conclusion follows from protocol step

3 andVC2. In the second case it follows from Lemma 9 thath is a prefix ofh′ and we proceed by induction

on commit–cert(o′,v,n′,h′, i) and view–vote(v+1,nCC,hCC,nSR,hSR,).

Lemma 14. If confirm–view(v,n0,h0, i) and view–vote(v+ 1,nCC,hCC,nSR,hSR, i) for non-faulty replica i

then∀n:n0 < n≤ nCC commit–cert(o,v,n,h, i) or ordered(o,v,n,h, i) and h is a prefix of hCC and∀n′:nCC <

n′ ≤ nSRordered(o′,v,n′,h′, i) and h′ is a prefix of hSR.

Proof. Follows from protocol steps3, 4b.1, VC2.

We now relate requests that complete based on messages sent during viewv to any initial case that can be

considered for viewv+1.

160

Lemma 15. If ∃ f +1 non-faulty replicas i such thatcommit–cert(o,v,n,h, i) andnew–view(v+1,n′,h′, j)

then n′ ≥ n and h is a prefix of h′.

Proof. It follows from Lemma 13 that∃ f + 1 non-faulty replicasi such thatnCC ≥ n in their respective

view votes. Since there are 3f +1 replicas and the new view message is composed of 2f +1 view votes by

protocol stepVC3, at least one of the view votes withnCC > n must be included in every new view message.

It thus follows from protocol stepVC4 thath is a prefix ofh′.

Lemma 16. If ordered(o,v,n,h, i) is true for all non-faulty replicas i andnew–view(v+1,n′,h′, j) for non-

faulty replica j and n≤ n′ then h is a prefix of h′.

Proof. It follows from Lemma 12 that all for all non-faulty replicasi nSR≥ n in their view votes. Since

there are 3f +1 replicas total and at mostf faulty replicas (both by assumption) and the new view message

contains view votes from 2f +1 replicas by protocol stepVC3, the new view message contains at leastf +1

non-faulty replicas. It thus follows from protocol stepVC4 thath is a prefix ofh′.

Lemma 17. If confirm–view(v,n,h, i) and new–view(v+ 1,n′,h′, j) for non-faulty replicas i and j then

n′ ≥ n and h is a prefix of h′.

Proof. It follows from protocol stepVC5 that a non-faulty replica commits to a view after receiving 2f +1

matching commit view messages. It follows from protocol step VC4 that non-faulty replicas send commit

view messages only after receiving 2f +1 a valid view change message. It follows from protocol stepVC2

that any non-faulty replicas will include either the new view message for viewv or a commit certificate with

higher sequence number in viewv in their view v+ 1 view vote messages. Since a new view consists of

2 f + 1 view vote messages and there are 3f + 1 total replicas, at mostf of which are faulty, at least one

161

non-faulty replica is included in both sets and it follows from protocol stepVC4 thatn′ ≥ n andh is a prefix

of h′.

Lemma 18. If confirm–view(v,n,h, i) andconfirm–view(v+1,n′,h′, j) for non-faulty replicas i and j then

n′ ≥ n and h is a prefix of h′.

Proof. Follows from protocol stepVC4 and Lemma 17.

The following Lemma shows that for any confirmed viewsv andv′ > v, the history confirmed inv is a

prefix of the history confirmed inv′.

Lemma 19. If confirm–view(v,n,h, i) and confirm–view(v′,n′,h′, j) for non-faulty replicas i and j and

v′ > v then n′ ≥ n and h is a prefix of h′.

Proof. If v′ = v+1 then the conclusion follows from Lemma 18.

If v′ > v+1 then we proceed by induction on the number of viewsv′′ such thatv< v′′ < v′ and confirm–view(v′′,n′′,h′′,k)

for non-faulty replicak.

In the case where no such viewv′′ exists, no requests can be ordered or committed in viewsv≤ x < v′′,

so by protocol stepVC2 the view votes for non faulty replicak′ are the same in all viewsx. It thus follows

from Lemma 17 andVC4 that the conclusion holds.

In the case where such a viewv′′ exists, we proceed by induction on the pair of viewsv andv′′ and the

pair v′′ andv.

Lemma 20. If op–completed(o,v,n,h,c) for non-faulty client c andconfirm–view(v′,n′,h′, i) for non-faulty

replica i and v< v′ then n≤ n′ and h is a prefix of h′.

162

Proof. It follows from Observation 2 that (a)∀ non-faulty replicasi ordered(o,v,n,h, i) or (b) ∃ f + 1 non-

faulty replicasj such that commit–cert(o,v,n,h, j) or (c)∃ non-faulty replicak such that confirm–view(v′′,n′′,h′′,k),

v < v′′ < v′ andn < n′′ ≤ n′.

If v′ = v+1 then it follows from Lemmas 15, 16, and 17 thatn≤ n′ andh is a prefix ofh′.

If v′ > v+ 1, then we proceed by induction on the number of viewsv′′′ such thatv < v′′′ < v′ and∃

non-faulty replicag such that confirm–view(v′′′,n0,h0,g). If such a view exists thenh0 is a prefix ofh′ by

Lemma 19 andh is a prefix ofh0 by induction onv andv′′′. In the case where no such viewv′′′ exists, no

request can be ordered or committed in viewsv ≤ x < v′′′, so by protocol stepVC2 the view votes for the

non-faulty replicasg are the same in all viewsx. It thus follows from Lemmas 15, 16, and 17 thatn≤ n′ and

h is a prefix ofh′.

