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Abstract
We present a Scalable Distributed Information Manage-
ment System (SDIMS) that aggregates information about
large-scale networked systems and that can serve as a ba-
sic building block for a broad range of large-scale dis-
tributed applications providing detailed views of nearby
information and summary views of global information.
To serve as a basic building block, a SDIMS should have
four properties: scalability to many nodes and attributes,
flexibility to accommodate a broad range of applications,
support administrative autonomy and isolation, and ro-
bustness to node and network failures. We design, imple-
ment and evaluate a SDIMS that (1) leverages Distributed
Hash Tables (DHT) to create scalable aggregation trees,
(2) provides flexibility through a simple API that lets ap-
plications control propagation of reads and writes, (3) pro-
vides autonomy and isolation through simple augmenta-
tions to current DHT algorithms, and (4) is robust to node
and network reconfigurations through lazy reaggregation,
on-demand reaggregation, and tunable spatial replication.
Through extensive simulations and micro-benchmark ex-
periments, we observe that our system is an order of mag-
nitude more scalable than existing approaches, achieves
autonomy and isolation properties at the cost of modestly
increased read latency in comparison to flat DHTs, and
gracefully handles failures.

1 Introduction
The goal of this paper is to design and build a Scalable
Distributed Information Management System (SDIMS)
that aggregates information about large-scale networked
systems and that can serve as a basic building block for a
broad range of large-scale distributed applications. Mon-
itoring, querying, and reacting to changes in the state
of a distributed system are core components of applica-
tions such as system management [11, 28, 35, 36], service
placement [10, 37], data sharing and caching [14, 25, 29,
33, 38], sensor monitoring and control [16, 18], multicast
tree formation [4, 5, 27, 31, 34], and naming and request
routing [6, 7]. We therefore speculate that a SDIMS in
a networked system would provide a “distributed operat-
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ing systems backbone” and facilitate the development and
deployment of new distributed services.

For a large scale information system, hierarchical ag-
gregation is a fundamental abstraction for scalability.
Rather than expose all information to all nodes, hierarchi-
cal aggregation allows a node to access detailed views of
nearby information and summary views of global infor-
mation. In a SDIMS based on hierarchical aggregation,
different nodes can therefore receive different answers to
the query “find a [nearby] node with at least 1 GB of free
memory” or “find a [nearby] copy of file foo.” A hierar-
chical system that aggregates information through reduc-
tion trees [18, 27] allows nodes to access information they
care about while maintaining system scalability.

To be used as a basic building block, a SDIMS should
have four properties. First, the system should accommo-
date large numbers of participating nodes, and it should
allow applications to install and monitor large numbers
of data attributes. Enterprise and global scale systems to-
day might have tens of thousands to millions of nodes and
these numbers will increase as desktop machines give way
to larger numbers of smaller devices. Similarly, we hope
to support many applications and each application may
track several attributes (e.g., the load and free memory of
a system’s machines) or millions of attributes (e.g., which
files are stored on which machines).

Second, the system should have flexibility to accom-
modate a broad range of applications and attributes. For
example, read-dominated attributes like numCPUs rarely
change in value, while write-dominated attributes like
numProcesses change quite often. An approach tuned
for read-dominated attributes will incur high bandwidth
consumption when applied for write-dominated attributes.
Conversely, an approach tuned for write-dominated at-
tributes will suffer from unnecessary query latency or
imprecision for read-dominated attributes. Therefore, a
SDIMS should provide different mechanisms to handle
different types of attributes, and leave the policy decision
of choosing a mechanism to the application installing the
attribute.

Third, a SDIMS should provide administrative auton-
omy and isolation. In a large computing platform, it is
natural to arrange nodes in an organizational or an ad-
ministrative hierarchy (e.g., Figure 1). A SDIMS should
support administrative autonomy so that, for example, a
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Fig. 1: Administrative hierarchy

system administrator can control what information flows
out of her machines and what queries may be installed
on them. And, a SDIMS should provide isolation in
which queries about a domain’s information can be satis-
fied within the domain so that the system can operate dur-
ing disconnections and so that an external observer cannot
monitor or affect intra-domain queries.

Fourth, the system must be robust to node failures and
disconnections. A SDIMS should adapt to reconfigura-
tions in a timely fashion and should also provide mecha-
nisms so that applications can exploit the tradeoff between
the cost of adaptation versus the consistency level in the
aggregated results when reconfigurations occur.

We draw inspiration from two previous works: Astro-
labe [27] and Distributed Hash Tables (DHTs).

Astrolabe [27] is a robust information management
system. Astrolabe provides the abstraction of a single log-
ical aggregation tree that mirrors a system’s administra-
tive hierarchy for autonomy and isolation. It provides a
general interface for installing new aggregation functions
and provides eventual consistency on its data. Astrolabe
is highly robust due to its use of an unstructured gossip
protocol for disseminating information and its strategy of
replicating all aggregated attribute values for a subtree to
all nodes in the subtree. This combination allows any
communication pattern to yield eventual consistency and
allows any node to answer any query using local informa-
tion. This high degree of replication, however, may limit
the system’s ability to accommodate large numbers of at-
tributes. Also, although the approach works well for read-
dominated attributes, an update at one node can eventually
affect the state at all nodes, which may limit the system’s
flexibility to support write-dominated attributes.

Recent research in peer-to-peer structured networks re-
sulted in Distributed Hash Tables (DHTs) [14, 24, 25, 29,
33, 38]—a data structure that scales with the number of
nodes and that distributes the read-write load for different
queries among the participating nodes. It is interesting
to note that although these systems export a global hash
table abstraction, many of them internally make use of
what can be viewed as a scalable system of aggregation
trees to, for example, route a request for a given key to the
right DHT node. Indeed, rather than export a general DHT
interface, Plaxton et al.’s [24] original application makes
use of hierarchical aggregation to allow nodes to locate

nearby copies of objects. It seems appealing to develop a
SDIMS abstraction that exposes this internal functionality
in a general way so that scalable trees for aggregation can
be considered a basic system building block alongside the
distributed hash tables.

At first glance, it might appear to be obvious that sim-
ply fusing DHTs with Astrolabe’s aggregation abstraction
will result in a SDIMS. However, meeting the SDIMS re-
quirements forces a design to address four questions: (1)
How to scalably map different attributes to different ag-
gregation trees within a DHT mesh? (2) How to provide
flexibility in the aggregation to accommodate different ap-
plication requirements? (3) How to adapt a global, flat
DHT mesh to satisfy the required autonomy and isolation
properties? and (4) How to provide good robustness with-
out unstructured gossip and total replication?

The key contributions of this paper that form the foun-
dation of our SDIMS design are as follows.

1. We define a new aggregation abstraction that specifies
both attribute type and attribute name for an attribute
and associates an aggregation function with a particular
attribute type and thus paving a way to utilize the DHT
system’s internal trees for aggregation and to achieve
scalability with both nodes and attributes.

