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We are increasingly relying on online services to storeesscshare, and disseminate critical information
from anywhere and at all times. Such services include erdjltal storage, photos, video, health and
financial services, etc. With increasing evidence of nalrstap failures in practical systems, Byzantine
fault tolerant state machine replication technique is bng increasingly attractive for building highly-
reliable services in order to tolerate such failures. Ha@weexisting Byzantine fault tolerant techniques
fall short of providing high availability, high performaacand long-term data durability guarantees with

competitive replication cost.

In this dissertation, we present BFT replication technigtieat facilitate the design and implementation
of such highly-reliable services by providing high availiyg high performance and high durability with

competitive replication cost (hardware, software, nekyworanagement).

First, we propose CBASE, a BFT state machine replicatiohitcture that leverages application-level
parallelism to improve throughput of the replicated systgmdentifying and executing independent re-

guests concurrently. Traditional state machine replicaliased Byzantine fault tolerant (BFT) techniques
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provide high availability and security but fail to providigh throughput. This limitation stems from the fun-
damental assumption of generalized state machine raphctchniques that all replicas execute requests
sequentially in the same total order to ensure consistearmsa replicas. Our architecture thus provides a
general way to exploit application parallelism in order toypde high throughput without compromising

correctness.

Second, we present Zyzzyva, an efficient BFT agreement gobtbat uses speculation to significantly
reduce the performance overhead and replication cost of#&& machine replication. In Zyzzyva, repli-
cas respond to a client’s request without first running areesje three-phase commit protocol to reach
agreement on the order in which the request must be procebssidad, they optimistically adopt the or-
der proposed by the primary and respond immediately to ikatcIReplicas can thus become temporarily
inconsistent with one another, but clients detect incoaisies, help correct replicas converge on a single
total ordering of requests, and only rely on responses tieat@nsistent with this total order. This approach

allows Zyzzyva to reduce replication overheads to near thebretical minima.

Third, we design and implement SafeStore, a distributedhgesystem designed to maintain long-term
data durability despite conventional hardware and so#ivfaults, environmental disruptions, and adminis-
trative failures caused by human error or malice. The a¥chite of SafeStore is based fawlt isolation
which SafeStore applies aggressively along adminisgagifaysical, and temporal dimensions by spreading
data across autonomous storage service providers (SS&sbt&e also performs an efficient end-to-end
audit of SSPs to detect data loss quickly and improve databdlity by reducing MTTR. SafeStore offers

durable storage with cost, performance, and availabibiygetitive with traditional storage systems.

We evaluate these technigues by implementing BFT reptisdibraries and further demonstrate the
practicality of these approaches by implementing an NF&dasplicated file system(CBASE-FS) and a

durable storage system (SafeStore-FS).
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Chapter 1

Introduction

We are increasingly relying on online services to storeesscshare, and disseminate critical information
from anywhere and at all times. Such services include erh@jl9, 39], digital storage [1, 21], photos [20,

28, 40], video [11, 41], health [12], financial [32], etc.

These services have two important requirements. First, oudddlike these services to be highly-available
to provide correct service or data without interruptiong dighly-durable to store data correctly for long
durations spanning many years or even decades. Secone stireices have to provide high performance
—throughput [71], and latency [65]-to meet service levefgenance guaranteésin order to support ap-
plications using these services such as Amazon’s S3 st¢tdg&oogle’s GMail [10], Microsoft's Sky-

Drive [21].

We need to overcome several challenges to meet these magumite First, such a highly-reliable (highly-
available and highly-durable) service has to be robustdadbrange of failures such as media failures [105,
120, 133], software bugs [27, 106, 135], user errors [104],Jddministrator errors [6, 43, 73, 101], insider
attacks [37, 51], malware threats [27, 125], geographiares [9, 15], and organizational failures [34, 38].
Second, we have to provide better reliability with perfont@ and cost (software, hardware, management,

storage, network) comparable to that of existing commepeactice?.

1At Amazon.com [65], an example SLA guarantees a serviceptioatdes a response time within 300ms for peak load of 99.9%
of requests for a peak client load of 500 requests per second.
2For example, Google file system [71] uses three-way rejiicad protect data from failures.



The goal of our research is to facilitate the design and implgation of highly-reliable replicated sys-
tems to support these services. In this dissertation, apa@ivards realizing this goal, we develop Byzan-
tine fault tolerant replication techniques that can tdkerarbitrary failures while meeting the following
practicality requirements: (1) high throughput [71], (8l latency [65], (3) low system cost (hardware,

software, network, management) [75, 102, 136].
1.1 Problem 1: High Availability

There is a large body of research that uses state machineatepi [119] technigue to improve availability
of systems in the presence of failures. State machine agjgictechnique replicates application state onto
multiple servers (replicas) instead of single server tertiik replica failures. Replicas co-ordinate to provide
the same abstraction of centralized service of an unrdpticsystem to the end application. Some of these
techniques [87, 90] can only tolerate a weaker set of faldinat are caused Hwil-stop or benignfaults
where faulty components fail by only stopping or by omittsgme steps. Byzantine Fault Tolerant (BFT)
state machine replication techniques [44, 45, 55, 63, 71, ¢4n tolerate a stronger set of failures caused
by Byzantine faultsvhere faulty components can deviate from their specifioatio arbitrarily bad ways.

Byzantindaults subsuméenignas well asmaliciousfaults.

Three trends make Byzantine Fault Tolerant (BFT) replicaincreasingly attractive for building reliable

and practical systems.

1. The mounting evidence of non-fail-stop behavior in rgatems [37, 50, 51, 98, 101, 106, 123, 134,
135] suggest that BFT may yield significant benefits even authresorting ton-version program-

ming [60, 81, 111].

2. The growing value of data [7, 12, 32, 114] and falling cadteardware [8, 79] make it advantageous

for service providers to trade increasingly inexpensivedWware for the peace of mind potentially
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Figure 1.1: Complexity: Design space complexity of BFT iegtion technique with existing BFT protocols
(PBFT [55],QU [45],HQ [63]).

provided by BFT replication.

3. The improvements to the state of the art in BFT replicatemhniques [45, 55, 63, 85, 111, 136] make
BFT replication increasingly practical by narrowing thedmetween BFT replication costs and costs
already being paid for non-BFT replication. For example,dejault, the Google file system uses
3-way replication of storage, which is roughly the cost oflBeplication forf = 1 failures with 4

agreement nodes and 3 execution nodes [136].

Challenges We have to address the following drawbacks of existing aggves using BFT state machine

replication for using this technique to build practicalteyss with high availability.

e BFT is complex: Figure 1.1 (based on the analysis provided by cowling et?). Eaptures the
complexity of the state-of-the-art in BFT protocols whehe system designers have to choose a
protocol based on predicted workload and application atarigtics. Such complexity represents
a barrier to adoption of BFT techniques because it requirsgstem designer to choose the right

technique for a workload and then for the workload not to aevfrom expectations.
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Figure 1.2: BFT protocol overhead: Performance comparnigatate-of-the-art BFT protocols (PBFT [55],

Q/U [45], HQ [63]) with unreplicated service. (a) Throughmersus clients: Peak throughput of unrepli-
cated service is at least 2x better than PBFT, 4x better thiah &hd 10x better than HQ (b) Throughput
versus latency: With increasing load on the system, urraigd service sustains lower latency for signifi-
cantly higher throughput than existing BFT protocols.

e BFT protocol overheads are significant:Figure 1.2 suggests that BFT protocols impose significant

overhead in peak throughput and latency compared to unegpd service.

e BFT limits application throughput: The traditional BFT state machine replication techniqus] [5
require non-faulty replicas to execute requests sequlgnitiathe same order, completing execution
of one request before beginning the execution of next onensoire that all non-faulty replicas are
in a consistent state. This sequential execution of requemt severely limit the throughput of
the applications—such as databases, file systems, and welssthat are designed to achieve high
throughput via concurrency. Figure 1.3(a) shows that suahitation of traditional BFT replicated
systems results in a significant loss of performance by hotvalg replicas to execute requests con-

currently.
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Figure 1.3: Application throughput: The traditional BFRtst machine replication limits the throughput
of replicated systems by its inability to execute applmatiequests concurrently. We plot the measured
throughput of a traditional BFT replicated system (PBFT][55at executes requests sequentially and com-
pare it with the measured throughput of a hypothetical BFSteay that can execute requests concurrently.
We vary available concurrency (number of requests that easxécuted concurrently) of the application us-
ing the sleep micro-benchmark [85]. The hypothetical BF3tam provides significantly higher throughput
than PBFT.

1.2 Problem 2: High Durability

The design of storage systems that provide data durabifitthe time scale of decades is an increasingly
important challenge as more valuable information is staligdally [14, 49, 114]. For example, data from
the National Archives and Records Administration indictiat 93% of companies go bankrupt within a
year if they lose their data center in some disaster [7], agbaing number of government laws [12, 32]

mandate multi-year periods of data retention for many tygésformation [16, 104].

Against a backdrop in which over 34% of companies falil to theeir tape backups [6] and over 40% of
individuals do not back up their data at all [43], multi-déeascale durable storage raises two technical
challenges. First, there exist a broad range of threats tm diarability including media failures [105,
120, 133], software bugs [106, 135], malware [27, 125], essor [104, 117], administrator error [73, 101],

organizational failures [34, 38], malicious insiders [8Z], and natural disasters on the scale of buildings [9]



or geographic regions [15]. Requiring robustness on thke sitfadecades magnifies them all: threats that
could otherwise be considered negligible must now be adddesSecond, such a system has to be practical

with cost, performance, and availability competitive withditional systems.

Storage outsourcing is emerging as a popular approach tessldome of these challenges [75]. By
entrusting storage management to a Storage Service Pr¢@8e), where “economies of scale” can min-
imize hardware and administrative costs, individual useic small to medium-sized businesses seek cost-
effective professional system management and peace ofwistadvis both conventional media failures and

catastrophic events.

Challenges Unfortunately, relying on an SSP is no panacea for long-tdata integrity. SSPs face the
same list of hard problems outlined above and as a resultlaeg-name ones can still lose data [13, 18].
To make matters worse, clients often become aware of sushdamly after it is too late. This opaqueness
is a symptom of a fundamental problem: SSPs are separataiathative entities and the internal details of
their operation may not be known by data owners. While mo$ts38ay be highly competent and follow
best practices punctiliously, some may not. By entrustirgjy tdata to back-box SSPs, data owners may free
themselves from the daily worries of storage managementhby also relinquish ultimate control over the
fate of their data. In short, while SSPs are an economic#itacive response to the costs and complexity
of long-term data storage, they do not offer their clientg @md-to-end guarantees on data durability, which

we define as the probability that a specific data object willbgolost or corrupted over a given time period.
1.3 Contributions

We design a reliable system that addresses the above pobleseparating [77, 109] the two concerns of
short-term availability (ability to provide service wheegired) and long-term durability (ability to store data

for longer durations). We fundamentally rethink BFT statechine replication techniques to provide high



availability while reducing complexity, reducing replica protocol overhead, and improving application
performance by exploiting application concurrency. We tleprinciple of aggressive fault isolation to
ensure high data durability despite conventional hardwaaik software faults, environmental disruptions,
and administrative failures. In particular, this disseot@a makes following key contributions in building

highly available and durable systems.

1. CBASE: High Execution Throughput Byzantine Fault Tolerance. We propose a simple change
to Byzantine Fault Tolerant state machine replicationalites in order to provide high throughput.
Traditional state machine replication based Byzantindt talerant (BFT) techniques provide high
availability and security but fail to provide high executithroughput. This limitation stems from the
fundamental assumption of generalized state machinecatigin techniques that all replicas execute
requests sequentially in the same total order to ensurestensy across replicas. CBASE is a high
execution throughput Byzantine fault tolerant architeetinat uses application-specific information
to identify and concurrently execute independent requédts architecture thus provides a general
way to exploit application parallelism in order to providighn throughput without compromising

correctness.

Although this approach is extremely simple, it yields drémaractical benefits. When sufficient
application concurrency and hardware resources exist, SEBArovides orders of magnitude im-
provements in throughput over BASE, a traditional BFT amatiure. CBASE-FS, a Byzantine fault
tolerant file system that uses CBASE, achieves twice theutfimout of BASE-FS for the 10Zone

micro-benchmarks even in a configuration with modest abkdlaardware parallelism.

2. Zyzzyva: Speculative Byzantine Fault ToleranceWe propose Zyzzyva, a BFT state machine repli-

cation protocol, that uses speculation to reduce reptinativerhead and simplify the design of BFT



state machine replication. In Zyzzyva, unlike in tradigabBFT protocols [55, 85, 111], replicas spec-
ulatively execute requests without running an expensiveeagent protocol to definitively establish
the order. As a result, correct replicas’ states may diveagd replicas may send different responses
to client libraries. Nonetheless, client’s applicatiofiserve the traditional and powerful abstraction
of a replicated state machine that executes requests ieailmable [55] order because replies carry
with them sufficient history information for client libras to determine if the replies and history are
stable and guaranteed to be eventually committed. If a sg@@ireply and history are stable, then
client library passes the reply to the client applicatiorth€wise, the client waits until the system

converges on a stable reply and history.

This approach allows Zyzzyva to reduce replication ovetbda near their theoretical minima and
significantly improve performance—throughput and latewfyhe system. We implemented Zyzzyva

replication library that provides a peak throughput thatithin 35% of unreplicated service.

. SafeStore: A Durable and Practical Storage SystemWe implement SafeStore, a distributed stor-
age system, that is designed to provide long-term data dityatespite conventional hardware and
software faults, geographical catastrophes, and admatiigt failures caused by human error or mal-
ice. The architecture of SafeStore is based on fault ismativhich SafeStore applies aggressively
along administrative, physical, and temporal dimensignsgseading data across autonomous storage
service providers (SSPs). However, current storage atesf provided by SSPs are not designed for

high end-to-end durability.

Safestore uses a new storage system architecture thatréRdspdata efficiently across autonomous
SSPs using informed hierarchical erasure coding that, fiiven replication cost, provides several
additional 9's of durability over what can be achieved witiséng black-box SSP interfaces, (2) per-

forms an efficient end-to-end audit of SSPs to detect dasathag, for a 20% cost increase, improves



data durability by two 9’s by reducing MTTR(mean time to reexy), and (3) offers durable storage
with cost, performance, and availability competitive withditional storage systems. We instantiate

and evaluate these ideas by building a SafeStore-basegdiktns with an NFS-like interface.

In conclusion, in this dissertation, we design and impleB&T replication techniques to support highly-
reliable services by providing (1) high-availability wittosts, latency, and throughput competitive with
existing commercial practice, and (2) high-durability ljetating failures due to broad range of threats

over long durations.
1.4 Organization

In chapter 2, we present the system model and architecturehdpter 3, we present CBASE, a high-
throughput BFT architecture, that provides a general waaxdoit application parallelism in order to pro-
vide high application throughput in BFT replicated systemschapter 4, we present Zyzzyva, a speculative
BFT state machine protocol, that uses speculation to redyptieation protocol overheads and simplify the
design of BFT replicated systems. In chapter 5, we desciiibeSTore, a highly durable distributed storage
system, that uses aggressive fault isolation to ensuretkmng data durability. We present related work in

chapter 6, and chapter 7 summarizes this dissertation.



Chapter 2

Byzantine Fault Tolerant State Machine Replication

This chapter provides a brief overview of Byzantine fauletant(BFT) state machine replication based
approach to build reliable systems. Here we explain theesyshodel, service properties, and architecture
of existing BFT state machine protocols. We use the samersystodel throughout this dissertation unless

otherwise stated.
2.1 System Model

State machine replication [119] is a general technique ¢hatbe used to replicate any service that can
be modeled as a deterministic state machine replicatiomsd kervices can have operations that perform
arbitrary computations provided they are deterministie result and new state produced when an operation
is executed must be completely determined by the curretet atal the operation arguments. However, some
common forms of non-determinism in practical systems camdmwlled by transforming [57,111] non-
deterministic state machines into deterministic statehima@s by abstracting non-deterministic operations

in a way that is not visible to the external world.

Such a replicated state machine provides the same serviger@glicated state machine but improves
reliability by tolerating some number of faulty replicasFB state machine replication is a form of state

machine replication that can tolerddgzantinefaulty replicas (described below).

The replicated service is implemented byeplicas. Client issues requests to the replicated setwice

invoke operations and wait for replies. Client and repliaesscorrect if they follow the BFT state machine
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replication algorithm (PBFT [55], HQ [63]) used by the replied service. The clients and replicas run
on different nodes in an asynchronous distributed systerrevhodes are connected by unreliable network
links. The network may fail to deliver messages, delay thduplicate them, or deliver them out of order.

We do not assume any bound on the relative processing spetsrmdes.

BFT replication protocols [55, 63, 136] use public-key thfysignatures (PK) to authenticate messages.
These protocols implement a non-PK variant of the protdeat teplaces [56] expensive public-key digital
signatures with MAC(message authentication codes). liptildic-key version of a protocol, any node can
authenticate message by signing the message it sent. Wiedentessagk signed by principal (node or
replica)Y’s public key as(X)q,. These protocols use cryptographic hash function D to coenpessage

digests.

These protocols assume a Byzantine failure model wherg/faatles (clients and replicas) can deviate
from the protocol specification arbitrarily. They can stapdtioning, corrupt their internal replica state, send
arbitrary messages, etc. These protocols also assumeng sitiwersary that can coordinate faulty nodes,
delay communication, or delay correct nodes in order toedus most damage to the replicated service.
But they do however assume that the adversary cannot brgatlographic techniques like collision-resistant

hashes, encryption, and signatures.
2.2 Service properties

BFT replication protocols [55, 63, 136], providgafetyandlivenessproperties [93] assuming that no more

than|n—1/3] replicas are faulty over the lifetime of the system.

The safety property [57] of BFT protocols ensure correctavélr of the replicated service in an asyn-
chronous distributed system. BFT protocols provide a medliform of linearizability [76] (takes into

consideration Byzantine faulty clients [57]) where thelicgted service behaves like a centralized service

11



that executes requests atomically one at a time. In fag-stodel, safety can be guaranteed even when all
replicas fail whereas in a Byzantine fault model safety megua bound on the number of faulty replicas
as they can behave arbitrarily bad. However, the traditi@&fl protocols [55, 63, 136] tolerate optimal
number of faults as it is impossible [57] to tolerate morenthathird of faulty replicas. Safety is ensured
regardless of the number of faulty clients (even when thélyde among themselves or with faulty repli-
cas) by ensuring that operations performed by faulty diemé seen in a consistent way by all non-faulty
replicas. The damage that can be done by faulty clients isatad using access control and authentication

mechanisms before operations are invoked on the state neachi

The liveness property ensures that clients eventuallyveceplies from the replicated service and com-
plete their operations. BFT protocols cannot guarantemnégs in an asynchronous distributed system as
it is impossible [69] to implement consensus in such a systedel. BFT protocols guarantee liveness
during the intervals when the assumption of weak synchreagh( as bounded fair link [136]) holds where
the messages are processed by the receiver within some fine@ddtentially unknown) worst case delay

when they are sent (and retransmitted until the repliesemieved).

BFT replicated systems fail to provide correct service ihgoof these assumptions fail. For example,
more than a third of replicas may fail due to correlated fauéints such as administrative error [73, 101](if
all these replicas belong to the same administrative domadtural calamities [15](if all these replicas are
co-located), software bug [106, 135] (if they use same warsi the application code), media failures [105,
120, 133] (if they use same batch of disks from a single véneim. Also, a recent study on malicious
insider attacks [37, 51] suggest that a faulty client thatdecess to data shared by correct clients can delete
or corrupt the data resulting in significant financial andeotlosses. The chances of such correlated faults
happening is higher when such a replicated service is usstdrimdata durably over long durations spanning

many years or even decades. Such a durable storage servamplised for applications that store digital
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Figure 2.1: BFT State Machine Replication Architecture

archives, photos, health information, etc. In chapter Spresent the design and implementation of a back-
end durable storage system that can be used by BFT replisgsteins to provide high data durability in

the presence of such correlated replica failures or clihitres.
2.3 BFT State Machine Replication Architecture

Figure 2.1 illustrates a typical BFT state machine replcagrchitecture. Clients issue requests to the
replicated service. Conceptually, replicas consist of $tages, an agreement stage and an execution stage.
In reality, these two stages may be either tightly integtate a single machine [55, 111] or implemented on

different machines [136].

The agreement stage runs a distributed agreement prosoaibl &s such as three phase multicast protocol
in PBFT [55]) to ensure that all non-faulty replicas evelijugeceive all the client requests and also agree
on the request order in which the requests are deliverecetexbcution stage. Such an agreement protocol
ensures that all non-faulty replicas agree on the same dedpite uptdn— 1/3] replicas can be Byzantine
faulty. In chapter 4, we present the design and implememtati a new BFT agreement protocol that reduces

replication overhead-performance and cost- and simplifieslesign of BFT replicated systems.

The execution stage implements the application state maamnd executes client requests in the order
delivered by the agreement protocol. In chapter 3, we pteberdesign and implementation of new BFT

state machine replication architecture that improveshhaighput of the execution stage.

13



Such a BFT architecture ensures Bafetyproperty because all non-faulty replicas start from theesam
initial state produce the same set of outputs and reach the 8aal state after executing the client requests

in the same order sequentially.
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Chapter 3

CBASE: High Execution Throughput Byzantine Fault Tolerance

In this chapter, we propose a high execution throughput Byza fault tolerant (BFT) architecture that
uses application-specific information to identify and aemently execute independent requests. Our ar-
chitecture overcomes the limitation of existing BFT tecjugs by proposing a simple change to the BFT
replication architecture that provides a general way tdatxppplication parallelism in order to provide
high application throughput in the execution stage. Alttothis approach is extremely simple, it yields

dramatic practical benefits.

We begin by providing some background in section 3.2, and &hlain our approach in section 3.3.
We explain the design and implementation of CBASE prototigpsed on this architecture and the BFT
replicated network file system (CBASE-FS) in section 3.5sdntion 3.6, we present the evaluation of our

CBASE prototype as well as CBASE-FS file system to demormstheg practical benefits.
3.1 Introduction

Recent work on Byzantine fault tolerant (BFT) state machipstems has demonstrated that generalized
state machine replication can be used to improve robus#Bss5, 63] and confidentiality [136] of a service
in the presence of Byzantine failures due to hardware csgdld, 120, 133], software bugs [27, 106, 135],
operator errors [6,43,73,101], and malicious attacks 32751, 125]. Furthermore, this work suggests
that this approach can be used to build practical systentsadsgl$ low latency overhead [55, 111, 136], can
recover proactively from faults [56] and make use of mudtiekisting off-the-shelf implementations [111] to

avoid correlated failures, and can minimize replicatiothef application-specific parts of the system [136].
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However, current BFT state machine systems can fail to geokiigh throughput. They use generalized
state machine replication techniques that require allfaaity replicas to execute all requests sequentially
in the same order, completing execution of each requestdbiginning execution of the next one. This se-
guential execution of requests can severely limit the thhpuit of systems designed to achieve high through-
put via concurrency [130]. Unfortunately, this concurnegiependent approach lies at the core of many (if
not most) large-scale network services such as file systémjswWeb servers [130], mail servers [115], and
databases [111, 127]. Furthermore, technology trendsrgignenake it easier for hardware architectures
to scale throughput by increasing the number of hardwaiiress (e.g., processors, hardware threads, or
disks) rather than increasing the speed of individual hardvelements. Although current BFT systems
like PBFT [55] and BASE [111] implement optimizations suchraquest batching in order to amortize
their replication overheads due to agreement overheadsesgal execution of requests still imposes a

fundamental limitation on application-level concurrency

We address this problem by introducing a simple additioheéceixisting BFT state machine replication ar-
chitectures that allows throughput of the system to scae application parallelism and available hardware
resources. Our architecture separates agreement fromtexec[136] and inserts a general parallelizer
module between them. The parallelizer uses applicatippisd rules to identify and issue concurrent
requests that can be executed in parallel without compiogike correctness of the replicated service.
Hence, the throughput of the replicated system scales héttparallelism exposed by the application and
with available hardware resources. More broadly, in ouhiéecture replicas execute requests according
to a partial order that allows for concurrency as opposedéototal order enforced by traditional BFT

architectures.

We demonstrate the benefits of our architecture by buildimdyevaluating a prototype library for con-

structing Byzantine fault-tolerant replicated servicatlerl CBASE (Concurrent BASE). CBASE extends
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the BASE system [111] which uses the traditional BFT statehime replication architecture. We use a
set of micro-benchmarks to stress test our system and fihevtien sufficient application concurrency and
hardware resources exist, CBASE provides orders of madmitmprovements in throughput over the tra-
ditional BFT architecture. We also find that for applicaaor hardware configurations that can not take
advantage of concurrency, CBASE adds little overhead cosdta the optimized BASE system. As a case
study, we implement CBASE-FS, a replicated BFT file systenguiantify the benefits for a real application.
CBASE-FS achieves twice the throughput of BASE-FS for thed@e micro-benchmarks even in a config-
uration with modest available hardware parallelism. Wherawitificially simulate more hardware resources,
CBASE’s maximum write throughput scales by over an order afnitude compared to the traditional BFT

architecture.

The main contribution of this study is a case for changingstaadard architecture for BFT state machine
replication to include a parallelizer module that can expastentially concurrent requests to enable parallel
execution. Based on this study, we conclude that this ideppgaling for two reasons. First, it is simple.
It requires only a small change to the existing standard Bdplication architecture. Second, it can provide
large practical benefits. In particular, this simple changa improve the throughput of some services
by orders of magnitude, making it practical to use BFT stademmne replication for modern commercial

services that rely on concurrency for high throughput.

The main limitation of this approach is that safely exeaytinultiple requests in parallel fundamentally
requires application-specific knowledge of inter-requiegtendencies. But, we do not believe this limitation
undermines the argument for adding a parallelizer modelRd Btate machine replication libraries. In
particular, our prototype parallelizer implements a sedefault rules that assume that all requests depend
on all other requests. Applications that are satisfied vatfuential execution can simply leave these default

rules in place, and applications that desire increasedigfmaut can override these rules to expose their
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concurrency to the replication library. Furthermore, deers of such applications can take an iterative
approach, first developing simple rules that expose soml&appn concurrency and later developing more

sophisticated rules that expose more concurrency if redudor performance.

The rest of this chapter proceeds as follows. Sections 4iZ3ghoutline our system model and review
the standard architecture for existing BFT state machipkcadion systems. Then Section 5.2 describes
our proposed architecture and Section 3.5 describes ototype replication library, CBASE. Section 5.6
discusses our experimental evaluation, Section 4.6 dissu®lated work, and Section 5.8 summarizes our

conclusions.
3.2 Background: BFT systems

BFT state machine replication [55, 56, 111] based systemsdg® high availability by replicating the server
and use a distributed algorithm to coordinate the replic&ach a system providesafetyand liveness
guarantees while tolerating no more than a third of faulpficas (|(n-1)/3] faulty replicas where n is
the total number of replicas). Safety requires that theigefd service provides linearizability(modified
to account Byzantine-faulty clients [57]) where the sesvieehaves like a centralized implementation that
executes requests atomically one at a time. Liveness esgthiat the correct clients eventually receive

replies to their requests.

Figure 3.1 illustrates a typical BFT state machine replicaarchitecture. Clients issue requests to the
replicated service. Conceptually, replicas consist of $tages, an agreement stage and an execution stage.
In reality, these two stages may be either tightly integtate a single machine [55, 111] or implemented on
different machines [136]. The agreement stage runs alais®d agreement protocol to agree on the order

of client requests and the execution stage executes aleoktijuests in the same order.

Each execution node maintains a state machine that imptenties desired service. A state machine
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Figure 3.1: Traditional BFT Architecture

consists of a set of state variables that encode the maststae and a set of commands that transform its

state. A state machine takes one or more of the followingastio execute a command:

1. Read a subset of the state variables, called the read-set R
2. Modify a subset of the state variables, called the wigteys.

3. Produce some output O to the environment.

A command is non-deterministic if its write-set values otput are not uniquely determined by its input and
read-set values; otherwise it is deterministic. A statehimecis called a deterministic state machine if all
commands are deterministic. For safety, all non-faultyicap starting from the same state should produce
the same set of outputs and reach the same final state aftartiegethe same set of requests from clients.
Traditional state machine replications assume detertiirigate machines or use deterministic methods to
work around [55] non-determinism in the applications. Tokofving requirements [119] ensures safety of

a replicated system:

Schnieder’s classical technique [119] for constructingedrinistic replicated state machines ensure

safety by enforcing:

1. Agreement: Every non-faulty state machine replica receives everyestju
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2. Order: Every non-faulty state machine replica processes the stquereceives in the same relative

order.

Traditional BFT state machine replication approaches [#5yide safety in an asynchronous system
model where network may fail to deliver messages, delay tréuplicate them, or deliver them out of
order, and there is no bound on the difference in computalttispeeds of nodes on which state machines
are replicated. However, it is impossible [69] to guarati@ness in a truly asynchronous system. Hence,
these systems guarantee liveness during the intervals thieeassumption of weak synchrony (formally
defined as bounded fair links [136]) holds where the messageprocessed by the reciever within some
fixed (but potentially unknown) worst case delay when theysent and potentially retransmitted until they

are recieved.

Although this approach can provide high-availability byetating faults, it can fail to provide high
throughput because the Order requirement does not, in@eadow replicas to execute requests concur-
rently. In particular, unless strong assumptions are mhdatdhe state machine’s internal implementation,
execution nodes must finish executing requeséfore executing request- 1. Otherwise, concurrency
within a state machine could introduce non-determinisra ihe system, which could cause different repli-
cas’ state to diverge.

3.3 High Throughput BFT State Machine Replication

Figure 3.2 illustrates our high throughput state machindication architecture, where we maintain the
separation between the agreement and execution stagestemtlice aparallelizer between them. The
parallelizer takes a totally ordered set of requests fromatireement stage and uses application-supplied
rules to first identify independent requests and then idsem® toncurrently to the execution stage. A thread
pool or event based architecture [130] in the executionestam then execute the requests in parallel to

improve system throughput.
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Figure 3.2: CBASE: High execution throughput BFT state maeheplication architecture

3.3.1 Relaxed Order and Parallelizer

The key idea of high throughput state machine replicatido i®lax Schneider©rder [119] requirement
on state machine replication (defined above) to allow coeotiexecution of independent requests without

compromising safety.

We say that two requests adependenif the write-set of one has at least one state variable in comm
with the read-set or write-set of the other. More formallg eefine dependence as follows: Requgstith
read-set Rand write-set Wand request;j, with read-set is Rand write-set W, aredependent requestfs

any of the following conditions is true (1) WiW; # @, (2) WiNR; # @ or (3) RNW; # @.

Given this notion of dependence, we refine Schneiderer requirement for replicated state machine
to ensure high throughput. The modified requirements theures safety while providing high throughput

are as follows:

1. Agreement: Every non-faulty state machine replica receives everyestju

2. Relaxed order: Every non-faulty state machine replica processes any fgailependent requests it

receives sequentially and in the same relative order.
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Relaxed order provides the same safety property of trawditistate machine replication for two reasons.
First, like traditional state machine replicatidRelaxed Ordeensures thalependent requestse executed
strictly in the same order at all non-faulty replicas by daling thetotal order provided by the agreement
stage. Second, unlike traditional state machine reptinatelaxed orderallows concurrent execution of
concurrent requestwithout affecting safety because these requests can be atedrsafely as they modify
disjoint sets of state variables. The result of executingcaaent requests in any order places the system in

the same final state with the same output visible to the extevarld.

Notice that under the Relaxed Order requirement, concureguiests can be processed in parallel. Thus,
with the Relaxed Order requirement, all non-faulty re@iexecute requests in the sapuatial order as

opposed to the traditional architecture where all correplicas execute requests in the sdotal order.

In the CBASE architecture, the parallelizer uses appbeasipecific information to take advantage of the
Relaxed Order requirement. The parallelizer transfornataly ordered schedule of requests provided by

the agreement protocol into a partially ordered schedwedban application semantics.

A sound parallelizewith following properties meets the safety requirementstafe machine replication:

1. Partial order: For any two requests and rj such that r and r; are dependent and precedes yin
the total order established by the agreement stage, pdimdlecompletes executing requesbefore

it begins to execute request r

2. Non-blocking: The parallelizer eventually executes a pending requestishaot dependent on any

other preceeding request.

ILike traditional state machine replication technique, wstane that replicas are non-deterministic in nature or laamuh-
determinism [55, 111] in a way that is not visible to the emggworld.
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The Partial order property ensures that the non-faulty replicas meetdtaxed orderequirement. The

Non-blockingproperty of the parallelizer ensures liveness of the system

Notice that there are two properties that actrequired of a parallelizer. First, we do not requreci-
sion a sound parallelizer may enforce additional ordering traitgs on requests beyond those required by
the partial order property. This non-requirement is imaottecause it allows us to simplify the design of
parallelizers for complex applications by buildingnservativeparallelizers that can introduce false depen-
dencies between requests. For example, in Section 3.5.8seeible a simple NFS implementation that uses
a conservative analysis to identify some, but not all, comeu requests. Second, we do not regeigeial-
ity: different correct parallelizers may enforce differenttigd orders as long as all correct parallelizers’
partial orders are consistent with the order required byptaéial order property. One could, for example,
implement multiple versions of the parallelizer for an aggtion to prevent any one implementation from

being a single point of failure [128].
3.4 Safety and Liveness properties

Theorem 1. The properties of existing BFT agreement protocol [55] ahd sound parallelizer ensure the

safety and liveness properties of a replicated service.