Having established the previous 20 preliminaries, we can finally show a set of Lemmas that relate com-

pleted operations and the histories associated with the completed operations. First, operations that complete

in the same view

Lemma 21. If op–completed(o,v,n,h,c) andop–completed(o′,v,n′,h′,c′) and n′ ≥ n then h is a prefix of h′.

Proof. If op–completed(o,v,n,h,c) then confirm–view(v,n0,h0, i) is true for some non-faulty replicai. Ob-

servation 2 that either all non-faulty replicasi ordered(o,v,n,h, i) or at least f + 1 non-faulty replicasj

locally–commited(o,v,n,h, j), similarly either all non-faulty replicasi ordered(o′,v,n′,h′, i) or at leastf +1

non-faulty replicask locally–commited(o′,v,n′,h′,k).

There are three cases to consider.

Case 1: n0 < n ≤ n′. It follows from Sincen > n0 by assumption, locally–commited(o,v,n,h, j) ⇒

commit–cert(o,v,n,h, j). A similar argument holds for op–completed(o′,v,n′,h′,c′). The conclusion then

163

follows from Lemmas 6, 8, 9, and 10.

Case 2:n≤ n0 < n′. It follows from the definition of locally–commited(o,v,n,h, i) and the assumption

thatn≤ n0 that confirm–view(v,n0,h0, i) andh is a prefix ofh0. It follows from the assumption thatn0 < n′

and op–completed(o′,v,n′,h′,c′) that either for all non-faulty replicasi ordered(o′,v,n′,h′, i) or ∃ f +1 non-

faulty replicask such that commit–cert(o′,v,n′,h′,k). If the latter is true, then it follows from Lemma 3 that

f +1 non-faulty replicasj ordered(o′,v,n′,h′, j). It thus follows from Lemma 7 thath0 is a prefix ofh′ and

hence thath is a prefix ofh′.

Case 3:n≤ n′ ≤ n0. It follows from the definition of local commit thath andh′ are both prefixes ofh0.

Sinceh is a history of lengthn andh′ is a history of lengthn′ ≥ n, h must be a prefix ofh′.

Lemma 22. If op–completed(o,v,n,h,c) andop–completed(o′,v′,n′,h′,c′) and n≤ n′ and v< v′ then h is

a prefix of h′.

Proof. It follows from Observation 2 that (a)∀ non-faulty replicasi ordered(o′,v′,n′,h′, i) or (b)∃ f +1 non-

faulty replicasj such that commit–cert(o′,v′,n′,h′, j) or (c)∃ non-faulty replicak such that confirm–view(v′,n′′,h′′,k),

andn′ ≤ n′′

If (a) or (b) hold then it follows from Lemmas 3 and 7 that confirm–view(v′,n0,h0, i) for non-faulty replica

i andh0 is a prefix ofh′. It then follows from Lemma 20 andv < v′ thath is a prefix ofh0, completing the

proof.

If (c) holds, thenh′ is a prefix ofh0 by definition and it follows from Lemma 20 thath is a prefix ofh0.

Sincen≤ n′, h must be a prefix ofh′.

Lemma 23. If op–completed(o,v,n,h,c) andop–completed(o′,v′,n′,h′,c′) and n≤ n′ and v> v′ then h is

a prefix of h′.

164

Proof. It follows from Observation 2 and Lemmas 3 and 7 that confirm–view(v,n0,h0, i) is true for some

non-faulty replicai. It then follows from Lemma 20 thatn′ ≤ n0 andh′ is a prefix ofh0. It thus follows from

n≤ n′ and Observation 2 that confirm–view(v,n0,h0, i) is true for at leastf +1 non-faulty replicas and that

h is a prefix ofh′. Sincen′ > n h must be a prefix ofh′.

Theorem 4 If client–delivered(o,n,h,c), client–delivered(o′,n′,h′,c′), c and c′ are non-faulty clients, and

n≤ n′ then h is a prefix of h′.

Proof. It follows from Observation 1 that it is sufficient to show theconclusion given op–completed(o,v,n,h,c)

and op–completed(o′,v′,n′,h′,c′). If v = v′ the conclusion follows from Lemma 21. Ifv < v′ the conclusion

follows from Lemma 22. Ifv > v′ the conclusion follows from Lemma 23.

Liveness

The primary liveness property Zyzzyva maintains is that a non-faulty client eventually receives a response

to every request that it issues. We maintain this property under the eventual synchrony assumption which

states that the system will eventually be synchronous for a sufficiently long period of time.

Lemma 24. During periods of synchrony, if the primary p is correct then∀ operation o issued by non-faulty

client c eventually∃ sequence number n and history h such thatclient–delivered(o,n,h,c).

Proof. If the client and primary are correct then protocol steps1 through3 ensure that the client receives

SPEC-RESPONSEmessages from all non-faulty replicas. Either the client receives 3f + 1 matchingSPEC-

RESPONSEmessages or the client receives fewer than 3f +1 such messages. In the former case the request

completes, completing the proof. In the latter case the client receives at least 2f +1 matching requests since

there are 3f + 1 total replicas and at mostf replicas can be faulty. The client then sends aCOMMIT to

165

all replicas in protocol step4b. All non-faulty replicas send a LOCAL-COMMIT message to theclient in

protocol step4b.1, and because there are at least 2f + 1 non-faulty replicas the client request completes in

protocol step4b.2.

Lemma 25. During periods of synchrony, if a non-faulty client c issuesa request during view v then either

∃ sequence number n and history h such thatclient–delivered(o,n,h,c) or ∃ f +1 non-faulty replicas i such

that

Theorem 6. During periods of synchrony, if a non-faulty client c issuesa request for operation o then∃

sequence number n and history h such thatclient–delivered(o,n,h,c).