2. Unlike previous aggregation systems like Astro-
labe [27], Ganglia [11], and DHT based systems, we
provide a flexible API that lets applications control the
propagation of reads and writes and thus trade off up-
date cost, read latency, replication, and staleness.

3. We augment an existing DHT algorithm to ensure path
convergence and path locality properties in order to
achieve administrative autonomy and isolation.

4. We provide robustness to node and network reconfig-
urations by (a) providing temporal replication through
lazy reaggregation that guarantees eventual consistency
and (b) ensuring that our flexible API allows demand-
ing applications gain additional robustness by either us-
ing tunable spatial replication of data aggregates and/or
performing fast on-demand reaggregation to augment
the underlying lazy reaggregation.
We have built a prototype of SDIMS. Through simula-

tions and micro-benchmark experiments on a number of
department machines and Planet-Lab [23] nodes, we ob-
serve that the prototype achieves scalability with respect
to both nodes and attributes through use of its flexible
API, inflicts an order of magnitude less maximum node
stress when compared to unstructured gossiping schemes,
achieves autonomy and isolation properties at the cost of
modestly increased read latency compared to flat DHTs,
and gracefully handles node failures.

This initial study discusses key aspects of an ongo-
ing large system building effort, but it does not address
all issues in building a SDIMS. For example, we believe
that our strategies for providing robustness will mesh well
with techniques such as supernodes [19] and other ongo-
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ing efforts to improve DHTs [26] for further improving
robustness. Also, although splitting aggregation among
many trees improves scalability for simple queries, this
approach may make complex, and multi-attribute queries
more expensive compared to a single tree. Additional
work is needed to understand the significance of this limi-
tation for real workloads and, if necessary, to adapt query
planning techniques from DHT abstractions [12, 15] to
scalable aggregation tree abstractions.

In Section 2, we explain the hierarchical aggregation
abstraction that SDIMS provides to applications. In Sec-
tions 3 and 4, we describe the design of our system in
achieving the flexibility, scalability and administrative au-
tonomy and isolation requirements of a SDIMS. In Sec-
tion 5, we detail the implementation of our prototype sys-
tem. Section 6 addresses the issue of adaptation to the
topological reconfigurations. In Section 7, we present the
evaluation of our system through large-scale simulations
and microbenchmarks on real networks. Section 8 details
the related work and Section 9 summarizes our contribu-
tion and points out the future research directions.

2 Aggregation Abstraction
Aggregation is a natural abstraction for a large-scale dis-
tributed information system because aggregation provides
scalability by allowing a node to view detailed informa-
tion about the state near it and progressively coarser-
grained summaries about progressively larger subsets of
a system’s data [27].

Our aggregation abstraction is defined across a tree
spanning all nodes in the system. Each physical node in
the system is a leaf and each subtree represents a logical
group of nodes. Note that logical groups can correspond
to administrative domains (e.g., department or university)
or groups of nodes within a domain (e.g., 10 workstations
on a LAN in the CS department). An internal non-leaf
node of the aggregation tree is simulated by one or more
physical nodes that belong to the subtree for which the
non-leaf node is the root. We describe how to form such
trees in a later section.

Each physical node has local data stored as a set
of

�
attributeType � attributeName � value � tuples such as

(configuration, numCPUs, 16), (mcast membership, ses-
sion foo, yes), or (file stored, foo, myIPaddress). The
system associates an aggregation function ftype with each
attribute type, and for each level-i subtree Ti in the sys-
tem, the system defines an aggregate value Vi � type � name
for each (attributeType, attributeName) pair as follows.
For a (physical) leaf node T0 at level 0, V0 � type � name is
the locally stored value for the attribute type and name
or NULL if no matching tuple exists. Then the ag-
gregate value for a level-i subtree Ti is the aggrega-
tion function for the type computed across the aggre-
gate values of each of Ti’s k children: Vi � type � name �
ftype

�
V 0

i � 1 � type � name � V 1
i � 1 � type � name �	�
�	�	� V k � 1

i � 1 � type � name � .

Although our system allows arbitrary ag-
gregation functions, it is often desirable that
aggregation functions satisfy the hierarchi-
cal computation property [18]: f

�
v1 �
������� vn � �

f
�
f
�
v1 �
������� vs1 �� f

�
vs1 � 1 �
������� vs2 ���
������� f

�
vsk � 1 �
������� vn �
� ,

where vi is the value of an attribute at node i.
For example, the average operation, defined as
avg

�
v1 �
������� vn � � 1 � n � ∑n

i � 0 vi, does not satisfy the
property. Instead, if an attribute type stores values as tu-
ples

�
sum � count � and defines the aggregation function as

avg
�
v1 �
������� vn � �

�
∑n

i � 0 vi � sum � ∑n
i � 0 vi � count � , the attribute

satisfies the hierarchical computation property. Note that
the applications then have to compute the average from
the aggregate sum and count values.

Finally, note that for a large-scale system, it is diffi-
cult or impossible to insist that the aggregation value re-
turned by a probe corresponds to the function computed
over the current values at the leaves at the instant of the
probe. Therefore our system provides only weak consis-
tency guarantees – specifically eventual consistency as de-
fined in [27].

3 Flexibility
A major innovation of our work is enabling flexible
computation and aggregate value propagation. The def-
inition of the aggregation abstraction allows consider-
able flexibility in how, when, and where aggregate val-
ues are computed and propagated. While previous sys-
tems [27, 11, 38, 29, 33, 25] choose to implement a single
static strategy, we argue that a SDIMS should provide flex-
ible computation and propagation to be able to efficiently
support wide variety of applications with diverse require-
ments. In order to provide this flexibility, we develop a
simple interface that decomposes the aggregation abstrac-
tion into three pieces of functionality: install, update and
probe.

The definition of aggregation abstraction allows our
system to provide a continuous spectrum of strategies
ranging from lazy aggregate computation and propaga-
tion on reads to an aggressive immediate computation and
propagation on writes. In Figure 2, we illustrate both ex-
treme strategies and an intermediate strategy. Under the
lazy Update-Local computation and propagation strategy,
an update (aka write) only affects local state. Then, a
probe (aka read) that reads a level-i aggregate value is sent
up the tree to the issuing node’s level-i ancestor and then
down the tree to the leaves. The system then computes
the desired aggregate value at each layer up the tree until
the level-i ancestor that holds the desired value. Finally,
the level-i ancestor sends the result down the tree to the
issuing node. In the other extreme case of the aggres-
sive Update-All immediate computation and propagation
on reads [27], when an update occurs, changes are aggre-
gated up the tree, and each new aggregate value is broad-
cast to all of a node’s descendants. In this case, each level-
i node not only maintains the aggregate values for the
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Fig. 2: Flexible API

parameter description optional

attrType Attribute Type
aggrfunc Aggregation Function
up How far upwards each update is sent

(default: all)
X

down How far downwards each aggregate is
sent (default: none)

X

domain Domain restriction (default: none) X
expTime Expiry Time

Table 1: Arguments for the install operation

level-i subtree but also receives and locally stores copies
of all of its ancestors’ level- j ( j � i) aggregation values.
Also, a leaf satisfies a probe for a level-i aggregate using
purely local data. In an intermediate Update-Up strategy,
the root of each subtree maintains the subtree’s current ag-
gregate value, and when an update occurs, the leaf node
updates its local state and passes the update to its par-
ent, and then each successive enclosing subtree updates
its aggregate value and passes the new value to its parent.
This strategy satisfies a leaf’s probe for a level-i aggregate
value by sending the probe up to the level-i ancestor of
the leaf and then sending the aggregate value down to the
leaf. Finally, notice that other strategies also exist. In gen-
eral, an Update-Upk-Downj strategy aggregates up to the
kth level and propagates the aggregate values of a node at
level l (s.t. l ��� ) downwards for j levels.