Safety proof: The existing BFT agreement protocol [55] used in the agregistage guarantees that the
client requests are ordered in the saimial order at all non-faulty replicas while tolerating uptoreplica
failures in the system. From thgartial order property of a sound parallelizer, all non-faulty replicadey
the dependent requests the same order that follows the total order decided by tireement protocol.
Faulty replicas cannot affect the orderdg#pendent requestt non-faulty replicas. Hence, all non-faulty
replicas execute the dependent requests in the same omieatsfy theRelaxed Ordeiproperty which

ensures safety property of the replicated system.
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Liveness proof: If the traditional BFT system comprising of the agreemertt execution stages is live,
then the high-throughput BFT system comprising of the ageed, execution, and parallelizer is also live.
The liveness property of the agreement stage ensures tladieat requests will be eventually delivered in
the sameéotal orderto all non-faulty replicas. From theon-blockingproperty of the parallelizer, non-faulty
replicas execute the first request eventually as there igaueest in the total order that the first request is
dependent on. By applyingon-blockingandpartial order properties of aound parallelizerecursively on
subsequent requests after the execution of preceedingsigstarting from the first request, we can prove
that all clients requests are executed eventually at alifaolty replicas and replies are sent back to the

client eventually.

3.4.1 Advantages and Limitations

The high throughput state machine replication architechas two potential advantages. First, it can sup-
port high-throughput applications. If the workload containdependent requests and the system has enough
hardware resources, then independent requests can beeskeoncurrently by the execution stage to im-
prove the throughput of a system. Second, it is simple anibflexn particular, to achieve high throughput,
we do not change any of the other components in the systenclidet behavior, the agreement protocol,

or the application. These components can therefore be elaiogsuit the requirements of the replicated
system. For example, one can change the agreement protatoli@nt side behavior to build a system that
either tolerates Byzantine failures or fail-stop failumsile achieving high throughput without modifying

the parallelizer.

The main limitation of a system using this architecture & the rules used by the parallelizer to identify
dependent requests require knowledge of the inner workihgach application. In many ways, this knowl-

edge is similar to that required to build the abstractioretaysed in BASE to mask differences in different
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implementations of the same underlying application [1Hdwever, it may in general be difficult to know
what internal state a given request affects or to determitiecgrtainty whether any given pair of requests

are dependent.

Fortunately, it is not necessary to completely understhadriner workings of an application in order to
define a parallelizer for it. In particular, it is always péssible to defineconservativerules that include
all true dependencies but also include some false depeiederBystem designers may choose to follow an
incremental approach by first defining a set of simple butemadive rules to identify “obvious” concurrent

requests and then progressively refine the rules if mordlgiésm is needed to meet performance goals.
3.5 CBASE Prototype

The goal of our prototype is to demonstrate a general way tenexstate machine replication systems
in order to allow concurrent execution of requests for ajgpions that can identify dependencies among

requests.

Our prototype, CBASE (Concurrent BASE) system extends tASB[111] system, which is based
on traditional state machine replication, to use the higbughput state machine replication architecture

described in the previous section.

CBASE modifies BASE to cleanly separate [136] the agreemashieaecution stagésnd introduces a
parallelizer between these stages as shown in Figure 3.2SER single threaded agreement module uses
BASE's 3-phase atomic multicast protocol to establish altotder on requests. The CBASE parallelizer
uses an application-specific set of rules to extramicurrentrequests and execute them in parallel. The
CBASE parallelizer guarantees the safety and livenesseptiep by ensuringartial orderandnon-blocking

properties of a sound parallelizer as defined in sectior 3.3.

2Note, however, that our protototype implementation dogsatiow the agreement and execution modules to run on diftere
sets of machines.
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The CBASE parallelizer usesdependency grapto ensure theartial order property. The requests are
populated in thalependency graphsing the total order in which requests are delivered by greeanent
stage and the application-specific rules to estallishendenceelation (as defined in sectid??) among
requests. Every request is assigned a vertex inddmendency graphs soon as it is delivered by the
agreement stage with a totally ordered sequence numbeneédted edge from a requestto a request;
exists in thedependence grapiff it satisfies the following two conditions: (1)> j (that isrj preceeds
ri in the total order assigned by the agreement stage) and é2)r; aredependent requests defined
in section 3.3.1. Such dependency grapforms a DAG (directed acyclic graph) because the edges are
directed and the first condition that uses the total enshedghere can be no cycles. Thependency graph

represents the partial order schedule for the requests.

The CBASE parallelizer usesmmn-blocking scheduldo execute the requests in the partial order sched-
ule defined by thelependency grapand there by ensures tpartial order property of a sound parallelizer.
A request is said to be not blocking on any preceeding reduigstvertex has no outgoing edges to other
vertices (requests) in thdependence graphlhe non-blocking schedulesf the parallelizer executes a re-
guest if it is not blocking. Thaon-blocking schedulezxecutes a request by assigning it a thread among the
worker thread pool in the execution stage. Hence, the stdredan executeoncurrentrequests in parallel
by assigning different threads in the pool. The worker tingadates thdependency graphfter a executing
a request by removing the corresponding vertex and all tieetdid edges incident onto this vertex. Thus,
it unblocks all the requests that are blocked on this requekke partial order and allows then-blocking
schedulerto execute new set of requests that are not blocked by otlkeee@ding requests in tliepen-
dency graph Thenon-blocking scheduleguarantees theon-blockingproperty of a sound parallelizer by
executing outstanding requests (that are not blocked arepding requests) in the order they are delivered

by the agreement stage. Such a scheduling scheme guariwrdaess by ensuring that a request that is not
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dependent on any preceeding request will be executed aligntu

The default behavior of the parallelizer is to treat all thguests as dependent, in which case it behaves
like the existing BASE system where the requests are ex¢catguentially. This default behavior can be
used when the state machine is treated as a black box or whpeadencies across requests cannot easily
be inferred. The rules in the parallelizer can be incremigntafined by taking a conservative approach
where the requests known to touch different states can htettas independent and all the other requests
can be treated as dependent. Similarly, for backwards ctioijig with existing state machines, if a state
machine is not thread safe we can just have a single workeadhor implement a mutual exclusion lock

around the state machine.

3.5.1 Parallelizer interface

The parallelizer appears to the agreement and executieadbmas a variation of a producer/consumer queue.
When a consumer thread asks for a request, the paralletizeches for a request that is not dependent of
all incomplete preceding requests and returns one if foottterwise it blocks the consumer thread until
a request becomes independent. The detailed descriptiparaflelizer interface used by agreement and

execution stages is described in [84] and we just list thera fog brevity.

e Parallelizer.insert(): Called by the agreement stagedoene a request when the request is committed

in the agreement stage.

e Parallelizer.nexrequest(): Called by the execution stage to fetch an indép@rrequest.

e Parallelizer.removeequest(): Called by the execution stage after the exatuati@a request is com-

pleted to delete request state in the parallelizer.
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e Parallelizer.sync(): This interface supports replicdestdneckpointing required by the BASE system
[111]. The agreement stage updates the next checkpoineéseguumber by calling this function as

soon as the current checkpoint is complete.

3.5.2 Dependence Analysis

The parallelizer’s goal is to determine if a new request Etelent on any pending request using application-
specific rules. The parallelizer design must balance thwe#licting goals: (1) Generality — the parallelizer

should provide an interface that allows a broad range ofiegtjins to encode rules for detecting depen-
dencies among their requests; (2) Simplicity — the interflae specifying these rules should be simple to
reduce the effort and likelihood of error in dependencggpecification; and (3) Flexibility — the interface

should allow specification of simple conservative depengenles and progressive refinement to more pre-
cise dependency rules that expose more concurrency. Nbateur design is a compromise among these
design goals and that other algorithms for identifying aej@mcies among requests could be explored in

future work.

In the CBASE prototype, conflict detection between a pairenfuests depends on thenctionsthey
invoke and theargumentshey pass. An application that h&sdistinct function entry points provides the

parallelizer with following four application-specific fations and rules for conflict detection:

1. Arequest parsethat takes an application request and produces a functi@méCan argument object.

2. An operator concurrency matrix OCNhat identifies pairs of functions that are considered tornbe i
conflict independenbf the arguments to the functionQCM is anFxF matrix, whereOCM]i, j] is
true if a request invoking functionand a request invoking functiopare always considered to be

dependent. This dependency may be because these fundti@ys access common state with one
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of them updating that state, or this dependency may be bedhase functions sometimes access
common state and a conservative design assumes they alwas dimplicity or because more

careful analysis of arguments is impractical or unnecgdsarthe application.

. An argument analysis function AAfhat takes two argument objects and returns true if an asalys
of the arguments indicates that functions that are not flddgpyethe OCM may access common state
when supplied with these arguments. More precis®M-(a;,a2) must return true if there exists any
pair of functionsfy, f, such thatOCM|fy, f,] = falsebut f1(a;) and f»(ap) access common state and

either modifies that common state.

. An operator+argument concurrency matrix OACtat identifies pairs of functions that are consid-
ered to be in conflict only when an analysis of the argumentiea@tes that they may access common

state.

When a new request; calling function f; with argumentsa; arrives, the parallelizer compares it to

each pending request calling function f; with argumentsa; as follows. First, it checks for argument-

independent dependencies using an application-spec#i@tp concurrency matrbdOCM): if OCM(f;, f;]

is true, the requests are dependent. If not, then it checksdaf the arguments indicate that there may be

additional risk of dependencies using an argument andlysi®n (AAF) : if AAF(a;,a;) is true, then it also

checks for argument-dependent dependencies and ideatifiesendency betweepandr; if OACM(fi, fj]

(operator+argument concurrency matrix) is true. FinaflyfOCM(f;, f;] is false and eitheAAF(&;,a;) is

false orOACM(fi, f;] is false, then no dependency betweeandr; exists. Please refer to [84] for a detailed

description of dependence analysis.

This structure facilitates a 2-level analysis in which tipem@tor concurrency matri@CM defines broad

rules where no argument analysis is attempted or neededhamdic¢h the operator+argument concurrency
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Figure 3.3: CBASE-FS: High throughput Byzantine fault talg NFS

matrix OACM defines more precise rules that are invoked after an anaj$ie arguments indicates that
two calls that sometimes are independent may be in confliettduheir arguments. The next subsection
describes our NFS file system prototype where we us®©eM to encode rules for functions if the state

they affect is easily identified from file handles in theirarents and where we use t&M to handle

other functions.

3.5.3 Example Service: NFS

We have implemented CBASE-FS, a Byzantine fault tolerars N#5] using CBASE as shown in Figure 3.3.
Our implementation builds on BASE-FS [111], which usestigsimplementations of NFS to implement
each instance of the replicated state machine. In partjcalalient in CBASE-FS mounts the replicated
file system exported by the replicas as a local NFS file sysi&h Unmodified applications access the file

system using standard file system calls. The local kernelsshifrS calls to the local user-level NFS server,
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which acts as a wrapper for CBASE-FS by calling iimeokeprocedure of the BASE replication library to
relay the request to the replicas. This procedure returrenwvite wrapper receivels+ 1 matching replies

from different replicas.

The agreement stage in CBASE establishes a total order apstgand then sends each ordered request
to the parallelizer. The parallelizer updates the deperydgraph using NFS’s concurrency matrix as de-
fined in section 5.3.1 whenever a request is enqueued. THeembireads in the execution stage dequeue

independent requests and execute the requests.

CBASE-FS uses BASE's [111] abstraction layer (conformancapper) to resolve non-determinism in
NFS such as file handle assignment or timestamp generatiditiédnally, CBASE introduces a new source
of non-determinism due to concurrent execution of Nff&ate operations to different files. The existing
BASE conformance wrapper at different replicas could retifferent file handles based on the order of
execution of these requests. We fix this problem by havingeiruthe concurrency matrix to treat the

requests with create/delete operations as always depehden

Concurrency Matrix for NFS

For NFS, we keep the classification simple by just lookinglatifandles, and thus must have conservative
rules for some of the operations. Our argument analysistifum¢AAF) defines two arguments as related
if they include a common file handle. We present the key rilas dre used in defining NFS’s argument-
independent operator concurrency matrix (OCM) and argtidependent operator+argument concurrency

matrix (OACM) below. We have the complete description of@gmency matrices in appendix A.

3We speculate that additional concurrency could be expogéuchiding constraints based on a request’s total-ordgunesece
number to the conformance wrapper’s file handle generatigic nd the parallelizer's dependency logic.
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e getattr and null requests are read only requests and hem@ed@pendent for both related and unre-

lated arguments.

¢ Reads to different files are independent whereas reads tathe files are dependent. Reads modify
the last-accessed-time attribute of a file, so we do not gosictly execute read requests to the same

file.

e Writes to different files are independent and writes to timeesfile are dependent. Reads are dependent

on writes to the same file and vice-versa.

e All create and remove operations to the same file or diffefiéed are dependent as they introduce

non-determinism if executed concurrently.

¢ Create/Rename/Remove operations are always treated asddgp on Read or Write operations.
Read/Write operations carry the file handle of the file whe@aate/rename/remove requests carry
the file handle of the directory in which file is present andfitemame of the file to be deleted. As
we just look at the file handle to decide if two arguments al&ted or not, we cannot execute the

requests with create/rename/remove concurrently witth'vaée requests.

We give up some potential concurrency across requests hadetconservative rules. Looking at other
fields in the request apart from file handle and keeping amtditistate about file handles could allow for
more sophisticated and accurate classification. There@ladff between on one hand the simplicity of the
design and the time spent to classify requests versus orthke ltand the amount of concurrency realized

by the parallelizer. This trade-off should be explored irendetail in the future.
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3.5.4 Additional Optimizations

In order to improve throughput CBASE supports some of thinapétions introduced by PBFT [55] such
as reduced communication, request batching, read-onignizgation . However, CBASE does not support
tentative execution as it is shown in [57] that this optintima has little impact on throughput when used

along with request batching and that it adds complexity éxcthde to keep uncommitted state in the system.
3.6 Evaluation

A high throughput BFT system should achieve two goals: (1&nvthere is application parallelism and
hardware concurrency it should provide high throughput gamad to traditional BFT system, and (2) when

there is no parallelism in the application or when there ianéed resources it must have low overhead.

All experiments run with 4 replicas and the system tolerates Byzantine fault. Replicas run on single
processor machines with 933 MHZ PIII processor and condejea 100 Mbit ethernet hub. All the
machines have 256MB of memory except for one that has 512MBehory. The experiments run on
an isolated network. We use 5 client machines to load thesysClient machines are connected to the
network through the same ethernet hub as the replicas. Twleoflient machines have 933 MHZ PIII
processor with 512MB of memory and the other three machiaes #50 MHZ PIII processor with 128KB

of memory. All machines run Redhat Linux 7.2.

3.6.1 Micro-Benchmark

The micro-benchmark compares the performance of BASE andiSEBexecuting a simple, stateless ser-
vice where clients send null requests to which the servdy repph null results. We show that for our mi-
crobenchmark CBASE imposes little additional latency agrbead compared to BASE and that CBASE’s

throughput scales linearly with application parallelisnd available hardware resources.
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Overhead

Figure 3.4 compares the overhead of BASE and CBASE by rurthmmbaseline benchmark configured with
infinite application concurrency (no shared state acragsasts) and minimal hardware demand per request
(each application request at the server simply returns idieely). BASE is CPU-limited—a small number

of clients saturate the CPU, but BASE allows throughput &zihea peak of about 15,000 requests per second
by employing agreement-stage batching [56], yielding a @Rerhead of less than 1Q& per request.
CBASE runs with 16 execution threads and BASE runs with laithrell points in the graph are averages
of 3 runs with variance of less than 15%. The CBASE parabelizeats all requests as independent, but
limited hardware resources limit the benefits gained by goeacy—requests run on a uniprocessor and
return immediately. Figure 3.4 shows that the lines repriasg CBASE and BASE closely follow each
other illustrating that CBASE introduces little overhealdem there is no scope for concurrent execution of

requests.
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Figure 3.5: Scalability of throughput: (a) With varying bamare resources (b) With varying levels of appli-
cation parallelism wherparallelism factoris varied from minimum(pf=1) to infinity(pf=inf).

Scalability of throughput with application parallelism an d resources

The throughput of a service depends both on the parallelresept in the application and on the hardware
resources (e.g., processors, disks, bandwidth) availalihe system. In this set of experiments, we evaluate

the scalability of throughput with varying application pkelism and hardware resources.

First, we evaluate the ability to scale throughput with teses. We simulate accesses to a varying array
of parallel disks by running the benchmark with the modifaathat the code to process each request sleeps
for 20ms before returning a reply. The CBASE parallelizesuases infinite parallelism in the application
and considers all requests to be independent. We simulptmgadisk” resources by configuring CBASE
to run with varying numbers of execution threads. We note BASE still runs with a single thread since
it never attempts to issue more than one request to the éxeaihge at a time. Figure 3.5(a) shows that
the throughput of BASE saturates at 50 ops/sec (as expeéte®@ms service time for each operation)

which matches the throughput of CBASE running with 1 threBuae throughput of CBASE increases with
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the number of clients but eventually saturates becauseasrg the number of clients improves concur-
rency only if throughput is limited by the available hardeaesources. As the number of “disks” (threads)
increases, the throughput of CBASE increases nearly lyred28 “disks” reach a throughput of 4700

requests/second.

Next, we evaluate the scalability of throughput with paigim in the application. We run the same
experiment as above except that we fix the number of resoimcbdés experiment and vary parallelism
in the application. We emulate 100 resources by fixing thelbamof CBASE execution threads to 100.
We define theparallelism factoras the number of requests that we allow to be executed camtlyrrand
simulate varying application parallelism by varying thargmeter. The parallelizer randomly assigns each
incoming requests to one @arallelism factorbuckets and creates dependencies among all requests to
the same bucket, allowing only a fixed number of requests tmdependent at any point of time. Figure
3.5(b) shows that the throughput of BASE saturates at 5Gepsind that CBASE matches this performance
when the applicatioparallelism factoris 1. CBASE’s maximum throughput increases almost lineaiti
increasingparallelism factorup to 100. The throughput of CBASE does not improve beyopdrallelism

factor of 100 because it is limited by the 100 simulated hardwareurees.

Notice that when application parallelism and hardwareueses are available, CBASE’s throughput can

exceed BASE's by orders of magnitude.

3.6.2 NFS Micro-Benchmarks

In this subsection, we evaluate the performance of CBASEaR®plicated NFS that uses CBASE. We

compare the performance of CBASE-FS with BASE-FS and uinaeld NFS.
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Figure 3.6: Throughput versus response time (a) With 4KBesrio evaluate CBASE protocol overhead (b)
With 4KB writes and artifical delay to evaluate benefits ofghiping in CBASE

Local disk

In this benchmark, each client writes 4KB of data to a diffierle in a directory exported by the file
system. We vary the number of concurrent clients and medkareesponse time and throughput of the
system. As described in Section 5.2, requests to differiastdire generally treated as independent requests
by the CBASE parallelizer. CBASE-FS runs with 16 threads amekplicated NFS runs with 16 daemon

processes. In all file system instances, NFS servers wgiteehsonously to the disk.

Overhead Figure 3.6(a) plots the response time versus the througfff@BASE-FS, BASE-FS, and un-
replicated NFS. CBASE-FS and BASE-FS closely follow eadteotind their throughput saturates around
2.5MB/sec, whereas the throughput of NFS saturates aroMiigiséc. In this experiment, because servers
run on a uniprocessor system and write asynchronously tdotied disk there is little or no benefit for

concurrently executing the requests because the threddsinvthe file buffer cache in memory and rarely
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block. Hence we show that CBASE-FS performs as well as BASEdkd adds little or no overhead when
there is no scope in concurrency. The maximum throughputA8Band CBASE is within a factor of 2
compared to unreplicated NFS; the difference stems fronextra overhead of processing protocol mes-
sages, additional cryptographic computations, and exraek crossings. For similar reasons, NFS also

yields less latency than BASE and CBASE.

Benefits of Pipelining with artificial delay In this experiment we evaluate the performance when there is
scope for concurrent execution of requests. We simulasesti@nario by making BASE and CBASE servers
sleep for 20 ms after writing to a file and before sending ayréplthe client. Figure 3.6(b) shows the
response time plotted against the throughput of BASE, CBASENFS. The throughput of BASE saturates
at about 90 KB/sec since it cannot execute more than 1 reqtiestime. However, CBASE achieves its
maximum throughput of about 2MB/sec when there is suffidigad on the system to run enough concurrent
requests to achieve this throughput, which is almost 20gimere than that of the throughput of BASE.
We did not modify the NFS implementation to sleep for 20 msts@érformance remains the same. This
experiment shows that CBASE-FS does orders of magnituderliban BASE-FS when there is scope for

concurrent execution of requests.

Benefits of Pipelining with multiple disks In this experiment we evaluate the performance benefits in
the presence of real hardware concurrency. We run the samcéiark as above but with 3 server replicas
running on machines with two disks (IBM-PSG and Quantum ngkil). The single disk experiment is
run with single client which writes 4KB of data to a differefile on the same disk (IBM-PSG) for 1000
times. Experiment with 2 disks is run with two clients eaclwbich write 4KB of data to files on different
disks. All the servers are configured to write data synchustyoto disk. Figure 3.7 shows the throughput

of BASE-FS, CBASE-FS and unreplicated NFS, when run witiglsilisk and two disks. CBASE-FS and
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Figure 3.7: Throughput with multiple disks

BASE-FS have similar performance with a single disk but with disks CBASE-FS outperforms BASE by
72% by concurrently writing to both disks. Unreplicated NéiBperforms both CBASE-FS by a factor of

1.5 with a single disk and 2.5 with two disks which is consisteith earlier results and for similar reasons.

lozone micro-benchmark

lozone [17] provides various microbenchmarks to test tlrfeopmance of commercial file systems. We run
thewrite andrandom mixmicro-benchmarks to test CBASE-FS and compare its perfocmavith BASE-
FS. Rather than introduce artificial delays as above, wednire the opportunity for hardware parallelism
by configuring our system so that each file server accesse®daremote diskhat it mounts via NFS from
a separate machine. Each 10 request may thus access th&€€PRdalnetwork, remote CPU, and remote
disk, which affords the system an opportunity to benefit figipelining. We use the remote disk setup

to evaluate the performance in these experiments . We rulodome micro-benchmarks in cluster-mode,
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Figure 3.8: IOZONE: Throughput versus response time folNalfe microbenchmark (b) Random mi-
crobenchmark

where clients are equally divided among 5 client machinelseath client accesses a different file.

The write microbenchmark measures the performance ofngr@B66KB of data to a new file. We con-
figure the test to have each client write to a different file tovile parallelism across the requests to the
file systems. We vary the number of clients to vary the loadhensyystem. As shown in the figure 3.8(a),
BASE saturates at about 160 KB/sec where as CBASE saturatd®at 320 KB/sec resulting in 100%
improvement in performance as we vary load. CBASE-FS coatdanhieve more than a 2x improvement
in performance despite having more available applicaegost parallelism because the system is limited
by the remote disk bandwidth. Unreplicated NFS achievesxmuan throughput of 500KB/sec when the

NFS server is running on the remote disk machine.

The random mix microbenchmark measures the performanceitifigvand reading files of size 256KB
with accesses being made to random locations within each/Xdeconfigured the test to have clients write

to different files to provide parallelism across requegtsl we vary the number of clients to vary the load
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on the system. As shown in the figure 3.8(b), BASE’s througispturates at about 1MB/sec and CBASE’s
at about 2MB/sec. File caching at clients improves the thinput of both systems compared to the previous

experiment. Overall, CBASE-FS’s maximum throughput is%dfetter than that of BASE-FS.

3.6.3 Macro-benchmarks

We evaluate the performance of CBASE-FS and BASE-FS withfilwesystem macro-benchmarks: An-

drew [55] and Postmark [29].

ANDREW 100
500 phase 5
phase 4
. 400 |- phase 3
L phase 2
o 300 | hase 1
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= 200 |-
100 |-
0
w 7]
@ <
< o
o 3]

Figure 3.9: Andrew 100 benchmark

The Andrew-100 benchmark sequentially runs 100 copiessoftidrew benchmark which provides little
concurrency. CBASE-FS and BASE-FS have essentially idaintierformance with BASE outperforming

CBASE by 4% as there is no scope for concurrency.

PostMark [29] is a benchmark to measure performance of ttegnet applications such as email, net
news, e-commerce, etc. It initially creates a pool of fileg tien performs a specified number of transac-

tions consisting of creating or deleting a file and readingpgending a file. We set file sizes to be between
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Figure 3.10: Postmark benchmark

1KB and 100KB. We run the benchmark with 100 files for 500 teatisns. In ouread-mostlyexperiment,
we set the read bias at 9 so that transactions are dominateddsy over appends. In ourite-mostlyexper-
iment, we set the read bias at 1 so that transactions are dtediby writes compared to reads. CBASE-FS
and BASE-FS replicas write to the remote disk to evaluatebtreefits of concurrent execution when run

with multiple postmark clients.

Figure 3.10 shows the performance of BASE-FS and CBASE-FShwle experiment is run with varied
number of Postmark clients. The performance of CBASE-FSBARSE-FS are nearly identical when run
with 1 client. We also ran experiment with 2 and 4 postmarnkth where each client operates on a different
set of files. CBASE-FS is 20-25% faster than BASE-FS when rifin multiple clients. CBASE-FS could
not realise as much improvement in performance as in miaabaarks because it is limited by the single

available hardware disk.
3.7 Related Work
There is a large body of research on replication techniqadmplement highly-available systems that

tolerate failures. To the best of our knowledge, this wasfitts¢ study that tries to improve application
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throughput of a Byzantine fault tolerant system by prowdageneral way to use application semantics to

execute requests concurrently.

Schneider [119] introduces the idea of using applicationas#ics to reorder commutative requests in the
state machine replication technique. Reordering requastimprove average response time of a system but
will not improve throughput. We generalize this idea to ugpligation semantics to identify independent

requests and concurrently execute these requests to immmughput of a system.

Byzantine fault tolerant state machine replication hasileaensively studied [54, 70] and recent work
has shown that BFT systems can be implemented in practisérag [55, 56, 111]. Although optimiza-
tions from these systems like request batching, reducednzomncation, and symmetric encryption improve
throughput by reducing computation and network overhdsalthroughput of these optimizations does not
overcome the fundamental limits of sequential executioreqliests. Some of these systems do support a
tentative execution optimization to concurrently exeag®d requests, but such a solution cannot handle
other type of requests. We provide a general strategy foloikg application-level and hardware-level

parallelism that can be applied to any of these systems.

Farsite [44] and Oceanstore [77] use PBFT [55] to providedByine fault tolerant services. These
systems provide scalability by partitioning applicatiadate where each partition can potentially be served
by a different replica group (directory group /primary ieglgroup). However, requests to a given group

are sequentially executed which can limit the throughpuhefsystem.

A recent work by Vandiver et al. [127] uses commit barrieresitiling to concurrently execute requests
in BFT replicated transaction processing systems whesehidiid to specify static application-specific rules

to detect concurrent requests.
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3.8 Conclusion

In this chapter, we proposed a high throughput BFT state madieplication architecture by making a
simple change to existing BFT state machine replicatiohiggctures to introduce an application-specific
parallelizer layer that allows concurrent execution oEijpendent requests. We impelmented a system proto-
type called CBASE using this technique and demonstratddt hrvides orders of magnitude improvement
in performance over existing systems provided there is gmgarallelism in the application and there are
sufficient hardware resources. Although our work is mo#iddty and focussed on BFT state machine repli-
cation, the partial order property can be exploited in theted of traditional state machine replication

based systems that tolerate fail-stop failures to imprbxeuighput.
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Chapter 4

Zyzzyva. Speculative Byzantine Fault Tolerance

In the previous chapter, we presented a BFT state machidieatqn architecture that provide high
application throughput in the execution stage. In this tdrapve present the design and implementation
of Zyzzyva, an efficient replication protocol used in the agreemergestaZyzzyva uses speculation to
reduce the performance overheads and replication costzimiyne fault tolerant state machine replication
technique. The throughput, latency, and replication cestleeads of Zyzzyvamatch or approach the lower

bounds.
4.1 Introduction

Three trends make Byzantine Fault Tolerant (BFT) replicatncreasingly attractive for practical deploy-
ment. First, the growing value of data and and falling co$tsandware make it advantageous for service
providers to trade increasingly inexpensive hardware Hergeace of mind potentially provided by BFT
replication. Second, mounting evidence of non-fail-stehdvior in real systems [37, 50, 51, 98, 101, 106,
123, 134, 135] suggest that BFT may yield significant benefign without resorting to-version program-
ming [48, 81, 111]. Third, improvements to the state of theiraBFT replication techniques [45, 58, 63,
86,111, 136] make BFT replication increasingly practicalnarrowing the gap between BFT replication

costs and costs already being paid for non-BFT replicati@mn.example, by default, the Google file system

17yzzyva (Z1Z-uh-vuh) is the last word in the dictionary.
According to dictionary.com, a zyzzyva is “any of variousgical American weevils of the genus Zyzzyva, often
destructive to plants.”
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State Machine Repl
PBFT Q/U | HQ | Zyzzyva Lower Bound
Cost Total replicas 3f+1 5f+1 | 3f+1 3f+1 3f+1 [103]
Replicas with application state 2f+1[136] | 5f+1 | 3f+1 2f+1 2f+1
Throughput | MAC ops at bottleneck server 2+(8f+1)/b | 2+8f | 4+4f | 2+3flb 27
Latency Critical path  NW 1-way latencies 4 2 4 3 2/3F

Table 4.1: Properties of state-of-the-art and optimal Byina fault tolerant service replication systems
tolerating f faults, using MACs for authentication [58], and using a hatize ofb [58]. Bold entries denote
protocols that match known lower bounds or those with theekivknown cost.’It is not clear that this
trivial lower bound is achievabléThe distributed systems literature typically considersi8-way latencies
to be the lower bound for agreement on client requests [6®&82 one-way latencies is achievable if no
concurrency is assumed. This table is explained in AppeRdix

uses 3-way replication of storage, which is roughly the cdBFT replication forf = 1 failures with 4

agreement nodes and 3 execution nodes [136].

This chapter presents Zyzzyva, a new agreement protocoliegspeculationto reduce the cost and
simplify the design of BFT state machine replication [8®B]L1Like traditional state machine replication
protocols [58, 111, 136], a primary proposes an order onttiaguests to the other replicas. In Zyzzyva, un-
like in traditional protocols, replicas speculatively exte requests without running an expensive agreement
protocol to definitively establish the order. As a resultrect replicas’ states may diverge, and replicas may
send different responses to clients. Nonetheless, afiplisaat clients observe the traditional and powerful
abstraction of a replicated state machine that executesés)in a linearizable [76] order because replies
carry with them sufficient history information for clients determine if the replies and history as&ble
and guaranteed to be eventually committed. If a speculagiply and history are stable, the client uses the

reply. Otherwise, the client waits until the system conesrgn a stable reply and history.

The challenge in Zyzzyva is ensuring that responses toaalients become stable. Ultimately, replicas
are responsible for ensuring that all requests from a cocti@nt eventually complete, but a client waiting

for a reply and history to become stable can speed the prbgesgplying information that will either cause
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the request to become stable rapidly within the current werigger a view change. Note that because
clients do not require requests to commit but only to becotakle, clients act on requests in one or two

phases rather than the customary three [58, 111, 136].

Essentially, Zyzzyva rethinks the sync [99] for BFT: insteaf pessimistically ensuring that replicas
establish a final order on requests before communicating avilient, we move the output commit to the
client. Leveraging the client in this way offers significgméctical advantages. Compared to state of the art
protocols including PBFT [58, 111, 136], Q/U [45], and HQ[6Byzzyva reduces cryptographic overheads
and increases peak throughput by a factor of two to an ordaaghitude for demanding workloads. In fact,
Zyzzyva's replication costs, processing overheads, antiraanication latencies approach their theoretical

lower bounds.