Proof. Follows from Lemmas 24, and 25.

Liveness in PKI-Zyzzyva is based on a couple of properties. First, if a non-faulty client does not receive

a response in a timely fashion then it retransmits its request in protocol step4c. Second, if a replica does not

receive an order request from the primary in a timely fashionor detects inconsistent primary behavior then

it initiates a view change in steps4c, 4d, FH2a, andFH2b.2. Finally, if the new primary is faulty and does

not complete the view change then non-faulty replicas initiate another view change.

G.2 Non-PKI Zyzzyva

Here we describe the necessary modifications to replace signatures with authenticators in Zyzzyva. We

replace all signatures with authenticators, with a few exceptions related to: (1) view changes, (2) client

request retransmission, and (3) a corner case of the fill holeprotocol required in order to ensure consistency

in the presence of faulty replicas.

166

G.2.1 Agreement

4. Client gathers speculative responses.

[Modification] We remove theORfield from the speculative response message. Since theORfield con-

tains a MAC, rather than a signature, the client cannot convince another node of anything based on that

field.

4b. Client receives between 2 f + 1 and 3 f matching responses, assembles a commit certificate,
and transmits the commit certificate to the replicas.

[Modification] The client forms a potential commit certificate with every available speculative response,

rather than only 2f + 1, since replicas may be unable to authenticate every message that the client can

authenticate. A replica considers a commit certificate to bevalid it it can authenticate at least 2f +1 of the

included speculative responses.

4b.1a. Replica receives a commit message from a client containing a commit certificate and ac-
knowledges with a local-commit message.

4b.1b. Replica receives a commit message with at least f verifiable and at most 2 f matching.

The replica sends its speculative response (without the full application reply but with just the hash) or

a local-commit message (if it is already locally committed)to all other replicas. If the request is locally

committed at the replica it also forwards local-commit message to the client.

4b.1b.1. Replica receives speculative response or local-commit messages directly from other repli-
cas.

If the replica broadcasted local-commit messages in the previous step and does not receive 2f +1 match-

ing of local-commit message, it initiates a view change. speculative or local-commit messages) have match-

ing history digest, then the replica responds to the client as in step4b.1a. Otherwise the replica and initiates

167

the view change protocol.

4b.1b.2. Replica receives CC confirm request from another replica.

If the replica received a valid CC, then it responds with an affirmative message. Otherwise it sends no

message.

4b.1b.3. Replica receives an affirmative CC confirmation from f + 1 distinct replicas for matching
requests.

The replica treats the series of messages as a commit certificate and acts as described in step4b.

Additional Pedantic Details:If necessary, the replica responds with CC confirmations as in step4b.1b.2

[Addition] A replica that authenticates at leastf + 1 of the included speculative responses authenticates

the request if it has not already done so and has not speculatively responded to a different request for that

sequence number.

4d. Client receives replies indicating inconsistent ordering by the primary and sends a proof of
misbehavior (POM) to the replicas, which initiate a view change to oust the faulty primary.

[Modification] A POM consists of 2 distinct speculative responses for the same sequence numbern each

supported byf +1 replicas. Note that the replicas may be unable to verify thePOM.

G.2.2 View Change.

All messages sent as part of the view change protocol containdigital signatures. The additional expressive

power of digital signatures simplifies the protocol design at limited cost, since view changes occur rarely.

We add the following additional proof gathering phase to theview change protocol—it runs after replicas

receive f +1 indictments of the primary and before the view change messages are sent.

168

VC2.1. Replica requests a signature for the most recent commit and checkpoint certificate it has
received.

After receiving f +1 primary condemnations, replicai sends a request to all other replicas for a signature

corresponding to the most recent commit and checkpoint certificates it has received.

VC2.2. Upon receipt of a signature request for commit and checkpoint certificates, the replica sends
signatures back to the requesting replica.

If replica j has received an order request for the specified commit certificate, then it replies with a signa-

ture for that order request. If replicaj has sent the checkpoint message previously thenj responds with a

signature for that checkpoint.

VC2.3. Upon receipt of f + 1 signatures for the same commit certificate, a replica completes the
proof and sends a view change message.

A replica considersf + 1 signatures to complete commit and checkpoint certificate proofs. Once the

replica has complete proofs, the replica is able to send a view change message to the new primary.

Modification. View change messages consist of the proof for a stable checkpoint and every order request

received since that checkpoint. The order requests are augmented with a collection off + 1 signatures for

the order request at some sequence number after the checkpoint. This collection of signatures corresponds

to a tentative commit certificate.

Additional Pedantic Details:A collection of f +1 matching signatures for the commit certificate consti-

tutes astrongproof for the commit certificate; a collection off + 1 signatures that for a combination of

order requests and commit certificates constitutes aweakproof for the commit certificate.

VC3. Replica receives 2 f +1 view change messages.

169

Modification. The primary gathers 2f + 1 non-conflicting view change messages to form a new view

message. A pair of view change messages are conflicting if they contain commit certificate proofs for

different values at sequence numbern. A view change message with a commit certificate proof for sequence

numbern′ is considered to implicitly contain a commit certificate forall sequence numbersn≤ n′.

We believe that digital signatures can be avoided in the viewchange protocol after replicas commit to

view change using View-change-ack messages similar to PBFT.

G.2.3 Checkpoint

We modify the following step in checkpoint protocol while the other steps are the same except that digital

signatures are replaced by MACs.

CP3. Replica receives 2 f +1 matching checkpoint messages from another replica and accepts the
checkpoint as stable if it has not already done so.