A SDIMS must provide a wide range of flexible com-
putation and propagation strategies to applications for
it to be a general abstraction. An application should
be able to choose a particular mechanism based on its
read-to-write ratio that reduces the bandwidth consump-
tion while attaining the required responsiveness and pre-
cision. Note that the read-to-write ratio of the attributes
that applications install vary extensively. For example,
a read-dominated attribute like numCPUs rarely change
in value, while a write-dominated attribute like numPro-
cesses changes quite often. An aggregation strategy like
Update-All works well for read-dominated attributes but
suffers high bandwidth consumption when applied for
write-dominated attributes. Conversely, an approach like
Update-Local works well for write-dominated attributes
but suffers from unnecessary query latency or imprecision
for read-dominated attributes.

Our system also allows the flexible computation and
propagation to happen non-uniformly across the aggre-
gation tree – different up and down levels in different
subtrees – so that the applications can efficiently adapt

with the spatial and temporal heterogeneity of the read
and write operations. With respect to spatial heterogene-
ity, access patterns may differ for different parts of the
tree; hence, the need for different propagation strategies
for different parts of the tree depending on the workload.
Similarly with respect to temporal heterogeneity, access
patterns may change over time and hence the need for dif-
ferent computation and propagation patterns over time.

3.1 Aggregation API
We provide the flexibility described above by splitting the
aggregation API into three functions: Install() installs an
aggregation function that defines an operation on an at-
tribute type and specifies the update strategy that the func-
tion will use, Update() inserts or modifies a node’s local
value for an attribute, and Probe() obtains an aggregate
value for a specified subtree. Install interface allows ap-
plications to specify the k and j parameters of Update-
Upk-Downj strategy along with the aggregation function.
Update interface invokes the aggregation of an attribute on
the tree according to corresponding aggregation function’s
aggregation strategy. Probe interface not only allows the
applications to obtain the aggregated value for a specified
tree but also allows probing node to continuously fetch the
values for a specified time; thus enabling the applications
to adapt to spatial and temporal heterogeneity. The rest of
the section describes these three interfaces in detail.

3.1.1 Install

The Install operation installs an aggregation function in
the system. The arguments for this operation are listed in
Table 1. The attrType argument denotes the type of at-
tributes on which this aggregation function is invoked. In-
stalled functions are soft state that must be periodically re-
newed or they will be garbage collected at expTime. Also
note that each domain specifies a security policy that re-
stricts the types of functions that can be installed by dif-
ferent entities based on the attributes they access and their
scope in time and space [27].

The arguments up and down specify the aggre-
gate computation and propagation strategy Update-Upk-
Downj, where � � up and � � down. At the API level,
these arguments can be regarded as hints, since they sug-
gest a computation strategy but do not affect the seman-
tics of an aggregation function. In principle, it would be
possible, for example, for a system to dynamically adjust
its up/down strategies for a function based on measured
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parameter description optional

attrType Attribute Type
attrName Attribute Name
origNode Originating Node
serNum Serial Number
mode Continuous or One-shot (default: one-

shot)
X

level Level at which aggregate is sought (de-
fault: at all levels)

X

up How far up to go and re-fetch the value
(default: none)

X

down How far down to go and re-aggregate
(default: none)

X

expTime Expiry Time
Table 2: Arguments for the probe operation

read/write frequency. However, our implementation al-
ways simply follows these directives.

The optional domain argument, if present, indicates
that the aggregation function should be installed on all
nodes belonging to the specified domain; if not specified,
the function is installed on all nodes in the system.

3.1.2 Update
The update operation takes three arguments attrType, at-
trName and value and creates a new (attrType, attrName,
value) tuple or updates the value of an old tuple with
matching attrType and attrName at a leaf node.

The update interface meshes with installed aggregate
computation and propagation strategy to provide flexibil-
ity. In particular, as outlined above and described in detail
in Section 5, after a leaf applies an update locally, the up-
date may trigger re-computation of aggregate values up
the tree and may also trigger propagation of changed ag-
gregate values down the tree. Notice that our abstraction
associates an aggregation function with only an attrType
but lets updates specify an attrName along with the at-
trType. This technique helps us in leveraging DHTs for
achieving scalability with respect to nodes and attributes.
We elucidate this aspect in Section 4.

3.1.3 Probe
Whereas update propagates the aggregates in the system
implementing the install time specified global Update-
Upk-Downj strategy, a probe operation collects the aggre-
gated values at the application-queried levels either con-
tinuously for a specified time or just once; and thus pro-
vides capability to adapt for spatial and temporal hetero-
geneity. The complete argument set for the probe opera-
tion is shown in Table 2. Along with the attrName and the
attrType arguments, a level argument specifies the level at
which the answers are required for an attribute.

The probes with mode set to continuous and with finite
expTime enable applications to handle spatial and tempo-
ral heterogeneity. In the continuous mode for a probe at
level l by a node A, on any change in the value at any leaf
node B of the subtree rooted at level l ancestor of the node
A, aggregation is performed at all ancestors of B till level
l and the aggregated value is propagated down at least to

the node A irrespective of the install time specified up and
down parameters. Thus the probes in continuous mode
from different nodes for aggregate values at different lev-
els handles spatial heterogeneity. By setting appropriate
expTime, the applications extend the same technique to
handle temporal heterogeneity.

The up and down arguments enable applications to per-
form on-demand fast re-aggregation during reconfigura-
tions. When up and down arguments are specified in a
probe, a forced re-aggregation is done for the correspond-
ing levels even if the aggregated value is available. When
used, the up and down arguments are interpreted as de-
scribed in Section 3.1.1. In Section 6, we explain how
applications can exploit these arguments during reconfig-
urations.