4.1.1 Why another BFT protocol?

The state of the art for BFT state machine replication igesingly complex. In a November 2006 paper
describing Hybrid-Quorum replication (HQ replicationBJ6Cowling et al. draw the following conclusions
comparing three state-of-the-art protocols (PracticatdByine Fault Tolerance (PBFT) [58, 86,111, 136],

Query/Update (Q/U) [45], and HQ replication [63]):

¢ “In the regions we studied (up tb=5), if contention is low and low latency is the main issuentife
it is acceptable to usef5+ 1 replicas, Q/U is the best choice, else HQ is the best sirm#pierforms

[P]BFT with a batch size of 1.” [63]

e “Otherwise, [P]BFT is the best choice in this region: it camtle high contention workloads, and it

can beat the throughput of both HQ and Q/U through its usetohbay.” [63]
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e “Outside of this region, we expect HQ will scale best: HQ®otlghput decreases more slowly than
Q/U’s (because of the latter’s larger message and proagssists) and [P]BFT’s (where eventually

batching cannot compensate for the quadratic number ofagesy” [63]

Such complexity represents a barrier to adoption of BFTriEghes because it requires a system designer to

choose the right technique for a workload and then for theklwad not to deviate from expectations.

As Table 4.1 indicates, Zyzzyva simplifies the design sp&d&d replicated services by approaching

the lower bounds in almost every key metric.

With respect to replication cost, Zyzzyva and PBFT matchldweer bound both with respect to the
total number of replicas that participate in the protocal #ve number of replicas that must hold copies of
application state and execute application requests. Botbgpls hold cost advantages of 1.5-2.5 over Q/U
and 1.0-1.5 over HQ depending on the number of faults to leeai@d and the relative cost of application

vs. agreement node replication.

With respect to throughput, both Zyzzyva and PBFT use bagciwhen load is high and thereby approach
the lower bound on the number of authentication operati@nopned at the bottleneck node, and Zyzzyva
approaches this bound more rapidly than PBFT. Q/U and HQ@ility to support batching increases the
work done at the bottleneck node by factors approaching Sanespectively, when one fault is tolerated

and by higher factors in systems that tolerate more faults.

With respect to latency, Zyzzyva executes requests in ttmeeway message delays, which matches the
accepted lower bound in the distributed systems literdaragreeing on a client request [66, 88, 96] and
improves upon both PBFT and HQ. Q/U sidesteps this lower thdoynproviding a service that is slightly
weaker than state machine replication (i.e., it does nofagotal order on all requests) and by optimizing

for cases without concurrent access to any state. Thiggifte presents a chink in Zyzzyva’s armor, which
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Zyzzyva minimizes by matching the lower bound on messagayddbr full consensus. We believe that
Zyzzyva’'s other advantages over Q/U—fewer replicas, imwgaothroughput via batching, simpler state

machine replication semantics, ability to support highteation workloads—ijustify this “extra” latency.

With respect to fault scalability [45], the metrics that dag onf grow as slowly or more slowly in

Zyzzyva as in any other protocol.

Note that as is customary [45, 58, 63, 111, 136], Table 4.Ipemas the protocols’ performance during the
expected common case of fault-free, timeout-free executdl of the protocols are guaranteed to operate
correctly in the presence of up fdfaults and arbitrary delays, but all of these protocols aangagnificantly
higher overheads and latencies in such scenarios. In §4u8.8onsider the susceptibility of these protocols
to faults and argue that Zyzzyva remains the most attractieéce.

4.2 System Model
Zyzzyva is a BFT state machine replication protocol thaedag used to build replicated services like other

BFT protocols [55, 63,111, 136] as explained in chapter 2.

We assume the Byzantine failure model where faulty nodgsi¢ess or clients) may behave arbitrarily.
We assume a strong adversary that can coordinate faultysriodsmpromise the replicated service. We
do, however, assume the adversary cannot break cryptogregainiques like collision-resistant hashes,
encryption, and signatures. In the public-key version af gatocol, we denote a messagesigned by
principal Y’s public key ag(X)q,. Our system ensures its safety and liveness propertiesnbstf replicas

are faulty. We assume a finite client population, any numbarhich may be faulty.

Our system’s safety properties hold in any asynchronoushiited system where nodes are connected
by a network that may fail to deliver messages, corrupt theehgy them, or deliver them out of order.
Liveness, however, is ensured only during intervals in Whitessages sent to correct nodes are processed

within some fixed (but potentially unknown) worst case ddtayn when they are sent.
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Our system implements a BFT service using state machineaéph [58, 86, 118]. Traditional state
machine replication techniques can be applied only to oetéstic services. We cope with the non-
determinism present in many real-word applications (suclila systems [25] and databases [131]) by
abstracting the observable application state at the ssplmd using the agreement stage to resolve non-

deterministic choices [111, 127].

Services limit the damage done by Byzantine clients by autitteting clients, enforcing access control to
deny clients access to objects they do not have a right to(@bnally) by maintaining multiple versions
of shared data (e.g., snapshots in a file system [82, 117D)adalata can be recovered from older versions

if a faulty client destroys data [80].
4.3 Protocol

Zyzzyva is a BFT state machine replication protocol basethme sub-protocols: (1) agreement, (2) view

change, and (3) checkpoint.

Theagreemensub-protocol orders requests for execution by the repli€asview changesub-protocol
coordinates the election of a new primary when the currdmniagny is faulty or the system is running slowly.
Thecheckpoinsub-protocol limits the state that must be stored by replasal reduces the cost of perform-

ing view changes.

Principles and Challenges Zyzzyva focuses on safety propertias they are observed by the clierh
Zyzzyva, replicas can become temporarily inconsisterth wite another, but clients detect inconsistencies,
drive replicas to converge on a single total ordering of estis; and only rely on responses that are consistent

with this total order.

Given the duties BFT replication protocols already placechents [45, 58, 63,91, 111, 136], it is not

a large step to fully move the output commit to the client, thig small step pays big dividends. First,
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Zyzzyva leverages speculative execution—replicas egeautquesbeforeits order is fully established.

Second, Zyzzyva leverages fast agreement protocols [68688& establish a request ordering in as few as
three message delays. Third, the agreement sub-protapd storking on a request once a client knows
the request’s order, thereby avoiding work that would atliee be needed to establish this knowledge at the

replicas.

These choices lead to two key challenges in designing Zyzzyirst, we must specify carefully the
conditions under which a requesitmpletesat a client and define agreement, checkpoint, and view change
sub-protocols to retain the abstraction that requestsuéxe@mn a single, correct state machine. Intuitively, a
request completes when a correct client may safely act arefpiteto that request. To help a client determine
when it is appropriate to act on a reply, Zyzzyva append®tyigshformation to the replies received by a
client so that the client can judge whether the replies asedban the same ordering of requests. Zyzzyva

ensures the following safety condition:

Safety: If a request with sequence numbeand historyh, completes, then any request that completes

with a higher sequence numhb#&r> n has a histonh, that includesh, as a prefix.

Second, the view change sub-protocol must ensure liveresgste an agreement sub-protocol that never
requires more than two phases to complete during a view. Wensirk from the agreement sub-protocol to
the view change sub-protocol by introducing a new “I hateptimary” phase that guarantees that a correct
replica only abandons the current view if it can ensure tHaither correct replicas will join the mutiny.

Zyzzyva ensures the following liveness condition undenasa synchron$ [67]:

Liveness: Any request issued by a correct client eventually completes

2In practice eventual synchrony can be achieved by usingrexgt@lly increasing timeouts [58].
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Figure 4.1: Protocol communication pattern within a view (@) gracious execution and (b) faulty replica
cases. The numbers refer to the main steps of the protocdbenent in the text.

Protocol Overview Zyzzyva is executed byf3+ 1 replicas, and execution is organized into a sequence
of views. Within a view, a single replica is designated asgtimary responsible for leading the agreement

sub-protocol.

Figure 4.1 shows the communication pattern for a singleires of our client-centric fast agreement sub-
protocol. A client sends a request to the primary, the pynfi@arwards the request to the replicas, and the
replicas execute the request and send their responsesdiiethte A requestompletesat a client in one of
two ways. First, if the client receivesf 3- 1 mutually-consistentesponsegincluding an application-level
reply and thehistory on which it depends), then the client considers the requesplete and acts on it.
Second, if the client receives betweeh-21 and ¥ mutually-consistent responses, then the client gathers
2f + 1 responses and distributes thismmit certificatdo the replicas. Oncef2+ 1 replicas acknowledge

receiving a commit certificate, the client considers theiestcompleteand acts on the corresponding reply.

If a sufficient number of replicas suspect that the curreimany is faulty, then a view change occurs and
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a new primary is elected.

In the rest of this section, we describe the basic protocdl @rtline the proof of its correctness and
the details are in Appendix G. In 84.4 we describe a numbermptifnizations, all implemented in our
prototype, that reduce encryption costs by replacing pltaly signatures with message authentication codes
(MACs), improve throughput by batching requests, redueeitipact of lost messages by caching out-of-
order messages, improve read performance by optimizirdyaaly requests, reduce bandwidth by having
most replicas send hashes rather than full replies, redwerb@ads by including MACs only for a preferred

guorum, and improve performance in the presence of faullesdy including additional witness replicas.

In 84.4.1 we discuss Zyzzyvab, a variation of the protocat tequires 5 + 1 agreement replicas but that
completes in three one-way message exchanges as in Fig(a® dven when up té non-primary replicas

are faulty.

4.3.1 Node State and Checkpoint Protocol

To ground our discussion in definite terms, we begin by dsagsthe state maintained by each replica as
summarized by Figure 4.2. Each repliamaintains an orderekistory of the requests it has executed and a
copy of themax commit certificatethe commit certificate (defined below) seenililiat covers the largest
prefix of i's stored history. The history up to and including the regquéth the highest sequence number
covered by this commit certificate is tilemmitted historyand the history that follows is th&peculative
history. We say that a commit certificate has sequence numban is the highest sequence number of any

request in the committed history.

A replica constructs a checkpoint eveyP_INTERVALrequests. A replica maintains ostable check-
pointand a correspondingtable application state snapshaind it may store up to ortentative checkpoint

and correspondingentative application state snapshott commits the history before taking a tentative
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Figure 4.2: State maintained at each replica.

checkpoint. The process by which a tentative checkpointagmiication state become committed is similar
to the one used by earlier BFT protocols [58, 63, 86, 111,,186]Jwe defer a detailed discussion to Ap-
pendix G. However, to summarize briefly: when a correct oapjenerates a tentative checkpoint, it sends
a signedcHECKPOINT message to all replicas. The message includes the higlipstrgge number of any
request included in the checkpoint and a digest of the qooreting tentative checkpoint and application
snapshot. A correct Zyzzyva replica considers the checdkpmoid corresponding application snapshot stable

when it collectsf + 1 matchingcHECKPOINT messages signed by different replicas.

To bound the size of the history, a replica (1) truncates tbity before the committed checkpoint and
(2) blocks processing of new requests after processin@P_INTERVALrequests since the last committed

checkpoint.

Finally, each replica maintainsrasponse cacheontaining a copy of the latest ordered request from, and

corresponding response to, each client.
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4.3.2 Agreement Protocol

Figure 4.1 illustrates the basic flow of the agreement solspol during a view. Because replicas execute
requests speculatively in the order proposed by the primvéghout communicating with other replicas, the
key challenge is ensuring that clients only act upon rephas correspond to stable requests executed in a
total order that is guaranteed to eventualynmitat all correct servers. The protocol is constructed so that a
requestompletest a client when the client receive$ 3 1 matching responses or acknowledgements from
2f 4+ 1 replicas that they have received@mmit certificate&comprising docal commitfrom 2f + 1 replicas.
Either of these conditions serves to prove that the requidstwentually becommittedht all correct replicas

with the same sequence number and history of precedingstgoleserved by the client.

To describe how the system deals with this and other chaligngput standard, issues—Ilost messages,
faulty primary, faulty clients, etc.—we follow a requestdbgh the system, defining the rules a server uses
to process each message. The numbers in Figure 4.1 cordesponmbers in the text identifying major
steps in the protocol and Table 4.2 summarizes the labelsuwediglds in messages. Most readers will be

happier if on their first reading they skip the text marked #ddal Pedantic Details.

‘ 1. Client sends request to the primary. ‘

A clientcrequests an operatia@be performed by the replicated service by sending a meSs&JRIEST,

0,1, C)g, to the replica it believes to be the primary (i.e., the priyrfar the last response the client received).

Additional Pedantic Details:If the client guesses the wrong primary, the retransmissi@tchanisms

discussed in stefic below forwards the request to the current primary. The tidimestampt is included

to ensure exactly-once semantics of execution of requests.

2. Primary receives request, assigns sequence number, and forwards ordered request to replicas. ‘
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| Label [ Meaning

c Client ID
CC | Commit certificate
d Digest of client request message
d=H(m)
i, ] Server IDs
hn History through sequence number
hh=H (hn—lvd)

m Message containing client request
max, | Max sequence number accepted by replica
n Sequence number
o] Operation requested by client
OR | Order Request message
POM | Proof Of Misbehavior
r Application reply to a client operation
t Timestamp assigned to an operation by a client
Y View number

Table 4.2: Labels given to fields in messages.

When the primaryp receives messag® =(REQUEST, 0, t, C)g, from client ¢, the primary assigns a
sequence numberin view v to the request and relays a messa@BRDER-REQ, V, N, hy, d, ND)g,, m)
to the backup replicas whereindicates the view in which the message is being sers, the proposed
sequence number fon, d = H(m) is the digest ofn, h, = H(h,_1,d) is a digest summarizing the history,
andND is a set of values for non-deterministic application vadgalftime in file systems, locks in databases,

etc.) required for execution.

Additional Pedantic DetailsThe primary only takes the above actiong it t; wheret; is the highest

timestamp previously received from

3. Replica receives ordered request, speculatively executes it, and responds to the client.

Upon receipt of a messag@oRDER-REQ, V, N, hy, d, ND)g,, m) from the primaryp, replicai accepts the
ordered request ihis a well-formedREQUESTmMessaged is a correct digest ah, n = max, + 1 wheremax,

is the largest sequence numbei’shistory, andh, = H(h,_1,d). Upon accepting the messag@ppends

56



the ordered request to its history, executes the requesd thse current application state to produce a reply
r, and sends tc a messagé(SPEGRESPONSE V,n, hy, H(r), C, t)g,, i, r, OR) whereOR=(ORDERREQ,

v, n, hﬂv dv ND>Gp-

Additional Pedantic DetailsA replica may only accept and speculatively execute reguastequence-

number order, but message loss or a faulty primary can int®doles in the sequence number space.
Replicai discards theoRDER-REQ message i < max. If n > max, + 1, theni discards the message,
sends a messaggILL-HOLE, vV, max, + 1, n, i)g to the primary, and starts a timer. Upon receipt of a
messageFILL-HOLE, V, k, n, i)g from replicai, the primaryp sends &(ORDER-REQ, V, I, hy, d, ND)g,,

m') to i for each request that p ordered ink < n’ < n during the current view; the primary ignores fill-
hole requests from other views. ilfreceives the validRDER-REQ messages needed to fill the holes, it
cancels the timer. Otherwise the replica broadcastsitheHOLE message to all other replicas and initiates
a view change when the timer fires. Any replicdhat receives &ILL-HOLE message from sends the
correspondingRDER-REQ message, if it has received one. If, in the process of fillingdles in the replica
sequence, replidareceives conflictinggRDER-REQ messages then the conflicting messages form a proof of

misbehavior as described in protocol step

4. Client gathers speculative responses.

The client receives messageéSPEGRESPONSE v, n, h,, H(r), ¢, t)g, i, r, OR), wherei identifies the
replica issuing the response, from the replicaBEGRESPONSEMessages from distinct replicazatchif
they have identicaV, n, hy, H(r), ¢, t, andr fields. There are four cases to consider. The first three dandl
varying numbers of matching speculative replies withoutsidering theORfield, while the last considers

only theORfield.

4a. Client receives 3f + 1 matching responses and completes the request.
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In the absence of faults, the client receives matcsiPgGRESPONSEMessages from allf3+ 1 replicas.
The client then considers the request and its history twb#pleteand delivers the repliyto the application.
Zyzzyva guarantees that even if there is a view change, akbcioreplicas will always execute this request
at this point in their history to produce this response. tthat although the client has a proof that the
request’s place in history is irrevocably set, no serversugh a proof. Indeed, a server at this point cannot
determine whether a request has completed in its final onderroll-back of the server's state will be

necessary because a faulty primary ordered the requestsistently across replicas.

4b. Client receives between 2f + 1 and 3f matching responses, assembles a commit certificate,
and transmits the commit certificate to the replicas.

If the network, primary, or some replicas are faulty, themlic may never receive responses from all
3f + 1 replicas. The client therefore sets a timer when it firsigssa request: when this timer expires; if
has received matching speculative responses from betwleeri&and J replicas, thert sends a message
(coMmmIT, ¢, CC)g, WhereCCis a commit certificate consisting of a list of 2- 1 replicas, the replica-signed
portions of the 2 + 1 matchingSPEGRESPONSEmMessages from those replicas, and the corresponding

2f + 1 replica signatures.

Additional Pedantic Detail<CC contains 2 + 1 signatures on thePEGRESPONSEmMessage and a list of

2f 41 nodes, but, since all the responses received fogm replicas are identicat only needs to include
onereplica-signed portion of thePEGRESPONSEmMessage. Also note that, for efficien€§C does not

include the body of the reply but only the hagH (r).

4b.1. Replica receives a COMMIT message from a client containing a commit certificate and ac-
knowledges with a LOCAL-COMMIT message.

When a replica receives a messageoMMIT, ¢, CC)g, containing a valid commit certificateC proving

that a request should be executed with a specified sequemaeenwand history in the current view, the
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replica first ensures that its local history is consisterhwie one certified b€C. If so, replicai (1) updates
its max commit certificatstate if this certificate’s sequence number is higher tharstbred certificate’s

sequence number and (2) sends a mes§apeAL-COMMIT,V,d, h,i,C)q, toC.

Additional Pedantic Detaildf the local history simply has holes encompassed’i®s history, theni

fills them as described 8. If, however, the two histories contain different requdetsthe same sequence

number, then initiates the view change protocol.

4b.2. Client receives a LOCAL-COMMIT messages from 2f + 1 replicas and completes the request.

The client resends theoMMIT message until it receives correspondir@CAL-COMMIT messages from
2f 4+ 1 distinct replicas. The client then considers the requedita history to beeompleteand delivers the
replyr to the application. The system guarantees that even if thergiew change, all correct replicas will

always execute this request at this point in their historgrtmuce this response.

Additional Pedantic DetailstWhen the client first sends theoMMIT message to the replicas it starts a

timer. If this timer expires before the client receivefsi21 LOCAL-COMMIT messages then the client moves

on to protocol stegc described below.

4c. Client receives fewer than 2f + 1 matching SPEGRESPONSEmessages and resends its request
to all replicas, which forward the request to the primary in order to ensure the request is assigned a
sequence number and eventually executed.

Client. If the network or primary is faulty, the cliemd may never receive matchirgPEGRESPONSE
messages fromf2+ 1 replicas. The client therefore sets a second timer whersitiisues a request and
resends th&@®EQUESTmMessage to all replicas when the second timer expires. ntréeets its timers and

continues gathering speculative responses.

Replica.When non-primary replicareceives a messageEQUEST,0,t,C)q, from clientc there are two

possible actions for to take. If the request matches or has a lower client-supplmestamp than the
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currently cached request for clieot theni resends the cached response.tdf instead the request has
a higher timestamp than the currently cached response] $emis a messageONFIRM-REQ, V, M, i)g,
wherem = (REQUEST,0,t,C)q, to the primaryp and starts a timer. If the replica acceptSGRDER-REQ
message for this request before the timeout, it procesee@RIbDER-REQ message as described above. If the

timer fires before the primary orders the request, the reptitiates a view change.

Primary. Upon receiving the confirm request messéageNFIRM-REQ,V,m, i)y from replicai, the pri-
mary p checks the client’s timestamp for the request. If the regisesew, p sends a NeEVORDER-REQ
message using the next sequence number to order as desorgted2; otherwise,p sends ta the cached

ORDER-REQ message for the most recent request flom

Additional Pedantic Detaildf replicai has received a commit certificate or stable checkpoint faha s

sequent request, then the replica sends@aL-coMMIT to the client even if the client has not received a
commit certificate for the retransmitted request. Addiby if replicai does not receive theRDER-REQ
message from the primary, the replica sendsathaFIRM-REQ message to all other replicas. Upon receipt
of a CONFIRM-REQ message from another repligareplicai sends theoORDER-REQ message it received
from the primary toj; if i did not receive the request from the clienscts as if the request came from the

client itself.

4d. Client receives responses indicating inconsistent ordering by the primary and sends a proof of
misbehavior to the replicas, which initiate a view change to oust the faulty primary.

If client c receives a pair 06PEGRESPONSEmMessages containing valid messa@d®—(ORDER-REQ,
v, n, hy, d, ND)g; for the same requestl = H(m)) in the same view with differing sequence number
or historyh,, then the pair obRDER-REQ messages constitutes a proof of misbehavii ) against the
primary. Upon receipt of ROM, ¢ sends a messageom,v,POM)g, to all replicas. Upon receipt of a valid

POM message, a replica initiates a view change and forwardsaivemessage to all other replicas.
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Note that casedb and4c are not exclusive odd; a client may receive messages sufficient to complete a

request or form a commit certificate and also a proof of miabigh against the primary.

4.3.3 View Changes

Fast agreement and speculative execution have profouact®in Zyzzyva’s view change sub-protocol. In
this section we highlight the differences between the Zyazyew change sub-protocol and that of previous

systems. For completeness we include the full view chanbgsatocol in Appendix G.1.1.

The view change sub-protocol must elect a new primary andagtee that it will not introduce any
changes in a history that has already completed at a corlient.cTo maintain this safety property, tra-
ditional view change sub-protocols [58, 63, 86,111, 13Gune a correct replica that commits to a view
change to stop accepting messages other th&#8CKPOINT, VIEW-CHANGE, and NEW-VIEW messages.
Also, to prevent faulty replicas from disrupting the systearview change sub-protocol should never re-
move a primary unless at least one correct replica commitsgo/iew change. Hence, a correct replica
traditionally commits to a view change if either (a) it obses the primary to be faulty or (b) it has a proof
that f + 1 replicas have committed to a view change. On committingviewa change a correct replica sends
a signedviEw-CHANGE message that includes the new view, the sequence number reftlica’s latest sta-
ble checkpoint (together with a proof of its stability), atih@ set of prepare certificates—the equivalent of

commit certificates in Zyzzyva—collected by the replica.

The traditional view change completes when the new primasing Z + 1 VIEW-CHANGE messages
from distinct replicas, computes the history of requesas #fi correct replicas must adopt to enter the new
view. The new primary includes this history, with a proof afidity, in a signedNEw-vIEW message that it

broadcasts to all replicas.

Zyzzyva maintains the overall structure of the traditiopadtocol, but it departs in two significant ways
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that together allow clients to accept a response beforeepiizas know that the request has been committed

and allow the replicas to commit to a response after two ghiastead of the traditional three.

1. First, to ensure liveness, Zyzzyva strengthens the tondinder which a correct replica commits
to a view change by adding a new “I hate the primary” phase éostbw change sub-protocol. We

explain the need for and details of this addition below bysideringThe Case of the Missing Phase.

2. Second, to guarantee safety, Zyzzyva weakens the comditider which a request appears in the
history included in thelew-viIEw message. We explain the need for and details of this charige be

by consideringrhe Case of the Uncommitted Request.

The Case of the Missing Phase

As Figure 1 shows, Zyzzyva’'s agreement protocol guararttesisevery request that completes within a
view does so after at most two phases. This property may aguegrising to the reader familiar with

PBFT. If we view a correct client that executes stipof Zyzzyva as implementing a broadcast channel
between replicas, then Zyzzyva’s communication patterpsma only two of PBFT’s three phases, one
where communication is primary-to-replic§sre-prepare)and the second involving all-to-all exchanges

(eitherprepareor commit) Where did the third phase go? And why is it there in the firateP

The answer to the second question lies in the subtle depeieddretween the agreement and view change
sub-protocols. No replicated service that uses the taamitiview change protocol can be live without an
agreement protocol that includes both firepareandcommitfull exchanges. To see how this constraint
applies to Zyzzyva, consider a scenario witiaulty replicas, one of them the primary, and suppose the

faulty primary cause$ correct replicas to commit to a view change and stop sendegsages in the view.

3Unless a client can unilaterally initiate a view change .sTéption is unattractive when clients can be Byzantine.
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In this situation, a client request may only receive 1 responses from the remaining correct replicas, not
enough for the request to complete in either the first or spbase—and, because fewer tHanl replicas

demand a view change, there is no opportunity to regaindisgiby electing a new primary.

The third phase of traditional BFT agreement breaks thiemsiate: by exchanging what they know,
the remainingf + 1 correct replicas can either gather the evidence neceksapmplete the request after

receiving onlyf + 1 matching responses or determine that a view change isssges

Back to the first question: How does Zyzzyva avoid the thirdgghin the agreement sub-protocol? The
insight is that what compromises liveness in the previoaaaio is that the traditional view change protocol
lets correct replicas commit to a view change and becometsiiea view without any guarantee that their
action will lead to the view change. Instead, in Zyzzyva, aext replica does not abandon viewnless it

is guaranteed that every other correct replica will do theesdorcing a new view and a new primary.

To ensure this property, the Zyzzyva view change sub-pobadds an additional phase to strengthen the
conditions under which a replica stops participating indheent view. In particular, a correct replicéhat
suspects the primary of viewcontinues to participate in the view, but expresses its gbtw-confidence
in the primary by multicasting to all replicas a mess&gelATE-THE-PRIMARY, V)g,. If i receivesf +1
votes of no confidence iws primary, then it commits to a view change: it becomes siland multicasts
to all replicas avIEwW-CHANGE message that contains a proof thiat 1 replicas have no confidence in the
primary for viewv. A correct replica that receives a valIEW-CHANGE message joins in the mutiny and
commits to the view change. As a result, Zyzzyva's view cleapgptocol ensures that if a correct replica
commits to a view change in view eventually all correct replicas will. In effect, Zyzzyvhifts the costs
needed to deal with a faulty primary from the critical pathe(fagreement protocol) to the view change

sub-protocol, which is run only when the primary is faulty.
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The Case of the Uncommitted Request

Zyzzyva replicas may never learn the outcome of the agreepretocol: only clients may know when a

request has completed. How do Zyzzyva replicas identifyf@lsiatory prefix for a new view?

There are two ways in which a requesand its history may complete in Zyzzyva. Let us first consider
the least problematic from the perspective of a view chaiigeccurs wherr completes because a client
receives 2 + 1 LOCAL-COMMIT messages, implying that at ledst 1 correct replicas have stored a commit
certificate forr. Traditional view change protocols already handle thiecdlse standard/IEw-CHANGE
message sent by a correct replica includes all commit azt#s known to the replica since the latest stable
checkpoint. The new primary includes in thew-viEw message all commit certificates that appear in
any set of 2 + 1 VIEW-CHANGE messages it receives: at least one of thagsv-CHANGE messages must

contain a commit certificate far

The other case is more challengingr dompletes because the client receivés-3 matching speculative
responses, then no correct replica will have a commit cgatii forr. We handle this case by modifying
the view change sub-protocol in two ways. First, correcticap add to the information included in their
VIEW-CHANGE message atbRDER-REQ messages (without the corresponding client request)yedsince
the latest stable checkpoint or commit certificate. Secarmhrrect new primary extends the history to be
adopted in the new view to include all requests wittb®DER-REQ message containing a sequence number
higher than the largest sequence number in any commit catéfthat appears in at ledst 1 of the 2f +1

VIEW-CHANGE messages the new primary collects.

This change weakens the conditions under which a requestantdh one view can appear in a new view:
we no longer require a commit certificate but also allow a cigffit number 0ORDER-REQ messages to

support a request’s ordering. This change ensures thatdteepl continues to honor ordering commitments
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for any request that completes when a client gathérs B matching speculative responses.

Notice that this change may have the side effect of assigam@rder to a request that has not yet
completed in the previous view. In particular, a curiosifytlee protocol is that, depending on which set
of 2f + 1 VIEW-CHANGE messages the primary uses, it may, for a given sequence nufimgedifferent
requests withf + 1 ORDER-REQ messages. This curiosity, however, is benign and cannsedhe system
to violate safety. In particular, there can be two such adaidi requests for the same sequence number only
if at least one correct replica supports each of the careliddih such a case, neither of the candidates could
have completed by having a client receive-81 matching responses, and the system can safely assign

either (or neither) request to that sequence number.

4.3.4 Correctness

This section sketches the proof that Zyzzyva maintainsgit@ssAF andLiv defined above. We include

complete proofs in Appendix G.

Safety

We first show that our agreement sub-protocol is safe witlsimgle view and then show that the agreement

and view change protocols together ensure safety across.vie

Within a View The proof proceeds in two parts. First we show that no twoestpucomplete with the
same sequence numberSecond we show thét, is a prefix ofhy for n < i’ and completed requestand
r.

Part T A request completes when the client receivés-3d matchingSPEGRESPONSHNessages in phase

1 or 2f +1 matching.OCAL-COMMIT messages in phase 2. If a request completes in phase 1 withreey

numbem, then no other request can complete with sequence numtierause correct replicas (a) send only
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one speculative response for a given sequence number agdngh)a. OCAL-COMMIT message only after
seeing 2 + 1 matchingsPEGRESPONSEMessages. Similarly, if a request completes with sequemtder
nin phase 2, no other request can complete since correctaspinly send oneOCAL-COMMIT message

for sequence numbex

Part 2 For any two requestsandr’ that complete with sequence numberandn’ and histories, and
hy respectively, there are at least 2 1 replicas that ordered each request. Because there ar8fomyt
replicas in total, at least one correct replica ordered bathdr’. If n < ', it follows thath, is a prefix of

hn/ .

Across Views We show that any request that completes based on respons@s\sewv < V' is contained
in the history specified by theEw-vIEw message for view'. Recall that requests complete either when a

correct client receivesf3+ 1 matching speculative responses 6r21 matching local-commits.

If a requestr completes with 2 + 1 matching local-commits, then at leafst 1 correct replicas have
received a commit certificate for(or for a subsequent request) and will send that commitfietie to the
new primary in theiviEw-CHANGE message. Because there afet3l replicas in the system and 2- 1
VIEW-CHANGE messages in BEW-VIEW message, that commit certificate will necessarily be iratlith
the NEw-VIEW message andwill be included in the history. Consider instead a requdsiat completes
with 3f + 1 matchingsPEGRESPONSEmMessages and does not complete with+2l matchingLoCAL-
COMMIT messages. Every correct replica will include fRDER-REQ for r in its VIEW-CHANGE message,
ensuring that the request will be supported by at Idastl replicas in the set of 2+ 1 VIEW-CHANGE

messages collected by the primary of viévand therefore be part of theew-viIEw message.
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Liveness

Zyzzyva guarantees liveness only during periods of symshrdo show that a request issued by a correct
client eventually completes, we first show that if the priynar correct when a correct client issues the
request, then the request completes. We then show thatdjugsefrom a correct client does not complete

during the current view, then a view change occurs.

Part I If the client and primary are correct, then protocol stefisrough3 ensure that the client receives
SPEGRESPONSBENessages from all correct replicas. If the client receivies 3 matchingSPEGRESPONSE
messages, the request completes—and so does our prooenAfttlat instead receives fewer thah81
such messages will receive at lea$ti21 of them, since there ard 3- 1 replicas and at mosgtof which are
faulty. This client then sends@MMIT message to all replicas (protocol swdy). All correct replicas send
aLOCAL-COMMIT message to the client (protocol stép1), and, because there are at leakt2l correct

replicas, the client’s request completes in protocol gtep.

Part 2 Assume the request from correct clientloes not complete. By protocol stdp, c resends
the REQUESTmessage to all replicas when the request has not complatedsiafficiently long time. A
correct replica, upon receiving the retransmitted regfrest c, contacts the primary for the corresponding
ORDER-REQ message. Any correct replica that does not receiveH®ER-REQ message from the primary
initiates the view change by sending laAATE-THE-PRIMARY message to all other replicas. Either at least
one correct replica receives at ledst 1 1-HATE-THE-PRIMARY messages, or no correct replica receives at
leastf + 1 1-HATE-THE-PRIMARY messages. In the first case, the replicas commit to a viewgeka@ED.

In the second case, all correct replicas that did not re¢b@®RDER-REQ message from the primary receive
it from another replica. After receiving alRDER-REQ message, a correct replica sends®aGRESPONSE
to c. Because all correct replicas sendREGRESPONSEMeSsage ta, ¢ is guaranteed to receive at least

2f +1 such messages. Note tltamust receive fewer thanf2;- 1 matchingSPEGRESPONSEMeSsages:
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otherwisecwould be able to form aommIT and complete the request, contradicting our initial asgionp
If however,c does not receive 24 1 matchingSPEGRESPONSEMessages, thenis able to form apom
messagec relays this message to the replicas which in turn initiatt@mmit to a view change, completing

the proof.
4.4 Implementation Optimizations

Our implementation includes several optimizations to iowvprperformance and reduce system cost.