[Modification] Like PBFT, we modify the checkpoint protocol to include 2f +1 MACs for non-pki ver-

sion. A checkpoint is considered stable by replicai wheni has received either 2f +1 matching (and authen-

ticatable) checkpoint messages from another replica.

Fill Hole

There is an additional problem encountered in the fill hole protocol when digital signatures are not used to

sign client requests. It is possible that a replica, upon receipt of an order request from the primary, is unable

to authenticate the client issued request. Unfortunately,it is impossible to tell if this failure is the fault of

the client—for providing an incorrect authenticator—or the fault of the primary—for maliciously modifying

the client’s authenticator. In order to address this issue,we introduce a new sub protocol to the fill holes

procedure—the request authentication protocol. The request authentication protocol ensures that either all

170

non-faulty replicas authenticate a response or agree that the nth request in the execution order should be

considered a no-op. This protocol is executed whenever a replica receives an order-request message from

the primary containing a request that the replica is unable to authenticate.

AR1. Replica requests an authentication proof from the primary.

Upon receiving a request that a replica is unable to authenticate, replicai sends a message to the primary

requesting proof that the request is in fact valid.

AR2. Primary receives the authentication request and responds with an available proof.

AR2a.1. Primary responds with a signed client request or commit certificate proving that the request
was issued by the client.

The signature is assumed to be unforgeable and consequentlyproves that the client issued the request.

A commit certificate must include speculative responses from at leastf + 1 non-faulty replicas, so when

transferred guarantees that at least one non-faulty replica was able to authenticate the request.

Additional Pedantic Details:A commit certificate is only a valid proof if the replicas use the two layer

MAC authentication described in the modification to protocol step3. If the second layer of MACs is not

used, then a commit certificate is not transferable proof.

AR2a.2. Replica receives the signed client request, authenticates the request, and proceeds as
normal.

AR2b.1. Primary has not received a signed client request or a valid commit certificate and requests
an authentication proof from the other replicas.

If the primary does not have a valid signature or commit certificate for the request, then the primary

gathers proof by requesting signatures from the replicas.

171

AR2b.2. Replica receives the signature request from the client, forms a response, and stops replying
to the client.

The replicas response is a signed message containing one of the following: (a) a signature authenticat-

ing the request, (b) a signed commit certificate for that request (or a subsequent request that includes the

intervening requests), or (c) a signature claiming that therequest was unauthenticatable. After receiving the

signature request from the primary, the replica does not perform any other actions until the signature query

is resolved.

Additional Pedantic Details:The step of stopping responses to the client is necessary to ensure safety and

prevent a client from receiving 2f +1 local commit messages for a request that is eventually no-oped out of

existence.

AR2b.3. Primary receives responses, generates the proof, and distributes the proof to the replicas.

The proof consists of either (a) a single signed commit certificate, (b) f +1 signed messages authenticat-

ing the request, or (c) 2f + 1 messages that contain neither (a) nor (b). Once the primaryhas gathered one

of these three proofs the primary sends the proof to all otherreplicas.

AR2b.4. Replica receives the authentication proof from the primary.

If the proof authenticates the request (i.e. isa or b from above), then the replica proceeds as normal. If

the proof does not authenticate the request (i.e. isc above), then the replica inserts a no-op at the appropriate

place in the history and proceeds as normal for future requests—any requests that were previously ordered

with higher sequence numbers are discarded and the requeststhemselves must be reordered using the request

history that includes the no-op. In either case, after receiving the response from the primary the replica

accepts order request messages again and sends the authentication proof to all other replicas.

172

AR2b.5. Replica receives authentication proof from other replicas.

If the replica receives two different authentication proofs, then the replica initiates the view change pro-

tocol.

Additional Pedantic Details:This ensures that a faulty primary that authenticates two distinct orders will

in fact be caught and force an inevitable view change.

Future Requests. In order to limit the amount of damage that a faulty client cancause the system, sub-

sequent requests issued by that same client must all be signed. If they do not include a signature, then they

are not accepted by the primary. If the primary forwards a request from that client that does not contain a

valid signature in the future, then the primary is considered faulty and the replica initiates the view change

protocol.

G.2.4 Safety and Liveness

The proof of safety for non-PKI Zyzzyva is virtually identical to the proof of safety for PKI Zyzzyva; the

intuitive conditions under which a client accepts the response to a request remain unchanged as do the

conditions under which a replica orders or locally commits arequest. Consequently, within a view the

protocol and the proofs do not substantially change. The steps to maintain safety become more complicated

when the view change procedure is considered.

Safety

We introduce a new predicate that captures the state of a replica that has gathered a collection of signatures

that serve as a tentative proof for a commit certificate.

173

• commit–proof(o,v,n,h, i) that is true when replicai has gatheredf + 1 matching signatures for the

order request of operationo at sequence numbern with historyh.

Based on this predicate and the protocol we are first able to show that non-faulty replicas gather proofs

for commit certificates only if the commit certificates are consistent with each other.

Lemma 26. If commit–proof(o,v,n,h, i) andcommit–proof(o′,v,n′,h′, j) for non-faulty replicas i and j and

n′ ≥ n then h is a prefix of h′.

Proof. It follows from protocol stepVC2.1 that non-faulty replicai (j) requests signatures to form a commit

proof for sequence numbern (n′) only if i (j) has received a valid commit certificate for sequence numbern

(n′). It thus follows from Lemma 9 thath is a prefix ofh′.

Based on Lemma 26, we are able to show that a view change messages sent by non-faulty replicas are

non-conflicting.