4 Scalability
Our system accommodates a large number of partici-
pating nodes, and it allows applications to install and
monitor a large number of data attributes. Our design
achieves scalability with respect to both nodes and at-
tributes through two key ideas. First, in contrast to pre-
vious systems [27, 11], our aggregation abstraction spec-
ifies both an attribute type and attribute name and associ-
ating an aggregation function with a type rather than just
specifying an attribute name and associating a function
with a name. Installing a single function that can oper-
ate on many different named attributes matching a spe-
cific type improves scalability for “sparse attribute types”
with a large, sparsely-filled name space. For example, to
construct a file location service, our interface allows us to
install a single function that computes an aggregate value
for any named file (e.g., the aggregate value for the (func-
tion, name) pair for a subtree would be the ID of one node
in the subtree that stores the named file). Conversely, As-
trolabe copes with sparse attributes by having aggregation
functions compute sets or lists and suggests that scalabil-
ity can be improved by representing such sets with Bloom
filters [2]. Exposing sparse names within a type provides
at least two advantages. First, when the value associated
with a name is updated, only the state associated with
that name need be updated and (potentially) propagated to
other nodes. Second, splitting values associated with dif-
ferent names into different aggregation values allows our
system to leverage Distributed Hash Tables(DHT) to map
different names to different trees and thereby spread the
function’s logical root node’s load and state across multi-
ple physical nodes.

Second, our system employs simple modifications to
DHTs to ensure the required autonomy and isolation prop-
erties. while DHTs offer solution for scalability with the
nodes and attributes, they do not guarantee that the admin-
istrative autonomy is preserved in the aggregation trees.
Having aggregation trees that conform with the admin-
istrative hierarchy helps SDIMS provide important au-
tonomy, security, and isolation properties [27]. Security
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and autonomy are important in that a system administra-
tor must be able to control what information flows out of
her machines and what queries may be installed on them.
The isolation property ensures that a malicious node in
one domain cannot observe or affect system behavior in
another domain for computations relating only to the sec-
ond domain. We present two properties – Path Locality
and Path Convergence – that a DHT routing should satisfy
to guarantee the conformation to administrative autonomy
requirement and then present simple modifications to an
existing DHT algorithm that guarantee these properties.

In the following sections, we describe how DHTs are
used to form multiple aggregation trees and the details of
our Autonomous DHT(ADHT).

4.1 Multiple Aggregation Trees
We exploit the Distributed Hash Tables (DHT) to form
multiple aggregation trees. Existing DHTs can be viewed
as a mesh of several trees. DHT systems assign an iden-
tity to each node (a nodeId) that is drawn randomly from a
large space. Keys are also drawn from the same space and
each key is assigned to a live node in the system. Each
node maintains a routing table with nodeIds and IP ad-
dresses of some other nodes. The DHT protocols use these
routing tables to route the packets for a key k towards the
node responsible for that key. Suppose the node responsi-
ble for a key k is rootk. The paths from all nodes for a key
k form a tree rooted at the node rootk — say DHTtreek.

It is straightforward to make use of this internal
structure for aggregation [24]. Now, by aggregating
an attribute along the aggregation tree corresponding to
DHTtreek for k � hash(attribute type, attribute name), dif-
ferent attributes will be aggregated along different trees.
In comparison to a scheme where all attributes are ag-
gregated along a single tree, the DHT based aggregation
along multiple trees incurs lower maximum node stress:
whereas in a single aggregation tree approach, the root
and the intermediate nodes pass around more messages
than the leaf nodes, in a DHT-based multi-tree, each node
acts as intermediate aggregation point for some attributes
and as leaf node for other attributes. Hence, this approach
distributes the onus of aggregation across all nodes.

4.2 Administrative Autonomy
To conform to administrative autonomy requirement, a
DHT should satisfy two properties:

1. Path Locality : Search paths should always be con-
tained in the smallest possible domain.

2. Path Convergence : Search paths for a key from two
different nodes in a domain should converge at a node
in the same domain.
Existing DHTs either already support path locality [14]

or can support easily by setting the domain nearness as the
distance metric [13, 3]. But they do not guarantee path
convergence as those systems try to optimize the search
path to the root to reduce response latency.
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Fig. 3: Example shows how isolation property is violated with
original Pastry. We also show the corresponding aggregation
tree.
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Fig. 4: Autonomous DHT satisfying the isolation property. Also
the corresponding aggregation tree is shown.

In the rest of this section we explain how an existing
DHT, Pastry [29], does not satisfy path convergence, and
then we describe a simple modification to Pastry that sup-
ports convergence by introducing a few additional rout-
ing links and a two level locality model that incorpo-
rates both administrative membership of nodes and net-
work distances between nodes. We choose Pastry for
convenience—the availability of a public domain imple-
mentation. We believe that similar simple modifications
could be applied to many existing DHT implementations
to support path convergence.

4.2.1 Pastry
In Pastry [29], each node maintains a leaf set and a rout-
ing table. The leaf set contains the L immediate clock-
wise and counter-clockwise neighboring nodes in a circu-
lar nodeId space (ring). The routing table supports pre-
fix routing: each node’s routing table contains one row
per hexadecimal digit in the nodeId space and the ith row
contains a list of nodes whose nodeIds differ from the cur-
rent node’s nodeId in the ith digit with one entry for each
possible digit value. Notice that for a given row and en-
try (viz. digit and value) a node n can choose the entry
from many different alternative destination nodes, espe-
cially for small i where a destination node needs to match
n’s ID in only a few digits to be a candidate for inclusion
in n’s routing table. A system can choose any policy for
selecting among the alternative nodes. A common policy
is to choose a nearby node according to a proximity met-
ric [24] to minimize the network distance for routing a
key. Under this policy, the nodes in a routing table shar-
ing a short prefix will tend to be nearby since there are
many such nodes spread roughly evenly throughout the
system due to random nodeId assignment. Pastry is self-
organizing—nodes come and go at will. To maintain Pas-
try’s locality properties, a new node must join with one
that is nearby according to the proximity metric. Pastry
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provides a seed discovery protocol that finds such a node
given an arbitrary starting point.

Given a routing topology, to route to an arbitrary desti-
nation key, a node in Pastry forwards a packet to the node
with a nodeId prefix matching the key in at least one more
digit than the current node. If such a node is not known,
the node forwards the packet to a node with an identi-
cal prefix but that is numerically closer to the destination
key in the nodeId space. This process continues until the
destination node appears in the leaf set, after which it is
delivered directly. The expected number of routing steps
is logN, where N is the number of nodes.

Unfortunately, as illustrated in Figure 3, when Pastry
uses network proximity as the locality metric, it does not
satisfy the desired SDIMS properties because (i) if two
nodes with nodeIds match a key in same number of bits,
both of them can route to a third node outside the domain
when routing for that key and (ii) if the network proxim-
ity does not match the domain proximity then there is little
chance that a tree will satisfy the properties. The second
problem can be addressed by simply changing the proxim-
ity metric so that that any two nodes that match in i levels
of a hierarchical domain are always considered closer than
two nodes that match in fewer than i levels. However, this
solution does not eliminate the first problem.

4.2.2 Autonomous DHT

To provide autonomy properties to an aggregating au-
tonomous DHT (ADHT), the system’s route table con-
struction algorithm must provide a single exit point in
each domain for a key and its routing protocol should
route keys along intra-domain paths before routing them
along inter-domain paths. Simple modifications to Pas-
try’s route table construction and key-routing protocols
achieve these goals. In Figure 4, our algorithm routes to-
wards the node with nodeId 101XX for key 111XX . In
Section 5, we explain more about the extra virtual node
that is created at node with id 111XX to aggregate at level
L2 in this special case.