Replacing Signatures with MACs Like previous work [45, 58, 63, 86, 111, 136], we replace nsaga-
tures in Zyzzyva with MACs and authenticators in order toucsdthe computational overhead of crypto-
graphic operations. The only signatures that are not regladth MACs are client request retransmissions
and the messages of the view change protocol. The techrhiealges to each sub-protocol required by
replacing signatures with authenticators are describekppendix [?]. The most noticeable difference in
the agreement sub-protocol is the way Zyzzyva addressescémario in which replicais unable to au-
thenticate a client request,cannot distinguish whether the fault lies with the primarythe client. Our
procedure in this case is similar to a view change and resuttsrrect replicas agreeing to accept the re-
quest or replace it with no-opin the sequence. The checkpoint sub- protocol adds a thadepto ensure
that stable checkpoints are consistent with requests tmaplete through speculative execution. Finally,
the view change sub-protocol includes an additional phaisgéthering checkpoint and commit certificate

proofs as is done in PBFT [58].

Separating Agreement from Execution We separate agreement from execution [136] by requiring onl
2f + 1 replicas to be execution replicas. The remaining replggase as witness replicas [92], aiding in
the process of ordering requests but not replicating théicapn. Clients accept a history based on the

agreement protocol described in the previous section wihgat modification: a pair of responses are
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considered to match even if the responsad response has(r) fields are not identical. A client acts on
a reply only after receiving the appropriate number of mathesponses antl+ 1 matching application
replies from execution replicas. One consequence of thim@ation is that a client may have to wait until

it has received more thanf2- 1 responses before it can act in the second phase. We gaierfinenefit

by biasing the primary selection criteria so that witnegdicas are chosen as the primary more frequently
than execution replicas. This favoritism reduces progessotention at the primary and allows requests to

be ordered and processed faster.

Request Batching We batch concurrent requests to reduce cryptographic amdhomication overheads
like other agreement-based replicated services [58, 8§1PH, 136]. Batching requests amortizes the cost
of replica operations across multiple requests and redihestotal number of operations per request. One
key step in batching requests is having replicas computegieshistory digest corresponding to the entries
in the batch. This batch history is used in responses to@llegts included in the batch. If the second phase
completes for any request in the batch, the second phasasgleoed complete for all requests in the batch

and replicas respond to the retransmission of any requesie batch with local-commit messages.

Caching Out of Order Requests The protocol described in section 4.3.2 dictates that capldiscard
order request messages that are received out of order. Weveperformance when the network delivers
messages out of order by caching these requests until thegte sequence number is reached. Similarly,
the view change sub-protocol can order additional requibstisare not supported bf/+ 1 speculative

responses.

Read-Only Optimization Like PBFT [58], we improve the performance of read- only rests that do

not modify the system state. A client sends read-only rdqudisectly to the replicas which execute the
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requests immediately, without recording the request inrdmiest history. As in PBFT, clients wait for
2f 4+ 1 matching replies in order to complete read-only operatidm order for this optimization to function,
we augment replies to read requests with a replica’s;raad maxc. A client that receives £+ 1 matching
responses, including the mpaand maxc fields, such that max= max:c can accept the reply to the read.
Furthermore, a client that receives 3 1 matching replies, even if the maxand may values are not

consistent, can accept the reply to the read.

Single Execution Response The client specifies a single execution replica to responld afull response
while the other execution replicas send only a digest of €sponse. This optimization is introduced in

PBFT [58] and saves network bandwidth proportional to the sf responses.

Preferred Quorums Q/U [45] and HQ [63] leverage preferred quorums to reducesthe of authenti-
cators by optimistically including MACs for a subset of riepk rather than all replicas. We implement
preferred quorums for the second phase; replicas authéntipeculative response messages for the client
and a subset of Rother replicas. Additionally, on the initial transmissjome allow the client to specify
that replicas should authenticate speculative responssages to the client only. This optimization re-
duces the number of cryptographic operations performedagakup replicas to three while existing BFT

systems [45, 58, 63, 86, 111, 136] require a linear numberypitagraphic operations at each replica.

Other optimizations First, we use an adaptive commit timer at the client to itétilne commit phase
which adapts to the slowest replica in the system. Secdtel PIBFT, clients broadcast requests directly to

all the replicas where as the primary uses just the requgsstiin the order request message.
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4.4.1 Making the Faulty Case Fast

Commit Optimization In the presence of faults, the protocol described in secti®@®2 requires that
clients start the second phase (commit phase) if they redewer than 3 + 1 responses. Replicas then
verify the commit certifcate and send the local-commit cese. The problem with this approach is that the
replicas end up splitting the batch of requests in the firasptwhen replies are sent back to the clients and
then verify commit messages from each client separatelyeisécond phase. Thus, replicas fail to amortize

the verification cost in the second phase.

Zyzzyva addresses this problem using commit optimizatibere clients assign a bit to hint replicas that
they send speculative replies after committing the regieestly. When this bit is set, replicas broadcast
order request messages (similar to prepare message in RREfMthey receive a valid order request message
from the primary and do not send speculative response inatedygli If a replica receivesf2+ 1 matching
order request messages from other replicas it then comh@&tseiquest locally (as if it recieved a valid
commit certificate in th€ OMMIT message from the client), executes the request, and sansisdbulative
response to the client with bothax, andmaxC set to the request order. Like read-only optimizationntke
consider a request to be complete if they receive 2f+1 nradchpeculative responses with max maxc
and deliver response to the application. Clients set thentbmptimization bit whenever they complete
a request using two phases. They reset the bit to zero if #egive speculative responses from all 3f+1

replicas. Clients start with this bit set to zero assumirag they are no faults in the system.

Unlike the original protocol, this optimization allows tams to verify order request messages once
for the entire batch before committing the request locallyis optimization reduces the cryptographic
overhead at a replica from43Lb+l crypto ops per request to42Lb+1 crypto ops per request. We evaluate

the performance impact of this optimization in section3..5.
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Zyzzyva5 We introduce a second protocol, Zyzzyva5, that udeadtlitionalwitness replicagthe number

of execution replicas is unchanged dt21) for a total of & + 1 replicas. Increasing the number of replicas
lets clients receive responses in three message delaysvlesrf replicas are faulty [66, 88, 96]. Zyzzyvab
trades the number of replicas in the deployed system aganisirmance in the presence of faults. Zyzzyvabs
is identical to Zyzzyva with a simple modification—nodes tWar an additionalf messages, i.e. if a node
bases a decision on a set df-2 1 messages in Zyzzyva, the corresponding decision in Zy#is/based on

a set of ¥ + 1 messages. The exceptions to this rule are the “I hate theapyi phase of the view change
protocol and the fill-hole and confirm-request sub-protedbht serve to prove that another correct replica

has taken an action—these phases still require brhl responses.
4.5 Evaluation

This section examines the performance characteristicgzdy®ra and compares it with existing approaches.
We run our experiments on 3.0 GHz Pentium-4 machines withithex 2.6 kernel. We use MD5 for MACs
and AdHash [52] for incremental hashing. MD5 is known to bénetable, but we use it to make our
results comparable with those in the literature. Since gyaaises fewer MACs per request than any of the
competing algorithms, our advantages over other algosttivould be increased if we were to use the more

secure, but more expensive, SHA-256.

For comparison, we run Castro et al.’'s implementation of PER] and Cowling et al.’s implementation
of HQ [63]; we scale up measured throughput for the small estjftesponse benchmark by 9% [26] to
account for their use of SHA-1 rather than MD5. We include lighled throughput measurements for
Q/U [45]; we scale reported performance up by 7.5% to accfaurdur use of 3.0 GHz rather than 2.8GHz

machines. We also compare against measurements of anicateglserver.

Unless noted otherwise, in our experiments we use all of pienizations other than preferred quorums

for Zyzzyva as described in 84.4. PBFT [58] does not implenpeeferred quorum optimization. We run
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Figure 4.3: Realized throughput for the 0/0 benchmark aatingber of client varies for systems configured
to toleratef = 1 faults.

with preferred quorum optimization for HQ [63]. We do not ulse read-only optimization for Zyzzyva and

PBFT unless we state so explicitly.

4.5.1 Throughput

To stress-test Zyzzyva we use the micro-benchmarks delig€hstro et al. [58]. In the 0/0 benchmark, a
client sends a null request and receives a null reply. In tbddnchmark, a client sends a 4KB request and

receives a null reply. In the 0/4 benchmark, a client senddlaequest and receives a 4KB reply.

Figure 4.3 shows the throughput achieved for the 0/0 bendhbhwazyzzyva, Zyzzyva5, PBFT, and HQ
(scaled as noted above). For reference, we also show thelpealkhput reported for Q/U [45] in the=1
configuration, scaled to our environment as described abagdhe number of clients increases, Zyzzyva
and Zyzzyvab scale better than PBFT with and without batch/ithout batching, Zyzzyva achieves a
peak throughput that is 2.7 times higher than PBFT due to PBIkigher cryptographic overhead (PBFT
performs about 2.2 times more crypto operations than Zy@zgmd message overhead (PBFT sends and

receives about 3.7 times more messages than Zyzzyva). Wadratch size is increased to 10, Zyzzyva's
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Figure 4.4: Latency for 0/0, 0/4, and 4/0 benchmarks foresystconfigured to tolerate= 1 faults.

and Zyzzyva5'’s peak throughputs increase to 86K ops/segestigg that the protocol overhead at the
primary is 12us per batched request. With batching, PBFT’s throughpueases to 59K ops/sec. The
45% difference between Zyzzyva and PBFT’s peak throughpaiiaagely accounted for PBFT’s higher
cryptographic overhead (about 30%) and message overhbadt(80%) compared to Zyzzyva. Zyzzyva
provides over 3 times the reported peak throughput of Q/Usaed 9 times the measured throughput of HQ.
This difference stems from three sources. First, Zyzzygaires fewer cryptographic operations per request
compared to HQ and Q/U. Second, neither Q/U nor HQ is ableadatching to reduce cryptographic and
message overheads. Third, Q/U and HQ do not take advantabe Bthernet broadcast channel to speed

up the one-to-all communication steps.

Overall, the peak throughput achieved by Zyzzyva is wittb&63of that of an unreplicated server that
simply replies to client request over an authenticated mwblanNote that as application-level request pro-

cessing increases, the protocol overhead will fall.
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Figure 4.5: Latency vs. throughput for systems configuredleratef = 1 faults.

4.5.2 Latency

Figure 4.4 shows the latencies of Zyzzyva, Zyzzyva5, Q/d,RBFT for the 0/0, 0/4, and 4/0 microbench-
marks. For Q/U, which can complete in fewer message delaysilzzyva during contention-free periods,
we use a simple best-case implementation of Q/U with predeguorums in which a client simply generates
and sends #1+ 1 MACs with a request, each replica verifies-41 MACs (1 to authenticate the client and
4f 4+ 1 to validate the OHS state), each replica generates and dérdl MACs (1 to authenticate the reply
to the client and 4 to authenticate OHS state) with a reply to the client, andtlieat verifies 4 + 1 MACs.
We examine both the default read/write requests that udelth@otocol and read-only requests that exploit

the read-only optimization.

Zyzzyva uses fast agreement to drive its latency near thenapfor an agreement protocol—3 one-
way message delays [66, 88, 96]. The experimental resukgyiure 4.4 show that Zyzzyva and Zyzzyvab
achieve significantly lower latency than the other agredrbased protocols, PBFT and HQ. As expected,
Q/U’s avoidance of serialization gives it even better lajeim low-contention workloads such as the one

examined here, though Zyzzyva and PBFT can match Q/U foreebdrequests where all of these protocols
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Figure 4.6: Latency vs. throughput for systems configuradleratef = 1 faults.

can complete in two message delays.

Figure 4.5 shows latency and throughput as we vary offerad. |é\s the figure illustrates, batching in
Zyzzyva, Zyzzyva5, and PBFT increases latency but alseasas peak throughput. Adaptively setting the

batch size in response to workload characteristics is amugvtor future work.

4.5.3 Batching

In this section we examine the effect of varying batch sizethe peak throughputs of Zyzzyva and PBFT.
Figure 4.6 showa that the peak throughput of Zyzzyva sasirat a batch size of 10 whereas the peak
throughput of PBFT saturates at 20. Zyzzyva continues tpastdrm PBFT even with increasing batch

sizes although with a reduced margin.

4.5.4 Fault Scalability

In this section we examine performance of these protocofs e number of tolerated faults, increases.

Figure 4.7 shows the peak throughputs of Zyzzyva, PBFT, H@, @/U (reported throughput) with

increasing number of tolerated faults for batch sizes ofd Hh Zyzzyva is robust to increasirfgand
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Figure 4.7: Fault scalability: Peak throughputs

continues to provide significantly higher throughput th&éimeo systems for the same reasons as explained
in the throughput section. Additionally, as expected far ¢hse with no batching, the overhead of Zyzzyva
increases more slowly than PBFT with increasingecause Zyzzyva requirest23f + 1) cryptographic

operations compared to42(10f + 1) cryptographic operations for PBFT.

Figures 4.8 shows the number of cryptographic operationsgogiest and the number of messages sent
and received per request at the bottleneck server (the prim&ayzzyva, Zyzzyvas, PBFT, and any server
in Q/U and HQ). We believe that for these metrics, the mosrasting regions are whehis small and
when batching is enabled. Not coincidentally, Zyzzyva @enfs well in these situations, dominating all of
the approaches with respect to load at the bottleneck seXsy, whenf is small, Zyzzyva and Zyzzyvab

also have low message counts at the primary.

As f increases, when batching is used, Zyzzyva and ZyzzyvaSikely to remain attractive. One
point worth noting is that message counts at the primary f@z¥va, Zyzzyva5, and PBFT increase fas
increases, while server message counts are constanf fiothQ/U and HQ. In this figure, message counts
do not include the multicast optimization we exploited irr experiments. Multicast reduces the number

of client messages for all protocols by allowing clientsremsmit their requests to all servers in one send.
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Figure 4.8: Fault scalability using analytical model

Multicast also reduces the number of server messages fay¥gzzZyzzyvab, PBFT, and HQ (but not Q/U)
when the primary or other servers communicate with theirgpekm particular, with multicast the primary
sends or receives one message per batch of operations @dditinnal two messages per request regardless

of f.
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We examine other metrics in Appendix F.1 such as messagergptbgraphic overheads at the client
and find, for example, that Zyzzyva improves upon all of thetgeols except PBFT by this metric. These

graphs are omitted due to space constraints.

45,5 Performance During Failures

Zyzzyva guarantees correct execution with any number dtffalients and up td faulty replicas. However,
its performance is optimized for the expected case of fiftee operation. In particular a single faulty
replica can force Zyzzyva to execute the slower 2 phase gobt@yzzyva's protocol, however, remains
relatively efficient in such scenarios. In particular, Zywa's cryptographic overhead increases from 2
Lb” to 3+ Lb” operations per batch without the commit optimization. Hegve commit optimization
reduces the the cryptographic overhead of Zyzzyva frqml;%—l to 2+ Lb“ crypt ops/request. Zyzzyvab'’s

increased fault tolerance ensures that its overheads doarease in such scenarios, remaining ati_fbil

per batch. For comparison, PBFT uses # operations in both this scenario and fault-free.

Figure 4.9 compares throughput with increasing numberdierits for Zyzzyva, Zyzzyva5, PBFT, and
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HQ in the presence of backup server failures. For the case wHes 1, with one failure and no batch-
ing (b =1), Zyzzyva and Zyzzyva5 provide 1.8 and 2.6 times highesughput than PBFT, respectively,
because of additional cryptographic and message overlaadsscribed above. Zyzzyva (with commit
optimization) and Zyzzyva5 continue to outperform PBFTrewgth increased batch size of 10 although
with a reduced margin. However, PBFT performs 15% bettar Hyazyva wthout the commit optimization
because Zyzzyva (8 Lb*l) incurs higher overhead than PBFTA(%). Also, note that Zyzzyva5 per-
forms slightly better than Zyzzyva because the latter im@dditional processing overhead in the commit
phase whereas the former does not need an additional corhasiep For the same reasons as described in
the throughput section, Zyzzyva, Zyzzyva5, and PBFT ofhper HQ. We do not include a discussion of

Q/U in this section as the throughput numbers of Q/U withufais are not reported [45].

A limitation Zyzzyva and Zyzzyva5 share with PBFT (and HQidgrperiods of contention) is that a
faulty primary can significantly prevent progress. Thes®qwmols replace the primary to ensure progress.
Although Q/U avoids having a primary, it shares a correspangulnerability: a faulty client that fails to

adhere to the back-off protocol can impede progress indelfii
4.6 Related Work

Starting with PBFT [58, 111] several systems [45, 63, 86] 12&e explored how to make Byzantine ser-
vices practical. We have discussed throughout the paperdyazyva builds upon these systems and how
it departs from them. As its predecessors, Zyzzyva leveragas inspired by Paxos [90] and by work on
Byzantine quorum systems [94]. In particular, Zyzzyva fagteement protocol is based on recent work on

fast Paxos [66, 88, 96].

Numerous BFT agreement protocols [58, 63, 86, 96, 111, 18 hsedentative executioto reduce the

latency experienced by clients. This optimization alloaglicas to execute a request tentatively as soon as

80



they have collected the Zyzzyva equivalent of a commit fieatie for that request. This optimization may
superficially appear similar to Zyzzyva’'s support $§peculative executionsbut there are two fundamental
differences. First, Zyzzyva’s speculative executionvafiaequests to complete at a client after a single
phase, without the need to compute a commit certificate: rddsiction in latency is not possible with
traditional tentative executions. Second, and more inamdlgt, in traditional BFT systems a replica can
execute a request tentatively only after the replica’stéstaflects the execution of all requests with lower
sequence number, and these requests are all known to be ttedini?]. In Zyzzyva, replicas continue

to execute request speculatively, without waiting to knbat requests with lower sequence numbers have
completed; this difference is what lets Zyzzyva leveragecsfation to achieve not just lower latency but

also higher throughput.

Q/U [45] provides high throughput assuming low concurreincthe system but requires higher number
of replicas than Zyzzyva. HQ [63] uses fewer replicas thald Qit uses multiple rounds to complete an
operation. Both HQ and Q/U fail to batch concurrent requastsincur higher overhead in the presence of

request contention; Singh et al. [124] add a preserialzét® and Q/U to address these issues.

BFT2F [91] explores how to gracefully weaken the consisteyguarantees provided by BFT state ma-
chine replication when the number of faulty replicas exseate third (but is no more than two thirds) of

the total replicas.

Speculator [100] allows clients to speculatively complgberations at the application level and perform
client level rollback. A similar approach could be used imjooction with Zyzzyva to support clients that
want to act on a reply optimistically, rather than waitingtba specified set of responses.

4.7 Conclusion
By systematically exploiting speculation, Zyzzyva extslsignificant performance improvements over ex-

isting BFT agreement protocols. The throughput and latexicXtyzzyva approach the theoretical lower
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bounds for any BFT protocol.
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Chapter 5

SafeStore: A Durable and Practical Storage System

BFT state machine replication techniques provide bettertdbrm availability (ability to access data
when desired) but may fail to provide long-term data duigbilability to store data correctly for long
durations) spanning many years or even decades in the fabmadl range of threats that are possible
over such long periods. Such threats to data durabilityugelconventional hardware and software faults,
environmental disruptions, organizational failures, aclninistrative failures caused by human error or
malice. In this chapter, we present SafeStore, a distobstierage system designed to maintain long-term
data durability using the principle of aggressfaalt isolationalong administrative, physical, and temporal

dimensions.
5.1 Introduction

The design of storage systems that provide data durabifitthe time scale of decades is an increasingly
important challenge as more valuable information is staligdally [14, 49, 114]. For example, data from
the National Archives and Records Administration indicdiat 93% of companies go bankrupt within a
year if they lose their data center in some disaster [7], agbaing number of government laws [12, 32]

mandate multi-year periods of data retention for many tyésformation [16, 104].

Against a backdrop in which over 34% of companies falil to thesir tape backups [6] and over 40% of
individuals do not back up their data at all [43], multi-ddeascale durable storage raises two technical
challenges. First, there exist a broad range of threats tm diarability including media failures [105,

120, 133], software bugs [106, 135], malware [27, 125], @ssor [104, 117], administrator error [73, 101],
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organizational failures [34, 38], malicious insiders [8Z], and natural disasters on the scale of buildings [9]
or geographic regions [15]. Requiring robustness on thie siffadecades magnifies them all: threats that
could otherwise be considered negligible must now be adddesSecond, such a system has to be practical

with cost, performance, and availability competitive withditional systems.

Storage outsourcing is emerging as a popular approach tessldome of these challenges [75]. By
entrusting storage management to a Storage Service Pr¢@8€), where “economies of scale” can min-
imize hardware and administrative costs, individual used small to medium-sized businesses seek cost-
effective professional system management and peace ofwistadvis both conventional media failures and

catastrophic events.

Unfortunately, relying on an SSP is no panacea for long-t@ata integrity. SSPs face the same list of
hard problems outlined above and as a result even brand-onaeg[13, 18] can still lose data. To make
matters worse, clients often become aware of such lossgsafter it is too late. This opaqueness is a
symptom of a fundamental problem: SSPs are separate athaiiivis entities and the internal details of
their operation may not be known by data owners. While mo§ts38ay be highly competent and follow
best practices punctiliously, some may not. By entrustirgjy tdata to back-box SSPs, data owners may free
themselves from the daily worries of storage managementhby also relinquish ultimate control over the
fate of their data. In short, while SSPs are an economic#itacive response to the costs and complexity
of long-term data storage, they do not offer their clientg @md-to-end guarantees on data durability, which

we define as the probability that a specific data object willb®lost or corrupted over a given time period.

To achieve high durability, SafeStore applies aggressitied principle offault isolationwithout com-

promising practicality in terms of cost, performance, availability.
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Aggressive isolation for durability. SafeStore stores data redundantly across multiple SSRs\vamdges
diversity across SSPs to prevent permanent data loss chyssolated administrator errors, software bugs,
insider attacks, bankruptcy, or natural catastrophes.h Wdspect to data stored at each SSP, SafeStore
employs a “trust but verify” approach: it does not interfevih the policies used within each SSP to
maintain data integrity, but it provides audit interface so that data owner retain end-to-end control over
data integrity. The audit mechanism can quickly detect sts1and trigger data recovery from redundant
storage before additional faults result in unrecoverats.| Finally, to guard data stored at SSPs against
faults at the data owner site (e.g. operator errors, sofiwags, and malware attacks), SafeStore restricts
the interface to provide temporal isolation between clierrtd SSPs so that the latter export the abstraction

of write-once-read-many storage.

Making aggressive isolation practical. SafeStore introduces an efficient storage interface toceedet-
work bandwidth and storage cost usingiaiormed hierarchical erasure codingcheme, that, when applied
across and within SSPs, can achieve near-optimal dusab8iafeStore SSPs expose redundant encoding
options to allow the system to efficiently divide storageursdhncies across and within SSPs. Additionally,
SafeStore limits the cost of implementing its “trust butify@rpolicy through an audit protocol that shifts
most of the processing to the audited SSPs and encouragasptbactively measure and report any data
loss they experience. Dishonest SSPs are quickly caudhtigh probability and at little cost to the auditor
using probabilistic spot checks. Finally, to reduce thedwaddth, performance, and availability costs of im-
plementing geographic and administrative isolation, Sefee implements a two-level storage architecture
where a local server (possibly running on the client maghmesed as a soft-state cache, and if the local
server crashes, SafeStore limits down-time by quickly vedag the critical meta data from the remote

SSPs while the actual data is being recovered in the backdrou
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Contributions. We present a highly durable storage architecture that usesvaeplication interface to
distribute data efficiently across diverse set of SSPs areffaative audit protocol to check data integrity.
We demonstrate that this approach can provide high dusabilia way that is practical and economically
viable with cost, availability, and performance compeditwith traditional systems. We demonstrate these
ideas by building and evaluating SSFS, an NFS-based SateSttmrage system. Overall, we show that
SafeStore provides an economical alternative to realizié-oiecade scale durable storage for individuals
and small-to-medium sized businesses with limited ressurdNote that although we focus our attention
on outsourced SSPs, the SafeStore architecture could alspglied internally by large enterprises that

maintain multiple isolated data centers.
5.2 Architecture and Design Principles

The main goal of SafeStore is to provide extremely duraldeage over many years or decades.

5.2.1 Threat model

Over such long time periods, even relatively rare eventsaffent data durability, so we must consider broad

range of threats along multiple dimensions—physical, abstrative, and software.

Physical faults:Physical faults causing data loss include disk media fg§6lts133], theft [33], fire [9],
and wider geographical catastrophes [15]. These faultsesuit in data loss at a single node or spanning

multiple nodes at a site or in a region.

Administrative and client-side faultsAccidental misconfiguration by system administrators T3],
deliberate insider sabotage [37, 51], or business faille@ding to bankruptcy [34] can lead to data corrup-
tion or loss. Clients can also delete data accidentally dryekample, executing “rm -r *”. Administrator

and client faults can be particularly devastating becalieg tan affect replicas across otherwise isolated
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subsystems. For instance [37], a system administrator migtdeleted data but also stole the only backup

tape after he was fired, resulting in financial damages inssxae$10 million and layoff of 80 employees.

Software faults:Software bugs [106, 135] in file systems, viruses [27], wofh25], and Trojan horses
can delete or corrupt data. A vivid example of threats due &abwnare is the recent phenomenon of ran-
somware [30] where an attacker encrypts a user’s data ahthelits the encryption key until a ransom is

paid.

Of course, any of the listed faults may occur rarely. But &t $bale of decades, it becomes risky to
assume that no rare events will occur. It is important to tloéé some of these failures [9, 105, 120] are
often correlated resulting in simultaneous data loss atipkelnodes while others [106] are more likely to

occur independently.

Replication mechanisms optimized for one or the other tydailure may not be optimal in this setting

where both failure types can happen.

Limitations of existing practice. Most existing approaches to data storage face two problbatsate
particularly acute in our target environments of individuand small/medium businesses: (1) they depend

too heavily on the operator or (2) they provide insufficienilf isolation in at least some dimensions.

For example, traditional removable-media-based-systergs tape, DVD-R) systems are labor intensive,
which hurts durability in the target environments becausgrsifrequently fail to back their data up, fail to
transport media off-site, or commit errors in the backugifre process [35]. The relatively high risk of

robot and media failures [3] and slow mean time to recove} §r8 also limitations.

Similarly, although on-site disk-based [4, 23] backup ey& speed backup/recovery, use reliable me-
dia compared to tapes, and even isolate client failures bptenaing multiple versions of data, they are

vulnerable to physical site, administrative, and softwail@res.
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Figure 5.1: SafeStore architecture

Finally, network storage service providers (SSPs) [1, 232Pare a promising alternative as they provide
geographical and administrative isolation from users &g tide the technology trend of falling network
and hardware costs to reduce the data-owner’s effort. Bytdhe still vulnerable to administrative failures
at the service providers [13], organizational failureg.(ebankruptcy [34, 75]), and operator errors [38].
They thus fail to fully meet the challenges of a durable giersystem. We do, however, make use of SSPs

as a component of SafeStore.

5.2.2 SafeStore architecture

As shown in Figure 5.1, SafeStore uses the following desigrtiples to provide high durability by toler-
ating the broad range of threats outlined above while kegthie architecture practical, with cost, perfor-

mance, and availability competitive with traditional sysis.
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Efficiency via 2-level architecture. SafeStore uses a two-level architecture in which the dataeds/
local server ( @in Figure 5.1) acts as a cache and write buffer while durableage is provided by multiple
remotestorage service providerSSPs2 The local server could be running on the client's machine or
a different machine. This division of labor has two conseges. First, performance, availability, and
network cost are improved because most accesses are saradyg; lwe show this is crucial in Section 5.3.
Second, management cost is improved because the requisemerthe local system are limited (local
storage is soft state, so local failures have limited comseges) and critical management challenges are
shifted to the SSPs, which can have excellent economieslsd 8 managing large data storage systems [1,

36, 75].

Aggressive isolation for durability. We apply the principle of aggressive isolation in order totect data

from the broad range of threats described above.

e Autonomous SSPsSafeStore stores data redundantly across multiple autome8SPs@® in Fig-
ure 5.1). Diverse SSPs are chosen to minimize the likelilma@bmmon-mode failures across SSPs.
For example, SSPs can be external commercial service gmevitl, 2, 22, 31], that are geographically
distributed, run by different companies, and based on reiffesoftware stacks. Although we fo-
cus onout-sourcedSSPs, large organizations can use our architectureimvburcedstorage across

autonomous entities within their organization (e.qg.,ad#ht campuses in a university system.)

e Audit: Aggressive isolation alone is not enough to provide highalility as data fragment failures
accumulate over time. On the contrary, aggressive isolatam adversely affect data durability be-
cause the data owner has little ability to enforce or moriierSSPs’ internal design or operation to
ensure that SSPs follow best practices. We provide an erddaudit interfacedin Figure 5.1) to

detect data loss and thereby bound mean time to recover (WM ilich in turn increases mean time
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to data loss (MTTDL). In Section 5.4 we describe our audirifsitce and show how audits limit the

damage that poorly-run SSPs can inflict on overall durgbilit

¢ Restricted interfaceSafeStore must minimize the likelihood that erroneous atpmr of one subsys-
tem compromises the integrity of another [95]. In particuleecause SSPs all interact with the local
server, we must restrict that interface. For example, wetprggect against careless users, mali-
cious insiders, or devious malware at the clients or localesehat mistakenly delete or modify data.
SafeStore’s restricted SSP interfaggrovides temporal isolation via the abstraction of vers@n

write-once-read-many storage so that a future error cattanoiage existing data.

Making isolation practical. Although durability is our primary goal, the architecturaush still be eco-

nomically viable.

e Efficient data replication: The SafeStore architecture defines a new interface thawsltbe lo-
cal server to realize near-optimal durability usinfprmed hierarchical erasure codingiechanism,
where SSPs expose internal redundancy. Our interface dvesstrict SSP’s autonomy in choosing
internal storage organization (replication mechanismymnelancy level, hardware platform, software
stack, administrative policies, geographic location,)et8ection 5.3 shows that our new interface
and replication mechanism provides orders of magnitudebetrability tharoblivious hierarchical

encodingbased systems using existing black-box based interfac@s31].

¢ Efficient audit mechanismto make audits of SSPs practical, we use a novel audit prictioag like
real world financial audits, uses self-reporting wherebgitan offloads most of the audit work to
the auditee (SSP) in order to reduce the overall system res®wequired for audits. However, our

audit takes the form of a challenge-response protocol wittasional spot-checks that ensure that an
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auditee that generates improper responses is quicklywdised and that such a discovery is associated

with a cryptographic proof of misbehavior [46].

e Other optimizations:We use several optimizations to reduce overhead and doertinorder to
make system practical and economically viable. First, weeaifast recovery mechanism to quickly
recover from data loss at a local server where the local sepraes online as soon as the meta-data
is recovered from remote SSPs even while data recovery igygm in the background. Second, we
use block level versioning to reduce storage and networkheaal involved in maintaining multiple

versions of files.

5.2.3 Economic viability
In this section, we consider the economic viability of owrage system architecture in two different set-
tings, outsourced storage using commercial SSPs and fedestorage using in-house but autonomous

SSPs, and calibrate the costs by comparing with a lessdgu@tal storage system.

| | Standalone | SafeStore In-house | SafeStore SSP (Cost+Profit)
Storage $30/TB/month [36] $30/TB/month [36] $150/TB/month [1]
Network NA $200/TB [24] $200/TB [1]
Admin 1 admin/[1,10,100]TB[102] 1 admin/100TB [102] Included [1]

Table 5.1: System cost assumptions. Note tHatasmdalonesystem makes no provision for isolated backup
and is used for cost comparison only. Also, we take into ataration the variable administrative cost for
Standalonesystem [102] used by inefficient (1 admin per 1 TB of data stpngpical (1 admin per 10 TB),
and efficient (1 admin per 100 TB) internet services.

We consider three components to storage cost: hardwarerceso administration, and—for outsourced
storage—yprofit. Table 5.1 summarizes our basic assumpt@mna straw-manStandalonelocal storage
system and for the local owner and SSP parts of a SafeStamnsydn column B, we estimate the raw

hardware and administrative costs that might be paid by dmirse SSP. We base our storage hardware

costs on estimated full-system 5-year total cost of ownpr6hCO) costs in 2006 for large-scale internet
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Figure 5.2: Comparison of SafeStore cost v. accesses tot@esturage (as a percentage of straw-man
Standalone local storage) varies.

services such as Internet Archive [36]. Note that using #messtorage cost for a large-scale, specialized
SSP and for smaller data owners and Standalone systemssereative in that it may overstate the relative
additional cost of adding SSPs. For network resources, we bar costs on published rates in 2006 [24].
For administrative costs, we use Gray’'s estimate that higfilcient internet services require about 1 ad-
ministrator to manage 100TB while smaller enterprises wiedlly closer to one administrator per 10TB
but can range from one per 1TB to 1 per 100TB [102] (Gray ndst the real cost of storage is man-
agement” [102]). Note that we assume that by transformicgllstorage into a soft-state cache, SafeStore
simplifies local storage administration. We thereforeneste local hardware and administrative costs at 1

admin per 100TB.
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In Figure 5.2, the storage cost of in-house SSP includesS8akes hardware (cpu, storage, network)
and administrative costs. We also plot the straw-man lawahge system with 1, 10, or 100 TB per ad-
ministrator. The outsourced SSP lines show SafeStore asstsning SSPs prices include a profit by using
Amazon’s S3 storage service pricing. Three points standrotdt, additional replication to SSPs increases
cost (as inter-SSP data encoding, as discussed in sec8oisFaised from (3,2) to (3,1)), and the net-
work cost rises rapidly as the remote access rate incre@bese factors motivate SafeStore’s architectural
decisions to (1) use efficient encoding and (2) minimize oetwraffic with a large local cache that fully
replicates all stored state. Second, when SSPs are ableltteconomies of scale to reduce administra-
tive costs below those of their customers, SafeStore carceedverall system costs even when compared
to a less-durable Standalone local-storage-only systemrd,Teven for customers with highly-optimized
administrative costs, as long as most requests are filtgredeblocal cache, SafeStore imposes relatively

modest additional costs that may be acceptable if it susceddhproving durability.