Lemma 27. If view–vote(v,nCC,hCC,nSR,hSR, i) andview–vote(v,n′CC,h′CC,n′SR,h
′
SR, j) for non-faulty repli-

cas i and j and nCC ≤ n′CC then hCC is a prefix of h′CC.

Proof. The conclusion follows from protocol stepVC2.3 and Lemma 26.

Lemma 27 ensures that a non-faulty primary can always gather2 f +1 consistent view change messages

if given enough time.

Liveness

Liveness in the protocol is ensured based on the assumption of eventual synchrony. As was discussed in the

previous section, view change messages from non-faulty replicas are guaranteed to be non-conflicting so

174

when allowed enough time through a period of synchrony and the exponentially growing timeouts the new

primary for viewv is guaranteed to collect 2f +1 non-conflicting view change messages and consequently be

able to form a valid new view message. Within a view, livenessis ensured during periods of synchrony due

to the agreement protocol steps beginning at protocol step4b.1b. If all non-faulty replicas process requests

based on protocol step4b.1a then the client receives the response to the request and the system is live. If a

non-faulty replica reaches protocol step4b.1b then either it receives sufficient messages to authenticatethe

commit certificate or there are at leastf + 1 non-faulty replicas that are unable to authenticate the commit

certificate but are able to force a view change to occur.

175

Bibliography

[1] Amazon S3 Storage Service.http://aws.amazon.com/s3 .

[2] Apple Backup.http://www.apple.com .

[3] Concerns raised on tape backup methods.http://searchsecurity.techtarget.com .

[4] Copan Systems.http://www.copansys.com/ .

[5] Cryptographic Benchmarks.http://www.eskimo.com/˜weidai/benchmarks.html .

[6] Data loss statistics.http://www.adrdatarecovery.com/content/adr_loss_sta t.html .

[7] Data loss statistics.http://www.hp.com/sbso/serverstorage/protect.html .

[8] Disk at the pice of Tape - An In-Depth Examination.http://www.copansys.com/library/

index.shtml .

[9] Fire destroys research center.http://news.bbc.co.uk/1/hi/england/hampshire/439004 8.

stm .

[10] GMail. http://www.gmail.com .

[11] Google video.http://video.gmail.com .

[12] Health Insurance Portability and Accountability Act (HIPAA). 104th Congress, United States

of America Public Law 104-191 .

[13] Hotmail incinerates customer files.http://news.com.com , June 3rd, 2004.

176

[14] “How much information ?”.http://www.sims.berkeley.edu/projects/how-much-info / .

[15] Hurricane Katrina.http://en.wikipedia.org .

[16] Industry data retention regulations.http://www.veritas.com/van/Articles/4435.jsp .

[17] IOZONE micro-benchmarks.http://www.iozone.org .

[18] Lost Gmail Emails and the Future of Web Apps.http://it.slashdot.org , Dec 29, 2006.

[19] Microsoft Hot Mail. http://mail.live.com .

[20] Microsoft Live photos.http://photos.live.com .

[21] Microsoft Sky Drive.http://skydrive.live.com .

[22] NetMass Systems.http://www.netmass.com .

[23] Network Appliance.http://www.netapp.com .

[24] Network bandwidth cost.http://www.broadbandbuyer.com/formbusiness.htm .

[25] NFS :Network file system protocol specification.InternetRFC1094 .

[26] OpenSSL.http://www.openssl.org/ .

[27] OS vulnerabilities.http://www.cert.com/stats .

[28] Picasa Web.http://picasaweb.google.com .

[29] Postmark macro-benchmark.http://www.netapp.com/tech_library/postmark.html .

[30] Ransomware.http://www.networkworld.com/buzz/2005/092605-ransom .html .

177

[31] Remote Data Backups.http://www.remotedatabackup.com .

[32] Sarbanes-Oxley Act of 2002.107th Congress, United States of America Public Law 107-204 .

[33] Spike in Laptop Thefts Stirs Jitters Over Data. Washington Post, June 22, 2006.

[34] SSPs: RIP.Byte and Switch, 2002 .

[35] Tape Replacement Realities.http://www.enterprisestrategygroup.com/ESGPublicati ons .

[36] The Wayback Machine.http://www.archive.org/web/hardware.php .

[37] US secret service report on insider attacks.http://www.sei.cmu.edu/about/press/insider-2005.

html .

[38] Victims of lost files out of luck.http://news.com.com , April 22, 2002.

[39] Yahoo Mail. http://mail.yahoo.com .

[40] Yahoo Mail. http://photos.yahoo.com .

[41] You Tube.http://www.youtube.com .

[42] ServeRAID - Recovering from multiple disk failures.http://www.pc.ibm.com/qtechinfo/MIGR-39144.

html , 2001.

[43] “data backup no big deal to many, until...”.http://money.cnn.com , June 2006.

[44] A. Adya et.al. FARSITE: Federated, available, and reliable storage for incompletely trusted environ-

ment. InProc. of 5th OSDI, 2002.

178

[45] Michael Abd-El-Malek, Greg Ganger, Garth Goodson, Mike Reiter, and Jay Wylie. Fault-scalable

byzantine fault-tolerant services. InProceedings of the 20th ACM Symposium on Operating Systems

Principles, October 2005.

[46] A. S. Aiyer, L. Alvisi, A. Clement, M. Dahlin, J-P. Martin, and C. Porth. BAR fault tolerance for

cooperative services. InProc. of SOSP ’05, pages 45–58, October 2005.

[47] T. Anderson, M. Dahlin, J. Neefe, D. Patterson, D. Roselli, and R. Wang. Serverless Network

File Systems. InProceedings of the Fifteenth ACM Symposium on Operating Systems Principles,

December 1995.