In the ADHT, each node maintains a separate leaf set
for each domain it is part of, unlike Pastry that maintains a
single leaf set for all the domains. Maintaining a different
leafset for each level increases the number of neighbors
that each node tracks to

�
2b ��� lgb n � c � l from

�
2b ��� lgb n �

c in unmodified Pastry, where b is the number of bits in a
digit, n is the number of nodes, c is the leafset size, and l
is the number of domain levels.

Each node in the ADHT has a routing table. The algo-
rithm for populating the routing table is similar to Pastry
with the following difference: it uses hierarchical domain
proximity as the primary proximity metric (two nodes that
match in i levels of a hierarchical domain are more proxi-
mate than two nodes that match in fewer than i levels of a
domain) and network distance as the secondary proximity
metric (if two pairs of nodes match in the same number of
domain levels, then the pair whose separation by network

distance is smaller is considered more proximate).
Similar to Pastry’s join algorithm [29], a node wish-

ing to join ADHT routes a join request with target key
set to its nodeId. In Pastry, the nodes in the intermedi-
ate path respond to the node’s request with the pertinent
routing table information and the current root node sends
its leafset. In our algorithm, to enable the joining node
fill its leafsets at all levels, the following two modifica-
tions are done to Pastry’s join protocol: (1) a joining node
chooses a bootstrap node that is closest to it with respect
to the hierarchical domain proximity metric and (2) each
intermediate node sends its leafsets for all domain levels
in which it is the root node. These simple modifications
ensure that the joining node’s leafsets and route table are
properly filled.

The routing algorithm we use in routing for a key at
node with nodeId is shown in the Algorithm 4.2.2. By
routing at the lowest possible domain till the root of that
domain is reached, we ensure that the routing paths con-
form to the Path Convergence property.

Algorithm 1 ADHTroute(key)
1: flipNeigh � checkRoutingTable(key) ;
2: l � numDomainLevels - 1 ;
3: while (l � � 0) do
4: if (commLevels(flipNeigh, nodeId) ��� l) then
5: send the key to flipNeigh ; return ;
6: else
7: leafNeigh � an entry in leafset[l] closer to key

than nodeId ;
8: if (leafNeigh ! � null) then
9: send the key to leafNeigh ; return ;

10: end if
11: end if
12: l � l � 1;
13: end while
14: this node is the root for this key

5 Prototype Implementation
The internal design of our SDIMS prototype comprises
of two layers: the Autonomous DHT (ADHT) layer man-
ages the overlay topology of the system and the Aggrega-
tion Management Layer (AML) maintains attribute tuples,
performs aggregations, stores and propagates aggregate
values. Given the ADHT construction described in Sec-
tion 4.2, each node implements an Aggregation Manage-
ment Layer (AML) to support the flexible API described
in Section 3. In this section, we describe the internal state
and operation of the AML layer of a node in the system.
We defer the discussion on the interfaces between AML
layer and the ADHT layer and how SDIMS handles net-
work and node reconfigurations to Section 6.

We refer to a tuple store of (attribute type, attribute
name, value) tuples as a Management Information Base
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or MIB, following the terminology from Astrolabe [27]
(originally used in the context of SNMP [32]). We refer
to the pair (attribute type, attribute name) as an attribute
key.

Each physical node in the system acts as several vir-
tual nodes in the AML(e.g., Figure 5): a node acts as
leaf for all attribute keys, as a level-1 subtree root for
keys whose hash matches the node’s ID in b prefix bits
(where b is the number of bits corrected in each step of
the ADHT’s routing scheme), as a level-i subtree root for
attribute keys whose hash matches the node’s ID in initial
i � b bits, and as the system’s global root for for attribute
keys whose hash matches the node’s ID in more prefix bits
than any other node (in case of a tie, the first non-matching
bit is ignored and the comparison is continued [38]). A
node might be a level-i subtree root for keys matching the
node’s ID in only initial

�
i � 1 ��� b bits in some special

cases as illustrated by node 101XX in Figure 4.
As Figure 5 illustrates, to support hierarchical aggre-

gation, each virtual node corresponding to a level-i sub-
tree root for some attribute keys maintains several MIBs
that store (1) child MIBs containing raw aggregate values
gathered from children, (2) a reduction MIB containing
locally aggregated values across this raw information, and
(3) ancestor MIB containing aggregate values scattered
down from ancestors. This basic strategy of maintaining
child, reduction, and ancestor MIBs is based on Astro-
labe [27], but our structured propagation strategy chan-
nels information that flows up according to its attribute
key and our flexible propagation strategy only sends child
updates up and ancestor aggregate results down as far as
specified by the attribute key’s aggregation function. Note
that in the discussion below, for ease of explanation, we
assume that the routing protocol is correcting single bit at
a time (b � 1) in contrast to default Pastry scheme where
the routing protocol tries to correct up to four bits in each
step (b � 4). Our system, built upon Pastry, does han-
dle multi-bit correcting and is a simple extension to the
scheme described here.

For a given virtual node ni at level i, each child MIB
contains the subset of a child’s reduction MIB that con-
tains tuples that match ni’s node ID in i bits and whose
up aggregation function attribute is at least i. These lo-
cal copies make it easy for a node to recompute a level-i
aggregate value when one child’s inputs changes. Nodes
maintain their child MIBs in stable storage and use a sim-
plified version of the Bayou protocol (sans conflict detec-
tion and resolution) for synchronization after disconnec-
tions [22].

Virtual node ni at level i maintains a reduction MIB of
tuples with a tuple for each key present in any child MIB
containing the attribute type, attribute name, and output
of the attribute type’s aggregate functions applied to the
children’s tuples.

A virtual node ni at level i also maintains an ances-
tor MIB to store the tuples containing attribute key and a
list of aggregate values at different levels scattered down
from ancestors. Note that the list for a key might contain
multiple aggregate values for a same level but aggregated
at different nodes (refer to Figure 4). So, the aggregate
values are tagged not only with the level information, but
are also tagged with the information of the node that per-
formed the aggregation.

Note that level-0 differs slightly from other levels.
Each level-0 leaf node maintains a local MIB rather than
maintaining child MIBs and a reduction MIB. This local
MIB stores information about the local node’s state in-
serted by local applications via update() calls.

Along with these MIBs, a virtual node maintains two
other tables—an aggregation function table and an out-
standing probes table. An aggregation function table con-
tains the aggregation function and installation arguments
(see Table 1) associated with an attribute type or an at-
tribute type and name. Note that a function that matches
an attribute key in type and name has precedence over a
function that matches an attribute key in type only. Each
aggregate function is installed on all nodes in a domain’s
subtree, so the aggregate function table can be thought of
as a special case of the ancestor MIB with domain func-
tions always installed up to a root within a specified do-
main and down to all nodes within the domain. The out-
standing probes table maintains temporary information re-
garding information gathered and outstanding requests for
in-progress probes.