The rest of the chapter is organized as follows. First, irtiSe&.3 we present and and evaluate our novel
informed hierarchical erasure codingiechanism. In Section 5.4, we address SafeStore’s auddagmio
Later, in Section 5.5 we describe the SafeStore interfacgsnaplementation. We evaluate the prototype in

Section 5.6. Finally, we present the related work in Sedian
5.3 Data replication interface
This section describes a new replication interface to aehiear-optimal data durability while limiting the

internal details exposed by SSPs, controlling replicatiost, and maximizing fault isolation.

As shown in Figure 5.3, SafeStore uses hierarchical engaimprising inter-SSP and intra-SSP redun-
dancy: First, it stores data redundantly across differ&R<sS and then each SSP internally replicates data
entrusted to it as it sees fit. Hierarchical encoding is tharabway to replicate data in our setting as it tries

to maximize fault-isolation across SSPs while allowing S@&Btonomy in choosing an appropriate internal
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Figure 5.3: Hierarchical encoding

data replication mechanism. Different replication meddras such as erasure coding [110], RAID [61],
or full replication can be used to store data redundantiyt&riSSP and intra-SSP levels (any replication
mechanism can be viewed as some form of (k,l) encoding [¥28]} furability perspective, where | out of k
encoded fragments are required to reconstruct data). Howievequires proper balance between inter-SSP
and intra-SSP redundancies to maximize end-end durafulity fixed storage overhead. For example, con-
sider a system willing to pay an overall 6x redundancy cosigui8 SSPs with 8 nodes each. If, for example,
each SSP only provides the option of (8,2) intra-SSP engoditen we can use at most (3,2) inter-SSP
encoding. This combination gives gives 4 9's less durgbitit the same overhead compared to a system

that uses (3,1) encoding at the inter-SSP level and (8,4demg at the intra-SSP level at all the SSPs.

5.3.1 Model

The overall storage overhead to store a data objécbjsmg+ny /my +...nk_1/Mk_1) /I, when a data object
is hierarchically encoded (as shown in Figure 5.3) ugiug) erasure coding acrosSSPs, and SSPs 0

throughk — 1 internally use erasure coding%, M), (N1,M),...{Nk-1, M_1), respectively. We assume that
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the number of SSPs(K) is fixed and a data object is (possiblynaantly) stored at all SSPs. We do not
allow varying k as it requires additional internal infornoat about various SSPs (MTTF of nodes, number
of nodes, etc.) which may not be available in order to cho@sienal set of k nodes. Instead, we tackle the
problem of finding optimal distribution of inter-SSP andraaSSP redundancies for a fixed k. The end-to-
end data durability, as explained in Appendix B, can be edtihanalytically as a function of these variables
using following analytical model that considers two claseéfaults. Node faultse.g. physical faults like

sector failures, disk crashes, etc.) occur within an SSPaffiedt just one fragment of an encoded object
stored at the SSBSP faultge.g., administrator errors, organizational failuresygyaphical failures, etc.)

are instead simultaneous or near-simultaneous failueggdke out all fragments across which an object is

stored within an SSP.

To illustrate the approach, we consider a baseline systasisting of 3 SSPs with 8 nodes each. We use
a baseline MTTDL of 10 years due to invidual node faults an@d yi€ars for SSP failures and assume both
are independent and identically distributed. We use MTTHRath of 2 days (e.g. to detect and replace a
faulty disk) for node faults and 10 days for SSP failures. We the probability of data loss of an object
during a 10 year period to characterize durability becanpeessing end-to-end durability as MTTDL can
be misleading [61] (although MTTDL can be easily computedirithe probability of data loss as shown in
Appendix B. Later, we change the distribution of nodes a&x®SPs, MTTDL and MTTR of node failures
within SSPs, to model diverse SSPs. The conclusions thatawve ldere are general and not specific to this
setup; we find similar trends when we change the total numbeodes, as well as MTTDL and MTTR of

correlatedSSP faults
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Figure 5.4: (a) Durability with Black-box interface with &# intra-SSP redundancy (b) Informed hierarchi-
cal encoding

5.3.2 Informed hierarchical encoding

A client can maximize end-to-end durability if it can contbmth intra-SSP and inter-SSP redundancies.
However, current black-box storage interfaces exporteddmgmercial outsourced SSPs [1, 2, 31] do not
allow clients to change intra-SSP redundancies. With sudhck-box interface, clients perforoblivious
hierarchical encodingas they control only inter-SSP redundancy. Figure 5.4@tsthe optimal durability
achieved by aideal system that has full control of inter-SSP and intra-SSPrddacy and a system using
oblivious hierarchical encodingThe latter system has 3 lines for different fixed intra-S&Rindancies of

1, 2, and 4, where each line has 3 points for each of the 3 diffénter-SSP encodings((3,1), (3,2) and (3,3))
that a client can choose with such a black-box interface. doviclusions emerge. First, for a given storage
overhead, the probability of data loss of ideal system is often orders of magnitude lower than a system
usingoblivious hierarchical encodingwvhich therefore is several 9's short of optimal durahiliBecond, a

system usingblivious hierarchical encodingften requires 2x-4x more storage thdeal to achieve the
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same durability.

To improve on this situation, SafeStore describes an mterthat allows clients to realize near-optimal
durability usinginformed hierarchical encodingpy exercising additional control on intra-SSP redundan-
cies. With this interface, each SSP exposes the set of radagydactors that it is willing to support. For
example, an SSP with 4 internal nodes can expose redundacicys of 1 (no redundancy), 1.33, 2, and 4

corresponding, respectively, to the (4,4), (4,3), (4,2) @h1) encodings used internally.

Our approach to achieve near-optimal end-to-end dunalifitnotivated by the stair-like shape of the
curve tracking the durability afleal as a function of storage overhead (Figure 5.4(a)). For a Bkedhge
overhead, there is a tradeoff between inter-SSP and irBR+8dundancies, as a given overh€achan be
expressed as/1x (ro+ri1+..re—1), when(k,l) encoding is used acro&sSSPs in the system with intra-
SSP redundancies oftorg_; (wherer; = nj/my). Figure 5.4(a) shows that durability increases dramifitica
(moving down one step in the figure) when inter-SSP redundaneases, but does not improve appre-
ciably when additional storage is used to increase intrfia-&8undancy beyond a threshold that is close to
but greater than 1. This observation is backed by matheatai@lysis as explained in observation 1 of

Appendix B.

Hence, we propose a heuristic biased in favor of spendirmrggtao maximize inter-SSP redundancy as

follows:

e First, for a given numbek of SSPs, we maximize the inter-SSP redundancy factor bynmaimg |.
In particular, for each SSP we choose the minimum redundancy faatas 1 exposed by, and we

computel asl = |(rh+r)+...rl_,)/O].

e Next, we distribute the remaining overhe&@H 1/l x (rp+r} +..r,_;)) among the SSPs to minimize

the standard deviation of the intra-SSP redundancy factohat are ultimately used by the different
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Figure 5.5: (a) Informed hierarchical encoding with norifamm distribution (b) Durability with different
MTTDL and MTTR for node failures across SSPs

SSPs. We minimize standard deviation by initializing it ke lowest possible value (0%) and then
distribute overhead across all intra-SSP redundancidsasthie deviation is within the value and new
intra-SSP redundancies are allowed by SSPs. If we do not fipa$sible set of allowable intra-SSP
redundancies then we relax standard deviation constrgimmdveasing it gradually and follow the

above step until we find an allowable set of intra-SSP reducida.

The first rule is used to maximize inter-SSP redundancy aedséitond rule is to ensure that intra-SSP
redundancies are uniformly distributed across SSPs. W tdystribute redundancy uniformly across all
SSPs otherwise SSPs with small or no redundancy tend to @dieets faster and require expensive inter-

SSP recovery to recover from such failures.

Figure 5.5(b) shows that this new approach, which weinfdrmed hierarchical codingachieves near
optimal durability in a setting where three SSPs have theesanmber of nodes (8 each) and the same

MTTDL and MTTR for internal node failures. These assumpiohowever, may not hold in practice,
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as different SSPs are likely to have a different number ofespdvith different MTTDLs and MTTRs.
Figure 5.5(a) shows the result of an experiment in which S&Re a different number of nodes—and,
therefore, expose different sets of redundancy factors.stifaise 24 nodes, but we distribute them non-
uniformly (14, 7, 3) across the SSPs: informed hierarch&zadoding continues to provide near-optimal
durability. This continues to be true even when there is awskeMTTDL and MTTR (due to node failures)
across SSPs. For instance, Figure 5.5(b) uses the sameniiormrunode distribution of Figure 5.5(a), but
the (MTTDL, MTTR) values for node failures now differ acraS§Ps—they are, respectively, (10 years,
2 days), (5 years, 3 days), and (3 years, 5 days). Note thatssigning the worst (MTTDL, MTTR) for
node failures to the SSP with least number of nodes, we aigdaEmng a worst-case scenario for informed

hierarchical encoding.
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Figure 5.6: Informed hierarchical encoding with MTTDL adrrelated failuresset to 10 years with MTTR
of 5 days,

We also study the sensitivity of our results to MTTDL and MTdRcorrelated failuresand total number
of nodes in the system. All these results confirm the conmfugihat a simple interface that allows SSPs

to expose the redundancy factors they support is all it isleg¢o achieve, through our simple informed
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hierarchical encoding mechanism, near optimal durabiis/shown in Figures 5.6 and 5.7, our conclusions
continues to hold: (1) when MTTDL due tmrrelated failuress changed to 10 years from 100 years and
MTTR is changed from 10 days to 5 days, (2) when we increaseuhber of nodes, and (3) when they are

non-uniformly distributed with increased number of nodes.
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Figure 5.7: Informed hierarchical encoding (a) With 69 totades distributed uniformly across 3 SSPs, (b)
With 69 nodes distributed non-uniformly across 3 SSPs with20, and 39 nodes each.

These results are not surprising in light of our discussibfigure 5.4(a): durability depends mainly
on maximizing inter-SSP redundancy and it is only slightfieeted by the internal data management of

individual SSPs.

SSPs can provide such an interface as part of their SLA (elevel agreement) and charge clients based
on the redundancy factor they choose when they store a dmet.offhe interface is designed to limit the
amount of detail that an SSP must expose about the intergahi@ation. For example, an SSP with 1000
servers each with 10 disks might only expose redundancyrmgpiil.0, 1.1, 1.5, 2.0, 4.0, 10.0), revealing

little about its architecture. Note that the proposed fatar could allow a dishonest SSP to cheat the client
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by using less redundancy than advertised. The impact of sleh advertising is limited by two factors:
First, as observed above, our design is relatively insgagib variations in intra-SSP redundancy. Second,

the end to end audit protocol described in the next sectinitdithe worst-case damage any SSP can inflict.
5.4 Audit

We need an effective audit mechanism to quickly detect datsel at SSPs so that data can be recovered
before multiple component failures resulting in unrecabde loss. An SSBhould safeguard the data
entrusted to it by following best practices like monitorimgrdware health [122], spreading coded data across
drives and controllers [61] or geographically distributkatta centers, periodically scanning and correcting
latent errors [121], and quickly notifying a data owner off dost data so that the owner can restore the
data from other SSPs and maintain a desired replication. [&l@wvever, the principle of isolation argues
against blindly assuming SSPs are flawless system designdrgperators for two reasons. First, SSPs are
separate administrative entities, and their internalildedd operation may not be verifiable by data owners.
Second, given the imperfections of software [27, 106, 18pkrators [73,101], and hardware [61, 133],
even name-brand SSPs may encounter unexpected issueteatig kise customer data [13, 18]. Auditing
SSP data storage embodies the end-to-end principle (irsakemactly the form it was first described) [116],
and frequent auditing ensures a short Mean Time To DetecT®) Tata loss, which helps limit worst-case
Mean Time To Recover (MTTR). It is important to reduce MTTRoirder to increase MTTDL as a good

replication mechanism alone cannot improve MTTDL over gltme-duration spanning decades.

The technical challenge to auditing is to provide an endftd-guarantee on data integrity while min-
imizing cost. These goals rule out simply reading storec @atross the network as too expensive (see
Figure 5.2) and, similarly, just retrieving a hash of theadas not providing an end-to-end guarantee (the
SSP may be storing the hash not the data.). Furthermoreuthiepsotocol must work with data erasure-

coded across SSPs, so a simple scheme that sends a challengéyile identical replicas and then compare
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the responses such as those in LOCKSS [95] and Samsara [}t deork. We must therefore devise an

inexpensive audit protocol despite the fact that no twoicaplstore the same data.

To reduce audit cost, SafeStore’s audit protocol borrovisadeg)y from real-world audits: we push most
of the work onto the auditee and ask the auditor to spot cheslatditee’s reports. Our reliance on self-
reporting by SSPs drives two aspects of the protocol dedtinst, the protocol is believed to tshortcut
free-audit responses from SSPs are guaranteed to embody end-Htchecks on data storage— under the
assumption that collision resistant modification detectiodes [97] exist. Second, the protocatiternally
verifiableand non-repudiable—falsified SSP audit replies are quickly detected (with mgbbability) and

deliberate falsifications can be proven to any third party

5.4.1 Audit protocol

The audit protocol proceeds in three phases: (1) data stpofaproutine audit, and (3) spot check. Note that
the auditor may be co-located with or separate from the avwrmrexample, audit may be outsourced to an
external auditor when data owners are offline for extendeidg®e To authorize SSPs to respond to auditor
requests, the owner signs a certificate granting auditgitghthe auditor’s public key, and all requests from
the auditor are authenticated against such a certificagsdthuthentication handshakes are omitted in the

description below.) We describe the high level protocokhaerd detail it in Appendix C.

Data storage. When an object is stored at an SSP, the SSP signs and retuires data owner geceipt
that includes the object ID, cryptographic hash of the datal storage expiration time. The data owner
in turn verifies that the signed hash matches the data it sehtheat the receipt is not malformed with an

incorrect id or expiration time. If the data and hash fail tatah, the owner retries sending the write message

IWe assume that provably deliberate falsification can bespeui via contractual or other out-of-band means [107], btatits
are outside the scope of this paper.
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(data could have been corrupted in the transmission); tegédailures indicate a malfunctioning SSP and
generate a notification to the data owner. As we detail ini@e&t5, SSPs do not provide a delete interface,
so the expiration time indicates when the SSP will garbadleatdhe data. The data owner collects such

valid receipts, encodes them, and spreads them across @3Rsdble storage.

Routine audit. The auditor sends to an SSP a list of object IDs and a randolega. The SSP computes

a cryptographic hash on both the challenge and the data. $Res8nds a signed message to the auditor
that includes the object IDs, the current time, the chableragnd the hash computed on the challenge and
the data ki (challenget dataypjig)). The auditor buffers the challenge responses if the ngessare well-
formed, where a message is considered to be well-formedcé b the following conditions are true: the
signature does not match the message, the response witlaegepiably stale timestamp, the response with
the wrong challenge, or the response indicates error code (e SSP detected data is corrupt via internal
checks or the data has expired). If the auditor does notweegiy response from the SSP or if it receives a
malformed message, the auditor notifies the data ownerhenditta owner reconstructs the data via cached
state or other SSPs and stores the lost fragment again. @fe;ahe owner may choose to switch SSPs
before restoring the data and/or may extract penaltiesruheé@ service level agreement (SLA) with the

SSP, but such decisions are outside the scope of the protocol

We conjecture that the audit response is shortcut free: &8t possess object’s data to compute the
correct hash. An honest SSP verifies the data integrity agtiia challenge-free hash stored at the creation
time before sending a well-formed challenge responseelirttegrity check fails (data is lost or corrupted) it
sends the error code for lost data to the auditor. Howedist®nesSSP can choose to send a syntactically
well-formed audit response with bogus hash value when tteeidaorrupted or lost. Note that the auditor
just buffers well-formed messages and does not verify ttegiity of the data objects covered by the audit

in this phase. Yet, routine audits serve two key purposest, kihen performed against honest SSPs, they
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provide end-to-end guarantees about the integrity of tha dijects covered by the audit. Second, they
force dishonest SSPs to produce a signed, non-repudiatmstnt about the integrity of the data objects

covered by the audit.

Spot check. Ineach round, after it receives audit responses in themeuatidit phase, the auditor randomly
selectsn% of the objects to be spot checked. The auditor then rerieaeh object’s data (via the owner’s
cache, via the SSP, or via other SSPs) and verifies that tipognaphic hash of the challenge and data
matches the challenge response sent by the SSP in the reuitiiephase. If there is a mismatch, the
auditor informs the data owner about the mismatch and pesvide signed audit response sent by the SSP.
The data owner then can create an externally-verifiablef momisbehavior (POM) [83] against the SSP:
the receipt, the audit response, and the object’'s data. rticplar, the receipt is a signed statement with a
hash of the data; the audit reply a signed claim to be stohaglata and that a hash across a challenge and
the data has a particular value; and the data allows anyoverifg that the receipt and audit reply refer to
that data but that the challenge computation was incoriMmte that SafeStore local server encrypts all data
before storing it to SSPs, so this proof may be presentedrtbpghrties without leaking the plaintext object
contents. Also, note that our protocol works with erasurdirm as the auditor can reconstruct the data to

be spot checked using redundant data stored at other SSPs.

5.4.2 Durability and cost

In this section we examine how the low-cost audit protoauits the damage from faulty SSPs. The Safe-
Store protocol specifies that SSPs notify data owners imatelgliof any data loss that the SSP cannot in-
ternally recover so that the owner can restore the desigtaéon level using redundant data. Figures 5.4

and 5.5 illustrate the durability of our system when the SiBRswv the requirement and immediately report
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Figure 5.8: (a) Time to detect SSP data loss via audit witliimgramounts of resources dedicated to audit
overhead assuming honest SSPs. (b) Durability with varig@D. (c) Impact on overall durability with

a dishonest SSP. In (a) and (c) , we use the same hardware @dst as in Figure 5.2 for disk capacity and

WAN network transfers, add a cost of $0.031 per million ofiere for cryptographic operations—based on
cryptographic benchmark results [5] for AMD opteron andigsa conservative estimate of cpu cost of $850
(for a branded 1U rack server cost [42] which includes 1T disst although we already included storage
cost) with a 5 year TCO, add a cost of $0.027 per million IO apiens for disk reads — using a conservative
estimate for disk cost of $1000/TB with 100 operations/sét & 10 year life time, and assume 20% of

the SSP’s data are read/written per month by the owner (@&pom audits). In (c) we assume auditing is
given upto 20% of total storage cost.
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failures. As explained below, Figure 5.8-(a) and (b) shaat 8afeStore still provides excellent data durabil-
ity with low audit cost, if a data owner is unlucky and selegpgssiveSSP that violates the immediate-notify
requirement and waits for an audit of an object to report ithiat missing. Figure 5.8-(c) shows that if a
data owner is really unlucky and selectdiashonestSSP that first loses some of the owner’s data and then
lies when audited to try to conceal that fact, the owner's daistill very likely to emerge unscathed. We
evaluate our audit protocol with 1TB of data stored redutigactross three SSPs with inter-SSP encoding

of (3,1) (Appendix E has results for (3,2) encoding).

5.4.3 Protocol analysis when SSPs are altruistic

First, assume that SSPs grassiveand wait for an audit to check data integrity. Because theopob uses
relatively cheap processing at the SSP to reduce datadrarefross the wide area network, it is able to scan
through the system’s data relatively frequently withousiray system costs too much. Figure 5.8-(a) plots
the mean time to detect data loss (MTTD) giassiveSSP as a function of the cost of hardware resources
(storage, network, and cpu) dedicated to auditing, expreas a percentage of the cost of the system’s total
hardware resources as detailed in the caption. We also harfydction of objects that are spot checked in
each audit rounda) for both the cases with local (co-located with the data ayvaad remote (separated
over WAN) auditors. We reach following conclusions: (1) Aes wcrease the audit budget we can audit
more frequently and the time to detect data loss falls rgp{@) audit costs with local and remote auditors
is almost the same whem is less than 1%. (3) The audit cost with local auditor doesvaoy much
with increasinga (as there is no additional network overhead in retrievinig di@m the local data owner)
whereas the audit cost for the remote auditor increaseditbasingx (due to additional network overhead

in retrieving data over the WAN). (4) Overall, if a system aties 20% of resources to auditing, we can

detect a lost data block within a week (with a local or a renaatditor witha = 1%).
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Given this information, Figure 5.8-(b) shows the modestaoin overall data durability of increasing
the time to detect and correct such failures when we assuat@ifSSPs arpassiveand SafeStore relies

on auditing rather than immediate self reporting to trigdga recovery.

5.4.4 Protocol analysis when SSPs are selfish

Now consider the possibility of an SSP trying to brazen ity #tmough an audit of data it has lost using a
made-up value purporting to be the hash of the challenge atiad the BAR model [46] argues for reasoning
about systems spanning multiple administrative domairasisyming that most entities are rational and will
act to maximize their utility and that a small number may be®@itine and may act arbitrarily.he audit
protocol encourages rational SSPs that lose data to redpamatlits honestly. In particular, we prove the
following theorem in Appendix D that under reasonable aggions about the penalty for an honest failure
versus the penalty for generating a proof of misbehavioMp,@ rational SSP will maximize its utility [46]

by faithfully executing the audit protocol as specified.

Theorem 2. SafeStore audit protocol ensures that the rational SSPBY$8n selfishly deviate from the
protocol to maximize their own benefits) follow the protobgl(1) attempting to store data reliably and
(2) responds to audit requests honestly assuming an SLApeaifies appropriate penalties relative to the

underlying cost of storing data. cost model.

5.4.5 Protocol analysis when SSPs are Byzantine

But suppose that through misconfiguration, malfunctionmatice, a node first loses data and then issues
dishonestaudit replies that claim that the node is storing a set ofatbjéhat it does not have. The spot
check protocol ensures that if a node is missing even a smaatidn of the objects, such cheating is quickly
discovered with high probability. Furthermore, as thattien increases, the time to detect falls rapidly.

The intuition is simple: the probability of detecting a diskest SSP itk audits is given by
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pc=1-(1-p)

wherep is the probability of detection in an audit, which is given by

30 (1) (n )

,(if n>m)

3 (D) (hD)
()

where N is the total number of data blocks stored at an SSRhe isumber of blocks that are corrupted or

p= ,(if n<m)

lost and m is the number of blocks that are spot cheaxe@n/N) x 100.

Figure 5.8-(c) shows the overall impact on durability if @ledhat has lost a fraction of objects maximizes
the time to detect these failures by generatiighonestudit replies. We fix the audit budget at 20% and
measure the durability of SafeStore with local auditor Ijvaitat 100%) as well as remote auditor (wdkat
1%). We also plot the durability witbracle detectomhich detects the data loss immediately and triggers
recovery. Note that theracle detectotine shows worse durability than the lines in Figure 5.8kbfause
(b) shows durability for a randomly selected 10-year pevitile (c) shows durability for a 10-year period
that begins when one SSP has already lost data. Withouiragdiio audi), there is significant risk of data
loss reducing durability by three 9's comparedatacle detector Using our audit protocol witliemote
auditor, the figure shows that a cheating SSP can introduce a nomgidglprobability of small-scale data
loss because it takes multiple audit rounds to detect tteedsst spot checks only 1% of data blocks. But
that the probability of data loss falls quickly and comesselotooracle detectodine (with in one 9 of
durability) as the amount of data at risk rises. Finallyfhvatocal auditor, data loss is detected in one audit
round independent of data loss percentage at the dishoB8&s & a local auditor can spot check all the

data. In the presence of dishonest SSPs, our audit protogobies durability of our system by two 9's
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WriteReceiptwrite (ID oid, byte data([], int64 size
int32 type, int64 expire);

ReadReplyead(ID oid, int64 size, int32 type)

AttrReply getattr (ID oid);

TTLReceiptextend expire(ID oid, int64 expire);

Table 5.2: SSP storage interface

over a system with no audit at an additional audit cost of 208. The overall durability of our system

improves with increasing audit budget and approachesrtide detectotine as described in Appendix E.

5.5 SSFS

We implement SSFS, a file system that embodies the SafeSuhiteature and protocol. In this section, we

first describe the SSP interface and our SSFS SSP implenoent&hen, we describe SSFS’s local server.

55.1 SSP

As Figure 5.1 shows, for long-term data retention SSFS Isealers store data redundantly across admin-
istratively autonomous SSPs using erasure coding or fplicaion. SafeStore SSPs provide a simple yet

carefully defined object store interface to local servershasvn in Table 5.2.

Two aspects of this interface are important. First, it pdegi non-repudiable receipts for writes and
expiration extensions in order to support our spot-chexdeld audit protocol. Second, it providemporal
isolation to limit the data owner’s ability to change data that is cuilse stored [95]. In particular, the
SafeStore SSP protocol (1) gives each object an absoluteatap time and (2) allows a data owner to

extend but not reduce an object’s lifetime.

The temporal isolation guarantee is as follows: if an SSRasrg a desired set of data at tihean
owner can ensure that the current version is accessibleamytidesired time in the future even if the local

server suffers an arbitrary failure.
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This interface supports what we expect to be a typical usatierp in which an owner creates a ladder of
backups at increasing granularity [117]. Suppose the owisdres to maintain yearly backups for each year
in the past 10 years, monthly backups for each month of thecuyear, weekly backups for the last four
weeks, and daily backups for the last week. Using the loaakss snapshot facility (see Section 5.5.2),
on the last day of the year, the local serveites all current blocks that are not yet at the SSP with an
expiration date 10-years into the future and also iteratessa the most recent version of all remaining
blocks and sendsxtendexpirerequests with an expiration date 10-years into the futumil&ly, on the
last day of each month, the local server writes all new blaukd extends the most recent version of all
blocks; notice that blocks not modified during the currerdrymay already have expiration times beyond
the 1-year target, but these extensions will not reducetitinis. Similarly, on the last day of each week,
the local server writes new blocks and extends deadlindseofurrent version of blocks for a month. And
every night, the local server writes new blocks and extem@sllihes of the current version of all blocks for

a week. Of course, SSPs ignaetendexpirerequests that would shorten an object’s expiration time.

SSP implementation. We have constructed a prototype SSFS SSP that supports thi déatures de-
scribed in this paper including the interface for servers e interface for auditors. Internally, each SSP
spreads data across a set nodes using erasure coding wdimaaacy level specified for each data owner’s

account at account creation time.

For compatibility with legacy SSPs, we also implement a dified SSP interface that allows data owners
to store data to Amazon’s S3 [1], which provides a simple wersioned read/write/delete interface and

which does not support our optimized audit protocol.

Issues. There are three outstanding issues in our current impleatient We believe all are manageable.
First, the approach relies on prompt failure/intrusioredgéon: the shorter the period of time between when

a fault mistakenly deletes/modifies an object and the owerdizes that she would prefer an older version,
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the more current backup that will be available. For simplifes (e.g., total disk failure), it will be easy
for a data owner to quickly notice a problem. For more comfikires (e.g., malware that randomly
modifies one bit in one file per day), detecting the problem agsardifficult. We do not advance the state
of the art in intrusion detection or fault detection, but we@urage data owners to make use of available

tools [112, 122].

Second, in practice, it is likely that SSPs will provide sopnetocol for deleting data early. We assume
that any such out-of-band early-delete mechanism is direfesigned to maximize resistance to erroneous
deletion by the data owner. For concreteness, we assumthéhphlyment stream for SSP services is well
protected by the data owner and that our SSP will delete datla®s after payment is stopped. So, a data
owner can delete unwanted data by creating a new accouningog subset of data from the old account to
the new account, and then stopping payment on the old acchlore sophisticated variations (e.g., using
threshold-key cryptography to allow a quorum of indepemndeiministrators to sign off on a delete request)

are possible.

Third, SSFS is vulnerable to resource consumption attadisough an attacker who controls an owner’s
local server cannot reduce the integrity of data stored BsSthe attacker can send large amounts of long-
lived garbage data and/or extend expirations farther tieametl for large amounts of the owner’s data stored
at the SSP. We conjecture that SSPs would typically emplayotagsystem to bound resource consumption
to within some budget along with an out-of-band early defeézhanism such as described in the previous

paragraph to recover from any resulting denial of servitacht

5.5.2 Local Server

Clients interact with SSFS through a local server. The SSkESlI Iserver is a user level file system that

exports the NFS 2.0 interface to its clients. The local gesegves requests from local storage to improve
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the cost, performance, and availability of the system. Reratrage is used to store data durably to guard
against local failures. The local server encrypts (usingh$ldnd 1024 bit Rabin key signature) and en-
codes [110] (if data is not fully replicated) all data befeending it to remote SSPs, and it transparently
fetches, decodes and decrypts data from remote storagis ifdt present in the local cache. Our imple-
mentation thus supports policies that reduce local spageadés by garbage collecting cold objects, but

exploring such policies is future work; our prototype losatver simply stores local copies of all objects.

All local server state except the encryption key and list 8PS is soft state: given these items, the local
server can recover the full filesystem. We assume both aredstait of band (e.g., the owner burns themto a
CD at installation time and stores the CD in a safety depasi}.bA more convenient (and thus more robust
in terms of data durability) but lower-security alternatig to remember the list of SSPs and to encrypt the

key with a password, erasure code it, and store the key fragnewell-known object IDs at the SSPs.

Snapshots:In addition to the standard NFS calls, the SSFS local seresiges a snapshot interface [23]
that supports file versioning for achieving temporal isolato tolerate client or administrator failures. A
shapshot stores a copy in the local cache and also redupdamités encrypted, erasure-coded data across

multiple SSPs using the remote storage interface.
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Local storage is structured carefully to reduce storagepanidrmance overheads for maintaining multi-
ple versions of files. SSFS uses block-level versioning I28] to reduce storage overhead by storing only
modified blocks in the older versions when a file is modified. éach old version, SSFS maintainblack
maskandsizein a meta-data file for the older version. Then, reads of tlieeativersion see no overhead,
and reads of the older version are satisfied by starting Wwélotd version and then fetching data blocks not
present in the old version from later versions by sequéntciecking the later versions until the block is
found [108]. And as an obvious extension for the common chfkes modified by appends: on an append,

SSFS needs only to store the old size (and not the block masi) blocks are stored in later versions.

Other optimizations: SSFS uses a fast recovery optimization to recover quickignfremote storage
when local data is lost due to local server failures (dislsloes, fire, etc.) The SSFS local server recovers
quickly by coming online as soon as all metadata informatibrectories, inodes, and old-version informa-
tion) is recovered and then fetching file data to fill the locathe in the background. If a missing block
is requested before it is recovered, it is fetched immelyiate demand from the SSPs. Additionally, local
storage acts as a write-back cache where updates are pregpagaemote SSPs asynchronously so that

client performance is not affected by updates to remotageor
5.6 Evaluation
To evaluate the practicality of the SafeStore architectweeevaluate our SSFS prototype via microbench-

marks selected to stress test three aspects of the desigh.v& examine performance overheads, then we

look at storage space overheads, and finally we evaluateescperformance.

In our base setup, client, local server, and remote SSPrsetueon different machines that are connected
by a 100 Mbit isolated network. For several experiments welifpdhe network to synthetically model

WAN behavior. All of our machines use 933MHZ Intel Pentiurhdiocessors with 256 MB RAM and run
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Linux version 2.4.7. We use (3,2) erasure coding or fulliogtion ((3,1) encoding) to redundantly store

backup data across SSPs.

5.6.1 Performance

Figure 5.9 compares the performance of SSFS and a stande&ds&lver using the IOZONE [17] mi-
crobenchmark. In this experiment, we measure the overhE&$BS’s bookkeeping to maintain version
information, but we do not take filesystem snapshots andehanadata is sent to the remote SSPs. Fig-
ure 5.9(a),(b), and (c) illustrates throughput for reakdigughput for synchronous and asynchronous writes,
and throughput versus latency for SSFS and stand alone N8 dases, SSFS’s throughput is within 12%
of NFS.