[48] Algirdas Avizienis and L. Chen. On the implementation of n-version programming for software fault

tolerance during execution. InProc. IEEE COMPSAC, pages 149–155, November 1977.

[49] M. Baker, M. Shah, D.S.Rosenthal, M. Roussopoulos, Petro Maniatis, T.J. Giuli, and P. Bungale. A

fresh look at the reliability of long-term digital storage.In EuroSys, 2006.

[50] Wendy Bartlett and Lisa Spainhower. Commercial fault tolerance: A tale of two systems.IEEE

TODSC, 1(1):87–96, 2004.

[51] L. Bassham and W. Polk. Threat assessment of malicious code and human threats. Technical report,

NIST, Computer Security Division, 1994.

[52] M. Bellare and D. Micciancio. A new paradigm for collision-free hashing: Incrementally at reduced

cost. InEUROCRYPT97, 1997.

[53] R. Bhagwan, K. Tati, Y. Cheng, S. Savage, and G. M. Voelker. Total Recall: System support for

automated availability management. InProceedings of 1st NSDI, CA, 2004.

179

[54] Ran Canetti and Tal Rabin. Fast asynchronous byzantineagreement with optimal resilience. In

STOC ’93: Proceedings of the twenty-fifth annual ACM symposium on Theory of computing, pages

42–51, New York, NY, USA, 1993. ACM.

[55] M. Castro and B. Liskov. Practical byzantine fault tolerance. InProceedings of 3rd OSDI, February

1999.

[56] M. Castro and B. Liskov. Proactive recovery in a Byzantine Fault-Tolerant System. InProceedings

of 4th OSDI, October 2000.

[57] Miguel Castro.Practical Byzantine Fault Tolerance. PhD thesis, January 2001.

[58] Miguel Castro and Barbara Liskov. Practical Byzantinefault tolerance and proactive recovery.ACM

TOCS, November 2002.

[59] F.W. Chang, M. Ji, S. T. A. Leung, J. MacCormick, S. E. Perl, and L. Zhang. Myriad: Cost-effective

disaster tolerance. InProceeedings of FAST, 2002.

[60] L. Chen and A. Avizienis. N-Version Programming: A Fault-Tolerance Approach to Reliability of

Software Operation. InProceedings of 8th Symp. on Fault-Tolerant Computing, 1978.

[61] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A. Patterson. RAID : High-performance,reliable

secondary storage.ACM Comp. Surveys, 26(2):145–185, June 1994.

[62] Y. Chen, J. Edler, A. Goldberg, A. Gottlieb, S. Sobti, and P. Yianilos. A prototype implementation

of archival intermemory. InProceedings of the 4th ACM Conference on Digital Libraries, San

Fransisco, CA, Aug 1999.

180

[63] James Cowling, Daniel Myers, Barbara Liskov, Rodrigo Rodrigues, and Liuba Shrira. HQ replica-

tion: A hybrid quorum protocol for Byzantine fault tolerance. InProc. OSDI, November 2006.

[64] L. Cox and B. Noble. Samsara: Honor among thieves in peer-to-peer storage. InProc. of SOSP03.

[65] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash Laksh-

man, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall, and Werner Vogels. Dynamo:

amazon’s highly available key-value store. InSOSP ’07: Proceedings of twenty-first ACM SIGOPS

symposium on Operating systems principles, pages 205–220, New York, NY, USA, 2007. ACM

Press.

[66] Partha Dutta, Rachid Guerraoui, and Marko Vukolić. Best-case complexity of asynchronous Byzan-

tine consensus. Technical Report EPFL/IC/200499, EPFL, February 2005.

[67] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence of partial syn-

chrony. J. ACM, 1988.

[68] D. Ellard, J. Ledlie, P. Malkani, and M. Seltzer. Passive NFS tracing of email and research workloads.

In FAST03, March 2003.

[69] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed consensus

with one faulty process.J. ACM, 32(2):374–382, 1985.

[70] Juan A. Garay and Yoram Moses. Fully polynomial byzantine agreement in t + 1 rounds. InSTOC

’93: Proceedings of the twenty-fifth annual ACM symposium onTheory of computing, pages 31–41,

New York, NY, USA, 1993. ACM.

[71] S. Ghemawat, H. Gobioff, and S. Leung. The Google File System. InProceedings of 19th ACM

Symp. on Operating Systems Principles, October 2003.

181

[72] Philippe Golle, Stanisław Jarecki, and Ilya Mironov. Cryptographic primitives enforcing communi-

cation and storage complexity. InFinancial Cryptography (FC 2002), volume 2357 ofLecture Notes

in Computer Science, pages 120–135. Springer, 2003.

[73] J. Gray. A Census of Tandem System Availability Between1985 and 1990. IEEE Trans. on

Reliability, 39(4):409–418, October 1990.

[74] A. Haeberlen, A. Mislove, and P. Druschel. Glacier: Higly durable, decentralized storage despite

massive correlated failures. InProceedings of 2nd NSDI, CA, March 2004.

[75] Ragib Hassan, William Yurcik, and Suvda Myagmar. The evolution of storage service providers. In

StorageSS’05, VA,USA, 2005.

[76] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: a correctness condition for concurrent

objects.ACM Trans. Program. Lang. Syst., 12(3):463–492, 1990.

[77] J. Kubiatowicz et al. Oceanstore: An architecture for global-scale persistent storage. InProceedings

of ASPLOS, 2000.

[78] F. Junquiera, R. Bhagwan, K. Marzullo, S. Savage, and G.M. Voelker. Surviving internet catastro-

phes. InProceedings of the Usenix Annual Technical Conference, April 2005.