Given these data structures, it is simple to support the
three API functions described in Section 3.1.

Install The Install operation (see Table 1) installs on
a domain an aggregation function that acts on a specified
attribute type. Execution of an install function aggrFunc
on attribute type attrType proceeds in two phases: first
the install request is passed up the ADHT tree with the
attribute key (attrType, null) until reaching the root for
that key within the specified domain. Then, the request
is flooded down the tree and installed on all intermediate
and leaf nodes.
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Update The Update operation creates a new (attribute-
Type, attributeName, value) tuple or updates the value of
an old tuple at a leaf. Then, subject to the update prop-
agation policy specified in the up and down parameters
of the aggregation function associated with the update’s
attribute key, the update triggers a two-phase propagation
protocol as Figure 2 illustrates. An update operation in-
voked at a leaf always updates the local MIB. Then, if the
update changes the local value and if the aggregate func-
tion for the attribute key was installed with up � 0 and if
the leaf’s parent for the attribute key is within the domain
to which the installed aggregation function is restricted,
the leaf passes the new value up to the appropriate parent
based on the attribute key. Level i behaves similarly when
it receives a changed attribute from level i � 1 below: it
first recomputes the level-i aggregate value for the spec-
ified key, stores that value in the level-i reduction table
and then, subject to the function’s up and domain parame-
ters, passes the updated value to the appropriate level-i � 1
parent based on the attribute key. After a level-i (i � 1)
virtual node has updated its reduction MIB, if the aggre-
gation function down argument indicates that the aggre-
gate values be sent down to j � 1 levels, the node sends
the updated value down to all of its children marked as
the level-i aggregate for the specified attribute key. Upon
receipt of such a level-i aggregate value message from a
parent, a virtual node nk at level k stores the value in its
ancestor MIB and, if k � i � j, forwards this level-i aggre-
gate value to its children.

Probe A Probe operation collects and returns the ag-
gregate value for a specified attribute key for a specified
level of the tree. As Figure 2 illustrates, the system sat-
isfies a probe for a level-i aggregate value using a four-
phase protocol that may be short-circuited when updates
have previously propagated either results or partial results
up or down the tree. In phase 1, the route probe phase, the
system routes the probe up the attribute key’s tree to either
the root of the level-i subtree or to a node that stores the
requested value in its ancestor MIB. In the former case,
the system proceeds to phase 2 and in the latter it skips
to phase 4. In phase 2, the probe scatter phase, each
node that receives a probe request sends it to all of its
children unless the node is a leaf or the node’s reduction
MIB already has a value that matches the probe’s attribute
key, in which case the node initiates phase 3 on behalf of
its subtree by forwarding its local MIB or reduction MIB
value up to the appropriate parent for the attribute key. In
phase 3, the probe aggregation phase, when a node re-
ceives input values for the specified key from each of its
children, it executes the aggregate function across these
values and either (a) forwards the result to its parent (if its
level is less than i) or (b) initiates phase 4 by forwarding
the result to the child that requested it (if it is at level i).
Finally, in phase 4, the aggregate routing phase the ag-
gregate value is routed down to the node that requested
it. Note that in the extreme case of a function installed

with up � down � 0, a level-i probe can touch all nodes
in a level-i subtree while in the opposite extreme case of
a function installed with up � down � ALL, probe is a
completely local operation at a leaf.

For probes that include phases 2 (probe scatter) and 3
(probe aggregation), an issue is determining when a node
should stop waiting for its children to respond and send up
its current aggregate value. A node at level i stops waiting
for its children when one of three conditions occurs: (1)
all children have responded, (2) the ADHT layer signals
one or more reconfiguration events that marks all children
that have not yet responded as unreachable, or (3) a watch-
dog timer for the request fires. The last case accounts for
nodes that participate in the ADHT protocol but that fail
at the AML level.

6 Robustness
In large scale systems, reconfigurations are a norm. Our
two main principles for robustness are to guarantee (i)
read availability – probes complete in a finite time, and (ii)
eventual consistency – updates by a live node will be re-
flected in the answers of the probes in a finite time. During
reconfigurations, a probe might return a stale value due
to two reasons. First, reconfigurations lead to incorrect-
ness in the previous aggregate values. Second, the nodes
needed for aggregation to answer the probe become un-
reachable. Our system also provides two hooks for end-
to-end applications to be robust in the presence of recon-
figurations: (1) On-demand re-aggregation, and (2) appli-
cation controlled replication.

Our system handles reconfigurations at two levels –
adaptation at the ADHT layer to ensure connectivity and
adaptation at the AML layer to ensure access to the data
in SDIMS.

6.1 ADHT Adaptation
Our ADHT layer adaptation algorithm is same as Pastry’s
adaptation algorithm [29] — the leaf sets are repaired as
soon as a reconfiguration is detected and the routing ta-
ble is repaired lazily. Due to redundancy in the leaf sets
and the routing table, the updates can be routed towards
their root nodes successfully even during failures. Also
note that the autonomy and isolation properties satisfied
by our ADHT algorithm ensure that the reconfigurations
in a level i domain do not affect the probes for level i in
the sibling domains.

6.2 AML Adaptation
Broadly, we use two types of strategies for AML adap-
tations in the face of reconfigurations: (1) Replication in
time, and (2) Replication in space. We first examine repli-
cation in time as this is more basic strategy than the latter.
Replication in space is a performance optimization strat-
egy and depends on replication in time when the system
runs out of replicas. We provide two mechanisms as part
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Fig. 6: Default lazy data re-aggregation time line

of replication in time. First, a lazy re-aggregation is per-
formed where already received updates are propagated to
the new children or new parents in a lazy fashion over
time. Second, applications can reduce the probability of
probe response staleness during such repairs through our
flexible API with appropriate setting of the down knob.

Lazy Re-aggregation The DHT layer informs the AML
layer about the detected reconfigurations in the network
using the following three API – newParent, failedChild
and newChild. Here we explain the behavior of AML
layer on the invocation of the API.

On newParent(parent, prefix): If there are any probes in
the outstanding-probes table that correspond to this prefix,
then send them to this new parent. Then start transferring
aggregation functions and already existing data lazily in
the background. Any new updates, installs and probes for
this prefix are sent to the parent immediately.

Note that it might be possible for a node to get an up-
date or probe message for an attribute key for which it
does not yet have any aggregation function installed on it
as it might have just joined the system and is still lazily
getting the data and functions from its children. Upon re-
ceiving such a probe or update, AML returns an error if
invoked by a local application. And if the operation is
from a child or a parent, then an explicit request is made
for the aggregation function from that sender.

On failedChild(child, prefix): The AML layer notes
the child as inactive and any probes in the outstanding-
probes table that are waiting for data from this child are
re-evaluated.

On newChild(child, prefix): The AML layer creates
space in its data structures for this child.

Figure 6 shows the time line for the default lazy re-
aggregation upon reconfiguration. The probes that initi-
ate between points 1 and 2 and that got affected by the
reconfigurations are rescheduled by AML upon detecting
the reconfiguration. Probes that complete or start between
points 2 and 8 may return stale answers.