Figure 5.10(a) examines the cost of snapshots. Note SSHES seapshots to SSPs asynchronously, but
we have not lowered the priority of these background trassfeo snapshot transfers can interfere with
demand requests. To evaluate this effect, we add snapshibies Postmark [29] benchmark, which models
email/e-commerce workloads. The benchmark initially tea pool of files and then performs a specified

number of transactions consisting of creating, deletiegding, or appending a file. We set file sizes to be
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between 100B and 100KB and run 50000 transactions. To magithe stress on SSFS, we set the Postmark
parameters to maximize the fraction of append and creatatipes. Then, we modify the benchmark to
take frequent snapshots: we tell the server to create a regpslat after every 500 transactions. As shown
in the Figure 5.10(a), when no snapshots are taken SSFSakesnore time than NFS due to overhead
involved in maintaining multiple versions. Turning on freat snapshots increases the response time of
SSFS (SSFS-snap in Figure 5.10(a)) by 40% due to additiormahead due to signing and transmitting
updates to SSPs. Finally, we vary network latencies to S8Rtutly the impact of WAN latencies on
performance when SSPs are geographically distributedtbeeinternet by introducing artificial delay (of
40 ms) at the SSP server. As shown in the Figure 5.10(a), Y¥a$response time increases by less than

an additional 5%.

5.6.2 Storage overhead

Here, we evaluate the effectiveness of SSFS’s mechanismisnfting replication overhead. SSFS mini-
mizes storage overheads by using a versioning system tirasdhe difference between versions of a file
rather than complete copies [108]. We compare the storagdhead of SSFS’s versioning file system and
compare it with NFS storage that just keeps a copy of thetlaggsion and also a naive versioning NFS file
system (NFS-FR) that makes a complete copy of the file beferemting a new version. Figure 5.10(b)
plots the storage consumed by local storage (SSFS-LS) arafyetat one remote server (SSFS-RS) when
we use a (3,1) encoding. To expose the overheads of the nergisystem, the microbenchmark is simple:
we append 10KB to a file after every file system snapshot. $36&il storage takes a negligible amount of
additional space compared to non-versioned NFS storagaofRestorage pays a somewhat higher overhead
due to duplicate data storage when appends do not fall ol blmendaries and due to additional metadata

(integrity hashes, the signed write request, expiry timtneffile, etc.)
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We also ran an experiment with the (3,2) encoding at remateeseusing Postmark benchmark with
varying snapshot frequencies and observed similar restlesomit these graphs for brevity. The above
experiments examine the case when the old and new versialassoiave much in common and test whether
SSFS can exploit such situations with low overhead. Therefisourse, no free lunch: if there is little in
common between a user’s current data and old data, the sysistrstore both. Like SafeStore, Glacier uses
a expire-then-garbage collect approach to avoid inadvefite deletion, and their experience over several
months of operation is that the space overheads are redsdiidh We plan to confirm these results in a

SafeStore context by evaluating space overhead usingrigedoration Harvard traces [68].

5.6.3 Recovery

We now evaluate SSFS recovery time and compare performairtibeamd without SSFS’s fast recovery
optimization that allows the local server to resume openadis soon as it has recovered file system metadata

and to recover the rest of the system'’s data in the background

We also plot recovery time of SSFS from local storage dueliogts of the local server. Figure 5.10(c)
plots recovery time as the number of 1KB files in the systeresarhen the data is recovered from remote
SSPs. We see that local recovery is faster than the other swibracovers from the local disk and it
outperforms the other two by more than an order of magnitodenbderate number of files in the system.
We also observe that remote recovery with optimization ediggms remote recovery without optimization
by about 50% even with as few as 10 files. Note that recoverg tinhigh even with the optimization as
SSFSrecovers all the metadata ( which involves reading fesnote SSPs, verifying the metadata integrity,
decoding data from redundant fragments, and finally decnyghe metadata) before it starts serving the
client requests. As part of our future work, we intend to edthe recovery time significantly by bringing
the system up immediately while the metadata is fetchedarbtitkground like the existing optimization

for data.
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5.7 Related work

Several recent studies [49, 114] have identified the chgdigrinvolved in building durable storage system

for multi-year timescales.

Flat erasure codingacross nodes [53, 62, 74, 132] does not require detailedcticets of which sets
of nodes are likely to suffer correlated failures becaudelé@rates any combinations of failures up to a
maximum number of nodes. However, flat encoding does nobixtpke opportunity to reduce replication
costs when the system can be structured to make some fadumbigations more likely than others. An
alternative approach is to u$dl replication across sites that are not expected to fail together [78 4],

this can be expensive.

SafeStore is architected to increase the likelihood thhirés will be restricted to specific groups of
nodes, and it efficiently deploys storage within and acrd&@Bs3to address such failures. Myriad [59] also
argues for a 2-level (cross-site, within-site) codingtsigg, but SafeStore’s architecture departs from Myriad
in keeping SSPs at arms-length from data owners by carafslyicting the SSP interface and by including

provisions for efficient end-to-end auditing of black-bdRFs.

SafeStore is most similar in spirit to OceanStore [77] irt tha erasure code indelible, versioned data
across independent SSPs. But in pursuit of a more aggreé'ssingadic data” vision, OceanStore augments
this approach with a sophisticated overlay-based infragire for replication of location-independent ob-
jects that may be accessed concurrently from various lain the network [109]. We gain considerable
simplicity by using a local soft-state server through whidhuser requests pass and by focusing on stor-
ing data on a relatively small set of specific, relatively amtional SSPs. We also gain assurance in the

workings of our SSPs through our audit protocol.

Versioning file systems [23,104, 113,117, 126] provide terapisolation to tolerate client failures by
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keeping multiple versions of files. We make use of this tegh@ibut couple it with efficient, isolated,

audited storage to address a broader threat model.

We argue that highly durable storage systems should auitpaiodically to ensure data integrity and
to limit worst-case MTTR. Zero-knowledge-based audit nagitms [72, 97] are either network intensive
or CPU intensive as their main purpose is to audit data witherking any information about the data.
SafeStore avoids the need for such expensive approacheschypting data before storing it. We are
then able to offload audit duties to SSPs and probabilisficglot check their results. LOCKSS [95] and
Samsara [64] audit data in P2P storage systems but assubhygethia store full replicas so that they can
easily verify if peers store identical data. SafeStore sugperasure coding to reduce costs, so our audit

mechanism does not require SSPs to have fully replicateigésop data.

5.8 Conclusion

Achieving robust data storage on the scale of decades fascEsreexamine storage architectures: a broad
range of threats that could be neglected over shorter tahesenust now be considered. SafeStore ag-
gressively applies the principle &dult isolationalong administrative, physical, and temporal dimensions.
Analysis indicates that SafeStore can provide highly rolst@rage and evaluation of an NFS prototype

suggests that the approach is practical.
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Chapter 6

Conclusion

The thesis of this dissertation is simple: Byzantine faalefance (BFT) techniques and technology
trends are nearing an inflection point where significantagpkent of BFT systems can be made viable. The
mounting evidence of non-fail-stop behavior in real syst¢87, 50, 51, 98, 101, 106, 123, 134, 135] suggest
that BFT may yield significant benefits even without resgrtmn-version programming [60, 81, 111]. The
growing value of data [7, 12, 32, 114] and falling costs ofteare [8, 79] make it advantageous for service
providers to trade increasingly inexpensive hardware Hergeace of mind potentially provided by BFT
replication. For example, the Google file systems (GFSpdlyaises three-way replication, by default, as a

way to protect data from failures [71].

We recognize, however, that despite the advances of thddaatle, Byzantine fault tolerance still carries
in the mind of many practitioners, especially in the comnareorld, a connotation of excessive cost, both
in terms of performance losses and intellectual efforts|therefore, important to (1) develop techniques
that minimize the costs of Byzantine fault tolerance ang(@yide compelling demonstrations of significant

applications gaining robustness advantages from costiefé, scalable BFT.

In this dissertation, as a step towards realizing this geaklesigned and implemented novel BFT replica-
tion techniques that significantly reduces performancetmad and complexity while keeping costs compet-
itive withe existing practice. We made three contributibmshis end. First, we designed and implemented
CBASE, a high throughput BFT architecture to provide a ganeny to exploit application parallelism in

order to provide high throughput. Second, we proposed Zyzzy BFT state machine replication protocol
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that reduces replication overheads in order to improveop@idnce and reduce complexity. Third, we de-
signed and implemented SafeStore, a highly durable dis&ibstorage system that uses the principles of
aggressive isolation and proactive audit to provide l@rgatdata durability spanning many years or even

decades by outsourcing storage to autonomous storageeseraviders.
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Appendix A

Concurrency Matrix for Network File System (NFS)

Here we explain the concurrency matrix used by the paradlelio perform dependence analysis for
replicated NFS (CBASEFS) as explained in chapter 3. Thewosecy matrix for NFS (version 2.0) [25]
is defined in the table A.1. The concurrency matrix (NFS-eoradrix[18][18][2]) is defined for all 18 NFS
operations as listed in the table. As explained in secti&B3of chapter 3, NFS-conc-matrix[18][18][0]
is the argument-independent concurrency matrix(OCM) aR&{donc-matrix[18][18][1] is the argument-

dependent concurrency matrix(OACM).
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Table A.1:NFS concurrency matrix: NFS-con-matrix[18][18][2]



Appendix B

Durability analysis

In this section, we describe the analytical models for esiiimg durability and storage overhead of dif-
ferent encoding schemes such as hierarchical data en¢didingrasure coding, and full replication that we

compare in section 5.3.
B.1 Durability

Here we describe the analytical model for estimating dlitploif data stored using hierarchical data encod-
ing, flat erasure coding, and full replication. Consider stesm with n nodes spread acrdsgroups (SSPs)
with ny, np,..nx nodes respectively present in groups 1,2,...k. All nodes gmoupn; fail in a correlated
fashion with probabilityp; due to a correlated failure events (fire, administratoufa)l at an SSP. Also,

a node fails independently with a failure probabilfty due to uncorrelated failure events (disk failures) at
an SSP. In order to analyze durability over some time dumatiee first evaluate the durability of data in
an epoch and then aggregate it over multiple epochs spatiménduration as in [129]. Given this failure

model, durability of hierarchical encoding, flat erasurding, and full replication is described below

Hierarchical data encoding: The durability of data in an epoch when data is hierarchiaaticoded with

(k,I) erasure coding across SSPs and withr{y) encoding within an SSP group i is given by:

k
Durability of data in an epoctptier = Pr(zlxi >1)
i=
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where

Random variable X;
X; = 0,if < my nodes are up in SSP i

= 1,if > my nodes are up in SSP i

Prix =1 = @-pox 3 (")a-piph

S\

Flat erasure encoding: The durability of data in an epoch when data is encoded usiymg)(flat erasure
coding using all nodes across all SSPs is given by:

k
Durability of data,DE'® = Pr((ZlYi)zm)

whereY; is a random variable representing the number of nodes teai@in group i and n is the
total number of nodes spread across all SSPsRafd = Ij) = (1 pc) x () p/(1— p)" " is the

probability is the probability thdt nodes out oh; nodes in group i.

Full replication: The durability of data in an epoch when the data is fully egiked with k replicas (with
one replica per SSP) is given by

k
Durability of data,DEY = Pr(ZlYi >1)
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Overall durability: Overall durability of data (using any replication mechamjigor a time duration T is
given by
Durability of data in time duration T
= 1-prob(data loss in time< T)
=pJT/e
where e is the epoch length abd is the durability of a given replication mechanism in an dpoc
We set epoch length to MTTR miM(TTR,,MTTR,), whereMTTR, and MTTR. are mean time
to recoveries from uncorrelated node failure with in SSP emdlelated SSP failures. We assume
that failures in an epoch are not repaired before the endadfren computingDe. The failures are
assumed to be repaired before the start of next epoch (assumasach epoch instance as a fresh
Bernoulli trial while computing overall durability D as sl above). Given this epoch length, we

can computg, andp; from MTTDL [49] due to uncorrelatedode failure(MT T DL) and correlated

SSP failurgMT T DL.) events as

pu=MTTR,/MTTDL,

pc=MTTR,/MTTDL.

Mean time to data loss (MTTDL): Durability of data in terms of MTTDL is given by

00

MTTDL = _;iDei(l— De) = De/(1—De)

whereDg is the durability of a given replication mechanism in an dpoc

B.1.1 Hierarchical encoding observation:
RemarkB.1.1 In hierarchical encoding, the overall durability does moprove much by additional intra-

SSP redundancies beyond a certain minimum valpg €< 1— py.
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Proof:

In most practical settingsyy is far less than + p, whereMTTDL, is in the order of tens of years and
MTTR, is in the order of days. For examplp,/(1— py) < 0.0002 for MTTDL due to node failure is 5
years and MTTR of 1 day. Itis explained as follows. Andepends om; andp,/(1— py), such thatd + 1)
>> (n—1) x pu/(1— py)). For examplea =~ n; — 1, whenn; is in the order of tens of node®|T T DL, is

in the order of years andl T TR, is in the order of days. This implies that overall durabikgturates fairly

quickly with increasing intra-SSP redundancy when int8RSedundancy is fixed.
B.2 Overhead

Storage overheads of different encoding schemes are beddselow

Hierarchical encoding: The storage overhead of hierarchical encoding scheme #est (,I) encoding
across SSPs (inter-ssp encoding) ameki) encoding with in an SSP group i (intra-ssp encoding) is

given by:

Overhead = 1/| X (no/mo—|— nl/ml—l—...—l—nk,]_/lk,l)

= l/l X (I’o—|—f1—|—...—|—l’k,1)
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Flat erasure coding: The storage overhead of scheme ugingn) flat erasure coding is/m.

Full replication: The storage overhead of scheme using full replication iviéplicas spread acrobSSP

groups id.
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Appendix C

Audit protocol

1. Store data O — SSP. {objld,H (dataypjid), texp} 0, dataobijid

2. Receive receipt SSP— O: {objld,H (dataypjid), texp}ssp

3. Store receipt O — S: SSRy,{objld,H(datapjid), texp}ssp

Table C.1:Data storage sub-protocol:In the first phase, the data owr@isends a storage request to store a
data objectlatayjig with object idob jid for a time duration ofeypto the storage service provid86P The
data owner then gathers the signed and verifiable promigsasipt fromSSPin the second phase. It then
stores the receipt frol8SPredundantly at all storage service providers defined by gethe third phase.

1. Challenge A — SSP: chal,listOfObjects

2. Response SSP— A: {objld,chal,time H(chal+datayji4) }ssd{objld,chal time FAILURE}ssp

Table C.2:Routine audit sub-protocol: Auditor periodically sends a challenge to the SSP(audit&ag
challenge includes a nonahal and a list of objects being auditelis(o f Ob ject3. For every data object
datappjig in the list, SSP computes the hash vaigehal + datayjiq). SSP sends a signed response back
to the auditor for every object. The response includes ohgeobjld, current timetime, and the hash
valueH (chal+ dataypjiq). SSP can optionally serfedAILU RE message if it finds data object to be lost or
corrupted.
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1. Request data A — O|SSRSSP: list20 fObjects

2. Send data  O|SSRSSP — A: datapjid

Table C.3:Spot check sub-protocol:Auditor spot checks the responses of routine audit protogotading
data for a subset of objects. Auditor gathers data by readttg from the SSP being audited or other SSPs
at which the data is redundantly stored or the data ovner

POM = receiptandauditReplyare well-formed and signed ISP
A(objld = receipt)b“d = auditRepI)gb“d)
A(receiptxpires > auditRe plyime)

/\receipp(ob“d) = auditRepIy,(obj,d)
Achal = auditReplyhg
AH (chal+data) # auditRe plychattdata

Table C.4: Proof of mis-behavior (POM): Auditor can generate a verifiable proof of mis-behavior, as
described in this table, against an SSP if an SSP lies durangputine audit protocol by sending a fake hash
value. It does so by gathering data for some random subséijexts.
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Appendix D

Audit analysis with selfish SSPs

Here we show that a rational [46] SSP (that can selfishly deviam the protocol for its own benefit)

follows the protocol in the presence of a SLA that specifiggaypriate penalties relative to the underlying

cost of storing data.

bserve

Cstore

Paudit

pspot
penalty,
penalty

Benefit for storing and serving object until it expires
Cost to store and serve object until it expires
(including cost of serving audit requests)
Probability that object will be audited before it expirgs
Probability that an audit reply will be spot-checked
Penalty forhonest failureof audit (see Section 5.4
Penalty fordishonest failureof audit

Table D.1:Definitions

Theorem 3. SafeStore audit protocol ensures that the rational SSPBY{$8n selfishly deviate from the

protocol to maximize their own benefits) follow the protobgl(1) attempting to store data reliably and

(2) responds to audit requests honestly assuming an SLApeaifies appropriate penalties relative to the

underlying cost of storing data. cost model.

Proof:

® Dserve> Cstore/\ Cstore < MIN( Paudit PENAItY:, Paudit PspotPeNaltyy) = A rational SSP attempts to store

an object until it expires.
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e penalty, < pspotpenaltyy = A rational SSP that does not have the data needed to replyaodin
request replies with ahonest failurerather than with a audit reply that could be used to generate a

proof of misbehavior.

Example. These requirements are met by a system with$1 (reasonable if all objects are broken into
1GB or smaller pieces and stored with expiration times aftean a year)) = 2, paudit = 90%, Pspot = 1%,

penalty, = $5, andpenalty = $1000.
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Appendix E

Additional experiments
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Figure E.1: Audit (a) Time to detect SSP data loss via audit warying amounts of resources dedicated
to audit overhead assuming honest SSPs with (3,2) interr8@mMdancy. (b) Impact on overall durability
with a dishonest SSP with varying audit costs (20% and 100%)

E.1 Audit

Here, we run additional experiments to evaluate our audibppl as described in section 5.4. Figure E.1(a)
plots mean time to detect data loss (MTTD) giassiveSSP when (3,2) encoding is used to store 1TB of
data redundantly across 3 SSPs. MTTD falls rapidly witheasing audit budget similar to the system that
uses (3,1) as shown in the Figure 5.8(a) of section 5.4. Hewvéar a fixed MTTD, (3,2) encoding incurs

higher audit cost per byte stored compared to (3,1) becdusereased overhead due to reduced block size

from 4KB (with (3,1)) to 2KB (with (3,2)). Figure E.1 illustites the overall impact on durability in the
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presence oflishonestSSPs with varying audit budgets. With 20% audit budget, wpeariorm a system
with no audit by two 9’s in the presence dishonesSSPs. As we increase our system’s audit budget from

20% to 100%, durability of our system approaches that of sesysvithoracle detector
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Appendix F

Protocol Comparisons

Table 4.1 presents a quick numerical comparison of thensitrioverheads and requirements of 4 BFT

systems. Here we present a detailed explanation of the table

Required Replicas The first row in the table accounts for the number of repliegiired to toleratd
failures in each of the four systems. PBFT, HQ, and Zyzzyemire 3f + 1 replicas to toleratd faults
while Q/U and Zyzzyva5 require f5+ 1 replicas. This total number of replicas reflects the nundfer
replicas required to coordinate the protocol state in tis¢esys. PBFT, Zyzzyva and Zyzzyva5 require only
2f 4+ 1 of the total replicas to store application state. Nomjnegplicas that do not store application state

are less expensive than full replicas that maintain theiegdpn state.

Throughput overhead The computational throughput of a distributed system isidated by the number
of operations at the most heavily loaded replica. The ciygiphic operation of generating and verifying

MACs at the replicas are intrinsic and present computatiomarhead that cannot be avoided.

In Q/U and HQ there is no distinguished replica that playsezigh role; within each of these systems all
replicas perform the same number of MAC operations. In Q/W 4@ each replica performs-28f and
4+ A4f MAC operations per client request respectively. In Q/U titaltnumber of MAC operations at the
bottlenecked server can be broken down as follows: one MA&atipn for verifying the client request, 4f
MAC operations to verify OHS (object history set), one MACeogition to generate MAC for the reply, 4f

MAC operations to generate the authenticator for its hjstmt. In HQ the bottlenecked server performs
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following MAC operations per client request. one operationverify the client request, 2f operations to
generate authenticator for the grant timestamp phasedW/ithase), 1 operation to authenticate the Write-
1 phase response to the client, 1 operation to verify the@A&ritequest from the client, 2f operations to

verify the write certificate in the Write-2 phase, 1 openatio authenticate the response to the client.

For PBFT we assume that the implementation uses preferrdiguoptimization [63] to improve per-
formance. The number of cryptographic operations perfdrimethe bottinecked server (backup replica)
is 2+ (8f 4+ 1)/b per client operation when b client operations are batchealsimgle execution. Here a
backup replica requires 2 MAC operations per client requeist one MAC operation each to verify the
client request and authenticate the server response. Itioadt requires § + 1 operations' for agree-
ing on the order for b client operations (one operation tafywéhe pre-prepare message, 2f operations to
generate a prepare message for other replicas, 2f operatioverify 2f prepare messages from other repli-
cas, 2f operations to generate a commit message, 2f operatoverify 2f other commit messages). For
Zyzzyva the system is bottlenecked by the primary with 2f /b MAC operations per client operation
when b clients are batched. The primary in Zyzzyva requirBRAZ operations per client request to verify
the client request and to authenticate the client respdnsaddition, the primary requires 3f operations to
generate authenticator for Order request message for la tibcclient requests. The backups require fewer

operations than the primary with the preferred quorum dgttion.

Network Latencies The overall latency of a request is bounded from below by tmaler of one way
network latencies required by the system. PBFT and HQ eamhiree4 one way latencies Zyzzyva and
Zyzzyvab require 3 latencies. In PBFT the complete requigstt fincludes network latencies from client to

primary, primary to replicas, replicas to replicas, reggid¢o client. In HQ the latencies are from client to

Iwithout assuming piggybacking commit messages in othesaues as in PBFT library implementation [57]. However, with
this optimization the number of operations reducesfte-4 operations at the bottlenecked server.
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replicas, replicas to client, client to replicas, and regito client. Zyzzyva and Zyzzyva5 both follow the
pattern of client to primary, primary to replicas, replicaslient to complete an operation. PBFT, Zyzzyva
and Zyzzyva5 are all agreement based protocols and theetfedrlower bound for message delays in
agreement based protocols is 3. Q/U requires only two messalgys, client to replicas and replicas to
client, when there is no contention in the system. In thegures of contention Q/U requires an unbounded
number of messages delays. Q/U requires fewer messages dbky the theoretical minimum of 3 by

solving a different, slightly weaker, problem.

We expand on the Table 4.1 to compare message and cryptagoyeinheads of various protocols at the

clients and replicas as shown in the following Tables F.1Rad
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PBFT HQ Q/U Zyzzyva

client primary replica client replica client replica client  primary replica
Sent Msg b 6f+b 6f+b b(6f+2) 2b b(5f+1) b b 3f+b b
Rcvd Msg | b(3f+1) 6f+b 6f+b+1 b(6f+2) 2b b(5f+1) b b(3f+1) b 1
Tot Msg 3fb+b 12f+2b  12f+2b+1| b(12f+4) 4b b(10f+2) 2b 3fb+2b  3f+2b b+1
Crypt Gen| b(3f+1) 6f+b 6f+b b(6f+2)  b(3f+2) | b(5f+1) b(5f+1) | b(3f+1) 3f+b 3f+b
Crypt Ver | b(2f+1) 4f+b 4f+tb+1 | b(4f+2)  b(2f+3) | b(4f+1) b(4f+1) | b(3f+1) b b+1
CryptTot | 5fb+2b  10f+2b  10f+2b+1| b(10f+4)  b(5f+2) | b(9f+2) b(9f+2) | b(6f+2)  3f+2b  3f+2b+1
Sent Msg b 4f+b 4f+b b(4f+2) 2b b(4f+1) b b 3f+b b
Rcvd Msg | b(2f+1) 4f+b 4f+1 b(4f+2) 2b b(4f+1) b b(3f+1) b 1
Tot Msg b(2f+2) 8f+2b 8f+b+1 | 2b(4f+2) 4b 2b(4f+1) 2b 3bf+2b  3f+2b b+1
Crypt Gen| b(2f+1) 4f+b 4f+b b(4f+2) b(2f+2) | b(4f+1) b(4f+1) | b(3f+1) 3f+b b
Cryptver | b(2f+1) 4f+b 4f+tb+1 | b(4f+2)  b(2f+2) | b(4f+1) b(4f+1) | b(3f+1) b b+1
Crypt Tot | 2b(2f+1)  8f+2b  2(4f+b)+1| 2b(2f+2) 2b(2f+2)| 2b(4f+1) 2b(4f+1)| b(6f+2)  3f+2b 2b+1

Table F.1: Overhead comparison of various protocols ahtdiand servers. The protocols under comparison tolerate f
failures. Message overhead is measured as the number ohgesssent or received. Here we have a setup with b clients
with 1 request/client and the protocols use a batch size dfHe above table includes the total overhead for b clients in
the clients column and per client overhead can be calculayedividing it by b. The first two sub-tables (message and

cryptographic overheads) list the overhead without théepred quorum optimization and the last two sub-tablesrassu

preferred quorum optimization. The overheads for Zyzzygdisted in the following table.
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Zyzzyva-5

client primary  replica
Sent Msg b 5f+b b
Rcvd Msg | b(5f+1) b 1
Tot Msg 5fb+2b 5f+2b b+1
Crypt Gen| b(5f+1) 5f+b 5f+b
Crypt Ver | b(4f+1) b b+1
Crypt Tot | b(9f+2) 5f+2b  5f+2b+1
Sent Msg 4f+b Af b
Rcvd Msg | b(4f+1) b 1
Tot Msg b(4f+2) 4f+b b+1
Crypt Gen| b(4f+1) Af+b b
Cryptver | b(4f+1) b b+1
Crypt Tot | 2b(4f+1)  4f+2b 2b+1

Table F.2: Here is the overheads column for Zyzzyva5 (caetinfrom previous table).




Appendix G

PKI Protocol Description

The goal of the system is to ensure that if the results of dio@iso0 ando’ are accepted by a non-faulty
client as valid, then the linearized order of requests ansistent. Unlike previous systems, we involve the
client in this determination and do not rely solely on thelicgs to ensure the property. Consequently, we

define the following client centric predicate:

We formalize the statement that a client accepts a requéstthe predicate client—delivergan, h,c),
which is true if non-faulty client accepts the result @fas then operation in the sequence of requests whose

total order through is defined by history.
The system is designed to maintain the following safety ergp
SAFETY: client—deliveredo,n,h,c), client—deliveredo’,n’,h',c’) andn’ > nimplies thath is a prefix of
Wando=0d if n=n'.
G.1 Agreement Protocol

Figure 4.1 illustrates the basic flow of the agreement sotepol during a view. Since replicas execute
requests speculatively in the order proposed by the primvéhout communicating with each other replicas,
the key challenge is ensuring that clients only act uporiggthat correspond to stable requests that were,
in fact, executed in a total order that is guaranteed to enadigtcommitat all correct servers. The protocol

is constructed so that a client knows that a request will exadly be committedwhen it receives 8+ 1
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| Label [ Meaning

c Client ID
CC | Commit certificate

d Digest of client request messade= H(m)
i, ] Server IDs

hn History through sequence numbeh, = H(h,_1,d)
m Message containing client request
max, | Max sequence number accepted by replica
n Sequence number
o] Operation requested by client
OR | Order Request message
POM | Proof Of Misbehavior
r Application reply to a client operation
t Timestamp assigned to an operation by a client
% View number

Table G.1: Labels given to fields in messages.

matching responses or acknowledgements frdm 2 replicas that they have received@mmit certificate

comprising docal commitfrom 2f + 1 replicas.

To describe how the system deals with this and other chaligngput standard, issues—Ilost messages,
faulty primary, faulty clients, etc.—we follow a requestdbgh the system, defining the rules a server uses
to process each message. The numbers in Figure 4.1 cordespoambers in the text identifying major
steps in the protocol and Table G.1 summarizes the labelswediglds in messages. Most readers will be

happier if on their first reading they skip the text marked #iddal Pedantic Details.

0. Replicas begin the protocol with a predefined base state.

Replicai begins the protocol in view 0 with an empty history and assithe first request a sequence

number of 1.

1. Client sends request to the primary. ‘

A client crequests an operatiarbe performed by the replicated service by sendifREQUEST, 0,t,C)q,
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message to the replica it believes to be the primary (i.e pthmary for the last response the client received.)

Additional Pedantic Details:If the client guesses the wrong primary, the retransmissi@thanisms

discussed in stefic below forwards the request to the current primary. The tédimestamp is included
to ensure exactly-once semantics of execution of requedtsas no request is executed more than once by

the replicated service.

2. Primary receives request, assigns sequence number, and forwards ordered request to replicas.

When the primaryp receives a new request= (REQUEST,0,t,C)q, from clientc, the primary assigns a
sequence numbaerin view v to the request and relays @RDER-REQ,V, N, hy, d, ND>0p,m> message to the
backup replicas whereindicates the view in which the message is being sei#,the proposed sequence
number form, d = H(m) is the digest oim, h, = H(h,_1,d) is a digest summarizing the history, aNdD
is a set of values for non-deterministic application vdgal{time in file systems, locks in databases, etc.)

required for execution.

Additional Pedantic Details:The primary only takes the above actiong if t; wheret. is the highest

timestamp previously received froomndm can be verified. lim cannot be verified then the primary drops

the request and does nothing.

3. Replica receives ordered request, speculatively executes it, and responds to the client.

Upon receipt of an order request messg@RDER-REQ,V,n, hy,d,ND)s,,m) from the primaryp, replica
i discards the messagenik max, wheremay, is the largest sequence number in its historyn H max, + 1,
mis a well-formed request messagkjs a correct digest ofm, andh, = H(h,_1,d), theni accepts the
order request message. Upon accepting the mesisagpends the ordered request to its history, executes

the request using the current application state to produeplg r, and sends t@ a speculative response
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messag&(SPEGRESPONSEV,N,hn, H(r),C,t)g;,i,r, OR) whereOR= (ORDER-REQ,V,N,h,,d,ND)g,.

Additional Pedantic DetailsA replica may only accept and speculatively execute reguastequence-

number order, but message loss or a faulty primary can int@dholes in the sequence number space. If
n> max, + 1, theni discards' the order request message and initiates the fill hole prbteseribed in the
section G.1.2. If the order request is inconsistent withhistory of order requests repli¢ahas received,
then the two order requests showing the inconsistency stooka POM and the replica (a) forwards the

POM to all other replicas and (b) initiates a view change.

4. Client gathers speculative responses. ‘

Next, the client receives speculative response®EGRESPONSEV, N, hy, H(r),c,t)g,,i,r,OR) from the
replicas. Speculative responses from distinct replicaatchif they have identical, n, h,, H(r), c, t, and
r fields. There are four cases to consider. The first three baratying numbers of matching speculative

replies without considerin@Rwhile the last considers only tH@R portion of the message.

4a. Client receives 3f + 1 matching responses and completes the request.

In the absence of faults, the client receives matching datheel response messages from afl 81
replicas. The client then considers the request and itsrkisd becompleteand delivers the reply to the
application. Zyzzyva guarantees that even if there is a elemnge, all correct replicas will always execute
this request at this point in their history to produce thigpanse. Notice that although the client has a proof
that the request’s place in history is irrevocably set, meesehas such a proof. Indeed, servers at this point
cannot determine if a request has completed in its final adiit will have to roll back its state because a

faulty primary ordered the request inconsistently acrepficas.

1we cache out-of-order requests as an optimization as eeulan the section 4.4 but omit this optimization here forinity.
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4b. Client receives between 2f + 1 and 3f matching responses, assembles a commit certificate,
and transmits the commit certificate to the replicas.

If the network, primary, or some replicas are faulty, themlic may never receive responses from all
3f + 1 replicas. The client therefore sets a timer when it first@ssa request, and when this timer ex-
pires, ifc has received matching speculative responses from betweerizand X replicas, therc sends
a commit messagecomMMmIT, ¢,CC)g, whereCC is a commit certificate consisting of a list of 2- 1 repli-
cas, the replica-signed portions of thé 21 matching speculative responses from those replicas,hend t

corresponding 2+ 1 replica signatures.

Additional Pedantic DetailsCC contains 2 + 1 signatures on the speculative reply message and a list of

2f +1 nodes, but, since all the responses received fogm replicas are identicat; only needs to include
onereplica-signed portion of the speculative response. Atste that, for efficiencyCC does not include

the bodyr of the reply but only the hasH (r).

4b.1. Replica receives a commit message from a client containing a commit certificate and acknowl-
edges with a local-commit message.

When a replica receives a commit messageomMMmIT,c,CC)g, containing a valid commit certificate
CC proving that a request should be executed with a specifiageseg number and history in the current
view, the replica first ensures that its local history is é¢stesit with the one certified bg§C. If the history
certified byCC matches replicé’s local history, then updates itamax commit certificatstate if the se-
guence number is higher than the stored certificate’s seguammber and sends a local commit message
(LocAL-coMMmIT,v,d,h,i,C)q to c. If the history certified byCC does not matcli's local history, then

initiates a view change.