[79] K. Keeton and E. Anderson. A backup appliance composed of high-capacity disk drives. InHP

Laboratories SSP Technical Memo HPL-SSP-2001-3, April 2001.

[80] S. King and P. Chen. Backtracking intrusions. InProc. SOSP, 2003.

[81] John C. Knight and Nancy G. Leveson. An experimental evaluation of the assumption of indepen-

dence in multi-version programming.Software Engineering, 12(1):96–109, January 1986.

182

[82] R. Kotla, L. Alvisi, and M. Dahlin. SafeStore: A Durableand Practical Storage System. InUSENIX

Annual Technical Conference, Monterey, CA, June 2007.

[83] R. Kotla, L. Alvisi, and M. Dahlin. Safestore: A durableand practical storage system. Technical

report, University of Texas at Austin, 2007. UT-CS-TR-07-20.

[84] R. Kotla and M. Dahlin. High throughput byzantine faulttolerance. Technical Report: UTCS-TR-

03-58, Dec. 2003.

[85] R. Kotla and M. Dahlin. High-throughput byzantine fault tolerance. InInternational Conference on

Dependable Systems and Networks (DSN), June 2004.

[86] R. Kotla and M. Dahlin. High-throughput byzantine fault tolerance. InDSN, June 2004.

[87] L. Lamport. Paxos made simple.Distributed Computing Column of ACM SIGACT News, 32(4):51–

58, April 2001.

[88] L. Lamport. Lower bounds for asynchronous consensus. In Proc. FUDICO, pages 22–23, June

2003.

[89] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.Comm. ACM,

21(7):558–565, 1978.

[90] Leslie Lamport. The part-time parliament.ACM TOCS, 16(2), 1998.

[91] J. Li and D. Mazières. Beyond one-third faulty replicas in Byzantine fault tolerant services. InNSDI,

2007.

[92] Barbara Liskov, Sanjay Ghemawat, Robert Gruber, Paul Johnson, and Liuba Shrira. Replication in

the harp file system. InProc. SOSP, 1991.

183

[93] N. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, 1996.

[94] D. Malkhi and M. Reiter. Byzantine quorum systems.Distributed Computing, 11(4), 1998.

[95] Petros Maniatis, Mema Roussopoulos, T J Giuli, David S.H. Rosenthal, Mary Baker, and Yanto

Muliadi. Lockss: A peer-to-peer digital preservation system. ACM Transactions on Computer

Systems, 23(1):2–50, Feb. 2005.

[96] Jean-Philippe Martin and Lorenzo Alvisi. Fast Byzantine consensus.IEEE TODSC, 3(3):202–215,

July 2006.

[97] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone.Handbook of Applied Cryptography. CRC

Press, 2001.

[98] Shubhendu S. Mukherjee, Joel S. Emer, and Steven K. Reinhardt. The soft error problem: An

architectural perspective. InHPCA, 2005.

[99] E. Nightingale, K. Veeraraghavan, P. Chen, and J. Flinn. Rethink the sync. InProc. OSDI, 2006.

[100] Edmund B. Nightingale, Peter Chen, and Jason Flinn. Speculative execution in a distributed file

system. InProceedings of the 20th ACM Symposium on Operating Systems Principles, October

2005.

[101] D. Openheimer, A. Ganapathi, and D. Patterson. Why do internet systems fail, and what can be done

about it. InProceedings of 4th USITS, Seattle,WA, March 2003.

[102] Dave Patterson. A conversation with jim gray.ACM Queue, pages vol. 1, no. 4, June 2003.

[103] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of faults.Journal of the

ACM, 27(2), April 1980.

184

[104] Z. Peterson and R. Burns. Ext3cow: A time-shifting filesystem for regulatory compliance.ACM

Trans. on Storage, 1(2):190–212, May. 2005.

[105] Eduardo Pinheiro, Wolf-Dietrich Weber, and Luiz AndrBarroso. Failure Trends in a Large Disk

Drive Population. InProceeedings of FAST, 2007.

[106] V. Prabhakaran, L. Bairavasundaram, N Agrawal, H. Gunawi A. Arpaci-Dusseau, and R. Arpaci-

Dusseau. IRON file systems. InProc. of SOSP ’05, 2005.

[107] H. E. Ramadan. Abort, retry, litigate: Dependable systems and contract law. InProceedings of

HotDep ’06, 2006.

[108] K. M. Reddy, C. P. Wright, A. Hammer, and E. Zadok. A Versatile and user-oriented versioning file

system. InFAST, 2004.

[109] S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B. Zhao, and J. Kubiatowicz. Pond: The OceanStore

prototype. InFAST03, March 2003.

[110] L. Rizzo. Effective erasure codes for reliable computer communication protocols.ACM Comp.

Comm. Review, 27(2), 1997.

[111] R. Rodrigues, M. Castro, and B. Liskov. BASE : Using abstraction to improve fault tolerance. In

Proceedings of 18th ACM Symp. on Operating Systems Principles, October 2001.

[112] M. Roesch. Snort–lightweight intrusion detection for networks. InProc LISA, 1999.

[113] Mendel Rosenblum and John K. Ousterhout. The design and implementation of a log-structured file

system.ACM Trans. Comput. Syst., 10(1):26–52, 1992.

185

[114] David S. H. Rosenthal, Thomas S. Robertson, Tom Lipkis, Vicky Reich, and Seth Morabito. Re-

quirements for digital preservation systems: A bottom-up approach. D-Lib Magazine, 11(11), Nov.

2005.