On-demand Re-aggregation The default lazy aggrega-
tion scheme lazily propagates the old updates in the sys-
tem. By using up and down knobs in the Probe API, ap-
plications can force on-demand fast re-aggregation of the
updates to avoid staleness in the face of reconfigurations.
Note that this strategy will be useful only after the DHT
adaptation is completed (Point 6 on the time line in Fig-
ure 6).

Replication in Space Replication in space is more chal-
lenging in our system than a DHT file location application
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because replication in space can be achieved easily in the
latter by just replicating the root node’s contents. In our
system, however, all internal nodes have to be replicated
along with the root.

In our system, applications can control replication us-
ing the up and down knobs in the Install API; applications
can reduce the latencies and possibly the probability of
stale values by replicating the aggregates. The probabil-
ity of staleness is reduced only if the replicated value is
still valid after the reconfiguration. For example, in a file
location application, an aggregated value is valid as long
the node hosting the file is active, irrespective of the sta-
tus of other nodes in the system. Whereas, an application
that counts the number of machines in a system will suf-
fer from staleness irrespective of replication. However, if
reconfigurations are only transient (like a node temporar-
ily not responding due to a burst of load), the replicated
aggregate closely or correctly resembles the current state.

7 Evaluation
We have implemented a prototype of SDIMS in Java
using FreePastry framework [29] and performed large-
scale simulation experiments and micro-benchmark ex-
periments on two real networks: 187 machines in the de-
partment, and 69 machines on the Planet-Lab [23] testbed.
The results from the evaluation of our prototype substan-
tiate (i) the flexibility provided by the API of our system,
(ii) the scalability with respect to both nodes and attributes
achieved due to aggregating along multiple DHT trees and
with the power of a flexible API, (iii) the isolation prop-
erties provided by the ADHT algorithms, and (iv) the sys-
tem robustness to reconfigurations.

7.1 Simulation Experiments
Flexibility and Scalability A major innovation of our
system is its ability to provide flexible computation and
propagation of aggregates. In Figure 7, we demonstrate
the flexibility exposed by the aggregation API explained
in Section 3. We simulate a system with 4096 nodes ar-
ranged in a domain hierarchy with branching factor (bf) of
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16 and install several attributes with different up and down
parameters. We plot the average number of messages per
operation incurred by different attributes for a wide range
of read-to-write ratios of the operations. We simulate with
other sizes of networks with different branching factors
and observe similar results. This graph clearly demon-
strates the need for a wide range of computation and prop-
agation strategies. While having a lower UP value will be
efficient for attributes with low read-to-write ratios (write
dominated applications), the probe latency, when reads do
occur, will be high since the probe needs to aggregate the
data from all the nodes that did not send their aggregate
upwards. Conversely, applications that need to improve
probe latencies increase their UP and DOWN propagation
at a potential cost of increase in the overheads of writes.

Compared to existing Update-all single aggregation
tree approaches [27], scalability in SDIMS comes from
(1) leveraging DHTs to form multiple aggregation trees
that split the load across nodes, and (2) flexible propaga-
tion that avoids propagation of all updates to all nodes.
We demonstrate the SDIMS’s scalability with nodes and
attributes in Figure 8. For this experiment, we build a
simulator to simulate both Astrolabe [27] (a gossiping,
Update-All approach) and our system for an increasing
number of sparse attributes. Each attribute corresponds to
the membership in a multicast session with a small num-
ber of participants. For this experiment, the session size
is set to 8, the branching factor is set to 16 and the prop-
agation mode for SDIMS is Update-Up and the partici-
pant nodes perform continuous probes for the global ag-
gregate value. We plot the maximum node stress (in terms
of messages) observed in both schemes for different sized
networks with increasing number of sessions, when the
participant of each session performs an update operation.
Clearly, the DHT based scheme is more scalable with re-
spect to attributes than an Update-all gossiping scheme.
Observe that, as the number of nodes increase in the sys-
tem, the maximum node stress increases in the gossiping
approach, while it decreases in our approach as the load

0

1

2

3

4

5

6

7

10 100 1000 10000 100000

P
at

h 
Le

ng
th

Number of Nodes

ADHT bf=4
ADHT bf=16
ADHT bf=64

PASTRY bf=4
PASTRY bf=16
PASTRY bf=64

Fig. 9: Average path length to root in Pastry versus ADHT for
different branching factors.

0

2

4

6

8

10

12

14

16

10 100 1000 10000 100000

P
er

ce
nt

ag
e 

of
 v

io
la

tio
ns

Number of Nodes

bf=4
bf=16
bf=64

Fig. 10: Percentage of probe pairs whose paths to the root did
not conform to the path convergence property.

of aggregation is spread across more nodes.

Administrative Hierarchy and Robustness While, the
routing protocol of ADHT might lead to an increased
number of hops to reach the root for a key as compared
to original Pastry, the algorithm conforms to the path con-
vergence and locality properties and thus provides auton-
omy and isolation properties. In Figure 9, we quantify
the increased path length by comparisons with unmodified
Pastry for different sized networks with different branch-
ing factors of the domain hierarchy tree. To quantify the
path convergence property, we perform simulations with
a large number of probe pairs – each pair probing for a
random key starting from two randomly chosen nodes.
In Figure 10, we plot the percentage of probe pairs that
did not conform to the path convergence property. When
the branching factor is low, the domain hierarchy tree is
deeper and hence a large difference between Pastry and
ADHT in the average path length; but it is at these small
domain sizes, that the path convergence fails more often
with the original Pastry.

In Figure 11, we plot the increase in path length to
reach the global root node when node failures occur. In
this experiment with 4096 nodes, we measure the number
of hops to reach the root node before and after repairs with
increasing percentage of failed nodes. The plot shows that
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the average path length increase is minimal even when
10% of nodes fail. On further analysis of the probes, we
observe that all probes are able to reach the correct root
node even after 25% failures. We present some robust-
ness results of our prototype on a real network testbed in
the next section.

7.2 Testbed experiments
We run our prototype on 187 department machines and
also on 69 machines of the Planet-Lab [23] testbed.
We measure the performance of our system with two
micro-benchmarks. In the first micro-benchmark, we in-
stall three aggregation functions of types Update-Local,
Update-Up, and Update-All, perform update operation on
all nodes for all three aggregation functions, and measure
the latencies incurred by probes for the global aggregate
from all nodes in the system. Figure 12 shows the ob-
served latencies for both testbeds. Notice that the latency
in Update-Local is very high in comparison to the Update-
UP policy. This is because latency in Update-Local is af-
fected by the presence of even a single slow machine or
a single machine with a high latency connectivity in the
network.