Additional Pedantic Detaildf i's history is inconsistent with the history certified 8 theni constructs

a POM fromCC and an appropriate order request. Repliitizen initiates a view change and forwards the
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POM to all other replicas.

4b.2. Client receives a local commit messages from 2f + 1 replicas and completes the request. ‘

The client resends the commit message until it receiveggponding local commit messages frofm21
distinct replicas. The client then considers the requesttarhistory to becompleteand delivers the reply
to the application. The system guarantees that even if thergiew change, all correct replicas will always

execute this request at this point in their history to prediis response.

4c. Client receives fewer than 2f 4+ 1 matching responses and resends its request to all replicas,
which forward the request to the primary in order to ensure the request is assigned a sequence
number and eventually executed.

Client. If the network or primary is faulty, the cliemmay never receive matching responses frosl
replicas. The client therefore sets a second timer whersitifisues a request, and when this timer expires,

resends the request to all replicas. It then resets its $iam@dl continues gathering speculative responses.

Replica. When non-primary replicareceives a requesREQUEST,0,t,C)g, from clientc there are two
possible actions forto take. If the time stamp in the request matches the timepstanthe the currently
cached request for client theni resends the cached response.tti instead the request has a higher times-
tamp than the currently cached response, ftgends a confirm request mess@geNFIRM-REQ,V, M, i)
wherem= (REQUEST, 0,t,C)q, to the primaryp and starts a timer. If the replica accepts an order request
message for this request before the timeout, it processesrtier request message as described above. If
the timer fires before the order request message is recaiwadthe primary, the replica initiates a view

change.

Primary. Upon receiving{CONFIRM-REQ, V,m, i), from replicai, the primaryp checks the client’s times-
tamp for the request. If the request is ngwsends a new order request message using the next sequence

number to order as described in sietherwise p sends ta the cached order request message for the most
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recent request froro.

Additional Pedantic Detailsif replica i has received a commit certificate or a stable checkpoint for a

subsequent request or the request was ordered in a prevewstiven the replica sends both a speculative
response and a local-commit response to the client evea dibnt has not received a commit certificate for
the retransmitted request. Additionally, if replicdoes not receive the order request from the primary, the
replica sends the confirm request message to all other asplidpon receipt of a confirm request message
from another replicg, replicai sends the order request message it received from the primaryf i did

not receive the request from the cliencts as if the request came from the client itself.

4d. Client receives replies indicating inconsistent ordering by the primary and sends a proof of
misbehavior to the replicas, which initiate a view change to oust the faulty primary.

If client c receives a pair of speculative reply messages containilig) maler-request messagésR =
(ORDER-REQ,V,n,hy,d,ND),; for the same requestl & H(m)) in the same view with differing sequence
numbern or historyhy, then the pair of order-request messages constitutes agqfratdsbehavior POM)
against the primary. Upon receipt ofROM, ¢ sends a primary faulty messageom,v,POM)., to all

replicas. Upon receipt of a valllOM, a replica initiates a view change.

Note that casegb through4d are not mutually exclusive.

G.1.1 View Change

The Zyzzyva view change sub-protocol is similar to tradiibview change sub-protocols with two key
exceptions. First, while replicas in traditional view charprotocols commit to the view change as soon as
they suspect the primary to be faulty, replicas in Zyzzyvg oommit to a view change when they know that
all other correct replicas will join them in electing a nevinpary. Second, Zyzzyva weakens the condition

under which a request appears in the new view’s history. Ta®gol proceeds as follows.
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VC1. Replica initiates the view change by sending an accusation against the primary to all replicas.

Replicai initiates a view change by sendifgHATE-THE-PRIMARY, V)¢, to all replicas, indicating that
the replica is dissatisfied with the behavior of the curreimhary. In previous protocols, this message would
indicate that replicais no longer participating in the current view. In Zyzzyvaistmessage is only a hint
thati would like to change views. Even after issuing the messagmtinues to faithfully participate in the

current view.

‘VCZ. Replica receives f + 1 accusations that the primary is faulty and commits to the view change.

Replicai commits to a view change into viewt 1 by sending an indictment of the current primary, con-
sisting of(I-HATE-THE-PRIMARY, V)¢, from f 4 1 distinct replicag, and the messag®1EW-CHANGE, v+
1,CC,O,i)g, to all replicas.CCis either the most recent commit certificate for a requestesihe last view
change,f + 1 VIEW-CONFIRM messages if no commit certificate is available, orew-vIEW message if
neither of the previous options are availabf@.is i's ordered request history since the commit certificate
indicated byCC. At this point, a replica stops accepting messages relégahe current view and does not

respond to the client until a new view has started.

‘ VC3. Replica receives 2f 4 1 view change messages.

Primary. Upon receipt of 2 + 1 VIEW-CHANGE messages, the new primapyconstructs the message
(NEW-VIEW,v+1,P)s, whereP is a collection of 2 + 1 vIEW-CHANGE messages defining the initial state

for view v+ 1.

Replica. The replica starts a timer. If the replica does not receival WEW-VIEW message from the

new primary before the timer expires, then the replicaatés a view change into view4- 2.

Additional Pedantic Detaildf a replica commits to change to view+ 2 before receiving a new view
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message for view+ 1, then the replica uses the set of ordered requests fromwieform its view change
message. The length of the timer in the new view grows expallsmwith the number view changes that

fail in succession.

VC4. Replica receives a valid new view message and sends a view confirmation message to all
other replicas.

Replicas determine the state of the new view based on thectiolh of 2f + 1 VIEW-CHANGE messages
included in theNew-VIEW message. The most recent request with a corresponding ¢arrtificate (or
old new view message) is accepted as the last request in seehiifory. The most recent request that is
ordered subsequent to the commit certificate by at least vIiEw-CHANGE messages is accepted. Replica
i forms the messagéviIEw-CONFIRM, V+ 1, n, h, i)s based on thelEw-viEw message and sends the

VIEW-CONFIRM message to all other replicas.

Additional Pedantic DetailsWhen evaluating theisew-vIEW message, a commit certificate from the

most recent view takes priority over anything else, folloviby f + 1 VIEW-CONFIRM messages, and finally

aNEW-VIEW message with the highest view number.

VC5. Replica receives 2f + 1 matching VIEW-CONFIRM messages and begins accepting requests
in the new view.

Upon receipt of 2 + 1 matchingviIEW-CONFIRM messages, replidebegins the new view.

Additional Pedantic DetailsThe exchange of view confirm messages is not strictly nepegsasafety

and can be optimized out of the protocol, but including thénpéifies our safety proof by ensuring that if a
correct replica begins accepting messages in new vjglen no other correct replica will accept messages
in view v with a different base history. This step allows replicasdosider a confirmed view change to be

functionally equivalent to a commit certificate for all rexgts in the base history of the new view.
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G.1.2 State Transfer and Garbage Collection

Checkpoint Protocol

CP1. When replica i receives the order request message for the CP_INTERVAL' request since the

last checkpoint, the replica sends the speculative response to all other replicas in addition to the
client.

CP2. Replica receives a commit certificate for the CP_INTERVAL' request, forms a checkpoint
message, and relays the checkpoint message to all other replicas.

After receiving a commit certificate for the request and pesing it as in stegb.1, replicai forms a
(CHECKPOINT, N, h,a,i)5; message and sends it to all replicasis the sequence numbdr,is the history,

andais a snapshot of the application state when every requesitiorynh has been executed.

Additional Pedantic DetailsThe application snapshot state includes the cached respdo<lient re-

guests that are orderedmit< n. If the replica has not received the speculative responsesmonding to

the commit certificate, then the replica initiates the filldprotocol described in the section G.1.2.

Additional Pedantic DetailsiReplicai can receive a commit certificate from the client or by recwjvi

2f 4+ 1 matching speculative response messages directly froem ceplicas. The replica considers commit

certificates gathered in either manner to be equivalent.

CP3a. Replica receives f 4+ 1 matching checkpoint messages and considers the checkpoint stable.

After receiving f + 1 matching checkpoint messages, replicansiders the request stable and garbage
collects any request with sequence numiarand makes an up call into the application to garbage collect

application state.
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Fill Hole

The Fill Hole sub protocol is used when a replica misses aarastjuest message from the primary — either
because the network is faulty or the primary is faulty. Thgppae of the fill hole protocol is to ensure that

non-faulty replicas receive an order request message @r eauest. When a hole is recognized due to
an out of order order request message, a non-faulty reghaplys requests the ordered requests from the
primary; the history sent to fill the hole is unconstrainetithe hole is recognized due to the receipt of a
commit certificate, then the sequence of order request messaat are used to fill that hole must culminate

in the history specified by the commit certificate.

FH1. Replica recognizes that there is a hole in the sequence of ordered requests and asks the
primary to fill in the hole.

Replicai sends a fill hole messagelLL-HOLE,v,max, + 1,n,i), to the primary and starts a timer.

Additional Pedantic DetailfReplicai recognizes the existence of a hole when it receives an cgdaest

message out of order, when it receives a commit certificata fequest that it has not received an order

request for, or when it receives a checkpoint message witlkeoaiving all appropriate order requests.

FH2. Primary receives a fill hole request message and sends order requests for the missing requests
to the replica.

Upon receiving a messadeiLL-HOLE,V,K,n,i)q from replicai, the primaryp sends an order request
message (ORDER-REQ,V, I, hy,d,ND)q,,n7) to i for each request that p ordered at sequence number

k < n’ < nduring the current view.

Additional Pedantic Detaildf the primary has a stable checkpoint for a request subsego& then the

proof of checkpoint stability and the checkpoint itself dansent as a replacement for some subset of the

order requests.
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FH2a. Replica receives every missing order request before the timer expires.

Replicai processes the order request messages as described iropstépd and removes the timer.

Additional Pedantic DetailsContradictory order request messages constitute a praofsifehavior as

discussed in protocol stefl.

FH2b.1. Replica does not receive every missing order request before the timer expires and asks the
other replicas for help in filling in the holes.

When the timer fires the replica broadcasts ¢hieL-HOLE, v, Kk, n, i), to all other replicas and waits for

responses.

FH2b.2. Replica receives a fill hole message from another replica and responds with the appropriate
set of order requests.

Upon receipt of(FILL-HOLE, V,k, n,i)s from replicai, replicaj forwards the order request message for

sequence numbeksthroughntoi.

Additional Pedantic Detaildf replica j receives fill hole messages frofrt+ 1 distinct replicas during

view v, theni initiates the view change protocol.

Additional Pedantic Detaildf replicai receives an order request message that is inconsistenbmsgth

that it received (either directly conflicting or resultingan impossible history combination, then that con-

sists of a POM and can be distributed to all other replicastioef the view change.

G.1.3 Key Differences

Our protocol differs in a couple of key ways, each differeimfluences the others.

1. The agreement protocol can end after 1 or 2 replica mess&RF-T ends after 2 or 3 replica (non-

primary) messages.
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2. The checkpoint protocol includes a commit phase whichssa@nd all to all communication that

confirms the state of the checkpoint. PBFT requires only glsiall to all communication.

3. The view change protocol includes an all to all confirmatibthe new view. PBFT begins accepting

messages in the new view as soon as the new view messageivedece
4. We divorce the initiation of a view change from the comnairto the view change.
By shortening the common case agreement protocol, we hauered replicas to remain active even

when they locally think that the primary is in fact faulty. Wave also moved a confirmation step from the

common agreement protocol to the uncommon checkpoint aavd ehange protocols.

G.1.4 Safety and Liveness

The primary purpose of the safety proof is to ensure that maefaolty replica will make a bad choice that
results in the system being in an inconsistent state. Theogerof liveness is to ensure that, when relevant,

a non-faulty replica eventually makes a choice.

Safety

We define the following predicates to facilitate our proofltd safety properties of Zyzzyva. Note that each

of these predicates is defined with respect to non-faulgntdiand replicas.

e client—deliveredo,n,h,c) = client ¢ accepts the response to operatmms then" request in the

request historj.

e op—complete(b,v,n,h,c) = client ¢ accepts the response to operatimms then" request in the

request history based off of vieww messages.
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e orderedo,v,n, h,i) = replicai received an order request for operatmasn'" request in the histori

during viewv.

e commit—certo,v,n,h,i) = replicai received a commit certificate confirming operatioms thent"

request in history during viewv.
e checkpoint-votés,n, h,i) = replicai has a histonh of lengthn when initiating a checkpoint.

e checkpointv,n,h,i) = replicai considers the checkpoint at sequence numbeith history h to be

stable in viewv after receiving 2 + 1 matching checkpoint confirmation messages.

e view—VvotgV, ncc, hee, Nsr hsr i) = replicai commits to a view change with a history of ordered re-

quests that extends lgrand a history of committed requests extendingde.
e new-viewv,n, h,i) = replicai receives a new view message with histbrgf lengthn.

e confirm—view(v,n,h,i) = replicai receives 2 + 1 confirm view messages and begins viewith

history h of lengthn as the base state.

e locally-commitedo,v,n, h,i) = 3n’ > nandh’ such thahis a prefix ofY such that commit—cef, v, n, h, i)

or confirm—-viewv,n’,h';i).

Throughout the proofs we make the following assumptions:

e There are 3 + 1 replicas.
e At most f replicas are faulty.

e All non-faulty replicas follow the protocol faithfully.
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The safety property that we are interested in maintainintpas if non-faulty clientsc andc’ accept

request® ando’ with sequence numberandr’, thenn < r’ implies thato was executed prior to'.

Theorem 4 (Safety). If client-deliveredo,n,h,c), client-deliveredd’,n’,,c’), ¢ and ¢ are non-faulty

clients, and r< ' then h is a prefix of'h

We first observe that Zyzzyva is based on a series of views.fdllosving observation follows directly

from the protocol description.

Observation 1. If client-deliveredo, n, h,c) for non faulty client c thed view v such thabp-completedo, v,n, h, c).

Proof. Protocol stepga and4b.2. O

It follows from Observation 1 that in order to prove Theorent & sufficient to prove the following
Theorem describing the relationship between operatiomisctbmplete at correct clientsandc’ in view v

andV respectively.

Theorem 5. If op—completedo,v,n, h,c) and op-completedo’,v,n',i .c’), i’ > n, and ¢ and tare non-

faulty, then h is a prefix of'h

Protocol stepgla and4b.2 define the conditions under which a non-faulty client acceptjuests. The

following Observation expresses those conditions witpeesto the predicates defined above.

Observation 2. If op—completedo, v,n, h, c) then either (a)¥ non-faulty replicas brderedo, v, n, h,i) or (b)

3 f 4+ 1 non-faulty replicas j such thdbcally-commitedo,v,n,h, j).

Proof. Clients accept a response in stdpsand4b.2.
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In step4a, a client accepts the response only after having receivadhing speculative response mes-
sages from all 8+ 1 replicas. Non-faulty replicas only send speculative easp messages if they order

the request based on an order request message from th piimgarycompleting the proof.

In step4b.2, a client accepts the response only after having receivedhing local commit messages
from 2f 4 1 replicas. Non-faulty replicas send local commit messadges having received a commit cer-
tificate for that request in stefb.1 or observing that a subsequent message has been committescabed

in 4c. O

Non-faulty replicas begin accepting messages in wewly after the view is confirmed by a quorum
of other replicas. The following Lemma shows that all noakfareplicas that begin a view do so with

identical histories and sequence numbers.

Lemma 1. If confirm~view(v,n, h,i) andconfirm-view(v,n’,l, j) for non-faulty replicas i and j thena n’

and h="n'.

Proof. If v= 0 then the result follows from protocol step

Assumev > 0. Since confirm—vie, n, h,i) is true only when receives 2 + 1 matching view confirma-
tion messages and there are31 replicas total with at most faults,i and j there is at least one non-faulty
replica whose view confirmation message was accepted byi laotthj. It follows from protocol step/C4

that non-faulty replicas send only one view confirmation sage, s =’ andh=h'. O

We now show certain relationships between the states atasgdbr a given sequence numlyein view

v. Any non-faulty replica that orders at most one request@teece numbem in view v

Lemma 2. If orderedo,Vv,n, h,i) andorderedd’,v,n, 1 ,i) for non-faulty replica i then b= h and o= 0'.
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Proof. Follows from protocol steg that non-faulty replicas order exactly one request at secpiaumber

n during viewv. O

If a non-faulty replica accepts a commit certificate for auest at sequence numbem view v, then at

leastf + 1 non-faulty replicas ordered that request with sequenogeun.

Lemma 3. If commitcerto,v,n,h,i) at non-faulty replica i therdf 4+ 1 non-faulty replicas j such that

orderedo,v,n,h, j).

Proof. It follows from protocol steptb.1 that a non-faulty replica only accepts valid commit cerdifes. It
follows from the definition of a valid commit certificate inqiocol steptb and the assumptions off 3- 1
total replicas and at modtfaulty replicas that a commit certificate includes matctspgculative response
messages from at leakt- 1 non-faulty replicas. It follows from protocol st@ghat each of these non-faulty

replicas ordered the request at sequence numhmrmpleting the proof. O

Further, if f + 1 non-faulty replicas order the same request titen any commit certificate atmust be

for the same request.

Lemma 4. If commitcert(o,v,n,h,i) and3f + 1 non-faulty replicas j such thairderedo’,v,n,’, j) then

h=H and o=0.

Proof. Protocol steptb implies that a commit certificate require$ 2 1 replicas to send matching specu-
lative replies. Since there ard 3-1 replicas in total, at least one of thé 2 1 replicas is in the set that

orderedh’ soh=". O

Similarly, there can be only one commit certificate for a gigequence numberin view v.
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Lemma 5. If commitcerto,v,n,h,i) and commitcertd,v,n,l’, j) for non-faulty replicas i and j then

h=h and o=10.

Proof. Follows from Lemmas 4 and 3. O

Lemmas 2 through 5 imply that only one operation can complgtie sequence numberin view v.
The following Lemmas relate operations that are ordereccanthitted by replicas with sequence numbers

n—1 andnin view v.

Lemma 6. If orderedo,v,n, h,i) andconfirm-view(v,ng, ho,i) and n> ng+ 1 thenorderedo’,v,n— 1,1, i)

or commitcerfo’,vyn—1 Hh i)and H=h—o.

Proof. Follows from protocol stepd and4b.1 that non-faulty replica does not order the" request unless
it has ordered or received a commit certificate for the 15 request om is the first sequence number of

view v. O

Lemma 7. If orderedo,v,n, h,i) for non-faulty replica i, thering, hg such that g < n and h is a prefix of

h andconfirm-view(v, ng, ho, i).

Proof. It follows from protocol ste@ and steps/C2 VC5 that non-faulty replicas only accept viemmes-
sages when the view has been confirmeddsghg such that confirm—viegw,ng, ho,i). It follows from
protocol steps and protocol stegb.1 thatn > ng. In order to show thaly is a prefix ofh, we proceed by

induction on the difference betweearandng.

Base case af = ng+ 1. It follows from 3 that non-faulty replica append® to the historyhg in order to

get historyh andhy is thus a prefix oh.
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Inductive step fon > np+ 1. It follows from Lemma 6 that orderéd,v,n— 1 i, i) or commit—certo’,v,n—
1,K.i) such that’ = h—oiis true. In the first case the proof is complete by the indechiypothesis. In
the second case, it follows from Lemma 3 that there farel non-faulty replicas that orderes as the
n— 1%t request. It then follows from Lemma 1 that non-faulty regticonfirm the same base state for a view
and from protocol step, VC2, andVvC5 that non-faulty replicas only accept viemmessages if they have

confirmed the view has begun. The inductive step then coswptat proof. O

Lemma 8. If commitcert(o,v,n,h,i) for non-faulty replica i and8f + 1 non-faulty replicas j such that

orderedd’,v,n’, i’ j) and i > n then h is a prefix of’h

Proof. We proceed by induction anf — n.
For the base case of = n, the conclusion follows from Lemma 4.

Consider the case wheh> n. It follows from Lemma 6 that orderéd”’,v,n' —1,h' — o, j) or commit—certo”,v,n/ —
1,h—0,j). Inthe first case, we proceed by induction on commitfogvtn, h,i) and orderet” v,n' —
1,h—0d,j). In the second case it follows fom Lemma 3 thdt+ 1 non-faulty replicas such that

orderedo”,v,n’ — 1, — o, k), and we again proceed by induction. O
Lemma 9. If commitcerto,v,n,h,i) and commitcert{d,v,n’,l, j) for non-faulty replicas i and j and

n > nthen his a prefix of'h

Proof. We proceed by induction amf —n.
Base case afi=n’ then the result follows from Lemma 5.

Consider the case where< n'. It follows from Lemma 3 thaBif + 1 non-faulty replicak such that

orderedd’,v,n’,h’ k). It follows from Lemma 6 that orderéd”’,v,n' — 1, i — 0, k) or commit—certo”, v,n’ —
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1,h" —o,k) is true for each of thé + 1 ks. In the first case the conclusion follows from Lemma 8. In the

second case we proceed by induction on commit{@e£in, h,i) and commit-cefo”, v, —1,h'—o0,k). O

Lemma 10. If 3f + 1 non-faulty replicas i such thairderedo,v,n. h,i) and commitcert{d’,v,n/, ', j) for

non-faulty replica j and h> n then h is a prefix of’h

Proof. If N = nthen the conclusion follows from Lemma 4.

If ' > nthen we proceed by induction on the number of sequence nenbeéveem andn’ that have

valid commit certificates in view.

For the base case when there are no such sequence numbersal3®mplies thatdf + 1 non-faulty
replicask such that ordergd’, v,n’, Y k). Since there aref3+ 1 replicas total and at mostfaulty replicas,
it follows that at least one replidds also a replic&. The conclusion thus follows from repeated application

of Lemma 6.

For the inductive step, consider the sequence numbguch thah < n” < n and commit—cefo”,v,n” i’ k)
for non-faulty replicak. It follows from Lemma 9 thah' is a prefix of’ and we proceed by induction on

orderedo, Vv, n, h,i) and commit—cefo”,v,n” h’ k). d

Having established properties relating requests that atered and committed during view we no

proceed to relate these requests to the view change thatdraithe system from viewto view v+ 1.

The requests that are ordered and committed by a specificaegk present in the view vote submitted

by that replica according to the following Lemmas.

Lemma 11. If view—vote(V, ncc, hee, Nsr, hsr i) for non-faulty replica i, then gc < nsgand hec is a prefix

of hsr
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Proof. Follows from protocol stepC2. O

Lemma 12. If orderedo,v,n, h,i) is true vV non-faulty replicas i andiiew—vote(v+ 1, ncc, hee,Nsr hsr, j)

is true for non-faulty replica j then K. nsgrand h is a prefix of &

Proof. It follows from Lemma 4 that no other request will be insersgédequence numbarduring viewv.
Eithern is less than the most recent commit certificate receive@ drygreater than that sequence number.
In the first case the conclusion follows from protocol st&2 and Lemma 11. In the second case it follows

from protocol step/C2 and protocol step. O

Lemma 13. If commitcert(o,v,n,h,i) and view—vote(v + 1,ncc, hce, Nsr hsr,i) are true for non-faulty

replica i then n< ncc and h is a prefix of &.

Proof. It follows from Lemma 5 that no other commit certificate candoeepted by at sequence number
n in view v. Eithern is the largest sequence number for whichas received a commit certificate or
Jn’ > n such that commit—ce’,v,n’,h',i). In the first case, the conclusion follows from protocol step
3 andVC2. In the second case it follows from Lemma 9 thas a prefix oft’ and we proceed by induction

on commit—ceifo’,v,n’, i’ i) and view—votév+ 1, ncc, hee, Nsg hsr,)- O

Lemma 14. If confirm~view(v,ng, ho,i) and view—vote(v+ 1, ncc, hee, Nsr hsr i) for non-faulty replica i
thenVn:ng < n < ncc commitcert{o,v,n, h,i) or orderedo,v,n,h,i) and h is a prefix of fc andVn':ncc <

n < ngrorderedd’,v,n’, i’ i) and H is a prefix of R

Proof. Follows from protocol steps, 4b.1, VC2. O

We now relate requests that complete based on messagesisegtuewv to any initial case that can be

considered for view -+ 1.
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Lemma 15. If 3f + 1 non-faulty replicas i such thatommitcert(o,v,n,h,i) and new-view(v+1,n',h’ j)

then i > n and h is a prefix ofh

Proof. It follows from Lemma 13 thaBf + 1 non-faulty replicas such thatncc > n in their respective
view votes. Since there ard 3- 1 replicas and the new view message is composed af 2view votes by
protocol step/C3, at least one of the view votes witlic > n must be included in every new view message.

It thus follows from protocol step'C4 thath is a prefix oftY. O

Lemma 16. If orderedo,v,n, h;i) is true for all non-faulty replicas i andew-view(v+ 1,n’. i, j) for non-

faulty replica j and n< ' then h is a prefix ofh

Proof. It follows from Lemma 12 that all for all non-faulty replicasisg > n in their view votes. Since
there are 3 + 1 replicas total and at mos$tfaulty replicas (both by assumption) and the new view messag
contains view votes fromf2+ 1 replicas by protocol steyC3, the new view message contains at leastl

non-faulty replicas. It thus follows from protocol stég4 thath is a prefix ofh'. O

Lemma 17. If confirm~view(v,n,h,i) and new~view(v+ 1, K, j) for non-faulty replicas i and j then

n > nand his a prefix ofh

Proof. It follows from protocol step/C5 that a non-faulty replica commits to a view after receivirfg21
matching commit view messages. It follows from protocopst€4 that non-faulty replicas send commit
view messages only after receiving 2 1 a valid view change message. It follows from protocol step

that any non-faulty replicas will include either the newwimessage for view or a commit certificate with
higher sequence number in viemin their viewv+ 1 view vote messages. Since a new view consists of

2f + 1 view vote messages and there afet3l total replicas, at most of which are faulty, at least one
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non-faulty replica is included in both sets and it followsrfr protocol stefyC4 thatn’ > nandhiis a prefix

of i'. O

Lemma 18. If confirm~view(v,n, h,i) andconfirm~view(v+ 1,n’ i, j) for non-faulty replicas i and j then

n >nand his a prefix of h

Proof. Follows from protocol stepC4 and Lemma 17. O

The following Lemma shows that for any confirmed viewandV > v, the history confirmed iw is a

prefix of the history confirmed i

Lemma 19. If confirm~view(v,n,h,i) and confirm~view(V,n’,h’, j) for non-faulty replicas i and j and

V' >vthen h>nand his a prefix of h

Proof. If V. = v+ 1 then the conclusion follows from Lemma 18.

If V > v+ 1 then we proceed by induction on the number of viglwsuch that/ < v/ < v and confirm—-vieyw”,n” |h” k)

for non-faulty replicak.

In the case where no such viext exists, no requests can be ordered or committed in viewsx < V/,
so by protocol stefyC2 the view votes for non faulty replidd are the same in all views It thus follows

from Lemma 17 an&/C4 that the conclusion holds.

In the case where such a viext exists, we proceed by induction on the pair of viemandv’ and the

pairVv’ andv. O

Lemma 20. If op—completedo, v,n, h,c) for non-faulty client c and¢onfirm-view(V, ', i',i) for non-faulty

replica i and v< v then n< n’ and h is a prefix of h
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Proof. It follows from Observation 2 that (&) non-faulty replicas orderedo,v,n,h;,i) or (b) 3f +1 non-
faulty replicasj such that commit—ce, v, n. h, j) or (c) 3 non-faulty replica such that confirm—-view”, n’ | h” k),

v<V' <Vandn<n’ <n.
If vV =v+ 1 then it follows from Lemmas 15, 16, and 17 timat n’ andh is a prefix oft.

If vV >v+1, then we proceed by induction on the number of vietfissuch thatv < v/ < v and 3
non-faulty replicag such that confirm—view”  ng, hg,g). If such a view exists thehg is a prefix oft’ by
Lemma 19 andh is a prefix ofhg by induction onv andv”. In the case where no such viexff exists, no
request can be ordered or committed in viewss x < V', so by protocol stefyC2 the view votes for the
non-faulty replicag are the same in all views It thus follows from Lemmas 15, 16, and 17 timat n’ and

his a prefix ofh'. O

Having established the previous 20 preliminaries, we calljishow a set of Lemmas that relate com-
pleted operations and the histories associated with thg@leded operations. First, operations that complete

in the same view

Lemma 21. If op—completedo, v, n, h, c) andop-completedod’,v,n’,h',c’) and i > n then h is a prefix of’h

Proof. If op—completedo,v,n, h,c) then confirm—-viewn, ng, ho,i) is true for some non-faulty replidga Ob-
servation 2 that either all non-faulty replica®rderedo,v,n,h,i) or at leastf + 1 non-faulty replicas
locally—commitedo, v, n, h, j), similarly either all non-faulty replicaisorderedd’,v,n’, ;i) or at leastf + 1

non-faulty replicak locally—commitedo’, v,n', i, k).
There are three cases to consider.

Case 1l:ng < n<n'. It follows from Sincen > ny by assumption, locally—-commitéalv,n,h, j) =

commit—certo,v,n,h, j). A similar argument holds for op—completed v,n’,h’,c’). The conclusion then
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follows from Lemmas 6, 8, 9, and 10.

Case 2:n < ng < n'. It follows from the definition of locally—commitdd, v, n, h,i) and the assumption
thatn < ng that confirm—viewv, ng, ho, i) andh is a prefix ofhg. It follows from the assumption that < n’
and op—completdd’,v,n’, i, c’) that either for all non-faulty replicasorderedo’,v,n’,h';i) or 3f + 1 non-
faulty replicask such that commit—ce’,v,n’, i, k). If the latter is true, then it follows from Lemma 3 that
f + 1 non-faulty replicag orderedo’,v,n’,l, j). It thus follows from Lemma 7 thdi, is a prefix ofh’ and

hence thah is a prefix oft.

Case 3:n <’ < ng. It follows from the definition of local commit that andh are both prefixes dfg.

Sinceh is a history of lengtin andh’ is a history of length’ > n, h must be a prefix ofy. O

Lemma 22. If op-completedo, v,n, h,c) and op-completedo’,V,n’;h’,c’) and n< n’ and v< V then h is

a prefix of K.

Proof. It follows from Observation 2 that (&) non-faulty replicas orderedd’,v,n',h';i) or (b) 3f +1 non-
faulty replicasj such that commit—ce’, v/, ', i, j) or (c) 3 non-faulty replica such that confirm—view/,n” i’ k),

andn’ <n”

If (2) or (b) hold then it follows from Lemmas 3 and 7 that comiview(V', ng, ho, i) for non-faulty replica
i andhg is a prefix ofl. It then follows from Lemma 20 and< V thath is a prefix ofhg, completing the

proof.

If (c) holds, thenh' is a prefix ofhg by definition and it follows from Lemma 20 thatis a prefix ofhg.

Sincen < ', hmust be a prefix of. O

Lemma 23. If op-completedo, v, n, h,c) and op-completedd’,v.n',,c’) and n< n’ and v> Vv then h is

a prefix of h.
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Proof. It follows from Observation 2 and Lemmas 3 and 7 that confiriew, ng, ho,i) is true for some
non-faulty replica. It then follows from Lemma 20 that < ng andl is a prefix ofhg. It thus follows from
n < n’ and Observation 2 that confirm—viéwng, hy, i) is true for at leasf + 1 non-faulty replicas and that

his a prefix oftY. Sincen’ > n hmust be a prefix off. O

Theorem 4 If client-deliveredo,n, h,c), client-deliveredd’,n’,h’,c’), c and ¢ are non-faulty clients, and

n <’ then his a prefix ofh

Proof. It follows from Observation 1 that it is sufficient to show tenclusion given op—completgalv,n, h, c)
and op—completgd’, v, ', i, c’). If v=V the conclusion follows from Lemma 21.\f< V' the conclusion

follows from Lemma 22. Ifs > V the conclusion follows from Lemma 23. O

Liveness

The primary liveness property Zyzzyva maintains is that m-fawilty client eventually receives a response
to every request that it issues. We maintain this properteuthe eventual synchrony assumption which

states that the system will eventually be synchronous foffacently long period of time.

Lemma 24. During periods of synchrony, if the primary p is correct theaperation o issued by non-faulty

client c eventuallyd sequence number n and history h such ttient-deliveredo,n, h,c).

Proof. If the client and primary are correct then protocol steépghrough3 ensure that the client receives
SPEGRESPONSEmMessages from all non-faulty replicas. Either the clieneiees ¥ + 1 matchingsPeEG
RESPONSEmMessages or the client receives fewer th&r-3 such messages. In the former case the request
completes, completing the proof. In the latter case thetiieceives at leastf2+ 1 matching requests since

there are 3 + 1 total replicas and at modt replicas can be faulty. The client then sends@mIT to
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all replicas in protocol stepb. All non-faulty replicas send a LOCAL-COMMIT message to tient in
protocol steptb.1, and because there are at leabtt2l non-faulty replicas the client request completes in

protocol stepth.2. O

Lemma 25. During periods of synchrony, if a non-faulty client ¢ issaagquest during view v then either
3 sequence number n and history h such ti@nt-deliveredo, n,h,c) or 3 f + 1 non-faulty replicas i such

that

Theorem 6. During periods of synchrony, if a non-faulty client c iss@egquest for operation o theh

sequence number n and history h such tent-deliveredo,n, h,c).