[115] Yasushi Saito, Brian N. Bershad, and Henry M. Levy. Manageability, availability and performance in

porcupine: A highly scalable, cluster-based mail service.In ACM Symposium on Operating Systems

Principles, pages 1–15, 1999.

[116] J. Saltzer, D. Reed, and D. Clark. End-to-end arguments in system design.ACM TOCS, November

1984.

[117] D. S. Santry, M. J. Feeley, N. C. Hutchinson, A. C. Veitch, R. W. Carton, and J. Ofir. Deciding when

to forget in the Elephant file system. InProceedings of 17th ACM Symp. on Operating Systems

Principles, December 1999.

[118] Fred B. Schneider. Implementing fault-tolerant services using the state machine approach: a tutorial.

ACM Computing Surveys, 22(4), 1990.

[119] F. Schnieder. Implementing fault-tolerant servicesusing the state machine approach.ACM Comp.

Surveys, 22(3):299–319, Sept. 1990.

[120] Bianca Schroeder and Garth A. Gibson. Disk Failures inthe Real World: What Does an MTTF of

1,000,000 Hours Mean to You? InProceeedings of FAST, 2007.

[121] T. Schwarz, Q. Xin, E. Miller, D. Long, A. Hospodor, andS. Ng. Disk scrubbing in large archival

storage systems. InProc. MASCOTS, October 2004.

[122] Seagate. Get S.M.A.R.T for reliability. Technical Report TP-67D, Seagate, 1999.

186

[123] Premkishore Shivakumar, Michael Kistler, Stephen W.Keckler, Doug Burger, and Lorenzo Alvisi.

Modeling the effect of technology trends on the soft error rate of combinational logic. InProc. DSN,

2002.

[124] Atul Singh, Petros Maniatis, Peter Druschel, and Timothy Roscoe. Conflict-free quorum-based bft

protocols. Technical Report 2007-1, Max Planck Institute for Software Systems, August 2007.

[125] S. Singh, C. Estan, G. Varghese, and S. Savage. Automated worm fingerprinting. InProceedings of

6th OSDI, 2004.

[126] Craig A. N. Soules, Garth R. Goodson, John D. Strunk, and Gregory R. Ganger. Metadata efficiency

in a comprehensive versioning file system. InProc. of FAST 2003.

[127] Ben Vandiver, Hari Balakrishnan, Barbara Liskov, andSam Madden. Tolerating byzantine faults in

database systems using commit barrier scheduling. InProceedings of the 21st ACM Symposium on

Operating Systems Principles (SOSP), Stevenson, Washington, USA, October 2007.

[128] U. Voges and L. Gmeiner. Software diversity in reacterprotection systems: An experiment. InIn

IFAC Workshop SAFECOMP79, May 1979.

[129] H. Weatherspoon and J. Kubiatowicz. Erasure Coding versus replication: A quantitative comparison.

In Proceedings of IPTPS, Cambridge,MA, March 2002.

[130] M. Welsh, D. Culler, and E. Brewer. SEDA : An architecture for well conditioned, scalable internet

services. InProceedings of 18th ACM Symp. on Operating Systems Principles, October 2001.

[131] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, and G. Alonso. Understanding replication in

databases and distributed systems. InProc. ICDCS, 2000.

187

[132] J. Wylie, M. W. Bigrigg, J. D. Strunk, G. R. Ganger, H. Kiliccote, and P. K. Khosla. Survivable

information storage systems.IEEE Computer, 33(8):61–68, Aug. 2000.

[133] Q. Xin, T. Schwarz, and E Miller. Disk infant mortalityin large storage systems. InProc of

MASCOTS ’05, 2005.

[134] Junfeng Yang, Can Sar, and Dawson Engler. Explode: A lightweight, general system for finding

serious storage system errors. InProc. OSDI, 2006.

[135] Junfeng Yang, Paul Twohey, Dawson Engler, and Madanlal Musuvathi. Using Model Checking to

Find Serious File System Errors. InProceedings of 6th OSDI, December 2004.

[136] J. Yin, J.-P. Martin, A. Venkataramani, L. Alvisi, andM. Dahlin. Separating agreement from execu-

tion for byzantine fault tolerant services. InProceedings of 19th ACM Symp. on Operating Systems

Principles, October 2003.

188

Index

Abstract, vii

Acknowledgments, v

Appendices, 121

BFT Architecture, 10

Bibliography, 188

Contributions, 6

Dedication, iv

Introduction, 1

189

Vita

Ramakrishna Rao Kotla was born in Hyderabad, India, on March5, 1976, of Sanjeeva Rao Kotla and

Varalaxmi Kotla. He studied at various schools before completing the high school at St. Mary’s High school,

and then attended St. Mary’s Junior college in Hyderabad, India. He then studied at the Indian Institute of

Technology, Kharagpur, where he received the Bachelor of Technology degree in Electronics and Electrical

Communication Engineering in May 1998. Thereafter, he worked as Research and Development Engineer

at Synopsys Inc., in Bangalore,India, and Austin, USA, during 1998-2001.

He started his full time graduate studies at the University of Texas in August 2001. He received Master

of Science in Engineering degree in Electrical and ComputerEngineering in 2003. He received two best

paper Awards at ACM Symposium on Operating Systems Principles(SOSP) and USENIX Annual Technical

Conference(USENIX) for the research papers describing parts of his Doctoral research work. He is working

at Microsoft Research as a researcher since March 2008.

Permanent address: Plot No. 15, Sikhara Enclave, Champapet, Hyderabad,
Andhra Pradesh, 500079, India

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special version of Donald Knuth’s TEX Program.

190