In the second benchmark, we install one aggregation
function of type Update-Up that performs sum operation
on an integer valued attribute. Each node is updated with
a value of 10 for the attribute. Then we monitor the laten-
cies and results returned on the probe operation for global
aggregate on one chosen node, while we kill some nodes
after every few probes. Figure 13 shows the results on the
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departmental testbed. The dip in the observed values at
around 49th second is due to the termination of the root
node for the aggregation tree and subsequent reconfigura-
tions. Due to the nature of the testbed (machines in a de-
partment), there is not much change in the latencies even
in the face of reconfigurations. In Figure 14, we present
the results of the experiment on Planet-Lab testbed. The
root node of the aggregation tree is terminated after about
275 seconds. There is a 5X increase in the latencies after
the death of the initial root node as a more distant node
becomes the root node after repairs. In both experiments,
the values returned on probes start reflecting the correct
situation within a small amount of time after the failures.

From both the testbed benchmark experiments and the
simulation experiments on flexibility and scalability, we
conclude that (1) the flexibility provided by SDIMS al-
lows applications to tradeoff read-write overheads, stale-
ness, read latency and sensitivity to slow machines, (2) a
good default aggregation strategy is Update-Up which has
moderate overheads on both reads and writes, moderate
read latencies and staleness values, and is scalable with
respect to both nodes and attributes, and (3) the small do-
main sizes are the cases where DHT algorithms does not
provide path convergence more often and SDIMS ensures
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path convergence with only a moderate increase in path
lengths.

8 Related Work
The aggregation abstraction we use in our work is heavily
influenced by the Astrolabe [27] project. Astrolabe adopts
Propagate-All and unstructured gossiping techniques to
attain robustness [1]. However, any gossiping scheme
requires aggressive replication of the aggregates. While
such aggressive replication is efficient for read-dominated
attributes, it incurs high message cost for attributes with a
small read-to-write ratio. Our approach provides flexible
API for applications to set propagation rules according to
their read-to-write ratios. Such flexibility is attainable in
our system because of our design choice to aggregate on
the structure rather than through gossiping.

Several academic [11, 18, 36] and commercial [35] dis-
tributed monitoring systems have been designed to moni-
tor the status of large networked systems. Some of them
are centralized where all the monitoring data is collected
and analyzed at a single central host. Ganglia [11, 20] uses
a hierarchical system where the attributes are replicated
within clusters using multicast and then cluster aggregates
are further aggregated along a single tree. Sophia [36]
is a distributed monitoring system, currently deployed
on Planet-Lab [23], and is designed around a declarative
logic programming model where the location of query ex-
ecution is both explicit in the language and can be calcu-
lated in the course of evaluation. This research is com-
plementary to our work; the programming model can be
exploited in our system too. TAG [18] collects informa-
tion from a large number of sensors along a single tree.

The observation that DHTs internally provide a scal-
able forest of reduction trees is not new. Plaxton et
al.’s [24] original paper describes not a DHT, but a sys-
tem for hierarchically aggregating and querying object lo-
cation data in order to route requests to nearby copies
of objects. Many systems—building upon both Plax-
ton’s bit-correcting strategy [29, 38] and upon other strate-
gies [21, 25, 33]—have chosen to hide this power and ex-
port a simple and general distributed hash table abstrac-
tion as a useful building block for a broad range of dis-
tributed applications. Some of these systems internally
make use of the reduction forest not only for routing but
also for caching [29], but for simplicity, these systems do
not generally export this powerful functionality in their
external interface. Our goal is to develop and expose the
internal reduction forest of DHTs as a similarly general
and useful abstraction and building block. Dabek et al [9]
propose common APIs (KBR) for structured peer-to-peer
overlays that facilitate the application development to be
independent from the underlying overlay. While KBR fa-
cilitates the deployment of our abstraction on any DHT
implementation that supports KBR API, it does not pro-
vide any interface to access the list of children for different
prefixes.

While search application is a predominant target ap-
plication for DHTs, several other applications like multi-
cast [4, 5, 31, 34], file storage [8, 17, 30], and DNS [7] are
also built using DHTs. All of these applications implic-
itly perform aggregation on some attribute, and each one
of them must be designed to handle any reconfigurations
in the underlying DHT. With the aggregation abstraction
provided by our system, designing and building of such
applications becomes easier.

Internal DHT trees typically do not satisfy domain lo-
cality properties required in our system. Castro et al. [3]
and Gummadi et al. [13] point out the importance of path
convergence from the perspective of achieving efficiency
and investigate the performance of Pastry and other DHT
algorithms respectively. In the later study, domains of size
256 or more nodes is considered. In SDIMS, we expect
the size of administrative at lower levels to be much less
than 256 and it is at these sizes that the convergence fails
more often(Refer to Graph 10. SkipNet [14] provides do-
main restricted routing where a key search is limited to
the specified domain. This interface can be used to ensure
path convergence by searching in the lowest domain and
move up to the next domain when the search reaches the
root in the current domain. While this strategy guarantees
path convergence, we loose the aggregation tree abstrac-
tion property of DHTs as the domain constrained routing
might touch a node more than once (as it searches forward
and then backward to stay within a domain).

There are some ongoing efforts to provide the rela-
tional database abstraction on DHTs: PIER [15] and Grib-
ble et al. [12]. This research mainly focuses on support-
ing “Join” operation for tables stored on the nodes in a
network. We consider this research to be complementary
to our work; the approaches can be used in our system
to handle composite probes – e.g., find a nearest machine
with file “foo” and has more than 2 GB of memory.

9 Conclusions
This paper presents a Scalable Distributed Information
Management System (SDIMS) that aggregates informa-
tion in large-scale networked systems and that can serve
as a basic building block for a broad range of applications.
For large scale systems, hierarchical aggregation is a fun-
damental abstraction for scalability. We build our system
by picking and extending ideas from Astrolabe and DHTs
to achieve (i) scalability with respect to both nodes and at-
tributes through a new aggregation abstraction that helps
leverage DHT’s internal trees for aggregation, (ii) flexi-
bility through a simple API that lets applications control
propagation of reads and writes, (iii) autonomy and iso-
lation properties through simple augmentations of current
DHT algorithms, and (iv) robustness to node and network
reconfigurations through lazy reaggregation, on-demand
reaggregation, and tunable spatial replication.

Our system is still in a nascent state. The initial work
does provide evidence that we can achieve scalable dis-
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tributed information management by leveraging aggrega-
tion abstraction and DHTs. Our work also opens up many
research issues in different fronts that need to be solved.
Below we enumerate some future research directions.

1. Robustness: In our current system, in spite of our cur-
rent techniques, reconfigurations are costly. Malkhi et
al. [19] propose Supernodes to reduce the number of re-
configurations at the DHT level; this technique can be
leveraged to reduce the number of reconfigurations at
the Aggregation Management Layer.

2. Self-tuning adaptation: The read-to-write ratios for ap-
plications are dynamic. Instead of applications choos-
ing the right strategy, the system should be able to self-
tune the aggregation and propagation strategy accord-
ing to the changing read-to-write ratios.

3. Handling Composite Queries: Queries involving mul-
tiple attributes pose an issue in our system as different
attributes are aggregated along different trees.

4. Caching: While caching is employed effectively in
DHT file location applications, further research is
needed to apply this concept in our general framework.
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