Proof. Follows from Lemmas 24, and 25. O

Liveness in PKI-Zyzzyva is based on a couple of propertiést,if a non-faulty client does not receive
aresponse in a timely fashion then it retransmits its regngsotocol steptc. Second, if a replica does not
receive an order request from the primary in a timely fashiodetects inconsistent primary behavior then
it initiates a view change in stegs, 4d, FH2a, andFH2b.2. Finally, if the new primary is faulty and does

not complete the view change then non-faulty replicasatgtanother view change.
G.2 Non-PKIl Zyzzyva

Here we describe the necessary modifications to replacatsigs with authenticators in Zyzzyva. We
replace all signatures with authenticators, with a few ptoas related to: (1) view changes, (2) client
request retransmission, and (3) a corner case of the fillgrol®col required in order to ensure consistency

in the presence of faulty replicas.
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G.2.1 Agreement

‘4. Client gathers speculative responses.

[Modification] We remove th@©Rfield from the speculative response message. Sinc®Reld con-
tains a MAC, rather than a signature, the client cannot cmevanother node of anything based on that

field.

4b. Client receives between 2f + 1 and 3f matching responses, assembles a commit certificate,
and transmits the commit certificate to the replicas.

[Modification] The client forms a potential commit certificate with evergigable speculative response,
rather than only 2 + 1, since replicas may be unable to authenticate every meghag the client can
authenticate. A replica considers a commit certificate toddig it it can authenticate at least 2- 1 of the

included speculative responses.

4b.1a. Replica receives a commit message from a client containing a commit certificate and ac-
knowledges with a local-commit message.

4b.1b. Replica receives a commit message with at least f verifiable and at most 2f matching. ‘

The replica sends its speculative response (without thejfdlication reply but with just the hash) or
a local-commit message (if it is already locally committéallall other replicas. If the request is locally

committed at the replica it also forwards local-commit naggsto the client.

4b.1b.1. Replica receives speculative response or local-commit messages directly from other repli-
cas.

If the replica broadcasted local-commit messages in théqure step and does not receive21 match-
ing of local-commit message, it initiates a view changecsfaive or local-commit messages) have match-

ing history digest, then the replica responds to the clisnih &tepsb.1a. Otherwise the replica and initiates
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the view change protocol.

4b.1b.2. Replica receives CC confirm request from another replica.

If the replica received a valid CC, then it responds with dirrahtive message. Otherwise it sends no

message.

4b.1b.3. Replica receives an affirmative CC confirmation from f -+ 1 distinct replicas for matching
requests.

The replica treats the series of messages as a commit @eifiod acts as described in stép

Additional Pedantic Detaildf necessary, the replica responds with CC confirmations ateip4b.1b.2

[Addition] A replica that authenticates at ledst 1 of the included speculative responses authenticates
the request if it has not already done so and has not speeljatesponded to a different request for that

sequence number.

4d. Client receives replies indicating inconsistent ordering by the primary and sends a proof of
misbehavior (POM) to the replicas, which initiate a view change to oust the faulty primary.

[Modification] A POM consists of 2 distinct speculative responses for the sameesee numben each

supported byf + 1 replicas. Note that the replicas may be unable to verifyPO1.

G.2.2 View Change.

All messages sent as part of the view change protocol codigital signatures. The additional expressive
power of digital signatures simplifies the protocol desigtiraited cost, since view changes occur rarely.
We add the following additional proof gathering phase touieev change protocol—it runs after replicas

receivef + 1 indictments of the primary and before the view change ngessare sent.
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VC2.1. Replica requests a signature for the most recent commit and checkpoint certificate it has
received.

After receivingf + 1 primary condemnations, replicaends a request to all other replicas for a signature

corresponding to the most recent commit and checkpoinificates it has received.

VC2.2. Upon receipt of a signature request for commit and checkpoint certificates, the replica sends
signatures back to the requesting replica.

If replica | has received an order request for the specified commit catifi then it replies with a signa-
ture for that order request. If repligahas sent the checkpoint message previously jhersponds with a

signature for that checkpoint.

VC2.3. Upon receipt of f + 1 signatures for the same commit certificate, a replica completes the
proof and sends a view change message.

A replica considersf 4+ 1 signatures to complete commit and checkpoint certificab@fp. Once the

replica has complete proofs, the replica is able to sendvaalimnge message to the new primary.

Modification. View change messages consist of the proof for a stable cbettlgnd every order request
received since that checkpoint. The order requests are entgahwith a collection of + 1 signatures for
the order request at some sequence number after the cheicKpbis collection of signatures corresponds

to a tentative commit certificate.

Additional Pedantic DetailsA collection of f + 1 matching signatures for the commit certificate consti-

tutes astrong proof for the commit certificate; a collection df+ 1 signatures that for a combination of

order requests and commit certificates constitutegakproof for the commit certificate.

VC3. Replica receives 2f + 1 view change messages.
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Modification. The primary gathers 24 1 non-conflicting view change messages to form a new view
message. A pair of view change messages are conflicting yif cbetain commit certificate proofs for
different values at sequence numbeA view change message with a commit certificate proof fousage

number is considered to implicitly contain a commit certificate &dksequence numbers< rv.

We believe that digital signatures can be avoided in the \wiBange protocol after replicas commit to

view change using View-change-ack messages similar to PBFT

G.2.3 Checkpoint

We modify the following step in checkpoint protocol whilestbther steps are the same except that digital

signatures are replaced by MACs.

CP3. Replica receives 2f + 1 matching checkpoint messages from another replica and accepts the
checkpoint as stable if it has not already done so.

[Modification] Like PBFT, we modify the checkpoint protocol to includé 2 1 MACs for non-pki ver-
sion. A checkpoint is considered stable by repliggneni has received eitherf2+ 1 matching (and authen-

ticatable) checkpoint messages from another replica.

Fill Hole

There is an additional problem encountered in the fill hoteqaol when digital signatures are not used to
sign client requests. It is possible that a replica, uporip©f an order request from the primary, is unable
to authenticate the client issued request. Unfortunatiely,impossible to tell if this failure is the fault of
the client—for providing an incorrect authenticator—oe thult of the primary—for maliciously modifying
the client’s authenticator. In order to address this isstejntroduce a new sub protocol to the fill holes

procedure—the request authentication protocol. The stquehentication protocol ensures that either all
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non-faulty replicas authenticate a response or agree hbat't request in the execution order should be
considered a no-op. This protocol is executed wheneverlgaegceives an order-request message from

the primary containing a request that the replica is unabduthenticate.

AR1. Replica requests an authentication proof from the primary.

Upon receiving a request that a replica is unable to auttegeti replica sends a message to the primary

requesting proof that the request is in fact valid.

AR2. Primary receives the authentication request and responds with an available proof.

AR2a.1. Primary responds with a signed client request or commit certificate proving that the request
was issued by the client.

The signature is assumed to be unforgeable and consequeaotlgs that the client issued the request.
A commit certificate must include speculative responses fad leastf + 1 non-faulty replicas, so when

transferred guarantees that at least one non-faulty eeplics able to authenticate the request.

Additional Pedantic DetailsA commit certificate is only a valid proof if the replicas use ttwo layer

MAC authentication described in the modification to protostep 3. If the second layer of MACs is not

used, then a commit certificate is not transferable proof.

AR2a.2. Replica receives the signed client request, authenticates the request, and proceeds as
normal.

AR2b.1. Primary has not received a signed client request or a valid commit certificate and requests
an authentication proof from the other replicas.

If the primary does not have a valid signature or commit fieatie for the request, then the primary

gathers proof by requesting signatures from the replicas.
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AR2b.2. Replica receives the signature request from the client, forms a response, and stops replying
to the client.

The replicas response is a signed message containing ohe fifliowing: (a) a signature authenticat-
ing the request, (b) a signed commit certificate for that estjfor a subsequent request that includes the
intervening requests), or (c) a signature claiming thar¢ogiest was unauthenticatable. After receiving the
signature request from the primary, the replica does ndoparany other actions until the signature query

is resolved.

Additional Pedantic Detailsfhe step of stopping responses to the client is necessangtoesafety and

prevent a client from receivingf2+- 1 local commit messages for a request that is eventuallypeatout of

existence.

AR2b.3. Primary receives responses, generates the proof, and distributes the proof to the replicas. ‘

The proof consists of either (a) a single signed commitfieate, (b)f + 1 signed messages authenticat-
ing the request, or (c) 2+ 1 messages that contain neither (a) nor (b). Once the prilves\gathered one

of these three proofs the primary sends the proof to all aticas.

AR2b.4. Replica receives the authentication proof from the primary.

If the proof authenticates the request (i.eaigr b from above), then the replica proceeds as normal. If
the proof does not authenticate the request (i.ealzove), then the replica inserts a no-op at the appropriate
place in the history and proceeds as normal for future regemny requests that were previously ordered
with higher sequence numbers are discarded and the retjuesiselves must be reordered using the request
history that includes the no-op. In either case, after véngithe response from the primary the replica

accepts order request messages again and sends the aati@npiroof to all other replicas.
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AR2b.5. Replica receives authentication proof from other replicas.

If the replica receives two different authentication pydhen the replica initiates the view change pro-

tocol.

Additional Pedantic DetailsThis ensures that a faulty primary that authenticates twtndit orders will

in fact be caught and force an inevitable view change.

Future Requests. In order to limit the amount of damage that a faulty client canse the system, sub-

sequent requests issued by that same client must all bedsigrteey do not include a signature, then they
are not accepted by the primary. If the primary forwards aiest from that client that does not contain a
valid signature in the future, then the primary is considegailty and the replica initiates the view change

protocol.

G.2.4 Safety and Liveness

The proof of safety for non-PKI Zyzzyva is virtually iderdicto the proof of safety for PKI Zyzzyva; the
intuitive conditions under which a client accepts the resgoto a request remain unchanged as do the
conditions under which a replica orders or locally commiteequest. Consequently, within a view the
protocol and the proofs do not substantially change. Thesstemaintain safety become more complicated

when the view change procedure is considered.

Safety

We introduce a new predicate that captures the state of i@agpht has gathered a collection of signatures

that serve as a tentative proof for a commit certificate.
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e commit—proofo,Vv,n, h,i) that is true when replicahas gathered + 1 matching signatures for the

order request of operatianat sequence numbarwith historyh.

Based on this predicate and the protocol we are first abledw #fat non-faulty replicas gather proofs

for commit certificates only if the commit certificates aresistent with each other.

Lemma 26. If commit-proof(o,v,n, h,i) andcommit-proof(d’,v,n’, i, j) for non-faulty replicas i and j and

n > nthen his a prefix of’'h

Proof. It follows from protocol stepyC2.1 that non-faulty replica (j) requests signatures to form a commit
proof for sequence numbar(n’) only if i (j) has received a valid commit certificate for sequence number

(). It thus follows from Lemma 9 thdt is a prefix oftY. O

Based on Lemma 26, we are able to show that a view change nesssagt by non-faulty replicas are

non-conflicting.

Lemma 27. If view-vote(v, ncc, hee, Nsr hsr i) and view—vote(V, ni, hi, Ngg g, J) for non-faulty repli-

casiand jand Bc < ngc then lrc is a prefix of b

Proof. The conclusion follows from protocol st&C2.3 and Lemma 26. O

Lemma 27 ensures that a non-faulty primary can always ga&therl consistent view change messages

if given enough time.

Liveness

Liveness in the protocol is ensured based on the assumgterentual synchrony. As was discussed in the

previous section, view change messages from non-faulticaspare guaranteed to be non-conflicting so
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when allowed enough time through a period of synchrony aadiponentially growing timeouts the new
primary for viewv is guaranteed to collectf2- 1 non-conflicting view change messages and consequently be
able to form a valid new view message. Within a view, liverissnsured during periods of synchrony due
to the agreement protocol steps beginning at protocol4idp. If all non-faulty replicas process requests
based on protocol stefb.1a then the client receives the response to the request anggtasis live. If a
non-faulty replica reaches protocol s#pib then either it receives sufficient messages to authentibate
commit certificate or there are at ledst- 1 non-faulty replicas that are unable to authenticate tiencib

certificate but are able to force a view change to occur.

175



Bibliography

[1] Amazon S3 Storage Servicéttp://aws.amazon.com/s3

[2] Apple Backup.http://www.apple.com

[3] Concerns raised on tape backup methdutp://searchsecurity.techtarget.com

[4] Copan Systemshttp://www.copansys.com/

[5] Cryptographic Benchmarksttp://www.eskimo.com/ weidai/benchmarks.html

[6] Data loss statisticshttp://www.adrdatarecovery.com/content/adr_loss_sta t.html
[7] Data loss statisticshttp://www.hp.com/shso/serverstorage/protect.html

[8] Disk at the pice of Tape - An In-Depth Examination.http://www.copansys.com/library/

index.shtml

[9] Fire destroys research centerhttp:/news.bbc.co.uk/1/hifengland/hampshire/439004

stm.
[10] GMail. http://www.gmail.com
[11] Google video.http://video.gmail.com

[12] Health Insurance Portability and Accountability AEtIPAA). 104th Congress, United States

of America Public Law 104-191

[13] Hotmail incinerates customer filebttp://news.com.com , June 3rd, 2004.

176



[14] “How much information ?”.http://lwww.sims.berkeley.edu/projects/how-much-info

[15] Hurricane Katrinahttp://en.wikipedia.org

[16] Industry data retention regulationisttp://www.veritas.com/van/Articles/4435.jsp

[17] IOZONE micro-benchmarkshttp://www.iozone.org

[18] Lost Gmail Emails and the Future of Web Apgstp://it.slashdot.org , Dec 29, 2006.

[19] Microsoft Hot Mail. http://mail.live.com

[20] Microsoft Live photos.http://photos.live.com

[21] Microsoft Sky Drive. http://skydrive.live.com

[22] NetMass Systemsitp://www.netmass.com

[23] Network Appliance.http:/www.netapp.com

[24] Network bandwidth costhttp://www.broadbandbuyer.com/formbusiness.htm

[25] NFS :Network file system protocol specificatidnternetRFC1094

[26] OpenSSL http://www.openssl.org/

[27] OS vulnerabilities.http://www.cert.com/stats

[28] Picasa Webhttp://picasaweb.google.com

[29] Postmark macro-benchmarhkttp://www.netapp.com/tech_library/postmark.html

[30] Ransomwarehttp://www.networkworld.com/buzz/2005/092605-ransom html .

177



[31] Remote Data Backupsitp://www.remotedatabackup.com

[32] Sarbanes-Oxley Act of 2002.07th Congress, United States of America Public Law 107-204

[33] Spike in Laptop Thefts Stirs Jitters Over Data. WastongPost, June 22, 2006.

[34] SSPs: RIPByte and Switch, 2002

[35] Tape Replacement Realitielsttp://www.enterprisestrategygroup.com/ESGPublicati ons.

[36] The Wayback Machinehttp://www.archive.org/web/hardware.php

[37] US secret service report on insider attacktp://www.sei.cmu.edu/about/press/insider-2005.

html .

[38] Victims of lost files out of luck.http://news.com.com , April 22, 2002.

[39] Yahoo Mail. http://mail.yahoo.com

[40] Yahoo Mail. http://photos.yahoo.com

[41] You Tube. http:/mww.youtube.com

[42] ServeRAID - Recovering from multiple disk failurebttp://www.pc.ibm.com/gtechinfo/MIGR-39144.

html , 2001.

[43] “data backup no big deal to many, until..fittp:/money.cnn.com , June 2006.

[44] A. Adya et.al. FARSITE: Federated, available, andatale storage for incompletely trusted environ-

ment. InProc. of 5th OSD|2002.

178



[45] Michael Abd-El-Malek, Greg Ganger, Garth Goodson, &Reiter, and Jay Wylie. Fault-scalable
byzantine fault-tolerant services. Rroceedings of the 20th ACM Symposium on Operating Systems

Principles October 2005.

[46] A. S. Aiyer, L. Alvisi, A. Clement, M. Dahlin, J-P. Marti, and C. Porth. BAR fault tolerance for

cooperative services. IAroc. of SOSP '05pages 45-58, October 2005.

[47] T. Anderson, M. Dahlin, J. Neefe, D. Patterson, D. Riassehd R. Wang. Serverless Network
File Systems. IrProceedings of the Fifteenth ACM Symposium on Operatintei®@gsPrinciples

December 1995.

[48] Algirdas Avizienis and L. Chen. On the implementatidmeversion programming for software fault

tolerance during execution. Proc. IEEE COMPSA(ages 149-155, November 1977.

[49] M. Baker, M. Shah, D.S.Rosenthal, M. Roussopoulos,cPdaniatis, T.J. Giuli, and P. Bungale. A

fresh look at the reliability of long-term digital storagi EuroSys 2006.

[50] Wendy Bartlett and Lisa Spainhower. Commercial fagletance: A tale of two systemslEEE

TODSC 1(1):87-96, 2004.

[51] L. Bassham and W. Polk. Threat assessment of maliciods and human threats. Technical report,

NIST, Computer Security Division, 1994.

[52] M. Bellare and D. Micciancio. A new paradigm for coltisi-free hashing: Incrementally at reduced

cost. INEUROCRYPT971997.

[53] R. Bhagwan, K. Tati, Y. Cheng, S. Savage, and G. M. Vaelk&otal Recall: System support for

automated availability management. Rroceedings of 1st NSPCA, 2004.

179



[54] Ran Canetti and Tal Rabin. Fast asynchronous byzamigneement with optimal resilience. In
STOC '93: Proceedings of the twenty-fifth annual ACM symymosin Theory of computingages

42-51, New York, NY, USA, 1993. ACM.

[55] M. Castro and B. Liskov. Practical byzantine fault talece. InProceedings of 3rd OSDFebruary
1999.

[56] M. Castro and B. Liskov. Proactive recovery in a ByzaatFault-Tolerant System. Rroceedings

of 4th OSD) October 2000.

[57] Miguel Castro.Practical Byzantine Fault Tolerancd’hD thesis, January 2001.

[58] Miguel Castro and Barbara Liskov. Practical Byzanfiaglt tolerance and proactive recoveCM

TOCS November 2002.

[59] F.W. Chang, M. Ji, S. T. A. Leung, J. MacCormick, S. E.IPand L. Zhang. Myriad: Cost-effective

disaster tolerance. IAroceeedings of FAS2002.

[60] L. Chen and A. Avizienis. N-Version Programming: A Faliblerance Approach to Reliability of

Software Operation. IRroceedings of 8th Symp. on Fault-Tolerant Compuytity 8.

[61] P.M.Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A.tBeton. RAID : High-performance,reliable

secondary storageACM Comp. Survey26(2):145-185, June 1994.

[62] Y. Chen, J. Edler, A. Goldberg, A. Gottlieb, S. Sobtiddn Yianilos. A prototype implementation
of archival intermemory. IrProceedings of the 4th ACM Conference on Digital Librari€an

Fransisco, CA, Aug 1999.

180



[63] James Cowling, Daniel Myers, Barbara Liskov, RodrigndRgues, and Liuba Shrira. HQ replica-

tion: A hybrid quorum protocol for Byzantine fault tolerancln Proc. OSD) November 2006.
[64] L. Cox and B. Noble. Samsara: Honor among thieves in-fee@eer storage. IRroc. of SOSPQ3

[65] Giuseppe DeCandia, Deniz Hastorun, Madan Jampania@udhan Kakulapati, Avinash Laksh-
man, Alex Pilchin, Swaminathan Sivasubramanian, Peteshak and Werner Vogels. Dynamo:
amazon’s highly available key-value store. 3®SP '07: Proceedings of twenty-first ACM SIGOPS
symposium on Operating systems principlpages 205-220, New York, NY, USA, 2007. ACM

Press.

[66] Partha Dutta, Rachid Guerraoui, and Marko Vukoli€.sBease complexity of asynchronous Byzan-

tine consensus. Technical Report EPFL/IC/200499, EPHbrUeey 2005.

[67] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Cemsus in the presence of partial syn-
chrony. J. ACM 1988.

[68] D. Ellard, J. Ledlie, P. Malkani, and M. Seltzer. PaesWFS tracing of email and research workloads.

In FASTO3 March 2003.

[69] Michael J. Fischer, Nancy A. Lynch, and Michael S. Pedar Impossibility of distributed consensus

with one faulty process]). ACM 32(2):374-382, 1985.

[70] Juan A. Garay and Yoram Moses. Fully polynomial byzaamtagreement int + 1 rounds. 8TOC
'93: Proceedings of the twenty-fifth annual ACM symposiunTlogory of computingpages 31-41,
New York, NY, USA, 1993. ACM.

[71] S. Ghemawat, H. Gobioff, and S. Leung. The Google Filst&y. InProceedings of 19th ACM

Symp. on Operating Systems Principl@stober 2003.

181



[72] Philippe Golle, Stanistaw Jarecki, and llya Mironovry@tographic primitives enforcing communi-
cation and storage complexity. Financial Cryptography (FC 2002yolume 2357 of ecture Notes

in Computer Scienggages 120-135. Springer, 2003.

[73] J. Gray. A Census of Tandem System Availability Betwd®85 and 1990. IEEE Trans. on

Reliability, 39(4):409-418, October 1990.

[74] A. Haeberlen, A. Mislove, and P. Druschel. Glacier: Midgurable, decentralized storage despite

massive correlated failures. Rroceedings of 2nd NSPCA, March 2004.

[75] Ragib Hassan, William Yurcik, and Suvda Myagmar. Theletion of storage service providers. In

StorageSS’05VA,USA, 2005.

[76] Maurice P. Herlihy and Jeannette M. Wing. Lineariziyaila correctness condition for concurrent

objects. ACM Trans. Program. Lang. Sys12(3):463—-492, 1990.

[77] J. Kubiatowicz et al. Oceanstore: An architecture flabgl-scale persistent storage. Rroceedings

of ASPLOS2000.

[78] F. Junquiera, R. Bhagwan, K. Marzullo, S. Savage, anMGv/oelker. Surviving internet catastro-

phes. InProceedings of the Usenix Annual Technical ConfereAgeil 2005.

[79] K. Keeton and E. Anderson. A backup appliance compoddudgh-capacity disk drives. [P

Laboratories SSP Technical Memo HPL-SSP-200A8il 2001.

[80] S. King and P. Chen. Backtracking intrusions.Pioc. SOSP2003.

[81] John C. Knight and Nancy G. Leveson. An experimentaluation of the assumption of indepen-

dence in multi-version programmingoftware Engineeringl2(1):96-109, January 1986.

182



[82] R. Kotla, L. Alvisi, and M. Dahlin. SafeStore: A Durabésd Practical Storage System. USENIX

Annual Technical Conferencionterey, CA, June 2007.

[83] R. Kotla, L. Alvisi, and M. Dahlin. Safestore: A durabdmd practical storage system. Technical

report, University of Texas at Austin, 2007. UT-CS-TR-0T-2

[84] R. Kotla and M. Dahlin. High throughput byzantine fatdterance. Technical Report: UTCS-TR-

03-58 Dec. 2003.

[85] R. Kotla and M. Dahlin. High-throughput byzantine fatdlerance. Irinternational Conference on

Dependable Systems and Networks (QSbiie 2004.
[86] R. Kotla and M. Dahlin. High-throughput byzantine fatdlerance. IrDSN June 2004.

[87] L. Lamport. Paxos made simpl®istributed Computing Column of ACM SIGACT Ne®2(4):51—

58, April 2001.

[88] L. Lamport. Lower bounds for asynchronous consensus.Proc. FUDICQO, pages 22-23, June

2003.

[89] Leslie Lamport. Time, clocks, and the ordering of egeint a distributed system.Comm. ACM

21(7):558-565, 1978.
[90] Leslie Lamport. The part-time parliamerACM TOCS 16(2), 1998.

[91] J.Liand D. Mazieres. Beyond one-third faulty reptiéa Byzantine fault tolerant services. N&DI|,

2007.

[92] Barbara Liskov, Sanjay Ghemawat, Robert Gruber, Paluhgon, and Liuba Shrira. Replication in

the harp file system. IRroc. SOSP1991.

183



[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

N. Lynch. Distributed Algorithms Morgan Kaufmann Publishers, 1996.

D. Malkhi and M. Reiter. Byzantine quorum systen@istributed Computingl11(4), 1998.

Petros Maniatis, Mema Roussopoulos, T J Giuli, DaviHSRosenthal, Mary Baker, and Yanto
Muliadi. Lockss: A peer-to-peer digital preservation gyst ACM Transactions on Computer

Systems23(1):2-50, Feb. 2005.

Jean-Philippe Martin and Lorenzo Alvisi. Fast ByzasticonsensuslEEE TODSGC 3(3):202-215,

July 2006.

A. J. Menezes, P. C. van Oorschot, and S. A. Vanstdti@ndbook of Applied CryptographyCRC

Press, 2001.

Shubhendu S. Mukherjee, Joel S. Emer, and Steven K.hBelh The soft error problem: An

architectural perspective. HPCA, 2005.

E. Nightingale, K. Veeraraghavan, P. Chen, and J. FIReathink the sync. IfProc. OSD] 2006.

Edmund B. Nightingale, Peter Chen, and Jason Flinn.ec8ptive execution in a distributed file
system. InProceedings of the 20th ACM Symposium on Operating SystemspRes, October

2005.

D. Openheimer, A. Ganapathi, and D. Patterson. Whytirmet systems fail, and what can be done

about it. InProceedings of 4th USITSeattle, WA, March 2003.

Dave Patterson. A conversation with jim gra&CM Queuepages vol. 1, no. 4, June 2003.

M. Pease, R. Shostak, and L. Lamport. Reaching agneieiméhe presence of faultslournal of the

ACM, 27(2), April 1980.

184



[104] Z. Peterson and R. Burns. Ext3cow: A time-shifting 8lestem for regulatory complianceACM

Trans. on Storagel(2):190-212, May. 2005.

[105] Eduardo Pinheiro, Wolf-Dietrich Weber, and Luiz AriBlarroso. Failure Trends in a Large Disk

Drive Population. IrProceeedings of FASR2007.

[106] V. Prabhakaran, L. Bairavasundaram, N Agrawal, H. &virA. Arpaci-Dusseau, and R. Arpaci-

Dusseau. IRON file systems. Rroc. of SOSP '052005.

[107] H. E. Ramadan. Abort, retry, litigate: Dependabletesys and contract law. IRroceedings of

HotDep '06 2006.

[108] K. M. Reddy, C. P. Wright, A. Hammer, and E. Zadok. A \&ile and user-oriented versioning file

system. INFAST, 2004.

[109] S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B. ZimabJ) aKubiatowicz. Pond: The OceanStore

prototype. INFASTO3 March 2003.

[110] L. Rizzo. Effective erasure codes for reliable congputommunication protocols.ACM Comp.

Comm. Reviey27(2), 1997.

[111] R. Rodrigues, M. Castro, and B. Liskov. BASE : Usingtedxgtion to improve fault tolerance. In

Proceedings of 18th ACM Symp. on Operating Systems Pragcipttober 2001.
[112] M. Roesch. Snort-lightweight intrusion detection fetworks. InProc LISA 1999.

[113] Mendel Rosenblum and John K. OQusterhout. The desigrimmplementation of a log-structured file

system.ACM Trans. Comput. Systl0(1):26-52, 1992.

185



[114] David S. H. Rosenthal, Thomas S. Robertson, Tom Ljpkisky Reich, and Seth Morabito. Re-
quirements for digital preservation systems: A bottom-ppraach. D-Lib Magazing 11(11), Nov.

2005.

[115] Yasushi Saito, Brian N. Bershad, and Henry M. Levy. igeability, availability and performance in
porcupine: A highly scalable, cluster-based mail servibeACM Symposium on Operating Systems

Principles pages 1-15, 1999.

[116] J. Saltzer, D. Reed, and D. Clark. End-to-end argusignsystem designACM TOCS November
1984.

[117] D. S. Santry, M. J. Feeley, N. C. Hutchinson, A. C. \ejtR. W. Carton, and J. Ofir. Deciding when
to forget in the Elephant file system. PRroceedings of 17th ACM Symp. on Operating Systems

Principles December 1999.

[118] Fred B. Schneider. Implementing fault-tolerant ggs using the state machine approach: a tutorial.

ACM Computing Survey22(4), 1990.

[119] F. Schnieder. Implementing fault-tolerant servioesig the state machine approachCM Comp.

Surveys22(3):299-319, Sept. 1990.

[120] Bianca Schroeder and Garth A. Gibson. Disk FailurethnReal World: What Does an MTTF of

1,000,000 Hours Mean to You? Rroceeedings of FASR007.

[121] T. Schwarz, Q. Xin, E. Miller, D. Long, A. Hospodor, afd Ng. Disk scrubbing in large archival

storage systems. Rroc. MASCOTSOctober 2004.

[122] Seagate. Get S.M.A.R.T for reliability. Technicalg®et TP-67D, Seagate, 1999.

186



[123] Premkishore Shivakumar, Michael Kistler, Stephenk&tkler, Doug Burger, and Lorenzo Alvisi.
Modeling the effect of technology trends on the soft errte &f combinational logic. I#roc. DSN

2002.

[124] Atul Singh, Petros Maniatis, Peter Druschel, and TmgdRoscoe. Conflict-free quorum-based bft

protocols. Technical Report 2007-1, Max Planck InstitaieSoftware Systems, August 2007.

[125] S. Singh, C. Estan, G. Varghese, and S. Savage. Aueowadrm fingerprinting. IiProceedings of
6th OSD] 2004.

[126] Craig A. N. Soules, Garth R. Goodson, John D. Strund,@regory R. Ganger. Metadata efficiency

in a comprehensive versioning file system.Pimc. of FAST 2003

[127] Ben Vandiver, Hari Balakrishnan, Barbara Liskov, &an Madden. Tolerating byzantine faults in
database systems using commit barrier scheduling?rdgeedings of the 21st ACM Symposium on

Operating Systems Principles (SOS8evenson, Washington, USA, October 2007.

[128] U. Voges and L. Gmeiner. Software diversity in reagt@tection systems: An experiment. lim

IFAC Workshop SAFECOMP7May 1979.

[129] H. Weatherspoon and J. Kubiatowicz. Erasure Codimgugereplication: A quantitative comparison.

In Proceedings of IPTRSambridge,MA, March 2002.

[130] M. Welsh, D. Culler, and E. Brewer. SEDA : An architegtdor well conditioned, scalable internet

services. IrProceedings of 18th ACM Symp. on Operating Systems Pragcipttober 2001.

[131] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, and Gngdo Understanding replication in

databases and distributed systemsPioc. ICDCS 2000.

187



[132] J. Wylie, M. W. Bigrigg, J. D. Strunk, G. R. Ganger, H.likcote, and P. K. Khosla. Survivable

information storage systemfEEE Computer33(8):61-68, Aug. 2000.

[133] Q. Xin, T. Schwarz, and E Miller. Disk infant mortalityy large storage systems. Rroc of

MASCOTS '052005.

[134] Junfeng Yang, Can Sar, and Dawson Engler. Explode:glatweight, general system for finding

serious storage system errors.Aroc. OSD| 2006.

[135] Junfeng Yang, Paul Twohey, Dawson Engler, and Madlénlsuvathi. Using Model Checking to

Find Serious File System Errors. Rroceedings of 6th OSDDecember 2004.

[136] J.Yin, J.-P. Martin, A. Venkataramani, L. Alvisi, aidl Dahlin. Separating agreement from execu-
tion for byzantine fault tolerant services. Rroceedings of 19th ACM Symp. on Operating Systems

Principles October 2003.

188



Index

Abstract, vii
Acknowledgmentsy
Appendicesl121

BFT Architecture 10
Bibliography, 188

Contributions 6
Dedication iv

Introduction 1

189



Vita

Ramakrishna Rao Kotla was born in Hyderabad, India, on M&rct976, of Sanjeeva Rao Kotla and
Varalaxmi Kotla. He studied at various schools before cetimd the high school at St. Mary’s High school,
and then attended St. Mary’s Junior college in HyderabatlalrHe then studied at the Indian Institute of
Technology, Kharagpur, where he received the Bachelor diffi@dogy degree in Electronics and Electrical
Communication Engineering in May 1998. Thereafter, he wdrs Research and Development Engineer

at Synopsys Inc., in Bangalore,India, and Austin, USA, myi998-2001.

He started his full time graduate studies at the Univerdityexas in August 2001. He received Master
of Science in Engineering degree in Electrical and Compitegineering in 2003. He received two best
paper Awards at ACM Symposium on Operating Systems Priee{SIOSP) and USENIX Annual Technical
Conference(USENIX) for the research papers describintg pahis Doctoral research work. He is working

at Microsoft Research as a researcher since March 2008.

Permanent address: Plot No. 15, Sikhara Enclave, Champéytrabad,
Andhra Pradesh, 500079, India

This dissertation was typeset withTieX T by the author.

TI_ATEX is a document preparation system developed by Leslie Lanaga special version of Donald KnuthgXIProgram.

190



